A classificação das chapas de gesso diferenciadas para drywall

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra.

A NBR 16831 de 05/2020 – Chapas de gesso diferenciadas para drywall — Classificação e requisitos estabelece a classificação e os requisitos das chapas de gesso diferenciadas para com suas características para aplicação e inspeção. Não é aplicável às chapas de gesso para drywall dos tipos standard (ST), resistente à umidade (RU) e resistente ao fogo (RF), sendo seus requisitos encontrados na NBR 14715-1.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os valores da carga de ruptura?

Qual é a densidade superficial de massa em função das espessuras das chapas?

Como deve ser feita a identificação das chapas?

Quais são os critérios para aceitação e rejeição?

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra. A lâmina ou véu podem variar em função da aplicação de um determinado tipo de chapa, e o núcleo pode conter aditivos a fim de proporcionar características adicionais à NBR 14715-1.

As chapas de gesso diferenciadas para drywall são selecionadas de acordo com o seu tipo, tamanho e espessura. São aplicáveis a ambientes construídos com características específicas demandadas. Devem ser classificadas pelos seguintes tipos indicados na EN 520 2004+A1 e descritas a seguir. As chapas de gesso diferenciadas para drywall do Tipo A para utilização em áreas secas, chapas produzidas para utilização em áreas secas classificadas de acordo com o seu peso e a espessura.

As chapas de gesso diferenciadas do Tipo A devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo standard (ST), especificadas na NBR 14715-1. As chapas de gesso diferenciadas para drywall do Tipo H com absorção d’água reduzida, chapas com capacidade reduzida de absorção d’água adequadas para aplicações em locais sujeitos à umidade por tempo limitado e intermitente ou esporádico. As chapas de gesso diferenciadas do Tipo H devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo resistente à umidade (RU), especificadas na NBR 14715-1.

As chapas de gesso para drywall do Tipo E para utilização em exteriores, chapas produzidas para utilização em áreas externas. Devem sempre ser especificadas com o uso de algum tipo de revestimento ou proteção, a ser indicado pelo fabricante. A exposição da chapa sem revestimento é por tempo limitado, a ser indicado pelo fabricante.

Esta norma não prevê os tipos de revestimento ou proteção. A permeabilidade ao vapor d’água deve ser mínima, bem como a capacidade de absorção d’água reduzida. As chapas de gesso para drywall do Tipo F com coesão do núcleo de gesso para altas temperaturas, chapas que contêm fibras minerais e/ou outros aditivos no núcleo de gesso para melhorar sua coesão às altas temperaturas. Essas características são dependentes dos sistemas construtivos.

As chapas de gesso diferenciadas do Tipo F devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declaradas pelo fabricante, que as distinguem das chapas de gesso do tipo resistente ao fogo (RF), especificadas na NBR 14715-1. As chapas de gesso para drywall do Tipo P chapas para serem combinadas mediante colagem a outros materiais em forma de chapas ou painéis ou películas. Esse tipo pode também apresentar furos a fim de melhorar as características acústicas do ambiente construído.

As chapas de gesso para drywall do Tipo D com densidade controlada, chapas que possuem densidade controlada que permitem melhorar algumas aplicações, entre elas as características acústicas do ambiente construído; chapas de gesso para drywall do Tipo R com resistência aumentada, chapas utilizadas para aplicações diferenciadas que requeiram resistência mais elevada às cargas de ruptura tanto no sentido longitudinal quanto no transversal. As chapas de gesso para drywall do Tipo I com dureza superficial aumentada, chapas utilizadas para aplicações diferenciadas que requeiram maior dureza superficial.

As utilizações dos diversos tipos de chapas de gesso diferenciadas para drywall, constantes nesta norma, podem ser combinadas em uma única chapa, neste caso a designação da chapa deve incluir a letra que identifica cada tipo de aplicação. Os tipos D, E, F, H, I, R podem ser combinados e os tipos A e P não podem ser combinados. EXEMPLO: Tipo A3, Tipo A1, Tipo F-H, ou seja, chapa resistente ao fogo com absorção de água reduzida, Tipo D-F-H, ou seja, chapa com densidade controlada, resistente ao fogo e com absorção de água reduzida.

Todos os tipos de chapas de gesso diferenciadas para drywall devem atender à classe IIA de reação ao fogo de acordo com NBR14432 e podem receber em uma das faces acabamentos. Os tipos das chapas de gesso diferenciadas para drywall são classificados nesta norma, de acordo com os requisitos descritos na Seção 5. A carga de ruptura à flexão das chapas de gesso diferenciadas para drywall, constantes nesta norma para os tipos A, D, E, F, H e I, devem estar conforme a NBR 14715-2, não podendo ser inferior aos valores indicados na tabela abaixo. Nenhum resultado individual do ensaio pode ser inferior em mais de 10% dos valores indicados na tabela abaixo.

A densidade da chapa diferenciada para drywall do tipo D ou sua combinação, determinada conforme o método descrito na NBR 14715-2, deve ser no mínimo 0,8 × 103 kg/m³. A dureza superficial aumentada da chapa de gesso diferenciada do Tipo I ou sua combinação é determinada medindo o diâmetro da mossa produzida na superfície, quando ensaiada conforme o método descrito na NBR 14715-2. O diâmetro da mossa não pode ser superior a 15 mm.

As características dimensionais das chapas de gesso diferenciadas para drywall, seus valores e tolerâncias estão especificadas na NBR 14715-1, sendo verificadas conforme a NBR 14715-2. A tolerância na espessura para as chapas de 6,0 mm a 6,5 mm é de ± 0,2 mm. A tolerância na espessura para as chapas de 6,6 mm a 15,0 mm é de ± 0,5 mm.

Outras espessuras nominais são também possíveis, de acordo com a mínima espessura de 6,0 mm. Para espessuras nominais maiores ou iguais a 15,1 mm, as tolerâncias devem ser ± 0,04 × t, arredondadas para o próximo 0,1 mm. A critério do comprador e do fornecedor as análises dimensionais e pesos, podem ser avaliados em função da NBR 5426. Para a amostragem, dez chapas (amostras) devem ser retiradas aleatoriamente do lote declarado pelo fornecedor, constituindo as amostras, sendo cinco chapas à guisa de prova e cinco chapas à guisa de contraprova.

As testemunhas ou contraprovas devem ficar sob a guarda do fabricante. As amostras devem ser identificadas de forma a permitir, inclusive, a rastreabilidade do lote de produção. O local de inspeção deve ser previamente acordado entre o fornecedor e o comprador, podendo ser ou no pátio da fábrica, no distribuidor ou na obra.

Para a inspeção visual, todas as chapas diferenciadas para drywall devem ser submetidas às inspeções conforme determinado na norma, rejeitando-se apenas as chapas que não estiverem conforme. Para as chapas, de per si, devem ser verificadas e comparadas as características expressas indicadas na seção 5, com as Instruções ou declaração do fabricante. Para os sistemas construtivos executados com chapas diferenciadas para drywall, podem ser avaliados por meio de ensaios tipo, estabelecidos de comum acordo entre fabricante e consumidor.

BS EN IEC 62984-2: as baterias secundárias para alta temperatura

Essa norma europeia, editada em 2020 pelo BSI, especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes).

A BS EN IEC 62984-2:2020 – High-temperature secondary batteries. Safety requirements and tests especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes). As baterias de alta temperatura são sistemas eletroquímicos cuja temperatura operacional interna mínima das células está acima de 100 °C.

CONTEÚDO DA NORMA

PREFÁCIO…………………… 4

1 Escopo……………………… 6

2 Referências normativas………… ….. 6

3 Termos, definições, símbolos e termos abreviados………… 7

3.1 Construção da bateria……………………………………. 7

3.2 Funcionalidade da bateria………………………….. 10

3.3 Símbolos e termos abreviados…………………….. 12

4 Condições ambientais (de serviço)…………………………… 13

4.1 Geral………………………. …………… 13

4.2 Condições normais de serviço para instalações estacionárias……………………. .13

4.2.1 Geral………………… ……… 13

4.2.2 Condições ambientais normais adicionais para instalações internas ……………. 14

4.2.3 Condições ambientais normais adicionais para instalações externas ………….. 14

4.3 Condições especiais de serviço para instalações estacionárias……………………….. .14

4.3.1 Geral…………………. ……… 14

4.3.2 Condições especiais de serviço adicionais para instalações internas………………….. 14

4.3.3 Condições especiais de serviço adicionais para instalações externas………………… 14

4.4 Condições normais de serviço para instalações móveis (exceto propulsão) ………………. 14

4.5 Condições especiais de serviço para instalações móveis (exceto propulsão) ……………… 14

5 Projeto e requisitos……………………… 15

5.1 Arquitetura da bateria……………………. 15

5.1.1 Módulo…………. ………. 15

5.1.2 Bateria………………. ……….. 15

5.1.3 Montagem das baterias………………. 16

5.1.4 Subsistema de gerenciamento térmico……….. 17

5.2 Requisitos mecânicos……………………………. 17

5.2.1 Geral…………………………… ……… 17

5.2.2 Carcaça da bateria………………….. 17

5.2.3 Vibração………………………… …….. 18

5.2.4 Impacto mecânico……………………… 18

5.3 Requisitos ambientais………………………. 18

5.4 Requisitos de Electromagnetic compatibility (EMC)…………….. 18

6 Ensaios……… ……………………… 19

6.1 Geral……………… …………… 19

6.1.1 Classificação dos ensaios………………….. 19

6.1.2 Seleção de objetos de ensaio…………………….. 19

6.1.3 Condições iniciais do DUT antes dos ensaios………………… 20

6.1.4 Equipamento de medição……………. 20

6.2 Lista de ensaios…………….. ……….. 20

6.3 Ensaios de tipo…………….. ………… 21

6.3.1 Ensaios mecânicos………………. 21

6.3.2 Ensaios ambientais…………………………. 23

6.3.3 Ensaios EMC…………………….. ……. 24

6.4 Ensaios de rotina……………… …….. 33

6.5 Ensaios especiais………………. …….. 33

7 Marcações………….. …………………. 33

7.1 Geral……………………………. …………… 33

7.2 Marcação da placa de dados……………………. 33

8 Regras para transporte, instalação e manutenção ……… 33

8.1 Transporte…………………….. …. 33

8.2 Instalação………………. ………. 33

8.3 Manutenção………………… ……. 33

9 Documentação……………………. ………… 33

9.1 Manual de instruções……………………. 33

9.2 Relatório de ensaio……. ……….. 34

Bibliografia……………… ………………….. 35

Figura 1 – Componentes de uma bateria………………….. 16

Figura 2 – Componentes de um conjunto de baterias……….. 16

Figura 3 – Subsistema de gerenciamento térmico……………………. 17

Tabela 1 – Lista de símbolos e termos abreviados………………….. 13

Tabela 2 – Ambientes eletromagnéticos……………. 19

Tabela 3 – Ensaios de tipo…………………….. ………….. 21

Tabela 4 – Ensaio de calor úmido – Estado estacionário…………………………. 23

Tabela 5 – Nível de gravidade dos ensaios EMC………………………… 25

Tabela 6 – Descrição dos critérios de avaliação para ensaios de imunidade…….. …….. 26

Tabela 7 – Parâmetros de ensaio EFT/Burst……………….. 28

Tabela 8 – Níveis de ensaio de surto…………………. ….. 29

Segundo a International Electrotechnical Commission (IEC), as baterias são dispositivos indispensáveis na vida cotidiana: muitos itens que são usados diariamente, desde os telefones celulares até os laptops, dependem da energia da bateria para funcionar. No entanto, apesar de uso mundial, a tecnologia das baterias está subitamente dominando os holofotes porque é usada para alimentar todos os tipos de diferentes veículos elétricos (VE), de carros elétricos a scooters eletrônicas, que estão regularmente nos mercados. Para os ambientalistas, no entanto, a tecnologia da bateria é mais interessante como forma de armazenar eletricidade, à medida que a geração e o uso de energia renovável – que é intermitente – aumentam.

As baterias de íon lítio podem ser recicladas, mas esse processo permanece caro e, por enquanto, as taxas de recuperação de material raramente chegam a 20%. As matérias-primas usadas nas baterias de íon lítio são geralmente níquel, cobalto, manganês e lítio, que são caros de se obter. Algumas dessas matérias primas são escassas e, mesmo que as pesquisas estejam progredindo rapidamente, alguns laboratórios conseguiram atingir 80% dos níveis de recuperação.

Os cientistas também estão analisando as baterias recarregáveis de ar lítio como uma alternativa ao íon lítio. As baterias de íon de lítio usadas em uma aplicação podem ser avaliadas quanto à capacidade de serem usadas em outras aplicações menos exigentes. Uma segunda vida útil possível para as baterias é um componente para estações de carregamento flexíveis.

São estações de carregamento rápido que podem ser operadas de forma autônoma durante eventos de grande escala, como festivais ou eventos esportivos. As baterias de veículos elétricos podem ser reutilizadas em tudo, desde energia de backup para data centers até sistemas de armazenamento de energia. Na Europa, vários fabricantes de veículos, empresas pioneiras no mercado de carros elétricos, instalaram baterias usadas principalmente em diferentes tipos de sistemas de armazenamento de energia, variando de pequenos dispositivos residenciais a soluções maiores em escala de grade em contêiner.

Como projetar um programa de pré-requisitos na segurança de alimentos

O escopo desta parte inclui os serviços de alimentação, serviços de alimentação aérea e ferroviária, bufês, entre outros, em unidades centrais e satélites, cantinas de escolas e de indústrias, hospitais e outros serviços de assistência à saúde, hotéis, restaurantes, cafeterias, serviços de alimentação e comércio varejista de alimentos.

A ABNT ISO/TS 22002-2 de 05/2020 – Programa de pré-requisitos na segurança de alimentos – Parte 2: Serviço de alimentação especifica os requisitos para projetar, implementar, e manter em dia os programas de pré-requisitos (PPR) para ajudar a controlar os perigos envolvidos na segurança de alimentos em serviços de alimentação. É aplicável a todas as organizações que estão envolvidas no processamento, preparação, distribuição, transporte e no serviço de alimentos e das refeições e que desejam implementar PPR, de acordo com os requisitos especificados na ISO 22000:2005, Seção 7.2. O escopo desta parte inclui os serviços de alimentação, serviços de alimentação aérea e ferroviária, bufês, entre outros, em unidades centrais e satélites, cantinas de escolas e de indústrias, hospitais e outros serviços de assistência à saúde, hotéis, restaurantes, cafeterias, serviços de alimentação e comércio varejista de alimentos.

No Brasil, a palavra catering tem se referido especificamente à alimentação de bordo em aviões. Sendo assim a Comissão de Estudo decidiu pela tradução do termo como serviço de alimentação, assim como a tradução para o termo food services que nesta norma tem o mesmo significado, e apresentado para a mesma destinação. Para as empresas muito pequenas e médias (EMPM), é possível que alguns requisitos não sejam aplicáveis.

Os usuários de serviços de alimentação podem pertencer a grupos vulneráveis, como crianças, pessoas idosas e/ou doentes. Em alguns países, o termo serviços de alimentação pode ser usado como sinônimo de catering. A aplicação desta parte não isenta o usuário ao compliance com a legislação atual e aplicável. Quando os requisitos legais são específicos para parâmetros (temperatura, entre outros) indicados nesta parte, os requisitos locais devem ser utilizados pelas empresas de alimentação. As operações em serviços de alimentação são diversas em natureza e nem todos os requisitos especificados nesta parte são aplicáveis a um estabelecimento ou a um processo individual.

Embora o uso desta parte não seja obrigatória para estar em conformidade com os requisitos da ISO 22000:2005, 7.2, os desvios (as exclusões ou as medidas alternativas implementadas) precisam ser justificados e documentados quando esta parte for usada como referência para a implementação do PPR. Não se destina a que estes desvios afetem a capacidade da organização para cumprir os requisitos da ISO 22000. Esta parte especifica requisitos detalhados a serem considerados em relação à ISO 22000:2005, 7.2.3. Além disso, inclui outros aspectos, como o procedimento de recall de produtos que sejam considerados pertinentes para as operações de serviços de alimentação. Medidas para prevenção da contaminação intencional estão fora do escopo desta parte que tem a intenção de ser usada para estabelecer, implementar e manter os PPR específicos de organizações em conformidade com a ISO 22000.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os cuidados dos funcionários em relação à limpeza pessoal?

Quais são os requisitos de recebimento materiais (matérias-primas, ingredientes e embalagens)?

Como deve ser feita a manipulação de substâncias perigosas?

O que deve ser feito em relação aos efluentes e eliminação de resíduos?

A ISO 22000 estabelece requisitos específicos de segurança de alimentos para organizações da cadeia produtiva de alimentos. Um destes requisitos é que as organizações estabeleçam, implementem e mantenham programas de pré-requisitos (PPR) para ajudar no controle de perigos à segurança de alimentos (ISO 22000:2005, 7.5). Esta parte não duplica os requisitos dados na ISO 22000 e destina-se a ser utilizada ao estabelecer, implementar e manter os PPR específicos para a (s) organização (ões) em conjunto com a ISO 22000, para ajudar no controle das condições higiênicas básicas nas atividades de serviço de alimentação.

A segurança de alimentos tem que ser assegurada em todas as etapas da cadeia produtiva de alimentos. No caso de serviços de alimentação, os programas de pré-requisito têm que ser estabelecidos em organizações que, quando aplicáveis, preparam, processam, cozinham, armazenam, transportam, distribuam e sirvam alimentos para consumo humano no local da preparação ou em uma unidade satélite.

As seguintes aplicações desta parte, de acordo com a ISO 22000, são possíveis. Por exemplo, uma organização pode desenvolver a parte do PRP dos códigos de prática ou checar se um código de prática existente é consistente com esta parte. Um estabelecimento pode implementar um sistema de gestão de segurança dos alimentos com a ISO 22000. O estabelecimento pode utilizar esta Parte da ABNT ISO/TS 22002 como base para estruturar e documentar o PPR. O estabelecimento e suas instalações devem ser de construção sólida e mantidos em boas condições.

Todos os materiais devem ser tais que não transmitam substâncias indesejáveis quaisquer ao alimento. Convém que o estabelecimento e suas instalações estejam localizados afastados de áreas que possam causar contaminação da água subterrânea (por exemplo, aterros sanitários, estações de tratamento de esgoto e fazendas de criação de animais) e áreas suscetíveis a infestações de pragas. As edificações e suas instalações devem ser projetadas e construídas com características funcionais, localização e leiaute adequados às necessidades de cada área de trabalho.

As operações devem ser realizadas sob condições higiênicas apropriadas desde o recebimento de matérias-primas até o consumo do produto. O leiaute da edificação deve ser tal que impeça a contaminação cruzada nas operações por meio de divisórias, localização, etc. As áreas ou instalações incompatíveis com quaisquer operações higiênicas do serviço de alimentação, como áreas residenciais, banheiros, lavanderias, depósito de materiais de limpeza, salas de máquinas e depósito de resíduos, devem ser separadas para evitar o risco de contaminação do alimento e das superfícies que entram em contato com o alimento.

Convém que o leiaute assegure que o produto siga um fluxo unidirecional. Por exemplo, a contaminação com pulverizadores, substâncias potencialmente tóxicas, poeira, sujeira e qualquer outra matéria contaminante. Diferentes áreas devem ser projetadas a fim de permitir a disposição de equipamentos e materiais de forma a evitar a contaminação cruzada. Para este fim, as áreas de trabalho devem ser claramente identificadas e marcadas, física ou funcionalmente.

Todas as áreas devem ser projetadas apropriadamente com o espaço adequado para facilitar as operações dos alimentos, assim como suas atividades de limpeza e manutenção. A recepção de materiais deve ser desempenhada em área protegida e limpa. Convém que o estabelecimento tenha uma área designada para o recebimento de insumos e convém que esta área assegure a gestão higiênica de todos os bens.

Medidas efetivas devem ser tomadas pelo estabelecimento a fim de evitar a contaminação cruzada, por exemplo, alimentos prontos para o consumo devem ser mantidos separados dos alimentos crus ou não tratados. Convém que os alimentos crus potencialmente perigosos sejam processados em ambiente separado, ou em áreas separadas por barreira, de áreas que são utilizadas para preparação de alimentos prontos para o consumo.

Superfícies das paredes, dos pisos e dos tetos devem ser de materiais impermeáveis, não absorventes, laváveis, sem fendas; além disso, os pisos devem ser de material antiderrapante. Juntas entre pisos e paredes devem ser abobadadas ou arredondadas, quando apropriado. Portas devem ser não absorventes, resistentes e ter uma superfície lisa e sem danos.

O uso de materiais que podem não ser limpos e desinfetados adequadamente deve ser evitado. Um sistema de drenagem adequado deve ser provido, especialmente nas áreas onde ocorre um grande número de operações e de trânsito contínuo de pessoas e equipamentos, por exemplo, áreas de lavagem, áreas onde pratos, utensílios e outros equipamentos são lavados. Tetos e equipamentos aéreos devem ser construídos e acabados para minimizar o acúmulo de sujeira e condensação e o derramamento das partículas.

Janelas e outras aberturas devem ser construídas a fim de evitar acúmulo de sujeira e aquelas que abrem devem ser providas de telas que impeçam a entrada de insetos. As telas devem ser facilmente removíveis para limpeza e devem ser mantidas em boas condições. Os peitoris internos das janelas, se presentes, devem ser inclinados para impedir o uso como prateleiras.

As portas devem ter superfícies lisas e não absorventes e ser fechadas automaticamente e bem ajustadas. Todas as áreas devem ser providas com um sistema de iluminação adequado. Os sistemas de iluminação devem ser projetos de modo que não afetem adversamente os alimentos. As luminárias devem ser protegidas para assegurar que materiais, produtos ou equipamentos não sejam contaminados em caso de quebra.

A iluminação provida (natural ou artificial) deve permitir que as pessoas operem de maneira higiênica. Os sistemas de ventilação adequados devem ser projetados para processo ou produto específico e devem ser capazes de manter os requisitos de temperatura e umidade para o processo e produto. A direção do fluxo de ar, seja natural ou artificial, deve passar da zona limpa para a zona suja. Todas as aberturas devem ter dispositivos de proteção e sistemas que previnam contaminações (por exemplo, fluxo de ar laminar, cortinas de ar e portas duplas).

Boa ventilação deve ser provida em áreas de preparação de alimentos, por exemplo, áreas de cozimento, a fim de dissipar altas cargas térmicas e vapor de forma eficaz. Depuradores de ar que sejam fáceis de limpar devem ser providos para remover todo o vapor gerado no processo. Para mais esclarecimentos, ver CAC/RCP 1:1969, 4.4.6 e 4.4.7. As instalações de higiene pessoal devem estar disponíveis para assegurar que o grau de higiene pessoal requerido pelas operações de uma organização possa ser mantido com segurança.

As instalações devem estar localizadas próximas aos pontos onde os requisitos de higiene se aplicam e devem estar claramente designadas. Os estabelecimentos devem prover em números adequados, localização e meios para higiênica lavagem, secagem e, onde requerido, desinfecção das mãos (incluindo lavatórios, suprimento de água em temperatura adequada, e sabão e/ou desinfetante); ter pias destinadas para lavagem de mãos, cujas torneiras convém que sejam preferencialmente ativadas por pé, joelho, cotovelo ou por sensor, e sejam separadas de pias para uso com alimentos e estações de limpeza de equipamentos; ter instalações sanitárias que não tenham acesso direto para a produção, embalagem ou áreas de armazenamento; ter instalações de vestiários adequados para troca de roupa; ter instalações de vestiários situadas que permitam que os manipuladores possam se deslocar para as áreas de produção de modo que o risco à limpeza dos uniformes seja minimizado; cumprir com os critérios microbiológicos da água utilizada para lavagem de mãos de acordo com os padrões de potabilidade; prover instalações de lavagem de mãos tanto dentro quanto fora das áreas de processamento.

A edificação, os equipamentos, os utensílios e as instalações do estabelecimento, incluindo os sistemas de drenagem devem ser mantidos em estado apropriado de manutenção e condições para facilitar os procedimentos de higiene; funcionar como pretendido; e não causar contaminação dos alimentos. O estabelecimento deve assegurar que a segurança dos alimentos não seja afetada durante as atividades de manutenção. O programa de manutenção preventiva deve ser realizado no local e deve incluir todos os dispositivos utilizados para monitorar e/ou controlar os perigos relacionados à segurança de alimentos.

Manutenção corretiva deve ser realizada de modo que a produção em linhas adjacentes ou equipamentos não corra risco de contaminação. Se existir o risco de contaminação em linhas adjacentes ou equipamentos durante a manutenção corretiva, o processamento de alimentos nestes locais deve ser suspenso para prevenir contaminação. As requisições de manutenção que afetam a segurança do produto devem ser priorizadas. Reparos temporários não podem afetar a segurança dos alimentos.

Uma requisição de substituição por um reparo permanente deve ser incluída na programação de manutenção. Lubrificantes e fluidos para troca de calor devem ser de grau alimentício onde existir o risco de contato direto ou indireto com o produto de acordo com a ISO 21469. O procedimento para liberar equipamentos mantidos para retorno à produção deve incluir processo de limpeza e desinfecção e inspeção de pré-uso.

Os requisitos do PPR da área local devem ser aplicados às áreas de manutenção e atividades de manutenção nas áreas de processo. A equipe de manutenção deve ser treinada em segurança de alimentos e perigos associados às suas atividades. Para equipamentos de processamento de alimentos, os requisitos de construção e projeto são especificados na NBR ISO 14159.

O fornecimento de água deve ser provido com pressão e temperatura adequadas, assim como instalações adequadas para armazenamento. As instalações de armazenamento de água devem ser limpas e monitoradas periodicamente. Quando água de poço particular ou água de fonte privada for utilizada para produzir água potável, dispositivos de desinfecção e/ou dispositivos de purificação de água devem ser estabelecidos. Apenas água potável deve ser utilizada.

Os registros de controles devem ser retidos e somente água potável de qualidade deve ser utilizada no empreendimento alimentício. O vapor utilizado em contato direto com alimentos ou superfícies de contato com alimentos deve ser produzido com água potável. O gelo usado em contato direto com alimentos ou superfícies de contato com alimentos deve ser feito de água potável e ser transportado, manuseado e armazenado de maneira que seja protegido de contaminações.

As instalações utilizadas para produzir e armazenar o gelo devem ser capazes de prevenir a contaminação e devem ser limpas, desinfetadas e mantidas de acordo com as instruções do fabricante. Devem ser estabelecidos mecanismos para confirmar a qualidade microbiológica do gelo, seja ele comprado ou feito no local. Toda água não potável utilizada na refrigeração, produção de vapor, controle de incêndio, diluição de derramamento ou outra atividade similar, deve ser conduzida por tubulações adequadas separadamente daquelas que conduzem água potável, sem nenhuma conexão transversal entre elas ou possibilidade de que a água não potável escoe em tubulação de água potável. Estas tubulações devem ser claramente identificadas, preferencialmente com padronização de cores, por exemplo, de acordo com a ISO 14726.

Os equipamentos e utensílios devem ser feitos de materiais impermeáveis e resistentes à corrosão, de modo que não transfiram substâncias tóxicas, odor e sabor aos alimentos. Os equipamentos e utensílios devem ser capazes de suportar operações frequentes de limpeza e desinfecção, devem ser lisos e livres de buracos, fendas ou rachaduras. Convém que equipamentos portáteis, por exemplo, colheres, batedores, tachos e panelas, sejam protegidos de contaminações.

Todos os equipamentos devem ser projetados e construídos a fim de assegurar condições gerais de higiene e suas superfícies devem ser fáceis de limpar e desinfetar. Os equipamentos no serviço de alimentação devem ser submetidos a programas de manutenção incluindo a calibração de instrumentos de medição como termômetros e dispositivos que registram temperatura. Devem ser mantidos registros destes controles e identificação dos equipamentos e utensílios de acordo com as suas especificações.

Convém que a responsabilidade por assegurar o compliance de todas as pessoas com os requisitos de higiene pessoal seja destinada especificamente para a equipe de supervisão. Visitantes, por exemplo, fiscais, clientes e equipes de manutenção, devem ter acesso restrito às áreas de manipulação de alimentos. Estes visitantes devem utilizar roupas de proteção e cumprir os requisitos de segurança de alimentos do serviço de alimentação.

A conformidade das agulhas hipodérmicas estéreis de uso único

Esta norma abrange agulhas hipodérmicas estéreis de uso único destinadas a injetar ou extrair fluidos primariamente do corpo humano. Os materiais plásticos a serem usados para a construção de agulhas não são especificados, uma vez que sua seleção dependerá, até certo ponto, do projeto, processo de fabricação e método de esterilização empregados por cada fabricante individualmente.

A NBR ISO 7864 de 05/2020 – Agulhas hipodérmicas estéreis de uso único — Requisitos e métodos de ensaio especifica os requisitos para agulhas hipodérmicas estéreis de uso único com dimensões métricas designadas de 0,18 mm a 1,2 mm. Não é aplicável aos produtos que são cobertos por suas próprias normas, como agulhas odontológicas e agulhas de caneta.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as tolerâncias de comprimento da cânula da agulha?

Qual é a designação de dimensões e nomenclatura da geometria da ponta da agulha?

Qual é o tamanho do pino de aço para ensaio de diâmetro interno?

Como deve ser marcada a embalagem do usuário?

Esta norma abrange agulhas hipodérmicas estéreis de uso único destinadas a injetar ou extrair fluidos primariamente do corpo humano. Os materiais plásticos a serem usados para a construção de agulhas não são especificados, uma vez que sua seleção dependerá, até certo ponto, do projeto, processo de fabricação e método de esterilização empregados por cada fabricante individualmente.

Agulhas hipodérmicas especificadas nesta norma são destinadas à utilização com seringas que possuam um encaixe cônico Luer de 6%, conforme especificado na ISO 80369-7, juntamente com as ISO 80369-1 e ISO 80369-20. Dispositivos destinados a se conectar com agulhas hipodérmicas desta norma, mas que se desviam da ISO 80369-7, devem fornecer evidências comprovadas de desempenho funcional seguro.

Orientações sobre períodos de transição para implementar os requisitos desta norma são dadas na ISO/TR 19244. O ensaio de produto acabado deve ser conduzido em produtos esterilizados. Qualquer sistema de ensaio adequado pode ser usado quando a precisão e a exatidão (calibragem) requeridas [repetibilidade e reprodutibilidade do gauge (R&R)] puderem ser obtidas.

Quando inspecionada por visão normal ou corrigida para visão normal sem aumento e sob uma iluminação de 300 lx a 700 lx, a superfície da cânula da agulha hipodérmica deve parecer livre de partículas e matéria estranhas. Quando examinado sob aumento de 2,5×, o cone Luer do canhão (superfície do trajeto do fluido) deve parecer livre de partículas e matéria estranhas. Quando determinado com um medidor de pH de laboratório e usando um eletrodo de uso geral, o valor do pH de um extrato preparado em conformidade com o Anexo A deve estar dentro de uma unidade de pH daquela do fluido de controle.

Quando ensaiado por um método microanalítico reconhecido, por exemplo, por um método de absorção atômica, um extrato preparado em conformidade com o Anexo A deve, quando corrigido em função do teor de metais do fluido de controle, conter não mais do que um total combinado de 5 mg/L de chumbo, estanho, zinco e ferro. O teor de cádmio do extrato deve, quando corrigido em função do teor de cádmio do fluido de controle, ser menor que 0,1 mg/L.

O tamanho da agulha hipodérmica deve ser designado pelas recomendação a seguir. O tamanho métrico designado da cânula da agulha também pode ser expresso em milímetros considerando a distribuição regional dos produtos, opcionalmente, o tamanho da agulha, expresso em tamanho de gauge. O comprimento nominal da cânula da agulha deve ser expresso em milímetros e, opcionalmente, a espessura da parede da agulha, expressa como PR ou RW (parede regular), PF ou TW (parede fina), PEF ou ETW (parede extrafina) ou PUF ou UTW (parede ultrafina). EXEMPLO 0,8 mm × 40 mm PF ou 0,8 mm × 40 mm TW.

Detalhes necessários para que o usuário identifique a agulha, incluindo o tamanho métrico designado, devem ser apresentados de acordo com a seguinte expressão: DE (ponta)/DE (canhão) × C, onde DE (ponta) é o tamanho métrico designado da cânula da agulha no primeiro diâmetro completo a partir da ponta (ponto de medição 2, na extremidade da geometria biselada, conforme apresentado na figura abaixo), expresso em milímetros; DE (canhão) é o tamanho métrico designado da cânula da agulha na extremidade do canhão, medido no primeiro diâmetro completo a partir do topo do canhão ou a partir do topo da junção, se usado (ponto de medição 1 na extremidade da geometria do canhão conforme apresentado na figura abaixo), expresso em milímetros; C é o comprimento nominal da cânula da agulha, expresso em milímetros. EXEMPLO 0,23 mm/0,25 mm × 6 mm PF.

O tamanho métrico designado de agulhas tubulares hipodérmicas ou o primeiro diâmetro completo a partir da ponta de uma agulha cônica deve ser identificado por meio de código de cores em conformidade com a ISO 6009, aplicado à embalagem unitária e/ou à parte do conjunto da agulha como o canhão da agulha ou a capa da agulha. O encaixe cônico do canhão da agulha hipodérmica deve atender aos requisitos da NBR ISO 80369-1, ISO 594-1 e ISO 594-2. Na data de sua publicação, a ISO 80369-7 substituiu a ISO 594-1 e a ISO 594-2.

O canhão deve ser feito de material pigmentado ou não pigmentado. Quando pigmentado, a cor deve estar em conformidade com a ISO 6009. Caso seja fornecida uma capa da agulha separada, ela deve ser feita de material pigmentado ou não pigmentado. Quando pigmentado, a cor deve estar em conformidade com a ISO 6009. Quando inspecionada por visão normal ou corrigida para visão normal sem aumento e sob uma iluminação de 300 lx a 700 lx, a superfície externa da cânula deve ser lisa e livre de defeitos.

Se a cânula da agulha hipodérmica for lubrificada, o lubrificante não pode ser visível, sob visão normal ou corrigida, como gotículas de fluido na superfície externa ou interna da cânula da agulha. Um lubrificante aceitável, aplicado não diluído, é o polidimetilsiloxano em conformidade com a farmacopeia nacional ou europeia. Convém que a quantidade de lubrificante usada não exceda 0,25 mg/cm² da área de superfície lubrificada da cânula da agulha.

Quando examinada sob aumento de 2,5×, a ponta da agulha deve parecer afiada e livre de deformações, rebarbas e fiapos. Convém que a ponta da agulha seja projetada de modo a minimizar a deformação e fragmentação ao penetrar tampas de frascos. Esta norma não especifica os requisitos ou métodos de ensaio para estas propriedades, mas um exemplo de um método de ensaio para determinar a produção de fragmentos a partir de tampas de borracha é dado no Anexo B.

Os ensaios de penetração podem fornecer uma indicação da afiação e lubrificação da ponta da agulha. Exemplo de um método de ensaio para determinar o desempenho de penetração da agulha é apresentado no Anexo D. Conforme apropriado, dependendo do tamanho da agulha e da geometria da agulha, o diâmetro interno deve ser determinado por um pino-padrão de aço inoxidável com diâmetro apropriado deve passar pela agulha; a taxa de fluxo de água pela agulha não pode ser menor que 80% da taxa de fluxo de água de uma cânula não processada, com diâmetro externo e comprimento equivalentes, tendo um diâmetro interno mínimo em conformidade com a NBR ISO 9626, quando ensaiadas sob a mesma pressão.

Para agulhas com conicidade interna, o diâmetro interno deve ser verificado por medidas de taxa de fluxo. Convém que a cânula da agulha não processada possua diâmetro interno mínimo tanto na ponta quanto no canhão correspondente às suas respectivas designações da NBR ISO 9626. Exemplo de um método apropriado para determinar a taxa de fluxo é dado no Anexo C. Cada agulha hipodérmica deve ser selada em uma embalagem unitária.

O material e o projeto desta embalagem devem assegurar que o código de cores do conteúdo seja visível. Os materiais da embalagem não podem ter efeitos prejudiciais ao conteúdo. Os materiais e o projeto desta embalagem devem assegurar a manutenção da esterilidade do conteúdo sob condições de armazenamento secas, limpas e adequadamente ventiladas; o mínimo risco de contaminação do conteúdo durante a retirada da embalagem; proteção adequada do conteúdo durante o manuseio, transporte e armazenamento normais; que, uma vez aberta, a embalagem não possa ser facilmente selada novamente, devendo ser óbvio que a embalagem foi aberta.

Múltiplos itens de embalagem unitária devem ser embalados em uma embalagem do usuário. A embalagem do usuário deve ser suficientemente robusta para proteger o conteúdo durante o manuseio, transporte e armazenamento. Múltiplos itens de embalagem do usuário podem ser acondicionados em uma embalagem de armazenamento e/ou transporte.

A agulha deve estar acompanhada das informações que sejam suficientes para o seu uso seguro, considerando o treinamento e conhecimento de potenciais usuários. Entretanto, para agulhas hipodérmicas de aplicação geral, é reconhecido que não são fornecidas instruções de uso. As informações devem incluir a identificação do fabricante.

O tratamento térmico de ligas de alumínio trabalháveis

Quanto à resposta a tratamentos térmicos, as ligas de alumínio são classificadas em ligas de alumínio tratáveis termicamente, que são aquelas que podem ser endurecidas, isto é, apresentam aumento da resistência mecânica, por tratamento térmico a partir de ciclos controlados de aquecimento e resfriamento.

A NBR 12315 de 05/2020 – Ligas de alumínio trabalháveis – Tratamento térmico – Requisitos estabelece os requisitos para os tratamentos térmicos de recozimento, solubilização e envelhecimento de ligas de alumínio trabalháveis laminadas, extrudadas, trefiladas e forjadas para uso geral.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o tempo de tratamento recomendado para a solubilização das ligas trabalháveis?

Quais são as restrições para o retratamento térmico de produtos alclad?

Quais são os tratamentos recomendados de recozimento (têmpera O) para as ligas de alumínio trabalháveis?

O que é a fusão eutética e porosidade induzida?

Quanto à resposta a tratamentos térmicos, as ligas de alumínio são classificadas em ligas de alumínio tratáveis termicamente, que são aquelas que podem ser endurecidas, isto é, apresentam aumento da resistência mecânica, por tratamento térmico a partir de ciclos controlados de aquecimento e resfriamento. Adicionalmente, estas ligas também podem ser endurecidas por trabalho a frio. Esta classificação abrange, tipicamente, as ligas trabalháveis de alumínio das séries 2xxx, 6xxx e 7xxx.

Igualmente, recebem a classificação de ligas de alumínio não tratáveis termicamente, que são aquelas que não são passíveis de sofrerem aumento da resistência mecânica a partir da realização de tratamentos térmicos, porém podem ser endurecidas por trabalho a frio. Apesar destas ligas serem classificadas como não tratáveis termicamente podem ser realizados tratamentos térmicos que não possuem como objetivo final o aumento da resistência mecânica, como o de recozimento. NOTA Esta classificação abrange, tipicamente, as ligas trabalháveis de alumínio das séries 1xxx, 3xxx, 4xxx, 5xxx e 8xxx.

As ligas de alumínio são tratadas termicamente em fornos de câmara a ar ou banhos de sais fundidos; entretanto, banhos de chumbo, banhos a óleo ou leitos fluidizados podem ser utilizados. O uso de aquecimento sem controle não é permitido. Qualquer que seja o meio de aquecimento empregado, uma avaliação é requerida para assegurar a efetividade do tratamento térmico e também para que não haja superaquecimento.

Os fornos com câmara de ar podem ser aquecidos a óleo, a gás ou por resistências elétricas. Os componentes do forno que são significantemente mais aquecidos do que o material a ser tratado devem possuir proteção metálica com espessura máxima de 6,35 mm para prevenir efeitos adversos de radiação. Fornos com câmara de ar utilizados para realizar tratamento térmico de solubilização devem ter atmosfera controlada, de forma a prevenir a ocorrência de porosidades no material intrínseca a este processo.

A adequabilidade da atmosfera destes fornos pode ser avaliada de acordo com a fusão eutética e porosidade induzida. A porosidade induzida pelo tratamento térmico de solubilização pode diminuir as propriedades mecânicas e ocasionar comumente bolhas na superfície do material. É mais comum ocorrer essa condição em fornos cujos produtos de combustão entram em contato com o material, particularmente se os gases contiverem elevado vapor de água ou compostos de enxofre.

Em geral, as ligas trabalháveis de alta resistência das séries 2xxx e 7xxx são mais suscetíveis à porosidade. Produtos alclad e ligas de baixa resistência mecânica são praticamente imunes a este tipo de dano. Filmes anódicos e revestimentos de tratamento térmico patenteados são também vantajosos na proteção contra a porosidade resultante do tratamento térmico de solubilização.

A descoloração superficial é um resultado normal deste tratamento térmico de solubilização e não pode ser interpretada como evidência de dano por superaquecimento ou como porosidade induzida pelo tratamento térmico. Os banhos de sal apresentam aquecimento rápido e uniforme do material, neste meio de aquecimento não ocorre oxidação do alumínio devido a altas temperaturas, as quais são controladas por meio de sensores.

Após estabelecido o padrão de temperatura recorrente ou o equilíbrio térmico na zona de trabalho, a temperatura do forno deve ser mantida dentro dos limites das variações estabelecidas abaixo em todos os controles e sensores do forno: variação de ± 8,5 °C para fornos usados somente para solubilização das ligas da série 6xxx, para as quais a tabela abaixo especifica uma variação de ± 8,5 °C ou mais; variação de ± 6 °C para fornos usados para outras solubilizações e qualquer tratamento de envelhecimento.

A precisão do sistema de medição de temperatura deve ser verificada semanalmente sob condições de operação. Esta verificação deve ser feita a partir da inserção de um segundo sensor de temperatura calibrado próximo ao sensor de temperatura do forno. A leitura deste segundo sensor deve ser realizada com potenciômetro de ensaio calibrado. Quando o forno for equipado com sistemas de potenciômetro de medição dupla, que são verificados diariamente um com o outro, esta verificação pode ser realizada a cada três meses, em vez de semanalmente.

O sensor de temperatura, o potenciômetro e a combinação da compensação da conexão fria devem ter sido calibrados por instituição acreditada com exatidão de ± 1,1 °C nos últimos três meses. Deve ser realizado levantamento de uniformidade de temperatura em fornos e banhos de sal para assegurar a concordância com os requisitos especificados nessa norma. Um novo levantamento de uniformidade de temperatura deve ser feito após qualquer modificação, reparo, ajuste (por exemplo, nos controladores de energia ou defletores) ou reconfiguração que altere as características da uniformidade de temperatura do forno ou banho de sal, e também caso sejam constatadas alterações na efetividade do tratamento térmico a partir do acompanhamento do material.

O levantamento inicial de temperatura deve ser feito nas temperaturas máximas e mínimas dos tratamentos de solubilização e de envelhecimento para cada forno a ser utilizado. Deve haver no mínimo nove posições de ensaio, sendo uma em cada canto do forno e uma no centro, considerando-se que haja ao menos uma posição de ensaio para cada 0,69 m3 de volume de ar, não devendo ser ultrapassado o máximo de 40 posições de ensaio. Para banhos de sal, uma posição de ensaio é requerida para cada 1,1 m³ de volume.

Após o levantamento inicial, cada forno deve ser analisado mensalmente, exceto como estabelecido em 5.3.8 e 5.3.9. As análises mensais devem ser feitas nas temperaturas de operação para solubilização e para envelhecimento. Durante os levantamentos de uniformidade de temperatura do forno, devem ser utilizados sensores de ensaio móveis para determinar a uniformidade e distribuição reais de temperatura. Os sensores de controle da zona de trabalho devem ser utilizados para determinar a temperatura de ensaio.

Deve haver pelo menos um sensor de temperatura para cada 1,1 m³ de volume de carga, com um mínimo de nove sensores de temperatura, sendo um em cada canto do forno e um no centro. Para fornos de até 0,28 m³, o levantamento de uniformidade de temperatura pode ser feito com o mínimo de três sensores de temperatura, sendo posicionados na frente, centro e fundo do forno, ou no topo, centro e base. É recomendado o uso de um termopar de carga em fornos pequenos.

Os levantamentos de uniformidade de temperatura devem refletir as características normais de operação do forno. Se o forno for carregado após ser estabilizado na temperatura de operação preestabelecida, os sensores de temperatura devem ser carregados nas mesmas condições. Se o forno for carregado frio, os sensores de temperatura devem ser carregados frios. Após a inserção dos sensores de temperatura, leituras devem ser tiradas frequentemente para determinar quando a temperatura da região mais quente do forno se aproxima da faixa inferior de temperatura estabelecida.

A partir deste momento até que o equilíbrio térmico seja alcançado, a temperatura em todos os locais deve ser determinada com intervalo máximo de 2 min, para detectar qualquer superaquecimento. Após o equilíbrio térmico ser atingido, leituras devem ser feitas em intervalos de 5 min, por 30 min no mínimo, para determinar o padrão de temperatura recorrente.

Os resultados destes levantamentos devem demonstrar que a variação máxima de temperatura (da leitura mais fria para a mais quente) entre todos os sensores de temperatura e os sensores de controle do forno está dentro da faixa de uniformidade de temperatura aplicável estabelecida em 5.2; todas as leituras dos sensores de temperatura estão dentro da faixa de temperatura do tratamento térmico especificado que está sendo analisado. O tipo de levantamento, e os procedimentos para se realizar as análises em fornos contínuos, devem ser estabelecidos para cada forno envolvido em particular.

Os tipos de fornos de tratamento térmico contínuo variam consideravelmente, dependendo da forma e dimensões dos produtos. Em determinados casos convém realizar a análise do forno a partir de estudo das propriedades mecânicas do produto tratado termicamente, os quais devem estar de acordo com a tabela abaixo. Análises de uniformidade de temperatura do forno devem ser realizadas mensalmente, usando-se um mínimo de dois sensores de temperatura fixados ao material que está sendo tratado.

Os levantamentos devem refletir as características preestabelecidas de operação do forno. Os resultados destes levantamentos devem demonstrar que a variação máxima de temperatura (da leitura mais fria para a mais quente) entre todos os sensores de temperatura e de controle está dentro da faixa de uniformidade de temperatura aplicáveis estabelecida em 5.2; todas as leituras dos sensores de temperatura estão dentro da faixa especificada para o tratamento térmico analisado.

A uniformidade de temperatura em um banho de sal pode ser determinada utilizando-se um sensor de temperatura envolto por um tubo de proteção. O sensor de temperatura deve ser colocado em uma posição até que o equilíbrio térmico tenha sido alcançado e feito uma leitura. O sensor de temperatura deve então ser colocado em um novo local e o procedimento repetido. Estas operações devem ser repetidas até que a distribuição de temperatura em todas as partes do banho tenha sido determinada.

Os resultados destes levantamentos devem demonstrar que a variação máxima de temperatura (da leitura mais fria para a mais quente) está dentro da faixa de uniformidade de temperatura aplicáveis estabelecida em 5.2; todas as leituras dos sensores de temperatura estão dentro da faixa de especificada para o tratamento térmico analisado. A periodicidade requerida para os levantamentos torna-se semestral após realizados seis levantamentos mensais consecutivos, incluindo o levantamento inicial conforme 5.3.2, desde que sejam atendidas todas as seguintes condições: os levantamentos prévios de uniformidade de temperatura apresentam histórico de desempenho dentro dos parâmetros preestabelecidos por um período de seis meses consecutivamente; em adição a cada sensor de controle da zona de trabalho, o forno ou banho de sal deve ser equipado com instrumento multiponto de registro permanente, com pelo menos um sensor adicional de monitoramento de temperatura em cada zona ou com um ou mais sensores de monitoramento da carga para medir a temperatura real do metal em cada zona.

Os sensores de controle da zona de trabalho e os sensores de monitoramento da carga devem ser instalados de forma a registrar a temperatura dos meios aquecidos (ar, banho de sal, dentre outros) e as temperaturas reais do metal. A frequência do levantamento para fornos utilizados exclusivamente para envelhecimento pode ser semestral após a conclusão de seis levantamentos mensais consecutivos, incluindo o levantamento inicial conforme 5.3.2, desde que sejam atendidas as seguintes condições: o forno utiliza registro multiponto contínuo dos dados de temperatura; ou um ou mais sensores de monitoramento de carga são empregados para medir e registrar as temperaturas reais do metal.

Os instrumentos utilizados para controlar, monitorar e registrar a temperatura do forno devem ser calibrados anualmente e também antes do primeiro uso. A calibração deve ser realizada com um instrumento que tenha sido calibrado dentro do período de 12 meses por instituição acreditada com precisão de ± 1,1 °C. A calibração dos instrumentos de controle, monitoramento ou registro deve ser realizada conforme instruções do fabricante ou, se as instruções do fabricante não forem utilizadas com um mínimo de três dados de sensores simulados nos pontos mínimo, médio e máximo da faixa de temperatura de operação qualificada do forno.

A calibração dos instrumentos de controle, monitoramento ou registro pode ser realizada em uma carga de processo (para uma simples faixa de temperatura), se a temperatura do forno permanecer dentro da tolerância de processamento e for registrada para indicar a ocorrência de calibração. Os limites de calibração são de ± 1,1 °C ou 0,3 % da temperatura máxima do levantamento do equipamento (utilizar o maior resultado).

O arranjo da carga de produto deve assegurar que o aquecimento e o resfriamento tenha acesso a todas as superfícies para cada peça da carga. O carregamento em banho de sal em cestos contendo produtos de pequenos tamanhos, como rebites ou forjados, deve ser controlado pela limitação da profundidade da carga em cada camada e pela manutenção do espaçamento mínimo entre as camadas, a fim de garantir a uniformidade térmica da carga. O ensaio periódico do produto (ver tabela abaixo) deve ser realizado para assegurar que produtos de pequenos tamanhos resfriados em cestos não apresentem maior suscetibilidade à corrosão intergranular do que produtos resfriados individualmente sem cestos.

Convém que os ensaios sejam efetuados uma vez por mês ou mais frequentemente, quando acordado entre fabricante e cliente. A determinação das propriedades mecânicas, por exemplo, é tipicamente um ensaio de liberação. Recomenda-se ensaiar uma carga por forno por mês. Se a carga de trabalho incluir mensalmente lâminas e chapas tanto quanto outros tipos de materiais, convém que sejam ensaiadas, de acordo com a tabela acima, uma carga de lâminas e outra de chapas. Se este tipo de produto não for tratado termicamente durante o mês, convém que a carga de ensaio seja aquela correspondente ao maior número de ensaios determinado pela tabela acima.