Medição de variáveis: viscosidade (final)

Introdução ao SQL Server 2008 R2
de 03/03/2012 a 17/03/2012

Se você quer ter a chance de ingressar no mercado de TI ou iniciar sua preparação para os exames oficiais Microsoft 70-432 e 70-433, então este curso é para você! Você que é novato ou experiente em SQL Server, este curso apresenta os novos recursos do SQL Server 2008 R2, ensinando desde a preparação do ambiente para os laboratórios de exercícios até a utilização das principais ferramentas, além de codificação em T-SQL. Clique para mais informações.

viscosidadeOs tipos básicos de medidores de viscosidade são:

- Medidor rotacional: o torque requerido para girar um disco ou um cilindro e a força requerida para mover uma placa são função da viscosidade. São medidores apropriados para fluidos não newtonianos. Exemplos: viscosímetro de Couette e o de Brookfield.

- Medidor do fluxo através de uma restrição: inclui o viscosímetro que mede o tempo para um fluido passar através de um orifício ou de um tubo capilar, e a queda de pressão através do capilar em vazão constante. Exemplo: viscosímetro de Ostwald, de Poiseuille e o de Ford.

- Medidor da vazão em torno de obstruções: inclui a medição da queda vertical de uma esfera (medidor de Glen Creston) ou o rolamento de uma esfera num plano inclinado (medidor de Hoeppler) ou a subida de uma bolha de ar. A velocidade da queda da esfera ou da subida da bolha é função da viscosidade do fluido. Há ainda medidores mais complexos e menos usados, baseados na medição da oscilação de uma lâmina vibrante imersa no fluido de medição, cuja taxa de amortecimento é função da viscosidade.

Todas as técnicas de medição de viscosidade dos fluidos podem ser adaptadas para estudar os efeitos da temperatura e da pressão na viscosidade. É importante enfatizar que a viscosidade dependente umbilicalmente da temperatura. Por exemplo, a viscosidade da água varia 3% para cada kelvin. A medição da viscosidade, independente do medidor utilizado, deve ser efetuada com a temperatura controlada ou medida com precisão, para fins de compensação ou polarização. Em menor grau, a viscosidade também depende da pressão. Em algumas aplicações de óleos lubrificantes, por exemplo, é necessário conhecer a dependência viscosidade x pressão. Geralmente, a viscosidade é diretamente proporcional à densidade da substância.

Já a viscosidade absoluta dos líquidos é inversamente proporcional a temperatura, ou seja, o aumento da temperatura diminui a viscosidade dos líquidos. Praticamente todos os líquidos se tornam mais finos (diminuem a viscosidade) com o aumento da temperatura e ficam mais grossos (aumentam a viscosidade) quando resfriados. Esta é a razão porque em países frios, há dois tipos de óleo de motor, para o verão e para o inverno (SAE-10, SAE 20). O óleo mais fino é usado no frio, de modo que a queda da temperatura que aumenta a viscosidade ainda o mantém no estado líquido. Já são disponíveis óleos com pequena variação de viscosidade com variação da temperatura: SAE 10W – 30.

Para a maioria dos materiais, a curva viscosidade x temperatura é exponencial e uma pequena variação de temperatura pode provocar grande variação da viscosidade. Há materiais que possuem coeficientes de variação tão elevados quanto 30%/oC. O formato exponencial da curva viscosidade x temperatura torna a compensação de temperatura uma tarefa complexa e difícil de ser realizada. Pode ser que a melhor solução seja a colocação de um sistema de controle de temperatura, que a mantenha constante no processo em si ou na obtenção da amostra a ser usada para a medição da viscosidade. Há tabelas, gráficos e ábacos que relacionam a viscosidade com a temperatura. A partir destas curvas e de equações exponenciais pode-se extrapolar a viscosidade, ou seja, determinar a viscosidade do fluido em determinada temperatura a partir da viscosidade conhecida em outra temperatura.

A viscosidade absoluta dos líquidos é diretamente proporcional à pressão, ou seja, o aumento da pressão aumenta a viscosidade dos líquidos, porém, em menor grau. Os líquidos mais compressíveis, como os carboidratos leves, são mais sensíveis a pressão. Na maioria das aplicações da medição de vazão, o efeito da pressão na viscosidade dos líquidos é insignificante. Uma pequena variação na viscosidade afeta somente o numero de Reynolds, que, na maioria dos casos, tem pequena influência nos coeficientes da vazão. A equação de Kouzel relaciona a viscosidade com a pressão.

Por fim, a viscosidade absoluta dos gases e vapores é diretamente proporcional à temperatura. Esse comportamento é oposto ao dos líquidos. Porém, em pressões muito elevadas, a viscosidade inverte; a viscosidade é inversamente proporcional à temperatura. O gás sob altíssima pressão se comporta como líquido. Até a pressão de 1500 psi, as variações da viscosidade não afetam a maioria das medições de vazão. Adicionalmente, as vazões de gases se processam com elevadíssimos números de Reynolds, onde mesmo as grandes variações da viscosidade não afetam a medição da vazão.

Siga o blog no TWITTER

Mais notícias, artigos e informações sobre qualidade, meio ambiente, normalização e metrologia.

Linkedin: http://br.linkedin.com/pub/hayrton-prado/2/740/27a

About these ads

Deixar uma resposta

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

WordPress.com Logo

Está a comentar usando a sua conta WordPress.com Log Out / Modificar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Log Out / Modificar )

Facebook photo

Está a comentar usando a sua conta Facebook Log Out / Modificar )

Google+ photo

Está a comentar usando a sua conta Google+ Log Out / Modificar )

Connecting to %s

Seguir

Get every new post delivered to your Inbox.

Junte-se a 1.804 outros seguidores

%d bloggers like this: