A Qualidade dos testes laboratoriais remotos

Deve-se entender os requisitos específicos aplicáveis ao teste laboratorial remoto e se destina a ser usado em conjunto com a NBR ISO 15189. Os requisitos deste documento se aplicam quando o POCT é realizado em um hospital, clínica e por uma organização de serviços de saúde que preste atendimento ambulatorial.

A NBR ISO 22870 de 09/2020 – Teste laboratorial remoto (POCT) — Requisitos para a qualidade e competência fornece os requisitos específicos aplicáveis ao teste laboratorial remoto e se destina a ser usado em conjunto com a NBR ISO 15189. Os requisitos deste documento se aplicam quando o POCT é realizado em um hospital, clínica e por uma organização de serviços de saúde que preste atendimento ambulatorial. Este documento pode ser aplicado a medições transcutâneas, análise de ar expirado e monitoramento in vivo de parâmetros fisiológicos. O autoteste do paciente em um ambiente doméstico ou comunitário é excluído, mas os elementos deste documento podem ser aplicáveis. Os regulamentos locais, regionais e nacionais são para ser leva dos em consideração.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como se deve proceder no caso da ação preventiva?

Como deve ser feita a análise crítica pela direção?

Como devem ser as acomodações e condições ambientais dos testes?

Quem é o responsável pela garantia da qualidade dos procedimentos de exame?

Os testes laboratoriais remotos (point-of-care testing – POCT), também chamado, de teste próximo ao paciente, são realizados próximo ou no local do paciente, com o resultado levando a uma possível mudança no seu atendimento. É também denominado no Brasil como teste laboratorial remoto (TLR) e teste no local do paciente (TLP). Os exames tradicionais dos fluidos corporais, secreções e tecidos de um paciente são realizados geralmente no ambiente controlado e regulado de um laboratório clínico reconhecido.

A introdução de sistemas de gestão da qualidade e a acreditação desses laboratórios estão ganhando crescente interesse. Os avanços na tecnologia resultaram em dispositivos médicos de diagnóstico in vitro (DIV) compactos e fáceis de usar, que possibilitam a realização de alguns exames na localização do paciente ou próximo a ela. O teste laboratorial remoto/próximo ao paciente pode beneficiar o paciente, bem como as instalações de serviços de saúde. Os riscos para o paciente e para as instalações podem ser gerenciados por um sistema de gestão da qualidade bem planejado e totalmente implementado, que facilite: a avaliação de instrumentos e sistemas POCT novos ou alternativos, a avaliação e aprovação de propostas e protocolos do usuário final, a compra, a instalação e a manutenção de equipamentos, a manutenção de suprimentos consumíveis e reagentes, o treinamento, certificação e recertificação de operadores de sistemas POCT, e o controle de qualidade e garantia de qualidade.

Os organismos que reconhecem a competência das instalações de POCT podem usar este documento como base para as suas atividades. Se uma instalação de saúde buscar acreditação para uma parte ou todas as suas atividades, convém selecionar um organismo de acreditação que opere de maneira a levar em consideração os requisitos especiais do POCT. A gestão dos serviços de laboratório deve planejar e desenvolver os processos necessários para o POCT.

O seguinte deve ser considerado, conforme apropriado: os objetivos e os requisitos da qualidade para POCT; a necessidade de estabelecer processos e documentos e fornecer recursos específicos ao POCT; a verificação, validação e monitoramento exigidos das atividades específicas do POCT; os registros para fornecer evidências de que os processos e procedimentos da POCT atendem aos requisitos. A direção da organização deve ser o principal responsável por garantir que sejam tomadas as medidas apropriadas para monitorar a exatidão e a qualidade do POCT realizado dentro da organização de serviço de saúde.

A NBR ISO 15189:2015, 4.1.2.2, e as seguintes subseções se aplicam. Um grupo de profissionais de saúde (por exemplo, Comitê Médico Consultivo) deve ser responsável perante a direção pela definição do escopo do POCT a ser disponibilizado. Isso deve levar em consideração a necessidade clínica de POCT, suas implicações financeiras, viabilidade técnica e a capacidade da organização de atender à necessidade. A direção ou o responsável designado do laboratório deve nomear um grupo multidisciplinar de gestão do POCT com representação do laboratório, administração e programas clínicos, incluindo enfermagem, para aconselhar sobre o fornecimento do POCT.

O grupo de gestão deve garantir que responsabilidades e autoridades sejam definidas e comunicadas dentro da organização. O grupo de gestão deve auxiliar na avaliação e seleção de dispositivos e sistemas POCT. Convém que os critérios de desempenho para dispositivos POCT incluam consideração de veracidade, precisão, limites de detecção, limites de uso e interferências. Convém que a praticidade também seja considerada. O grupo de gestão deve considerar todas as propostas para introduzir qualquer produto, dispositivo ou sistema para o POCT.

A gestão dos serviços de laboratório deve estabelecer, documentar, implementar e manter um sistema de gestão da qualidade e melhorar continuamente a sua eficácia. A gestão dos serviços de laboratório deve identificar os processos necessários para o sistema de gestão da qualidade do POCT em toda a organização; determinar a sequência e a interação desses processos; determinar os critérios e métodos necessários para garantir que a operação e o controle desses processos sejam eficazes; garantir a disponibilidade de recursos e informações necessárias para apoiar a operação e o monitoramento desses processos; monitorar, medir e analisar esses processos; implementar as ações necessárias para alcançar os resultados planejados e a melhoria contínua desses processos; e nomear uma pessoa com treinamento e experiência adequados como gerente da qualidade, responsável pela qualidade do POCT, o que inclui a análise crítica dos requisitos relacionados ao POCT. Esses processos devem ser gerenciados pela organização de acordo com os requisitos deste documento.

Convém que os processos necessários para o sistema de gestão da qualidade mencionado incluam processos para atividades de gestão, provisão de recursos, provisões de serviços e provisões de medição. A gestão dos serviços de laboratório deve planejar e implementar os processos de monitoramento, medição, análise e melhoria de processos necessários para demonstrar a conformidade do POCT ao sistema da qualidade. A documentação do sistema de gestão da qualidade deve incluir as declarações documentadas de uma política da qualidade e objetivos da qualidade; o manual de qualidade; os procedimentos documentados exigidos por este documento; os documentos necessários à organização para garantir o planejamento, operação e controle eficazes de seus processos; e os registros exigidos por este documento.

Neste documento, o termo procedimento documentado significa que o procedimento é estabelecido, documentado, implementado e mantido. A extensão da documentação do sistema de gestão da qualidade pode diferir de uma organização para outra devido ao tamanho da organização e tipo de atividades; à complexidade dos processos e suas interações; e à competência do pessoal. A documentação pode estar em qualquer forma ou tipo de mídia que possa ser mantida e recuperada até os tempos de retenção especificados, dependendo dos requisitos locais, regionais e nacionais. A NBR ISO 15189:2015, 4.1.2.3 e 4.1.2.4, e o seguinte se aplicam.

O diretor do laboratório ou o responsável designado adequadamente qualificado deve garantir que os objetivos de qualidade para o POCT sejam estabelecidos e mensuráveis; o planejamento do sistema de gestão da qualidade seja realizado para atender aos requisitos do serviço, bem como aos objetivos da qualidade; e a integridade do sistema de gestão da qualidade seja mantida quando as mudanças no sistema de gestão da qualidade forem planejadas e implementadas. A NBR ISO 15189:2015, 4.2.2, e o seguinte se aplicam. A organização deve estabelecer e manter um manual de qualidade que inclua o escopo do sistema de gestão da qualidade; os procedimentos documentados estabelecidos para o sistema de gestão da qualidade, ou referência a eles; e uma descrição da interação entre os processos do sistema de gestão da qualidade.

A organização deve garantir que o POCT que não esteja em conformidade com os requisitos seja identificado e controlado para impedir o seu uso não intencional. Os controles e as responsabilidades e autoridades relacionadas para lidar com POCT não conforme devem ser definidos em um procedimento documentado. A organização deve lidar com o POCT não conforme de uma ou mais das seguintes maneiras: tomando medidas para eliminar a não conformidade detectada; autorizando o seu uso, liberação e aceitação; tomando medidas para impedir o uso ou aplicação pretendido. Devem ser mantidos registros da natureza das não conformidades e quaisquer ações subsequentes tomadas.

A organização deve determinar, coletar e analisar dados apropriados para avaliar onde a melhoria contínua da eficácia do sistema de gestão da qualidade pode ser feita. Isso deve incluir dados gerados como resultado de monitoramento e medição, bem como de outras fontes pertinentes. A análise dos dados deve fornecer informações relacionadas à satisfação do prestador de cuidados de saúde, paciente ou cliente (ver 4.12); à conformidade com os requisitos do POCT (ver 4.2); às características e tendências do POCT, incluindo oportunidades de ação preventiva; e aos fornecedores. A NBR ISO 15189:2015, 4.10, e o seguinte se aplicam. A organização deve tomar medidas para eliminar a causa das não conformidades, a fim de evitar a recorrência.

As ações corretivas devem ser apropriadas aos efeitos das não conformidades encontradas. Um procedimento documentado deve ser estabelecido para definir requisitos para analisar criticamente as não conformidades (incluindo reclamações de prestador de cuidados de saúde, paciente ou cliente); determinar as causas das não conformidades; avaliar a necessidade de ação para garantir que não conformidades não se repitam; determinar e implementar as ações necessárias; os registros dos resultados das ações tomadas; e analisar criticamente as ações corretivas adotadas.

As tubulações para os sistemas de energia

Essa norma, editada pela American Society of Mechanical Engineers (ASME), prescreve os requisitos mínimos para o projeto, os materiais, a fabricação, a instalação, o ensaio, a inspeção, a operação e a manutenção dos e sistemas de tubulação normalmente encontrados em estações geradoras de energia elétrica, plantas industriais e institucionais, sistemas de aquecimento geotérmico e aquecimento central e local e sistemas de refrigeração.

A ASME B31.1:2020 – Power Piping prescreve os requisitos mínimos para o projeto, os materiais, a fabricação, a instalação, o ensaio, a inspeção, a operação e a manutenção dos e sistemas de tubulação normalmente encontrados em estações geradoras de energia elétrica, plantas industriais e institucionais, sistemas de aquecimento geotérmico e aquecimento central e local e sistemas de refrigeração. Também cobre a tubulação externa das caldeiras de energia e de água em alta temperatura e alta pressão, nas quais o vapor é gerado a uma pressão de mais de 15 psig; e em água em alta temperatura gerada a pressões superiores a 160 psig e/ou temperaturas superiores a 120°C.

As principais alterações a esta revisão incluem: os números novos e atualizados para os limites jurisdicionais do código em tubulações, novo apêndice obrigatório em juntas de expansão de fole metálico, novo apêndice obrigatório no uso de critérios de aceitação ultrassônicos alternativos e referência à ASME CA-1 – Conformity Assessment Requirements. A ASME B31.1 é um dos códigos mais solicitados da instituição, amplamente adotado por jurisdições em todo o mundo. É referenciado de forma proeminente no Código da Caldeira e Vaso de Pressão da ASME, Seção I.

Este código serve como um complemento ao Código B31.3 da ASME de tubulação de processo, bem como aos outros códigos da série B31 da ASME. Juntos, eles continuam sendo referências essenciais para qualquer pessoa envolvida com tubulação. Destinado a fabricantes, projetistas, operadores e proprietários de sistemas de tubulação, incluindo, mas não se limitando a serviços de vapor, água, óleo, gás e ar, além de todas as entidades governamentais potenciais.

O Código ASME B31 para tubulação de pressão consiste em uma série de seções publicadas individualmente, cada uma com uma norma nacional americana, sob a direção do Comitê ASME B31 – Código para tubulação de pressão. As regras para cada seção foram desenvolvidas considerando a necessidade de aplicação de requisitos específicos para vários tipos de tubulação de pressão. Os aplicativos considerados para cada seção do código incluem tubulação de energia: tubulação normalmente encontrada em estações de geração de energia elétrica, plantas industriais e institucionais, sistemas de aquecimento geotérmico e sistemas de aquecimento e refrigeração centrais e distritais; tubulação de processo: tubulação normalmente encontrada em refinarias de petróleo; petróleo e gás natural onshore e offshore, Instalações de produção; plantas químicas, farmacêuticas, têxteis, de papel, de processamento de minério, semicondutoras e criogênicas; instalações de processamento de alimentos e bebidas e plantas de processamento relacionadas e terminais; sistemas de transporte de dutos para líquidos e polpas: tubulação que transporta produtos predominantemente líquidos entre fábricas e terminais, e dentro dos terminais e estações de bombeamento, regulagem e medição.

Os fatores a serem considerados pelo proprietário incluem limitações da Seção do Código, requisitos jurisdicionais e a aplicabilidade de outros códigos e padrões. Todos os requisitos aplicáveis da Seção de Código selecionada devem ser atendidos. Para algumas instalações, mais de uma seção de código pode se aplicar a diferentes partes da instalação. O proprietário também é responsável por impor requisitos complementares para aqueles da seção de código selecionada, se necessário, para garantir a tubulação segura para a instalação proposta.

Certas tubulações dentro de uma instalação podem estar sujeitas a outros códigos e normas, incluindo, mas não se limitando a, Código ASME para Caldeiras e Vasos de Pressão, Seção III: tubulação de energia nuclear; ANSI Z223.1/NFPA 54 Código Nacional de Gás Combustível: tubulação para gás combustível desde o ponto de entrega até a conexão de cada dispositivo de utilização de combustível; normas de proteção contra incêndio da NFPA: sistemas de proteção contra incêndio usando água, dióxido de carbono, halon, espuma, produtos químicos secos e produtos químicos úmidos; Código de Perigos dos Sistemas de Caldeira e Combustão da NFPA 85; códigos de construção e encanamento, conforme aplicável, para água potável quente e fria e para esgoto e drenagem de sistemas.

O Código especifica os requisitos de engenharia considerados necessários para o projeto, construção, operação e manutenção seguros da tubulação de pressão. Embora a segurança seja a consideração primordial, este fator sozinho não governará necessariamente as especificações finais para qualquer instalação ou operação de tubulação. O Código não é um manual de design. Muitos das decisões que devem ser tomadas para produzir uma instalação de tubulação segura e para manter a integridade do sistema não são especificadas em detalhes neste Código. O Código não substitui o bom senso de engenharia do proprietário e do projetista.

Na medida do possível, os requisitos do Código para design são definidos em termos de princípios e fórmulas básicas de design. Estes são complementados conforme necessário com requisitos específicos para garantir a aplicação uniforme de princípios e para orientar a seleção e aplicação de elementos de tubulação. O Código proíbe designs e práticas reconhecidamente inseguras e contém avisos onde cautela, mas não proibição, é necessária.

Este código de tubulação de força é uma das várias seções do Código da Sociedade Americana de Engenheiros Mecânicos (ASME) para Tubulação de Pressão, B31. Esta seção é publicada como um documento separado para sua conveniência. Padrões e especificações especificamente incorporados por referência a este Código são mostrados na Tabela 126.1-1. Não é considerado prático referir-se a uma edição datada de cada uma das normas e especificações deste Código.

Em vez disso, as referências da edição datada estão incluídas no Apêndice F. Escopo obrigatório: As regras para esta seção do código foram desenvolvidas considerando as necessidades de aplicações que incluem tubulações normalmente encontradas em estações geradoras de energia elétrica, plantas industriais e institucionais, sistemas de aquecimento geotérmico e sistemas de aquecimento e resfriamento central e distrital. Este Código prescreve requisitos para o projeto, materiais, fabricação, montagem, exame, teste, inspeção, operação e manutenção de sistemas de tubulação. Quando os requisitos de serviço exigem medidas além daquelas exigidas por este Código, tais medidas devem ser especificadas pelo projeto de engenharia.

A tubulação usada nesse Código inclui tubos, flanges, parafusos, gaxetas, válvulas, válvulas/dispositivos de alívio de pressão, conexões e as porções contendo pressão de outros componentes da tubulação, sejam fabricados de acordo com os padrões listados na Tabela 126.1-1 ou especialmente projetado. Também inclui ganchos e suportes e outros itens de equipamento necessários para evitar sobrecarregar os componentes que contêm pressão. Regras que regem a tubulação para acessórios diversos, como colunas de água, indicadores remotos de nível de água, medidores de pressão e vidros de medição estão incluídos no escopo deste Código, mas os requisitos para acessórios de caldeira devem estar de acordo com o Código ASME para Caldeiras e Vasos de Pressão (BPVC), Seção I, PG-60. Os usuários deste Código são avisados de que, em algumas áreas, a legislação pode estabelecer jurisdição governamental sobre o assunto coberto por este Código. No entanto, qualquer exigência legal não isenta o proprietário de suas responsabilidades de inspeção especificadas. Os sistemas de tubulação de energia cobertos por este Código se aplicam a todas as tubulações e seus componentes, exceto conforme excluído no parágrafo. Eles incluem, mas não estão limitados a serviços de vapor, água, óleo, gás e ar.

Esse Código cobre a tubulação externa da caldeira conforme definido abaixo para caldeiras de energia e caldeiras de água de alta temperatura e alta pressão nas quais o vapor ou vapor é gerado a uma pressão de mais de 15 psig [100 kPa (manômetro)]; e a água de alta temperatura é gerada a pressões superiores a 160 psig [1 103 kPa (medidor)] e / ou temperaturas excedendo 250 ° F (120 ° C). A tubulação externa da caldeira deve ser considerada como uma tubulação que começa onde a caldeira propriamente dita termina na primeira junta circunferencial para as conexões das extremidades de soldagem; ou na face do primeiro flange em conexões flangeadas aparafusadas; ou na primeira junta roscada nesse tipo de conexão, e que se estende até e incluindo a válvula ou válvulas exigidas.

Os próprios pontos terminais são considerados parte da tubulação externa da caldeira. Os pontos terminais e a tubulação devem ser fornecidos com os relatórios de dados, inspeção e estampagem conforme exigido pela ASME BPVC, Seção I. Toda a soldagem e brasagem desta tubulação deve ser realizada por fabricantes ou contratados autorizados a usar a Marca de Certificação ASME e designadores apropriados mostrados no ASME CA- 1, Requisitos de avaliação de conformidade.

A instalação de caldeira a tubulação externa por meios mecânicos pode ser realizada por uma organização que não possua uma Marca de Certificação ASME. Entretanto, o titular de uma Marca de Certificação ASME válida, Certificado de Autorização, com Designador “S,” “A” ou “PP”, será responsável pela documentação e teste hidrostático, independentemente do método de montagem. Os requisitos do sistema de controle de qualidade da ASME BPVC, Seção I; ASME CA-1; e ASME QAI-1, Qualificações para Inspetores Autorizados, deve ser aplicada. A válvula ou válvulas exigidas pelo para. 122.1 fazem parte da tubulação externa da caldeira, mas não requerem ASME BPVC, seção I inspeção e estampagem, exceto para segurança.

Os conceitos da drenagem oleosa em postos de combustíveis

É obrigatório ter as iniciativas para o manuseio das águas superficiais e sua origem, e seus potenciais contaminantes oleosos, para a prevenção de contaminação das águas e para a instalação dos sistemas de drenagem em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos.

A NBR 14605-1 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis – Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 1: Conceituação e projeto da drenagem oleosa estabelece as iniciativas para o manuseio das águas superficiais e sua origem, e seus potenciais contaminantes oleosos, para a prevenção de contaminação das águas e para a instalação dos sistemas de drenagem em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos. O objetivo desta parte é assegurar que o efluente líquido do posto revendedor de combustíveis automotivos, dos pontos de abastecimento e de demais serviços automotivos seja destinado dentro dos padrões mínimos de contaminantes oleosos sendo estes padrões estabelecidos pela legislação vigente.

A NBR 14605-2 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 2: Dimensionamento de vazão de sistema de contenção e separação de efluentes estabelece a metodologia para o dimensionamento de vazão do sistema de drenagem oleosa em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos (PRC/PA). A NBR 14605-3 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 3: Ensaio-padrão, equipamentos e técnica de amostragem para determinação do desempenho de caixas separadoras de água tem o objetivo de avaliar o desempenho da caixa separadora de água e óleo sob as condições da legislação ambiental local vigente e as necessidades do usuário. Outro objetivo desta parte é estabelecer que uma caixa separadora de água e óleo operando na sua capacidade nominal esteja sujeita à prática, ao receber águas provenientes do sistema de separação de água e óleo. Estabelece os procedimentos relacionados aos equipamentos e à técnica de amostragem a serem usados na determinação do desempenho da separação da mistura água/óleo oriunda da contaminação das águas superficiais. Não expressa a determinação da eficiência da separação água/óleo, sujeita às emissões de grandes quantidades de hidrocarbonetos que podem ocorrer na sua forma pura ou em altas concentrações, do afluente para a caixa separadora de água e óleo.

A NBR 14605-4 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 4: Projeto, construção e montagem de sistema de contenção e separação de efluentes fornece orientações e requisitos para o projeto, construção, montagem e instalação de sistema de contenção e separação de efluentes. Não contempla o esgotamento sanitário e o dimensionamento do sistema de águas pluviais. A NBR 14605-5 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 5: Comissionamento, operação e manutenção de sistema de contenção e separação de efluentes fornece orientações para o comissionamento, operação e manutenção de sistema de captação, condução e separação de efluentes oleosos. não é aplicável ao comissionamento, à operação e à manutenção do sistema de esgotamento sanitário e do sistema de águas pluviais.

A NBR 14605-6 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 6: Construção de sistema de contenção, tratamento e separação de efluente — Área de lavagem estabelece as diretrizes e os requisitos para o desenvolvimento de sistemas de contenção, tratamento e separação de águas oleosas, bem como a metodologia de dimensionamento de vazão do sistema de drenagem oleosa da área de lavagem em posto revendedor de combustível automotivo, ponto de abastecimento e demais serviços automotivos. Os veículos somente podem ser lavados em áreas especificadas, onde a água de lavagem e qualquer precipitação pluvial podem ser contidas. A captação e a condução da água utilizada na operação de lavagem devem ser independentes da captação e condução das águas pluviais. Na área de lavagem de veículos são geradas correntes líquidas que podem conter os seguintes produtos e materiais contaminantes: óleo, combustível, graxa, produtos químicos utilizados na lavagem e sólidos em suspensão. A água escoada da área de lavagem de veículos deve ser dirigida a um sistema de separação de água e óleo ou tratamento no próprio local, podendo ser possível o seu reuso. Alternativamente, esta água pode ser coletada em uma unidade de armazenamento e enviada para um local de descarte autorizado. No caso da utilização de produtos químicos na operação de lavagem de veículos, a corrente líquida contendo produtos químicos não pode ser direcionada exclusivamente para uma caixa separadora de água e óleo (CSAO), uma vez que pode interferir no seu funcionamento e eficiência, devendo ser utilizado concomitantemente um sistema de reciclagem ou devendo esta corrente líquida ser coletada em uma unidade de armazenamento para posterior envio para um local de descarte autorizado. Produtos químicos com pH entre 6 e 9, de modo geral, podem não afetar o funcionamento e a eficiência da CSAO, sendo que aqueles com pH neutro praticamente não afetam esta eficiência.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como proceder na drenagem de águas oleosas?

Como deve ser executado o dimensionamento da caixa separadora de água e óleo?

Como realizar o Ensaio A – Investigação do arraste de óleo na sua capacidade de armazenamento de óleo?

Quais as considerações quando de construção nova, de ampliação ou de reforma de posto revendedor de combustíveis?

Pode-se dizer que as operações do posto revendedor de combustíveis automotivos, do ponto de abastecimento e dos demais serviços automotivos envolvendo o manuseio de produtos oleosos apresentam potencial para a presença destes produtos no piso, por deficiências na operação ou eventos acidentais. Os produtos oleosos, se não contidos e recolhidos adequadamente, quando em contato com a água, produzirão águas oleosas.

A utilização de água de forma não seletiva nas áreas operacionais é fonte de geração de água oleosa que é captada e conduzida de forma segregada das águas pluviais do posto revendedor de combustíveis automotivos ou ponto de abastecimento e demais serviços automotivos. O impacto de águas oleosas no meio ambiente pode ser evitado adotando-se as seguintes estratégias: não geração de águas oleosas; captação das águas oleosas superficiais, separação e destinação do óleo, e lançamento do efluente aquoso dentro de parâmetros ambientais aceitos.

A não geração ou a minimização de águas oleosas é condição fundamental para a redução do impacto nas águas pluviais, provocado pelas operações do posto revendedor de combustíveis automotivos, do ponto de abastecimento e dos demais serviços automotivos. Por conseguinte, deve ser minimizada a presença de material oleoso no piso por meio de equipamentos adequados e bem mantidos, procedimentos operacionais seguros e procedimentos de emergência. Por outro lado, a presença de água em determinadas áreas onde possa potencialmente haver a presença de material oleoso deve ser eliminada, sempre que possível.

Não sendo viável a não geração de águas oleosas, deve haver um sistema segregado de captação das águas, condução e separação do óleo e lançamento do efluente aquoso dentro de padrões ambientalmente aceitos. A não geração de águas oleosas tem início na especificação e na devida manutenção e calibração dos equipamentos envolvidos nas operações, de modo a não permitir a presença de material oleoso no piso. No caso da operação na área de abastecimento, a unidade abastecedora e os seus acessórios, como os bicos de abastecimento, devem estar corretamente especificados e em boas condições de uso, de forma que evitem o derramamento de produto.

No ambiente de troca de óleo lubrificante e de lubrificação, os cuidados devem partir do momento da retirada dos bujões do cárter, da caixa de marcha e transmissão, do recipiente do fluido de freio até a troca do filtro de óleo e da lubrificação dos pinos graxeiros, e devem ser realizados com precaução. No caso da área de descarga de produto, os cuidados devem iniciar com a correta especificação dos equipamentos, com a utilização da descarga selada, continuando com o perfeito acoplamento e desacoplamento da mangueira de descarga e com a devida manutenção da câmara de contenção da descarga de combustível (spill de descarga).

O sistema de drenagem oleosa (SDO) deve ser constituído por componentes para executar as funções de captação, separação, estocagem temporária de resíduos oleosos provenientes da operação do PRC/PA e a devida condução do efluente para a rede coletora, corpo receptor ou outro destino determinado pelo poder público. O SDO deve garantir a captação das águas oleosas provenientes das áreas onde existam equipamentos e atividades com possibilidade de geração de resíduos oleosos (ver figura abaixo). Eventuais resíduos oleosos provenientes da operação de descarga de combustíveis têm como captação as câmaras de contenção de descarga, conforme as NBR 13786 e NBR 13783.

Os casos de derrames acidentais não estão contemplados nesta norma. Os PRC/PA com lavagem de veículos devem possuir SDO independente das demais áreas. A área de abastecimento de veículos onde são realizadas operações utilizando água para a limpeza de vidros e partes da carroceria, e de reposição da água de reservatórios de veículos, deve ser dotada de canaletas em seu entorno, localizados internamente a 0,5 m da projeção da cobertura da área de abastecimento, quando houver.

O dimensionamento de canaletas para águas oleosas deve ser feito com seção suficiente para vazão de projeto Q3 ou Q4, conforme o Anexo A, considerando um fator de segurança de 1,5 para a vazão da canaleta, devendo a seção mínima ser de 60 mm × 60 mm. A pavimentação da área de abastecimento deve garantir caimento para as canaletas, limitando a captação a esta área, evitando contribuição das áreas externas. Quando for inevitável o caimento do piso das áreas externas para a área de abastecimento e/ou troca

de óleo devido à topografia do terreno, deve ser previsto uma canaleta independente para a captação das águas pluviais, evitando a contribuição de águas não oleosas para a CSAO (ver figura abaixo). As áreas de troca de óleo e de outros serviços automotivos com contribuição de resíduos oleosos devem ser dotadas de canaletas que captem as águas oleosas.

O uso da parte 3 da NBR 14605 pode envolver o emprego de materiais, operações e equipamentos perigosos, e esta norma não pretende tratar de todos os problemas de segurança associados com seu uso. É responsabilidade do usuário estabelecer as práticas de segurança, meio ambiente e saúde apropriados, e determinar a aplicabilidade de limitações regulamentadoras, antes de seu uso. Esta parte 3 não é aplicável se o afluente contiver uma liberação inesperada de contaminante oleoso que gere uma concentração na água oleosa maior que a prevista em projeto. Não é aplicável se o afluente for transferido por bombeamento.

Os dados produzidos na parte 3 são considerados válidos somente para as caixas separadoras de água e óleo ensaiadas. Entretanto, os resultados dos ensaios podem ser extrapolados para caixas separadoras de água e óleo menores ou maiores, desde que providos de uma geometria e dinâmica semelhantes. Quando a utilização da extrapolação não for aplicável, submeter a unidade ao ensaio.

A vazão utilizada para realização dos ensaios é a mesma vazão dada pelo fabricante para uma dada caixa separadora de água e óleo, a fim de determinar o máximo nível de contaminação no afluente relacionado com a concentração máxima permitida no efluente. O projeto deve contemplar o encaminhamento, o perfil, os equipamentos e o material utilizado para os sistemas pluvial e oleoso, a partir do leiaute de arquitetura do posto de serviço, ponto de abastecimento e demais serviços automotivos. O projeto deve estabelecer o diâmetro mínimo de 100 mm no sistema de condução de águas oleosas, para evitar o entupimento com contaminantes particulados.

O projeto deve contemplar a utilização de materiais plásticos para a condução das águas oleosas. O projeto deve prever dispositivos para separação e retenção de contaminantes particulados, conforme a NBR 14605-2. Estes dispositivos são integrados pelos seguintes componentes: caixa de areia; sistema de retenção de resíduos flutuantes. A localização dos dispositivos que integram o conjunto responsável pela remoção dos contaminantes particulados deve ser tal que o acesso a eles ocorra sem dificuldades e não sofra a interferência do trânsito de veículos.

Os ensaios dos riscos eletrostáticos em atmosferas explosivas

Deve-se conhecer os métodos de ensaios relacionados às propriedades dos equipamentos, produtos e processos necessárias para se evitar uma ignição e os riscos de choques eletrostáticos provenientes da eletricidade estática.

A NBR IEC 60079-32-2 de 09/2020 – Atmosferas explosivas – Parte 32-2: Riscos eletrostáticos — Ensaios descreve os métodos de ensaios relacionados às propriedades dos equipamentos, produtos e processos necessárias para se evitar uma ignição e os riscos de choques eletrostáticos provenientes da eletricidade estática. Destina-se à utilização em uma avaliação de risco dos perigos eletrostáticos ou na preparação de normas para famílias de produtos ou de produtos dedicados para máquinas ou equipamentos elétricos ou não elétricos.

O objetivo desta parte é fornecer os métodos de ensaio padronizados utilizados para o controle da eletricidade estática, como resistência de superfície, resistência de fuga para terra, resistividade em poeiras, condutividade de líquidos, capacitância e avaliação da capacidade de gerar uma ignição de descargas eletrostáticas provocadas. Destina-se especialmente para utilização com as normas existentes da série NBR IEC 60079. A ABNT IEC TS 60079-32-1, Atmosferas explosivas – Parte 32-1: Riscos eletrostáticos, orientação, foi publicada em 2020. Esta norma não se destina a substituir normas que abrangem produtos específicos e situações industriais.

Esta parte apresenta o mais recente estado do conhecimento que pode, no entanto, diferir ligeiramente dos requisitos de outras normas, especialmente no que concerne a ensaios climáticos. Quando um requisito desta norma conflitar com um requisito especificado na NBR IEC 60079-0, para evitar a possibilidade de reensaiar equipamentos previamente aprovados, o requisito da NBR IEC 60079-0 se aplica apenas para equipamentos dentro do escopo da NBR IEC 60079-0. Em todos os outros casos, aplicam-se os requisitos indicados nesta parte.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser preparada a amostra de ensaio da resistência superficial?

O que deve conter o relatório de ensaio?

Quais os conceitos da resistência de fuga?

Como devem ser executados os ensaios de calçados em uso?

As variações nos resultados da medição de propriedades eletrostáticas de materiais são devidas principalmente a variações na amostra (por exemplo, superfícies e geometria não homogêneas e o estado do material) em vez de incertezas na tensão, corrente, geometria do eletrodo ou incerteza do dispositivo de medição. Isto porque as propriedades eletrostáticas são fortemente influenciadas por diferenças muito pequenas, de modo que os efeitos estatísticos desempenham um papel importante. Por exemplo, na ASTM E582, a energia mínima de ignição (MIE – Minimum Ignition Energy) de uma atmosfera de gás explosivo é definida por 100 ou 1.000 não ignições. Isto não exclui, no entanto, que o ensaio 1 001 possa causar uma ignição.

Devido a este efeito estatístico, a precisão e a reprodutibilidade das propriedades eletrostáticas são limitadas pela dispersão estatística. Normalmente, a precisão e a reprodutibilidade das medições eletrostáticas são de cerca de 20% a 30%. Isto é muito mais alto do que para uma medição elétrica típica, que é inferior a 1 %. Por esta razão, os limiares do limite eletrostático contêm certa margem de segurança para compensar a dispersão estatística ocorrida.

Pode ser difícil compreender que a ocorrência da dispersão estatística pode não ser minimizada por meio de melhoria da qualidade dos ensaios. No entanto, essa situação tem que ser aceita, lembrando que os ensaios eletrostáticos contêm margens de segurança adequadas, especificamente para compensar este efeito. Os processos de fabricação (por exemplo, moldagem, extrusão etc.) podem alterar as propriedades eletrostáticas dos materiais.

Recomenda-se, portanto, ensaiar produtos acabados, quando possível, em vez de os materiais dos quais os produtos são feitos. Para obter resultados comparáveis em todo o mundo para medições laboratoriais, convém que as amostras sejam aclimatadas e medidas em umidade relativa e temperatura declaradas (por pelo menos 24 h a (23 ± 2) °C e (25 ± 5) % de umidade relativa). Em locais que podem apresentar níveis mais baixos ou mais altos de umidade e temperatura, um valor adicional na umidade relativa e na temperatura local mais alta ou mais baixa pode ser aceitáveis (por exemplo, 40 ± 2) °C e (90 ± 5)% de umidade relativa para climas tropicais e (23 ± 2) °C e (15 ± 5) % de umidade relativa para locais com climas muito frios).

De forma a evitar erros de medição causados por um comportamento diferente da histerese da umidade do material, convém que a amostra seja inicialmente seca e depois aclimatada ao clima específico. Em algumas outras normas, por exemplo, NBR IEC 60079-0, diferentes valores-limite com base em medições feitas a 50% de umidade relativa ou 30 % de umidade relativa foram especificados no passado na ausência de uma câmara efetiva desumidificadora. A experiência mostra que os resultados e medição neste clima não são obtidos com o mesmo grau de consistência que aqueles medidos de acordo com esta norma.

No entanto, pode ser necessário utilizar o clima especificado em outras normas para manter a continuidade do equipamento previamente avaliado. Pode ser difícil aplicar os métodos de ensaio exatamente como especificados nesta norma, a todos os tipos de equipamentos e em todas as situações. Se este for o caso, o relatório de ensaio deve indicar claramente quais partes desta norma foram aplicadas em sua totalidade e quais partes desta norma foram aplicadas em parte. Isto deve ser acompanhado de uma justificativa técnica dos motivos pelos quais a norma não pôde ser aplicada em sua totalidade e da equivalência de quaisquer outros métodos que tenham sido aplicados em comparação com os métodos de ensaio especificados nesta norma.

Os métodos de ensaio especificados nesta norma envolvem a utilização de fontes de alimentação de alta tensão e, em alguns ensaios, gases inflamáveis que podem apresentar perigo se manuseados incorretamente. Os usuários desta norma são alertados a realizar avaliações de risco adequadas e a considerar os regulamentos locais antes de realizar qualquer um dos procedimentos de ensaio. Em relação à resistência superficial, as superfícies que têm uma resistência superficial suficientemente baixa, de acordo com 3.11, podem não ser carregadas eletrostaticamente quando em contato com a terra. Por esta razão, a resistência da superfície é uma propriedade eletrostática básica relativa à capacidade dos materiais de dissipar a carga eletrostática por condução. Como as resistências superficiais geralmente aumentam com a diminuição da umidade relativa, é necessária uma baixa umidade relativa durante a medição para reproduzir as condições com o pior caso.

A IEC 60093 e IEC 61340-2-3 descrevem métodos de medição da resistência superficial e volumétrica e a resistividade de materiais sólidos planos. A IEC 61340-4-10 é um método alternativo para medir a resistência superficial. No entanto, muitas vezes estes métodos podem não ser aplicados devido ao tamanho e forma dos materiais, especialmente quando incorporados em equipamentos e aparelhos. Por esta razão, o método de ensaio para medições de resistência de materiais que não são planos e produtos com pequenas estruturas especificadas na IEC 61340-2-3, ou o método a seguir pode ser utilizado como uma alternativa adequada.

A superfície é colocada em contato com dois eletrodos condutivos de comprimento e distância definidos e a resistência entre os dois eletrodos é medida. Uma vez que as resistências elevadas geralmente diminuem com o aumento da tensão, a tensão aplicada deve ser aumentada para pelo menos 500 V, preferencialmente 1.000 V, para resistências muito altas. Os conhecimentos mais recentes indicam que pode ser benéfico medir resistências elevadas a 10 kV. No entanto, neste caso, a centelha tem que ser evitada, por exemplo, por uma espuma isolante entre os eletrodos, e os critérios de aceitação têm que ser modificados.

Quando camadas finas isolantes são montadas sobre um material mais condutivo, a tensão aplicada pode queimar totalmente o material inferior, e os resultados obtidos são inconclusivos. Os materiais não homogêneos, particularmente tecidos, podem apresentar resultados diferentes quando medidos em diferentes direções. Isto pode ser evitado utilizando-se um sistema de eletrodo de anel concêntrico, de acordo com a IEC 61340-2-3 ou ISO 14309. Eletrodos de tiras de borracha condutiva macia são preferidos aos eletrodos de tinta prateada para limitar a interação química não desejada da superfície.

No caso de amostras irregulares, os eletrodos de tinta prateada são preferidos aos eletrodos macios, devido à sua melhor adaptação à geometria irregular da amostra. O critério de >25 mm para a área ao redor dos eletrodos, conforme indicado na figura 1, disponível na norma, aplica-se somente às folhas de ensaio, podendo ser ignorado no caso de produtos reais. Os eletrodos são conectados a um teraohmímetro. Um eletrodo de proteção pode ser colocado sobre os eletrodos de medição, para minimizar o ruído elétrico. Durante o ensaio, a tensão deve ser suficientemente estável para que a corrente de carregamento, devida à flutuação de tensão, seja insignificante em comparação com a corrente que flui através da amostra de ensaio.

A precisão do teraohmímetro deve ser verificada regularmente com várias resistências de valores ôhmicos conhecidos em um intervalo de 1 MΩ a 1 TΩ. O teraohmímetro deve ler a resistência dentro da sua precisão especificada. A geometria dos eletrodos condutivos de borracha ou espuma também deve ser regularmente checada medindo a sua marca impressa. Se a força no eletrodo é maior do que 20 N para alcançar a mínima resistência medida, os eletrodos de borracha devem ser substituídos por outros mais macios. A resistência superficial deve ser medida na região da amostra real se o tamanho permitir, ou em uma amostra de ensaio que compreende uma placa retangular com dimensões de acordo com a figura 1.

A amostra de ensaio deve ter uma superfície intacta e limpa. Como alguns solventes podem deixar resíduos condutivos na superfície ou podem afetar negativamente as propriedades eletrostáticas da superfície, é melhor limpar a superfície apenas com uma escova. Isto é especialmente importante nos casos em que a superfície for tratada com agentes antiestáticos especiais. Se, entretanto, houver uma impressão digital ou outra impureza visível na superfície e não forem utilizados agentes antiestáticos especiais na superfície, a amostra de ensaio deve ser limpa com 2-propanol (álcool isopropílico) ou outro solvente adequado que não afete o material da amostra de ensaio e os eletrodos, e que sequem no ar.

A amostra de ensaio deve ser condicionada por pelo menos 24 h em (23 ± 2) °C e (25 ± 5) % de umidade relativa sem ser tocada novamente por mãos desprotegidas. No caso de invólucro de equipamentos elétricos, as condições climáticas são dadas na NBR IEC 60079-0 e a tensão de 500 V do ensaio deve ser utilizada para ser compatível com os históricos das medições. Deve-se ressaltar que o gás inflamável é gerado pela mistura do gás de ensaio (com pureza mínima de 99,5 %) com o ar. O ar utilizado deve conter (21,0 ± 0,5) % de oxigênio e (79,0 ± 0,5) % de nitrogênio. O equipamento de controle do gás e mistura é utilizado para direcionar o gás, na proporção apropriada, para a sonda de ignição. Os gases de ensaio e sua concentração em volume a ser utilizada indicada na NBR IEC 60079-7 é apresentada na tabela abaixo.

O controle da mistura de gás dentro das tolerâncias especificadas deve ser verificado utilizando, por exemplo, um analisador de gás retirando amostras da linha de fornecimento da mistura de gás. Se uma mistura de gás diferente daquela especificada na tabela acima for utilizada, a mínima energia de ignição da mistura de gás deve ser verificada utilizando o método da ASTM E582. É conveniente utilizar cilindros de gás comprimido para o fornecimento de gás, mas outras fontes de fornecimento podem ser utilizadas. Se necessário, filtros de peneira molecular devem ser utilizados para assegurar que os gases tenham baixo teor de umidade.

Isto é importante, por exemplo, quando se utiliza ar diretamente de um compressor. Cada fonte de gás é controlada e monitorada utilizando medidores de vazão e válvulas. A combinação das taxas de vazão de todos os gases por uma sonda de ignição deve ser (0,21 ± 0,04) L/s. Uma válvula de fechamento de ação rápida é utilizada para interromper o fluxo de gás de ensaio quando ocorre a ignição. A válvula de fechamento deve parar o fornecimento do gás de ensaio enquanto deixa o ar fluir livremente para fornecer resfriamento e secagem da sonda de ignição após a ignição ter ocorrido. O tipo e a localização da válvula de fechamento devem ser selecionados de acordo com o projeto do equipamento completo.

Os transformadores para instrumentos com saída analógica ou digital

Deve-se entender os parâmetros aplicáveis nos transformadores para instrumentos novos com saída analógica ou digital, para utilização em instrumentos elétricos de medição e dispositivos elétricos de proteção com frequência nominal de 15 Hz a 100 Hz.

A NBR IEC 61869-1 de 09/2020 – Transformadores para instrumento – Parte 1: Requisitos gerais é aplicável aos transformadores para instrumentos novos com saída analógica ou digital, para utilização em instrumentos elétricos de medição e dispositivos elétricos de proteção com frequência nominal de 15 Hz a 100 Hz. Esta é uma norma de uma família de produtos e abrange apenas requisitos gerais. Para cada tipo de transformador para instrumento, a norma do produto é composta por esta norma e pela norma aplicável específica.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as definições relacionadas às características dielétricas?

Quais são as tensões para ensaio de descargas parciais e respectivos níveis permissíveis?

Quais são os requisitos para líquidos utilizados nos equipamentos?

Quais são as especificações para a estanqueidade do gás?

Um transformador para instrumentos destina-se a transmitir um sinal de informação para instrumentos de medição, medidores e dispositivos de controle ou de proteção, ou aparelhos similares. A menos que especificado de outra forma, os transformadores para instrumentos são destinados a serem utilizados em suas características nominais sob as condições normais de serviço listadas nessa norma. Se as condições reais de serviço diferirem das condições normais de serviço, os transformadores para instrumentos devem ser projetados para atender a quaisquer condições especiais de serviço exigidas pelo comprador, ou arranjos apropriados devem ser feitos.

Informações detalhadas relativas à classificação para condições ambientais são fornecidas na IEC 60721-3-3 (uso interno) e na IEC 60721-3-4 (uso externo). Para transformadores para instrumentos com invólucro metálico isolados a gás, a IEC 62271-203, Seção 2, é aplicável. Os transformadores para instrumentos são classificados em três categorias, conforme apresentado na tabela abaixo.

A altitude não pode exceder 1.000 m. As vibrações devido a causas externas aos transformadores para instrumentos ou tremores de terra são desprezíveis. Outras condições de serviço para transformadores para instrumentos de uso interno. Outras condições de serviço consideradas estão descritas a seguir. A influência de radiação solar pode ser desprezada. O ar ambiente não é significativamente poluído por poeira, fumaça, gases corrosivos, vapores ou sal e as condições de umidade são as seguintes: o valor médio da umidade relativa, medido para um período de 24 h, não excede 95%; o valor médio da pressão do vapor de água para um período de 24 h não excede 2,2 kPa; o valor médio da umidade relativa para um período de um mês não excede 90%; o valor médio da pressão de vapor de água para um período de um mês não excede 1,8 kPa. Para estas condições, ocasionalmente pode ocorrer condensação.

É esperado que ocorra condensação quando ocorrem mudanças repentinas de temperatura em períodos de alta umidade. Para suportar os efeitos de alta umidade e condensação, como descargas pelo isolamento ou corrosão de peças metálicas, convém que sejam usados transformadores para instrumentos projetados para tais condições. A condensação pode ser evitada pelo projeto especial do invólucro, por ventilação e aquecimento adequados, ou pelo uso de um dispositivo de desumidificação.

Outras condições de serviço para transformadores para instrumentos de uso externo estão descritas a seguir. O valor médio da temperatura do ar ambiente, medida para um período de 24 h, não excede 35 °C e convém considerar a radiação solar até o nível de 1 000 W/m2 (em um dia claro ao meio-dia). O ar ambiente pode ser poluído por poeira, fumaça, gases corrosivos, vapores ou sal. A poluição não excede os níveis indicados na IEC 60815. A pressão do vento não superior a 700 Pa (correspondendo a uma velocidade do vento de 34 m/s), convém que a presença de condensação ou precipitação seja considerada e a camada de gelo não excede 20 mm.

Quando os transformadores para instrumentos se destinam a ser utilizados em condições diferentes das condições de serviço normais indicadas em 4.2, convém que os requisitos dos compradores sejam baseados nos critérios padronizados fornecidos a seguir. A uma altitude > 1.000 m, a tensão de descarga disruptiva do isolamento externo é afetada pela redução da densidade do ar. A uma altitude > 1.000 m, o comportamento térmico de um transformador para instrumentos é afetado pela redução da densidade do ar. Para instalações localizadas onde a temperatura ambiente pode estar significativamente fora do intervalo normal das condições de serviço indicadas em 4.2.1, convém que os intervalos preferenciais de temperatura máxima a ser especificada sejam: – 50 °C e 40 °C para climas muito frios; – 5 °C e 50 °C para climas muito quentes.

Em certas regiões com ocorrência frequente de ventos quentes e úmidos, mudanças súbitas de temperatura podem ocorrer, resultando em condensação, mesmo em condições de uso interno. Sob certas condições de radiação solar, medidas apropriadas, por exemplo, telhados, ventilação forçada etc., podem ser necessárias para não exceder as elevações de temperatura especificadas. Alternativamente, um fator de redução pode ser utilizado. As vibrações podem ocorrer devido a operações de manobra ou forças de curto-circuito. Para um transformador para instrumentos integrado em equipamentos montados (GIS ou AIS), a vibração produzida pelo equipamento montado deve ser considerada.

Para instalações onde é provável que ocorram terremotos, o nível de severidade aplicável de acordo com a IEC 62271-2 deve ser especificado pelo comprador. A conformidade com tais requisitos especiais, se aplicável, deve ser demonstrada por cálculo ou por ensaios, conforme definido pelas normas aplicáveis. Os sistemas de aterramento considerados são: sistema com neutro isolado (ver 3.2.4); sistema de aterramento ressonante (ver 3.2.5); sistema com neutro aterrado (ver 3.2.7); sistema com neutro solidamente aterrado (ver 3.2.8) e sistema com neutro aterrado por impedância (ver 3.2.9). Convém que as características comuns dos transformadores para instrumentos, incluindo seus equipamentos auxiliares, se aplicáveis, sejam selecionadas entre as seguintes: tensão máxima para o equipamento (Um); nível de isolamento nominal; frequência nominal (fR), carga nominal; classe de exatidão nominal.

As características se aplicam nas condições atmosféricas padronizadas (temperatura (20 °C), pressão (101,3 kPa) e umidade (11 g/m³)), especificados na IEC 60071-1. A tensão máxima para o equipamento possui valores-padrão que devem ser selecionados da tabela abaixo. A tensão máxima para o equipamento é escolhida como o próximo valor-padrão de Um igual ou superior à tensão máxima do sistema onde o equipamento deve ser instalado. Para equipamentos a serem instalados em condições ambientais normais relevantes para o isolamento, Um deve ser pelo menos igual a Usys.

Para equipamentos a serem instalados fora das condições ambientais normais relevantes para isolamento, Um pode ser selecionado mais alto do que o próximo valor-padrão de Um igual ou superior a Usys, de acordo com as necessidades especiais envolvidas. Como exemplo, a seleção de um valor Um mais alto que o próximo valor-padrão de Um igual ou superiora Usys pode surgir quando o equipamento tem que ser instalado a uma altitude superior a 1 000 m, a fim de compensar a diminuição da tensão suportável do isolamento externo.

Para a maioria dos valores de tensão máxima dos equipamentos (Um), existem vários níveis de isolamento nominal para permitir a aplicação de diferentes critérios de desempenho ou padrões de sobretensão. Convém que a escolha seja feita considerando o grau de exposição a sobretensões de frente rápida e frente lenta, o tipo do aterramento de neutro do sistema e o tipo de dispositivo limitador de sobretensão. O nível de isolamento nominal do terminal primário de um transformador para instrumentos deve ser baseado na tensão máxima do equipamento Um, de acordo com a tabela acima. O terminal primário destinado a ser aterrado em serviço tem Um igual a 0,72 kV.

Para transformadores para instrumentos montados em subestações isoladas a gás, os níveis de isolamento nominais, procedimentos de ensaio e critérios de aprovação estão de acordo com a IEC 62271-203, Tabela 102 a 103, isolamento fase-terra. As especificações para materiais orgânicos utilizados em transformadores para instrumentos (por exemplo, resina epóxi, resina poliuretano, resina epóxi cicloalifática, material composto, etc.), para instalação interior ou exterior, são dadas na série IEC 60455. Os ensaios em transformadores para instrumentos completos levando em conta fenômenos como mudança súbita de temperatura, inflamabilidade e envelhecimento ainda não estão padronizados. A IEC 60660, para isolação abrigada, e a IEC 61109, para isolação exposta ao tempo, podem ser utilizadas como orientação.