A segurança e a intercambialidade das lâmpadas LED com dispositivo de controle

A NBR IEC 62560 de 10/2021 – Lâmpadas LED com dispositivo de controle incorporado para serviços de iluminação geral para tensão > 50 V — Especificações de segurança especifica os requisitos de segurança e intercambialidade, juntamente com os métodos de ensaio e condições necessárias para demonstrar a conformidade das lâmpadas LED, com meios integrados para um funcionamento pleno (lâmpadas LED com reator incorporado), previstas para uso doméstico e iluminação geral similar, tendo: potência nominal de até 60 W; tensão nominal > 50 V até 250 V; e bases de acordo com a Tabela 1. Os requisitos desta norma referem-se apenas aos ensaios de tipo.

As recomendações para o ensaio do produto ou ensaio de lote inteiro são idênticas às previstas no Anexo C da NBR IEC 62031. Sempre que nesta norma o termo lâmpada (s) for usado, é entendido como lâmpada (s) LED com dispositivo de controle incorporado, exceto onde é obviamente atribuído a outros tipos de lâmpadas. Esta norma inclui a segurança fotobiológica.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o valor do momento de flexão e da massa transmitida?

Qual é o dedo-padrão de ensaio (de acordo com a IEC 60529)?

Qual é a resistência de isolação e rigidez dielétrica após exposição à umidade?

Qual deve ser o suporte para ensaio de torque em lâmpadas com bases rosqueáveis?

Já existem no mercado produtos à base de LED que substituem as lâmpadas existentes, quer sejam lâmpadas incandescentes ou lâmpadas fluorescentes com reator incorporado à base, ou substituto para lâmpadas halógenas com filamento de tungstênio abaixo de 50 V. Esta norma abrange a faixa de tensão de alimentação de > 50 V até 250 V. Uma norma de segurança para lâmpadas LED com tensões ≤ 50 V será proposta posteriormente no tempo adequado. Esse trabalho futuro também inclui consequentemente normas de desempenho para todos os tipos de lâmpadas LED, incluindo os requisitos fotométricos mínimos para ensaio de tipo.

Devido à urgente necessidade de estabelecer esta norma, esta será uma norma única neste momento. As lâmpadas devem ser projetadas e construídas de forma que, em uso normal, funcionem de forma confiável e não causem qualquer perigo para o usuário ou arredores. Em geral, a conformidade é verificada através da realização de todos os ensaios especificados.

As lâmpadas LED com dispositivo de controle incorporado são não reparáveis, seladas de fábrica. Elas não podem ser abertas para quaisquer ensaios. Em caso de dúvida, com base na inspeção da lâmpada e na análise do diagrama do circuito, e de acordo com o fabricante ou fornecedor responsável, ou os terminais de saída devem ser curto-circuitados, ou de acordo com o fabricante, as lâmpadas especialmente preparadas para que uma condição de falha possa ser simulada devem ser submetidas a ensaio (ver Seção 13).

Em geral, todos os ensaios são realizados em cada tipo de lâmpada ou, quando uma série de lâmpadas semelhantes é envolvida, todos os ensaios são realizados para cada potência da série ou em uma seleção representativa da série, conforme acordado com o fabricante. Quando uma lâmpada falha em segurança durante um dos ensaios, ela é substituída, desde que fogo, fumaça ou gás inflamável não seja produzido. Outros requisitos de segurança são dados na Seção 12.

As lâmpadas devem ser marcadas de forma clara e indelével com as seguintes informações obrigatórias: marca de origem (isto pode tomar a forma de uma marca, o nome do fabricante ou o nome do fornecedor responsável); tensão nominal ou faixa de tensão nominal (marcado com “V” ou “volts”); potência nominal (marcada com “W” ou “watts”); e frequência nominal (marcada em “Hz”).

Além disso, as seguintes informações devem ser fornecidas pelo fabricante na lâmpada ou no invólucro ou recipiente ou nas instruções de instalação da lâmpada: corrente nominal (marcado com “A” ou “ampère”). Para lâmpadas com peso significativamente maior do que o das lâmpadas que são substituídas, deve-se prestar atenção ao fato de que o peso adicional pode reduzir a estabilidade mecânica de certas luminárias e porta-lâmpadas, e podem ser prejudicados o contato e a retenção da lâmpada.

As condições especiais ou restrições que devem ser observadas para o funcionamento da lâmpada, por exemplo, operação em circuitos dimerizáveis. Quando as lâmpadas não são adequadas para graduação, o símbolo da figura abaixo pode ser utilizado. As lâmpadas com bulbos impróprios para contato com a água devem ser marcadas com o símbolo conforme a figura abaixo. A marcação deve ser fornecida na embalagem ou nas informações que a acompanham. A altura do símbolo gráfico deve ser no mínimo de 5 mm. O símbolo não é necessário se um aviso por escrito for fornecido, como “Utilização somente em locais secos”.

A conformidade é verificada como a seguir: a presença e legibilidade da marcação requerida por inspeção visual; a durabilidade da marcação é verificada pela tentativa de removê-la, esfregando levemente, por 15 s, com um pedaço de pano embebido em água e, após secagem, por mais 15 s, com um pedaço de pano umedecido com hexano. A marcação deve ser legível após o ensaio. A disponibilidade das informações requeridas por inspeção visual.

A intercambialidade deve ser assegurada pelo uso de bases, de acordo com a NBR IEC 60061-1 e calibres de acordo com a IEC 60061-3; ver Tabela 1. A conformidade é verificada pelo uso dos calibres pertinentes.

O valor do momento de flexão e massa transmitida, pela lâmpada no porta-lâmpada não pode exceder o valor informado nessa norma ou, onde não informado, o valor no sistema de informação na folha de especificação das bases na NBR IEC 60061-1. O momento de flexão deve ser determinado medindo o peso da lâmpada (por exemplo, por meio de uma balança) na ponta do bulbo da lâmpada pronta horizontalmente e multiplicando esta força pela distância entre a ponta da lâmpada e da linha do eixo fixo.

A linha do eixo fixo deve se situar na extremidade inferior da parte cilíndrica (por bases Edison e baioneta) ou no fim dos pinos de contato (por bases de pino), devendo ser apoiada por uma folha de metal fina na posição vertical ou um meio semelhante. As lâmpadas devem ser construídas de forma que, sem qualquer compartimento adicional sob a forma de uma luminária, nenhuma parte interna metálica, nenhuma parte externa metálica com isolação básica ou nenhuma parte metálica viva da base da luminária ou da própria lâmpada sejam acessíveis quando a lâmpada é instalada em um soquete de acordo com os dados da folha da IEC pertinente sobre soquetes.

A conformidade é verificada por meio do dedo-padrão de ensaio especificado nessa norma, se necessário, com uma força de 10 N. As lâmpadas com bases de rosca Edison devem ser projetadas de forma a cumprir com os requisitos para inacessibilidade de partes vivas para lâmpadas para serviços de iluminação em geral (GLS). A conformidade é verificada com o auxílio de um medidor de acordo com a edição atual da IEC 60061-3, folha 7006-51A, para bases E27, e folha 7006-55, para bases E14.

Os requisitos para lâmpadas com base E26 estão em estudo e as lâmpadas com bases B22, B15, GU10 ou GZ10 estão sujeitas às mesmas exigências que as lâmpadas incandescentes normais com esta base. Os requisitos para lâmpadas com bases GX53 estão em estudo.

As partes metálicas externas, com exceção de partes metálicas da base que conduzem corrente, não podem ser ou tornarem-se vivas. Para o ensaio, qualquer material condutor móvel deve ser colocado na posição mais desfavorável sem a utilização de uma ferramenta.

Quanto à segurança fotobiológica, a eficácia do risco ultravioleta da radiação luminosa de uma lâmpada LED não pode exceder a 2 mW/km. A conformidade é verificada pela medição da distribuição espectral de potência e o cálculo subsequente da eficácia do risco ultravioleta da radiação luminosa.

Não é esperado que as lâmpadas LED que não dependem da conversão de radiação UV excedam a eficácia máxima de risco ultravioleta permitida da radiação luminosa. Estas lâmpadas não requerem medição.

O risco da luz azul deve ser avaliado de acordo com a IEC TR 62778, que deve ser considerada como normativa ao ensaiar lâmpadas LED para esta norma. As lâmpadas LED devem ser classificadas como grupo de risco 0 ilimitado ou grupo de risco 1 ilimitado.

A IEC TR 62778, Seção C.2, fornece um método para classificar as lâmpadas em que não estejam disponíveis os dados espectrais completos. Não se espera que as lâmpadas LED atinjam um nível de radiação infravermelha no qual a marcação ou outras medidas de segurança sejam necessárias.

Os princípios essenciais de segurança e desempenho dos dispositivos médicos

A NBR ISO 16142-1 de 10/2021 – Dispositivos médicos – Princípios essenciais reconhecidos de segurança e desempenho de dispositivos médicos – Parte 1: Princípios essenciais gerais e princípios essenciais específicos adicionais para todos os dispositivos médicos não IVD e orientações quanto à seleção de normas, que inclui os princípios essenciais de segurança e desempenho, identifica normas e guias significativos que podem ser usados na avaliação de conformidade de um dispositivo médico com os princípios essenciais reconhecidos que, quando atendidos, indicam que um dispositivo médico é seguro e se desempenha como pretendido. Esta parte 1 identifica e descreve os seis princípios gerais essenciais de segurança e desempenho que se aplicam a todos os dispositivos médicos, incluindo os dispositivos médicos IVD (diagnóstico in vitro).

Este documento também identifica e descreve os princípios essenciais adicionais de segurança e desempenho que precisam ser considerados durante o processo de projeto e fabricação, que são pertinentes aos dispositivos médicos que não os dispositivos médicos IVD. A NBR ISO 16142-2 é destinada a identificar e descrever os princípios essenciais de segurança e desempenho que precisam ser considerados durante o processo de projeto e fabricação de dispositivos médicos IVD.

Durante o processo de projeto, o fabricante seleciona quais dos princípios de projeto e fabricação listados aplicam-se ao dispositivo médico em particular e documenta as razões pelas quais excluiu os outros. Este documento é destinado a ser utilizado como orientação pelos fabricantes de dispositivos médicos, organizações de desenvolvimento de normas, autoridades competentes, e organismos de avaliação da conformidade.

A NBR ISO 16142-2 de 10/2021 – Dispositivos médicos – Princípios essenciais reconhecidos de segurança e desempenho de dispositivos médicos – Parte 2: Princípios essenciais gerais e princípios essenciais específicos adicionais para todos os dispositivos médicos IVD e orientação sobre a seleção de normas, que inclui os princípios essenciais de segurança e desempenho, identifica as normas e os guias significativos que podem ser usados na avaliação da conformidade de um dispositivo médico, com os princípios essenciais reconhecidos que, quando atendidos, indicam que um dispositivo médico é seguro e se desempenha como pretendido. Este documento identifica e descreve os seis princípios essenciais gerais de segurança e desempenho que se aplicam a todos os dispositivos médicos, incluindo os dispositivos médicos IVD (diagnóstico in vitro).

Este documento também identifica e descreve os princípios essenciais adicionais de segurança e desempenho que precisam ser considerados durante o processo de projeto e fabricação, que são pertinentes aos dispositivos médicos IVD. Durante o processo de projeto, o fabricante seleciona quais princípios de projetos e fabricação listados aplicam-se ao dispositivo médico em particular e documenta as razões pelas quais excluiu os outros. Este documento é destinado a ser utilizado como orientação pelos fabricantes de dispositivos médicos, organizações de desenvolvimento de normas, autoridades com jurisdição e organismos de avaliação da conformidade.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as fases do ciclo de vida do dispositivo médico?

Quais são as considerações sobre fim da vida útil de um dispositivo médico?

Como deve ser o uso pelos fabricantes dos princípios essenciais e referências para normas e guias pertinentes?

Como deve ser o planejamento de projeto e desenvolvimento dos dispositivos médicos?

O que representa a avaliação da conformidade de um dispositivo médico IVD?

As normas e os processos de normalização podem se tornar mais eficazes ao se desenvolver uma melhor compreensão das necessidades e requisitos para aqueles que usam ou que são afetados pelas normas. As melhorias nas normas contribuirão para os esforços de harmonização global em todos os níveis.

A inovação contínua é a chave para o avanço da tecnologia de dispositivos médicos, contribuindo para um cuidado da saúde mais eficaz. Preferivelmente, as normas que deem suporte ou que estejam referenciadas em requisitos regulatórios são desenvolvidas e aplicadas de modo a permitir a inovação do produto pela indústria enquanto garantem a segurança e a eficácia.

O desenvolvimento oportuno de normas para dispositivos médicos e suas revisões periódicas fazem das normas para dispositivos médicos ferramentas eficazes e eficientes para apoiar os sistemas regulatórios e na obtenção de regulamentações globalmente compatíveis. As normas voluntárias e guias podem auxiliar fabricantes a cumprir com requisitos legais.

Se as normas forem aceitas dentro de um dado sistema regulatório, a conformidade com estas normas pode ser considerada para satisfazer os requisitos legais. A aceitação regulatória, entretanto, por si só, não implica que estas normas sejam compulsórias. As normas para dispositivos médicos representam um consenso sobre requisitos que fomentam a inovação enquanto protegem a saúde pública.

A conformidade harmonizada com as regulamentações, um elemento-chave da introdução oportuna no mercado de tecnologia avançada, pode ser facilitada pelo uso adequado de normas pertinentes para dispositivos médicos. Isto é baseado na premissa de que: as normas são baseadas na experiência ou, em outras palavras, são retrospectivas; a inovação pode apresentar desafios inesperados à experiência; a aplicação rígida, compulsória de normas pode desencorajar a inovação; a operação de um sistema de gestão da qualidade, sujeito a avaliação, se tornou vastamente reconhecida como uma ferramenta fundamental e efetiva para a proteção da saúde pública; os sistemas de gestão da qualidade incluem provisões que abordam tanto a inovação quanto a experiência; e as provisões de sistemas de gestão da qualidade incluem experiência de campo, análise de risco e gerenciamento de risco, análises críticas em fase, manutenção de documentação e registros, bem como o uso de normas de produtos e processos.

Os desenvolvedores de normas de dispositivos médicos são encorajados a considerar os princípios essenciais como dados de entrada de projeto para o desenvolvimento de normas para dispositivos médicos novas e revisadas. Informações adicionais são encontradas no Anexo D. O desempenho de dispositivos médicos pode incluir funções técnicas além da eficácia clínica.

É mais fácil medir e quantificar objetivamente o desempenho do que a eficácia clínica. O desempenho pode ser descrito como o quão bem ou com que exatidão um dispositivo médico realiza a(s) sua(s) função(ões) como pretendido pelo fabricante. Para alguns dispositivos médicos, o benefício médico ou a eficácia clínica podem somente ser determinados por meio da condução de investigações clínicas realizadas com sujeitos humanos.

É esperado que o fabricante de um dispositivo médico projete e fabrique um produto que seja seguro e clinicamente eficaz ao longo do seu ciclo de vida. Este documento descreve os critérios fundamentais de projeto e fabricação, referenciados como princípios essenciais de segurança e desempenho, para assegurar este resultado. Este documento está estruturado para fornecer princípios essenciais gerais que se aplicam a todos os dispositivos médicos, incluindo dispositivos médicos IVD.

Este documento também inclui princípios essenciais adicionais de segurança e desempenho que são pertinentes a dispositivos médicos que não os dispositivos médicos IVD, que precisam ser considerados durante o projeto e processo de fabricação. Os princípios essenciais de segurança e desempenho estabelecem critérios amplos, e de alto nível para projeto, produção e pós-produção (incluindo vigilância pós-mercado) ao longo de todo o ciclo de vida de todos os dispositivos médicos, garantindo sua segurança e desempenho.

O conceito de princípios essenciais foi desenvolvido pelo Global Harmonization Task Force. A intenção do conceito é encorajar a convergência na evolução de sistemas regulatórios para dispositivos médicos. Algumas autoridades competentes têm mais requisitos e algumas têm menos. Portanto, os fabricantes precisam compreender os requisitos das autoridades competentes nos mercados que pretendem atender.

Quando pertinente, para assegurar que todos os princípios essenciais sejam atendidos, um fabricante pode usar normas de consenso que contenham requisitos detalhados, demonstrando conformidade com os princípios essenciais. Estas normas de consenso fornecem um nível de detalhes e especificidade maior do que pode ser expressado nos princípios essenciais.

Igualmente, as autoridades competentes podem julgar os princípios essenciais e suas normas relacionadas úteis no cumprimento de requisitos pré-mercado e pós-mercado ao longo do ciclo de vida dos dispositivos médicos. Todo dispositivo médico tem uma utilização pretendida por seu fabricante. Um dispositivo médico é clinicamente eficaz quando produz o efeito ou desempenha a função de maneira segura conforme pretendido pelo seu fabricante em relação à condição médica do paciente, ou ao estado do paciente quando os benefícios médicos do uso do dispositivo médico superam o risco do uso para o paciente.

Para explicar a figura acima, pode-se dizer que as normas de grupo são geralmente de natureza horizontal dentro do setor de dispositivos médicos e são desenvolvidas para tratar dos princípios essenciais que são aplicáveis a uma ampla variedade de dispositivos médicos. Exemplos de normas de grupo incluem normas de segurança ou normas especificando requisitos para um processo, como avaliação biológica, requisitos gerais para segurança básica e desempenho essencial para equipamentos eletromédicos, esterilização e usabilidade.

As normas de produto são tipicamente de natureza vertical e fornecem os detalhes técnicos necessários para satisfazer a conformidade com os princípios essenciais para tipos particulares de produtos. Exemplos de normas de produto incluem normas para desfibriladores, implantes de quadril e monitores de gases respiratórios.

O desenvolvimento e o uso de normas internacionais de produtos são encorajados, já que isso minimiza a proliferação de normas regionais e previne o desenvolvimento de requisitos ou expectativas divergentes ou conflitantes. As normas de processo podem ser de natureza tanto horizontal quanto vertical e fornecem os requisitos para que fabricantes desenvolvam, implementem e mantenham processos aplicáveis a todos os estágios do ciclo de vida de um dispositivo médico.

As normas de sistemas de gestão da qualidade e as normas de gerenciamento de risco são bons exemplos de normas de processo dentro do tipo das normas de grupo. As normas de operação ou manutenção de desfibriladores são bons exemplos de normas de processo dentro do tipo de normas de produto.

Como o foco pode mudar em vários pontos dentro do ciclo de vida de qualquer dispositivo médico, as normas de processo são desenvolvidas rotineiramente como normas de grupo ou de produto. Assim, os princípios essenciais de segurança e desempenho são os critérios gerais e de alto nível que, quando atendidos, indicam que um dispositivo médico é seguro e eficaz.

Os requisitos regulatórios esperam que um dispositivo médico seja seguro e eficaz durante seu ciclo de vida e, portanto, a conformidade com os princípios essenciais de segurança e desempenho possa ser atendida ao longo de todo o ciclo de vida do dispositivo médico. Para o fabricante de dispositivos médicos, isto normalmente significa que seu dispositivo médico possa ser: projetado para ser seguro e eficaz, em conformidade com os princípios essenciais, fabricado para manter as características de projeto, usado de maneira que mantenha as características de projeto, e analisado criticamente na fase de pós-produção, para avaliar as informações de produção e pós-produção para pertinência à segurança e desempenho, onde uma alteração de projeto pode ser necessária para tornar o dispositivo médico IVD em conformidade, mais uma vez, com os princípios essenciais.

Os princípios essenciais de segurança e desempenho são os critérios gerais de alto nível que, quando atendidos, indicam que um dispositivo médico IVD é seguro e eficaz. Os requisitos regulatórios esperam que um dispositivo médico IVD seja seguro e eficaz durante o seu ciclo de vida e, portanto, a conformidade com os princípios essenciais de segurança e desempenho deve (must) ser alcançada ao longo do ciclo de vida do dispositivo médico IVD.

Para o fabricante do dispositivo médico IVD, isto geralmente significa que o seu dispositivo médico IVD está em conformidade com os princípios essenciais e deve (must) ser projetado para ser seguro e eficaz, fabricado para manter as características de projeto, usado de maneira que mantenha as características de projeto, e analisado criticamente na fase de pós-produção, para avaliar as informações de produção e pós-produção para pertinência à segurança e desempenho, onde uma alteração de projeto pode ser necessária para tornar o dispositivo médico IVD em conformidade, mais uma vez, com os princípios essenciais.

É importante notar que não é possível assegurar um nível aceitável de segurança e eficácia no ciclo de vida simplesmente por estar em conformidade com uma ou mais normas de uma vez. Um processo para a manutenção da conformidade é requerido, e a expectativa é que esta seja alcançada por meio do uso de um sistema de gestão da qualidade e de um processo de gerenciamento de risco (isso é abordado nos princípios essenciais gerais, de 1 a 6, embora o termo gerenciamento de risco não seja usado lá).

O desempenho eletroacústico dos sonômetros

A NBR IEC 61672-1 de 10/2021 – Eletroacústica — Sonômetros – Parte 1: Especificações fornece especificações para desempenho eletroacústico de três tipos de instrumentos de medição sonora: um sonômetro convencional que mede níveis sonoros com ponderação exponencial no tempo e ponderação em frequência; um sonômetro de nível equivalente que integra e obtém a média temporal do nível sonoro ponderado em frequência; e um sonômetro integrador que mede níveis de exposição sonora ponderados em frequência. Os sonômetros em conformidade com os requisitos desta norma têm uma resposta em frequência específica para o som incidente no microfone, a partir de uma direção principal em campo livre ou em um campo de incidência aleatória.

Os sonômetros especificados nesta norma são geralmente destinados a medir sons na faixa da audição humana. A ponderação em frequência AU, especificada na IEC 61012, pode ser aplicada para a medição de níveis sonoros audíveis ponderados em A, na presença de uma fonte que contenha componentes espectrais em frequências maiores que 20 kHz 1.

Duas categorias de desempenho, Classes 1 e 2, são especificadas nesta norma. Geralmente, as especificações para Classes 1 e 2 de sonômetros têm a mesma meta de projeto e diferem principalmente nos limites de aceitação e nas faixas operacionais de temperatura. Os limites de aceitação para especificações de Classe 2 são maiores ou iguais àqueles especificados para a Classe 1.

Esta norma é aplicável a uma variedade de projetos de sonômetros. Um sonômetro pode ser um instrumento portátil com um microfone acoplado e um indicador embutido. Um sonômetro pode ser constituído por um ou mais componentes separados em uma ou mais carcaças e pode ser capaz de mostrar uma variedade de níveis de sinais acústicos.

Os sonômetros podem incluir um processador de sinais digital ou analógico, combinados ou em separado, com múltiplos sinais de saída, analógicos e digitais. Os sonômetros podem incluir computadores, gravadores, impressoras e outros dispositivos que formam uma parte necessária do instrumento completo.

Eles podem ser projetados para uso com um operador presente ou para medição automática e contínua do nível sonoro sem a presença do operador. As especificações nesta norma para resposta às ondas sonoras se aplicam sem a presença do operador no campo sonoro.

Confira algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as correções para uso durante os testes periódicos?

Quais são os limites de aceitação para desvio de resposta direcional a partir da meta de projeto?

Quais são as ponderações em frequência e limites de aceitação?

O que se deve fazer em relação ao ruído autogerado?

As condições ambientais de referência para especificação do desempenho eletroacústico de um sonômetro são: temperatura do ar 23 °C; pressão estática 101,325 kPa; umidade relativa 50%. Geralmente, um sonômetro é uma combinação de um microfone, um pré-amplificador, um processador de sinais e um dispositivo mostrador. As especificações de desempenho desta norma se aplicam a qualquer projeto de microfone e pré-amplificador que seja apropriado para um sonômetro.

O processador de sinais inclui as funções combinadas de um amplificador com uma resposta em frequência especificada e controlada, um dispositivo para obter o quadrado do sinal da pressão sonora variante no tempo e ponderada em frequência, e capaz de integrar ou obter a média no tempo. O processamento de sinais que é necessário para a conformidade com as especificações desta norma é uma parte integrante de um sonômetro.

Nesta norma, um dispositivo mostrador fornece uma leitura física e visível, ou armazenamento, de resultados de medição. Qualquer resultado de medição armazenado deve estar disponível para exibição por meio de um dispositivo especificado pelo fabricante, por exemplo, um computador com um programa associado.

Para especificar a emissão máxima permitida de, e imunidade aos efeitos de exposição a, campos de radiofrequência, os sonômetros são classificados em três grupos, como a seguir: sonômetros do Grupo X: instrumentos independentes que incluem aparatos para a medição do nível sonoro de acordo com esta norma e para os quais é especificada a energização interna por bateria para o modo de operação normal, não requerendo conexões externas a outros aparatos para medição do nível sonoro; sonômetros do Grupo Y: instrumentos independentes que incluem aparatos para a medição do nível sonoro de acordo com esta norma e para os quais é especificada a conexão a uma fonte pública de energia elétrica para o modo de operação normal, não requerendo conexões externas a outros aparatos para medir níveis sonoros; e os sonômetros do Grupo Z: instrumentos que incluem aparatos para a medição do nível sonoro de acordo com esta norma e que requerem dois ou mais itens de equipamento, que são partes constituintes essenciais do sonômetro, para serem conectados juntos por algum meio para modo de operação normal.

Os itens separados podem ser operados a partir de baterias internas ou a partir de um fornecedor público de energia elétrica. A configuração do sonômetro independente e o seu modo de operação normal devem ser declarados no Manual de Instruções. Se apropriado, a configuração completa do sonômetro inclui um protetor de vento e outros dispositivos que são instalados próximo ao microfone, como componentes integrantes para o modo de operação normal. A diferença entre a correção de um protetor de vento medida de acordo com a IEC 61672-2 e a correção do protetor de vento correspondente fornecida no Manual de Instruções não pode exceder os limites de aceitação aplicáveis dados na tabela abaixo.

Um sonômetro que é declarado no Manual de Instruções como sonômetro Classe 1 ou Classe 2 deve estar em conformidade com todas as especificações aplicáveis para Classe 1 ou Classe 2, respectivamente, que são fornecidas nesta norma. Um sonômetro Classe 2 pode prover algumas funções de Classe 1, mas, se qualquer função estiver em conformidade apenas com as especificações para Classe 2, o instrumento é um sonômetro Classe 2.

Um sonômetro pode ser especificado como um instrumento Classe 1 para uma configuração e como um instrumento Classe 2 para outra configuração (por exemplo, com um microfone ou um pré-amplificador diferente). O Manual de Instruções deve declarar os modelos de microfones com os quais o sonômetro completo está em conformidade com as especificações de desempenho para Classe 1 ou Classe 2, para ondas sonoras incidentes no microfone na direção de referência em campo livre, ou com incidência aleatória, como apropriado.

O Manual de Instruções deve descrever procedimentos apropriados para uso do sonômetro. Ele deve declarar como o microfone e o pré-amplificador devem ser montados, se aplicável, para que estejam em conformidade com as especificações para resposta direcional e ponderações em frequência. Pode ser requerido que um dispositivo extensor ou cabo esteja em conformidade com as especificações.

Neste caso, o sonômetro deve ser declarado no Manual de Instruções em conformidade com as especificações aplicáveis para resposta direcional e ponderação em frequência, somente quando os dispositivos especificados forem instalados. Um programa de computador pode ser uma parte integrante de um sonômetro. O Manual de Instruções deve descrever os meios pelos quais um usuário pode identificar a versão do programa que está instalado para operar as funções do sonômetro.

Um sonômetro deve ter a ponderação A em frequência. No mínimo, um sonômetro convencional deve prover um meio para indicar o nível sonoro ponderado em frequência pela curva A e ponderado no tempo em F. No mínimo, um sonômetro de nível equivalente deve prover um meio para indicar o nível sonoro médio no tempo ponderado em A. No mínimo um sonômetro integrador deve prover um ou todas as características de projeto para as quais as especificações de desempenho são dadas nesta norma.

Um sonômetro deve estar em conformidade com as especificações de desempenho aplicáveis para aquelas características de projeto que são fornecidas. Se o sonômetro apenas indicar o nível de exposição sonora, o nível sonoro médio no tempo deve ser determinado aplicando-se a Equação (6) para o tempo de obtenção da média. Os sonômetros em conformidade com os limites de aceitação da Classe 1 também devem possuir a ponderação C em frequência.

Os sonômetros que medem nível sonoro de pico ponderado em C também devem ser capazes de medir níveis sonoros médios no tempo ponderados em C. A ponderação em frequência Z é opcional. O Manual de Instruções deve descrever todas as ponderações em frequência que são fornecidas. Um sonômetro pode ter mais que um dispositivo mostrador. Uma conexão de saída analógica ou digital, por si só, não é um dispositivo mostrador.

Um sonômetro pode ter mais de uma faixa de nível com um controle apropriado de faixa de nível. O Manual de Instruções deve identificar a (s) faixa (s) de nível pelos limites inferior e superior do nível sonoro ponderado em A nominal em 1 kHz e fornecer instruções para a operação do controle de faixa de nível. O Manual de Instruções também deve fornecer as recomendações para selecionar a faixa de nível ideal para exibir os resultados de uma medição de nível sonoro ou nível de exposição sonora.

O nível de pressão sonora de referência, a faixa de nível de referência e a orientação de referência devem ser declarados no Manual de Instruções. Convém que o nível de pressão sonora de referência seja preferencialmente de 94 dB. O Manual de Instruções deve declarar a direção de referência para cada modelo de microfone que se deseja usar com o sonômetro. A posição do ponto de referência do microfone também deve ser declarada.

Um nível de pressão sonora de 94 dB corresponde aproximadamente ao nível de pressão sonora médio quadrático (no tempo) de 1 Pa2 ou a uma pressão sonora raiz média quadrática de 1 Pa. Uma função de retenção deve ser fornecida, para medições de nível sonoro máximo ponderado no tempo e nível sonoro de pico, se o sonômetro for capaz de medir estas grandezas. O Manual de Instruções deve descrever a operação do dispositivo de retenção e os meios para remover a indicação que estiver retida.

Os sinais elétricos são utilizados para avaliar a conformidade a várias especificações desta norma. Os sinais elétricos são equivalentes aos sinais de saída do microfone. Como apropriado para cada modelo de microfone especificado, a meta de projeto e os limites de aceitação aplicáveis devem ser declarados no Manual de Instruções tanto para as características elétricas do dispositivo quanto para os meios utilizados para inserir sinais na entrada elétrica do pré-amplificador.

As características elétricas incluem os componentes resistivos e reativos da impedância elétrica na saída do dispositivo. A meta de projeto para a impedância deve ser especificada para a frequência de 1 kHz. O microfone deve ser removível para permitir a inserção de sinais elétricos de testes na entrada do pré-amplificador.

O Manual de Instruções deve declarar o mais alto nível de pressão sonora no microfone e a maior tensão pico a pico que pode ser aplicada na entrada elétrica do pré-amplificador sem causar danos ao sonômetro. As especificações de desempenho desta norma se aplicam, como apropriado, a qualquer ponderação no tempo ou em frequência operados em paralelo e para cada canal independente de um sonômetro multicanal.

Um sonômetro multicanal pode ter duas ou mais entradas para microfone. O Manual de Instruções deve descrever as características e a operação de cada canal independente. As especificações para a resposta eletroacústica de um sonômetro se aplicam após um intervalo de tempo inicial, quando o equipamento for ligado.

O intervalo de tempo inicial, declarado no Manual de Instruções, não pode exceder 2 min. Deve ser permitido que o sonômetro atinja o equilíbrio com as condições ambientais predominantes antes que seja ligado o fornecimento de energia. Nas subseções subsequentes, os limites de aceitação são fornecidos para valores permitidos dos desvios medidos a partir das metas de projeto.

O Anexo A descreve a relação entre o intervalo de tolerância, o intervalo de aceitação correspondente e a incerteza de medição máxima permitida. A conformidade com uma especificação de desempenho é demonstrada quando os seguintes critérios forem satisfeitos: desvios medidos a partir das metas de projeto não excederem os limites de aceitação aplicáveis e a incerteza de medição correspondente não exceder a incerteza de medição máxima permitida correspondente fornecida no Anexo B para uma probabilidade de abrangência de 95%.

O Anexo C fornece exemplos de avaliação da conformidade com as especificações desta norma. Pelo menos um modelo de calibrador de nível sonoro deve ser declarado no Manual de Instruções para verificar ou ajustar a sensibilidade global do sonômetro, de modo a otimizar o desempenho eletroacústico sobre a faixa de frequência completa.

Para os sonômetros de Classe 1, o calibrador de nível sonoro deve estar conforme as especificações de Classe 1 da NBR IEC 60942. Para os sonômetros de Classe 2, o calibrador de nível sonoro deve estar conforme as especificações para Classe 1 ou 2 da NBR IEC 60942. Os calibradores de nível sonoro padrão laboratorial não são apropriados para aplicações de campo gerais com um sonômetro, pois as suas características de desempenho são especificadas na NBR IEC 60942 apenas para uma faixa limitada de condições ambientais.

Para o nível de pressão sonora de referência na faixa de nível de referência e para a frequência de verificação da calibração na faixa de 160 Hz a 1 250 Hz, um procedimento e dados devem ser fornecidos no Manual de Instruções, para que um ajuste aplicado ao nível sonoro indicado em resposta à utilização do calibrador de nível sonoro resulte na indicação requerida na frequência de verificação da calibração. Os dados de ajuste devem ser determinados de acordo com a IEC 62585 e devem ser aplicados para condições ambientais ao menos dentro das faixas de 80 kPa a 105 kPa para pressão estática, 20 °C a 26 °C para temperatura do ar e 25 % a 70 % para umidade relativa.

Os dados de ajuste devem ser aplicados aos microfones de todos os modelos declarados no Manual de Instruções para uso com o sonômetro e a qualquer dispositivo associado fornecido pelo fabricante do sonômetro para montar o microfone com o instrumento. As variações nos valores dos dados de ajuste dentro destas faixas de condições ambientais devem ser incluídas na incerteza associada para os dados de ajuste. A diferença entre os dados de ajuste medidos de acordo com a IEC 61672-2 e os dados de ajuste do Manual de Instruções não pode exceder ± 0,3 dB.

ANSI Z136.5: o uso seguro de lasers em instituições educacionais

A ANSI Z136.5:2020 – Safe Use Of Lasers In Educational Institutions aborda questões de segurança do uso do laser e situações que podem ocorrer em ambientes educacionais. Essa norma não é um substituto para a ANSI Z136.1 (última revisão), que é necessário para um entendimento completo dos deveres do oficial de segurança do laser (laser safety officer – LSO) e avaliação de risco do laser.

Os ambientes característicos de instituições educacionais, onde lasers podem ser encontrados, incluem laboratórios de ensino, salas de aula, salas de leitura, feiras de ciências, museus e projetos de estudantes dentro e fora do campus. Essa norma se destina a professores e alunos que usam lasers nos níveis primário, secundário e universitário de educação, exceto laboratórios de pesquisa de nível de pós-graduação que são abordados de forma mais abrangente pela ANSI Z136.8 (última revisão) e Z136.1 (última revisão). A faixa de comprimento de onda de interesse inclui o ultravioleta (UV), as regiões visíveis e infravermelhas (IR) do espectro eletromagnético, especificamente, a faixa de comprimento de onda de 180 nanômetros (nm) a 1 milímetro (mm).

Conteúdo da norma

1. Geral ………………………………… 1

1.1 Escopo. ………. ………………… 1

1.2 Objetivo e aplicação. ………………… 1

1.3 Oficial de segurança do laser (LSO)………….. 2

2. Siglas e definições …………………………….. 5

2.1 Abreviações e acrônimos. …………….. 5

2.2 Definições……………………….. ………… 6

3. Avaliação e classificação de perigos…………. 15

3.1 Geral. ……………………. 15

3.2 Classificação de riscos do laser e do sistema de laser………………… 15

3.3 Fibras ópticas. ……………………….. …… 18

3.4 Ambiente no qual o laser é usado…………. 18

3.5 Ponteiros laser……………………………. 20

3.6 Causas comuns de acidentes com laser……… 21

4. Medidas de controle ………….. 21

4.1 Considerações gerais…………………. 21

4.2 Controles por nível de graduação……… 24

4.3 Instalação de laser multiuso………………….. 26

4.4 Projetos que contêm um apontador laser…………… 26

4.5 Controles de engenharia…………………….. 26

4.6 Controles administrativos e processuais………….. 35

4.7 Serviço e reparo de lasers…………………….. 39

5. Programas de segurança do laser e treinamento de alunos…………………….. 40

5.1 Geral……………. 40

5.2 Comitê Educacional de Segurança do Laser (Educational Laser Safety Committee – ELSC…… 40

5.3 Treinamento de segurança do aluno para laser……………………… 41

5.4 Treinamento de segurança do laser para professores e funcionários……………….. …………… 41

6. Exames médicos……………………. 42

6.1 Geral ……………………….. 42

6.2 Exames após uma lesão induzida por laser suspeita ou real…………. 42

6.3 Vigilância médica……………………………. 42

6.4 Procedimentos gerais (Classe 3B e 4) ………. 43

6.5 Frequência dos exames médicos……………. 43

7. Riscos fora do feixe …………….. 43

7.1 Geral……. ……………. 43

7.2 Riscos de incêndio e explosão………………… 43

7.3 Eliminação de resíduos………………. 44

7.4 Gases comprimidos…………………………… 44

7.5 Corantes a laser………………….. 44

7.6 Espaço de trabalho limitado…………………. 44

7.7 Contaminantes do ar gerados a laser (Laser Generated Air Contaminants – LGAC) ……………… 44

7.8 Riscos elétricos……………………. 45

7.9 Riscos de fibra óptica………………….. 45

7.10 Riscos ultravioleta sem feixe…………….. 46

8. Critérios para exposição dos olhos e da pele…….. 46

9. Revisão das normas referidas neste documento……. 46

9.1 Normas ANSI……………………………46

9.2 Outras normas, guias e códigos……………… 47

Tabelas

Tabela 1. Requisitos do oficial de segurança do laser (LSO) para classes de laser …………………. 3

Tabela 2. Comparação de classificações de laser…… 17

Tabela 3. Requisitos de controles ………………… 23

Tabela 4. Amostra de densidades ópticas…………… 38

Tabela 5. Resumo das medidas de controle para lasers e sistemas a laser ………… 39

Tabela 6. Sugestão de representação do comitê de segurança do laser ………………………. 41

O LSO, ou pessoa responsável, pela instituição educacional, deve avaliar se uma norma de segurança de laser específico, ANSI Z136.2, Z136.3, Z136.6, Z136.8 ou Z136.9 (últimas revisões), deve ser consultada para as medidas de controle de segurança adicionais para complementar o plano de aula de laser. Assim, o objetivo e a aplicação desta norma é fornecer uma orientação razoável e adequada para o uso seguro de lasers em ambientes educacionais, avaliando e minimizando os riscos associados com radiação laser.

O procedimento de avaliação de perigo usado nesta norma é baseado na classificação de Classe 1 a Classe 4 do laser ou sistema de laser que está relacionado à capacidade do feixe de laser de causar danos fisiológicos aos olhos ou pele e um risco de incêndio como fonte de ignição durante o uso pretendido.

A quantidade de radiação de laser emitida por lasers de Classe 1 e sistemas de laser é considerada não perigosa; Lasers de classe 4 e sistemas de laser possuem o maior risco potencial. O potencial de risco do laser e do sistema de laser é geralmente descrito usando um esquema da Classe 1 (inerentemente seguro) até a Classe 4 (mais perigoso). Os fabricantes de equipamentos a laser estão sujeitos às normas e regulamentações de desempenho de produtos a laser que incluem recursos e proteções de segurança de construção. Onde os lasers são implantados, como em um local de trabalho ou ambiente educacional, seu uso seguro é abordado pelos padrões de consenso aplicáveis do Z136 (revisões mais recentes).

Os requisitos normativos para o lastro ferroviário de rocha britada (LP)

A NBR 5564 de 10/2021 – Via férrea – Lastro ferroviário – Requisitos e métodos de ensaio estabelece os requisitos e métodos de ensaio para o lastro ferroviário de rocha britada (LP). Os parâmetros e os valores apresentados nesta norma são de referência. Cabe ao consumidor adaptá-los às características regionais das jazidas e das condições de aplicação.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feita a distribuição granulométrica do lastro ferroviário?

Qual deve ser a aparelhagem para se realizar a determinação da massa específica aparente, porosidade aparente e absorção de água?

Como executar a determinação da resistência à intempérie?

Por que fazer o ensaio para rochas básicas (basalto, diabásio e gabro)?

O lastro ferroviário deve ser constituído por fragmentos formados pela britagem de material extraído de rocha dura e sã, reconhecida como de característica petrográfica, própria ao uso em lastro na via férrea. O comprador pode exigir do fornecedor a comprovação da capacidade técnica de fornecimento do volume de lastro ferroviário.

O comprador deve solicitar ao fornecedor os estudos geológicos das jazidas, realizados por entidades especializadas, de acordo com as NBR 6490 e NBR 7389-2. A análise da jazida deve compreender, no mínimo: a descrição geológica da pedreira; o estudo das ocorrências de rochas exploráveis entre as rochas existentes; a apreciação quantitativa das ocorrências de rochas provavelmente inadequadas para LP; o exame das possibilidades de produção de LP.

As jazidas devem produzir partículas: homogêneas; livres de materiais orgânicos e outras impurezas; com resistência à compressão uniaxial no estado saturado, mínima de 100 MPa, devendo ser realizada de acordo com o Anexo D. O LP deve ser isento de todo resíduo estéril da pedreira, material vegetal, solo e quaisquer outras impurezas que possam colmatá-lo.

Sempre que houver mudança na frente de lavra, o fornecedor deve atender ao descrito nessa norma. O lastro ferroviário deve apresentar as características relacionadas na tabela abaixo. Opcionalmente, a critério do comprador, podem ser solicitados os ensaios relacionados na tabela abaixo. Em regiões com restrições ambientais, as partículas devem ser lavadas com jato de água abundante, para remoção do pó.

A amostragem deve ser feita de acordo com a NBR 6490, para: o reconhecimento e caracterização da jazida; verificação das características relacionadas na tabela acima. A amostragem do lastro ferroviário deve ser na proporção acordada entre comprador e fornecedor, e de acordo com o Anexo G, devendo ser apresentada uma amostragem inicial, independentemente da quantidade a ser fornecida.

Quando o lastro ferroviário for fornecido na condição de colocado no veículo, recomenda-se que a amostragem seja realizada no veículo. Caso seja fornecido na condição de colocado em determinado local, recomenda-se que a amostragem seja realizada no local.

Antes de qualquer verificação, todas as amostras de cada lote devem ser submetidas a inspeções visuais de aspecto, forma e dimensão. Somente a amostra e/ou o lote não rejeitados, de acordo com estas inspeções, devem ser submetidos aos ensaios. Quanto à movimentação e estocagem do lastro, recomenda-se que: o lastro ferroviário seja movimentado e estocado de modo que se mantenha limpo e isento de segregação; o lastro seja transportado de modo que a sua granulometria não seja alterada, além de ser mantido livre de alterações de suas características originais; seja dada especial atenção quanto à distribuição das partículas de lastro ferroviário no veículo em que for carregado, objetivando a homogeneidade entre elas.

A determinação da forma dos fragmentos de rocha britada por meio do paquímetro estabelece o método de ensaio para determinação da forma dos fragmentos de rocha britada por meio do paquímetro. Para a execução do ensaio, é necessária a seguinte aparelhagem: paquímetro com precisão de 0,1 mm, calibrado; peneiras de malhas quadradas, com caixilhos metálicos e aberturas nominais, em milímetros, inclusive tampa e fundo, de acordo com as NBR NM ISO 3310-1 e NBR NM 248; agitador para peneiras com dispositivo para fixação, desde uma peneira até seis, inclusive tampa e fundo; balança com precisão de 0,5% da massa da amostra; estufa capaz de manter a temperatura em (110 ± 5) °C.

Para a preparação dos corpos de prova, quartear a amostra inicial, conforme a NBR 16915, até alcançar aproximadamente 35 kg. Posteriormente, secar a amostra em estufa a (110 ± 5) °C, até massa constante. Realizar a análise granulométrica da amostra, de acordo com a NBR NM 248, nas peneiras de 63 mm, 50 mm, 38 mm, 25 mm, 19 mm e 12,5 mm.

Desprezar as frações passantes na peneira de 12,5 mm e aquelas frações que retiverem menos que 10 % em massa. Determinar a porcentagem de massa retida em cada peneira. Cada fração obtida deve ser quarteada (quando necessário), até que sejam obtidas 100 partículas para cada fração de tamanho a ser avaliado.

Caso a fração não alcance a quantidade de 100 partículas e a massa retida seja superior a 10%, ela deve ser avaliada. Para o procedimento, medir as dimensões a, b e c de cada corpo de prova, com paquímetro, em milímetros, considerando um paralelogramo onde o fragmento possa ser circunscrito.

A dimensão a é a distância entre dois pontos A e B do corpo de prova (maior distância); a dimensão b é a distância entre duas retas paralelas à reta que passa por A e B, tangenciando C e D do corpo de prova (média distância); a dimensão c é a maior distância entre dois planos paralelos às retas AB e CD, que tangenciem a superfície do corpo de prova (menor distância). Calcular as relações b/a e c/b para cada fragmento do corpo de prova, arredondadas em um décimo.

Classificar a forma de cada fragmento do corpo de prova, com base nas relações b/a e c/b. Calcular a média aritmética das relações b/a e c/b do corpo de prova, classificar a forma média, contar os indivíduos classificados como cúbicos e não cúbicos (alongados, lamelares e alongados lamelares) e calcular as suas porcentagens.

O relatório de ensaio deve conter: o nome e o endereço do laboratório responsável pelo ensaio e número do relatório; o nome e o endereço do contratante; a indicação da procedência da amostra (estado, cidade, mina, local de coleta, etc.); tipo petrográfico presumido e/ou designação da amostra; as dimensões dos fragmentos, em milímetros; as relações b/a e c/b individuais e respectivas médias destas; as classes das formas individuais e da forma média; média aritmética dos resultados, respectivo desvio-padrão e coeficiente de variação; data da finalização do ensaio; nome e assinatura do responsável pelo ensaio; referência a esta norma; e as observações complementares necessárias.