Os parâmetros normativos para a abrangência da iluminação de emergência

A iluminação de emergência deve fornecer uma fonte de luz de apoio em caso de corte de energia, ligando-se automaticamente ou permitindo que as luminárias permaneçam acesas. O seu objetivo é permitir que os ocupantes localizem facilmente as saídas para evacuar o edifício com segurança. A iluminação de emergência deve ser projetada para iluminar rotas de fuga, como corredores e escadas, ao mesmo tempo em que fornece uma rota de fuga clara sinalizada por luzes, evitando pânico e perigo para os ocupantes.

As limitações para a altura da instalação da iluminação de emergência de aclaramento, considerando um ambiente sem fumaça são as seguintes: a intensidade da iluminação no piso e a visibilidade de obstáculos. As limitações para a altura da instalação da iluminação de emergência de aclaramento em caso de incêndio são as seguintes: as luminárias devem ser instaladas abaixo do ponto mais baixo do colchão de fumaça possível de se formar no ambiente.

Este colchão de fumaça pode abaixar até as saídas naturais e de ventilação forçada existente. Ou pode se considerar um nível de iluminamento superior a 15 lx piso na impossibilidade de instalação do ponto de luz abaixo das saídas de ventilação natural ou forçada. Para o balizamento de rota de fuga, os pontos de indicação devem ser instalados abaixo do colchão de fumaça.

Nos casos em que a fumaça tenha a possibilidade de invadir totalmente o ambiente pela falta de ventilação adequada, impedindo a visualização da rota de fuga, aconselha-se a utilização de indicações com pintura ou placas fotoluminescentes na parede ou no piso, devidamente protegida contra o desgaste natural de acordo com a NBR 16820, ou faixas no piso com iluminação própria. Esta iluminação também pode ser colocada nos rodapés, corredores e escadas.

Para assegurar a visibilidade com a iluminação mínima de 3 lx e 5 lx no piso, utilizar um dispositivo de acordo com os desenhos da norma, com o mesmo revestimento, mesma cor e tonalidade do piso. O dispositivo deve ser visto em uma distância mínima de 5 m do ponto de vista do observador, na iluminação mais desfavorável, se possível, com a sombra do observador sobre o dispositivo.

O observador ideal é um usuário representativo para as pessoas que irão frequentar o local. O observador deve ser escolhido entre os transeuntes, sem conhecimento prévio do ensaio proposto ou do local onde deve ser executado o ensaio de visão. A colocação do dispositivo deve ser alterada no ângulo de visão do observador pelo menos quatro vezes, e o observador deve acertar 75% dos ângulos.

A distância máxima entre dois pontos de iluminação ambiente é equivalente a quatro vezes a altura da instalação destes em relação ao nível do piso, para instalações até 3,75 m. Nas instalações com pé-direito superior a 3,75 m, a distância entre os pontos de luz do sistema de iluminação de emergência considerada ideal é de 15 m um do outro. Para distâncias superiores a 15 m entre pontos de luz de aclaramento, comprovar que o sistema de iluminação de emergência atende à intensidade luminosa mínima.

Não pode haver instalações com distância superior a 20 m entre pontos de luz. Na utilização de luminárias de alto fluxo luminoso ou de luminárias do tipo projetor, convém que estes sejam instalados em altura adequada para que a relação máxima entre as iluminância não seja superior a 20:1 para evitar ofuscamento, conforme indicado na figura abaixo.

A tabela acima é uma referência para projetos e instalações de luminárias de emergência em relação à altura e distância, visando atender à iluminância mínima no piso. Para atender a esse requisito, um dos seguintes métodos deve ser adotado: método 1: o cálculo luminotécnico utilizando softwares apropriados; método 2: cálculo luminotécnico utilizando o método ponto a ponto; e método 3: na ausência de estudo luminotécnico, pode ser utilizada a tabela acima, para a verificação da instalação do sistema de iluminação de emergência em relação ao fluxo luminoso da luminária x altura de instalação x distância de instalação. Os parâmetros do ambiente de estudo da tabela acima: paredes de cor clara; área livre de objetos; e corredor de 2 m de largura. As rotas de fuga mais largas podem ser tratadas como um número de tiras de 2 m de largura.

Para a aceitação do sistema de iluminação de emergência, devem ser apresentados: o projeto contemplando os pontos de iluminação de emergência de aclaramento e de balizamento; o cálculo luminotécnico efetuado através de software de cálculo específico para tal fim, e este deve apresentar o nível de iluminamento e os pontos de distribuição de luz adequados conforme os requisitos da norma; o cálculo luminotécnico por meio do método ponto a ponto efetuado quando não utilizado software de cálculo luminotécnico devidamente assinado pelo responsável técnico; os documentos/certificados que comprovem que os equipamentos instalados foram confeccionados de acordo com os parâmetros das normas de fabricação pertinentes, e devidamente ensaiados e aprovados por órgãos reconhecidos ou devidamente acreditados; em caso de aplicação de sistema de iluminação de emergência do tipo sistema centralizado com baterias recarregáveis, o cálculo de queda de tensão com a corrente nominal para cada circuito da fiação deve ser apresentado (queda mínima da tensão entre o borne da fonte de energia até o primeiro dispositivo e a queda de tensão até o último dispositivo de iluminação) de acordo com as metodologias da NBR 5410.

A NBR 10898 de 02/2023 – Sistema de iluminação de emergência especifica os requisitos mínimos para os sistemas de iluminação de emergência a serem instalados nas edificações ou em áreas e passagens onde tais sistemas são requeridos, na falta de iluminação natural ou falha da iluminação normal instalada. Para luminárias de iluminação de emergência, utilizadas em ambientes de áreas classificadas, ou seja, em ambientes de atmosferas explosivas, esta norma se aplica somente para os requisitos de iluminamento, de autonomia e rotas de fuga. Adicionalmente, para sistemas de iluminação de emergência utilizados em ambientes de atmosferas explosivas, aplica-se a série NBR IEC 60079. Para sistemas de iluminação de emergência em túneis, aplica-se a NBR 5181.

O principal objetivo da iluminação de emergência é fornecer as condições visuais que possam aliviar o pânico e facilitar a evacuação mais segura dos ocupantes das edificações durante a falha do fornecimento normal de energia/iluminação, em condições claras (sem fumaça) e cheias de fumaça. Convém que o projeto do sistema de iluminação de emergência seja elaborado de acordo com as condições das luminárias (por exemplo, iluminância mínima em relação ao piso, limites máximos de intensidade e fluxo luminosos para evitar ofuscamento) durante sua vida útil e convém que se baseie apenas a partir da luz direta das luminárias.

Recomenda-se que as contribuições por inter-reflexão da superfície do ambiente sejam ignoradas. No entanto, em sistemas de iluminação, como luminárias indiretas ou de luzes para cima (utilizados no estado permanente/combinado), onde a luminária trabalha em conjunto com uma superfície refletora, convém que a reflexão seja tomada como luz direta do sistema. Os requisitos fornecidos nesta norma são mínimos para os fins de projeto e são calculados para o período de duração total e final da vida útil do equipamento.

Na maioria dos países, estados ou cidades, regulamentações estatutárias relacionadas à iluminação de emergência já existem. Por esta razão, convém que a autoridade competente sempre seja consultada antes de iniciar o projeto de um sistema específico de iluminação de emergência. Espera-se que os requisitos técnicos de iluminação de emergência nos regulamentos estatutários locais convirjam para esta norma.

O fornecimento de um nível adequado de iluminação de emergência com a finalidade de prevenir acidentes e assegurar a evacuação das pessoas para uma área externa segura da edificação. A redução aceitável do nível de iluminação do sistema de emergência pode ser de no máximo 10%, gradualmente entre o início e o final da autonomia estipulada, e os níveis de iluminância devem atender ao Anexo A. Para evitar a diminuição da visibilidade por ofuscamento, devem ser observados os valores de fluxo luminoso máximo da tabela abaixo.

Iluminar os ambientes facilitando a localização de pessoas impossibilitadas de se locomoverem. Iluminar os ambientes, em casos específicos sem interrupção, para a continuidade dos serviços médicos, serviços de controle aéreo, marítimo, ferroviário e serviços essenciais contidos na edificação. Iluminar os ambientes de acordo com a variação da intensidade da iluminação, conforme descrito no Anexo A e iluminar os ambientes visando à segurança patrimonial.

Deve-se sinalizar inconfundivelmente as rotas de fuga visando o abandono seguro da edificação. Sinalizar o topo dos edifícios para alerta da aviação civil e militar. Prover iluminação de emergência por um tempo mínimo de 2 h de funcionamento. Recomenda-se que a informação de autonomia do sistema de iluminação de emergência esteja na documentação de segurança da edificação.

Recomenda-se maior autonomia em regiões com dificuldade de restabelecimento da alimentação da energia elétrica. O funcionamento do sistema de iluminação de emergência deve ocorrer sem a intervenção do usuário, seja por meio de dispositivos manuais, seja por sensores que dependem da presença de pessoas ou por outros meios como centrais de alarme/segurança.

Os ambientes da edificação devem possuir visibilidade apropriada. A iluminação de aclaramento é requerida no volume do espaço e deve ser conforme esta norma. Uma luminária de iluminação de emergência deve ser instalada de modo a fornecer iluminância apropriada, próxima de cada porta de saída e nas posições onde é necessário enfatizar o perigo potencial ou a localização do equipamento de segurança.

Os locais para os quais estas ênfases devem ser consideradas são listados a seguir: em cada porta de saída destinada a ser utilizada em uma emergência; nas escadas, para que cada lance de escada receba luz direta, incluindo especialmente os degraus superior e inferior; em qualquer outra mudança de nível vertical; nas saídas de emergência e nos locais de sinalização de segurança; em cada mudança de direção; em cada interseção de corredores; em cada saída final; em cada posto de primeiros socorros; em cada equipamento de combate a incêndio e ponto de chamada; e se a fumaça for uma preocupação primordial, ver as recomendações nessa norma.

Os valores do nível de iluminamento mínimo devem ser atendidos independentemente das características do ambiente como: cor da parede, cor do teto, decoração do ambiente, leiaute do local, etc. Em caso de dúvida sobre o nível de iluminamento mínimo, este deve ser verificado no local desejado por meio de medição com luxímetro ao nível do piso. A iluminação de aclaramento também tem como objetivo permitir o reconhecimento de obstáculos que possam dificultar a circulação, como grades, vasos, mesas, armários e outros.

Os sinais de segurança que são disponibilizados em todas as saídas destinadas a serem utilizadas em uma emergência e ao longo das rotas de fuga devem ser iluminados, para indicar, sem ambiguidade, a rota de fuga para um ponto de segurança. Quando a visão direta de uma saída de emergência não for possível, um sinal de segurança iluminado (ou uma série de sinais) deve ser fornecido para auxiliar na progressão em direção à saída de emergência.

Os equipamentos que contém sinais de segurança do sistema de iluminação de emergência com a função exclusiva de indicar a rota de fuga devem possuir fluxo luminoso mínimo de 30 lm. Os equipamentos que contém sinais de segurança do sistema de iluminação de emergência com dupla função, isto é, que indica a rota de fuga e que ilumina o ambiente, deve possuir fluxo luminoso mínimo de 400 lm.

A iluminação de balizamento deve possuir sinais de segurança para indicar todas as mudanças de direção, as escadas de acesso e as saídas da edificação até uma área aberta. Recomenda-se que esta indicação não seja obstruída por anteparos ou arranjos decorativos. Em locais que possuem saídas alternativas, recomenda-se que seja prevista uma iluminação de balizamento controlável à distância que permita a alteração da rota de fuga a fim de evitar aglomeração em uma única saída.

O comando de alteração da rota da indicação de saída deve ser situado em local estratégico e protegido, junto a outros controles essenciais de segurança da edificação, por exemplo, em área de controle do sistema de alarme de abandono, ventilação, pressurização das escadas, fechamento de portas corta-fogo e outros. Os símbolos gráficos devem ser conforme a NBR 14100 e/ou a NBR ISO 3864-1. Os textos devem ser escritos em língua portuguesa. Caso necessário, podem ser adicionados, como complemento, textos em outro idioma.

Os símbolos gráficos devem ser grafados com textos e/ou símbolos junto ao elemento eletroluminescente. Podendo ser a iluminação do tipo internamente iluminada ou externamente iluminada (ver a NBR ISO 3864-1). Preferencialmente, os textos e símbolos gráficos devem ser na cor verde ou vermelha e conter fundo na cor branca, obtendo assim maior rendimento da luz quando esta for do tipo internamente iluminada. Como opção, pode-se utilizar o fundo vermelho ou fundo verde com letras em branco.

As tonalidades das cores verde ou vermelha devem seguir o apresentado nas NBR ISO 3864-1 e NBR ISO 3864-4, exceto quando utilizadas pinturas de alta reflexão, luminescentes ou fotoluminescentes que não corresponda às tonalidades da norma. Para uma melhor utilização da iluminação de balizamento, deve-se prever a presença de fumaça nos ambientes (ver a Seção 13 e o Anexo A). As dimensões mínimas da área destinada aos textos e símbolos gráficos devem seguir as orientações da NBR 16820 (dimensões das placas de sinalização).

O material empregado na confecção do elemento balizador e a sua fixação devem ser de tal forma que não possam ser facilmente danificados. A luminária de balizamento deve ser construída com o índice de impacto mecânico mínimo de IK03 conforme a NBR IEC 62262 e índice de proteção mínimo IP23 conforme a NBR IEC 60529. Quanto à fixação das luminárias, elas devem ser firmemente fixadas de maneira a impedir qualquer remoção involuntária.

A conformidade é verificada por inspeção e tem como objetivo que não ocorra o desprendimento total ou parcial em relação ao seu ponto de fixação original quando por exemplo em uma situação de aplicação indireta de jato d’água. Os equipamentos autoluminescentes não podem emitir qualquer radiação ionizante. Pisca-pisca ou equipamentos similares podem ser utilizados para uma maior atenção nas saídas principais das edificações.

O ofuscamento pela intensidade pontual deve ser evitado. As luminárias de balizamento do sistema de iluminação de emergência não podem conter qualquer tipo de interruptor manual, do tipo liga/desliga, desativando a bateria do bloco autônomo de emergência, com exceção de outros dispositivos no estado de repouso ou no estado de inibição. Havendo um botão, este deve ser para fins de testes e deve ser do tipo autorrearmável (botão pulsador).

A iluminação auxiliar instalada nos locais onde não pode ocorrer interrupção da iluminação normal pela natureza do trabalho, deve assegurar um nível de iluminamento adequado em relação ao nível de iluminamento determinado pela NBR ISO/CIE 8995-1. Alguns exemplos são: salas de cirurgia, salas de primeiros socorros, laboratórios químicos, controle de tráfego aéreo, ferroviário, metrô, dentre outros. A utilização da iluminação auxiliar não substitui o sistema de iluminação de emergência.

A iluminação de área de circulação aberta, em relação à iluminância ao nível horizontal em uma área de circulação aberta, não pode ser inferior a 1 lx ao nível do piso. A iluminância ao nível vertical em uma área de circulação aberta não pode ser inferior a 3 lx ao nível do piso. São consideradas áreas de circulação aberta: espaço aberto entre edificações, espaço aberto entre a edificação e o ponto de encontro de segurança, estruturas metálicas (por exemplo, as utilizadas geralmente em prédio de caldeiras), estruturas metálicas de escadas de emergência (normalmente instaladas externamente à edificação).

A fim de identificar as cores de segurança, o valor mínimo para o índice de reprodução de cor Ra de uma lâmpada deve ser > 40. Em áreas de alto risco, a iluminância de emergência mantida no plano de referência não pode ser inferior a 10% da iluminância mantida requerida para aquela tarefa, mas, não pode ser inferior a 15 lx. A iluminação de emergência deve estar livre de efeitos estroboscópicos. Ver também o Anexo D.

Algumas áreas críticas (por exemplo, salas de operações médicas) podem requerer até 100% da iluminação permanente da tarefa específica. Em outras áreas como salas de controles de aeroportos, metrô, rodoviárias, ferroviárias, subestações elétricas e estação de tratamento de água, e também em áreas de risco, postos de vigilância/monitoramento, recomenda-se que a iluminação de emergência assegure um mínimo de intensidade luminosa conforme a legislação correspondente.

Para identificar as cores de segurança, o valor mínimo para o índice de reprodução de cor Ra de uma lâmpada deve ser > 40. Um tipo de sistemas de iluminação de emergência é o conjunto de bloco autônomo que é um equipamento para iluminação de emergência que constitui em seu invólucro, bateria recarregável com tensão máxima de até 30 V cc, carregador de bateria, controles e lâmpadas halógenas, fluorescentes ou LED com desempenho luminoso adequado ao local de instalação.

Os sistemas de iluminação de emergência através de blocos autônomos devem ter dispositivos e controles conforme a seguir: o carregador de bateria munido de controle de supervisão de carga e flutuação; o dispositivo de comutação para ativar a iluminação de emergência na falta total ou parcial da tensão da rede local, com chaveamento do estado de vigília (supervisão) para o estado de emergência com o valor de tensão da rede elétrica da concessionária em 60% da tensão nominal, com tempo de comutação não superior a 2 s.

Para o retorno ao estado de vigília, a comutação deve ocorrer quando a tensão da rede elétrica da concessionária for de 85% da tensão nominal. O carregador com recarga automática de acordo com o tipo de bateria utilizada. A recarga total da bateria deve ocorrer em no máximo 24 h, garantindo 100% da autonomia especificada pelo fabricante do equipamento, ver o Anexo B. A instalação de luminárias satélites alimentadas por um bloco autônomo não pode prejudicar a autonomia mínima exigida para o sistema de iluminação de emergência.

As especificações do bloco autônomo devem atender à NBR IEC 60598-2-22 e a comutação automática do equipamento não pode limitar a sua vida útil. As lâmpadas incandescentes, lâmpadas led ou outro tipo de lâmpada com rosca tipo E27 não podem ser utilizadas em bloco autônomo de iluminação de emergência, pela possibilidade de utilização de dispositivos inadequados e comprometer a segurança do produto. Não é recomendado a utilização de componentes de chaveamento que possam limitar a vida útil quando for utilizada lâmpada fluorescente.

São exemplos de componentes de chaveamento: minuterias, sensores de presença, etc. Os blocos autônomos de iluminação de emergência não podem conter qualquer tipo de interruptor manual, do tipo liga/desliga, desativando a bateria do bloco autônomo de emergência, com exceção de outros dispositivos no estado de repouso ou no estado de inibição. Havendo um botão, este deve ser para fins de testes e deve ser do tipo autorrearmável (botão pulsador).

Para os blocos autônomos a serem utilizados em elevadores, além dos requisitos desta norma, verificar as normas pertinentes a elevadores. Os blocos autônomos devem ser construídos de forma que suportem o ensaio de temperatura a 70 °C com a luminária instalada e funcionando no mínimo por 1 h e estes sejam aprovados por organismos nacionais competentes. A temperatura de cor da lâmpada deve ser igual ou superior a 3.000 °K e no máximo 6.000°K.

O fluxo luminoso deve ser igual ou superior a 300 lm e deve atender ao Anexo A. Um bloco autônomo com fluxo luminoso inferior a 300 lm pode ser utilizado, desde que seja comprovado por meio de estudo luminotécnico o atendimento de iluminância mínima especificada nesta norma.

A execução da sondagem em solos e rochas para fins ambientais

A sondagem para investigação ambiental em áreas e terrenos que abrigam ou abrigaram atividades poluidoras é feita com a instalação de poços de monitoramento de água subterrânea para a investigação de passivos ambientais. Podem ser feitas com a sondagem a percussão, sondagem a percussão com torque, sondagem à trado e sondagem mecanizada. Ela pode ser realizada nas etapas de gerenciamento de áreas contaminadas, como por exemplo para os estudos de Investigação confirmatória e investigação detalhada. A investigação confirmatória tem como objetivo constatar ou não a presença de contaminantes na área investigada. Nesta etapa são realizadas coletas representativas de solo, água subterrânea e vapor através da execução de sondagens e instalação de poços de monitoramento.

Nos casos em que o método de perfuração escolhido permitir a coleta de amostras, é obrigatória a descrição das características do material. Para isso é necessária uma observação táctil-visual do solo amostrado durante a sondagem de campo. As características que devem ser observadas e descritas, quando possível, são: cor; textura; consistência; nódulos e concreções minerais; presença de carbonatos; presença de manganês; coesão; e os aspectos descritivos das estruturas da amostra.

Os dados obtidos e observados em campo com base nas características listadas devem ser registrados e, quando possível, devem ser fotografados. Estas informações devem ser compiladas e apresentadas em um relatório. A cor é uma característica de mais fácil visualização nos solos e, a partir dela, é possível fazer inferências como, por exemplo, quanto ao conteúdo de matéria orgânica (MO), pois os solos escuros contêm maior conteúdo de MO.

A caracterização da cor segue uma padronização mundial, que é o Sistema Munsell de Cores para Solos (Munsell Soil Color Charts). Para a observação da cor, é conveniente quebrar os agregados ou torrões para se determinar se a cor é a mesma, dentro ou fora da amostra.

Em casos em que os solos tenham estrutura granular muito pequena como, por exemplo, do tamanho do pó de café, deve se tomar uma porção de material suficiente para a comparação com os padrões existentes na carta de cores. Esta caracterização da cor deve ser feita obrigatoriamente em campo e é importante que haja uma boa iluminação. Alguns materiais podem estar mesclados com mais de uma cor e esse padrão é chamado de mosqueado ou variegado.

Quando a amostra tiver várias cores, mas não houver predominância perceptível de uma cor constituindo fundo, deve ser denominada coloração variegada. Se a coloração variegada for muito complexa, devem ser registrados os nomes das cores. A textura se refere  à proporção relativa das frações granulométricas, ou seja, das frações de areia, silte e argila que compõem a amostra de solo. Ela deve ser obrigatoriamente descrita no campo e é estimada pelas sensações táteis. A areia pode ser subdividida em areia grossa, média, fina e muito fina.

Por exemplo, um solo arenoso será áspero à medida que o teor de areia grossa presente for maior. Os grãos de areia são visíveis a olho nu. O silte é facilmente percebido em amostras que contêm alto teor e confere ao solo uma sedosidade ao tato, semelhante ao talco. A argila confere ao solo uma maior plasticidade (capacidade de moldar-se) e pegajosidade (capacidade de aderir-se), se comparada às frações de areia e silte.

Quando necessário, um maior refinamento na determinação da granulometria pode ser realizado em campo com o auxílio de peneiras e/ou em laboratórios. Recomenda-se que, ao se avaliar a textura, a amostra de solo seja homogeneizada, a fim de quebrar os agregados, impedindo uma má interpretação destes como sendo fração areia. É raro encontrar um solo composto por apenas uma fração granulométrica.

Assim, existem classes de textura que tentam definir as diferentes combinações da areia, silte e argila. Quando forem observadas frações acima de 2 mm de diâmetro, estas são denominadas frações grosseiras e devem ser classificadas em: cascalho: fração de 2 mm a 2 cm de diâmetro; calhaus (seixo): fração de 2 cm a 20 cm de diâmetro; e matacão: fração maior que 20 cm de diâmetro. O termo seixo é utilizado somente para as frações grosseiras que apresentam contornos arredondados (rolados).

A consistência e a caracterização da plasticidade devem seguir as orientações descritas na norma, na tabela dos estados de compacidade e de consistência) da NBR 6484:2001. Os nódulos e concreções minerais são corpos cimentados que podem ser removidos intactos da matriz do solo. A composição destes corpos varia de matérias semelhantes à massa de solo contígua até as substâncias puras de composição totalmente diferente da matriz do solo.

As concreções se diferenciam dos nódulos pela organização interna. As concreções têm simetria interna disposta em torno de um ponto, de um plano ou de uma linha, e os nódulos carecem de uma organização interna ordenada. A descrição, neste caso, deve contemplar a quantidade, tamanho, dureza, cor e natureza das concreções e nódulos, conforme descrito a seguir. Quantidade: muito pouco – menos de 5% do volume; pouco – 5% a 15% do volume; frequente – 15% a 40% do volume; muito frequentes – 40% a 80% do volume; dominante – mais que 80% do volume; tamanho: pequeno – menor que 1 cm de diâmetro – maior dimensão; grande – maior que 1 cm de diâmetro – maior dimensão; dureza: macio – pode ser quebrado entre os dedos; duro – não pode ser quebrado entre os dedos; forma: esférica, angular e irregular; cor: utilizar termos simples (preto, branco, vermelho, etc.).

Natureza: a natureza do material do qual o nódulo ou a concreção é principalmente formada, por exemplo: concreções ferruginosas (materiais com predomínio de compostos de ferro), ferro-magnesianas, carbonato de cálcio, etc. Exemplo de descrição: nódulo pouco pequeno (0,20 cm), macio, irregular, preto, ferroso, de estrutura amorfa. A presença de carbonatos devem ser observada em campo pela efervescência do material, por meio da adição de algumas gotas de HCl 10%.

A amostra deve ser partida e o HCl deve ser gotejado em uma superfície que não foi exposta à umidade. A efervescência pode ser: ligeira: efervescência fraca, bolhas visíveis; forte: efervescência visível, bolhas formam espuma na superfície da amostra; violenta: efervescência forte, forma rapidamente espuma e é possível visualizar os grãos de Ca na amostra.

A presença de manganês deve ser observada em campo pela efervescência da amostra de solo após a adição de algumas gotas de peróxido de hidrogênio (20 volumes). Esta característica pode ser:  ligeira: efervescência fraca, somente ouvida; forte: efervescência visível, sem ruptura dos agregados; violenta: efervescência forte, causando na maioria das vezes ruptura dos agregados.

A coesão se divide em dois graus, pois o não coeso é desnecessário, porque neste caso o solo será considerado normal. Moderadamente coeso: material de solo, quando seco, resiste à penetração do trado e fraca organização estrutural. Quando seco, apresenta consistência geralmente dura; quando úmido, varia de friável a firme.

Fortemente coeso: o material, quando seco, resiste fortemente à penetração do trado e não apresenta organização estrutural visível. Quando seco, apresenta consistência muito dura e às vezes extremamente dura e úmida varia de friável a firme. As propriedades físicas dos solos não são determinadas somente com base na identificação ou classificação de campo, mas também por ensaios de laboratório ou de campo.

Devendo ser realizadas, quando necessário, as amostras representativas de solo e/ou rochas provenientes das sondagens devem ser coletadas e armazenadas segundo os procedimentos definidos pela agência regulamentadora, com base em normas específicas sobre o assunto. As características estruturais da amostra devem ser descritas em campo, caso sejam observadas, tais como: estratificação, fraturamento, foliação, grau de intemperismo, entre outros.

Confirmada em 01/02, a NBR 15492 de 06/2007 – Sondagem de reconhecimento para fins de qualidade ambiental – Procedimento estabelece os requisitos exigíveis para a execução de sondagem de reconhecimento de solos e rochas para fins de qualidade ambiental. Apresenta os equipamentos e descreve métodos de perfuração para a caracterização ambiental de áreas (sondagens ambientais em solo e rocha, para a instalação de poços de monitoramento e para outros dispositivos de monitoramento da qualidade da água subterrânea), com as respectivas vantagens e desvantagens que estão associadas aos métodos apresentados. Entretanto, não contempla os métodos de amostragem de solo e de água subterrânea, métodos de construção, desenvolvimento ou instalação de poços. Estes tópicos são cobertos por normas específicas.

A escolha de um determinado equipamento para a perfuração (ver tabela abaixo) exige a consideração de características específicas de cada área, do objetivo do trabalho e as vantagens e desvantagens de cada método. Estas características devem incluir (embora não se limitem) os parâmetros hidrogeológicos e as condições ambientais existentes na área.

Antes da definição do método de perfuração a ser aplicado em um determinado local, um profissional habilitado deve estudar todos os fatores que afetam as condições superficiais e subsuperficiais da área em estudo. Os acessos e as condições para instalação dos equipamentos de perfuração também devem ser considerados. O alcance ao local e os métodos a serem empregados devem ser determinados pelos objetivos do estudo. O objetivo do estudo também definirá o tipo e a complexidade da amostragem a ser realizada.

A definição dos locais para a perfuração pode variar devido à disponibilidade de dados confiáveis sobre a área. Entretanto, o procedimento usual é o apresentado a seguir: levantamento histórico de informações e pesquisa bibliográfica. Deve-se coletar e revisar todas as informações e dados disponíveis, sobre as condições superficiais e de subsuperfície da área. É necessário pesquisar dados existentes referentes à área de estudo, que incluem, mas não se limitam a: mapas topográficos, fotos aéreas, imagens de satélites, informações sobre sondagens anteriores, dados geofísicos, mapas e artigos geológicos, dados oficiais de mapeamento de solo e rocha, artigos sobre recursos hídricos e dados de poços existentes na área de interesse, uso de ocupação de solo pretérito, atual e futuro; relatórios disponíveis sobre a superfície ou subsuperfície de áreas próximas ou adjacentes podem ser considerados e as informações pertinentes podem ser utilizadas no corrente projeto, se forem aplicáveis e confiáveis. Levantamentos geofísicos e dados da água subterrânea também podem ser utilizados para planejar a localização das perfurações. Em seguida, deve-se analisar a confiabilidade e abrangência destes.

É necessário o desenvolvimento de um modelo conceitual preliminar da área. Este pode ou não abranger o modelo hidrogeológico conceitual preliminar, a hipótese de um sistema ambiental e os processos biológicos, físicos e químicos que determinam o transporte de contaminantes das fontes através dos meios até os receptores do sistema, elaborado a partir dos dados obtidos no levantamento histórico de informações e em visita à área.

Com base nas informações dos passos descritos nessa norma, devem ser locadas as perfurações. A localização e a quantidade das perfurações devem ser feitas com base nos objetivos do projeto e de acordo com as normas e procedimentos vigentes. Antes de iniciar as perfurações, deve-se certificar de que não haja interferências subterrâneas (tubulações, cabeamento, galerias de água pluvial, redes de esgoto, etc.). Esta informação deve ser levantada previamente e checada em campo.

Durante as sondagens, devem ser definidas e descritas as principais litologias (solos e rochas), tanto horizontal quanto verticalmente. Este assunto é tratado com mais detalhe no Anexo A. Caso as perfurações sejam destinadas à instalação de poços de monitoramento, estes devem ser instalados com um adequado conhecimento do modelo conceitual hidrogeológico do local. Freqüentemente estes são utilizados como parte de uma investigação global da área, visando um propósito específico, como, por exemplo, a determinação da qualidade química da água, compreensão dos processos hidroquímicos, ou para predizer a eficácia da remediação de um aquífero. Nesses casos, pode ser necessária a obtenção de informações adicionais geotécnicas e hidrogeológicas da área em estudo.

Se for amostrada a água do poço de monitoramento durante a execução da perfuração, visando a determinação de sua qualidade, deve ser considerada a possibilidade de ocorrer avarias no equipamento e subsequente contaminação do aquíferos pelos fluidos de perfuração. Na instalação de poços de monitoramento destinados a amostragem de água, deve-se preferir métodos de sondagens que não utilizem fluidos de perfuração ou, se forem utilizados, os que impliquem pequena ou até ausência destes fluidos na parede do poço. A contaminação da parede do poço por fluidos de perfuração normalmente é resultado de uma má escolha destes fluidos ou sua má utilização.

Nestes casos, devem ser utilizados métodos de perfuração que permitem o avanço do revestimento, pois é muito efetivo para minimizar a invasão de fluidos nas paredes dos furos. Estes métodos que possibilitam o revestimento do furo incluem perfuração a percussão, a trado helicoidal oco, com circulação reversa, método rotativo, sônicos entre outros. Entretanto, se o objetivo destes métodos for alargar o furo, a contaminação pode mover-se ao longo do revestimento durante a perfuração.

Os métodos que não utilizam fluidos de perfuração são preferíveis, porque estes excluem a possibilidade de contaminação do aquífero. Tais métodos incluem o trado helicoidal oco, o trado manual, perfuração sônica e percussora. Os métodos que normalmente requerem o uso de fluidos incluem percussão com lavagem, rotativa com circulação reversa e rotativa com circulação de ar e fluido. Nos casos em que for utilizado fluido de perfuração, é obrigatório registrar a estimativa da quantidade da perda do fluido e da profundidade de ocorrência.

Dados da perda destes fluidos podem ser úteis no planejamento das técnicas de desenvolvimento destes poços para serem utilizados na conclusão do furo. Outro importante fator para ser considerado quando são avaliados estes dados é a colocação da seção filtrante.

É importante saber que a água sem aditivos não constitui um bom fluido de perfuração por duas razões: não possui capacidade de carrear o material cortado devido à sua baixa viscosidade; não possui capacidade de tixotropia para formar um anel de lama em torno do furo, travamento das ferramentas nas paredes do furo e a criação de chaminés drenantes devido à erosão interna do furo. Também, a água contendo apenas argilas naturais não deve ser utilizada como lama de perfuração. Esta mistura fluida, contendo apenas argilas naturais, produz apenas um fluido pesado que não terá capacidade (viscosidade) para carrear o material cortado furo acima e não fará um anel delgado de lama ao longo da perfuração para impedir seu colapso.

Se os métodos de perfuração não forem corretamente empregados, obtém-se como resultado amostras de baixa qualidade, furos danificados ou poços de monitoramento mal instalados, principalmente em material inconsolidado (solos). Caminhos preferenciais de infiltração podem ser formados perto das paredes do furo pela lavagem das partículas finas e a criação de “chaminés drenantes”, que são muito difíceis de serem seladas. Estes danos são mais severos quando se perfura material inconsolidado do que quando se perfura rocha. Embora relatos destas ocorrências sejam raros, eles ocorrem. E são provavelmente originados pelo baixo controle do fluido de perfuração ou má operação durante as perfurações.

Ainda podem ocorrer outros danos devido à rapidez da execução da perfuração, o uso incorreto das diferentes velocidades, pressão e outras variáveis de controle sob a responsabilidade do sondador. Qualquer método de perfuração utilizando meio circulante para controlar o corte e a remoção de material pode causar fraturamento hidráulico dos materiais perfurados, se for muito alta a velocidade de perfuração ou a pressão de circulação.

Quando se utiliza uma sonda rotativa com ar, a pressão do ar injetado deve ser registrada. A pressão do ar de retorno deve ser adequada para manter a remoção do material cortado, mas não excessiva a ponto de causar fraturamento hidráulico do material que está sendo perfurado. Tal prática pode resultar em dano na parede do furo e impedir a correta aplicação do selo entre o revestimento e o furo durante a instalação.

A utilização de revestimentos temporários durante a perfuração, visando separar aquíferos, pode resultar em contaminação cruzada, quando um aqüitarde ou uma camada confinada de material impermeável é perfurado. Para evitar ou minimizar a possibilidade desta contaminação, é recomendada a técnica descrita a seguir. Para que a perfuração atravesse o material impermeável, mas não entre em contato com ele, um revestimento deve ser instalado dentro do material impermeável e cimentado sob pressão. Após a cura do cimento, o material remanescente no revestimento deve ser removido.

Os métodos geofísicos, por exemplo, podem ser utilizados para avaliar o selamento entre o furo anelar e a parede do revestimento. Somente após ter-se produzido um selamento aceitável, a perfuração pode prosseguir pela camada confinada. As operações contínuas de sondagem/amostragem devem prosseguir até atingir a profundidade desejada. Se outra (s) camada (s) impermeável (is) for (em) perfurada(s) no mesmo furo, a técnica anteriormente descrita pode ser seguida, porém o próximo revestimento instalado deve ser imediatamente de diâmetro menor do que o utilizado anteriormente.

Alguns métodos podem ser usados para avaliar a integridade hidráulica do furo ou a subsequente instalação dos poços. São os seguintes: métodos indiretos: métodos geofísicos; introdução de traçadores nos furos combinados com teste de bombeamento; métodos diretos: testes de bombeamento de poços; testes de injeção de poços; e teste com obturadores infláveis em poços.

A seleção do método de perfuração deve ser realizada somente após serem levadas em consideração todas as vantagens e desvantagens de cada método em relação ao objetivo da coleta de dados. Em alguns casos, um método de sondagem cujo processo minimiza o potencial de contaminação subsuperficial pode limitar o tipo de dados que podem ser coletados como, por exemplo, dados de sondagem geofísica de um poço.

As investigações geofísicas também podem ser utilizadas, quando possível, para auxiliar na seleção do método de perfuração. Métodos geofísicos superficiais, tais como sísmica, eletrorresistividade e eletromagnético podem ser particularmente de grande valia na distinção de diferenças nas propriedades dos materiais próximos à subsuperfície. Métodos geofísicos, tais como resistividade, gama, nêutrons, registro de velocidade sônica, perfilagem caliper e perfilagem óptica, são utilizados para confirmar condições geológicas específicas de subsuperfície.

A perfilagem óptica permite um estudo visual das condições das paredes das sondagens existentes, assim como visualizar as condições do revestimento em sondagens revestidas. Registros de sondagens acústicas podem exibir o fraturamento na sondagem. A orientação das fraturas, assim como sua extensão e ocorrência, podem ser determinadas utilizando esse método.

As vantagens e desvantagens de vários métodos de perfuração apresentadas nesta norma podem variar dependendo das características específicas da área e das circunstâncias do projeto. Profundidade e diâmetro das perfurações são valores nominais para o método e podem variar em casos ou condições específicos.

A escolha do tipo de equipamento de perfuração a ser utilizado no projeto deve incluir considerações sobre a necessidade de amostragem e instalação de poços. O acabamento e a disposição dos filtros do poço são requisitos comuns na sua instalação, e a capacidade de completar cada um desses itens depende muito do tipo de equipamento utilizado. A finalização satisfatória dos procedimentos de abandono de sondagem, assim como a facilidade de descontaminação de cada equipamento de perfuração, também são fatores importantes a serem considerados.

Em todos os métodos de perfuração têm-se algumas desvantagens, como, por exemplo, as perfurações a trado tendem a colmatar as paredes do furo com sedimentos finos durante a rotação do equipamento. Métodos a percussão podem causar danos na sondagem, pela repetição cíclica dos movimentos oscilantes de subida e descida da ponta da sonda, que podem forçar sedimentos finos nas paredes do furo. Métodos de perfuração rotopneumática, também podem danificar o furo por meio da introdução de ar no material perfurado ou fraturando as paredes do furo, caso a pressão da perfuração não seja monitorada e exceda a pressão necessária para manter o furo livre dos materiais perfurados.

A escolha do método de perfuração pode variar dependendo dos objetivos da coleta de dados – a caracterização hidrogeológica ou a amostragem da qualidade da água subterrânea. Por exemplo, métodos de perfuração rotativa com fluido são bons métodos para caracterizar a litologia em subsuperfície, porque a maioria das ferramentas de sondagens elétricas e sônicas ou geofísicas exige que o furo não seja revestido, mas seja preenchido com fluido.

Os mesmos métodos de perfuração, contudo, são menos desejáveis para a instalação de poços de monitoramento, visando à verificação da qualidade da água, porque há a possibilidade de o fluido alterar a química da água subterrânea. Apesar disso, perfurações rotativas com fluido podem ser o método selecionado após a consideração das vantagens e desvantagens de outros métodos de perfuração.

A operação dos vasos de pressão para ocupação humana

Também denominados câmaras hiperbáricas, os vasos de pressão para ocupação humana (VPOH) ou simplesmente câmaras hiperbáricas são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. São projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Durante a fase de elaboração do projeto de instalação do serviço de medicina hiperbárica (SMH), o fabricante deve fornecer: o peso do equipamento em ordem de operação e para efeito de ensaio hidrostático no local, quando aplicável, para o dimensionamento das fundações do piso onde será instalado; as condições de acesso da câmara hiperbárica multipaciente ao ambiente onde será instalada, inclusive as necessárias para o descarregamento e o transporte ao seu local definitivo; o projeto sugerido de instalação (leiaute) da câmara hiperbárica multipaciente, incluindo a disposição recomendada para os equipamentos auxiliares; os documentos e projetos de instalação elétrica de todos os equipamentos, com as informações necessárias para o dimensionamento da (s) rede (s) elétrica (s) de alimentação; os documentos e projetos para as tubulações hidráulicas e pneumáticas de alimentação da câmara hiperbárica; e os projetos sugeridos de instalação dos sistemas de suprimento do oxigênio medicinal e do ar comprimido respirável e das respectivas redes de distribuição.

Na entrega da câmara hiperbárica multipaciente e dos equipamentos auxiliares, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido respirável e de oxigênio; as instruções para os procedimentos de limpeza e assepsia do equipamento e das unidades de respiração; as advertências sobre dos riscos de fogo ou explosão e a descrição dos sistemas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica multipaciente e das janelas de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica multipaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica multipaciente e de seus equipamentos auxiliares.

Na entrega da câmara hiperbárica monopaciente, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido e de oxigênio e dos procedimentos de emergência; as instruções sobre a correta utilização da pulseira de aterramento do paciente e os riscos da não utilização; as instruções para os procedimentos de limpeza e assepsia do equipamento e da unidade de respiração, quando aplicável; as advertências sobre dos riscos de fogo ou explosão e medidas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica monopaciente e dos componentes de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e de combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica monopaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica monopaciente.

Para a câmara hiperbárica monopaciente equipada com um sistema de reaproveitamento do oxigênio medicinal por meio de um processo de absorção do dióxido de carbono, as instruções detalhadas sobre o uso deste sistema devem constar do manual de instruções, assim como no treinamento operacional. A NBR 15949 de 08/2022 – Vaso de pressão para ocupação humana (VPOH) para fins terapêuticos – Requisitos para fabricação, instalação e operação estabelece os requisitos de projeto, fabricação, instalação, manutenção, operação, sistema de suprimento de gases e de segurança para vasos de pressão para ocupação humana (VPOH) multipacientes e monopacientes, projetados para operar a pressões superiores à pressão atmosférica ambiente e empregados em procedimentos terapêuticos de oxigenoterapia hiperbárica e no tratamento de doenças descompressivas, em instalações médicas independentes ou agregadas aos serviços de saúde.

Esta norma não se aplica aos requisitos relativos à ergonomia para o projeto dos VPOH para fins terapêuticos. Os VPOH são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. Estes equipamentos são projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Estes equipamentos permitem o tratamento de um ou mais pacientes em vários níveis de atendimento, inclusive aqueles sob cuidados intensivos, com todos os aparatos necessários, além de oferecer condições ambientais confortáveis e seguras aos pacientes, operadores e atendentes. Os níveis de oxigênio da atmosfera interna requerem monitoramento e controle para evitar hipóxia, toxicidade por oxigênio e riscos de incêndio. Os vasos de pressão destinados exclusivamente aos procedimentos terapêuticos de oxigenoterapia hiperbárica operam tipicamente a uma pressão operacional de até 180 kPa acima da pressão atmosférica.

Também destinados ao tratamento de doenças descompressivas, operam com pressões mais elevadas, que podem chegar a 700 kPa ou mais. Os tempos de tratamento dentro dos vasos de pressão estão tipicamente entre 1,5 h e 3 h para procedimentos terapêuticos de oxigenoterapia hiperbárica, enquanto o tratamento de doenças descompressivas pode durar 8,5 h ou mais.

Esta norma é destinada à utilização por pessoas envolvidas no projeto, fabricação, instalação, manutenção e operação de vasos de pressão para ocupação humana (VPOH). Convém que as pessoas envolvidas na montagem e na instalação dos sistemas de suprimento de gases medicinais e do próprio serviço de medicina hiperbárica também estejam cientes do conteúdo desta norma.

As câmaras hiperbáricas são classificadas segundo o número de ocupantes em seu interior. A multipaciente é um equipamento de maior porte, normalmente de forma cilíndrica, capaz de acomodar simultaneamente de 2 pacientes a 15 pacientes, além do pessoal operacional. O casco é tipicamente em aço-carbono, dotado de janelas ou vigias de acrílico transparente, bancos ou poltronas para acomodação dos ocupantes, unidades de respiração individual com sistema de exalação para o meio externo e pelo menos uma maca de tamanho padrão.

Dotado de iluminação externa ou interna, portas herméticas, sistema de comunicação com o exterior, sistema de climatização e sistemas de combate a incêndio. A monopaciente é um equipamento de menor porte, normalmente de forma cilíndrica, capaz de acomodar apenas um paciente, que permanece deitado em uma maca durante o tratamento.

A estrutura da base pode ser em aço carbono ou alumínio e o casco cilíndrico dotado de janelas ou na forma de um tubo de acrílico transparente. Pode ser equipado com uma unidade de respiração individual. As pressões indicadas nesta norma são expressas como manométricas (isto é, a pressão atmosférica é determinada como zero), salvo quando mencionado de outra forma.

A câmara hiperbárica multipaciente e monopaciente, seus sistemas acessórios e componentes em acrílico devem ser projetados, fabricados, inspecionados e ter sua conformidade avaliada conforme estabelecido no código ANSI/ASME PVHO-1 por fabricantes com sistema de qualidade reconhecido e pessoal qualificado na produção de vasos de pressão. Exemplo de sistema de qualidade reconhecido: pode ser a NBR ISO 9000.

As marcações na placa de identificação, a ser afixada na câmara hiperbárica multipaciente e na monopaciente, devem seguir o disposto no código ANSI/ASME PVHO-1 e constar o nome, o símbolo e a marca da entidade ou sociedade certificadora. A câmara hiperbárica multipaciente e monopaciente e seus sistemas e acessórios devem estar em conformidade com o estabelecido na série NBR IEC 60601 e as respectivas emendas e normas colaterais cabíveis, por seus fabricantes. A câmara hiperbárica multipaciente e monopaciente deve ser projetada para trabalhar a uma pressão de operação de pelo menos 180 kPa e atender às relações entre as pressões especificadas na tabela abaixo.

A câmara hiperbárica multipaciente e monopaciente deve ser equipada com pelo menos duas válvulas de alívio de pressão, ajustadas para serem acionadas quando a pressão interna chegar a 10% acima da pressão máxima de operação. A vazão de descarga de cada válvula de alívio de pressão deve ser equivalente à soma das vazões máximas de pressurização dos gases oxigênio medicinal e ar comprimido respirável.

A câmara hiperbárica multipaciente deve ser construída com pelo menos três compartimentos interligados entre si: a antecâmara, a câmara principal e um compartimento de passagem (medica lock), dotados de portas herméticas para acesso ao exterior e entre a antecâmara e a câmara principal. Cada compartimento, incluindo as janelas de acrílico transparente e penetradores, deve ser capaz de suportar a pressão de ensaio, conforme especificado na tabela acima.

As portas de acesso a pessoas da antecâmara e da câmara principal devem ter altura mínima de 1,40 m e largura mínima de 0,70 m e devem permitir a passagem de um paciente deitado em uma maca de dimensões-padrão e/ou de uma cadeira de rodas. A antecâmara deve ter pelo menos uma janela de acrílico transparente que permita a observação de seu interior, pelo lado de fora.

A câmara principal deve ter mais de uma janela de acrílico transparente para permitir a observação de todos os assentos instalados, pelo lado de fora. Os meios devem ser previstos para evitar que o nível de ruído dentro da câmara hiperbárica multipaciente ultrapasse 70 dB(A) durante o tratamento. Nos procedimentos de compressão e descompressão, o ruído máximo não pode ultrapassar 90 dB(A).

O microfone do dispositivo de medição de ruídos para ensaio é tipicamente colocado no centro da câmara principal, na altura da cabeça de uma pessoa sentada. Os procedimentos de compressão, descompressão e de ventilação da câmara hiperbárica multipaciente devem ser executados pelo operador externo.

Dentro da antecâmara e da câmara principal também devem ser instalados controles que permitam ao operador interno a compressão e a descompressão de cada compartimento, em emergências. Dentro da antecâmara e da câmara principal deve ser instalado um manômetro analógico do tipo Bourdon, para a indicação das respectivas pressões internas. Ambos os manômetros devem atender no mínimo à classe B, conforme especificado na NBR 14105-1.

Os manômetros são normalmente instalados em caixas-estanque, para não sofrerem interferência da pressão interna da câmara hiperbárica. Os meios devem ser previstos para evitar a obstrução das aberturas internas de exaustão da antecâmara e da câmara principal. Exemplo de obstrução das aberturas internas de exaustão: objetos soltos, tecidos, pés e mãos de pacientes.

A câmara hiperbárica multipaciente equipada com um sistema de controle automático ou semiautomático de compressão, descompressão e manutenção da pressão deve dispor de meios que permitam a retomada do controle manual pelo operador externo ou interno, em caso de falha no suprimento de energia elétrica ou do próprio sistema de controle ou em emergências. Exemplo de controle automático ou semiautomático: por meio pneumático e/ou eletro/eletrônico.

As luminárias externas destinadas à iluminação do interior da câmara hiperbárica multipaciente através das janelas de acrílico ou de penetradores devem se alimentadas por um circuito elétrico de baixa tensão, conforme especificado na NBR 5410. As luminárias internas destinadas à iluminação do interior da câmara hiperbárica multipaciente devem ser fabricadas em LED (light-emitting diode), alimentadas por cabos de fibra ótica e alimentadas por um circuito de baixa tensão.

A utilização de um sistema de iluminação externa ou interna na câmara hiperbárica é uma opção do fabricante. Convém que a tensão de alimentação do sistema de iluminação não seja superior a 24V. Um sistema de alimentação de emergência, independentemente do suprimento principal de energia elétrica, deve estar disponível para continuar a suprir o sistema de iluminação, para permitir o término do tratamento ou sua interrupção, em caso de incêndio ou falha no suprimento principal. Exemplo de sistema de alimentação de emergência: nobreak.

A câmara hiperbárica multipaciente deve dispor de um sistema intercomunicador na antecâmara e na câmara principal que permita a captação dos sons internos e a comunicação entre os operadores interno e externo. Esse sistema deve permanecer ativado durante todo o tratamento e ser alimentado por um circuito de baixa tensão, conforme especificado na NBR 5410.

Convém que a tensão de alimentação do sistema de comunicação não seja superior a 24V. Convém que a antecâmara e a câmara principal disponham de um sistema de monitoramento por câmeras de vídeo, controlado pelo operador externo, com capacidade de gravação de todo o tratamento.