REVISTA DIGITAL ADNORMAS

Acesse a versão online: https://revistaadnormas.com.br
Edição 112 | Ano 3 | 25 JUNHO 2020
ISSN: 2595-3362
Confira os artigos desta edição:

 

Os ensaios em poliestireno expandido (EPS)

Conheça os métodos de ensaio para determinação das propriedades do poliestireno expandido (EPS) utilizado para qualquer fim. O EPS é um plástico celular rígido, resultado da polimerização do estireno em água. O produto final são pérolas de até 3 milímetros de diâmetro, que se destinam à expansão.

A NBR 16866 de 06/2020 – Poliestireno expandido (EPS) — Determinação das propriedades — Métodos de ensaio estabelece os métodos de ensaio para determinação das propriedades do poliestireno expandido (EPS) utilizado para qualquer fim. O EPS é um plástico celular rígido, resultado da polimerização do estireno em água. O produto final são pérolas de até 3 milímetros de diâmetro, que se destinam à expansão. No processo de transformação, essas pérolas aumentam em até 50 vezes o seu tamanho original, por meio de vapor, fundindo-se e moldando-se em formas diversas.

Expandidas, as pérolas apresentam em seu volume até 98% de ar e apenas 2% de poliestireno. Em 1m³ de EPS expandido, por exemplo, existem de 3 a 6 bilhões de células fechadas e cheias de ar. O processo produtivo do EPS não utiliza o gás CFC ou qualquer um de seus substitutos. Como resultado os produtos finais de EPS são inertes, não contaminam o solo, água e ar. São 100% reaproveitáveis e recicláveis e podem, inclusive, voltar à condição de matéria-prima.

Pode ser reciclado infinitas vezes que não perde as propriedades mecânicas (não degrada).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a aparelhagem e como se faz a preparação dos corpos de prova para a determinação da resistência à compressão?

Qual é o esquema do ensaio de flexão?

Qual deve ser a aparelhagem para a determinação do índice de oxigênio?

Qual é o procedimento para execução do ensaio de determinação do índice de oxigênio?

Também conhecido como isopor, o EPS consiste em até 98% de ar e apenas 2% de poliestireno. Em 1m³ de EPS expandido, por exemplo, existem de 3 a 6 bilhões de células fechadas e cheias de ar. É produzido em duas versões: Classe P, não retardante à chama, e Classe F, retardante à chama. Também 3 grupos de massa específica aparente: I – de 13 a 16 kg/m3, II – de 16 a 20 kg/m³, III – de 20 a 25 kg/m³. Outro aspecto da classificação do EPS diz respeito à resistência à deformação.

O valor que se segue ao nome EPS indica a pressão necessária para uma compressão com deformação de 10%, em KPa. Por exemplo, para o EPS 30 são necessários 30 KPa para uma deformação de 10%. Esse material ganhou nos últimos 35 anos uma posição estável na construção de edifícios, não apenas por suas características isolantes, mas também por sua leveza, resistência, facilidade de trabalhar e baixo custo.

Existe um método de ensaio para a determinação da densidade aparente de blocos ou produtos moldados de EPS calculada pela relação entre a massa e o volume de cinco corpos de prova de uma amostra. Para a realização do ensaio, utilizar a seguinte aparelhagem: balança com resolução mínima de 0,1g; paquímetro ou régua com resolução de 0,1 mm. Para fazer a preparação dos corpos de prova, devem ser retirados cinco corpos de prova de regiões diferentes da amostra e com dimensões de 200 mm x 200 mm x 200 mm.

Os corpos de prova não podem conter faces da superfície original do bloco. Os corpos de prova devem ser condicionados por 24 h em ambiente a (23 ± 2) °C antes da realização do ensaio. O ensaio deve ser realizado em ambiente com temperatura de (23 ± 2) °C e umidade relativa do ar de (50 ± 10) %. Após o condicionamento descrito, determinar a massa M dos corpos de prova. Utilizando o paquímetro, medir três vezes a largura, o comprimento e a altura dos corpos de prova.

Cada medição deve ser realizada em posições distintas, tomando o cuidado para não comprimir as faces durante o procedimento. Calcular a densidade dos corpos de prova, expressa em quilogramas por metro cúbico (kg/m³), pela relação entre a massa e o volume, por meio da seguinte expressão: D=M/Vx10-6, onde D é a densidade, expressa por quilogramas por metro cúbico (kg/m³); M é a massa do corpo de prova, expressa em gramas (g); V é o volume do corpo de prova, expresso em milímetros cúbicos (mm³). Calcular a média aritmética dos resultados obtidos pelas determinações realizadas.

Expressar os resultados do ensaio para determinação da densidade em quilogramas por metro cúbico (kg/m³) com base na média aritmética da densidade encontrada para os cinco corpos de prova com uma casa decimal. O relatório de ensaio deve conter no mínimo as seguintes informações: identificação da amostra ensaiada; referência a esta norma; condições ambientais durante acondicionamento dos corpos de prova e durante o ensaio; dimensões e quantidades dos corpos de prova; resultados individuais e média aritmética da densidade, com aproximação de 0,1 kg/m³; data de realização do ensaio; possíveis desvios em relação a esta norma,

O método de ensaio para determinação da quantidade de água absorvida pelo EPS é feito após imersão total em água calculada pelo aumento da porcentagem em volume d’água dos corpos de prova imersos em água à temperatura controlada por 24 h. Para a realização do ensaio, utilizar a aparelhagem a seguir: balança analítica com resolução mínima de 0,001 g; paquímetro com resolução de 0,01 mm; estufa com circulação de ar, capaz de manter a temperatura constante em (50 ± 3) °C; dessecador; água deionizada; recipiente com profundidade mínima de 150 mm; dispositivo que evite a flutuação e exposição dos corpos de prova ao ar, de modo a impactar pouco sobre a superfície dos corpos de prova, por exemplo, rede.

Os corpos de prova devem ser cubos de 100 mm de lado sem falhas ou imperfeições visíveis. Os corpos de prova devem ser retirados da parte interna do bloco de EPS, sem conter nenhuma face externa original. Devem ser ensaiados cinco corpos de prova por amostra, retirados de diferentes regiões do bloco.

Como procedimento para execução do ensaio, deve-se usar o paquímetro, determinar as três dimensões de cada corpo de prova. Realizar três medições para cada lado e calcular a média aritmética. Multiplicar os valores obtidos para obter o volume de cada corpo de prova. Para realizar a medição corretamente, o paquímetro deve apenas encostar sobre a superfície do corpo de prova, sem comprimi-la.

Manter os corpos de prova na estufa por 24 +10 h a uma temperatura de (50 ± 3) °C. Retirar os corpos de prova da estufa e mantê-los no dessecador a uma temperatura de (23 ± 3) °C até atingirem a temperatura ambiente. Determinar a massa seca (mi) de cada corpo de prova. B.4.5 Imergir os corpos de prova em um recipiente com água deionizada por 24 +10 h a (23 ± 3) °C. Os corpos de prova devem ser presos com uma rede ou um dispositivo semelhante, de modo que exista uma camada de água de pelo menos 25 mm acima dos corpos de prova e que eles não encostem no fundo do recipiente, conforme figura abaixo.

Retirar os corpos de prova da água e remover o excesso de água com um pano úmido. Determinar a massa saturada (mf) de cada corpo de prova. Para obter os valores de absorção de água em porcentagem de volume d’água, utilizar a seguinte equação: av=mf-m1/V x r  x 100, onde av é a absorção de água de cada corpo de prova, expressa em porcentagem (%); mf é a massa saturada de cada corpo de prova, expressa em gramas (g); mi é a massa seca de cada corpo de prova, expressa em gramas (g); V é o volume do corpo de prova, expressa em centímetros cúbicos (cm³); r é a densidade da água, expressa em gramas por centímetro cúbico (g/cm³). Considerar r = 1 g/cm³.

Calcular a média aritmética dos resultados obtidos das determinações realizadas nos cinco corpos de prova. Expressar os resultados do ensaio de determinação de absorção de água por volume em porcentagem com base na média aritmética dos resultados encontrados para os cinco corpos de prova com uma casa decimal. O relatório de ensaio deve conter no mínimo as seguintes informações: identificação da amostra ensaiada; referência a esta norma; dimensões e quantidades dos corpos de prova; condições ambientais durante acondicionamento dos corpos de prova e durante a realização do ensaio; resultados individuais e média aritmética da absorção de água em porcentagem de volume d’água, com aproximação de 0,1%; data de realização do ensaio; possíveis desvios em relação a esta norma.

O imageamento e comunicações digitais em medicina (DICOM)

Nos equipamentos eletromédicos pode-se controlar seguintes objetos de informação: um Objeto de Informação de Imagem DICOM (DICOM Image Information Object – IOD) para Radioterapia. Este especifica o conteúdo semântico das Imagens de RT. Normalmente se abrevia como RT Imagem IOD. Também inclui a Classe de Armazenamento (Storage SOP) correspondente para que a IOD possa ser usada nos intercâmbios de Rede e de Armazenamento de Mídia (Network).

A ABNT IEC/TR 61852 de 06/2020 – Equipamentos eletromédicos — Imageamento e comunicações digitais em medicina (DICOM) — Objetos de radioterapia especifica os seguintes objetos de informação: um Objeto de Informação de Imagem DICOM (DICOM Image Information Object – IOD) para Radioterapia. Este especifica o conteúdo semântico das Imagens de RT. Normalmente se abrevia como RT Imagem IOD. Também inclui a Classe de Armazenamento (Storage SOP) correspondente para que a IOD possa ser usada nos intercâmbios de Rede e de Armazenamento de Mídia (Network). O escopo da RT Imagem IOD apresenta imagens de radioterapia que tenham sido obtidas em uma geometria cônica de imageamento, como as encontradas em simuladores convencionais e dispositivos de imageamento de portal.

Também podem ser usadas para imagens calculadas usando a mesma geometria, como as radiografias reconstruídas digitalmente (RRD). Um Objeto de Informação de Dose DICOM (DICOM Dose Information Object) para Radioterapia. Especifica o conteúdo semântico das Doses de RT. Normalmente se abrevia como RT Dose IOD. Também inclui a Classe de Armazenamento (Storage SOP) correspondente para que a IOD possa ser usada nos intercâmbios de Rede (Network) e de Armazenamento de Mídia. O escopo da RT Dose IOD apresenta distribuições de dose de radioterapia que tenham sido calculadas em um sistema de planejamento de tratamento radioterápico, representadas como grades bidimensionais ou tridimensionais de dose, grupos de pontos de dose nomeados ou não nomeados, curvas de isodose, e histogramas dose-volume (DVH).

Um Objeto de Informação de Conjunto de Estrutura DICOM (DICOM Structure Set Information Object) para Radioterapia. Especifica o conteúdo semântico dos Conjuntos de Estrutura de RT. Normalmente se abrevia como RT Structure Set IOD. Também inclui a Classe Storage SOP correspondente para que a IOD possa ser usada nos intercâmbios de Rede (Network) e de Armazenamento de Mídia. O escopo da RT Structure Set IOD apresenta as estruturas relativas ao paciente de radioterapia que tenham sido identificadas em dispositivos como tomógrafos computadorizados (TC), estações de simulação virtual (workstations) ou sistemas de planejamento de tratamento. Um Objeto de Informação de Plano DICOM (DICOM Plan Information Object) para Radioterapia. Este especifica o conteúdo semântico dos Planos (Tratamentos) de RT.

Normalmente se abrevia como RT Plano IOD. Também inclui a Classe Storage SOP correspondente para que a IOD possa ser usada nos intercâmbios de Rede (Network) e de Armazenamento de Mídia. O escopo da RT Plan IOD apresenta os dados geométricos e dosimétricos especificando um curso de feixe externo e/ou tratamento de braquiterapia. Este Relatório inclui uma diversidade de emendas às Partes existentes da DICOM. Portanto, convém que o leitor tenha uma compreensão operacional da Norma. 1. Parte 3 Emendas (Extensão do corpo, Anexos A, B, C e D); 2. Parte 4 Emendas (Extensão do Anexo B); e 3. Parte 6 Emendas (Extensão da Seção 6 e do Anexo A).

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os símbolos e abreviaturas usados nessa norma?

Como pode ser feita a descrição do RT Plan IOD?

Como deve ser estruturado o Módulo RT FRACTION SCHEME?

Quais os atributos do Módulo RT Image?

Este complemento da norma DICOM define uma variedade de objetos de informação aplicáveis ao domínio da radiação em oncologia. A intenção destes objetos é dar suporte à transferência de dados relativos à radioterapia entre os dispositivos encontrados dentro e fora de um departamento de radioterapia. No entanto, eles não têm a intenção de dar suporte ao gerenciamento dos dados transferidos, uma função que pode ser tratada em revisões futuras da norma DICOM.

Esta tarefa de gerenciamento de processos não tem sido tratada na publicação atual devido à ausência de um modelo de processo consistente para um departamento de radioterapia, especialmente em um contexto internacional. Como resultado, os objetos de informação de radioterapia contêm um grande número de elementos de dados condicionais e opcionais. Essencialmente, os objetos são destinados a serem utilizados como contêineres para dados relacionados à radioterapia, com os dados sendo acrescentados à medida que o objeto avança pelo departamento.

O foco desta IOD de Imagem de Radioterapia (RT Image IOD) é tratar dos requisitos para transferência de imagem encontrados em aplicações gerais de radioterapia executadas em simuladores convencionais, simuladores virtuais e dispositivos de imageamento portal. Estas imagens têm uma geometria de imageamento cônica e podem tanto ser adquiridas diretamente do dispositivo, ou digitalizadas usando um digitalizador de filme. Elas podem ou não ter curvas sobrepostas descrevendo as aberturas do dispositivo limitador do feixe (colimador), dispositivos de modificação do feixe, estruturas do paciente e volumes-alvo. Os parâmetros numéricos de dados de feixe também podem ser registrados com a imagem, indicando os valores dos parâmetros no momento em que a imagem foi tomada ou criada. O modelo E-R para a RT Image IOD é apresentado na figura abaixo.

Deve-se observar que não existe qualquer provisão para representação de curvas multiframe (ou seja, todas as curvas são interpretadas em relação ao primeiro frame de imagem em uma imagem multiframe). Curvas que não sejam estruturas de paciente também podem ser representadas usando os tipos de curva HIST, POLY ou TABL (ver P3.3, C.10.2.1). O módulo Equipment contém informações descrevendo o equipamento usado para captar ou gerar a Imagem de RT (como um imageador de portal, simulador convencional ou sistema de planejamento de tratamento).

No entanto, os atributos de equipamento no módulo de RT Image descrevem o equipamento no qual o tratamento foi ou será administrado, normalmente um acelerador de elétrons. Para imagens de RT que não contenham dados pertinentes de pixel, como imagens BEV sem informações RRD, convém que Pixel Data (7FE0,0010) seja preenchido com uma sequência de zeros. O módulo Frame of Reference tem sido incluído para possibilitar a indicação da associação espacial de dois ou mais RT Image (por exemplo, quando as imagens tiverem sido adquiridas no mesmo Frame of Reference, ou tiverem sido reamostradas para compartilhar o mesmo Frame of Reference).

Se o Frame of Reference ocorrer dentro de um SOP Instances em uma determinada série, então todos os SOP Instances desta série estarão espacialmente relacionados. Por exemplo: duas RT Images podem compartilhar o mesmo Frame of Reference se estiverem localizadas no mesmo plano físico, como determinado pelo Ângulo do Gantry da máquina de tratamento (300A,011E) e pela distância do plano fonte-imagem especificada pela RT Image SID (3002,0026).

O foco para esta IOD de Dose de Radioterapia (RT Dose IOD) é tratar dos requisitos de transferência de distribuições de dose calculados por sistemas de planejamento de tratamento de radioterapia. Estas distribuições podem ser representadas por grades 2D ou 3D, como curvas de isodose, ou como pontos de dose nomeados ou não nomeados espalhados por todo o volume. Esta IOD também pode conter dados de histograma dose-volume, overlays isolados ou de multiframes, anotações de áudio e tabelas de pesquisa definidas pela aplicação.

Esta IOD não apresenta definição de doses no feixe ou outros sistemas de coordenadas. Dentro da RT Dose IOD, o módulo de RT Dose suporta grades de dose 2D e 3D. O Structure Set, ROI Contour e módulos da RT Dose ROI juntos suportam curvas e pontos de isodose, e o módulo RT DVH suporta dados de histograma dose-volume. Eles não são mutuamente exclusivos: todas as quatro representações podem ser incluídas em um único caso do objeto e podem ser incluídos em qualquer combinação.

Convém que Declarações de Conformidade de Produto declarem claramente quais destes mecanismos têm suporte e sob quais condições. A RT Dose IOD foi definida como uma IOD composta, separada da RT Plan IOD. Isso tem sido feito pelos seguintes motivos: para possibilitar a multiplicidade de cálculos de dose usando modelos de feixe para o mesmo plano básico e para evitar transmissão indesejada de grandes quantidades de dados com o plano de tratamento.

O foco para esta IOD de Conjunto de Estrutura de Radioterapia (RT Structure Set IOD) é tratar dos requisitos para transferência de estruturas do paciente e de dados relacionados definidos nos tomógrafos TC, estações de simulação virtual, sistemas de planejamento de tratamento e dispositivos similares. Esta IOD também pode conter anotações de curva em áudio.

A conformidade dos perfis fabricados em aço e suas ligas para esquadrias

Conheça os requisitos e os métodos de ensaios para perfis fabricados em aço e suas ligas para esquadrias, visando assegurar que, após o processo de fabricação atendam aos requisitos mínimos de desempenho.

A NBR 16872 de 06/2020 – Aços e suas ligas — Perfis de aço para esquadrias — Requisitos e métodos de ensaio especifica os requisitos e os métodos de ensaios para perfis fabricados em aço e suas ligas para esquadrias, visando assegurar que, após o processo de fabricação atendam aos requisitos mínimos de desempenho. Não é aplicável a balaustradas e balcões, portões e portas corrediças de ferro e aço, fechamento de área, portas de aço onduladas ou frisadas, portas e divisões sanfonadas, revestidas de qualquer material, portas metálicas contra incêndio (corta-fogo), portas pantográficas, portões metálicos e produtos de serralheria artística.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser a classificação do revestimento da pintura de acabamento em pó ou líquido?

Como deve ser a preparação dos corpos de prova para os ensaios cíclicos acelerados de corrosão?

Qual deve ser a aparelhagem para os ensaios de intemperismo acelerado – UV (câmara de ultravioleta)?

Como deve ser feita a execução do ensaio de intemperismo acelerado – UV (câmara de ultravioleta)?

Uma esquadria ao ser fabricada com perfis de aço e suas ligas assegura ao produto final a resistência ao ataque de agentes corrosivos existentes em nossa atmosfera permitindo ao seu usuário o uso adequado deste produto. A corrosão é um ponto de atenção em uma esquadria em função deste produto metálico estar em contato com o meio ambiente. Esta alteração química pode comprometer o desempenho estrutural dos perfis de aços e suas ligas utilizados em uma esquadria.

Além disso, também pode causar impacto em funções das esquadrias como estanqueidade, fechamento, abertura, travamento, etc. Portanto, a falta de atenção a uma corrosão pode expor os usuários das esquadrias a riscos a sua saúde e segurança bem, como pode ocasionar prejuízo econômico, em função da necessidade de reparos ou da substituição da esquadria fabricada com perfis de aço e suas ligas. Nesta norma são apresentados os processos para que os perfis de aço e suas ligas, proporcionem ao consumidor esquadrias um desempenho satisfatório quanto à resistência estrutural, funcionabilidade, estanqueidade e durabilidade.

Para isso, esta norma apresenta características físico–químicas, processos de pré-tratamento e tratamento de superfície, resistência à corrosão e intemperismo. A partir das premissas mencionadas anteriormente, houve a solicitação da Comissão de Estudos Especial de Esquadrias (CEE-191) para a criação de uma norma técnica que trate deste assunto. Diante do seu escopo de atuação estar na Comissão de Estudos de Perfis Soldados e Conformados a Frio (CE 028:001.004) do Comitê Brasileiro de Siderurgia (ABNT/CB-028), esta demanda foi apresentada e aprovada, e esta norma elaborada tomando por base os seguintes documentos técnicos: NBR 14125, NBR 12609, série ISO 12944, bem como especificações técnicas das associações internacionais QUALISTEELCOAT e QUALICOAT da Suíça, que são referências técnicas em tratamento de superfície e resistência a corrosão consagradas mundialmente, estudando e avaliando produtos na Europa nos últimos 30 anos.

Para a fabricação de perfis de aço para esquadrias deve ser utilizado um dos aços estabelecidos nessa norma. A especificação do aço deve ser acordada entre as partes. Esta norma é aplicável para avaliação da conformidade dos perfis fabricados em aço e suas ligas para esquadrias, e devem ser aplicadas todas as seções desta norma. Os aços para esquadrias devem apresentar uma composição química e propriedades mecânicas, conforme a NBR 5915-2. A composição química e as propriedades mecânicas podem ser comprovadas por relatórios de ensaios de seu fornecedor.

No caso do uso de aços revestidos, aplicar os requisitos da NBR 7008-2, ou NBR 7008-3, ou DIN EN 10346. A composição química e as propriedades mecânicas podem ser comprovadas por relatórios de ensaios de seu fornecedor. O corpo de prova revestido por meio do processo de pintura primer, possuindo ou não pintura de acabamento, deve ser verificado nas faces aparentes conforme descrito nessa norma.

A distância mínima entre o verificador, em pé, e o corpo de prova colocado na posição final em que for utilizado deve ser de (1,5 ± 0,1) m. A iluminação deve estar posicionada entre o verificador e o corpo de prova, de modo que haja uma incidência angular de aproximadamente 60° entre os três pontos, de acordo com a figura abaixo e intensidade de luz deve estar de acordo com a NBR ISO/IEC 8995-1.

Ressalte-se que o corpo de prova revestido por meio do processo de pintura primer, possuindo ou não pintura de acabamento, verificada à vista normal ou corrigida, não pode apresentar os seguintes defeitos de pintura: craqueamento ou gretamento, crateras, descascamento, empolamento ou bolhas, enrugamento, fervura, manchamento nas cores metálicas, riscos, e/ou rugosidades provenientes do processo de pintura; fuga de borda ou falta de cobertura em regiões de sobreposições de chapa, transpasse de perfis ou pontos de solda; outros requisitos de inspeção visual, se superiores aos determinados, e referentes ao tratamento de superfície, devem estar especificados no contrato firmado entre as partes. No Anexo A estão ilustrados exemplos de defeitos na pintura.

Para o ensaio de aderência pelo método de grade, o corpo de prova deve ser revestido por meio do processo de pintura primer, possuindo ou não pintura de acabamento, deve ser ensaiado conforme descrito nessa norma. A determinação da aderência nos corpos de prova pelo método do corte em grade deve ser ensaiada conforme a NBR 11003:2009, 4.2. Todos os corpos de prova (total de três) devem apresentar resultados, conforme a NBR 11003:2009, 5.2 para as seguintes situações: para a pintura primer antes do ensaio de corrosão; para a pintura de acabamento antes do ensaio de corrosão; para a pintura de acabamento após o ensaio de intemperismo acelerado.

Para o ensaio cíclico acelerado de corrosão, o corpo de prova deve ser revestido por meio do processo de pintura primer e/ou pintura de acabamento e deve ter a verificação da resistência à corrosão, conforme os ensaios do Anexo B. Todos os corpos de prova (total de três por tipo de tratamento de superfície) devem, ao término de cada ciclo do ensaio.

Para o ensaio de intemperismo acelerado em câmara de ultravioleta (UV), no corpo de prova revestido por meio do processo de pintura de acabamento, deve ser verificada a resistência ao intemperismo após a exposição por 250 h em câmara de ultravioleta UV, conforme a ASTM G-154[4] e o Anexo C. Todos os corpos de prova devem, ao término do período de exposição, apresentar: aderência da película da pintura conforme grau Gr0; pintura isenta de craqueamento, empolamento e escamação.

Os ensaios conforme descritos a seguir devem ser realizados se o contratante determinar, neste caso, todos os corpos de prova ao término do período de exposição, devem atender aos requisitos

de retenção de brilho e mudança de cor, e deve ser classificado em um dos níveis de desempenho definidos nessa norma na tabela 5 na norma: retenção de brilho ou uma avaliação visual adicional deve ser realizada para revestimentos orgânicos em pó ou líquidos com valor de brilho original inferior a 20 unidades; revestimentos orgânicos em pó ou líquidos com aparência estruturada em todas as categorias de brilho; revestimentos orgânicos em pó ou líquidos com efeito metálico ou metalizado.

API RP 652: os revestimentos de tanques de armazenamento de petróleo

Essa norma, editada em 2020 pela American Petroleum Institute (API), fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes.

A API RP 652:2020 – Linings of Aboveground Petroleum Storage Tank Bottoms fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes. Em muitos casos, os revestimentos do fundo do tanque provaram ser um método eficaz para evitar a corrosão interna do fundo do tanque de aço.

O objetivo desta prática recomendada (RP) é fornecer informações e orientações específicas para tanques de armazenamento de aço acima do solo em serviço de hidrocarbonetos. Certas práticas recomendadas também podem ser aplicáveis a tanques em outros serviços. Esta prática recomendada destina-se a servir apenas como um guia. As especificações detalhadas do revestimento do fundo do tanque não estão incluídas. Não designa os revestimentos específicos do fundo do tanque para todas as situações, devido à grande variedade de ambientes de serviço.

A NACE No.10/SSPC-PA 6 e a NACE No. 11/SSPC-PA 8 são normas da indústria para a instalação de revestimentos nos fundos dos tanques. Elas são escritas em linguagem obrigatória e contêm critérios específicos destinados ao uso por pessoas que fornecem especificações escritas para revestimentos de tanques e navios. Estes documentos devem ser considerados ao projetar e instalar um sistema de revestimento para tanques com fundo de aço.

Conteúdo da norma

1 Escopo……………………………. 1

2 Referências normativas…………….. 1

3 Termos e definições………………….. 2

4 Mecanismos de corrosão…………….. 6

4.1 Geral……………………… ………. 6

4.2 Corrosão química………………………… 6

4.3 Corrosão da célula de concentração………….. 6

4.4 Corrosão das células de oxigênio……………….. 7

4.5 Corrosão de células galvânicas………………… 7

4.6 Corrosão influenciada microbiologicamente (MIC)……… 7

4.7 Corrosão por erosão…………………………. 7

4.8 Corrosão relacionada ao atrito…………………. 8

4.9 Corrosão generalizada versus localizada…… …….. 8

4.10 Quebra por corrosão sob tensão………………… 8

4.11 Mecanismos de corrosão internos……………… 8

5 Determinação da necessidade de revestimento do fundo do tanque………………. 9

5.1 Geral……………………. ………. 9

5.2 Revestimentos para proteção contra corrosão…….. 9

5.3 Histórico de corrosão do tanque……………………… 9

5.4 Fundação do tanque……………………………… 10

6 Seleção do revestimento do fundo do tanque……………… 10

6.1 Geral………………………………………. 10

6.2 Zinco inorgânico/silicato de zinco (IOZ)…………….. 11

6.3 Revestimentos inferiores do tanque de filme fino…………….. 12

6.4 Revestimentos de fundo de tanque sem reforço de filme espesso……………… 13

6.5 Revestimentos inferiores reforçados do tanque de filme espesso………………….. 14

6.6 Circunstâncias que afetam a seleção de revestimento… 16

6.7 Seleção de revestimentos internos para tanques que armazenam combustíveis alternativos…………………. 18

7 Preparação da superfície………………………. 20

7.1 Geral…………………………….. …….. 20

7.2 Pré-limpeza…………………………… 21

7.3 Reparo inferior e preparação subsequente de solda e componente………………… 21

7.4 Limpeza da superfície……………………………….. 21

7.5 Perfil de superfície ou padrão de ancoragem………….. 22

7.6 Limpeza com ar e por abrasivo………………………….. 22

7.7 Remoção de sais………………………….. 22

7.8 Remoção de poeira…………………………. 22

8 Aplicação de revestimento…………………. 22

8.1 Geral…………………………….. …….. 22

8.2 Diretrizes para aplicação de revestimento……………… 23

8.3 Controle de temperatura e umidade………………. 23

8.4 Espessura do revestimento………………………. 23

8.5 Cura de revestimento…………………… 23

9 Inspeção…………………………… 24

9.1 Geral…………………….. …….. 24

9.2 Qualificação do pessoal de inspeção………………. 24

9.3 Parâmetros de inspeção recomendados……….. 24

10 Avaliação, reparo e substituição de revestimentos existentes……………….. 25

10.1 Geral………. …….. 25

10.2 Métodos de avaliação…………. 25

10.3 Critérios de avaliação para revestimentos………. 25

10.4 Avaliando a capacidade de manutenção de revestimentos existentes………………………….. 26

10.5 Determinando a causa da degradação/falha do revestimento…………………….. 26

10.6 Reparo e substituição do revestimento……. 26

11 Maximizando a vida útil do revestimento pela seleção e especificação adequadas de material……. 27

11.1 Geral……………………………… 27

11.2 Seleção de material de revestimento…………….. 28

11.3 Especificações escritas………………………. 28

12 Saúde, segurança e meio ambiente………………… 28

12.1 Geral………………………….. 28

12.2 Entrada do tanque……………………. …. 29

12.3 Preparação da superfície e aplicação de revestimento……29

12.4 Folhas de dados de segurança do fabricante…………….. 29

Bibliografia……… 30

Os avisos públicos nos incidentes

Deve-se conhecer as diretrizes para o desenvolvimento, gestão e implementação de avisos públicos antes, durante e após incidentes. É aplicável a qualquer organização responsável por avisos públicos.

A NBR ISO 22322 de 06/2020 – Segurança da sociedade – Gestão de emergências – Diretrizes para aviso público fornece as diretrizes para o desenvolvimento, gestão e implementação de avisos públicos antes, durante e após incidentes. É aplicável a qualquer organização responsável por avisos públicos. É aplicável a todos os níveis, de local até internacional. Antes de planejar e implementar o sistema de alerta público, são avaliados riscos e consequências de possíveis perigos. Este processo não faz parte desta norma.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a visão geral do processo de aviso público?

Como deve ser feita a tomada de decisão operacional?

Qual o objetivo do alerta e da notificação?

Qual é função da disseminação de aviso público?

Os desastres, ataques terroristas e outros incidentes consideráveis precisam de uma resposta eficaz a incidentes para salvar vidas, mitigar prejuízos e danos. As organizações de resposta a emergências precisam responder rapidamente a uma situação de emergência em desenvolvimento. O tempo para se comunicar é limitado e, frequentemente, uma mensagem específica envolvendo ação prática deve ser disseminada para um grande grupo.

Procedimentos simples que enviam a mensagem de forma eficiente e criam a resposta desejada podem salvar vidas, proteger a saúde e impedir grandes disrupções. A proteção de pessoas em risco de danos é uma parte importante de uma resposta a incidentes. O aviso público possibilita que as organizações de resposta alertem suas equipes de resposta e permite que as pessoas em risco tomem medidas de segurança para reduzir o impacto de incidentes.

Um aviso público eficaz que consiste em alerta e notificação pode prevenir reações de pânico e apoiar as organizações de resposta a otimizar suas respostas e mitigar o impacto. A resposta eficaz a incidentes precisa de um aviso público estruturado e pré-planejado. O aviso público é baseado em duas funções: monitoramento de perigos e disseminação de avisos.

Também é necessário estabelecer um mecanismo para identificação de riscos, monitoramento de perigos, tomada de decisões, disseminação de avisos, e avaliar e melhorar. A organização deve estabelecer, documentar, implementar, manter e melhorar continuamente um sistema de aviso público (ver figura abaixo), com base em uma política de aviso público descrita na Seção 4. Esta norma não descreve a política de aviso público.

Convém que a organização avalie os perigos potenciais que podem ocorrer dentro de uma área definida e o nível de risco potencial que cada um apresenta. Convém que os resultados desta avaliação determinem o tipo de aviso público que pode ser necessário e que sejam documentados para referência futura. Convém que o sistema de aviso público desenvolvido pela organização: atenda aos requisitos legais e a outros requisitos aplicáveis, forneça a estrutura para definir e analisar criticamente os objetivos de aviso público, seja planejado com antecedência, seja documentado, implementado e mantido, disponha de recursos humanos e técnicos para planejar, implementar, manter e melhorar o sistema de aviso público, seja comunicado a todas as pessoas que trabalham para ou em nome da organização, forneça treinamento adequado para as equipes de resposta, esteja disponível e seja comunicado ao público em geral e especialmente às pessoas em risco potencial, envolva consulta apropriada com representantes ou órgãos da comunidade preocupados com interesses públicos, e inclua um comprometimento com a melhoria contínua.

Convém que a organização projete uma estrutura com base em duas funções: monitoramento de perigos e disseminação de avisos. Convém que a responsabilidade de emitir aviso público seja atribuída às partes interessadas que são especialistas individuais, grupos de especialistas ou organizações no setor público ou privado no nível local, até o nível internacional. Convém que aqueles que contribuem para ambas as funções sejam familiarizados com as capacidades e competências do sistema de aviso público, a fim de disseminar avisos pertinentes, precisos, confiáveis e oportunos, façam esforços contínuos para aumentar e manter a conscientização do público, e especifiquem ações de segurança dentro do aviso.

O monitoramento de perigos é baseado na avaliação de riscos realizada para determinar os perigos a serem monitorados. Os envolvidos na função de monitoramento de perigos são responsáveis pelo seguinte: entender as operações de monitoramento de perigos das agências locais até as internacionais e ter canais para se comunicar com elas; monitorar continuamente os riscos identificados dentro de uma área definida e na sua gama de conhecimento; fornecer informações antecipadas sobre riscos emergentes; fornecer informações sobre mudanças no nível de risco; definir as medidas de emergência a serem tomadas; notificar a função de disseminação de avisos; cooperar com autoridades públicas para aumentar a conscientização pública.

Convém que o monitoramento seja baseado em dados científicos e/ou evidências confiáveis. A função de monitoramento de perigos monitora os riscos potenciais que os perigos apresentam. A função de disseminação de avisos é responsável pelo seguinte: acionar prontamente os procedimentos para disseminar avisos públicos; transformar informações baseadas em evidências em mensagens de notificação e alerta; especificar procedimentos para disseminar mensagens de aviso; considerar as necessidades de informação das pessoas em risco e a diversidade de grupos vulneráveis; coordenar com outras organizações responsáveis pelo aviso público; disseminar prontamente avisos públicos.

Convém que a organização identifique o indivíduo ou grupo responsável por autorizar o aviso público de acordo com os regulamentos nacionais ou locais ou com a própria estrutura de responsabilidade da organização. Convém que a autorização seja baseada nos requisitos da política e nos objetivos públicos de aviso e na entrada da função de monitoramento de perigos e da função de disseminação de avisos, bem como de outras fontes pertinentes. Convém que um indivíduo ou grupo de indivíduos treinados e nomeados sejam designados para usar as informações de monitoramento de perigos para tomar decisões oportunas, pertinentes e precisas sobre a disseminação pública de avisos.

Convém que a organização identifique objetivos para o sistema de aviso público com base na política de aviso público. Convém que estes objetivos sejam considerados ao usar as informações da função de monitoramento de perigos para identificar as pessoas em risco e o impacto potencial de um incidente em uma área. Convém que a organização implemente um processo de aviso público de acordo com a Seção 5. Convém que a organização estabeleça cooperação e coordenação interorganizacionais eficazes entre a função de monitoramento de perigos e a função de disseminação de avisos, bem como entre outras partes interessadas pertinentes, incluindo grupos da comunidade.

Convém que todas as atividades operacionais no processo de aviso público sejam registradas em um formato recuperável, de acordo com os regulamentos de privacidade e proteção de dados. Convém que a organização avalie regularmente o desempenho das funções de monitoramento de perigos e disseminação de avisos. Convém que os resultados da avaliação sejam usados para identificar potenciais melhorias.

Convém que os processos de avaliação sejam realizados em intervalos regulares não superiores a cinco anos. Convém que a função de disseminação de avisos avalie o conteúdo e a pontualidade das notificações e alertas, bem como a escolha dos canais de comunicação. Convém que os processos de avaliação sejam ativados sempre que as pessoas em risco não executarem as ações de segurança esperadas.

Convém que a função de monitoramento de perigos identifique e liste perigos relevantes, estabeleça indicadores a serem usados para monitorar o status de um perigo, determine os critérios científicos ou baseados em evidências confiáveis para emitir um aviso público, identifique os critérios para emitir uma notificação, um alerta e um sinal verde, e determine os critérios para cada área de risco. Convém que a função de monitoramento de perigos designe aqueles com conhecimento apropriado das operações de monitoramento de perigos, colete dados científicos para avaliação de risco para cada área em risco, prepare decisões sobre a emissão de aviso público para a função de disseminação de avisos, obtenha as informações de risco recomendadas que sejam incluídas no aviso público, e passe as informações para a função de disseminação de avisos imediatamente.

Para cada área em risco, convém que a função de monitoramento de perigos identifique o seguinte: a área em risco para onde o aviso deve ser enviado; as pessoas em risco nessa área; a função responsável pela disseminação de alerta nessa área; o risco para áreas adjacentes que podem ser potencialmente afetadas. Convém que a função de monitoramento de perigos forneça atualizações regulares do status do perigo para a função de disseminação de avisos, para os responsáveis por autorizar aviso público e, quando apropriado, para as pessoas em risco; solicite confirmação de que as atualizações de status foram recebidas e consideradas; informe as pessoas em risco sobre o limite de risco para cada área.