REVISTA DIGITAL ADNORMAS – Edição 146 | Ano 3 | 18 FEVEREIRO 2021

Acesse a versão online: https://revistaadnormas.com.br
Edição 146 | Ano 3 | 18 FEVEREIRO 2021
ISSN: 2595-3362
 

Confira os 12 artigos desta edição:

A construção de muros e taludes em solos grampeados

Saiba quais são os requisitos de projeto e execução de muros e taludes em solos grampeados.

A NBR 16920-2 de 01/2021 – Muros e taludes em solos reforçados – Parte 2: Solos grampeados especifica os requisitos de projeto e execução de muros e taludes em solos grampeados. Deve-se reconhecer que a engenharia geotécnica não é uma ciência exata e que os riscos são inerentes a toda e qualquer atividade que envolva fenômenos ou materiais da natureza, os critérios técnicos e procedimentos constantes nesta parte procuram traduzir o equilíbrio entre condicionantes técnicos, econômicos e de segurança usualmente aceitos pela sociedade na data de sua publicação.

Confira algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser o método executivo do solo grampeado?

Qual é a resistência estrutural à tração do grampo para armação em barras de aço?

Como pode ser obtida a resistência da interface solo-grampo (qs)?

Quais são as combinações de ações e critérios de segurança?

Como deve ser feita a verificação da estabilidade interna em equilíbrio local?

Nos projetos civis que envolvam mecânica dos solos e mecânica das rochas, o profissional habilitado com competência em engenharia geotécnica é o profissional capacitado a dar tratamento numérico ao equilíbrio mencionado. Outras soluções de solo reforçado em que haja comprovadamente apenas interação solo-reforço, não descritas nesta parte, podem ser utilizadas com as adaptações que sejam necessárias a partir dos conceitos e princípios apresentados.

Dessa maneira, há diversos tipos de grampos que podem ser adotados, dependendo das técnicas de instalação, de sua eficiência mecânica e de sua durabilidade. Os grampos perfurados e preenchidos com material ligante: consiste na perfuração do solo com diâmetros que variam de 75 mm a 150 mm, com barras de aço ou outros elementos resistentes à tração introduzidos no furo, com preenchimento da bainha com calda de cimento ou outro material ligante.

Os grampos autoperfurantes: grampos não reinjetados, constituídos por elemento monobarra vazado, cuja perfuração é realizada com sua própria barra e acessórios, e injetado simultaneamente com calda de cimento ou outro fluido ligante. Os acessórios de perfuração ficam incorporados ao grampo.

Os grampos cravados: barras de aço cravadas no maciço, sendo comumente de seção circular ou cantoneiras. Nestes grampos, não há bainha. A necessidade de proteção contra corrosão deve ser justificada com a previsão de espessuras de sacrifício.

Outras técnicas de instalação de grampos e de sua composição de materiais, como adição de fibras sintéticas ou de aço, podem ser adotadas, desde que sejam devidamente justificadas nos quesitos de resistência da interface solo-grampos (qs), durabilidade (corrosão) e resistência aos esforços solicitantes. O processo executivo da bainha tem por objetivo o preenchimento integral do furo.

O preenchimento do furo com material ligante deve ser realizado de forma ascendente, ou seja, deve-se introduzir um tubo auxiliar até o fundo da perfuração, procedendo-se então ao bombeamento do material ligante até que ele extravase pela boca do furo. O bombeamento deve ser mantido até que o material ligante extravasado esteja visualmente isento de resíduos da perfuração.

Se o projeto especificar a necessidade de injeção ou reinjeção do grampo adicionalmente ao preenchimento da bainha, a metodologia executiva deve ser detalhada. O executor pode sugerir uma metodologia alternativa, desde que seja obtida nos ensaios a resistência requerida na interface solo-grampo (qs) e previamente aprovada pelo projetista.

O Anexo C apresenta uma sugestão de procedimento executivo para injeção ou reinjeção de grampos após o preenchimento da bainha. Os paramentos utilizados no solo grampeado são parte do sistema construtivo e fornecem proteção contra erosão superficial, tendo ou não função estrutural na estabilidade do conjunto. Podem ser rígidos ou flexíveis, constituídos por concreto projetado, armado ou não, concreto armado moldado in loco, alvenaria estruturada, elementos pré-moldados de concreto, telas metálicas tecidas ou geossintéticos, associadas ou não à face vegetada ou outros elementos que atendam à mesma função.

Os elementos metálicos de face, se definitivos, devem ser protegidos contra corrosão. Em alguns casos de taludes inclinados, a face pode ser constituída somente por revestimento vegetal. O dimensionamento e o detalhamento da face devem fazer parte do projeto.

O método executivo do solo grampeado deve estar detalhado no projeto, de forma que a obra apresente condições de estabilidade adequadas durante as fases executiva e final. Em escavações, a execução dos grampos é realizada de cima para baixo. O projetista pode alterar essa metodologia, desde que isso seja justificado.

Nos casos em que seja necessária a escavação parcial e temporária não suportada do maciço a ser contido, o solo deve apresentar coesão mínima ou pelo menos coesão aparente (tensões de sucção), de modo assegurar a segurança transitória. Na presença de solos expansivos ou colapsíveis, exigem-se estudos especiais de estabilidade, particularmente para assegurar a segurança adequada na fase de execução.

Como medida de melhoria das condições de estabilidade temporária durante as escavações, podem ser adotadas ações adicionais, como escavação parcial em nicho (cachimbo), utilização de grampos subverticais, construção de parte do paramento previamente à execução do grampo e outros. A metodologia executiva a ser adotada nesses casos deve ser especificada no projeto.

Em taludes naturais, previamente cortados ou em estruturas preexistentes, quando se pretender apenas reforçar o maciço instável, o grampeamento pode ser efetuado de forma descendente ou ascendente, conforme a conveniência. No momento da execução da obra, caso o executor verifique condições diversas das previstas no projeto, o projetista deve ser comunicado para reavaliação do projeto.

As características de execução de cada grampo devem ser registradas em boletins individuais. O projeto de estruturas de solo grampeado deve atender aos critérios de segurança contra estados-limites últimos (ELU – ruptura ou colapso) e contra estados-limites de serviço (ELS – deslocamentos excessivos).

Recomenda-se esse processo para minimizar eventuais vazios adjacentes aos grampos, aumentar o confinamento do maciço no entorno do grampo e combater efeitos prejudiciais devido à possível exsudação do ligante no processo de preenchimento da bainha. O processo pode resultar em maior resistência da interface solo-grampo e, consequentemente, em uma maior resistência ao arrancamento dos grampos.

A reinjeção pode ser executada por meio de tubos plásticos perdidos que são instalados juntamente com a armação do grampo. Recomenda-se executar o processo em fase única, por setores, de modo que todo o comprimento do grampo seja injetado. Nesta metodologia, os tubos perdidos têm as pontas fechadas e são fragilizados em pontos determinados ao longo de seu comprimento, em locais onde se pretende efetuar a injeção do ligante.

Esses pontos fragilizados, vulgarmente designados de válvulas, são aqueles em que furos ou rasgos no tubo de injeção são feitos, protegidos apenas por uma fita gomada, ou similar, para isolar o interior do tubo perdido durante a injeção da bainha. Após a cura da bainha, é feita uma injeção pela boca do (s) tubo (s) adicional (is). As válvulas abrem nos pontos de menor competência do maciço.

Recomenda-se precaução quanto ao tempo de cura da bainha, pois dependendo do tempo de cura, o ligante pode apresentar alta resistência ao cisalhamento e o processo de injeção pode ser impossibilitado. Recomenda-se que em cada tubo de injeção seja feita somente uma fase de injeção e que estes fiquem preenchidos com calda após o procedimento.

Normalmente, a distância entre válvulas, o número de tubos de injeção, o momento da injeção e a pressão a ser aplicada são apresentados no projeto executivo. O processo é considerado satisfatório, desde que a resistência ao arrancamento dos grampos desejada seja atingida, verificada conforme o ensaio de arrancamento do Anexo A. A figura abaixo apresenta um grampo com mecanismo de reinjeção.

Para as verificações de estados-limites últimos (ELU), são conduzidas análises de equilíbrio limite e/ou de tensão-deformação. Nessas análises, alguns modelos tratam o solo grampeado como um bloco monolítico, enquanto outros individualizam a contribuição dos grampos; entre estes últimos, além da resistência à tração dos grampos, alguns modelos também consideram a resistência a esforços transversais.

O projetista pode optar por dimensionar a estrutura de solo grampeado como bloco monolítico. A verificação de estados-limites de serviço (ELS) e os métodos adotados ficam a critério do projetista. A verificação da estabilidade geral de estruturas de solo grampeado por meio do método de fator de segurança global deve ser efetuada por modelos da mecânica dos solos baseados no equilíbrio-limite.

Esta verificação deve levar em conta todas as condicionantes geológicas, geométricas, de sobrecarga, de interferências no entorno e outras. O projeto deve ser enquadrado em uma das classificações de nível de segurança contra a perda de vidas humanas, contra danos ambientais e materiais e os fatores de segurança mínimos para estabilidade geral.

O enquadramento nos casos previstos deve ser justificado por profissional habilitado. O enquadramento dos níveis de danos materiais e ambientais deve atender aos requerimentos dos órgãos públicos competentes e da legislação vigente. A classificação dos custos dos danos materiais e ambientais deve ser feita em comum acordo com o contratante do projeto.

A operação de equipamentos em atmosferas explosivas e em condições adversas

Deve-se entender as orientações para os equipamentos a ser instalados em atmosferas explosivas em ambientes que podem incluir temperaturas abaixo de –20 °C e condições adversas adicionais, incluindo aplicações marítimas. Seu objetivo é apresentar recomendações a serem consideradas no projeto, fabricação e instalação de equipamentos.

A ABNT IEC/TS 60079-43 de 01/2021 – Atmosferas explosivas – Parte 43: Equipamentos em condições adversas de serviços, na forma de uma especificação técnica, apresenta orientações para os equipamentos para instalação em atmosferas explosivas em ambientes que podem incluir temperaturas abaixo de –20 °C e condições adversas adicionais, incluindo aplicações marítimas. Seu objetivo é apresentar recomendações a serem consideradas no projeto, fabricação e instalação de equipamentos. Destina-se a ser utilizado em equipamentos operando dentro de uma faixa ambiental especificada no certificado de conformidade do equipamento. Para detalhes de classificação climáticas, consultar a Série IEC 60721 e a IEC 60068-1. É destinado a ser utilizado em conjunto com as Séries NBR IEC 60079 e NBR ISO/IEC 80079.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executada a manutenção dos equipamentos?

Quais são as recomendações sobre materiais?

Por que se preocupar com a radiação solar?

Quais os tipos de proteção “Ex” aos motores elétricos?

Essa norma especifica os requisitos para equipamentos elétricos destinados à instalação em atmosferas explosivas nas seguintes condições padronizadas: temperatura -20 °C a +60 °C; pressão 80 kPa (0,8 bar) a 110 kPa (1,1 bar); e ar contendo contração normal de oxigênio, normalmente 21 % v/v. Em alguns casos, outras partes da Série NBR IEC 60079 também especificam condições além desta faixa padronizada, por exemplo, na NBR IEC 60079-1.

A NBR IEC 60079-0 estabelece a faixa normal de temperatura ambiente como -20 °C a +40 °C, e que equipamentos elétricos projetados para instalação em faixas de temperatura ambiente diferentes desta faixa normal sejam considerados especiais, requerendo uma marcação adicional para informação ao usuário. A NBR IEC 60079-14 apresenta para os usuários os requisitos de seleção e instalação de equipamentos, de forma que estes sejam adequados para as condições ambientais, mas não apresenta orientações específicas para instalação fora das condições atmosféricas normais ou para condições ambientais adversas.

As condições ambientais extremas, como em regiões polares, são preocupantes para a tecnologia de proteção contra a ocorrência de uma explosão. Condições ambientais, como formação de neve, congelamento e precipitação, podem afetar de forma negativa a operação e a segurança dos equipamentos.

As temperaturas baixas extremas e condições climáticas tornam difíceis o processamento de hidrocarbonetos em áreas de processamento abertas, e isto pode representar uma dificuldade para a operação dos equipamentos. Medidas para tratar estas dificuldades são denominadas aclimatação, climatização ou invernização. Este documento representa uma orientação para as condições adversas de serviço, por exemplo, para equipamentos considerados especiais na NBR IEC 60079-0.

Este documento é aplicável ao projeto, fabricação, instalação, inspeção e utilização de tais equipamentos. O Anexo A apresenta orientações sobre os materiais a serem utilizados e o Anexo C apresenta informações sobre os motores elétricos para baixas temperaturas. É possível que algumas informações nesta Especificação Técnica sejam relocadas para as partes aplicáveis da Série NBR IEC 60079 na próxima edição de cada uma destas partes aplicáveis, como informações de orientação.

Esta Especificação Técnica não aborda neste momento outras condições ambientais, como temperaturas elevadas, as quais serão abordadas em uma próxima edição. Pode-se destacar que as condições ambientais e os requisitos específicos de operação são consideradas uma extensão, que pode ocasionar uma falha dos equipamentos ou em suas partes, relacionada com as características dos tipos de proteção “Ex”.

Informações úteis sobre as classificações climáticas podem ser encontradas na Série IEC 60721. Aqueles documentos apresentam informações sobre cinco classificações climáticas: tropical, árida, temperada, fria e polar. Se um fabricante desejar referenciar equipamentos como estando de acordo com aquelas classificações climáticas, é recomendado que a temperatura seja mostrada em uma parte específica da Série IEC 60721, por exemplo, no estabelecimento da temperatura a ser aplicada nos ensaios de resistência térmica ao calor e ao frio, na NBR IEC 60079-0.

Os principais fatores ambientais que podem afetar os equipamentos abordados neste documento, de forma individual ou combinada, incluem: baixa temperatura; umidade; meio corrosivo; camada de neve; precipitação; borrifos de ondas; ventos fortes; radiação solar; e efeitos mecânicos. Os efeitos destes fatores podem ser significativos, particularmente se eles ocorrerem de forma conjunta. Informações sobre estes efeitos são apresentadas a seguir.

Para baixas temperaturas, os seguintes fatores podem ser aplicáveis e convém que sejam considerados: capacitores eletroquímicos podem congelar e falhar; baterias de acumuladores podem descarregar; graxa e compostos de proteção podem se tornar sólidos e trincar; materiais de borracha podem perder a sua elasticidade e falhar; graxas podem congelar, afetando as partes como dobradiças e eixos; relés podem falhar; características de amplificação de transistores podem diminuir; perda de ductibilidade ou fragilização de materiais ou juntas soldadas podem ocorrer; expansão ou contração diferencial de materiais podem apresentar um impacto sobre o encaixe correto de componentes; aumento da viscosidade de óleo e o fluxo pode ser reduzido ou cessado, o que pode causar perda de proteção em sistemas mecânicos; óleo, como dielétrico de isolamento em equipamentos elétricos envelhecidos, pode apresentar conteúdo elevado de água, o que pode reduzir sua resistência dielétrica ou mesmo uma falha de isolamento dielétrico.

Existem outros efeitos ambientais, como a elevada umidade pode ocorrer devido às alterações da temperatura ambiente, por exemplo, em condições marítimas. Nestes casos, os seguintes fatores podem ser aplicáveis e convém que sejam considerados: a permeabilidade dielétrica de materiais isolantes pode aumentar; a resistência superficial de materiais isolantes pode diminuir; a permissividade de entreferros pode diminuir; os processos físico químicos auxiliares em materiais dielétricos e metálicos podem ocorrer, por exemplo, corrosão ou alterações biológicas.

Estes fatores podem causar alterações indesejáveis na capacitância de capacitores, diminuição na resistência de isolação, inchaço e descamação dos dielétricos, corrosão metálica ou formação de mofo no interior dos equipamentos. Sal e outros contaminantes podem acentuar diversos dos problemas causados pela umidade, como a redução das propriedades de isolação e o aumento da corrosão.

Dessa forma, os equipamentos devem ser fabricados de acordo com os requisitos de segurança aplicáveis das normas industriais aplicáveis. Tais normas incluem a Série IEC 60068, sobre ensaios ambientais, as quais incluem alguns ensaios aplicáveis às condições adversas de serviço. A Série IEC TR 60721-4 inclui referências aos ensaios aplicáveis na Série IEC 60068.

Quando um equipamento puder estar sujeito a condições adversas de serviço quando em operação, é recomendado que o fabricante apresente as informações adicionais necessárias para a seleção, instalação, operação e manutenção de equipamentos sob tais condições. É recomendado que os valores superiores e inferiores de temperatura e umidade sejam especificados. Os valores recomendados para as classificações climáticas são apresentados nas IEC 60721-1 e IEC 60721-2-1.

Quando aplicável, convém que a taxa de variação de temperatura para as quais os equipamentos são destinados também sejam especificadas nas instruções do equipamento. Para o mesmo tipo de equipamento, diferentes faixas de temperatura são frequentemente especificadas, para aplicações específicas. Quando as condições de armazenamento e transporte antes da instalação excederem a faixa de temperatura coberta pelo certificado, convém que os impactos potenciais destas temperaturas, sobre o tipo de proteção, sejam abordados nas instruções fornecidas pelo fabricante.

Quando tais informações não forem fornecidas nas instruções, é recomendado que as temperaturas de armazenamento não fiquem fora da faixa coberta pelo certificado. Convém que os tipos de proteção permaneçam efetivos enquanto tais equipamentos permanecerem expostos às condições adversas de serviço.

Isto precisa ser considerado nas fases de seleção e instalação, bem como ser considerado durante as atividades de inspeção e manutenção. Orientações sobre estes aspectos são apresentadas nas Seções 7 e 8. É recomendado que a seleção de equipamentos, projeto das instalações e manutenção levem em consideração os fatores ambientais e o desempenho, como requerido nas NBR IEC 60079-14 e NBR IEC 60079-17.

Esta Especificação Técnica pode também ser utilizado para fornecer orientações adicionais sobre estes aspectos. Quando equipamentos forem destinados à utilização em áreas onde podem estar expostos à névoa salina, convém que sejam aplicados requisitos sobre resistência contra corrosão à névoa salina. Informações úteis sobre classificação de substâncias quimicamente ativas e os efeitos destas substâncias sobre os equipamentos podem ser encontradas na Série IEC 60721-3, IEC 60654-4 e ISO 9223.

Sob condições de camada de neve, são recomendados equipamentos com grau de proteção IP66, de acordo com a NBR IEC 60529 ou NBR IEC 60034-5, de forma a evitar o ingresso da camada de neve no interior do invólucro, de uma forma similar como é feito para o ingresso de poeira. Convém que equipamentos que dissipam calor, em particular aqueles com partes girantes, sejam protegidos contra a queda de neve, a qual pode derreter quando o equipamento é energizado e se solidificar quando o equipamento é desenergizado.

Convém que tais equipamentos sejam instalados de forma que sejam protegidos contra a queda de neve ou sejam aquecidos de forma a evitar a solidificação da neve. Os requisitos para a resistência contra radiação solar somente precisam ser aplicados às partes que sejam expostas à radiação solar durante as condições de serviço, ao invés do equipamento completo. O Anexo B apresenta informações adicionais com relação à radiação solar.

Para equipamentos com superfície submetidas à radiação solar com cores diferentes de branca ou prata, as temperaturas de superfície podem se elevar em pelo menos 5 K. Ver detalhes no Anexo B. Em baixas temperaturas, convém que sejam considerados requisitos mais rigorosos para a integridade mecânica. Para equipamentos, isto pode ser considerado durante a elaboração de uma certificação, como requerido na NBR IEC 60079-0. Para instalações, isto pode significar requisitos adicionais, por exemplo, requisitos de montagem.

Alguns tipos de aço e de ferro fundido se tornam quebradiços a temperaturas abaixo de -20 °C. Para equipamentos destinados a serem utilizados em áreas abertas ou em ambientes fechados, onde as variações de temperatura do ar e de umidade não diferem significativamente daquelas em instalações ao tempo, a temperaturas abaixo de -20 °C, é recomendado que seja considerado o descrito a seguir.

Em juntas roscadas, onde materiais dissimilares com diferentes coeficientes de expansão de temperatura estiverem em contato, é recomendado que cuidado seja levado em consideração para evitar danos aos materiais e de forma a assegurar a requerida rigidez, quando da alteração das dimensões das partes, devido à grande variação da faixa de temperaturas que pode ser encontrada.

Para partes sujeitas a desgaste, por exemplo, resultante de atrito, convém não utilizar as taxas mais rápidas a baixa temperatura, comparadas com o desgaste em climas temperados. Para partes que podem possuir uma baixa resiliência ao impacto a baixas temperaturas, medidas adicionais podem ser necessárias, de forma a assegurar a sua integridade.

Se as condições operacionais dos equipamentos e seus parâmetros de projeto não excluírem a possibilidade de depósito de camada de neve ou gelo (“icing”) que afete o Tipo de Proteção “Ex”, então convém que medidas apropriadas sejam aplicadas, por exemplo, “climatização” (winterization). A climatização pode ser atingida pela instalação de equipamentos em áreas com temperatura controlada ou outras ações que evitem a deposição de neve na superfície, estruturas ou equipamentos.

Ações contra a deposição de neve ou de gelo incluem o aquecimento do ar ou do equipamento. Neve, chuva, pulverização (spray) ou falha nos sistemas de climatização podem levar a um rápido resfriamento dos equipamentos, resultando na queda de pressão interna e na ocorrência de condensação no interior dos equipamentos. Os invólucros podem se deformar e perder as características de proteção contra ingresso devido à exposição ao calor e umidade, seguida de um rápido resfriamento.

As pressões diferenciais causadas pelas variações nas temperaturas podem provocar a migração de água de um invólucro para outro, por meio dos cabos de interconexão. A utilização de um dispositivo adequado de respiro para alívio de pressão pode ser uma solução para este tipo de problema.

As temperaturas ambientes abaixo de -20 °C podem comprometer o Tipo de Proteção “Ex” do equipamento, sendo recomendado que isto seja considerado na avaliação e nos ensaios do equipamento. Quando estas baixas temperaturas não são especificamente avaliadas pela norma do Tipo de Proteção “Ex”, convém que sejam feitas considerações sobre os aspectos críticos que podem ser aplicáveis, com os exemplos apresentados a seguir.

O desempenho das características dos componentes utilizados em equipamentos intrinsecamente seguros, como barreiras e fontes de alimentação com duração de centelha limitada com elementos intrinsecamente seguros dinâmicos, é alterado a baixas temperaturas. Convém que tais alterações sejam consideradas na seleção de componentes apropriados, sendo recomendada uma avaliação de acordo com a NBR IEC 60079-11, utilizando a temperatura de operação especificada pelo fabricante.

Convém que esta característica nominal considere as alterações da operação de componentes semicondutores que tenham um impacto na capacidade de equipamentos intrinsecamente seguros desempenharem suas funções requeridas de segurança intrínseca. A eficiência da segurança intrínseca das fontes de alimentação com elementos intrinsecamente seguros dinamicamente controlados aplicados em tais sistemas depende da temperatura ambiente onde eles são utilizados. Em baixa temperatura, a sensibilidade de elementos dinâmicos semicondutores de elementos intrinsecamente seguros em fontes de alimentação é degradada e o tempo de chaveamento aumenta.

A NBR IEC 60079-11 especifica que os ensaios de ignição de centelha devem ser realizados com o circuito formado, de forma a apresentar as condições mais acendíveis (capazes de causar uma ignição), embora, na prática, os ensaios sejam normalmente executados nas temperaturas ambientes do laboratório. Desta forma, onde baixas temperaturas estiverem presentes, é necessário executar ensaios de segurança intrínseca dos sistemas com fontes de alimentação com proteção intrínseca dinâmica (por exemplo, “Power-i”) em temperaturas em faixas de aplicação, incluindo a temperatura mais baixa para os elementos semicondutores dinâmicos e com as cargas apropriadas conectadas ao equipamento centelhador padrão na máxima temperatura de serviço.

Para componentes semicondutores que proporcionem proteção intrínseca em temperaturas ambientes abaixo de -40°C, sistemas especiais de aquecimento podem ser requeridos. Para equipamentos destinados à utilização em climas marítimos frios, um grau de proteção maior que IP54 pode ser requerido, de forma a assegurar a proteção contra a possibilidade de depósito de cloretos sobre placas de circuito impresso, o que poderia levar a um trilhamento, independentemente de o equipamento estar de acordo com as distâncias de escoamento e com o índice de trilhamento comparativo (CTI) dos materiais isolantes da NBR IEC 60079-11.

Nos invólucros à prova de explosão “d” convém que os dispositivos de fixação que asseguram a integridade de invólucros sejam fabricados de materiais que mantenham a sua rigidez em baixas temperaturas. Isto é especialmente importante para temperaturas abaixo de -40°C. Para juntas resinadas, convém que sejam utilizadas resinas resistentes ao frio. Proteção adicional de superfícies à prova de explosão contra corrosão pode ser requerida, especialmente para equipamentos em climas marítimos. Em juntas onde materiais dissimilares com diferentes coeficientes de temperatura são montados juntos, convém que as alterações de temperatura dos valores superior para o inferior sejam consideradas para o efeito do interstício do caminho de passagem de chama (“flamepath gap”).

Os invólucros pressurizados “p”, operando a baixas temperaturas, podem requerer características adicionais para assegurar uma operação confiável. Aquecedores fixos, purga da atmosfera interna ou outros dispositivos anticondensação podem ser requeridos.

Em equipamentos com imersão em líquido “o” é recomendado que sejam utilizados líquidos adequados para aplicação em baixa temperatura ou é recomendada a instalação de preaquecimento do equipamento. Convém que isto seja especificado nas instruções do fabricante. Embora o certificado de um equipamento possa permitir a sua operação em baixas temperaturas, a funcionalidade do equipamento naquelas baixas temperaturas não é normalmente abordada.

Este documento aborda alguns elementos da funcionalidade para os quais convém que sejam considerados por questões de segurança. Por exemplo, aquecedores podem ser utilizados mesmo se o equipamento estiver operando dentro de seus limites cobertos por seu certificado. Em baixas temperaturas, convém que algumas baterias não sejam consideradas fonte de alimentação alternativa (“backup”) para sistema de iluminação de emergência.

Isto pode ser obtido por um sistema de alimentação ininterrupto (uninterruptible power system – UPS) com a bateria localizada em uma área de temperatura mais alta ou outros meios adequados, por exemplo, sistema de aquecimento. A saída luminosa de lâmpadas fluorescentes é menor em baixas temperaturas.

Pode-se considerar que outras fontes de luz apresentem a saída luminosa necessária. Abordagens mais simples com relação às fontes de alimentação alternativas (backup) podem ser necessárias para outros sistemas que normalmente seriam baseados em baterias.

As dimensões e as tolerâncias dos engates rápidos pneumáticos

Deve-se saber as dimensões e as tolerâncias assim como assegura a intercambiabilidade dos engates rápidos pneumáticos.

A NBR ISO 6150 de 01/2021 – Sistemas pneumáticos – Engate rápido cilíndrico para pressão de trabalho máxima de 1 MPa,1,6 MPa e 2,5 MPa (10 bar, 16 bar e 25 bar) – Dimensões do engate rápido macho, especificações, orientações de aplicação e testes estabelece as dimensões e tolerâncias assim como assegura a intercambiabilidade dos engates rápidos pneumáticos. Também fornece especificações e orientações de aplicação e especifica testes a serem aplicados no engate rápido macho junto com o engate rápido fêmea. A construção e as dimensões dos engates rápidos fêmeas são deixadas como opção do fabricante.

Este documento aplica-se aos engates rápidos cilíndricos para pressão de trabalho máxima de 1 MPa, 1,6 MPa e 2,5 MPa (10 bar, 16 bar e 25 bar) para uso em sistemas pneumáticos. Engates rápidos com válvulas de fechamento para equipamentos de solda, corte e processos relacionados estão cobertos pela ISO 7289. Este documento aplica-se somente ao critério dimensional dos produtos fabricados de acordo com este documento. Ele não se aplica às suas características funcionais.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que é a máxima pressão de trabalho?

Quais são as dimensões para engates rápidos macho de 1,6 MPa (16 bar) de pressão máxima de trabalho (série B)?

Como deve ser definido o acabamento superficial do sistema pneumático?

Como deve ser executado o ensaio de acuracidade dos equipamentos e instrumentação dos ensaios?

Nos sistemas pneumáticos, a energia é transmitida e controlada pelo gás pressurizado contido em um circuito fechado. Conexões de engate rápido cilíndricas em conformidade com este documento são projetadas para unir ou separar linhas condutoras de fluido sem a necessidade de utilizar ferramentas ou dispositivos especiais.

Os engates rápidos cilíndricos para sistemas pneumáticos são classificados conforme a pressão máxima de trabalho nas três diferentes séries a seguir: Série A – Engates rápidos cilíndricos para uma máxima pressão de trabalho de 1 MPa (10 bar); Série B – Engates rápidos cilíndricos para uma máxima pressão de trabalho de 1,6 MPa (16 bar); Série C – Engates rápidos cilíndricos para uma máxima pressão de trabalho de 2,5 MPa (25 bar).

As tabelas e a figuras destinam-se somente às dimensões e tolerância do engate rápido macho. As dimensões externas do engate rápido fêmea são deixadas como opção do fabricante; a mesma condição aplica-se ao terminal oposto do engate rápido macho para conexão a outro componente, tubo ou mangueira. As dimensões e tolerância para engates rápidos machos cilíndricos da série A são mostradas na figura abaixo e dadas na tabela abaixo.

A designação para um engate rápido de acordo com este documento deve incluir, na ordem dada, as seguintes informações: identificação do bloco, ou seja, a palavra “Engate Rápido”; referência para este documento; colocar a letra para a série do acoplamento (isto é, A, B ou C); diâmetro nominal. Exemplo Um acoplamento engate rápido cilíndrico para máxima pressão de trabalho de 1,6 MPa (16 bar), ou seja, série B, com diâmetro nominal de 15 mm, deve ser designado como a seguir: engate rápido NBR ISO 6150 – B– 15.

Os engates rápidos (macho e fêmea), devem estar em condições de uso após terem sido submetidos a uma pressão de teste, como descrito em 8.3, de 1,5 vez a pressão máxima de trabalho. Os engates rápidos (macho e fêmea), devem ser projetados para suportar quatro vezes a pressão de trabalho.

Para os testes em temperaturas extremas de trabalho, submeter os engates rápidos (macho e fêmea), de acordo com o procedimento descrito nessa norma, para a temperatura extrema de trabalho de operação recomendada pelo fabricante, nas posições engatadas e desengatadas: por 6 h na máxima temperatura de trabalho, em cada posição; por 4 h na mínima temperatura de trabalho, em cada posição. Registrar qualquer sinal de vazamento, deformação ou mau funcionamento.

O engate macho e o engate fêmea devem ser tais que, quando submetidos à máxima pressão de trabalho, a mangueira ou ferramenta a ser conectada possa rotacionar para alinhamento, de modo a prevenir uma carga de torque da mangueira ou engate. Para o teste de rigidez estrutural, o engate rápido acoplado deve suportar: uma carga radial de 2.200 N; uma carga axial de 2.200 N. Para acoplamentos feitos de material plástico, recomenda-se que a carga seja limitada a 400 N.

O engate rápido acoplado ou somente o engate fêmea devem ter vazamento que não exceda os valores indicados pelo fabricante na máxima pressão de trabalho. Este requisito deve ser verificado de acordo com o procedimento descrito nessa norma.

Para a instalação em ferramentas com vibração, recomenda-se inserir uma mangueira flexível de comprimento mínimo de 300 mm entre a ferramenta com vibração e o engate rápido. O projetista do circuito e/ou o usuário devem estar atentos ao fato de que um sistema de descompressão deve ser fornecido para aprimorar a segurança durante o acoplamento e desacoplamento (ver ISO 4414). Por exemplo, para evitar que o acoplamento macho seja expulso perigosamente devido à pressão; para evitar que ar comprimido ou o material particulado seja expelido perigosamente; para permitir o acoplamento e desacoplamento em níveis de pressões seguras.

ASME B31.9: os serviços de construção de tubulações

Essa norma, editada em 2020 pela American Society of Mechanical Engineers (ASME), contém regras para a construção de tubulação em edifícios industriais, institucionais, comerciais e públicos, e residências com várias unidades, que não requerem a gama de tamanhos, pressões e temperaturas cobertas na norma B31.1. Ela prescreve os requisitos para o projeto, materiais, fabricação, instalação, inspeção, exame e ensaio para os serviços de construção de sistemas de tubulações.

A ASME B31.9:2020 – Building Services Piping contém regras para a construção de tubulação em edifícios industriais, institucionais, comerciais e públicos, e residências com várias unidades, que não requerem a gama de tamanhos, pressões e temperaturas cobertas na norma B31.1. Ela prescreve os requisitos para o projeto, materiais, fabricação, instalação, inspeção, exame e ensaio para os serviços de construção de sistemas de tubulações. Inclui os sistemas de tubulação no edifício ou dentro dos limites da propriedade.

Ela se junta a muitas outras normas de segurança da ASME que regem a indústria da construção, incluindo a série A17 em elevadores e escadas rolantes; a série B30 em guindastes, guinchos e elevadores; e a série A112 no encanamento. Também serve como um complemento para outros códigos B31 da ASME em sistemas de tubulação. Juntos, eles continuam sendo referências essenciais para qualquer pessoa envolvida com tubulação.

As principais mudanças nesta revisão incluem a adição de tensões permitidas para aços inoxidáveis (austeníticos) à Tabela I-1 e revisões das referências no Apêndice III Obrigatório. A aplicação cuidadosa desses códigos B31 ajudará os usuários a cumprir os regulamentos aplicáveis em suas jurisdições, ao mesmo tempo em que podem obter os benefícios operacionais, de custo e de segurança a serem obtidos com as muitas práticas recomendadas do setor detalhadas nesses volumes. É destinada a projetistas, proprietários, reguladores, inspetores e fabricantes de dutos de construção industrial, institucional, comercial e pública.

CONTEÚDO

Prefácio . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . vi

Lista do Comitê. . . . .. . . . . . . . …………….vii

Correspondência com o Comitê B31. . . . . . . . . ix

Introdução . . . . . . . . . . . . . . . . XI

Sumário das mudanças . . . . . . . . . . xiii

Capítulo I Escopo e definições. . . . . . . . . . . . . 1

900 General. . . . .. . . . . . . . . . . . . . . . . 1

Capítulo II Projeto. . . . . . . . . . . . . . . . . . . . . . 9

Parte 1 Condições e critérios. .. . . . . . . . . . 9

901 Condições de projeto . . . . . . . . . . . . . . 9

902 Critérios de projeto.. . . . . . . . . . . . . . . . . 9

Parte 2 Projeto de pressão dos componentes da tubulação…11

903 Critérios para projeto de pressão de componentes de tubulação. . . . . . . . . . . . 11

904 Projeto de pressão dos componentes. .. . . . . . . . . . . 11

Parte 3 Seleção e limitação de componentes. . . .  . . . . . . 14

905 Pipe. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

906 Conexões, dobras e interseções. . . . . . . . . . . . . 15

907 Válvulas. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

908 Flanges, espaços em branco, juntas e parafusos. .. . . 15

Parte 4 Seleção e limitação de juntas.  . . . . . . . . . . 15

910 Juntas de tubulação. . .. . . . . . . . . . . . . . . . . . 15

911 Juntas soldadas. . . .  . . . . . . . . . . . . . . . . . 15

912 Juntas flangeadas. . . . . . . . . . . . . . . . . . . . . . 16

913 Juntas mecânicas e proprietárias. . . . . . . . . . 16

914 Juntas rosqueadas. . . . . . . . . . . . . . . . . . . . . 16

915 Juntas dilatadas, sem flange e de compressão.. . . . . 16

916 Juntas tipo bell e spigot. . .  . . . . . . . . . . . . . . . 16

917 Juntas brasadas e soldadas . . . . . . . . . . . . . . 16

Parte 5 Expansão, flexibilidade e suporte. . . . . . . . . 17

919 Expansão e flexibilidade. . .  . . . . . . . . . . . . . . 17

920 Cargas em elementos de suporte de tubos. . . . . . 20

921 Projeto de elementos de suporte de tubulação. . . . . . . 21

Parte 6 Sistemas. . . . . . . . . . . . . . . . . . . . . . . . . . 25

922 Requisitos de projeto relativos a sistemas de tubulação específicos. . . . . . . . . . . . 25

Capítulo III Materiais. …. . . 27

923 Materiais – Requisitos Gerais. . . . . . . . . . . 27

Capítulo IV Requisitos de componentes e práticas padrão. . .29

926 Dimensões e classificações dos componentes. .  . . . 29

Capítulo V Fabricação, montagem e instalação  . . . . . 36

927 Fabricação e soldagem de metais.  . . . . . . . . . . 36

928 Brasagem e soldagem de metais. . . . . . . . . . . . . 42

929 Curvatura . . . . . . . . . . . . . . . . . . . . . . 42

930 Formação. . . . . . . . . . . . . . . . . . . . . . . 42

931 Tratamento térmico. . . . . . . . . . . . . . . . . . 42

934 Fabricação dos não metálicos . . . . . . . . . . . 43

935 Montegem. . . . . . . . . . . . . . . . . . . . . . . 44

Capítulo VI Inspeção, exame e teste.  . . . . . . . 46

936 Inspeção e exame. . . . . . . . . . . . . . . . . . . . . 46

937 Teste de vazamento. .. . . . . . . . . . . . . . . . . . 47

Apêndices obrigatórios

I Tabelas de tensão . . . . . . . . . . . . . . . . . . . . 49

II Pressões permitidas para tubulação de pressão não metálica e não plástica. . . . . . . . . . . . . . 58

III Normas de referência. . . . . . . . . . . . . . . . . . . . 59

IV Preparação de consultas técnicas. . .  . . . . . . . . . 62

Apêndices não obrigatórios

Um programa não obrigatório do sistema de gestão da qualidade. . . .. . . . . . . . . . . . . . . 63

B Projeto sísmico e retrofit de sistemas de tubulação…. . 64

O Código ASME B31 para tubulação de pressão consiste em uma série de Seções publicadas individualmente, cada uma sendo uma norma nacional norte americana. Doravante, nesta Introdução e no texto desta Seção B31.9 do Código, onde a palavra Código é usada sem identificação específica, significa esta Seção do Código. O Código especifica os requisitos de engenharia considerados necessários para um projeto e construção seguros de tubulação de pressão.

Embora a segurança seja a consideração principal, este fator sozinho não governará necessariamente as especificações finais para qualquer instalação de tubulação. O Código não é um manual de projeto. Muitas decisões que devem ser tomadas para produzir uma instalação de tubulação não são especificadas em detalhes nesse Código. O Código não substitui o julgamento de engenharia do proprietário e do projetista.

Na medida do possível, os requisitos do Código para projeto são definidos em termos de princípios e fórmulas básicas. Estes são complementados conforme necessário com requisitos específicos para garantir a aplicação uniforme de princípios e para orientar a seleção e aplicação de elementos de tubulação. O Código proíbe os projetos e práticas reconhecidamente inseguras e contém avisos onde cautela, mas não proibição, é necessária.

Este Código inclui referências a especificações de materiais e normas de componentes aceitáveis, incluindo requisitos dimensionais e classificações de pressão-temperatura; os requisitos para o projeto de componentes e conjuntos, incluindo suportes de tubos; os requisitos e dados para avaliação e limitação de tensões, reações e movimentos associados a pressão, mudanças de temperatura e outras forças; a orientação e as limitações na seleção e aplicação de materiais, componentes e métodos de união; os requisitos para a fabricação, montagem e instalação da tubulação; e os requisitos para exame, inspeção e teste de tubulação.

Pretende-se que esta edição do Código não seja retroativa. A menos que um acordo seja feito especificamente entre as partes contratantes para usar outro problema, ou o órgão regulador com jurisdição impõe o uso de outro problema, a última edição emitida pelo menos seis meses antes da data do contrato original para a primeira fase de atividade cobrindo um sistema de tubulação ou os sistemas devem ser o documento que rege todos os projetos, materiais, fabricação, montagem, exame e teste da tubulação até a conclusão da obra e operação inicial.

Os usuários deste Código são alertados contra o uso de revisões sem a garantia de que sejam aceitáveis pelas autoridades competentes na jurisdição onde a tubulação será instalada. Os usuários do Código notarão que as cláusulas do Código não são necessariamente numeradas consecutivamente. Essas descontinuidades resultam do cumprimento de um esquema comum, na medida do possível, para todas as seções do Código. Desta forma, o material correspondente é correspondentemente numerado na maioria das Seções do Código, facilitando assim a referência por aqueles que têm a oportunidade de usar mais de uma Seção.

O ensaio não destrutivo por ultrassom de phased array em juntas soldadas

Deve-se compreender os requisitos para a realização do ensaio não destrutivo por meio de ultrassom computadorizado pela técnica de phased array em juntas soldadas em materiais metálicos.

A NBR 16339 de 01/2021 – Ensaios não destrutivos – Ultrassom – Phased array para inspeção de solda estabelece os requisitos para a realização do ensaio não destrutivo por meio de ultrassom computadorizado pela técnica de phased array em juntas soldadas em materiais metálicos.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que é o time corrected gain?

Qual deve ser a correção de sensibilidade e escala?

Qual deve ser o incremento de varredura x espessura?

Como deve ser feito o planejamento da inspeção?

A técnica de phased array pode ser usada como técnica única ou combinada com outros métodos ou técnicas de ensaio não destrutivo, tanto para inspeção de fabricação quanto para inspeção em serviço. Essa norma descreve as capacidades específicas e as limitações da técnica de phased array para detecção, localização, dimensionamento e caracterização de descontinuidades em juntas soldadas por fusão.

A pessoa que executa o ensaio de ultrassom deve atender aos requisitos da NBR NM ISO 9712. O ensaio phased array deve ser realizado de acordo com um procedimento escrito, que deve conter no mínimo os requisitos listados na tabela abaixo.

A qualificação do procedimento deve ser realizada antes da execução dos serviços, e no procedimento qualificado devem constar no mínimo os requisitos descritos na tabela acima. Todos os procedimentos de ensaio devem ser qualificados por profissional nível 3, de acordo com a norma específica do produto, e as evidências da qualificação devem estar disponíveis para apreciação da contratante.

A norma específica do produto pode ser uma norma de projeto, construção, fabricação, montagem e inspeção em serviço, que estabeleça os requisitos técnicos referentes ao material, montagem e inspeção nos projetos de fabricação e construção de produtos ou equipamentos. Quando não especificado na norma específica do produto, a qualificação do procedimento deve ser efetuada em corpos de prova acordados entre cliente e fabricante, e representativos do ensaio a ser efetuado.

Em casos de aplicação de critérios de aceitação baseados na mecânica da fratura, a qualificação deve ser efetuada em corpos de prova representativos da inspeção, com características idênticas e em quantidade suficiente para que, no processo de qualificação, se possa demonstrar que o ensaio apresenta características de repetitividade, incerteza de medição, PoD e PoR compatíveis com a inspeção e critérios adotados na avaliação de descontinuidades especificadas. A probabilidade de detecção (PoD) é a probabilidade de detecção da menor descontinuidade permitida pelo critério de aceitação acordado. A probabilidade de rejeição (PoR) é a probabilidade de rejeição de um defeito a partir da amplitude do sinal recebido e do seu dimensionamento.

Sempre que qualquer variável da tabela acima for alterada, deve ser emitida uma revisão do procedimento. Se a variável for essencial, o procedimento deve ser requalificado e revalidado. Devem ser informados o material a ser inspecionado, os detalhes dimensionais da junta, a faixa de espessura, o processo de soldagem e as superfícies de acesso para varredura.

O instrumento de medição de phased array deve ser do tipo pulso-eco e deve ser equipado com um controle de ganho, em decibéis, com incrementos de no mínimo 1 dB, contendo múltiplos canais independentes de emissor/receptor. O sistema deve ser capaz de gerar e exibir imagens A-scan, B-scan, C-scan, D-scan e S-scan, que podem ser armazenadas e recuperadas para posterior análise.

O sistema de medição de phased array deve possuir software de geração própria de leis focais, que permita modificações diretas nas características do feixe sônico. Leis focais específicas podem ser geradas pelo próprio sistema de medição ou ser importadas.

O sistema de medição de phased array deve ter um meio de armazenamento para arquivar dados de inspeção, incluindo o A-scan completo da região de interesse. Dispositivos de armazenamento externo de dados ou um computador remoto portátil ligado ao instrumento podem também ser utilizados para este fim.

As linearidades vertical e horizontal do instrumento de medição de phased array devem ser verificadas pelo menos semestralmente, de acordo com a ASTM E 2491. O instrumento deve ser capaz de operar pelo menos com frequências nominais de 1 MHz a 10 MHz.

O instrumento deve ser capaz de digitalizar o sinal A-scan com uma frequência de pelo menos cinco vezes a frequência nominal do cabeçote utilizado. A amplitude do sinal deve ser digitalizada com uma resolução de pelo menos 8 bits, isto é, 256 níveis.

O instrumento deve ser capaz de igualar a resposta de amplitude a partir de um alvo com um percurso sônico fixo para cada ângulo usado na técnica de ganho corrigido pelo ângulo (ACG – angle corrected gain), proporcionando assim a compensação de atenuação na sapata em diferentes ângulos. Em instrumentos que não possuam este recurso, onde o ajuste seja extrapolado para uma determinada faixa de ângulos a partir de um ângulo fixo, esta faixa deve ser de no máximo 10°.

O instrumento deve também possuir facilidades para equalizar as amplitudes dos sinais pela base de tempo (TCG) ou corrigir a amplitude em relação à distância (DAC). Os requisitos de aplicação vão determinar o cabeçote de phased array a ser empregado, que pode ter sapata removível ou fixa, e ser de contato direto ou imersão.

Os cabeçotes de phased array para a inspeção de solda podem gerar ondas longitudinais ou transversais e ser de arranjo 1D, 1,5D ou 2D. O número de elementos do cabeçote de phased array, as dimensões dos elementos e o passo devem ser selecionados com base nos requisitos da aplicação e nas recomendações do fabricante.

Quando sapatas de refração são utilizadas para inclinação do feixe, o ângulo de incidência natural da sapata deve ser selecionado de modo que a faixa angular de inspeção não exceda as limitações inerentes ao transdutor e ao modo de transmissão (longitudinal ou transversal). Em superfícies curvas, se a abertura entre a sapata e a superfície da peça ensaiada for superior a 0,5 mm em qualquer ponto, a sapata de refração usada deve ser modificada para proporcionar acoplamento adequado.

A temperatura de ensaio deve estar entre 0 °C e 60 °C. Fora desta faixa, a adequação dos cabeçotes e do acoplante deve ser verificada. Os itens do sistema de medição que devem ser periodicamente calibrados são o instrumento, o bloco-padrão e o bloco de referência, quanto ao dimensional, por laboratórios que atendam aos requisitos apresentados na NBR ISO/IEC 17025.

A matéria prima utilizada na confecção dos blocos deve possuir certificação quanto à composição química do material. A periodicidade de calibração do bloco-padrão depende da frequência e das condições de utilização. Recomenda-se que a periodicidade de calibração atenda ao especificado na NBR ISO 10012.

Qualquer avaria observada no bloco-padrão implica na necessidade de nova calibração, independentemente da periodicidade estabelecida. Para a verificação do sistema de medição, deve ser verificado o correto funcionamento de todos os canais, cabeçotes e cabos do sistema de inspeção. Esta verificação deve ser realizada diariamente, antes e após cada ensaio.

No caso de alguma ação corretiva ser necessária, todas as soldas devem ser reinspecionadas desde a última verificação satisfatória. A avaliação inicial da atividade de cada elemento do transdutor deve ser feita em conformidade com o Anexo A3 da ASTM E 2491. Recomenda-se que esta verificação seja semanal ou quando da verificação periódica da perda de sensibilidade.

O instrumento deve ser ajustado utilizando A-scan para cada lei focal, fornecendo leitura da indicação real do percurso sônico no material. A escala deve incluir correção do atraso (delay) do tempo do percurso sônico da sapata. A visualização corrigida B-scan ou S-scan deve indicar a profundidade real de refletores conhecidos, com tolerância de 5% da escala ou 3 mm, o que for menor.

A escala deve ser estabelecida utilizando as superfícies cilíndricas de blocos de referência, como o bloco IIW do mesmo material da peça de ensaio ou acusticamente semelhante. Para a execução do ensaio devem ser estabelecidos níveis de referência por meio de curvas DAC ou TCG obtidas a partir de blocos de referência.

Os blocos de referência devem ser fabricados com material acusticamente similar (velocidade sônica e coeficiente de atenuação) à peça a ser ensaiada, além de apresentar condição superficial semelhante. Os blocos de referência para ajuste da sensibilidade devem ser concebidos de modo que a sensibilidade não varie ao longo do ângulo do feixe.

Os refletores-padrão podem ser: lateral de furos paralelos às superfícies de varredura e perpendiculares ao feixe sônico; fundo plano de um furo nos ângulos de ensaio; refletores de mesmo raio na faixa de ângulos utilizados; e outros refletores recomendados, conforme a norma específica do produto. O ajuste deve incluir todo o sistema de medição de phased array e deve ser realizado em toda a faixa de espessura a ser inspecionada, antes da utilização do sistema de medição.

O ajuste deve ser realizado na superfície do bloco (com ou sem revestimento; convexa ou côncava) correspondente à superfície do componente a partir da qual o ensaio deve ser executado. O mesmo acoplante que será usado durante o ensaio deve ser utilizado para o ajuste. As mesmas sapatas ou sistema de imersão usados no ajuste devem ser utilizados para o ensaio.

As mesmas leis focais utilizadas no ajuste devem ser utilizadas para o ensaio. Qualquer controle que afete a amplitude do instrumento (por exemplo, duração de pulso, filtros etc.) deve permanecer na mesma posição de ajuste e do ensaio. Qualquer controle que afete a linearidade do instrumento (por exemplo, rejeição, supressão) não pode ser utilizado.