Os ensaios dos projetos de implantes ortopédicos em UHMWPE

O polietileno de ultra-alto peso molecular (ultra-high-molecular-weight polyethylene – UHMWPE) tem um peso molecular cerca de dez vezes mais elevado do que o de resinas de polietileno de alta densidade (HDPE). O ultra-alto peso molecular confere propriedades mecânicas, tais como a elevada resistência à abrasão, resistência ao impacto e baixo coeficiente de atrito. Estas propriedades especiais permitem que o produto seja utilizado em várias aplicações de alto desempenho. Pode ser encontrado na forma de pó, em grades que variam de acordo com o peso molecular e o tamanho médio de partícula. O peso molecular está disponível em três faixas: baixa (3 milhões de g/mol), média (5 milhões de g/mol) ou alta (7 a 10 milhões de g/mol). Os produtos com esses pesos moleculares diferentes estão disponíveis em duas faixas de tamanhos de partícula: pequenos (diâmetro médio em torno de 150 μm) ou grandes (diâmetro médio em torno de 205 μm). A vida de prateleira de um componente de UHMWPE que não tenha sido exposto a uma radiação ionizante, ou que tenha sido irradiado, mas embalado em ambiente inerte, é limitada pela integridade do material de embalagem. Podem ser aplicados em implantes ortopédicos, elementos filtrantes, fibras, equipamentos esportivos de neve, recobrimento de vagões. As propriedades únicas do UHMW-PE estão diretamente relacionadas à sua cadeia molecular muito longa, resultando em uma viscosidade muito alta da massa fundida. A maioria dos tipos não apresenta fluidez e mantém sua forma mesmo no estado fundido. Deve-se entender as informações, os requisitos e os ensaios apropriados para a identificação e a caracterização do polietileno de ultra-alto peso molecular em projetos de implante ortopédico.

Os implantes ortopédicos são categorizados em dois grupos, incluindo as substituições permanentes de articulações e dispositivos temporários de fixação de fraturas. Os permanentes incluem as articulações do quadril, joelho, tornozelo, ombro, cotovelo, punho e dedos, que devem servir no corpo humano durante toda a vida dos pacientes. Por outro lado, os temporários, incluindo placas, parafusos, pinos, fios e hastes intramedulares são necessários para corrigir ossos quebrados ou fraturados e devem servir por um tempo relativamente curto, apenas o suficiente para permitir que os ossos se curem.

Uma vez que os implantes ortopédicos devem funcionar em diferentes condições de trabalho in vivo, uma boa compreensão dos requisitos fundamentais dos materiais ortopédicos e da resposta biológica subsequente é crucial para o projeto e otimização dos implantes em condições fisiológicas no corpo humano. A seleção dos materiais adequados para o implante ortopédico depende das aplicações específicas.

As ligas metálicas, cerâmicas e polímeros são comumente usados em implantes ortopédicos. Esses materiais possuem diferentes propriedades físicas, químicas e biológicas que atendem a aplicações específicas. Apesar do sucesso dos materiais tradicionais, novos biomateriais estão sendo desenvolvidos continuamente para satisfazer a demanda cada vez maior.

A demanda por polietileno de ultra-alto peso molecular (UHMWPE) para a fabricação de implantes ortopédicos e cardiovasculares está impulsionando o crescimento do material nos mercados globais. Alguns pesquisadores projetam uma taxa de crescimento anual de mais de 9%, já que o UHMWPE é um polietileno (PE) inodoro, insípido e não tóxico.

Possui todas as características do PE de alta densidade, mas com a vantagem adicional de ser resistente a ácidos, álcalis e outros solventes orgânicos. O UHMWPE está disponível em várias formas e formatos, tornando-o adequado para uma variedade de aplicações, mas o segmento médico é um dos principais mercados, respondendo por quase 30% da participação de mercado. As outras aplicações principais são vestuário e equipamentos de proteção e baterias recarregáveis.

Para a caracterização do UHMWPE, algumas das propriedades, como propriedades de tração, resistência ao impacto e densidade, critérios de aceitação, estão estabelecidos na NBR ISO 5834-2. Se o material atender aos critérios de aceitação, nenhuma informação adicional é necessária. No entanto, se as propriedades do material estiverem abaixo dos critérios de aceitação estabelecidos na NBR ISO 5834-2, algumas informações adicionais devem ser estabelecidas para comprovar que o material é apropriado ao uso pretendido do implante.

São justificativas aceitáveis: a comparação com um dispositivo predicado que utilize o mesmo material ou material com propriedades semelhantes para o mesmo uso pretendido; as informações que demonstrem a segurança do material para o uso pretendido, com base em dados da literatura técnica e científica, incluindo, por exemplo, comparação com controles, estudos em animais, etc.; e para um implante novo, uma justificativa científica consistente, com base na literatura, resultados de estudos clínicos, etc., que possam demonstrar que o implante fabricado com o material avaliado é seguro e eficaz.

A caracterização do material pode envolver a determinação e a avaliação das seguintes propriedades: a densidade de ligações cruzadas; o índice de transvinileno; o índice de oxidação; a cristalinidade; o ponto de fusão; e a concentração de radicais livres. Se os valores determinados estiverem dentro de faixas normais, estabelecidas em normas ou em documentos técnicos e/ou científicos disponíveis na literatura, ou comparáveis com os resultados de um dispositivo predicado com o mesmo uso pretendido, normalmente, não são necessárias informações adicionais. A tabela abaixo identifica as principais propriedades e indica os critérios de aceitação para a caracterização dos UHMWPE.

Clique na figura para uma melhor visualização

O UHMWPE altamente reticulado, em princípio, difere do UHMWPE convencional pela absorção de uma dose de radiação relativamente maior e pelas etapas requeridas de processamento pós-radiação (tratamentos térmicos e/ou mecânicos). Estas diferenças alteram as propriedades químicas, físicas e mecânicas do material, de modo que, complementarmente às caracterizações requeridas para o UHMWPE convencional, a caracterização do UHMWPE altamente reticulado deve incluir: comparação da dose total de radiação absorvida em relação à dose de um dispositivo predicado com o mesmo uso pretendido; porcentagem de cristalinidade; ponto de fusão; propriedades mecânicas biaxiais (resistência à tração no escoamento, resistência à tração na ruptura, e alongamento na ruptura); o índice de oxidação após envelhecimento acelerado ao longo do material ensaiado; o índice de transvinileno ao longo do material ensaiado; a densidade de ligações cruzadas; a resistência à propagação de trinca sob fadiga (ΔKlimiar, coeficiente de Paris, constante de Paris); e a concentração de radicais livres.

Atualmente, não há qualquer método de ensaio normalizado para determinar a concentração de radicais livres, que é normalmente avaliada utilizando espectroscopia de ressonância paramagnética de elétrons (EPR), também conhecida como espectroscopia de ressonância de spin de elétron (ESR). O método de ensaio selecionado deve ser integralmente descrito e justificado, e os resultados dos ensaios devem incluir os espectros obtidos.

Para materiais recozidos acima da temperatura de fusão, não é esperada a detecção de radicais livres. A menos que os resultados obtidos para o material do implante em análise possam ser apropriadamente comparados com os resultados de um dispositivo predicado para o mesmo uso pretendido, os resultados dos ensaios de concentração de radicais livres e os seus impactos esperados ou conhecidos no desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica.

Para a classe de UHMWPE altamente reticulado contendo vitamina E ou outro antioxidante, na caracterização do material devem ser complementadas as informações específicas e concernentes à adição do antioxidante (α-tocoferol, vitamina E). É possível que o antioxidante adicionado possa, ao longo do tempo, ser lixiviado do material, devido à ação de carregamentos e/ou fluidos in vivo que atuem como solvente do antioxidante, cuja perda pode comprometer a resistência à oxidação do material.

Este aspecto pode ser abordado pela demonstração de um nível de resistência adequado após o ensaio de desgaste em que o material é exposto a cargas e solventes clinicamente relevantes, ou por meio de justificativa científica comparando a concentração do antioxidante, a dose de radiação e o tipo de radiação, isto é, os raios gama ou o feixe de elétrons de um dispositivo predicado para o mesmo uso pretendido. Os resultados de ensaios de resistência à oxidação após os ensaios de desgaste podem ser apropriadamente comparados com os resultados de um dispositivo predicado para o mesmo uso pretendido.

No caso de materiais ou novos implantes, os resultados dos ensaios de resistência à oxidação e seus impactos previstos ou conhecidos sobre o desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica. O α-tocoferol é uma molécula pequena que pode atuar como um plastificante e, portanto, pode afetar o mecanismo pelo qual o material se desgasta.

A alteração do mecanismo de desgaste pode ser avaliada pela caracterização das partículas de desgaste oriundas do ensaio de desgaste in vitro, conduzida de acordo com a NBR ISO 17853. Além disto, devem ser realizados os ensaios de desgaste em condições normais e abrasivas, e elaborada uma análise das superfícies de desgaste em termos de tipo e extensão dos modos de danos.

Alternativamente aos ensaios in vitro, os aspectos dos efeitos do antioxidante no mecanismo de desgaste podem ser tratados com base em uma fundamentação científica, comparando a concentração do antioxidante, a dose de radiação e o tipo de radiação (isto é, raios gama ou feixe de elétrons) a um dispositivo predicado contendo o antioxidante. No caso de materiais ou novos implantes, deve ser avaliada a alteração do mecanismo de desgaste pela caracterização das partículas de desgaste oriundas do ensaio de desgaste do implante, conduzida de acordo com a NBR ISO 17853, e deve ser elaborada uma análise das superfícies de desgaste em termos de tipo e extensão dos modos de danos com base em ensaios de desgaste conduzidos em condições normais e abrasivas.

Os resultados dos ensaios de desgaste e seus impactos previstos ou conhecidos sobre o desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica. A classe de UHMWPE não convencional engloba uma ampla gama de materiais, portanto não é possível determinar claramente os ensaios específicos necessários às suas caracterizações.

Além dos ensaios identificados nessa norma, devem ser consideradas as avaliações dos seguintes aspectos: as propriedades de compressão do material; o tamanho de cristais e estrutura; a resistência à fluência; e a durabilidade de superfícies modificadas. Os dados clínicos podem ser necessários para suporte à comprovação da segurança e eficácia de um UHMWPE não convencional para o uso pretendido.

Deve ser ressaltado que, sempre que requerida, a avaliação de biocompatibilidade do material e, se aplicável, do produto acabado deve ser conduzida de acordo com a ISO 10993-1. No estabelecimento de uma equivalência essencial, se demonstrado que o processamento do material para um implante a ser avaliado é idêntico ao processamento do material de um dispositivo predicado empregado para o mesmo uso pretendido, o dispositivo predicado pode ser identificado como parte da avaliação de biocompatibilidade, em substituição à condução dos ensaios específicos para este

fim.

No caso de qualquer diferença das características do material ou do processo de fabricação entre o implante e o dispositivo predicado, devem ser conduzidos os ensaios pertinentes à avaliação da biocompatibilidade. No caso da adição de antioxidantes, como o α-tocoferol, à composição do UHMWPE na forma moldada, a biocompatibilidade deve ser analisada tanto sob o ponto de vista do próprio antioxidante como de produtos de degradação induzida pela radiação.

Como a resposta do organismo aos debris oriundos do desgaste do material pode ser crítica, deve ser investigado o efeito destes debris sobre a resposta biológica esperada do implante. Esta investigação pode ser realizada em ensaios in vitro ou in vivo. O objetivo dos ensaios in vitro é demonstrar que o antioxidante e seus produtos de degradação não estão disponíveis para ações biológicas.

Isto pode ser atingido por meio da realização de extrações exaustivas sobre o material do produto acabado na forma de pó. As extrações devem empregar solventes tanto polares como não polares, e os extratos devem ser comparados com os extratos correspondentes de um dispositivo predicado para determinar se não ocorre a extração de novos extratos.

A análise deve ser realizada por espectroscopia de massa de cromatografia líquida (LCMS) e por espectroscopia de massa de cromatografia gasosa (GCMS) para capturar todos os resíduos não voláteis e semivoláteis e voláteis. Se novos extratos ou quantidades maiores de extratos forem encontrados, os efeitos podem ser avaliados por meio de uma avaliação de risco toxicológico.

Se não for possível que os extratos sejam adequadamente identificados ou se não existirem dados toxicológicos adequados para os extratos identificados, devem ser conduzidos ensaios in vivo para as avaliações e análises requeridas. Os ensaios in vivo devem ser conduzidos mediante o uso de partículas de desgaste oriundas de um ensaio em um simulador de desgaste do material ou do implante, ou outras partículas representativas destes debris e injetadas na articulação pertinente de um modelo animal apropriado. Os resultados do ensaio devem ser comparados com um controle.

A NBR 16610 de 12/2021 – Projeto de implante ortopédico — Identificação e caracterização de polietileno de ultra-alto peso molecular estabelece informações, requisitos e ensaios apropriados para a identificação e a caracterização do polietileno de ultra-alto peso molecular (UHMWPE) em projetos de implante ortopédico. Não aborda os ensaios funcionais específicos de implantes, como ensaios destinados às avaliações de desgaste, bloqueio de movimento ou resistência de acoplamento de componentes de implantes. Quando não especificado de outra forma, o termo implante é utilizado para designar implantes ortopédicos, componentes dos implantes ortopédicos ou sistemas ortopédicos.

Este documento tem por objetivo auxiliar os fabricantes na identificação de requisitos e ensaios apropriados para a caracterização das diversas classes de polietileno de ultra-alto peso molecular, utilizadas na fabricação de implantes ou componentes de implantes destinados ao uso em ortopedia, de modo que atendam aos requisitos para materiais estabelecidos na NBR ISO 14630 e àqueles importantes para o estabelecimento da segurança e eficácia. As informações apresentadas estão restritas à caracterização do material, incluindo descrição do material, biocompatibilidade, esterilização, características químicas e propriedades mecânicas, portanto, não são abordados ensaios funcionais para implantes ou componentes de implantes específicos, como os ensaios para as avaliações de desgaste, resistência de acoplamento de componentes, resistência à colisão de componentes etc., a serem estabelecidos complementarmente em cada projeto, em função do uso pretendido para o implante.

As normas referenciadas para as caracterizações recomendadas são aquelas reconhecidas como instrumento para a comprovação de segurança e eficácia de materiais e produtos para a saúde. As recomendações apresentadas aplicam-se aos implantes e componentes de implantes destinados ao uso em aplicações ortopédicas. No Anexo A encontram-se os códigos de identificação e os nomes técnicos, conforme a Codificação e Nomenclatura de Produtos Médicos, da Anvisa, aplicáveis aos produtos para a saúde constituídos ou que incluem ou podem incluir componente (s) de polietileno de ultra-alto peso molecular, destinados ao uso como implantes ortopédicos, e exemplos da descrição de próteses abrangidas em diversos sistemas ortopédicos, em cujos projetos, atualmente, este documento se aplica.

No desenvolvimento de um novo implante a ser fabricado empregando outras classes de polietileno de ultra-alto peso molecular, outros níveis de caracterização para este material podem ser necessários. O UHMWPE pode ser classificado em quatro classes de material. Na classe dos UHMWPE convencional, incluem-se as formas moldadas a partir do pó de UHMWPE, que não são intencionalmente reticuladas antes da esterilização final e que, quando esterilizadas por radiação gama ou por feixe ionizante, são expostas a uma dose total menor que 40 kGy. As especificações para UHMWPE em pó destinado à fabricação de formas moldadas estão disponíveis na NBR ISO 5834-1 e ASTM F648.

Na classe dos UHMWPE altamente reticulados, também identificados como highly crosslinked UHMWPE, incluem-se as formas moldadas a partir do pó de UHMWPE e que são submetidas a uma dose total de radiação gama e/ou de feixe ionizante maior que 40 kGy, especificamente, com o propósito de promover ligações cruzadas das cadeias poliméricas dentro do material e, posteriormente, a um recozimento, associado ou não à compressão mecânica, para redução de radicais livres, que possam promover a oxidação do material. Neste caso, o recozimento térmico pode ser conduzido tanto abaixo como acima do ponto de fusão dos cristais (normalmente, 130 ºC).

Na área de materiais, o termo recozimento mecânico é empregado para designar o tratamento mecânico destinado a reduzir a densidade de defeitos no corpo de um material, em similaridade com o propósito dos tratamentos térmicos tradicionais de recozimento. Na estrutura de materiais metálicos, o recozimento mecânico, proporcionado puramente por aplicação de tensões mecânicas, atua no nível da microestrutura, promovendo a ativação e o colapso das fontes de discordâncias na estrutura cristalina.

Em materiais poliméricos cristalinos, o tratamento refere-se ao processo de recozimento isotérmico que, associado à alta pressão, permite atingir elevadas temperaturas sem que ocorra a fusão do polietileno, onde há um relativo ganho na cristalinidade, promovendo uma maior efetividade na remoção dos radicais livres. As orientações para formas fabricadas com UHMWPE com estruturas altamente reticuladas, com ligações cruzadas obtidas por extensiva irradiação, estão disponíveis na NBR 15723-2.

Na classe dos UHMWPE altamente reticulados contendo antioxidante, incluem-se as formas moldadas, às quais é adicionado um antioxidante de material, que são submetidos a uma dose total de radiação gama e/ou de feixe ionizante maior que 40 kGy. O α-tocoferol (um isômero da vitamina E) é um composto normalmente empregado como antioxidante do UHMWPE.

As especificações para pós e formas fabricadas com UHMWPE contendo α-tocoferol estão disponíveis na NBR 15723-5. Os antioxidantes de material são normalmente adicionados de duas maneiras: por mistura ao pó de UHMWPE antes da consolidação do material; ou por encharque da forma moldada de UHMWPE em uma solução contendo o antioxidante.

Analogamente ao XLPE, após a irradiação para promoção das ligações cruzadas, o material é submetido a uma etapa de recozimento para redução de radicais livres. Neste caso, o tratamento térmico é normalmente conduzido abaixo do ponto de fusão dos cristais, uma vez que não é necessária a eliminação total dos radicais livres como meio de prevenir a oxidação do material, devido à presença do antioxidante.

Na classe dos UHMWPE não convencionais, incluem-se todos os materiais não abrangidos já descritos e qualquer outro material de UHMWPE, atualmente, sem amplo uso clínico em ortopedia. Nesta classe estão inseridos, sem se limitar a, os materiais feitos de polietilenos de peso molecular mais baixo, com estruturas altamente reticuladas, polietilenos porosos ou polietilenos com superfícies modificadas. Estes materiais podem ou não ser estabilizados com um antioxidante.

O UHMWPE deve atender aos requisitos para materiais estabelecidos na NBR ISO 14630. Caso alguma informação ou ensaio identificado neste documento não se aplique ao implante projetado, uma justificativa deve ser apresentada no relatório de análise do projeto.

Os sistemas de designação e determinação de propriedades de UHMWPE e prescrições para preparação de espécimes para ensaio e para a determinação de propriedades de UHMWPE encontram-se, respectivamente, nas ISO 21304-1e ISO 21304-2. Dependendo da classe do material, devem ser fornecidas diferentes caracterizações mecânica e química, como apresentado a seguir.

Algumas das propriedades, como propriedades de tração, resistência ao impacto e densidade, critérios de aceitação estão estabelecidos na NBR ISO 5834-2. Se o material atender aos critérios de aceitação, nenhuma informação adicional é necessária. No entanto, se as propriedades do material estiverem abaixo dos critérios de aceitação estabelecidos na NBR ISO 5834-2, informações adicionais devem ser estabelecidas para comprovar que o material é apropriado ao uso pretendido do implante.

São justificativas aceitáveis: a comparação com um dispositivo predicado que utilize o mesmo material ou material com propriedades semelhantes para o mesmo uso pretendido; as informações que demonstrem a segurança do material para o uso pretendido, com base em dados da literatura técnica e científica, incluindo, por exemplo, comparação com controles, estudos em animais, etc.; e para um implante novo, uma justificativa científica consistente, com base na literatura, resultados de estudos clínicos, etc., que possam demonstrar que o implante fabricado com o material avaliado é seguro e eficaz.

A caracterização do material pode envolver a determinação e a avaliação das seguintes propriedades: densidade de ligações cruzadas; índice de transvinileno; índice de oxidação; cristalinidade; ponto de fusão; e concentração de radicais livres. Se os valores determinados estiverem dentro de faixas normais, estabelecidas em normas ou em documentos técnicos e/ou científicos disponíveis na literatura, ou comparáveis com os resultados de um dispositivo predicado com o mesmo uso pretendido, normalmente, não são necessárias informações adicionais.

A menos que estabelecido de outra forma em uma norma específica, convém que os seguintes resultados sejam atingidos, a fim de ser desconsiderada a necessidade de uma justificativa para a aceitação dos resultados obtidos: os ensaios do índice de transvivileno demonstrem que a dose de radiação foi absorvida consistentemente ao longo de toda a amostra ensaiada; os ensaios do índice de oxidação mostrem que os níveis de oxidação são estáveis quando comparados resultados pré- e pós-envelhecimento acelerado antes, e que não são esperados efeitos adversos das propriedades mecânicas do material; e não seja detectada a concentração de radicais livres em materiais recozidos acima do ponto de fusão.

As propriedades usualmente analisadas por comparação, como as propriedades mecânicas biaxiais, resistência de propagação de trinca sob fadiga e consolidação do material, devem ser analisadas em relação às propriedades de dispositivos predicados com o mesmo uso pretendido. No caso de materiais ou novos implantes, os resultados para estas propriedades e seus impactos previstos sobre o desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica, e incorporados na análise risco/benefício para o implante.

Deixe uma Resposta

Preencha os seus detalhes abaixo ou clique num ícone para iniciar sessão:

Logótipo da WordPress.com

Está a comentar usando a sua conta WordPress.com Terminar Sessão /  Alterar )

Imagem do Twitter

Está a comentar usando a sua conta Twitter Terminar Sessão /  Alterar )

Facebook photo

Está a comentar usando a sua conta Facebook Terminar Sessão /  Alterar )

Connecting to %s

%d bloggers like this: