Os ensaios em aquecedores de água a gás tipo acumulação

Para a realização dos ensaios práticos, deve-se dispor das instalações e equipamentos, como uma sala de ensaio arejada, com circulação de ar equilibrada, provida de um sistema que evite o acúmulo dos produtos da combustão. Um banco de ensaio, equipado com os aparelhos descritos em seguida, instrumentos, etc.

Confirmada em dezembro de 2019, a NBR 10542 de 11/2015 – Aquecedores de água a gás tipo acumulação – Ensaios especifica um método de ensaio para aquecedores de água, tipo acumulação, nos quais são utilizados combustíveis gasosos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser realizado o ensaio de estanqueidade?

Para a realização dos ensaios práticos, quais as instalações e os equipamentos devem ser disponibilizados?

Como devem ser feitos os ensaios de determinação da capacidade de produção?

Quais os valores da pressão de ensaio?

Para a realização dos ensaios práticos, descritos na Seção 3, deve-se dispor das instalações e equipamentos descritos em seguida. Uma sala de ensaio arejada, com circulação de ar equilibrada, provida de um sistema que evite o acúmulo dos produtos da combustão. Um banco de ensaio, equipado com os aparelhos descritos em seguida, instrumentos, etc.

Regulador de pressão de gás ou equipamento equivalente. Medidor de consumo de gás úmido, aferido, equipado com termômetro com precisão com sensibilidade de 0,1 °C. Manômetro com sensibilidade de 19,6 Pa (2 mm de coluna d’água/mm A.A.) para a medição de pressão de gás. Regulador ou redutor de pressão de água. Termômetro de precisão, com escala de 0 °C a + 50 °C e sensibilidade de 0,1 °C, para a medição da temperatura da água fria.

Além disso, deve ter um termômetro de precisão, com escala de 0 °C a + 100 °C e sensibilidade de 0,1 °C, para a medição da temperatura da água quente. Manômetros para campos de medição entre 19,6 kPa e 1 470 kPa (0,2 kgf/cm² e 15 kgf/cm²), com precisão de ± 5%, para a medição da pressão de água. Tubo de medição, balança com sensibilidade de 0,5 g e dispositivo de aspiração, para ensaio das características higiênicas.

Deve-se ter uma chaminé secundária com 500 mm de comprimento, do mesmo diâmetro da gola do aquecedor, para os ensaios de aferição da qualidade da combustão e determinação da taxa de rendimento. Dispositivo para medição da fuga de gás nos ensaios de estanqueidade, conforme figuras abaixo. Uma bomba para funcionar com o dispositivo de aspiração.

Deve-se incluir um aparelho para determinação de CO, que permita leituras de aproximadamente 0,0005% em volume, um insuflador para ensaio de reversão de corrente de ar, dispondo de medidor de velocidade de ar, com sensibilidade de 0,1 m/s e um calorímetro com precisão de 2,1 kJ/m3 normalizado (0,5 kcal/m3 normalizado). Um barômetro com precisão de 6,5 Pa (0,05 mm de coluna de mercúrio) e um densímetro, para medição comparativa de densidade de gases, com precisão de 0,002.

Acrescentar uma bomba de ar com manômetro para ensaio de estanqueidade, um dispositivo de medição para temperaturas de superfície, um equipamento para produzir misturas de gases e compartimentos de ensaio. Para as pressões de ensaio, para gás, os valores da pressão de ensaio, medidos na conexão do tubo de admissão de gás do aquecedor, devem obedecer aos valores estabelecidos na tabela abaixo.

Para a verificação de avarias de transporte, antes do início dos ensaios, o aquecedor deve ser examinado quanto à existência de evidentes avarias de transporte que possam influir no seu funcionamento. Para o ensaio de conformidade com as especificações, deve-se verificar a conformidade do aparelho com as características descritas nas especificações, bem como se as instalações de ensaio correspondem às exigências da Seção 2.

O ensaio de estanqueidade para gás deve ser realizado com o aquecedor no estado em que foi fornecido pelo fabricante, com o emprego de ar à pressão de 14,7 kPa (1 500 mm C.A.), utilizando-se os equipamentos de medição conforme figuras acima. Após regulagem da pressão de ar, deve-se manter, antes de cada leitura, um tempo de espera de pelo menos 5 min para a estabilização da temperatura da instalação de medição.

Nos ensaios, o dispositivo de regulagem a ser ensaiado deve estar fechado, porém com a sua saída comunicando-se com o ambiente. A estanqueidade do registro de controle de gás deve ser verificada nas posições aberta e fechada separadamente do aquecedor. O registro deve ser imerso em água e submetido a uma pressão de ensaio de 49 kPa (0,5 kgf/cm²).

Para água, antes do início do ensaio, deve-se eliminar o ar de peças destinadas à circulação de água, mediante repetidas aberturas e fechamentos do registro de água quente. As peças destinadas à circulação de água devem ser submetidas a uma pressão mínima de ensaio de 588 kPa (6 kgf/cm²), durante 30 min, não podendo ocorrer vazamento em qualquer das peças no transcorrer do ensaio.

O ensaio de temperatura da capa é realizado por ocasião do ensaio das características higiênicas, com potência nominal e corrente de ascensão, com o emprego do gás de referência. 3.7.2 O aquecedor deve funcionar durante aproximadamente 15 min, antes de serem determinadas as temperaturas.

O ensaio de estabilidade de queima é realizado por ocasião do ensaio das características higiênicas, com corrente de ascensão e com os valores-limites de potência nominal indicados nas especificações, com o emprego de todos os gases de ensaio. A estabilidade de queima da chama-piloto é ensaiada em uma corrente de ar horizontal com velocidade de 2 m/s, dirigida de várias direções para a abertura de observação das chamas na capa do aquecedor.

Deve-se medir a velocidade de ar em uma distância de aproximadamente 0,5 m do aquecedor, e a saída de ar do insuflador deve estar pelo menos 1 m distante do aquecedor. Para os ensaios de determinação da capacidade de produção, o aquecedor deve ser colocado em funcionamento, operando com vazões de água ajustadas para 3 L/min, 5 L/min, 7 L/min; 4 L/min, 7 L/min, 10 L/min e 6 L/min, 10 L/min, 14 L/min, respectivamente, para aparelhos de porte pequeno, médio e grande.

A capacidade de produção do aquecedor é medida pela quantidade de energia fornecida pelo aquecedor em 1 h de operação. Para a realização dos ensaios, usar bancos de prova semelhantes aos das Figuras A.5 a e A.5 b) – disponíveis na norma, com o emprego do gás de referência.

IEC TR 61511-4: a segurança instrumental na indústria de processo

Esse Relatório Técnico, editado em 2020 pela International Electrotechnical Commission (IEC), aborda os sistemas instrumentalizados de segurança (safety instrumented systems – SIS) para a indústria de processo. Ele foi escrito para usar uma terminologia familiar neste setor e para definir os requisitos práticos de implementação com base nas cláusulas independentes do setor apresentadas na norma básica de segurança IEC 61508. A IEC 61511-1 é reconhecida como uma boa prática de engenharia em muitos países e um requisito regulatório em um número crescente de países.

A IEC TR 61511-4:2020 – Functional safety – Safety instrumented systems for the process industry sector – Part 4: Explanation and rationale for changes in IEC 61511-1 from Edition 1 to Edition 2 especifica a lógica por trás de todas as cláusulas e o relacionamento entre elas, aumenta a conscientização sobre os equívocos mais comuns e interpretações errôneas das cláusulas e das mudanças relacionadas a elas, explica as diferenças entre a ed. 1 e a ed. 2 da IEC 61511-1 e as razões por trás das alterações, apresenta os resumos de alto nível de como cumprir os requisitos das cláusulas, e explica as diferenças na terminologia entre a IEC 61508-4: 2010 e a IEC 61511-1 ed. 2.

CONTEÚDO…………………… 2

PREFÁCIO. ………………….. 5

INTRODUÇÃO.. ……………… 7

1 Escopo………………………. 8

2 Referências normativas…… ….. 8

3 Termos, definições e termos abreviados………………… 8

3.1 Termos e definições………………………………… 8

3.2 Termos abreviados……………………….. .. 9

4 Antecedentes………………. …………….. 10

5 Gerenciamento da segurança funcional (IEC 61511-1 Ed. 2, cláusula 5) … 10

5.1 Por que essa cláusula é importante?… ……………………….. 10

5.2 Equívocos comuns……… ………………………………… 10

5.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?……… …. 11

5.3.1 Sistemas existentes……………………………………. 11

5.3.2 Gerenciamento de mudanças……………………. 11

5.3.3 Métricas de desempenho e garantia de qualidade……… ……… 11

5.3.4 Competência…………………………………. ..12

5.3.5 Mais requisitos para fornecedores de produtos e serviços de segurança funcional…….. 12

5.4 Resumo de como………………………….. ..12

6 Ciclo de vida da segurança (IEC 61511-1 Ed. 2, cláusula 6)………. 12

6.1 Por que essa cláusula é importante? ……………………….. 12

6.2 Conceitos errôneos comuns………………………………. 12

6.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?….. …. 13

6.4 Resumo de como…………………………………. ..13

7 Verificação (IEC 61511-1 Ed. 2, Cláusula 7)…………………. 13

7.1 Por que essa cláusula é importante?………………………. 13

7.2 Equívocos comuns………………………………. 13

7.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?………… …. 13

7.4 Resumo de como………………………….. ..13

8 Análise de perigos e riscos (IEC 61511-1 Ed. 2, cláusula 8)…………… 13

8.1 Por que essa cláusula é importante? ……………………….. 13

8.2 Equívocos comuns. ………………………………… 14

8.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?………………. …. 14

8.4 Resumo de como………………………………….. ..15

9 Alocação de funções de segurança para camadas de proteção (IEC 61511-1 Ed. 2, cláusula 9) ……….. 15

9.1 Por que essa cláusula é importante?……………………… 15

9.2 Equívocos comuns…. ………………………………… 15

9.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?………. …. 16

9.3.1 Limites nas camadas de proteção BPCS…………………. 16

9.3.2 Requisitos para reivindicar RRF> 10.000 no total para as proteções dos instrumentos………………………………… .16

9.4 Resumo de como…………………………. ..16

10 Especificação dos requisitos de segurança do SIS (IEC 61511-1 Ed. 2, cláusula 10)………………….. 17

10.1 Por que essa cláusula é importante?……………………… 17

10.2 Equívocos comuns. ………………………………… 17

10.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?…………… …. 18

10.4 Resumo de como…………………………………….. ..18

11 Projeto e engenharia (IEC 61511-1 Ed. 2, cláusula 11)……………. 18

11.1 Por que essa cláusula é importante?…………………….. 18

11.2 Equívocos comuns……………………………….. 18

11.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?…… …. 19

11.3.1 Tolerância a falhas de hardware……………………….. 19

11.3.2 Requisitos de risco à segurança…………………… 20

11.3.3 Manual de segurança …………………………. 20

11.3.4 Requisitos para o comportamento do sistema na detecção de uma falha…………….. 20

11.3.5 Limitações no projeto de comunicação do dispositivo de campo………….. .21

11.4 Resumo de como………………………….. ..21

12 Desenvolvimento de programa de aplicativo (IEC 61511-1 Ed. 2, cláusula 12)…………….. 21

12.1 Por que essa cláusula é importante?………………… 21

12.2 Equívocos comuns………………………………… 22

12.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?……………. …. 22

12.4 Resumo de como…………………………………… ..22

13 Ensaio de aceitação da fábrica (IEC 61511-1 Ed. 2, cláusula 13)……….. 22

13.1 Por que essa cláusula é importante?……………… 22

13.2 Equívocos comuns………………………………… 23

13.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?…… …. 23

13.4 Resumo de como ………………………. ..23

14 Instalação (IEC 61511-1 Ed. 2, cláusula 14)……………….. 23

14.1 Por que essa cláusula é importante?. ……………………….. 23

14.2 Equívocos comuns………………………… 24

14.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?…………… …. 24

14.4 Resumo de como……………………………………. ..24

15 Validação (IEC 61511-1 Ed. 2, Cláusula 15)……………. 24

15.1 Por que essa cláusula é importante?…………….. 24

15.2 Equívocos comuns………………………… 24

15.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?…………….. …. 24

15.4 Resumo de como…………………………………….. ..24

16 Operação e manutenção (IEC 61511-1 Ed. 2, cláusula 16)…. ……. 25

16.1 Por que essa cláusula é importante?………………………. 25

16.2 Equívocos comuns…… ………………………………… 25

16.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?……… …. 26

16.3.1 Medidas de detecção, desvio e compensação de falhas……… 26

16.3.2 Ensaio de prova após reparo e alteração……………….. 26

16.4 Resumo de como……………………………………. ..26

17 Modificação (IEC 61511-1 Ed. 2, cláusula 17)…………….. 26

17.1 Por que essa cláusula é importante?……………………… 26

17.2 Equívocos comuns………………………………. 26

17.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?……… …. 27

Planejando e concluindo alterações….. …………………………… 27

17.4 Resumo de como…………………………………… ..27

18 Desativação (IEC 61511-1 Ed. 2, Cláusula 18)……….. 27

18.1 Por que essa cláusula é importante?…………………… 27

18.2 Equívocos comuns.. ………………………………… 27

18.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?…….. …. 28

18.3.1 Planejando e concluindo as alterações…….. ……………….. 28

18.4 Resumo de como………………………………….. ..28

19 Documentação (IEC 61511-1 Ed. 2, cláusula 19)……………….. 28

19.1 Por que essa cláusula é importante?……………………….. 28

19.2 Equívocos comuns… ………………………………… 28

19.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?……………… …. 28

19.4 Resumo de como…………………………………………. ..28

20 Definições (IEC 61511-1 Ed. 2, Cláusula 3)…………………… 29

20.1 Por que essa cláusula é importante?………………………. 29

20.2 Equívocos comuns. ………………………………… 29

20.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?…. …. 29

20.4 Resumo de como………………………. ..37

Bibliografia……………………………… ………………….. 38

Tabela 1 – Termos abreviados usados na IEC TR 61511-4…………… 9

Tabela 2 – Justificativa para IEC 61511-1 Ed. 2 termos e definições……………….. 29

A IEC 61511 (todas as partes) trata dos sistemas instrumentados de segurança (SIS) para a indústria de processo. Ela foi escrita para usar a terminologia familiar neste setor e para definir os requisitos práticos de implementação com base nas cláusulas independentes do setor apresentadas na norma básica de segurança IEC 61508. A IEC 61511-1 é reconhecida como uma boa prática de engenharia em muitos países e um requisito regulatório em um número crescente de países.

No entanto, os padrões evoluem com a experiência do aplicativo no setor afetado. A segunda edição da IEC 61511-1 foi editada com base em uma década de experiência no setor de processos internacionais na aplicação dos requisitos da primeira edição da IEC 61511-1: 2003. As mudanças da Edição 1 à Edição 2 foram iniciadas por comentários dos Comitês Nacionais, representando um amplo espectro de usuários do padrão em todo o mundo.

Na Edição 1: 2003 (Ed. 1) 1, os requisitos que tratam da prevenção e controle de erros sistemáticos que ocorrem durante o projeto, engenharia, operação, manutenção e modificação foram adaptados principalmente para suportar funções de segurança independentes até um SIL 3 de meta de desempenho. Por outro lado, a Edição 2: 2016 (Ed. 2) precisava abordar a tendência predominante de compartilhar sistemas de automação em várias funções de segurança.

A Ed. 2 também precisava abordar as más interpretações comuns do Ed. 1 requisitos que ficaram evidentes para a equipe de manutenção da IEC 61511 (MT 61511) nos anos intermediários. Por exemplo, a ed. 2 reforçou a necessidade de projetar para gerenciamento de segurança funcional, em vez de um foco restrito em um cálculo e gerenciar o desempenho real do tempo no SIS.

A IEC TR 61511-4 foi criada para fornecer uma breve introdução das questões acima para o público em geral, com o conteúdo mais detalhado restante nas principais partes da série IEC 61511. A IEC TR 61511-4 descreve a lógica subjacente das cláusulas primárias na IEC 61511-1, esclarece alguns conceitos errôneos comuns de aplicativos, fornece uma lista das principais diferenças entre a primeira e a segunda edições da IEC 61511-1 e fornece uma breve explicação de o setor de processo típico aborda a aplicação de cada cláusula primária.

A acessibilidade em trem urbano ou metropolitano

No estabelecimento dos critérios e parâmetros técnicos, devem ser consideradas as diversas condições de mobilidade e de percepção do ambiente pela população, incluindo crianças, adultos, idosos e pessoas com deficiência, com ou sem a ajuda de aparelhos específicos, como próteses, aparelhos de apoio, cadeiras de rodas, bengalas de rastreamento, sistemas assistivos de audição ou qualquer outro que venha a complementar necessidades individuais.

Confirmada em dezembro de 2019, a NBR 14021 de 06/2005 – Transporte – Acessibilidade no sistema de trem urbano ou metropolitano estabelece os critérios e parâmetros técnicos a serem observados para acessibilidade no sistema de trem urbano ou metropolitano, de acordo com os preceitos do Desenho Universal. No estabelecimento desses critérios e parâmetros técnicos, foram consideradas as diversas condições de mobilidade e de percepção do ambiente pela população, incluindo crianças, adultos, idosos e pessoas com deficiência, com ou sem a ajuda de aparelhos específicos, como próteses, aparelhos de apoio, cadeiras de rodas, bengalas de rastreamento, sistemas assistivos de audição ou qualquer outro que venha a complementar necessidades individuais.

Visa proporcionar à maior quantidade possível de pessoas, independentemente de idade, estatura e condição física ou sensorial, a utilização de maneira autônoma e segura do ambiente, mobiliário, equipamentos e elementos do sistema de trem urbano ou metropolitano. Para os novos sistemas de trem urbano ou metropolitano que vierem a ser projetados, construídos, montados ou implantados, esta norma se aplica às áreas e rotas destinadas ao uso público. Deve ser aplicada em novos projetos de sistemas de trem urbano ou metropolitano.

Para os sistemas de trem urbano ou metropolitano existentes, esta norma estabelece os princípios e as condições mínimas para a adaptação de estações e trens às condições de acessibilidade. Esta norma deve ser aplicada sempre que as adaptações resultantes não constituírem impraticabilidade. A segurança do usuário deve prevalecer sobre sua autonomia em situação de anormalidade no sistema de trem urbano ou metropolitano.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser a área para utilização das bilheterias e dos equipamentos de autoatendimento?

Como deve ser o equipamento de controle de acesso?

Como deve ser a faixa livre nas plataformas?

Como deve ser o vão e o desnível entre o trem e a plataforma?

As áreas de uso público da estação devem atender à seção 6 da NBR 9050:2004. Os equipamentos, dispositivos, painéis de informação e demais elementos devem atender às seções 4 e 9 da NBR 9050:2004, e devem também: ser instalados de forma a possibilitar o alcance manual e visual para utilização; quando suspensos sobre as áreas de circulação e de uso público, garantir altura livre mínima de 2,10 m.

O sistema de trem urbano ou metropolitano deve prover e manter pessoal habilitado para atendimento das pessoas com deficiência ou com mobilidade reduzida que utilizam seus serviços, considerando as necessidades e as diferenças entre as diversas deficiências. O módulo de referência é uma área com dimensões de 0,80 m x 1,20 m, referente à ocupação de uma pessoa em cadeira de rodas, conforme figura abaixo.

Deve haver uma rota acessível entre os diferentes modos integrados de transporte e as áreas essenciais da estação, conforme figura abaixo. Rotas acessíveis entre o acesso e as plataformas devem passar através dos equipamentos de controle de acesso. Em situação de anormalidade no sistema de trem urbano ou metropolitano, deve haver pessoal habilitado para auxiliar na circulação. Nas situações de emergência deve ser considerada a utilização ou não de equipamentos de resgate, segundo procedimento da empresa de sistema de trem urbano ou metropolitano, conforme figura abaixo.

Áreas de acomodação devem oferecer condição segura para a permanência da pessoa com deficiência ou com mobilidade reduzida nas extremidades de escadas e rampas ou junto aos equipamentos de circulação e de controle de acesso, sem interferir nas áreas de circulação. As salas operacionais com acesso de público devem estar interligadas à rota acessível. Incluem-se nesta condição salas de primeiros-socorros, salas de supervisão e sanitários acessíveis.

Salas de primeiros-socorros devem estar localizadas, preferencialmente, próximas a um sanitário acessível. Para a execução de obras e serviços, recomenda-se adotar medidas mitigadoras, conforme a localização da intervenção: em rota acessível de áreas essenciais, deve ser prevista rota acessível alternativa, assegurando-se uma faixa livre mínima de circulação com 1,20 m de largura; em áreas complementares, os equipamentos e ambientes devem ser interditados e isolados. Deve haver sinalização temporária informando a interdição.

O isolamento das áreas em obras deve ter altura livre máxima de 0,60 m, para permitir sua detecção por pessoas com deficiência visual que utilizem bengalas de rastreamento. Na inoperância dos equipamentos de circulação, deve haver procedimento e pessoal habilitado para auxiliar o embarque e o desembarque da pessoa com deficiência ou mobilidade reduzida.

Os acessos devem permitir seu uso por pessoas com deficiência ou com mobilidade reduzida. Podem constituir exceções: os acessos situados a uma distância inferior a 100 m do acesso para pessoas com deficiência ou mobilidade reduzida, localizados no mesmo passeio ou separados por sistema viário, desde que haja rota acessível entre eles; acessos com demanda inferior a 15% do total da demanda de embarque ou desembarque da estação, desde que exista ou seja aplicável a implantação de rota acessível externa até o acesso destinado às pessoas com deficiência ou mobilidade reduzida; os acessos situados em local de natureza topográfica não acessível, independentemente da demanda de usuários, desde que observado o disposto a seguir.

Quando todos os acessos se situarem em local de natureza topográfica não acessível, pelo menos um acesso deve permitir seu uso por pessoa com deficiência ou com mobilidade reduzida, estar vinculado à rota acessível interna e dispor de local de parada de veículo para embarque e desembarque de pessoa com deficiência ou com mobilidade reduzida, conforme critérios do órgão de trânsito com jurisdição sobre a via. Os balcões de venda ou serviços complementares oferecidos pelo sistema de trem urbano ou metropolitano devem atender à seção 9 da NBR 9050:2004.

Bilheterias e equipamentos de autoatendimento são destinados à venda de bilhetes ou créditos de viagem e devem permitir sua utilização com autonomia por pessoas com deficiência ou com mobilidade reduzida, conforme a NBR 9050 e NBR 15250. Devem atender às prescrições descritas a seguir. A superfície dos balcões de autoatendimento e das bilheterias e os dispositivos dos equipamentos de autoatendimento devem facilitar o recolhimento dos bilhetes e moedas.

Nas bilheterias, a altura do balcão não deve exceder 1,05 m. Nos equipamentos de autoatendimento, os dispositivos e comandos, as fendas para inserção e retirada de bilhetes, cartões de crédito de viagem, dinheiro e o conector de fone de ouvido devem estar localizados em altura entre 0,80 m e 1,20 m do piso, com profundidade de no máximo 0,30 m em relação à face frontal externa do equipamento.

Os demais dispositivos operáveis pelo usuário, inclusive os monitores, podem estar localizados em altura entre 0,40 m e 1,37 m em relação ao piso de referência, com profundidade de no máximo 0,30 m em relação à face frontal externa do equipamento. O monitor de vídeo dos equipamentos de autoatendimento deve ser posicionado de modo a garantir a visão de todas as informações exibidas por pessoas em pé e em cadeira de rodas.

A quantidade de bilheterias e equipamentos de autoatendimento para pessoa com deficiência ou com mobilidade reduzida deve ser determinada de acordo com a demanda da estação na hora de pico. A área de acomodação de filas das bilheterias ou de equipamentos de autoatendimento não deve interferir na área de circulação de rotas acessíveis. As bilheterias e os equipamentos de autoatendimento devem estar interligados aos acessos e às áreas essenciais através de rota acessível.

Em estações onde houver bilheterias e equipamentos de autoatendimento em diferentes locais, devem ser garantidos o atendimento e a prestação do serviço em todos esses locais, durante todo o período de funcionamento do sistema de trem urbano ou metropolitano. Pelo menos um equipamento em cada conjunto de equipamentos de controle de acesso deve permitir sua utilização por pessoas com deficiência ou com mobilidade reduzida.

Deve-se adequar a porta do carro ou a plataforma, ou ambos, no local de embarque e desembarque de pessoas em cadeira de rodas, de forma a atender às dimensões citadas. Podem ser feitas adaptações, utilizando-se dispositivos fixos ou móveis, atendendo às seguintes condições: não interferir ou prejudicar o intervalo entre trens e a regulação do sistema; ter superfície firme, estável e antiderrapante em qualquer condição; suportar carga de 300 kgf/m²; permanecer imóvel durante o embarque e o desembarque.

Os dispositivos móveis devem atender ainda às seguintes condições: ter largura mínima de 1,00 m; ter cor contrastante ou ter sinalização em cor contrastante, nos limites da área de circulação. Deve haver instruções de uso informando quanto aos cuidados durante o acionamento ou utilização desses dispositivos. Na inexistência ou inoperância dos dispositivos mencionados, deve haver procedimento e pessoal habilitado para auxiliar no embarque e desembarque de pessoa com deficiência ou com mobilidade reduzida.

Nas vias entre estações, sejam elas elevadas, em nível ou subterrâneas, deve ser possível a circulação assistida dos usuários em situação de emergência, transportados conforme procedimento do sistema de trem urbano ou metropolitanos. Devem ser previstos procedimentos que possibilitem o abandono do trem com segurança, notadamente das pessoas com deficiência ou com mobilidade reduzida, em situações de emergência, informando os usuários. O vão livre das portas de embarque e desembarque para pessoa com deficiência ou com mobilidade reduzida deve ter largura mínima de 1,20 m. Para os sistemas existentes, o vão livre das portas deve ter largura mínima de 0,80 m.

Quando houver portas e passagem entre carros e estas forem utilizadas em situações de emergência, elas podem ter vão livre mínimo de 0,60 m e desnível no piso de no máximo 1,5 cm. No interior do carro a ser utilizado por pessoa com deficiência ou com mobilidade reduzida, deve ser previsto local para posicionamento da pessoa em cadeira de rodas, livre de obstáculos, medindo 0,80 m x 1,20 m (módulo de referência).

A quantidade de módulos de referência deve ser definida de acordo com o intervalo entre trens, conforme segue: operação com intervalo entre trens menor ou igual a 10 min – mínimo de um módulo por trem; operação com intervalo entre trens maior do que 10 min – mínimo de dois módulos por trem. O local para pessoa em cadeira de rodas deve estar preferencialmente próximo à porta de embarque e desembarque.

A área de circulação interna do carro deve ser isenta de barreiras, desde a porta de embarque e desembarque até o local para posicionamento da pessoa em cadeira de rodas. Esta área de circulação deve permitir a manobra de cadeira de rodas, considerando o giro de 180º e 360°.

Os projetos hidráulicos de Estações de Tratamento de Esgoto Sanitário (ETE)

Conheça as condições recomendadas para a elaboração de projeto hidráulico e de processo de Estações de Tratamento de Esgoto Sanitário (ETE), observada a regulamentação específica das entidades responsáveis pelo planejamento e desenvolvimento do sistema de esgoto sanitário.

Confirmada em dezembro de 2019, a NBR 12209 de 11/2011 – Elaboração de projetos hidráulico-sanitários de estações de tratamento de esgotos sanitários apresenta as condições recomendadas para a elaboração de projeto hidráulico e de processo de Estações de Tratamento de Esgoto Sanitário (ETE), observada a regulamentação específica das entidades responsáveis pelo planejamento e desenvolvimento do sistema de esgoto sanitário. Aplica-se aos seguintes processos de tratamento: separação de sólidos por meios físicos; processos físico-químicos; processos biológicos; tratamento de lodo; desinfecção de efluentes tratados; tratamento de odores.

Lagoas de estabilização, tanques sépticos e destino final de subprodutos do tratamento, bem como ETE compactas (pré-fabricadas) não estão contemplados na presente norma, e convêm que sejam parte de outra regulamentação. Uma estação de tratamento de esgoto sanitário (ETE) é um conjunto de unidades de tratamento, equipamentos, órgãos auxiliares, acessórios e sistemas de utilidades, cuja finalidade é a redução das cargas poluidoras do esgoto sanitário e condicionamento da matéria residual resultante do tratamento.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executada a remoção de areia?

Como deve ser feito o tratamento anaeróbio com reator do tipo UASB (reator anaeróbio de fluxo ascendente e manta de lodo)?

Quando devem ser usados os filtros biológicos percoladores (FBP)?

Como devem ser utilizados os biofiltros aerados submersos (BAS)?

O relatório de estudo de concepção do sistema de esgoto sanitário deve ser elaborado conforme a NBR 9648, apresentando, pelo menos: a população atendida e atendível pela ETE nas diversas etapas do plano. Vazões e demais características de esgotos sanitários afluentes à ETE nas diversas etapas do plano, de acordo com as NBR 9649, NBR 12207 e NBR 12208; exigências ambientais e legais a serem atendidas; características requeridas para o efluente tratado nas diversas etapas do plano; forma de disposição final do efluente líquido: ponto de lançamento, corpo receptor, reuso previsto, como definidos na concepção básica; forma de armazenamento dos subprodutos sólidos de acordo com a NBR 11174; forma de disposição final dos subprodutos sólidos: local de disposição e eventuais usos na agricultura, na recuperação de áreas degradadas, etc.; área selecionada para construção da ETE, com levantamento planialtimétrico em escala mínima de 1:1.000; sondagens preliminares de reconhecimento do subsolo na área selecionada; cota máxima de enchente na área selecionada; avaliação de lançamento de efluentes não domésticos na rede coletora, para fins de tratamento; e avaliação das emissões de GEE na ETE.

A elaboração do projeto hidráulico-sanitário e a complementação da concepção da ETE, quando necessário, compreendem, no mínimo, as seguintes atividades: seleção e interpretação das informações disponíveis para projeto; avaliação das opções de processo para a fase líquida, para a fase sólida e para a fase gasosa; seleção dos parâmetros de dimensionamento e fixação de seus valores; dimensionamento das unidades de tratamento; elaboração dos arranjos em planta das diversas opções definidas; avaliação de custo de implantação e operação das diversas opções; comparação técnico-econômica e ambiental, e escolha da solução; dimensionamento dos órgãos auxiliares e sistemas de utilidades; seleção dos equipamentos e acessórios; locação definitiva das unidades, considerando a circulação de pessoas e veículos, e o tratamento arquitetônico-paisagístico; elaboração do perfil hidráulico em função do arranjo definitivo; elaboração de relatório do projeto hidráulico-sanitário, justificando as eventuais divergências em relação ao estudo de concepção; elaboração das diretrizes de operação, de processo e de manutenção; previsão de projetos de supervisão e controle, arquitetônico, paisagístico, funcional de laboratório e manutenção, em função da necessidade e do porte da ETE; previsão de vias de acesso no entorno da ETE; avaliação de emissão de odores, ruídos e aerossóis que possam causar incômodo à vizinhança e indicação de ações mitigadoras.

Para o dimensionamento das unidades de tratamento e órgãos auxiliares, os seguintes parâmetros básicos mínimos do afluente devem ser considerados para as diversas etapas do plano: vazões afluentes máxima, mínima e média; demanda bioquímica de oxigênio (DBO) e demanda química de oxigênio (DQO); sólidos em suspensão (SS) e sólidos em suspensão voláteis (SSV); nitrogênio total kjeldahl (NTK); fósforo total (P); coliformes termotolerantes (CTer), e outros indicadores biológicos quando for pertinente; temperatura.

Todos os valores dos parâmetros acima devem ser determinados através de investigação local de validade reconhecida. Na ausência ou impossibilidade dessa determinação, podem ser usados valores na faixa de 45 a 60g DBO/hab.d, 90 a 120 g DQO/hab.d, 45 a 70 g SS/hab.d, 8 a 12 g N/hab.d, e 1,0 a 1,6 g P/hab.d. Os valores adotados devem ser justificados.

Para se garantir nitrificação, a idade do lodo, relativa apenas à parte do lodo ativado sob aeração (idade do lodo aeróbia), deve ser igual ou superior a 5 dias para esgoto bruto ou decantado e igual ou superior a oito dias para efluente de reator anaeróbio, para temperatura de 20 °C, no tanque de aeração. Alternativamente, a relação A/M deve ser inferior a 0,35 kg DBO aplicado/kg SSVTA.d para esgoto bruto ou decantado, ou inferior a 0,20 kg DBO aplicado/kg SSVTA.d para efluente de reator anaeróbio, para temperatura de 20 °C, no tanque de aeração. Deve-se considerar a influência da temperatura na adoção da idade do lodo, de acordo com a taxa de crescimento de nitrificantes. Na ausência de dados específicos, pode-se considerar a Tabela abaixo.

Os critérios gerais de dimensionamento das unidades e órgãos auxiliares, com exceção dos casos explicitados, devem ser os seguintes: dimensionados para a vazão máxima horária as estações elevatórias de esgoto bruto; das canalizações, inclusive by-passes e extravasores; dos medidores; dos dispositivos de entrada e saída; dimensionados para a vazão média em todas as unidades e canalizações precedidas de tanques de acumulação com descarga em regime de vazão constante. Recomenda-se que as unidades de tratamento da ETE disponham de sistema de by-pass e de esgotamento.

Deve ser previsto pelo menos o dispositivo de medição da vazão afluente à ETE. No caso da existência da elevatória de entrada, esta medição pode ser feita a montante ou a jusante da elevatória. Para elevatórias que recebem retornos, a medição deve ser feita a montante.

As ETE com vazões médias acima de 100 L/s devem ter totalizador de volume afluente. As canalizações devem ser dimensionadas de modo a evitar deposição de sólidos, em função das características do líquido transportado. O acesso às unidades deve ser fácil e adequado às condições de segurança e comodidade da operação. Escadas do tipo marinheiro devem ser evitadas.

Devem ser previstas condições ou dispositivos de segurança de modo a evitar concentração de gases que possam causar explosão, intoxicação ou desconforto, de acordo com as normas de segurança vigentes. O projeto hidráulico-sanitário deve incluir o tratamento do lodo, dos demais resíduos sólidos, e das emissões gasosas, considerando o destino final definido no estudo de concepção ou definindo-o caso não tenha sido considerado anteriormente.

O relatório do projeto hidráulico-sanitário da ETE deve incluir: memorial descritivo e justificativo contendo informações a respeito do destino a ser dado aos materiais residuais retirados da ETE, explicitando os meios que devem ser adotados para o seu transporte e disposição, projetando-os quando for o caso; balanço de massa; memória de cálculo de processo e hidráulico; planta de situação da ETE em relação à área de projeto e ao corpo receptor; planta de locação das unidades; fluxograma do processo e arranjo em planta com identificação das unidades de tratamento e dos órgãos auxiliares; perfis hidráulicos das fases líquida e sólida, nas diversas etapas, elaborados para a vazão máxima; plantas, cortes e detalhes; plantas e perfis de escavações e aterros; especificações de materiais e serviços; especificações de equipamentos e acessórios, incluindo as definições mínimas de materiais e os modelos dos equipamentos selecionados para a elaboração do projeto; estimativa orçamentária global da ETE.

As diretrizes de operação e manutenção da ETE devem conter no mínimo o seguinte: descrição simplificada da ETE; parâmetros utilizados no projeto; fluxograma e arranjo em planta da ETE com identificação das unidades e órgãos auxiliares e informações sobre seu funcionamento; procedimentos de operação e manutenção preventiva, com descrição de cada rotina e sua frequência; identificação dos problemas operacionais mais frequentes e procedimentos a adotar em cada caso; procedimentos de controle operacional, identificação de pontos de amostragem, indicadores de desempenho, monitoramento laboratorial; descrição dos procedimentos de segurança do trabalho; modelos de relatórios de operação e controle a serem elaborados pelo operador; descritivo operacional visando ao projeto do sistema de supervisão e controle da ETE; definição da equipe de operação e manutenção, e requisitos mínimos de qualificação.

Atenção especial deve ser dada ao atendimento às medidas mitigadoras constantes e recomendadas nos estudos ambientais prévios. Para o tratamento da fase líquida e remoção de sólidos grosseiros, além das indicações seguintes, deve ser observado o que preceitua a NBR 12208. A remoção de sólidos grosseiros pode ser feita através de grades de barras e de peneiras. A vazão de dimensionamento das grades e peneiras deve ser a vazão máxima afluente à unidade.

As grades de barras devem ter espaçamento entre as barras de 10 a 100 mm, sendo classificadas, de acordo com tal espaçamento como: grade grossa: espaçamento de 40 a 100 mm; grade média: espaçamento de 20 a 40 mm; grade fina: espaçamento de 10 a 20 mm. As grades de barras podem ser de limpeza manual ou mecanizada.

Exceto para as grades grossas, as grades de barras devem ser de limpeza mecanizada quando a vazão máxima afluente final for igual ou superior a 100 L/s ou quando o volume de material a ser retido justificar o uso de equipamento mecanizado, levando-se em conta também as dificuldades de operação relativas à localização e/ou profundidade do canal afluente.

Quando a limpeza for mecanizada, recomenda-se a instalação de pelo menos duas unidades, neste caso, cada uma com capacidade para a vazão afluente total, podendo uma delas ser de limpeza manual, utilizada como reserva. Quando houver risco de danos ao equipamento de limpeza mecanizada, deve ser instalada uma grade grossa de limpeza manual a montante. As grades de barras podem ter o sistema de limpeza mecanizada, acionado por: no caso de barras retas: correntes, cremalheira, catenária, ou outro equivalente; no caso de barras curvas: um ou dois braços rotativos com rastelo integrado, ou outro equivalente.

No dimensionamento das grades de barras devem ser observados ainda os seguintes critérios: a velocidade máxima através da grade para a vazão final é de 1,20 m/s; a inclinação das barras em relação à horizontal deve ser de 45° a 60° para grades de limpeza manual; de 60° a 90° para grades de limpeza mecanizada; perda de carga mínima a ser considerada no cálculo para estudo das condições de escoamento de montante; para grades de limpeza manual: 0,15 m e para grades de limpeza mecanizada: 0,10 m. No caso de grade de limpeza manual, a perda de carga deve ser calculada para 50% de obstrução.

São consideradas peneiras os equipamentos de remoção de sólidos grosseiros com aberturas de 0,25 mm a 10 mm, podendo ser: peneira estática; peneira móvel de fluxo frontal (ou tipo escalar ou escada); peneira móvel de fluxo tangencial ou externo (com tambor rotativo); peneira móvel de fluxo axial ou interno (com tambor rotativo). A peneira deve ser precedida de grade.

Os canais afluente e efluente dos dispositivos de remoção de sólidos grosseiros devem garantir, pelo menos uma vez ao dia, desde o início da operação, uma velocidade igual ou superior a 0,40 m/s. No caso de uso de grades de barras de limpeza mecanizada ou de peneiras, o equipamento utilizado deve propiciar o depósito dos sólidos removidos em caçambas, carrinhos, diretamente ou através de esteiras ou roscas transportadoras para sua retirada. Nestes casos deve ser prevista área suficiente para circulação dos carrinhos ou veículos de retirada das caçambas, conforme o caso. No caso de uso de grades de barras e peneiras de limpeza mecanizada, o equipamento utilizado deve dispor de dispositivo de acionamento automático do sistema de limpeza.

A aprovação da frenagem em veículos das categorias M, N e O

O sistema de frenagem é uma combinação de peças cuja função é reduzir progressivamente a velocidade de um veículo em movimento, pará-lo ou mantê-lo estacionário no caso dele se encontrar parado.

Confirmada em dezembro de 2019, a NBR 10966-1 de 12/2015 – Veículos rodoviários automotores — Sistema de freio – Parte 1: Disposições uniformes relativas à aprovação quanto à frenagem para veículos das categorias M, N e O se aplica à frenagem de veículos automotores individualmente e de reboques individualmente das categorias M, N e O, conforme definidos nas NBR 13776 e NBR 6067. Não abrange: veículos com uma velocidade de projeto inferior a 25 km/h; reboques que não podem ser acoplados em veículos automotores com uma velocidade de projeto superior a 25 km/h; veículos equipados para condutores inválidos. As prescrições aplicáveis desta norma não são válidas para os dispositivos, condições específicas e métodos de medição dos tempos de resposta em freios não pneumáticos.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os dados para sistemas de frenagem?

O que é um dispositivo de advertência?

Como funcionam os veículos equipados com um sistema de frenagem regenerativa elétrica de categoria A?

Como deve ser a compensação pelo sistema de controle da força de acoplamento?

O sistema de frenagem é uma combinação de peças cuja função é reduzir progressivamente a velocidade de um veículo em movimento, pará-lo ou mantê-lo estacionário no caso dele se encontrar parado. Estas funções são especificadas nessa norma. O sistema consiste no controle, transmissão e freio propriamente dito. Para atendimento da NBR 10966-6 deve-se seguir a implementação do sistema antibloqueio estabelecido na legislação vigente.

Existe legislação Contran 395/11 para sistema antibloqueio. O sistema de frenagem deve ser projetado, construído e montado de maneira tal que, utilizando o veículo em uso normal, apesar da vibração à qual pode ser submetido, possa atender às disposições desta norma. Em particular, o sistema de frenagem deve ser projetado, construído e montado de maneira tal que possa resistir aos fenômenos de envelhecimento e corrosão para os quais é exposto.

O material de atrito de freio não pode conter asbesto. A efetividade dos sistemas de frenagem, inclusive a linha de controle elétrica, não pode ser afetada adversamente por campos magnéticos ou elétricos. Isto deve ser demonstrado através do atendimento ao Regulamento ECE R10/02.

Um sinal de detecção de falha pode interromper momentaneamente (< 10 ms) o sinal de demanda na transmissão de controle, desde que o desempenho de frenagem não seja reduzido. O sistema de frenagem deve atender às funções descritas em seguida. O sistema de freio de serviço deve tornar possível o controle do movimento do veículo e pará-lo de forma segura, rápida e efetiva, seja qual for sua velocidade e carga, em qualquer aclive ou declive. Deve ser possível graduar esta ação de frenagem. O condutor deve ser capaz de alcançar esta ação de frenagem de seu assento sem remover suas mãos do controle da direção.

O sistema de freio secundário (emergência) deve tornar possível a parada do veículo dentro de uma distância razoável no caso de falha do sistema de freio de serviço. Deve ser possível graduar esta ação de frenagem. O condutor deve ser capaz de obter esta ação de frenagem de seu assento, mantendo pelo menos uma mão no controle da direção. Para os efeitos destas disposições, assume-se que não ocorra mais que uma falha do sistema de freio de serviço por vez.

O sistema de freio de estacionamento deve tornar possível manter o veículo estacionário em um aclive ou declive mesmo na ausência do condutor, estando as peças de trabalho em posição de travamento por um dispositivo puramente mecânico. O condutor deve ser capaz de alcançar esta ação de frenagem de seu assento, no caso de um reboque, de acordo com as disposições de 4.2.2.10.

O freio a ar do reboque e o sistema de freio de estacionamento do veículo para rebocamento podem ser operados simultaneamente, desde que o condutor seja capaz de verificar, a qualquer momento, que o desempenho do freio de estacionamento da combinação de veículo, obtido pela ação puramente mecânica do sistema de freio de estacionamento, é suficiente.

As conexões dos sistemas de freio a ar comprimido entre veículos automotores e reboques devem ser providas de acordo com: uma linha de fornecimento pneumática e uma linha de controle pneumática; uma linha de fornecimento pneumática, uma linha de controle pneumática e uma linha de controle elétrica; uma linha de fornecimento pneumática e uma linha de controle elétrica. Até que padrões técnicos uniformes tenham sido acordados, que assegurem compatibilidade e segurança, conexões entre veículos automotores e reboques de acordo com 4.1.3.1.3 não podem ser permitidos.

A linha de controle elétrica do veículo automotor deve prover informações se os requisitos de 4.2.1.18.2 puderem ser atendidos pela linha de controle elétrica, sem o auxílio da linha de controle pneumática. Ela também deve prover informações se está equipada de acordo com 4.1.3.1.2 com duas linhas de controle ou de acordo com 4.1.3.1.3 somente com uma linha de controle elétrica.

Um veículo automotor equipado de acordo com 4.1.3.1.3 deve reconhecer que o engate de um reboque equipado de acordo com 4.1.3.1.1 não é compatível. Quando tais veículos forem conectados eletricamente pela linha de controle elétrica do veículo para rebocamento, o condutor deve ser advertido pelo sinal de advertência óptico vermelho especificado em 4.2.1.29.1.1 e, quando o sistema estiver energizado, os freios no veículo para rebocamento devem ser automaticamente acionados.

Este acionamento do freio deve prover pelo menos o desempenho prescrito do freio de estacionamento requerido por 5.3.1 da NBR 10966-2. No caso de um veículo automotor equipado com duas linhas de controle conforme definido em 4.1.3.1.2, quando conectado eletricamente a um reboque que também é equipado com duas linhas de controle, as disposições em seguida devem ser atendidas. Ambos os sinais devem estar presentes no cabeçote de acoplamento e o reboque deve utilizar o sinal de controle elétrico, a menos que seja julgado que este sinal tenha falhado. Neste caso o reboque deve ser trocado automaticamente para a linha de controle pneumática.

Cada veículo deve atender às disposições relevantes da NBR 10966-7 para as linhas de controle elétricas e pneumáticas. Quando o sinal de controle elétrico tiver excedido o equivalente a 1 bar por mais de 1 s, o reboque deve comprovar que um sinal pneumático está presente; se nenhum sinal pneumático estiver presente, o condutor deve ser advertido do reboque pelo sinal de advertência amarelo separado especificado em 4.2.1.29.2.

Um reboque pode ser equipado conforme definido em 4.1.3.1.3, desde que ele possa ser operado somente em conjunto com um veículo automotor com uma linha de controle elétrica que atenda aos requisitos de 4.2.1.18.2. Em qualquer outro caso, o reboque, quando conectado eletricamente, deve acionar os freios automaticamente ou permanecer freado. O condutor deve ser advertido pelo sinal de advertência amarelo separado especificado em 4.2.1.28.2.

A linha de controle elétrica deve ser conforme as ISO 11992-1 e ISO 11992-2, e ser do tipo ponto a ponto utilizando o conector de sete pinos de acordo com as ISO 7638-1 ou ISO 7638-2. Os contatos dos dados do conector ISO 7638 devem ser utilizados para transferir informações exclusivamente para frenagem (inclusive ABS) e funções do trem de rodagem (direção, pneus e suspensão) conforme especificado nas ISO 11992-2 e ISO 11992-3 (aqueles parâmetros que são permitidos e aqueles que não são permitidos, para serem transferidos pela linha de controle elétrica, estão listados na ISO 11992-1).

As funções de frenagem têm prioridade e devem ser mantidas nos modos normal e com falha. A transmissão das informações do trem de rodagem não pode atrasar as funções de frenagem. A fonte de energia, provida pela conexão ISO 7638 (todas as partes), devem ser exclusivamente para funções de frenagem e do trem de rodagem e aquela requerida para a transferência de informações relativas ao reboque não transmitida pela linha de controle elétrica, porém, em todos os casos, as disposições de 4.2.2.18 devem aplicar-se.

A obrigatoriedade do atendimento das normas ISO 11992 e ISO 7638 (todas as Partes) está condicionado a utilização do sistema antibloqueio. A fonte de energia para as outras funções deve utilizar outras medidas. A compatibilidade funcional dos veículos rebocados e para rebocamento equipados com linhas de controle elétricas conforme definido anteriormente deve ser avaliada no momento de aprovação de tipo, verificando que as disposições relevantes da ISO 11992 (todas as partes) são atendidas.

Quando um veículo automotor estiver equipado com uma linha de controle elétrica e conectado eletricamente a um reboque equipado com uma linha de controle elétrica, uma falha contínua (> 40 ms) dentro da linha de controle elétrica deve ser detectada no veículo automotor e deve ser sinalizada ao condutor pelo sinal de advertência amarelo especificado em 4.2.1.29.1.2, quando tais veículos estiverem conectados pela linha de controle elétrica. Se a operação do sistema de freio de estacionamento no veículo automotor também operar um sistema de frenagem no reboque, conforme permitido por 4.1.2.3, então os requisitos adicionais de 4.1.3.7.1 a 4.1.3.7.3 devem ser atendidos.

Quando o veículo automotor estiver equipado de acordo com 4.1.3.1.1, o acionamento do sistema de freio de estacionamento do veículo automotor deve acionar um sistema de frenagem no reboque pela linha de controle pneumática. Quando o veículo automotor estiver equipado de acordo com 4.1.3.1.2, o acionamento do sistema de freio de estacionamento no veículo automotor deve acionar um sistema de frenagem no reboque conforme prescrito em 4.1.3.7.1. Além disso, o acionamento do sistema de freio de estacionamento pode também acionar um sistema de frenagem no reboque pela linha de controle elétrica.

Quando o veículo automotor estiver equipado de acordo com 4.1.3.1.3 ou se ele atender aos requisitos de 4.2.1.18.2 sem auxílio da linha de controle pneumática, o acionamento do sistema de freio de estacionamento no veículo automotor deve acionar um sistema de frenagem no reboque pela linha de controle elétrica. Quando a energia elétrica para o equipamento de frenagem do veículo automotor for desligada, a frenagem do reboque deve ser causada por evacuação da linha de fornecimento (além disso, a linha de controle pneumática pode permanecer pressurizada); a linha de fornecimento somente pode permanecer evacuada até que a energia elétrica para o equipamento de frenagem do veículo automotor seja restabelecida e simultaneamente a frenagem do reboque pela linha de controle elétrica seja restabelecida.

Dispositivos de segurança que não sejam acionados automaticamente não podem ser permitidos. No caso de combinações de veículos articulados, os cabos e mangueiras flexíveis devem fazer parte do veículo automotor. Nos demais casos, os cabos e mangueiras flexíveis devem fazer parte do reboque.

Quanto às disposições para a inspeção técnica periódica de sistemas de frenagem, não aplicável até que se tenha regulamentação nacional para inspeção veicular periódica nos sistemas de freios. O sistema de frenagem deve ser projetado de modo que os componentes do sistema de frenagem dos quais a função e eficiência são influenciadas pelo desgaste possam ser verificados facilmente.

Com a finalidade de determinar as forças de frenagem em uso de cada eixo do veículo, com um sistema de freio a ar comprimido, conexões de ensaio de pressão a ar são requeridas. Em cada circuito, independentemente do sistema de frenagem, na posição mais próxima facilmente acessível no cilindro do freio que está o menos favoravelmente colocado até o ponto em que o tempo de resposta descrito na NBR 10966-3 seja aplicado.

Em um sistema de frenagem que incorpora um dispositivo de modulação de pressão como referido na NBR 10966-7, localizado no lado de saída e entrada da linha de pressão deste dispositivo na posição acessível mais próxima. Se este dispositivo for controlado pneumaticamente, uma conexão de ensaio adicional é requerida para simular a condição com carga. Quando nenhum dispositivo estiver montado, uma conexão de ensaio de pressão, equivalente ao conector de saída mencionado acima, deve ser provida.

Estas conexões de ensaio devem estar localizadas de forma a serem facilmente acessíveis do solo ou dentro do veículo. Na posição mais próxima facilmente acessível ao dispositivo de armazenagem de energia colocado favoravelmente dentro do significado de 3.2.4 da NBR 10966-4. Em cada circuito independente do sistema de frenagem, de modo que seja possível verificar a pressão de entrada e saída da linha de transmissão completa. As conexões de ensaio de pressão devem atender aos itens 3.2.2, 3.2.3 e 3.2.4 da NBR 10966-3. A acessibilidade das conexões de ensaio de pressão requeridas não pode ser obstruída por modificações e montagem de acessórios ou o chassi do veículo.