Como elaborar um projeto eficiente em edificações quanto às condições de acessibilidade

Atualmente, se tornou importante considerar a diversidade humana na elaboração de projetos arquitetônicos e urbanísticos, de forma a respeitar as diferenças existentes entre as pessoas e a garantir a integração entre produto/ambiente e usuários para que sejam concebidos como sistemas e não como partes isoladas. Para tanto, a concepção do espaço arquitetônico ou urbanístico deve se fundamentar nos conceitos de acessibilidade, nas dicotomias entre espaço público e privado, bem como na interação do indivíduo com o espaço, de forma a contribuir com o desenho de ambientes adequados ao usuário – suas formas e usos.

A situação dos portadores de deficiência física ou com mobilidade reduzida está sujeita às dinâmicas de diferenciação que culminam com a exclusão e discriminação de âmbito socioeconômico, entrando em conflito com a legislação vigente – criada com o intuito de amparar por dispositivos legais a consolidação e garantia de medidas necessárias ao processo de integração. A garantia de resultados concretos depende da complexa articulação e entendimento de todos os envolvidos, direta ou indiretamente, além da constante revisão daquilo que os orienta na promoção da inclusão social e que requerem ações práticas dos poderes públicos, as quais não devem estar alienadas dos interesses políticos, econômicos e privados envolvidos

O desenho universal é a concepção de produtos, ambientes, programas e serviços a serem utilizados por todas as pessoas, sem necessidade de adaptação ou projeto específico, incluindo os recursos de tecnologia assistiva. Esse conceito tem como pressupostos: equiparação das possibilidades de uso, flexibilidade no uso, uso simples e intuitivo, captação da informação, tolerância ao erro, mínimo esforço físico, dimensionamento de espaços para acesso, uso e interação de todos os usuários. É composto por sete princípios,

Apesar de sua importância, o princípio da acessibilidade nos espaços edificados não é assegurado. Não se verifica a aplicação efetiva ou adequada desse princípio nos equipamentos e serviços da cidade, principalmente nas instituições de ensino, o que pode gerar um significado e uso oposto àquele merecido ou desejado – a expressão maior do direito de ir e vir e promoção da integração social.

Segundo a NBR 9050 de 08/2020 – Acessibilidade a edificações, mobiliário, espaços e equipamentos urbanos, que estabelece critérios e parâmetros técnicos a serem observados quanto ao projeto, construção, instalação e adaptação do meio urbano e rural, e de edificações às condições de acessibilidade, há alguns fatores relevantes para o projeto de uma edificação acessível. Assim, a informação deve ser clara e precisa para ser facilmente entendida e não ambígua. O excesso de informação dificulta a sua memorização. As informações conflitantes podem contribuir para o estresse dos usuários e dificultar a compreensão. Por esse motivo, a consistência da informação é tão importante.

A informação deve ser fornecida no momento em que for necessária. Informações adequadas significam também que devem estar atualizadas e que deficiências na informação diminuem a confiança dos usuários no sistema informativo. Para enfatizar as facilidades e características de projeto, é importante considerar: para distinguir as bordas de superfícies grandes, como pisos de andares, portas e tetos, diferenças de light reflectance value (LRV) ou valor de reflexão da luz apropriadas devem ser utilizadas.

O LRV das cores das paredes deve ser diferente do utilizado nos pisos e nos tetos e para fornecer uma impressão precisa da dimensão do espaço, o LRV de rodapés largos (barras de pintura) deve ser o mesmo do LRV das paredes (menos importante para rodapés de contorno até 125 mm). Os reflexos de superfícies brilhantes confundem pessoas com baixa visão, e o uso desses tipos de acabamentos em grandes áreas deve ser evitado.

Os reflexos podem adicionalmente afetar a habilidade de pessoas que têm baixa audição e que se comunicam por leitura labial. O contraste visual adequado deve ser utilizado para identificar os perigos em potencial. Se os batentes em volta das portas tiverem contraste visual com as paredes, a oportunidade de identificar a presença da porta estará disponível mesmo quando a porta estiver aberta.

Para enfatizar a presença de uma porta, diversas medidas são recomendadas. Preferencialmente, a porta e os seus batentes devem contrastar com as paredes do entorno. Se a porta e a parede tiverem LRV similares e apenas os batentes fornecerem o contraste, ainda é possível identificar a presença da facilidade, mas é exigido mais tempo para identificar uma porta aberta.

Se os batentes e as paredes tiverem LRV similares, apenas o LRV da porta fornece o contraste, e é muito difícil identificar a presença de uma porta quando ela está aberta, pois, quando a porta está fechada, é disponível o contraste visual suficiente. Nestes casos, recomenda-se a aplicação de demarcação do perímetro da porta, com largura mínima de 50 mm.

Tudo o que foi descrito até agora é apenas uma recomendação. Naturalmente há muitos outros fatores que afetam a seleção e utilização de cores nos ambientes, porém devem ser preservadas as condições de contraste. Quanto à importância do uso da sinalização tátil e visual no piso, pode-se ressaltar que as pessoas com deficiência visual podem se deparar com situações de perigo ou obstáculos. Durante os seus deslocamentos, essas pessoas utilizam informações táteis, bengalas de rastreamento ou a sola de seus sapatos.

Dessa forma, a sinalização tátil no piso é utilizada para auxiliar as pessoas com deficiência visual a trafegarem sozinhas. A sinalização deve ser consistente e ter um leiaute simples, lógico e de fácil decodificação, facilitando a movimentação de pessoas com deficiência visual em lugares familiares e o reconhecimento de espaços onde trafegam pela primeira vez.

A sinalização tátil e visual no piso deve assegurar a sua identificação por pessoas de baixa visão tanto quanto por pessoas cegas. Para esse propósito, os pisos devem ser facilmente detectáveis pela visão. Isto é conseguido pela aplicação de um mínimo de contraste de luminância (ΔLRV) entre os pisos e o pavimento adjacente.

Entende-se como a Língua Brasileira de Sinais (Libras) a forma de comunicação e expressão em que o sistema linguístico de natureza visual-motora, com estrutura gramatical própria, constitui um sistema linguístico de transmissão de ideias e fatos, oriundos de pessoas com deficiência auditiva.

Para a localização da informação, a sinalização de identificação deve estar localizada junto às portas de entrada da edificação. Os planos ou os mapas acessíveis de orientação devem ser instalados, sempre que necessário, imediatamente após a entrada principal das edificações. Uma sinalização adequada deve ser prevista ao longo do percurso, considerando os pontos de tomada de decisão.

Dar importância ao contraste visual, pois a luz é essencial para a percepção da cor. As pessoas com deficiência visual podem não ser capazes de identificar as cores, mas podem perceber tons claros e escuros, uma vez que esta característica é intrínseca das superfícies coloridas. O contraste visual entre superfícies adjacentes facilita a percepção e a legibilidade da informação desejada pelas pessoas com deficiência visual.

A aparência das superfícies pode ser influenciada pela natureza das condições de iluminação. Para eliminar tais diferenças, os medidores de LRV devem prover uma fonte de luz padronizada. Durante as medições, não pode ser permitida a influência de luzes advindas de outras fontes naturais ou artificiais.

O LRV da cor utilizada em um elemento, produto ou acabamento pode ser obtido junto ao fabricante. É importante lembrar que o valor medido é dependente da iluminância (ou nível de iluminação), quando a medição é executada. Entretanto, os valores de LRV são apenas verdadeiramente aplicáveis em situações em que as mesmas condições de iluminação são disponíveis.

Para a determinação das diferenças de luminância (LRV), as medições de contraste visual com diferenças relativas de luminância (tonalidade) em superfícies adjacentes são importantes e devem ser determinadas. As diferenças de matiz (natureza da cor) ou croma (intensidade da cor) sozinhas não medem adequadamente o contraste visual.

Para determinar a diferença relativa de luminância, o LRV da superfície deve ser conhecido. Os fabricantes fornecem os LRV das cores e acabamentos. Quando o LRV não for conhecido, a luminância relativa das superfícies pode ser medida sob as mesmas condições de iluminação nas duas superfícies, por aparelho específico.

Para as diferenças entre valores de LRV, o ponto recomendado entre os valores de LRV entre duas superfícies está descrito na tabela abaixo. Ela é baseada na diferença de LRV de suas superfícies adjacentes ou entre um componente e sua base de fixação. A escala de LRV começa em zero, definida como uma superfície de absorção perfeita de luz a qual pode-se assumir como totalmente preta, e 100 que se pode assumir como uma superfície de branco perfeito.

Por causa das influências de ordem prática, o preto é sempre maior que o zero e o branco não chega a 100. Para entender um medidor de LRV, a distribuição espectral combinada da fonte de luz e do fotossensor deve coincidir com a distribuição espectral combinada do iluminante D65 com a curva de sensibilidade luminosa espectral V(λ), padronizadas pela International Electrotechnical Commission (IEC). O sistema de iluminação deve garantir a distribuição da intensidade luminosa sobre a área em avaliação, com variação de uniformidade não superior a 10% da média de iluminação.

O ângulo de abertura da fonte de luz, determinado do centro da área de medição, não pode ser superior a um retângulo correspondendo a 10 min de arco por 20 min de arco. A abertura do retângulo é dada com o primeiro lado paralelo ao plano do observador. A abertura do fotossensor, determinada do centro da área de medição, não pode ser maior que um quadrado com 20 min de arco por 20 min de arco.

A estabilidade da combinação da fonte de luz e do fotossensor deve garantir que as leituras não variem mais que 1 % entre as medições espaçadas em 10 s. Deve possuir geometria óptica capaz de reproduzir as especificações geométricas do cone visual estabelecido nos parâmetros da NBR 9050. Deve ser portátil, com possibilidade de ser posicionado sobre vários tipos de material em diferentes localizações. Deve ser construído de modo a mitigar as contaminações da iluminação ambiente na área de medição.

Advertisement

A Qualidade das bombas de cavidade progressiva para a indústria de petróleo e gás natural

As bombas de cavidade progressiva (BCP) são constituídas de um conjunto de estator e rotor, cuja geometria gera duas ou mais séries de cavidades separadas, lenticulares e helicoidais e as bombas insertáveis são as BCP onde o estator é instalado por meio do interior da coluna de produção. Quanto à conformidade, o usuário/comprador deve especificar os graus de avaliação funcional, como F1: teste de bancada da bomba, em que o usuário/comprador deve especificar a faixa de eficiência volumétrica, fluido utilizado, rotação da bomba, temperatura e pressão do fluido para a utilização no teste de bancada.

Alternativamente, o usuário/comprador pode especificar a faixa de pressão de shut off, fluido utilizado, rotação da bomba, temperatura e pressão do fluido para a utilização no teste de bancada. O F2: avaliação funcional sem teste de bancada é a que o usuário/comprador deve especificar a faixa de eficiência volumétrica, fluido utilizado, rotação da bomba, temperatura e pressão do fluido para a utilização na avaliação funcional que é feita a partir da medição das dimensões de rotor e estator da BCP.

O usuário/comprador deve especificar um dos graus de controle de qualidade definidos, como o Q1: grau mais alto de controle de qualidade; Q2: grau intermediário de controle de qualidade; e Q3: grau básico de controle de qualidade. As BCP são bombas de deslocamento positivo e, como tal, suas vazões de fluidos são função de suas vazões e rotações.

As vazões da BCP, em termos de volume bombeado por rotação, podem ser determinadas por meio de cálculos baseados nas dimensões geométricas ou de uma interpretação dos resultados dos testes de desempenho. Entretanto, a convenção para BCP, quando instaladas em poços de petróleo, se referencia à vazão em termos de rpm com unidades como metros cúbicos por dia por 100 rpm.

Isso permite que os usuários/compradores convenientemente multipliquem a capacidade por rpm pela rotação desejada para determinar a vazão máxima em unidades usuais. Os materiais metálicos e não metálicos devem ser especificados pelo fornecedor/fabricante e devem estar de acordo com os requisitos da especificação operacional.

O fornecedor/fabricante deve ter especificações para todos os materiais. Todos os materiais utilizados devem estar em conformidade com estas especificações. As substituições de materiais em projetos validados de equipamentos são permitidas sem o teste de validação, contanto que a seleção de materiais do fornecedor/fabricante seja documentada e aprovada por pessoa qualificada

Em uma BCP, os principais componentes metálicos são o tubo estator, conexões associadas e o rotor, que normalmente é revestido com cromo. As especificações do fornecedor/fabricante devem definir os materiais para o tubo estator e barra para conformação do rotor, que são apropriados para a aplicação, levando em consideração o seguinte: os limites de composição química; os limites de propriedades mecânicas, como a tensão de ruptura; a tensão de escoamento; o alongamento; e a dureza.

A barra para conformação do rotor deve ter resistência suficiente para que o perfil e a conexão possam suportar as cargas axiais e de torção combinadas na faixa especificada para o modelo de bomba. Quando são previstas cargas de flexão e alternadas, a avaliação da resistência do rotor deve considerar o efeito de fadiga.

As aplicações em alta temperatura devem também restringir a resistência do material de acordo com a aplicação. O resultado da verificação do projeto deve ser aprovado por pessoa qualificada. Os relatórios de teste de material apresentados pelo fornecedor do material ou fabricante podem ser utilizados para verificar a conformidade do material ante as especificações.

O revestimento do rotor ou tipo de tratamento de superfície e espessura (quando aplicável) deve levar em consideração as características do fluido do ambiente de operação especificado nos requisitos funcionais, em particular a abrasividade, assim como quaisquer tratamentos químicos especiais previstos. As especificações do fornecedor/fabricante devem definir as características e os critérios de aceitação do revestimento ou tratamento do rotor, incluindo o revestimento-base ou a composição do tratamento superficial; a dureza superficial efetiva; a espessura mínima do revestimento na crista e no vale do rotor, quando aplicável, e a rugosidade da superfície.

Como diretriz operacional, é muito importante confirmar se a bomba gira na direção correta quando dada a partida. Uma vez que a BCP é uma bomba de deslocamento positivo, ela pode bombear em ambas as direções, logo secando a tubulação, se operada no sentido contrário. Se for permitido que a bomba opere seca, o estator pode ser danificado devido à falta de lubrificação. A coluna de transmissão também tende a se desenroscar, se girada na direção contrária.

Os passos descritos a seguir devem ser seguidos antes de dar a partida em um sistema de BCP. Ligar o motor por um curto período de tempo para verificar a direção correta de rotação do transmissor de superfície; garantir que as seguintes condições foram atingidas: o grampo da haste polida está adequadamente apertado; o comprimento máximo da haste polida que ultrapassa o grampo não excede a recomendação do fornecedor/fabricante (normalmente menos que 0,3 m); todas as proteções foram instaladas sobre as partes girantes no cabeçote de acionamento de superfície; os mancais e a caixa de vedação estão adequadamente lubrificados e selados; as gaxetas não estão apertadas demais; todas as válvulas na linha de fluxo da cabeça do poço para tanques ou para linhas de coleta estão abertas; o sistema de freio está funcional; o cabeçote de acionamento de superfície está instalado de acordo com as especificações do fornecedor/fabricante com os níveis apropriados de óleo e tensão da correia, se aplicável; os parâmetros de fechamento de emergência estão definidos corretamente no sistema de controle da bomba, com a pressão de fechamento de emergência baseada no status do sistema de coleta.

Por exemplo, se o sistema de coleta estiver fechado, o sinal de interrupção é enviado diretamente para o poço, evitando o bombeamento com o sistema de coleta fechado. Deve-se registrar o nível de fluido no poço ou registrar a leitura do sensor de fundo do poço para ter uma referência da pressão de fundo antes da partida.

A NBR 16464 de 04/2016 – Industria de petróleo e gás natural — Sistemas de bombas de cavidades progressivas para elevação artificial — Bombas estabelece requisitos para o projeto, verificação e validação de projeto, controle de fabricação e de dados, classificações de desempenho, avaliação funcional, reparos, manuseio e armazenamento de bombas de cavidades progressivas (BCP), para utilização na indústria do petróleo e gás natural. Esta norma se aplica aos produtos que atendem à definição de BCP. As conexões à coluna de produção ou à coluna de transmissão não fazem parte desta norma. Ela inclui anexos normativos que estabelecem os requisitos para a caracterização e testes de elastômeros, validação de projeto e avaliação funcional.

Adicionalmente, os anexos informativos fornecem informações para a seleção e teste de elastômero de BCP, instalação, diretrizes de partida e operação, diretrizes de seleção e aplicação de equipamentos, formulário de especificação operacional, avaliação de bomba utilizada, seleção e utilização da coluna de transmissão, procedimento de reparo e recondicionamento e equipamentos auxiliares. Os equipamentos não abrangidos pelos requisitos desta norma incluem os sistemas com transmissão de fundo, exceto para os componentes BCP, componentes da coluna de transmissão e equipamentos auxiliares, como separadores de gás e âncoras de torque. Estes itens podem ou não estar cobertos por outras normas.

A bomba de cavidade progressiva (BCP) é constituída de um conjunto de estator e rotor, cuja geometria gera duas ou mais séries de cavidades separadas, lenticulares e helicoidais. Essa norma foi desenvolvida por usuários/compradores e fornecedores/fabricantes de bombas de cavidades progressivas, para utilização na indústria de petróleo e gás natural. Esta norma fornece os requisitos e as informações relativas à seleção, à fabricação, aos testes e à utilização de bombas de cavidades progressivas, conforme definido no escopo.

Além disso, esta norma trata dos requisitos de fornecedores, que estabelecem os parâmetros mínimos a serem atendidos por eles para declararem a conformidade com ela. Foi estruturada para permitir incrementos dos requisitos na documentação de controle de qualidade. Estas variações permitem que o usuário/comprador selecione o grau necessário para uma aplicação específica.

Existem três graus de validação de projeto (V1, V2 e V3) e de controle de qualidade (Q1, Q2 e Q3), e dois graus de avaliação funcional (F1 e F2). O grau V3 de validação de projeto é restrito a produtos de legado, sendo V2 o grau básico e o grau mais alto o V1. O controle de qualidade grau Q3 é o padrão e os graus Q2 e Q1 fornecem requisitos adicionais.

Entre os graus de avaliação funcional, apenas o F1 exige teste hidráulico da bomba BCP em bancada. O usuário/comprador tem a opção de especificar os requisitos adicionais a estes graus. Recomenda-se que os usuários estejam cientes de que podem ser necessários requisitos além daqueles previstos para aplicações individuais.

Esta norma não pretende impedir que o fornecedor/fabricante ofereça, ou que o usuário/comprador aceite, equipamentos ou soluções de engenharia alternativas. Isso pode aplicar-se, particularmente, no caso de uma tecnologia inovadora ou em desenvolvimento. Quando uma alternativa é oferecida, recomenda-se que o fornecedor identifique quaisquer mudanças em relação a esta Norma e que apresente detalhes. Pode-se acrescentar que diferencial de pressão admitido por estágio seria o valor de diferencial de pressão estabelecido em função das seguintes características: número de lóbulos, distribuição da espessura do elastômero (constante ou variável), material do elastômero, configuração de passo (ver tabela abaixo).

O usuário/comprador deve preparar uma especificação operacional para encomendar uma BCP em conformidade com esta norma, bem como deve especificar os requisitos e condições operacionais apropriadas, e/ou identificar a BCP específica do fornecedor/fabricante. Esta informação é utilizada pelo fornecedor/fabricante para recomendar a BCP e/ou outros componentes para a aplicação.

Estes requisitos e condições de operação podem ser transmitidos por meio de um formulário de especificação operacional pelo usuário/comprador (Anexo A) e diretrizes operacionais (Anexo B). O usuário/comprador deve especificar as unidades de medida para os dados fornecidos.

As BCP são projetadas para aplicações específicas; as suas utilizações em aplicações novas ou diferentes exigem uma avaliação detalhada pelo usuário/comprador para garantir que o sistema possa operar adequadamente em todos os aspectos de uma nova aplicação. Os Anexos B e C contêm as diretrizes de instalação e operação que podem ser relevantes nesta consideração.

O processo utilizado para avaliar a nova aplicação não pode ser menos restrito do que o necessário para a aplicação inicial. São considerados os seguintes tipos de BCP: quanto ao material do estator (metálico ou elastomérico); quanto à espessura do elastômero (constante ou variável); quanto ao número de lóbulos (singlelobe ou duallobe); quanto ao assentamento (insertável ou tubular).

O usuário/comprador deve selecionar uma BCP baseado nas seguintes condições: os requisitos de produção; as características dos fluidos; a configuração do equipamento de superfície; o tipo de assentamento do estator, como coluna de transmissão, coluna de produção e tubos contínuos (coiled tubing). Quando instalada, a BCP deve operar de acordo com os seus requisitos operacionais, que são normalmente determinados com base nos parâmetros de aplicação.

Estes parâmetros incluem, mas não são limitados a aqueles listados nessa norma, quando aplicável. As seguintes informações do poço devem ser especificadas, quando aplicável: ambiente de operação, métodos térmicos de recuperação, condições abrasivas, ambientes corrosivos, produção de óleo convencional e pesado, e no processo de produção de metano nas jazidas de carvão; tipo de poço, como o vertical, inclinado, desviado ou horizontal; perfil direcional do poço, quando aplicável; localização da cabeça do poço, em terra, plataforma ou submarina; tipo de reservatório, como de carbonato, arenito consolidado, arenito não consolidado, carvão ou xisto; mecanismo de produção e recuperação de reservatório, como influxo de água, gás em solução, injeção de água, métodos térmicos, drenagem da água das jazidas de carvão, recuperação avançada de petróleo, como injeção de CO2, injeção alternada de água e gás, ou injeção de polímeros; tipo de completação, como revestimento canhoneado, poço aberto, tubo rasgado, empacotamento de areia (gravel pack) ou tela de contenção de areia; histórico de produção utilizando BCP e outras práticas operacionais, como outros métodos de elevação artificial e surgência; e expectativa de vida útil, como produção acumulada, número de rotações, dias e anos.

As seguintes informações de completação devem ser especificadas, quando aplicável: a profundidade de assentamento da bomba em termos de profundidade medida (MD) e profundidade vertical (TVD) na admissão da bomba; a profundidade do intervalo produtor em termos de MD e TVD; a profundidade atual total do poço, como profundidade de BPP, em termos de MD e TVD; nos casos onde não é fornecido o perfil direcional do poço: inclinação (ângulo do poço) e curvatura do poço (quando aplicável) na profundidade de assentamento da bomba; máxima curvatura do poço (máximo dogleg) desde a cabeça do poço até a profundidade de assentamento da bomba, por meio do qual é necessário que a BCP passe durante a instalação.

Deve-se incluir o diâmetro do revestimento, incluindo o diâmetro externo e o peso linear, tipo de rosca e grau do material do revestimento de produção; o diâmetro mínimo de passagem entre a cabeça do poço e a profundidade de assentamento da bomba; o diâmetro mínimo de passagem na profundidade de assentamento da bomba; o diâmetro da coluna de produção, incluindo diâmetro externo, peso linear, tipo de rosca e grau do material do tubo; o tipo e espessura do revestimento interno da coluna de produção; tipo de admissão da bomba, como tubo rasgado, tubo perfurado/telado, âncora de gás, tubo de cauda; o tipo de âncora de torque; a profundidade medida no topo da âncora de torque; e outras dimensões do poço que possam restringir a instalação ou operação do poço.

As seguintes informações de produção e operação devem ser especificadas, quando aplicável: a vazão total de líquido nas condições-padrão (20 °C, pressão atmosférica); o corte de água por porcentagem do volume dos líquidos produzidos ou vazões de óleo e água produzidos; o teor de areia, expresso em porcentagem por volume; a rotação máxima e mínima de operação, expressa em rotações por minuto; a pressão na cabeça do poço; a temperatura do fluido na cabeça do poço; a pressão do revestimento; a pressão na admissão da bomba na condição de pressão estática ou parada; a pressão na profundidade de referência do reservatório na condição de pressão estática ou parada.

Além disso, deve ser incluída a temperatura na admissão da bomba na condição de pressão estática ou parada; a temperatura na profundidade de referência do reservatório na condição de pressão estática ou parada; a razão gás/óleo de produção ou vazão de gás, medida em condições-padrão (20 °C, pressão atmosférica); a razão entre a vazão de gás produzida pelo revestimento e a vazão de gás produzida pela coluna de produção em condições-padrão (20 °C, pressão atmosférica) e/ou eficiência de separação de gás livre na condição de fundo. Especificar, ainda, a pressão na admissão da bomba (PIP), podendo ser expresso como a pressão na admissão da bomba nas condições de produção; a altura de fluido em condições de produção (submergência da bomba), gradiente/densidade do fluido do anular e pressão do revestimento; a pressão estática do reservatório, índice de produtividade, gradiente/densidade do fluido e vazão; a altura de fluido em condições estáticas, índice de produtividade, gradiente/densidade do fluido e vazão

Importante definir a tendência de golfada, como de gás, água, sólidos e vapor. O usuário/comprador deve especificar os requisitos de compatibilidade ambiental. Os seguintes parâmetros devem ser fornecidos, quando aplicável: para óleo: grau API para temperatura e pressão-padrão (20 °C, pressão atmosférica); análise de composição, incluindo, mas não restrita ao tipo e concentração de espécies aromáticas; ponto de anilina; viscosidade em condições de teste e/ou operacionais; e pressão de bolha na temperatura do reservatório.

Para a água, deve-se indicar o pH; a massa específica; e a concentração de cloretos. Para gás, descrever a composição como a concentração de CO2, expressa em porcentagem molar; a concentração de H2S, expressa em porcentagem molar; a temperatura, pressão e qualidade do vapor e a densidade.

Para sólidos, um histórico de problemas relacionados a sólidos, como erosão, tamponamento e desgaste; morfologia, como tamanho, estrutura, forma geométrica e composição; tendência de incrustação; tendência de deposição de parafina e/ou asfalteno; outros como a propriedades da emulsão, como o ponto de inversão (corte de água – %); viscosidade da emulsão em condições de fundo do poço durante a vida útil prevista para a bomba; tendência de formação de emulsão. Indicar o comportamento do óleo com espuma; outros tipos e concentrações de fluidos, como diluentes, inibidor de corrosão/incrustação, fluido de completação, dispersantes e pontos de injeção no poço.

O usuário/comprador deve especificar, quando aplicável, os requisitos de compatibilidade dos projetos das interfaces, materiais e limitações dimensionais externas, necessárias para garantir que os equipamentos estejam de acordo com a aplicação. O seguinte tópico deve ser considerado para a aplicação: tipo: cabeçote de acionamento ou transmissão de fundo. Os sistemas de transmissão por cabeçote de acionamento são tratados na NBR 16304. Também considerar as limitações de torque, rotação e carga axial.

Para sistemas de transmissão de fundo, o tipo de motor, como elétrico ou hidráulico; as limitações operacionais, como geração de calor, restrição de fluxo na admissão ou na descarga; o máximo diâmetro externo, comprimento e posição, acima ou abaixo da BCP; e o fator de redução do redutor. Para a coluna de transmissão, os seguintes tópicos devem ser considerados para a aplicação: tipo, como convencional, contínua, oca; grau do material; diâmetro do corpo; descrição e tipo da conexão; capacidade de torque e carga axial; o tipo e a descrição de centralizadores e quantidade instalada; e o tipo e a descrição de guias e quantidade instalada.

Lançamento da NBR ISO 18091:2021

No dia 17 de fevereiro de 2022, das 10 h às 11:00 h irá ocorrer um evento online via Youtube, grátis, para o lançamento da NBR ISO 18091:2021 – Implementação do sistema de gestão sustentável em prefeituras. Um dos grandes desafios que as sociedades enfrentam hoje é a necessidade de desenvolver e manter a confiança dos cidadãos em seus governos e suas instituições. Ao enfrentar este desafio, as prefeituras têm a missão de permitir o desenvolvimento de uma comunidade municipal socialmente responsável e sustentável.

Alcançar e manter um alto nível de qualidade na forma como as Prefeituras operam pode resultar em prosperidade econômica sustentável e desenvolvimento ambiental e social em níveis locais; incluindo a interação com as políticas nacionais e regionais de maneira coerente, consistente e compatível. Os cidadãos esperam que a prefeitura proveja produtos e serviços públicos de alta qualidade, como proteção e segurança, estradas bem conservadas, transporte público, processamento eficiente de documentos, transparência e acessibilidade à informação pública, saúde, educação e infraestrutura, atenção às questões ambientais, além da necessária gestão dos riscos de todos os tipos, entre outros.

É possível construir redes de políticas públicas mais fortes, confiáveis e eficazes em níveis nacional, regional e internacional, se as prefeituras adotarem sistemas de gestão da qualidade com vistas à sustentabilidade e com o objetivo de melhorar seus produtos e serviços públicos. Melhorar o desempenho da prefeitura estimula todo o sistema do governo a prover melhores resultados em geral e aplicar uma abordagem coerente em todo o governo ajuda a tornar o governo municipal confiável e sustentável.

A NBR ISO 18091:2021 provê diretrizes para as prefeituras sobre a compreensão e implementação de um sistema de gestão da qualidade que atenda aos requisitos da NBR ISO 9001:2015 e às necessidades e expectativas de seus cidadãos e outras partes interessadas pertinentes.

Além da determinação das diretrizes para implementar um sistema de gestão da qualidade, a NBR ISO 18091 contém quatro anexos que poderão auxiliar o gestor público a realizar um diagnóstico sobre os eixos de desenvolvimento institucional para boa vizinhança, desenvolvimento econômico sustentável, desenvolvimento social inclusivo e desenvolvimento ambiental sustentável; a identificar e mapear os processos típicos da Prefeitura; a criar um observatório cidadão integral que é uma ferramenta para a participação cidadã e para a prestação de contas da prefeitura; e traduzir diferentes sistemas de avaliação, conteúdos ou assuntos, por exemplo, os Objetivos de Desenvolvimento Sustentável das Nações Unidas (ODS da ONU), nos indicadores de redes de políticas públicas encontrados no modelo de diagnóstico apresentado no Anexo A.

Inscrições gratuitas no link https://www.sympla.com.br/evento-online/lancamento-da-norma-abnt-nbr-iso-18091-2021/1464066

Artigos escolares devem obrigatoriamente cumprir a norma técnica

O Inmetro vem alertando aos pais e responsáveis: na escolha dos itens da lista dê preferência aos produtos que exibam o selo do instituto. Este selo indica que os produtos atendem a requisitos mínimos de segurança, a fim de evitar acidentes e riscos às crianças. “Os adultos não devem se prender apenas ao preço dos produtos. É preciso preservar a segurança das crianças. O selo do Inmetro é a evidência de que os itens foram testados e estão em conformidade com a norma aplicável”, assinala Milene Fonseca, pesquisadora-tecnologista do Inmetro.

Pode-se acrescentar que esses produtos necessitam obrigatoriamente cumprir a norma técnica. A NBR 15236 de 09/2021 – Segurança de artigos escolares especifica os requisitos de segurança com base no uso projetado para os artigos escolares destinados a crianças menores de 14 anos e refere-se a possíveis riscos que não são identificados prontamente pelos usuários, mas que podem advir de seu uso normal ou em consequência de abuso razoavelmente previsível. Os diferentes limites de idade podem ser encontrados nesta norma. Esses limites refletem a natureza dos riscos em relação à capacidade mental, física ou ambas, para abranger os possíveis riscos aos quais as crianças estejam submetidas.

Os requisitos de segurança desta norma não se aplicam aos artigos listados abaixo: móveis escolares, que são tratados na NBR 14006; livros didáticos, que são tratados na NBR 14869; cadernos escolares espiralados ou costurados ou colados ou argolados ou grampeados, com capa dura ou capa flexível, que são tratados na NBR 15733; blocos de desenho, que são tratados na NBR 15731; cadernos de cartografia e de desenho, universitários, espiralados ou colados ou grampeados ou costurados ou argolados, que são tratados na NBR 15732; folhas soltas para uso escolar, que são tratados na NBR 15730; papel almaço, que são tratados na NBR 6046; artigos para uso exclusivo para escritório, por exemplo, furador de papel, grampeador, sacador de grampo, clipe, grampo, abridor de carta, pastas suspensas e agendas não escolares; artigos para desenhos técnicos e artísticos profissionais; artigos solicitados em listas escolares para trabalhos artesanais e que não são projetados como artigos escolares.

Para o Inmetro, atualmente, 25 artigos escolares são certificados pelo Inmetro e devem conter o selo de identificação da conformidade. A presença do selo atesta que o produto atende a requisitos mínimos de segurança. Entre outros requisitos, alguns pontos verificados são bordas cortantes, pontas perigosas e também a presença de substâncias tóxicas em itens que possam ser levados à boca ou com risco de serem ingeridos ou inalados. Os itens vendidos por plataformas digitais também devem exibir o selo do Inmetro. Na ausência dele, não compre. É considerado artigo escolar qualquer objeto ou material com motivos ou personagens infantis projetados para uso em ambiente escolar ou atividades educativas, com ou sem funcionalidade lúdica, por crianças menores de 14 anos.

O selo deve ser afixado na embalagem ou diretamente no produto. No caso de material vendido a granel, como lápis, borrachas, apontadores ou canetas, a embalagem expositora com o Selo do Inmetro deve estar próxima ao produto. Não compre artigos escolares sem exigir a nota fiscal (NF), pois não há garantia de procedência e tais produtos podem não atender às condições mínimas de segurança.

Guarde a nota fiscal do produto: ela é sua comprovação de origem do produto e recebê-la é seu direito como consumidor. Caso encontre produtos sem o selo no mercado formal, faça sua denúncia à Ouvidoria do Inmetro: 0800 285 1818 (segunda a sexta-feira, das 9 h às 17 horas ou pelo formulário: https://www.gov.br/inmetro/pt-br/canais_atendimento/ouvidoria Já em casos de acidentes de consumo envolvendo um artigo escolar ou qualquer outro produto ou serviço, faça o relato no Sistema Inmetro de Monitoramento de Acidentes de Consumo – Sinmac.

Confira a lista dos produtos regulamentados pelo Inmetro: apontador; borracha e ponteira de borracha; caneta esferográfica/roller/gel; caneta hidrográfica (hidrocor); giz de cera; lápis (preto ou grafite); lápis de cor; lapiseira; marcador de texto; cola (líquida ou sólida); corretor adesivo; corretor em tinta; compasso; curva francesa; esquadro; normógrafo; régua; transferidor; estojo; massa de modelar; massa plástica; merendeira/lancheira com ou sem seus acessórios; pasta com aba elástica; tesoura de ponta redonda; tinta (guache, nanquim, pintura a dedo plástica, aquarela).

Pro Trilhos chega a 21 contratos assinados para criação de novas ferrovias

Lançado em setembro de 2021 para permitir a ampliação da malha ferroviária nacional com empreendimentos privados, o programa federal Pro Trilhos inicia 2022 com 21 contratos de autorização para construção e operação de ferrovias assinados. A formalização entre a União e empresas que pleitearam a criação de ferrovias próprias pelo novo modelo saiu no Diário Oficial da União (DOU).

Somados, esses empreendimentos agregam 6.839,69 quilômetros de novos trilhos à malha ferroviária do país, especialmente às redes férreas dos estados de São Paulo, Minas Gerais, Espírito Santo, Paraná, Santa Catarina, Maranhão, Bahia, Pernambuco, Piauí, Mato Grosso do Sul, Mato Grosso e Goiás, além do Distrito Federal. A projeção de investimentos nos trechos autorizados é de R$ 90,74 bilhões.

Agora, são 12 o total de empresas que já contam com a devida autorização do governo federal para atuarem no setor, implantando e operando com recursos próprios estradas de ferro e terminais ferroviários em 13 unidades da Federação. A outorga por autorização é um procedimento mais célere e desburocratizado do que o modelo tradicional de concessão. Prova da agilidade do novo regime é que as primeiras propostas contempladas com autorizações foram protocoladas junto ao Ministério da Infraestrutura (MInfra) no mês de setembro.

Ainda assim, de lá para cá, os 21 projetos autorizados passaram por um trâmite criterioso. Ele incluiu conferência de documentação e do detalhamento da proposta pela equipe da Secretaria Nacional de Transportes Terrestres (SNTT), análise na Agência Nacional de Transportes Terrestres (ANTT) da convergência do projeto com a malha ferroviária implantada (concedida ou outorgada) e avaliação da conformidade do empreendimento com as políticas públicas do setor e nacional de transportes, novamente na SNTT.

Até o momento, o MInfra recebeu 76 requerimentos para construção e operação de ferrovias pelo regime de autorização, perfazendo 19 mil quilômetros de novas ferrovias privadas, cruzando 16 Unidades da Federação, e investimentos que ultrapassam R$ 224 bilhões. A expectativa é de que sejam criados 2,6 milhões de postos de trabalho diretos e indiretos, além da diminuição do custo de transporte, da emissão de CO² e a modernização da malha ferroviária nacional.

Criado pela Medida Provisória 1.065/2021, o Marco Legal das Ferrovias teve a apreciação concluída pelo Congresso Nacional no último dia 14 de dezembro e foi sancionado pelo presidente da República dez dias depois. O novo arcabouço legal simplifica o fardo regulatório para investimentos no setor ao abrir a possibilidade de empresas desenvolverem segmentos próprios, com recursos 100% privados.

A conformidade das portas resistentes ao fogo de edificações

As portas resistentes ao fogo para entradas de edificações possuem uma tipologia de giro, são construídas com folha (s), marco, ferragens e, eventualmente, bandeira que atendam às características da norma, destinadas a entrada de unidade autônoma e compartimentos específicos. Uma unidade autônoma é uma parte de edificação vinculada a uma fração ideal de terreno, sujeita às limitações da lei, constituída de dependência e instalações de uso comum da edificação, assinalada por designação especial numérica, para efeitos de identificação, nos termos da legislação vigente.

Os compartimentos específicos de edificações são os setores que se destinam a um uso determinado e próprio e que, por essa razão, são separados do restante da edificação por paredes e portas. Enquadram-se nesta categoria os quartos de hotel e de hospital, as salas de aula e os laboratórios de uma escola, as salas de máquina e de transformação de energia e áreas técnicas em geral, depósitos, cozinhas, etc.

Pode-se dizer que a resistência ao fogo é a capacidade da porta resistente ao fogo de suportar o fogo, proteger ambientes contíguos durante a ação caracterizada pela capacidade de confinar o fogo (integridade e isolamento térmico) e manter a estabilidade ou resistência mecânica por determinado período. Esta propriedade é determinada mediante ensaio realizado conforme a NBR 6479.

São consideradas ferragens obrigatórias para as portas resistentes ao fogo com duas folhas as dobradiças: no mínimo três iguais por folha; as fechaduras: no caso de necessidade de instalação de porta com duas folhas, exclusivamente para permitir passagem ocasional de objetos com grandes dimensões, a folha destinada à vazão de pessoas deve ter as ferragens obrigatórias da porta com uma folha.

A outra folha, que pode ser aberta pelo tempo estritamente necessário à passagem dos objetos, deve ter como ferragens obrigatórias o mínimo de três dobradiças e os ferrolhos superior e inferior. No caso de as duas folhas serem destinadas à passagem de pessoas, duas situações se estabelecem: abertura contrária ao fluxo e abertura no sentido do fluxo.

Na primeira situação, a folha que fecha em primeiro lugar deve ser dotada de fechadura do tipo cremona retrátil, com travamento superior e inferior, e a outra deve possuir fechadura conforme determinado na norma. Na segunda situação, ambas as folhas devem ser dotadas de barras antipânico e, caso seja necessário (se tiverem fechamento automático), selecionador de fechamento.

As condições especificadas na NBR 11785 devem ser atendidas. Os visores ou a utilização de vidro nas portas PRF/EI devem ser divididos em duas categorias em relação à área que ocupam na folha da porta. Na primeira categoria, a área está limitada a 0,10 m², sendo que a menor dimensão não pode superar 0,20 m e a maior não pode superar 0,50 m.

Na segunda categoria, esta área pode ser superada, podendo alcançar dimensões condicionadas apenas pelas características e limitações construtivas da folha. Estas áreas correspondem à abertura efetuada na folha para a inserção do vidro.

Na primeira categoria, a integridade do visor deve corresponder ao período completo de classificação da porta, e o isolamento térmico deve ser garantido no mínimo por 50% deste período. Na segunda situação, a integridade e o isolamento térmico do visor devem corresponder ao período completo de classificação da porta.

O fabricante, ao especificar o projeto e o procedimento de fabricação da porta, que devem se enquadrar em uma das classes estipuladas na norma, deve realizar, em laboratório acreditado, integrante da Rede Brasileira de Laboratórios de Ensaio (RBLE), os ensaios descritos na norma. Para isto, devem ser confeccionados seis protótipos completos, seguindo o projeto e o procedimento de fabricação adotados, levando-se em conta a dimensão do vão livre.

Os resultados dos ensaios se aplicam aos produtos com dimensões menores ou no máximo excedendo em 15% a área da folha da porta submetida à avaliação. Três protótipos devem ser encaminhados ao laboratório. Os protótipos entregues para ensaio devem ser acompanhados de seu respectivo projeto construtivo e memorial descritivo.

Nestes documentos devem constar pelo menos as seguintes informações: os vãos livres aos quais o projeto se destina, considerando o disposto na norma; as dimensões dos componentes; os materiais utilizados; o tratamento anticorrosivo dos componentes metálicos ferrosos. Neste caso valem os requisitos especificados na NBR 11742:2018, 5.1.2, onde é descrito o emprego dos métodos das NBR 8094 e ASTM D 610.

Incluir, ainda, no documento o posicionamento das ferragens; a marca e o nome comercial das ferragens utilizadas; a densidade aparente de massa seca do miolo; o teor de umidade natural do miolo; e a massa da folha da porta, sem acessórios. Um dos protótipos deve ser utilizado para verificação das dimensões e desvios indicados na norma.

Os outros protótipos devem ser instalados para a execução dos ensaios de manobras anormais, seguidos de ensaio de resistência ao fogo. A instalação, a critério do fabricante, deve ser feita em parede de alvenaria ou em parede drywall. A resistência ao fogo da parede deve ser 30 min superior à desejada para a porta.

A situação de montagem em parede drywall valida a classificação para portas instaladas em alvenaria, não valendo a situação recíproca. Para esta validação, é necessário que as dimensões da seção do marco não sejam diminuídas. O fabricante cujo projeto foi aprovado em uma das classes deve manter, na produção das portas resistentes ao fogo, a qualidade verificada nos protótipos, quando de sua aprovação. Para isto, deve controlar formalmente a qualidade dos componentes e ferragens utilizados, assim como do conjunto acabado, seguindo rigidamente o projeto original.

A NBR 15281 de 11/2021 – Porta resistente ao fogo para entrada de unidades autônomas e compartimentos específicos de edificações especifica os requisitos para construção, instalação, funcionamento, desempenho, manutenção e ensaio de portas resistentes ao fogo com tipologia de giro, para entrada de unidades autônomas e de compartimentos específicos de edificações. O enclausuramento das escadas e a compartimentação das edificações visam compor a setorização de riscos, de forma a controlar a propagação de fogo e fumaça, permitir a saída segura das pessoas e facilitar as operações de combate e resgate.

Nessas situações, as portas compõem estas soluções. Nesse caso, elas são dotadas de capacidade de suportar a ação do incêndio por determinado período, avaliada por meio de ensaios de resistência ao fogo, com o intuito de conter o incêndio em unidades autônomas e compartimentos específicos onde ele se iniciou.

As portas resistentes ao fogo para entradas de edificações são as com tipologia de giro, construídas com folha (s), marco, ferragens e, eventualmente, bandeira que atendam às características desta norma, destinadas a entrada de unidade autônoma e compartimentos específicos. A unidade autônoma é a parte de edificação vinculada a uma fração ideal de terreno, sujeita às limitações da lei, constituída de dependência e instalações de uso comum da edificação, assinalada por designação especial numérica, para efeitos de identificação, nos termos da legislação vigente.

Os compartimentos específicos de edificações são os setores que se destinam a um uso determinado e próprio e que, por essa razão, são separados do restante da edificação por paredes e portas. Enquadram-se nesta categoria os quartos de hotel e de hospital, as salas de aula e os laboratórios de uma escola, as salas de máquina e de transformação de energia e áreas técnicas em geral, depósitos, cozinhas, etc.

Quanto à resistência ao fogo, é a capacidade da porta resistente ao fogo de suportar o fogo, proteger ambientes contíguos durante a ação caracterizada pela capacidade de confinar o fogo (integridade e isolamento térmico) e manter a estabilidade ou resistência mecânica por determinado período. Esta propriedade é determinada mediante ensaio realizado conforme a NBR 6479.

As portas resistentes ao fogo abrangidas por esta norma devem ser classificadas, em função do tempo de resistência que apresentam ao fogo de 30 min, 60 min, 90 min, como PRF/EI-30, PRF/EI-60 e PRF/EI-90, respectivamente. Para isto, devem atender às condições de desempenho estabelecidas nessa norma, comprovadas por meio de ensaio, e a outras condições constantes em normas e especificações aplicáveis.

Para saídas de emergências, onde se exigem portas corta-fogo, devem ser utilizadas as portas que atendam às condições especificadas na NBR 11742. Os materiais empregados na fabricação das portas, incluindo folha, marco, ferragens e seus elementos de fixação, devem apresentar compatibilidade entre si para que sejam evitadas reações que provoquem deterioração do conjunto.

Cada porta deve receber uma identificação indelével e permanente, por gravação ou por plaqueta metálica, com as seguintes informações: porta resistente ao fogo PRF/EI-30 ou PRF/EI-60 ou PRF/EI-90, conforme essa norma; identificação do fabricante; número de ordem de fabricação (apenas para a folha da porta); mês e ano de fabricação (apenas para a folha da porta). Incluir a marca do fabricante e tipo do vidro gravados nos vidros empregados na confecção da folha da porta resistente ao fogo ou visores, de maneira indelével, considerando os requisitos da NBR 14925.

A identificação deve ser fixada tanto na (s) folha (s) quanto no marco, em locais visíveis. A unidade de compra é a porta completa, composta por folha (s), marco (s) e ferragens obrigatórios, completamente instalados, embalada de acordo com as condições estabelecidas nesta norma. A porta não pode ser alterada na instalação nem pelo usuário.

Cada lote de portas fornecido deve estar acompanhado de um manual de instruções contendo informações referentes às dimensões e massas nominais, cuidados no transporte, embalagem, armazenamento, instalação, funcionamento, manutenção e revestimento. Todas estas informações devem estar em língua portuguesa e de acordo com o descrito nesta norma.

As portas, quando armazenadas na obra, devem permanecer em locais secos e limpos, ao abrigo de intempéries, obedecendo às instruções do fabricante. As portas devem ser instaladas de acordo com as instruções do fabricante, que devem se basear nos requisitos especificados nessa norma.

O marco, ao ser instalado, deve ser completamente preenchido, não deixando vazios ou frestas, utilizando-se para isto argamassa com cimento ou material apropriado que tenha sido empregado no produto ensaiado. Em qualquer situação, tal procedimento deve ser compatível com as condições de ensaio, conforme especificado nessa norma.

A (s) folha (s) deve(m) ser instalada (s) com as folgas previstas nos documentos técnicos e condições previstas nessa norma. A abertura e o fechamento das portas abrangidas por essa norma devem ocorrer de maneira livre, sem qualquer restrição, mantendo as folgas necessárias entre a (s) folha (s) e a soleira, e entre a (s) folha (s) e o marco, em atendimento às instruções do fabricante e obedecendo às folgas máximas estabelecidas na tabela abaixo.

Quando as portas permanecerem abertas no uso normal dos edifícios, elas devem ser dotadas de sistema de fechamento automático, permanecendo travadas por meio de dispositivo eletromagnético e sendo liberadas pela atuação de sistema de detecção de incêndio. O fechamento manual deve ser possível no local pelo destravamento do dispositivo eletromagnético.

Em outras situações, o fechamento automático é facultativo. Quando a porta possuir fechamento automático, ela deve ser dotada de dispositivo moderador de velocidade de fechamento, minimizando o impacto contra o marco.

Para a manutenção, as condições originais de funcionamento da porta devem ser preservadas durante toda a sua vida útil, ficando o usuário responsável por isto, por meio da assistência técnica da empresa fabricante, levando em conta o período de garantia e os profissionais qualificados. A qualquer momento deve ser providenciada a regulagem ou substituição dos elementos que não estejam em perfeitas condições de funcionamento.

As substituições das ferragens devem atender às instruções contidas no manual do produto fornecido pelo fabricante da porta, de forma a não comprometer o seu desempenho original. O mecanismo de fechamento das fechaduras, caso apresente problemas, deve ser substituído por produto com as mesmas características.

As dobradiças, caso necessitem ser substituídas, devem ser trocadas por produto equivalente, sob o ponto de vista dimensional, técnico e de desempenho. Para a aceitação da instalação, para cada edificação, após a conclusão da instalação das portas para entradas de unidade autônomas e de compartimentos específicos de edificações, elas devem ser inspecionadas por profissional legalmente e tecnicamente habilitado, que deve emitir relatório, devidamente registrado em conselho profissional competente, evidenciando o atendimento ou não a todas as condições especificadas nessa norma.

Para os requisitos específicos, dos detalhes construtivos, das dimensões de vão livre, as portas devem ser fabricadas nas dimensões mínimas de vão livre de 660 mm de largura e 2.000 mm de altura, e máxima de 2.400 mm de largura e 3.000 mm de altura. Os vãos livres com largura superior a 1.200 mm devem ter duas folhas com largura igual.

No caso de bandeira e painel, esta condição não é obrigatória. Neste caso, entretanto, a folha móvel deve vedar um vão livre com largura mínima de 800 mm. As portas em que a acessibilidade, conforme a NBR 9050, tiver que ser contemplada na largura mínima para o vão livre, devem ser de 900 mm e 1.500 mm, respectivamente, para uma e duas folhas.

Os materiais que compõem a folha da porta não podem apresentar incompatibilidades de qualquer natureza, capazes de abreviar a vida útil das portas. As portas com duas folhas devem ser dotadas de dispositivos de vedação entre elas, destinadas às situações de incêndio, como mata-juntas ou outros dispositivos.

As folgas admitidas entre o marco e a folha ou entre as folhas (para portas com duas folhas) estão indicadas na tabela abaixo. Quando as portas permanecerem abertas no uso normal dos edifícios, elas devem ser dotadas de sistema de fechamento automático, permanecendo travadas por meio de dispositivo eletromagnético e sendo liberadas pela atuação de sistema de detecção de incêndio.

O fechamento manual deve ser possível no local pelo destravamento do dispositivo eletromagnético. Em outras situações, o fechamento automático é facultativo.

As fechaduras utilizadas devem ser do tipo de embutir, enquadrando-se nas categorias IV, V e VI, conforme as condições especificadas na NBR 14913:2011, Tabela 2. Os componentes principais das fechaduras, como caixa, mecanismo, lingueta, trinco, chapa-testa, contratesta e a maçaneta, não podem ser constituídos por plásticos nem metais de baixo ponto de fusão, como zamak e equivalentes.

Caso a fechadura empregada no protótipo aprovado em ensaio seja substituída na produção ou instalação das portas, as características mínimas dos materiais, em termos de ponto de fusão, dimensões e desempenho, devem ser respeitadas. São permitidas mudanças de usinagem em até 2% do volume, mantendo ou aumentando a área de cobrimento com a maçaneta da região fragilizada pela retirada de material.

A maçaneta deve ser de alavanca, pelo menos no lado interno da unidade autônoma. No lado de ingresso à unidade autônoma, a fechadura, para o seu acionamento, deve apresentar características compatíveis com o ambiente de uso, podendo dispensar a maçaneta.

A fechadura pode ser substituída por barra antipânico que atenda à NBR 11785, desde que tenha sido avaliada quanto à característica de resistência ao fogo e instalada em protótipo ensaiado. As dobradiças podem ser de aba ou com mola incorporada, e devem ser de metal cujo ponto de fusão não seja inferior a 850°C.

Caso as dobradiças empregadas no protótipo aprovado em ensaio sejam substituídas na produção ou instalação das portas, as características mínimas dos materiais, em relação ao ponto de fusão e desempenho, de dimensões, pontos de fixação e componentes, bem como em relação ao número de peças utilizadas por folha, devem ser mantidas. As condições especificadas na NBR 7178, relativas à classificação de dobradiças pesadas, devem ser atendidas.

A mola hidráulica singular, quando utilizada, deve ser instalada na porção superior da folha da porta e deve atender às condições especificadas na EN 1154. São ferragens obrigatórias, para as portas resistentes ao fogo com uma folha no mínimo, quatro dobradiças iguais e fechadura ou barra antipânico.

A confiabilidade térmica dos coletores solares de aquecimento de fluidos

Um coletor solar térmico é um dispositivo projetado para absorver a radiação solar e transferir a energia térmica produzida para um fluido que passa pelo equipamento. A utilização do termo painel é desconsiderada, para evitar potenciais confusões com painéis fotovoltaicos. A perda de carga em um coletor é um parâmetro importante para os projetistas de sistemas de coletores solares.

Qualquer fluido pode ser usado para a medição, mas deve ser especificado junto com os resultados do ensaio. A temperatura de ensaio padrão do fluido deve ser (20 ± 2) °C. Outras temperaturas são possíveis, mas devem ser indicadas juntamente com os resultados do ensaio.

O fluido de transferência de calor deve fluir conforme especificado pelo fabricante. Atenção especial deve ser dada à seleção dos encaixes de tubulação apropriados nas portas de entrada e saída do coletor para evitar a indução de perda de carga adicional indesejada. O coletor deve ser protegido contra radiação durante todo o ensaio.

A perda de carga deve ser determinada para diferentes vazões, que abrangem a faixa que provavelmente será usada em operação real. Devem ser feitas pelo menos cinco medições com valores igualmente espaçados na faixa de vazão. Em cada ponto de operação, a pressão deve atingir condições de estado estacionário por pelo menos 5 min.

Para o ensaio em coletores de aquecimento de líquidos, eles devem ser acoplados a um loop de ensaio, embora seja necessária menos instrumentação do que para os ensaios de eficiência do coletor. Os seguintes dados devem ser medidos: temperatura do fluido na entrada do coletor; vazão de fluido; queda de pressão do fluido de transferência de calor entre as conexões de entrada e saída do coletor.

A perda de pressão do fluido de transferência de calor através do coletor deve ser medida com um dispositivo com uma incerteza-padrão de 5% do valor medido ou ± 10 Pa, o que for maior. Os acessórios usados para medir a pressão do fluido podem causar uma perda de carga. Uma verificação zero da queda de pressão deve ser feita removendo o coletor do circuito do fluido e repetindo os ensaios com os acessórios de medição de pressão diretamente conectados juntos.

A perda de carga causada pelo equipamento de ensaio deve ser usada para corrigir a perda de carga medida do coletor. O ensaio deve ser realizado a uma pressão constante correspondente à pressão operacional pretendida. A vazão do fluido deve ser mantida constante até ± 1% do valor nominal durante as medições de ensaio.

Pode-se destacar que, durante a avaliação dos dados do ensaio, deve ser desconsiderado um período de tempo de precondicionamento de pelo menos 4 vezes a constante de tempo do coletor (se for conhecida), ou não inferior a 15 min (se a constante de tempo não for conhecida), com a correta temperatura do fluido na entrada e com a velocidade correta do vento através do coletor (somente os coletores sensíveis ao vento e/ou infravermelho – WISC), para assegurar que o estado inicial dos coletores estabilize e não influencie o resultado do parâmetro de identificação.

Nota-se igualmente que os dados fora de padrão que não podem ser explicados não serão excluídos do conjunto de dados. Por razões de clareza, a maioria dos requisitos são apresentados sob a forma de diagramas ideais, mostrando importantes relações entre as diferentes condições de ensaio, incluindo a dinâmica de intervalos que serão dados confiáveis e de conseguir desacoplar os parâmetros do coletor.

Estes diagramas devem ser traçados para a avaliação da confiabilidade dos dados de ensaio com os parâmetros utilizados para identificação, e serão incluídos no relatório do ensaio. Dependendo do método de ensaio escolhido, os parâmetros na tabela abaixo devem ser medidos.

Geralmente, nos coletores sensíveis ao vento e/ou infravermelho (WISC) o absorvedor ou o fluido de transferência de calor está em contato próximo com o ambiente. Exemplos típicos são coletores poliméricos sem cobertura e coletores PVT. Além disso, a distribuição da irradiância sobre o plano do coletor deve ser medida utilizando uma grade de espaçamento máximo de 150 mm. A média espacial deduzida pela amostragem simples deve ser usada para a análise dos dados.

A irradiância térmica em um simulador solar é provavelmente maior do que aquela que normalmente ocorre ao ar livre. Deve, portanto, ser medida para assegurar que não exceda o limite indicado. A irradiância térmica média no plano do coletor deve ser determinada sempre que forem efetuadas alterações no simulador, o que pode afetar a irradiância térmica. A irradiância térmica média no plano do coletor deve ser relatada com os resultados do ensaio do coletor.

A temperatura do ar ambiente ϑa nos simuladores deve ser medida, utilizando a média de vários valores, se necessário. Os sensores devem ser blindados para minimizar a troca de radiação. A temperatura do ar na saída do simulador artificial de vento deve ser usada para os cálculos do desempenho do coletor.

A NBR 17003 de 10/2021 – Sistemas solares térmicos e seus componentes — Coletores solares — Requisitos gerais e métodos de ensaio especifica os requisitos e métodos de ensaio para avaliar a durabilidade, a confiabilidade, a segurança e o desempenho térmico de coletores solares de aquecimento de fluidos. Os métodos de ensaio são aplicáveis aos ensaios de laboratório e aos ensaios in situ. É aplicável a todos os tipos de coletores solares de aquecimento de fluidos na fase líquida, coletores solares híbridos que cogerem calor e energia elétrica, bem como aos coletores solares que utilizam fontes de energia externas para operação normal e/ou segurança.

Não abrange os aspectos de segurança elétrica ou outras propriedades específicas diretamente relacionadas à geração de energia elétrica. Não é aplicável àqueles dispositivos em que uma unidade de armazenamento térmico é parte integrante, de tal forma que o processo de coleta não pode ser separado do processo de armazenamento para fazer as medições de desempenho térmico do coletor.

O coletor solar térmico é um dispositivo projetado para absorver a radiação solar e transferir a energia térmica produzida para um fluido que passa pelo equipamento. A utilização do termo painel é desconsiderada, para evitar potenciais confusões com painéis fotovoltaicos. Deve-se estabelecer os procedimentos para ensaiar os coletores solares de aquecimento de fluido para o desempenho térmico, confiabilidade, durabilidade e segurança, sob condições determinadas e repetíveis. A norma contém métodos de ensaio de desempenho para a realização de ensaios ao ar livre, sob irradiação solar natural, vento natural ou simulado, e para a realização de ensaios em ambientes fechados sob irradiação solar e vento simulados.

Os ensaios ao ar livre podem ser realizados em regime permanente ou como medições durante todo o dia, sob condições climáticas variáveis. Os coletores ensaiados de acordo representam uma ampla gama de aplicações, por exemplo, coletores de placas planas e esmaltadas, coletores de tubos a vácuo para água e aquecimento de ambientes domésticos, coletores para aquecimento de piscinas ou para outros sistemas de baixa temperatura ou coletores de concentração de rastreamento para geração de energia térmica e aplicações de calor de processo.

Esta norma é aplicável aos coletores que usam líquidos como fluido de transferência de calor. Da mesma forma, os coletores que usam fontes de energia externas para operação normal e/ou fins de segurança (proteção contra superaquecimento, riscos ambientais, etc.), bem como dispositivos híbridos que geram energia térmica e energia elétrica, também são considerados.

Uma sequência dos ensaios completa para coletores solares térmicos, incluindo ensaio de durabilidade e medições de desempenho térmico, é proposta na tabela abaixo. Essa sequência de ensaios pode ser modificada, ou apenas ensaios isolados podem ser realizados, se necessário, e recomenda-se consultar a ISO 9806.

Para alguns ensaios, no entanto, um precondicionamento ou um ensaio de meia exposição é obrigatório. Para todas as sequências de ensaios ou ensaios isolados, a inspeção final (ver Seção 15) é recomendada como ensaio conclusivo para a identificação e descrição adequada da amostra, bem como para identificação de problemas ou deficiências.

Os aspectos particulares de coletores usando fontes externas de energia e medidas ativas ou passivas para operação normal e autoproteção devem ser descritos e relatados conforme o Anexo A. As especificações devem ser dadas para vazão, temperatura do fluido e duração do fluxo, se o fluxo de fluido tiver sido aplicado no ensaio.

Os coletores cogerando energia térmica e elétrica devem ser ensaiados como qualquer outro coletor térmico solar em relação à durabilidade e ao desempenho térmico. Todos os ensaios de desempenho térmico devem ser feitos sob condições máximas de geração de energia elétrica. Para todos os ensaios de durabilidade, o gerador de energia elétrica não pode ser conectado a carga alguma (circuito aberto), para evitar o resfriamento do coletor e simular piores condições de operação.

O gerador de energia elétrica deve ser descrito em detalhes no relatório de ensaio. O modo de operação elétrica deve ser relatado para todos os ensaios. Diferentes tipos de coletores são considerados sensíveis ao vento e/ou à radiação térmica.

Para estes coletores, geralmente o absorvedor ou o fluido de transferência de calor está em contato próximo com o ambiente. Exemplos típicos são coletores poliméricos sem cobertura e coletores PVT. Os coletores que, de acordo com as especificações do fabricante, podem ser operados em inclinações superiores a 75°, devem ser considerados coletores de fachadas.

Os ensaios de pressão interna para canais de fluidos destinam-se a avaliar a capacidade de um coletor de suportar a pressão máxima nos canais de fluidos, conforme especificado pelo fabricante. Para os canais de fluidos feitos de materiais não poliméricos, o aparelho consiste em uma fonte de pressão hidráulica ou pneumática, uma válvula de segurança, uma válvula de sangria de ar e um manômetro com incerteza-padrão melhor que 5%.

A válvula de sangria de ar deve ser usada para esvaziar os canais de fluidos do ar antes da pressurização. Os canais de fluidos devem ser preenchidos com fluido à temperatura ambiente e pressurizados até a pressão de ensaio. Após a pressão nos canais de fluidos do coletor ter sido elevada à pressão de ensaio, os canais de fluidos devem ser isolados da fonte de pressão por meio de uma válvula de isolamento.

Os canais de fluidos devem permanecer isolados da fonte de pressão durante o período de ensaio, e a pressão dentro dos canais de fluidos deve ser observada. Os canais de fluidos devem ser ensaiados à temperatura ambiente na faixa de 20 °C ± 15 °C, protegidos da luz. A pressão de ensaio deve permanecer estável dentro de ± 5 % de 1,5 vez a pressão máxima de operação do coletor especificada pelo fabricante antes de isolar o coletor da fonte de pressão. A pressão de ensaio deve ser mantida por pelo menos 15 min.

Os canais de fluidos feitos de materiais poliméricos devem ser ensaiados na temperatura de estagnação, porque a resistência à pressão dos canais de fluidos poliméricos pode ser afetada à medida que a sua temperatura é aumentada. O aparelho consiste em uma fonte de pressão hidráulica ou pneumática e em um meio para aquecer os canais de fluidos até a temperatura de ensaio requerida.

Os canais de fluidos devem ser mantidos à temperatura de ensaio por pelo menos 30 min antes do ensaio e pela duração total do ensaio. A pressão de ensaio deve ser mantida estável dentro de ± 5 %. Um dos seguintes métodos de ensaio deve ser escolhido: submergir os canais de fluidos em um banho de água com temperatura controlada e usar ar comprimido ou água com tinta como meio de ensaio; conectar a um circuito de líquido controlado por temperatura e pressão; aquecer o coletor em um simulador de irradiação solar ou sob irradiação solar natural, utilizando um fluido como meio de ensaio.

A temperatura de ensaio deve ser a temperatura máxima de operação especificada pelo fabricante ou a temperatura de estagnação, o que for maior. A pressão de ensaio deve ser 1,5 vez a pressão máxima de funcionamento do coletor especificada pelo fabricante. A pressão de ensaio deve ser mantida durante pelo menos 1 h.

Se visível, os canais de fluidos devem ser inspecionados quanto a vazamento, inchaço e distorção. Para canais de fluidos não poliméricos, presume-se o vazamento por uma perda de pressão Δp > 5% da pressão de ensaio ou 17 kPa, o que for maior e/ou se alguma gotícula de fluido com vazamento for observada. Para canais de fluidos poliméricos, presume-se o vazamento se alguma gotícula for observada.