REVISTA DIGITAL ADNORMAS – Edição 122 | Ano 3 | 3 SETEMBRO 2020

Acesse a versão online: https://revistaadnormas.com.br
Edição 122 | Ano 3 | 3 SETEMBRO 2020
ISSN: 2595-3362
Confira os artigos desta edição:

A conformidade do sistema de tubulação para a condução de gases combustíveis

Deve-se conhecer os requisitos gerais para o sistema de tubulação multicamada composto por tubos, conexões e ferramental para condução de gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20°C até 60°C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar).

A NBR 16821-1 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 1: Requisitos gerais especifica os requisitos gerais para o sistema de tubulação multicamada composto por tubos, conexões e ferramental para condução de gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20°C até 60°C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar). A NBR 16821-2 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 2: Requisitos e métodos de ensaio para tubos especifica os requisitos gerais, dimensionais e de desempenho para os tubos multicamada, que tenham ao menos 60% da espessura de parede composta de material polimérico, destinados aos sistemas multicamada para uso com gases combustíveis. Esta parte é aplicável aos sistemas de tubulação multicamada com temperatura de operação entre – 20 °C e 60 °C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar).

A NBR 16821-3 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 3: Requisitos e métodos de ensaio das uniões especifica os requisitos gerais e de desempenho das uniões do sistema de tubulação multicamada destinados ao uso com gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20 °C e 60 °C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar). A NBR 16821-4 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 4: Conexão mecânica de compressão radial por crimpagem estabelece os requisitos específicos para as conexões mecânicas de compressão radial por crimpagem do sistema de tubulação multicamada. A NBR 16821-5 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 5: Conexão mecânica de compressão radial por anel deslizante especifica os requisitos específicos para as conexões mecânicas de compressão radial por anel deslizante do sistema de tubulação multicamada. A NBR 16821-6 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 6: Conexão mecânica de compressão radial por rosca bicônica especifica os requisitos específicos para as conexões de compressão radial por rosca bicônica do sistema de tubulação multicamada. A NBR 16821-8 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 8: Código de prática de manuseio e montagem especifica os requisitos específicos de manuseio e montagem do sistema de tubulação multicamada e respectivas tecnologias de união.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido um sistema de tubulação multicamada?

Quais são as dimensões dos tubos e das camadas dos tubos?

Qual é a resistência à pressão hidrostática de longa duração?

Quais são as propriedades físicas dos tubos?

A série NBR 16821 (todas as partes) é o documento de referência para o sistema de tubulação multicamada, aplicável aos tubos multicamada, conexões, ferramental, uniões, manuseio e instalação, com o propósito de sistema para aplicação em redes de distribuição de gases combustíveis com máxima pressão de operação até 500 kPa (5 bar). Para garantir a conformidade com os requisitos essenciais e de segurança do sistema de tubulação multicamada, a parte 1 da NBR 16821 deve ser aplicada em conjunto com uma ou mais partes da NBR 16821, conforme aplicável.

A temperatura de projeto para o sistema de tubulação multicamada deve ser de –20 °C a 60 °C. A pressão de projeto do sistema de tubulação multicamada deve ser de no mínimo 500 kPa (5 bar). Os tipos de sistemas de tubulação multicamada contemplados nesta parte 1 da NBR 16821 são apresentados na tabela abaixo.

Por questões de segurança, os tubos, as conexões e os ferramentais utilizados para realização da união são específicos para cada sistema, devendo ser seguida a orientação do fabricante. Os requisitos da NBR 16821-3 devem ser atendidos. A montagem de um dos componentes de um sistema de tubulação multicamada, que esteja de acordo com esta norma, com um componente de outro sistema de tubulação multicamada, que também esteja de acordo com esta norma, deve ser considerado como um novo sistema de tubulação multicamada.

A conformidade do sistema de tubulação multicamada com os requisitos das partes aplicáveis da NBR 16821, deve ser verificada por meio de ensaio em laboratórios de competência técnica reconhecida. Recomenda-se que o fabricante possua sistema de controle de qualidade que comprove o cumprimento dos requisitos desta norma ao longo do processo de fabricação.

Recomenda-se que o usuário requeira do fabricante as evidências de conformidade com os requisitos da parte 1 da NBR 16821. A transição entre os sistemas de tubulação multicamada e os sistemas de outros materiais deve ser realizada por meio de conexões roscadas conforme a ABNT NBR NM ISO 7-1. A identificação de um sistema de tubulação multicamada, a elaboração do projeto e execução da instalação e do ensaio de estanqueidade devem atender aos requisitos das normas de instalação (ver NBR 15526 e NBR 15358).

Devem ser disponibilizadas as seguintes informações pelo fabricante: sobre o tubo multicamada: identificação do sistema de tubulação multicamada ao qual o tubo pertence, características e dimensões pertinentes; os requisitos para manuseio, transporte e armazenamento; as condições e restrições para exposição dos tubos contra intempéries e raios ultravioleta (UV); raio de dobra (curvatura) mínimo do tubo. Sobre as conexões: a identificação do sistema de tubulação multicamada ao qual a conexão pertence, características e dimensões pertinentes; os requisitos para manuseio, transporte e armazenamento; as condições e restrições das conexões contra intempéries e raios ultravioleta (U.V); a informação sobre a possibilidade de reuso, reaproveitamento ou remontagem de conexões já acopladas a um tubo multicamada.

Sobre o ferramental deve ser feita a identificação do sistema de tubulação multicamada ao qual o ferramental é aplicado; ferramental a ser utilizado para a montagem do sistema de tubulação multicamada, bem como o procedimento para realizá-la; a indicação sobre caso seja necessária a utilização de ferramental para realizar a dobra (curvatura) do tubo multicamada, em função do dimensional do tubo; os procedimentos de manutenção, calibração, controle ou regulagem; os requisitos para manuseio, armazenamento e transporte. Sobre o sistema de tubulação multicamada, devem estar disponíveis as informações do procedimento de cálculo (fórmulas, ábacos, tabelas, planilhas ou software) para o dimensionamento dos diâmetros; a perda de carga nos tubos retos, tubos curvados e nas conexões; e a instrução que os tubos e as conexões pertençam a um sistema único.

A pressão de projeto do tubo multicamada deve ser de no mínimo 500 kPa (5 bar). A temperatura de projeto para o tubo multicamada deve ser – 20 °C a 60 °C. Para garantir a conformidade com os requisitos essenciais e de segurança do sistema de tubulação multicamada, esta Parte do Texto-Base 009:301.004-001 deve ser aplicada em conjunto com uma ou mais partes do Texto-Base 009:301.004-001, conforme aplicável. A composição das camadas dos tubos deve ser conforme a figura abaixo.

As camadas interna e externa devem ser projetadas para suportar as condições a que forem submetidas e devem ser produzidas a partir de compostos em conformidade com as normas especificadas na Tabela A.1, disponível na norma. No caso de tubos para o sistema de anel deslizante, a camada interna deve ser de PEX, conforme Anexo A. Não são permitidos materiais reprocessados e ou reciclados.

A camada de alumínio deve ser fabricada em conformidade com a norma especificada na Tabela A.2, disponível na norma. As camadas de adesivo não são consideradas como camadas projetadas para suportar esforços.

O conjunto de camadas do tubo deve ser projetado para resistir às condições de pressão e de temperatura de projeto do tubo. O coeficiente de projeto dos tubos multicamada (fator C) deve ser no mínimo igual a 2, quando usado para calcular a pressão de projeto prevista (pCD) de acordo com a máxima temperatura de operação. A cor da camada externa dos tubos multicamada deve ser amarela, preta ou branca. Os tubos nas cores preta ou branca devem possuir listras amarelas conforme seção 5.

No caso dos tubos de cor preta, o composto de negro de fumo (carbon black) utilizado deve ter um tamanho médio de partícula de 10 nm a 25 nm. A cor do tubo não está relacionada à proteção contra a radiação ultravioleta (UV). No caso de pintura para harmonia arquitetônica, o fabricante deve ser consultado quanto ao procedimento a ser adotado.

A segurança das instalações de sistemas de gás natural veicular (GNV)

Deve-se conhecer os requisitos mínimos de segurança para injetores, indicadores, misturadores, dosadores, injeção e controle e linha de baixa pressão. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), por exemplo, sistemas policombustíveis ou como uso combinado com diesel.

A NBR 11353-1 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 1: Terminologia estabelece os termos, definições e abreviaturas utilizados nas instalações veiculares de gás natural veicular (GNV). A NBR 11353-2 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 2: Indicadores, injetores, misturadores, dosadores, injeção e controle estabelece os requisitos mínimos de segurança para injetores, indicadores, misturadores, dosadores, injeção e controle e linha de baixa pressão. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), por exemplo, sistemas policombustíveis ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está localizada no veículo de tração. Não trata de temas relativos à capacitação do instalador ou conversor e dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-3 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 3: Redutores de Pressão estabelece os requisitos mínimos técnicos e de segurança para os redutores de pressão de gás natural veicular (GNV). é aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores, para a utilização deste combustível de forma exclusiva (dedicada), como uso alternativo a outros combustíveis (gasolina e/ou álcool), como sistemas policombustível ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV estiver localizada no veículo de tração. Não aborda os temas relativos à capacitação do instalador ou convertedor, nem relativos aos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-4 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 4: Cilindro, válvulas, sistema de ventilação, linha de alta pressão e conexões estabelece os requisitos mínimos de segurança, os métodos de ensaio e os critérios para aceitação de cilindros, válvulas, sistema de ventilação, linha de alta pressão e conexões. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e em veículos automotores para a utilização deste combustível de forma exclusiva (dedicada), como uso alternativo a outros combustíveis (gasolina e ou álcool), como sistemas policombustíveis ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está localizada no veículo de tração. Não trata de temas relativos à capacitação do instalador ou convertedor, nem dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-5 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 5: Suportes em geral estabelece os requisitos mínimos de segurança para os suportes na instalação de sistemas de gás natural veicular (GNV). É aplicável à instalação de sistemas de gás natural veicular em veículos rodoviários e veículos automotores para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), como sistemas policombustíveis ou como uso combinado com diesel. No caso da aplicação de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está localizada no veículo de tração. Não trata de temas relativos à capacitação e registro do instalador e dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-6 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 6: Instalação estabelece os requisitos mínimos para executar a instalação de sistemas de gás natural veicular, para uso exclusivo do GNV comercial, visando a segurança do veículo adaptado, a qualidade do serviço de instalação e o bem-estar do usuário. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores, para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), como sistema policombustível ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está no veículo de tração. Não trata de temas relativos à capacitação do instalador ou convertedor, nem dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser constituído o injetor?

Como devem ser constituídas as conexões de baixa pressão?

Quais os métodos de ensaios e aceitação dos redutores de pressão?

Quais os requisitos da válvula de abastecimento e da válvula de fechamento rápido?

Quais são as configurações de montagem dos cilindros?

Como deve ser executada a instalação dos componentes do sistema de GNV?

Para as amostragens, se nenhum outro requisito específico for definido, deve ser aplicada a NBR 5426:1985, Tabelas A.1 e A.2, com os seguintes critérios: disponíveis na Tabela 1: os níveis especiais (ensaios destrutivos), aplicar a coluna S2; os níveis gerais (ensaios não destrutivos), aplicar a coluna 2; na Tabela 2: NQA = 0,01 (zero defeito). O indicador de pressão e o indicador de quantidade de GNV devem ser especificados de acordo com os requisitos de segurança e resistência ao funcionamento.

Para o indicador de pressão e o indicador de quantidade de GNV providos de dispositivo elétrico de leitura indireta, os componentes elétricos devem ser compatíveis para utilização automotiva em relação à resistência mecânica, ao isolamento, à capacidade de condução elétrica e ao risco de incêndio e/ou acidentes. O indicador de pressão do tipo por elemento sensor Bourdon deve possuir um dispositivo de alívio de pressão blow-out. Quaisquer alterações no indicador de pressão só podem ser implementadas após a aprovação pelo fabricante.

O fabricante deve apresentar o memorial descritivo com as instruções de aplicação, operação e montagem. O indicador de pressão deve ser capaz de operar pelo menos 1,5 vez a pressão de serviço. O indicador de pressão deve atender aos ensaios estabelecidos na parte 2 da NBR 11353 (ver Anexo A). Devem der exibidas as seguintes marcações no produto e/ou na embalagem: nome ou marca do fabricante; código do modelo; pressão máxima de serviço e limites de temperatura de serviço; indicação que o uso é para GNV; especificações elétricas de tensão e potência (quando aplicáveis); identificação da conformidade (quando aplicável); número de série ou de lote de fabricação; referência à parte 2 da NBR 11353.

Os componentes indicados na Tabela B.1 (na norma) que operem em baixas pressões de serviço (PS) devem conduzir o GNV sem comprometimento de suas resistências. Devem der exibidas as seguintes marcações no produto e/ou na embalagem: identificação do modelo (código do fabricante); pressão de serviço (PS); temperatura de operação; sentido do fluxo; tipo de combustível; tensão de operação; aplicações (motor e veículo); materiais empregados nos componentes. Os componentes devem ser classificados conforme a tabela abaixo.

O fabricante deve apresentar o memorial descritivo com as instruções de aplicação, operação e montagem. O componente deve ser capaz de operar pelo menos 1,5 vez a pressão de serviço. Devem ser exibidas as seguintes marcações no produto e/ou na embalagem: nome ou marca do fabricante; código do modelo; pressão máxima de serviço e limites de temperatura de serviço; indicação que o uso é para GNV; especificações elétricas de tensão e potência (quando aplicáveis); sentido do fluxo quando este for requerido na instalação; identificação da conformidade (quando aplicável); número de série ou de lote de fabricação; referência à parte 2 da NBR 11353.

A linha de baixa de pressão deve ser especificada quanto aos requisitos de segurança e resistência. A linha de baixa pressão deve ser compatível para utilização automotiva em relação à resistência mecânica e compatibilidade com o GNV. O fabricante deve apresentar o memorial descritivo com as instruções de aplicação, operação e montagem. A linha de baixa pressão deve atender aos ensaios estabelecidos na parte 2 da NBR 11353 (ver Anexo C).

Devem ser exibidas as seguintes marcações no produto e/ou na embalagem: nome ou marca do fabricante; código do modelo; pressão máxima de serviço e limites de temperatura de serviço; indicação que o uso é para GNV; especificações elétricas (quando aplicáveis); identificação da conformidade (quando aplicável); número de lote de fabricação; referência a esta parte 2 NBR 11353.

O redutor de pressão deve ser projetado para pressão máxima de serviço de 22,0 Mpa e para operar no intervalo de temperaturas entre – 40 °C ou – 20 °C a 120 °C. Quando o redutor de pressão possuir válvula de corte na entrada de alta pressão, não é necessária a utilização de dispositivo de alívio de pressão. Quando o redutor de pressão possuir válvula de corte entre os estágios, deve possuir dispositivo de alívio de pressão com canal de descarga direcionado para a atmosfera.

Todos os redutores de pressão devem ser providos de sistemas que impeçam o bloqueio do fluxo de gás por congelamento. O redutor deve possuir dreno para remoção de óleos e condensados. Pode-se ressaltar que o cilindro deve atender aos requisitos da NBR NM ISO 11439. A pressão máxima de serviço deve ser de 20,0 Mpa, com gás à temperatura uniforme de 21 ºC.

Em cilindros cuja rosca utilizada seja cônica, a rosca do pescoço deve ser 3/4” – 14 NGT conforme a ANSI/CSA/CGA V-1 (FED-STD-H28/9A), ou 25E, conforme a ISO 11363-1. Em cilindros cuja rosca utilizada seja paralela, a rosca do pescoço deve ser 30P (M30 x 2), conforme a ISO 15245-1, 2-12 UN ou 1 1/8 – 12 UNF, conforme a ANSI/ASME B1.1 e 4.3.14. É facultativa a utilização de cilindro com dois pescoços, desde que atendidos os requisitos. Em hipótese alguma o cilindro pode ter suas características físicas, dimensionais, estruturais ou de tratamento térmico alteradas após a manufatura do produto.

O cilindro não pode ser utilizado como elemento estrutural do veículo ou de suas partes. O cilindro deve atender à NBR 12176 quanto ao padrão de pintura estabelecido para a utilização do GNV. As marcações aplicadas no cilindro, referentes à fabricação e/ou requalificação periódica, e outros requisitos aplicáveis devem atender à NBR NM ISO 11439 para a pressão máxima de serviço, incluindo o tipo de rosca referente ao acoplamento com a válvula ou outros componentes, quando se tratar de cilindro com dois pescoços.

O cilindro deve possuir pescoço com altura paralela mínima de 10 mm para a fixação do sistema de ventilação incorporado ou não à válvula, visando à segurança na exaustão de eventuais vazamentos entre o cilindro e a válvula. A válvula de cilindro deve ser especificada quanto aos requisitos de segurança e resistência ao funcionamento. A rosca de entrada da válvula, se do tipo cônica, deve ser 3/4” – 14 NGT, conforme a ANSI/CSA/CGA V-1 (FED-STD-H28/9A), ou 25E, conforme a ISO 11363-1. A rosca de entrada da válvula, se do tipo paralela, deve ser 30P (M30 x 2), conforme a ISO 15245-1, 2-12 UM ou 1 1/8 – 12 UNF, conforme a ANSI/ASME B1.1 e 4.3.14. Não é permitido adaptador algum entre a válvula e o cilindro.

Nos casos de rosca paralela 30P (M30 x 2), 2-12 UN ou 1 1/8–12 UNF, convém que a válvula seja fornecida com o anel de vedação (o’ring) acoplado a ela. As especificações das conexões (acessórios) são dadas em 4.6 e devem atender aos requisitos ali estabelecidos. O suporte deve ser compatível com os veículos, ou família de veículos, para os quais foi projetado desde que de mesma plataforma. Seus pontos de fixação devem ser dimensionados de acordo com os locais apropriados da estrutura do veículo.

Nos cilindros com fixação por cintas, o suporte deve garantir a fixação do cilindro em pelo menos duas seções de apoio. Os elementos do conjunto do suporte (abraçadeiras, cintas, batentes ou cintas limitadoras, elementos de proteção e elementos de fixação) devem garantir a rigidez da montagem, de forma a impedir o deslocamento do cilindro. O suporte deve ser fabricado de forma a não proporcionar locais de concentração de tensões, desgaste ou corrosão no cilindro, e este não pode ser considerado seu elemento estrutural.

O suporte deve ser compatível com os veículos, ou família de veículos, para os quais foi projetado. Seus pontos de fixação devem ser dimensionados de acordo com os locais apropriados da estrutura do veículo. Todas as soldas do suporte devem ser realizadas por meio de cordões contínuos. Toda estrutura metálica do suporte deve ser isolada do cilindro por meio de elementos de borracha ou material equivalente.

Nos cilindros com fixação tipo boss, pelo pescoço, o suporte deve garantir que a fixação sempre seja realizada pelos pontos de fixação no pescoço frontal e traseiro do cilindro, utilizando blocos de montagem aprovados pelo fabricante do cilindro. Um dos pontos de fixação do cilindro deve ser móvel, de maneira a compensar variações de movimento do cilindro durante condições normais de operação. O ponto de apoio fixo, rígido, deve ser capaz de prevenir a rotação do cilindro durante condições normais de operação.

O suporte deve ser capaz de prevenir qualquer contato entre os cilindros e seus acessórios, ou entre o cilindro e a estrutura do conjunto do suporte ou qualquer parte do veículo. Todas as soldas do suporte devem ser realizadas por meio de cordões contínuos. O suporte deve ser fabricado de forma a não proporcionar locais de concentração de tensões, desgaste ou corrosão no cilindro, e este não pode ser considerado seu elemento estrutural.

Toda a estrutura metálica do suporte deve ser confeccionada com material tratado com proteção superficial contra corrosão. Os elementos de proteção de borracha ou material equivalente devem ser instalados entre o berço e o cilindro de GNV, entre as cintas e o cilindro de GNV e, quando existente, entre os batentes limitadores e o cilindro de GNV. Os materiais elastômeros devem ser resistentes à ação do ozônio, fluidos do veículo e produtos de limpeza. Estes materiais devem ser capazes de manter suas características mecânicas durante todo o tempo de vida útil do suporte.

Para a estrutura metálica, qualquer material pode ser utilizado desde que tenha sido verificado por meio de cálculo estrutural ou ensaios de deformação, que este resiste à aplicação das cargas padrão, conforme estabelecido em A.2. Caso o suporte não possua cálculo estrutural, toda a estrutura metálica deve ser confeccionada em material ASTM A36, ou equivalente. O veículo a ser adaptado para o uso de GNV deve estar em perfeito estado de conservação e operação, tanto no conjunto motopropulsor, como também em sua estrutura. A estrutura do veículo a ser adaptado para o uso de GNV deve permitir a instalação segura dos suportes necessários à fixação dos componentes de GNV.

Os elementos da suspensão devem estar em condições de operação regular, conforme as especificações e recomendações do fabricante do veículo. Os cuidados com o motor do veículo automotor devem ser tomados, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: funcionamento do conjunto motor, considerando as partes fixas e móveis e todos os elementos de vedação e complementos do conjunto; aspecto do bloco do motor, cabeçote, cárter e tampa do cabeçote, quanto à existência de trincas e vazamentos de óleo lubrificante e/ou líquido de arrefecimento; aspecto da ponteira do escapamento quanto à formação de borra de óleo queimado ou lavagem por vapor d’água, sintomas clássicos de desgaste ou defeito grave de funcionamento do motor; catalisador e abafadores do sistema de escapamento, quanto a entupimentos e/ou vazamentos de gases de combustão; pressão de compressão dos cilindros, certificando-se de que haja equilíbrio entre eles e conforme as especificações do fabricante.

A maior diferença de pressão entre os cilindros não pode ser superior a 10% da pressão dinâmica efetiva, devendo ser consultado o manual do instrumento de medição utilizado. As condições do óleo lubrificante, filtro de óleo lubrificante e funcionamento geral do sistema de lubrificação devem estar em conformidade e o funcionamento do conjunto motor que, em temperatura normal de funcionamento, não pode apresentar fumaça visível, exceto vapor d’água. Deve-se ter cuidados com o sistema de arrefecimento, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: as condições do radiador, reservatório de expansão (se aplicável), ventilador, sensores de temperatura, válvulas termostáticas, mangueiras e nível do líquido de arrefecimento e aditivos recomendados (se aplicável); funcionamento geral do sistema e ocorrência de eventuais vazamentos e/ou superaquecimento.

Cuidados com os sistemas de partida e de carga do motor do veículo automotor devem ser tomados, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: tensão nominal, tensão de partida e estado de conservação da bateria; condições de funcionamento do alternador (carga); condições de conservação e isolamento dos cabos e terminais elétricos; condições de conservação, fixação e isolamento da bateria. Devem ser tomados cuidados com o sistema de alimentação de combustível do motor do veículo automotor, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: condições do filtro de ar e seu elemento; filtro de combustível; ocorrências de entradas falsas de ar pelas juntas e acoplamentos dos sistemas de filtragem e coleta de ar, verificando os elementos de vedação e ocorrência de empenamento das superfícies dos acoplamentos secos; as condições de conservação das mangueiras de combustível e de seus acoplamentos; o carburador ou corpo de borboleta, quanto à fixação e vedação em relação ao coletor de admissão; a ocorrência de eventuais vazamentos de combustível, antes e após instalação do sistema de GNV.

Devem ser tomados cuidados com o sistema de gerenciamento eletrônico de combustível do motor e de demais sistemas do veículo automotor, antes e após a instalação do sistema de GNV, devendo ser verificado o estado de conservação e funcionamento dos sensores, quanto aos itens a seguir, quando aplicáveis: posição da borboleta – TPS; temperatura do ar admitido – ACT; temperatura do motor – ECT; rotação do motor – HALL; rotação do motor – ESS; válvula de controle da marcha lenta; válvula de purga do canister; sensor de oxigênio; bobinas ou transformadores de ignição; velas e cabos de velas; sensor de velocidade; módulo de ignição; válvulas (bicos) injetoras; sensor de detonação – KS; sensor da massa de ar admitido – MAF; sensor da pressão do ar admitido – MAP; codificador de octanas; conjunto de circulação de gases – EGR; sensor de fase.

Deve-se realizar a verificação das condições de funcionamento do sistema de injeção eletrônica e sistemas de controle de emissões de gases poluentes (catalisador) e verificar o funcionamento de todos os dispositivos de sensoriamento das condições do sistema de alimentação e gerenciamento da mistura de combustível líquido e ar, utilizando o programa correspondente à marca e modelo do veículo automotor em processo de instalação do sistema de GNV. Verificar, pelo tempo de injeção, se o combustível reconhecido pelo modulo é o mesmo que está no tanque.

Verificar o estado geral do sistema de exaustão, compreendendo coletor, escapamento, silencioso, catalisador, entre outros componentes aplicáveis, quanto ao seu estado de conservação e possíveis adulterações. Verificar no painel de instrumentos do veículo se a lâmpada da luz indicadora de mau funcionamento (LIM) permanece acesa após a partida do motor. Caso permaneça acesa, verificar a existência de possível avaria no sistema de injeção eletrônica, ocorrida antes ou após a instalação do sistema.

Verificar, pelo ensaio de emissões de gases de combustão, se os índices de referência legais aplicáveis são atendidos. Quaisquer anormalidades e/ou desvios observados nas verificações descritas em 4.2 e 4.3 devem ser corrigidas conforme as instruções prescritas no manual de manutenção do fabricante do veículo automotor e/ou nos manuais técnicos dedicados à marca e ao modelo do veículo em processo de instalação. As correções necessárias são de responsabilidade do proprietário do veículo automotor.

Os componentes do sistema de GNV devem ser fixados dentro do perímetro do veículo, com exceção do compartimento de passageiros ou cabine e para-choques, nas regiões de atuação e nos componentes móveis ou de deformação. Este requisito não é aplicável aos componentes eletrônicos específicos. Os componentes do sistema de GNV devem ser fixados ao chassi ou à carroçaria do veículo, de forma que ofereçam rigidez de fixação e segurança aos usuários do veículo e à sua da carga.

IEC TR 63164-2: a confiabilidade de dispositivos e sistemas de automação industrial

Esse relatório técnico (Technical Report – TR), editado em 2020 pela International Electrotechnical Commission (IEC), fornece a orientação sobre o cálculo de dados de confiabilidade de sistemas de automação que podem ser simplificados como estrutura em série, paralela ou mista com base em dados de confiabilidade de dispositivos únicos e / ou subsistemas, e na forma de apresentar os dados.

A IEC TR 63164-2: 2020 – Reliability of industrial automation devices and systems – Part 2: System reliability fornece a orientação sobre o cálculo de dados de confiabilidade de sistemas de automação que podem ser simplificados como estrutura em série, paralela ou mista com base em dados de confiabilidade de dispositivos únicos e / ou subsistemas, e na forma de apresentar os dados. Esse procedimento é direcionado apenas à confiabilidade dos sistemas de automação, mas não aos sistemas que incorporam sistemas de automação, por exemplo, planta de processo.

A confiabilidade está incluída na segurança do equipamento e este documento se concentra principalmente nas falhas de hardware aleatórias que afetam a confiabilidade. Confiabilidade é usada como um termo coletivo para as características de qualidade relacionadas ao tempo de um item e inclui, adicionalmente, disponibilidade, recuperabilidade, capacidade de manutenção, desempenho de suporte de manutenção e, em alguns casos, outras características como durabilidade, proteção e segurança, que não são no âmbito deste relatório técnico.

Conteúdo da norma

PREFÁCIO………………….. 3

INTRODUÇÃO……………… 5

1 Escopo …………………… 6

2 Referências normativas…… 6

3 Termos, definições e termos abreviados ……6

3.1 Termos e definições……………………. 6

3.2 Termos abreviados…………………….. 9

4 Confiabilidade do sistema………… 9

5 Cálculo da confiabilidade do sistema…………………… 9

5.1 Geral…………….. 9

5.2 Forma para apresentar dados de confiabilidade……….. 10

5.3 Estruturas e cálculos…………………………… 10

5.3.1 Fórmulas básicas…………………………. 10

5.3.2 Estruturas em série……………………… 11

5.3.3 Estruturas paralelas…………………….. 12

5.3.4 Estruturas mistas………………………….. 13

5.3.5 Resumo…………………………….. ……. 14

Anexo A (informativo) Exemplos de sistemas de automação típicos…………………….15

A.1 Geral……………. …………….. 15

A.2 Exemplo para estrutura em série do sistema de automação de processo…………………… 15

A.3 Exemplo para estrutura mista de subsistema de automação de processo…………………… 16

Anexo B (informativo) Métodos para melhorar a confiabilidade do sistema……………….. … 18

B.1 Geral …………. …………….. 18

B.2 Métodos para reduzir a falha sistemática…………………. 18

B.2.1 Geral…………………………. ……… 18

B.2.2 Medidas para evitar falha sistemática…………… 18

B.2.3 Medidas para controlar a falha sistemática………. 18

B.3 Método de redução de falha aleatória de hardware……. 19

B.3.1 Projeto tolerante a falhas………………………………. 19

B.3.2 Projeto de prevenção de erros…………………….. 19

B.3.3 Projeto de desclassificação do sistema…………………. 19

Bibliografia…………….. ………………….. 21

Figura 1 – Diagrama de blocos de confiabilidade em série…………………………. 11

Figura 2 – Diagrama de blocos de confiabilidade paralela……………………… 12

Figura 3 – Diagrama de blocos de confiabilidade em série paralela geral (redundância)…………………. 13

Figura 4 – Reduzir a estrutura mista………………….. 13

Figura A.1 – Um sistema de automação de processo típico (fundição de alumínio) ……………….. 15

Figura A.2 – Diagrama de blocos para sistema de automação de fundição de alumínio……………………… 16

Figura A.3 – Processo de sedimentação e lavagem para sistema de automação da fundição de alumínio ………. 16

Figura A.4 – Diagrama de blocos para o processo de assentamento e lavagem………………………. ………. 17

No contexto da manufatura inteligente, novos modos de produção, como customização em massa com base em fábricas interconectadas, requerem interconexão em tempo real, comutação frequente e integração em diferentes níveis. Portanto, a confiabilidade é um requisito importante para os sistemas de automação nas fábricas. Dados de confiabilidade de sistemas de automação são a base para o planejamento de manutenção, por exemplo manutenção de estoque de peças de reposição de uma linha de produção.

Um sistema de automação geralmente consiste em vários dispositivos ou máquinas diferentes que são usados em série, em paralelo ou mistos. Este relatório técnico fornece orientação para o integrador de sistema sobre como avaliar a confiabilidade de tais sistemas inteiros. Este relatório é a segunda parte da série. Esta parte se concentra no cálculo das taxas de falha ou valores de confiabilidade para sistemas com base em taxas de falha ou valores de confiabilidade de dispositivos individuais, dependendo da estrutura do sistema.

Isso é necessário para que os integradores de sistema ou projetistas possam calcular a confiabilidade de um sistema inteiro a partir dos valores de confiabilidade de dispositivos individuais (consulte IEC TS 63164-1). As partes da série IEC 63164 são: Parte 1: Garantia de dados de confiabilidade de dispositivos de automação e especificação de sua fonte; Parte 2: Confiabilidade do sistema. As partes futuras poderão incluir os seguintes assuntos: coleta de dados de confiabilidade para dispositivos de automação em campo; e um guia do usuário.

A segurança das serras dimensionais estacionárias e deslocáveis

Saiba mais sobre as medida de segurança para serras dimensionais estacionárias e deslocáveis, a partir de agora denominadas “máquinas”, projetadas para cortar madeira e material com características físicas semelhantes às da madeira. Para a definição de máquinas estacionárias e deslocáveis, ver NBR ISO 19085-1:2018, 3.4 e 3.5.

A NBR ISO 19085-5 de 07/2020 – Máquinas para trabalhar madeira — Segurança – Parte 5: Serra dimensional fornece os requisitos e as medida de segurança para serras dimensionais estacionárias e deslocáveis, a partir de agora denominadas “máquinas”, projetadas para cortar madeira e material com características físicas semelhantes às da madeira. Para a definição de máquinas estacionárias e deslocáveis, ver NBR ISO 19085-1:2018, 3.4 e 3.5. Este documento trata de todos os perigos, situações perigosas e eventos listados na Seção 4, que são relevantes para as máquinas, quando operadas, ajustadas ou em manutenção, e nas condições previstas pelo fabricante, incluindo a utilização indevida razoavelmente previsível. Também são levados em consideração o transporte, montagem, desmontagem, desativação e fase de descarte.

Para os perigos relevantes, mas não significativos, por exemplo, cantos vivos na estrutura da máquina, ver NBR ISO 12100. Este documento também se aplica às máquinas equipadas com um ou mais dos seguintes dispositivos/unidades de trabalho adicionais, cujos riscos foram tratados: dispositivo para que a lâmina de serra principal e a lâmina de serra riscadora sejam levantadas e abaixadas; dispositivo para inclinar a lâmina de serra principal e a lâmina de serra riscadora para corte em ângulo; dispositivo para riscar; dispositivo para rebaixo com fresa, com espessura não superior a 20 mm; unidade de avanço desmontável; mesa deslizante motorizada; fixação da peça a ser trabalhada. As serras dimensionais são utilizadas para serrar, cortar transversalmente, dimensionar e rebaixar. Este documento não é aplicável às máquinas destinadas ao uso em atmosferas potencialmente explosivas ou às máquinas fabricadas antes da data de sua publicação.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os perigos relativos a essas máquinas?

Qual deve ser a dimensão do flange para lâmina de serra circular?

Qual deve ser a proteção de acesso à lâmina de serra acima da mesa da máquina?

Quais os requisitos adicionais para proteções da lâmina de serra montada na faca divisora?

A série NBR ISO 19085 fornece requisitos técnicos de segurança para o projeto e construção de máquinas para trabalhar madeira. Como um todo, refere-se aos projetistas, fabricantes, fornecedores e importadores de máquinas descritos no escopo. Ela também inclui uma lista de itens informativos que precisarão ser fornecidos pelo fabricante ao usuário. Este documento é uma norma do tipo C conforme estabelecido na NBR ISO 12100.

As máquinas em questão e a extensão em que os perigos, situações perigosas ou eventos perigosos são abrangidos estão indicadas no escopo desta parte da NBR ISO 19085. Quando os requisitos desta norma tipo C forem diferentes aos declarados em normas tipo A ou B, os requisitos desta Norma tipo C têm prioridade sobre os requisitos das outras normas de máquinas que foram projetadas e construídas de acordo com os requisitos desta norma tipo C.

O conjunto completo dos requisitos para um tipo específico de máquina para trabalhar madeira é aquele fornecido na parte da ABNT NBR ISO 19085 aplicável a cada tipo, juntamente com os requisitos relevantes da NBR ISO 19085-1:2018, na medida especificada no escopo da parte aplicável da NBR ISO 19085. Na medida do possível, nas outras partes da NBR ISO 19085, além da NBR ISO 19085-1:2018, os requisitos de segurança são tratados por meio de referência às seções relevantes da NBR ISO 19085-1:2018, para evitar repetição e reduzir os seus comprimentos. As outras partes contêm substituições e adições aos requisitos providos na NBR ISO 19085-1:2018.

Uma serra dimensional é uma máquina alimentada manualmente, equipada com uma única lâmina de serra circular principal, que é fixada na posição durante a operação de corte, e com uma mesa deslizante adjacente à lâmina de serra. Um exemplo e a terminologia são apresentados na figura abaixo. A lâmina de serra principal é montada em um eixo abaixo da mesa. É possível operar a máquina de duas posições de trabalho e a máquina pode ter qualquer dos dispositivos/unidades de trabalho adicionais listados no escopo.

Para a segurança, como exceção, a chave geral pode estar localizada a uma altura (H) ≥ 550 mm acima do nível do piso. Não se aplica requisito algum de altura para o plugue fixo na máquina quando a desconexão da fonte é feita por uma combinação de plugue/tomada. Um controle de parada para a (s) lâmina (s) de serra deve ser situado adjacentemente em cada dispositivo de controle de partida para a (s) lâmina (s) de serra.

Os dispositivos de controle adicionais para a partida da (s) lâmina (s) de serra, juntamente com um controle de parada, podem ser providos na parte traseira da mesa deslizante. O motor de acionamento da lâmina de serra riscadora ou o motor de acionamento da lâmina de serra para pré-corte de borda perfilada não pode ser capaz de ser ligado antes do motor de acionamento da lâmina de serra principal.

As safety-related parts of control systems (SRP/CS) para o intertravamento do motor do riscador e da serra para pré-corte de borda perfilada com o motor da serra principal devem atingir PLr = c. As máquinas equipadas com uma unidade de serra para pré-corte de borda perfilada devem ser equipadas com uma chave seletora de modo. A chave seletora de modo deve selecionar entre riscador com pré-corte de borda perfilada e riscador sem pré-corte de borda perfilada.

Se o modo riscador com pré-corte de borda perfilada for selecionado, o início do ciclo para pré-corte de borda perfilada (que consiste no levantamento e movimento imediato para baixo da lâmina de serra para pré-corte de borda perfilada) somente deve ser possível quando um dispositivo de controle de iniciação for acionado para o início do ciclo de pré-corte da borda (ver 5.2 para localização). O controle de iniciação deve ser tal que cada acionamento do dispositivo apropriado permita que apenas um único ciclo de pré-corte de borda perfilada seja executado dentro de no máximo 30 s de atuação, controlado por um dispositivo de retardo, e um sinal de alerta (por exemplo, uma luz amarela) deve ser dado (ver também 8.1).

As SRP/CS para a partida do controle de pré-corte da borda perfilada e para seleção do módulo devem atingir PLr = c. A verificação deve ser feita pela checagem dos desenhos e/ou diagramas de circuito relevantes, inspeção da máquina e ensaios funcionais relevantes da máquina. Os movimentos motorizados para ajustar as lâminas de serra e/ou batentes, por exemplo, batente paralelo e/ou batente transversal, só devem ser possíveis após o acionamento de um dispositivo de controle de inicialização ou de um dispositivo de acionamento de pulso (hold-to-run).

As SRP/CS para controle de iniciação devem atingir PLr = c. Dentro de uma área de colisão, onde a posição do batente paralelo é tão próxima da lâmina de serra que o contato entre o batente paralelo e a lâmina de serra é possível, o movimento da lâmina de serra em direção ao batente paralelo e do batente paralelo em direção à lâmina de serra somente é possível pelo dispositivo de acionamento de pulso (hold-to-run), onde a velocidade máxima de ajuste deve ser de 15 mm/s para linear e de 5°/s para movimentos de rotação (ver também 5.11).

As SRP/CS para detecção da posição do batente paralelo dentro da área de colisão devem atingir PLr = c. Quando os movimentos motorizados forem ativados pelo dispositivo de acionamento de pulso (hold-torun), não mais de um movimento motorizado pode ocorrer simultaneamente. Para máquinas que tenham a opção de inclinar a lâmina de serra em direção a um lado ou tenham a opção para rebaixo com fresas, uma proteção auxiliar deve ser provida ou a proteção da lâmina de serra deve ser provida com uma peça extensora.

Para máquinas que tenham a opção para inclinar a lâmina de serra para ambos os lados, a proteção da lâmina de serra deve ser provida com duas peças extensoras ou uma extensão em conjunto com a opção para reposicionamento da proteção da lâmina de serra. A proteção da lâmina de serra auxiliar ou as peças extensoras devem poder ser trocadas sem o auxílio de ferramentas e devem ser grandes o suficiente para não entrar em contato com a lâmina de serra ou fresa em qualquer posição possível.

O suporte da proteção da lâmina de serra deve ser projetado para que ele não possa ser desmontado da máquina sem o auxílio de uma ferramenta. Se o suporte da proteção da lâmina de serra permitir que ela seja deslocada da sua posição acima da lâmina de serra, então esse movimento deve: ser capaz de ser realizado sem o auxílio de ferramentas, e ser limitado por um batente de posição de tal forma que, quando a proteção da lâmina de serra for movimentada de volta para a posição acima da lâmina de serra, nenhuma regulagem adicional seja necessária.

Quando a máquina for equipada com uma lâmina de serra para pré-corte de borda perfilada, a proteção da lâmina de serra deve ser intertravada, de forma que o pré-corte de borda perfilada não seja possível, a menos que a proteção da lâmina de serra esteja na mesma altura ou mais baixa do que a elevação máxima para pré-corte de borda perfilada para a qual a máquina é projetada. Ao parar, a lâmina de serra de corte de borda perfilada deve movimentar-se para a sua posição mais baixa abaixo da mesa. Como exceção, a largura da abertura pode exceder a dimensão acima até um máximo de 25 mm, quando a máquina estiver equipada com uma ferramenta de fresagem para usinagem de canais. Neste caso, um inserto adicional na mesa para rebaixo com fresa deve ser fornecido. Os insertos da mesa não podem ser capazes de serem removidos sem o auxílio de ferramentas.

As especificações para a fabricação dos cabos ópticos internos

Deve-se entender os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

A NBR 14771 de 07/2020 – Cabo óptico interno — Especificação especifica os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o código de cores das unidades básicas, dos elementos ópticos e dos cordões ópticos?

Quais são as cores das fibras ópticas?

Como deve ser executado o revestimento externo?

Quais devem ser os requisitos ópticos desses cabos?

O cabo óptico interno é um conjunto constituído por unidades básicas de cordões ópticos, elementos ópticos ou fibras ópticas, elemento de tração dielétrico, eventuais enchimentos e núcleo seco, protegidos por uma capa externa de material termoplástico retardante à chama. prontos satisfaçam os requisitos especificados nesta norma. Os cabos ópticos internos são designados pelo seguinte código: CFOI – X – Y – Z – W, onde CFOI é o cabo óptico interno; X é o tipo de fibra óptica, conforme a tabela abaixo; Y é a formação do núcleo, conforme a tabela abaixo; Z é o número de fibras ópticas, conforme a tabela abaixo; W é o grau de proteção do cabo quanto ao comportamento frente à chama, conforme a tabela abaixo e ao comportamento frente à chama.

Os materiais constituintes dos cabos ópticos internos devem ser dielétricos. Os materiais utilizados na fabricação do cabo devem ser compatíveis entre si. Os materiais utilizados na fabricação dos cabos com função estrutural devem ter suas características contínuas ao longo de todo o comprimento do cabo.

As fibras ópticas tipo multimodo índice gradual, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13487. As fibras ópticas tipo monomodo com dispersão normal, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13488. As fibras ópticas tipo monomodo com dispersão deslocada e não nula, utilizadas na fabricação dos cabos, devem estar conforme a NBR 14604.

As fibras ópticas tipo monomodo com baixa sensibilidade à curvatura, utilizadas na fabricação dos cabos, devem estar conforme a NBR 16028. Não são permitidas emendas nas fibras ópticas durante o processo de fabricação do cabo. O núcleo deve ser constituído por unidades básicas de fibras ópticas, cordões ópticos ou elementos ópticos. Os cabos ópticos internos devem ser fabricados com unidades básicas de 2, 4, 6, 8, 12, 16, 24, 36 ou 48 fibras ópticas. O núcleo deve ser constituído por unidades básicas.

As unidades básicas devem ser dispostas em elementos de proteção adequados, de modo a atender aos requisitos especificados nesta norma. Os elementos de proteção podem ser constituídos por tubos de material polimérico encordoados em uma ou mais coroas ou de forma longitudinal. Os elementos de proteção encordoados devem ser reunidos com passo e sentido escolhidos pelo fabricante, de modo a satisfazer as características previstas nesta norma.

No caso de cabos ópticos constituídos por elementos de proteção encordoados dispostos em mais de uma coroa, opcionalmente estas coroas podem ser separadas por fitas, a fim de facilitar a sua identificação. É recomendado que os cabos ópticos compostos por elementos de proteção de até 12 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter duas ou seis fibras ópticas. Para os cabos ópticos de 18 a 36 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha seis ou 12 fibras ópticas.

Para os cabos ópticos de 48 a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 12 ou 24 fibras ópticas. Para os cabos ópticos superiores a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 24, 36 ou 48 fibras ópticas. Para o núcleo constituído por fibras ópticas dispostas em tubo único (central loose tube), a construção deve conter um único tubo central de material polimérico contendo uma ou mais unidades básicas.

Os cabos ópticos de até 48 fibras ópticas devem ser constituídos por fibras ópticas reunidas. Os cabos ópticos acima de 48 até 72 fibras ópticas devem ser constituídos por unidades básicas. Para o núcleo constituído por unidades básicas de cordões ópticos monofibra, o cordão óptico deve ser conforme a NBR 14106. A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada das unidades básicas, dos elementos ópticos e dos cordões ópticos.

Os cabos de até 12 fibras ópticas devem ser constituídos por cordões ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis cordões ópticos. Para cabos ópticos de 48 a 72 fibras, é recomendado que cada unidade básica contenha 12 cordões ópticos. O cordão óptico deve ser conforme a NBR 14106.

A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada conforme essa norma e os cabos de até 12 fibras ópticas devem ser constituídos por um ou mais cordões ópticos. Para cabos de 18 a 288 fibras ópticas, é recomendado que cada unidade básica contenha seis ou 12 cordões ópticos.

Para o núcleo constituído por unidades básicas de elementos ópticos, a unidade básica de elementos ópticos deve ser constituída por até 12 elementos agrupados e deve ser identificada conforme essa norma. Os cabos de até 12 fibras ópticas devem ser constituídos por elementos ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis elementos ópticos.

Para cabos ópticos de 48 a 144 fibras, é recomendado que cada unidade básica contenha 12 elementos ópticos. Podem ser colocados enchimentos de material polimérico compatível com os demais materiais do cabo, a fim de formar o núcleo cilíndrico. No núcleo do cabo pode haver uma identificação legível e indelével, contendo impressos o nome do fabricante e o ano de fabricação, em intervalos não superiores a 50 cm, ao longo do eixo do cabo.

Sobre o revestimento externo devem ser gravados o nome do fabricante, a designação do cabo, o número do lote e o ano de fabricação, de forma legível e indelével, em intervalos de 1 m ao longo do eixo do cabo. A pedido do comprador, podem ser impressas informações adicionais. A marcação métrica sequencial deve ser feita em intervalos de 1 m ao longo do revestimento externo do cabo óptico interno. A marcação deve ser feita com algarismos de altura, forma, espaçamento e método de gravação ou impressão tais que se obtenha legibilidade perfeita e permanente. Não são permitidas marcações ilegíveis adjacentes.

Na medida da marcação do comprimento ao longo do eixo do cabo, é tolerada uma variação para menos de até 0,5%, não havendo restrição de tolerância para mais. A marcação inicial deve ser feita em contraste com a cor da capa do cabo, sendo preferencialmente azul ou preta para cabos de cores claras, e branca para cabos de cores escuras ou em relevo. Se a marcação não satisfizer os requisitos anteriores, é permitida a remarcação na cor amarela.

A remarcação deve ser feita de forma a não se sobrepor à marcação inicial defeituosa. Cada lance de cabo deve ser fornecido acondicionado em um carretel de madeira com diâmetro mínimo do tambor de 22 vezes o diâmetro externo do cabo. A largura total do carretel não pode exceder 1,5 m e a altura total não pode ser superior a 2,1 m.

Os carretéis devem conter um número de voltas tal que entre a camada superior e as bordas dos discos laterais exista um espaço livre mínimo de 6 cm. Os carretéis utilizados devem estar conforme a NBR 11137. As extremidades do cabo devem ser solidamente presas à estrutura do carretel, de modo a não permitir que o cabo se solte ou se desenrole durante o transporte.

A extremidade interna do cabo na bobina deve estar protegida para evitar danos durante o transporte, ser acessível para ensaios, possuir um comprimento livre de no mínimo 2 m e ser acomodada com diâmetro de no mínimo 22 vezes o diâmetro externo do cabo. Após efetuados todos os ensaios requeridos para o cabo, as extremidades do lance devem ser fechadas, a fim de prevenir a entrada de umidade. Cada lance do cabo óptico interno deve ter um comprimento nominal de 1.000 m, podendo, a pedido do comprador, ser fornecido em comprimento específico. A tolerância de cada lance deve ser de + 3%, não sendo admitidos comprimentos inferiores ao especificado.

Devem ser identificadas em cada bobina, com caracteres perfeitamente legíveis e indeléveis, as seguintes informações: nome do comprador; nome do fabricante; número da bobina; designação do cabo; comprimento real do cabo na bobina, expresso em metros (m); massa bruta e massa líquida, expressas em quilogramas (kg); uma seta ou marcação apropriada para indicar o sentido em que o cabo deve ser desenrolado; identificação de remarcação, quando aplicável. O transporte, armazenamento e utilização das bobinas dos cabos ópticos internos devem ser feitos conforme a NBR 7310.