A acessibilidade em trem urbano ou metropolitano

No estabelecimento dos critérios e parâmetros técnicos, devem ser consideradas as diversas condições de mobilidade e de percepção do ambiente pela população, incluindo crianças, adultos, idosos e pessoas com deficiência, com ou sem a ajuda de aparelhos específicos, como próteses, aparelhos de apoio, cadeiras de rodas, bengalas de rastreamento, sistemas assistivos de audição ou qualquer outro que venha a complementar necessidades individuais.

Confirmada em dezembro de 2019, a NBR 14021 de 06/2005 – Transporte – Acessibilidade no sistema de trem urbano ou metropolitano estabelece os critérios e parâmetros técnicos a serem observados para acessibilidade no sistema de trem urbano ou metropolitano, de acordo com os preceitos do Desenho Universal. No estabelecimento desses critérios e parâmetros técnicos, foram consideradas as diversas condições de mobilidade e de percepção do ambiente pela população, incluindo crianças, adultos, idosos e pessoas com deficiência, com ou sem a ajuda de aparelhos específicos, como próteses, aparelhos de apoio, cadeiras de rodas, bengalas de rastreamento, sistemas assistivos de audição ou qualquer outro que venha a complementar necessidades individuais.

Visa proporcionar à maior quantidade possível de pessoas, independentemente de idade, estatura e condição física ou sensorial, a utilização de maneira autônoma e segura do ambiente, mobiliário, equipamentos e elementos do sistema de trem urbano ou metropolitano. Para os novos sistemas de trem urbano ou metropolitano que vierem a ser projetados, construídos, montados ou implantados, esta norma se aplica às áreas e rotas destinadas ao uso público. Deve ser aplicada em novos projetos de sistemas de trem urbano ou metropolitano.

Para os sistemas de trem urbano ou metropolitano existentes, esta norma estabelece os princípios e as condições mínimas para a adaptação de estações e trens às condições de acessibilidade. Esta norma deve ser aplicada sempre que as adaptações resultantes não constituírem impraticabilidade. A segurança do usuário deve prevalecer sobre sua autonomia em situação de anormalidade no sistema de trem urbano ou metropolitano.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser a área para utilização das bilheterias e dos equipamentos de autoatendimento?

Como deve ser o equipamento de controle de acesso?

Como deve ser a faixa livre nas plataformas?

Como deve ser o vão e o desnível entre o trem e a plataforma?

As áreas de uso público da estação devem atender à seção 6 da NBR 9050:2004. Os equipamentos, dispositivos, painéis de informação e demais elementos devem atender às seções 4 e 9 da NBR 9050:2004, e devem também: ser instalados de forma a possibilitar o alcance manual e visual para utilização; quando suspensos sobre as áreas de circulação e de uso público, garantir altura livre mínima de 2,10 m.

O sistema de trem urbano ou metropolitano deve prover e manter pessoal habilitado para atendimento das pessoas com deficiência ou com mobilidade reduzida que utilizam seus serviços, considerando as necessidades e as diferenças entre as diversas deficiências. O módulo de referência é uma área com dimensões de 0,80 m x 1,20 m, referente à ocupação de uma pessoa em cadeira de rodas, conforme figura abaixo.

Deve haver uma rota acessível entre os diferentes modos integrados de transporte e as áreas essenciais da estação, conforme figura abaixo. Rotas acessíveis entre o acesso e as plataformas devem passar através dos equipamentos de controle de acesso. Em situação de anormalidade no sistema de trem urbano ou metropolitano, deve haver pessoal habilitado para auxiliar na circulação. Nas situações de emergência deve ser considerada a utilização ou não de equipamentos de resgate, segundo procedimento da empresa de sistema de trem urbano ou metropolitano, conforme figura abaixo.

Áreas de acomodação devem oferecer condição segura para a permanência da pessoa com deficiência ou com mobilidade reduzida nas extremidades de escadas e rampas ou junto aos equipamentos de circulação e de controle de acesso, sem interferir nas áreas de circulação. As salas operacionais com acesso de público devem estar interligadas à rota acessível. Incluem-se nesta condição salas de primeiros-socorros, salas de supervisão e sanitários acessíveis.

Salas de primeiros-socorros devem estar localizadas, preferencialmente, próximas a um sanitário acessível. Para a execução de obras e serviços, recomenda-se adotar medidas mitigadoras, conforme a localização da intervenção: em rota acessível de áreas essenciais, deve ser prevista rota acessível alternativa, assegurando-se uma faixa livre mínima de circulação com 1,20 m de largura; em áreas complementares, os equipamentos e ambientes devem ser interditados e isolados. Deve haver sinalização temporária informando a interdição.

O isolamento das áreas em obras deve ter altura livre máxima de 0,60 m, para permitir sua detecção por pessoas com deficiência visual que utilizem bengalas de rastreamento. Na inoperância dos equipamentos de circulação, deve haver procedimento e pessoal habilitado para auxiliar o embarque e o desembarque da pessoa com deficiência ou mobilidade reduzida.

Os acessos devem permitir seu uso por pessoas com deficiência ou com mobilidade reduzida. Podem constituir exceções: os acessos situados a uma distância inferior a 100 m do acesso para pessoas com deficiência ou mobilidade reduzida, localizados no mesmo passeio ou separados por sistema viário, desde que haja rota acessível entre eles; acessos com demanda inferior a 15% do total da demanda de embarque ou desembarque da estação, desde que exista ou seja aplicável a implantação de rota acessível externa até o acesso destinado às pessoas com deficiência ou mobilidade reduzida; os acessos situados em local de natureza topográfica não acessível, independentemente da demanda de usuários, desde que observado o disposto a seguir.

Quando todos os acessos se situarem em local de natureza topográfica não acessível, pelo menos um acesso deve permitir seu uso por pessoa com deficiência ou com mobilidade reduzida, estar vinculado à rota acessível interna e dispor de local de parada de veículo para embarque e desembarque de pessoa com deficiência ou com mobilidade reduzida, conforme critérios do órgão de trânsito com jurisdição sobre a via. Os balcões de venda ou serviços complementares oferecidos pelo sistema de trem urbano ou metropolitano devem atender à seção 9 da NBR 9050:2004.

Bilheterias e equipamentos de autoatendimento são destinados à venda de bilhetes ou créditos de viagem e devem permitir sua utilização com autonomia por pessoas com deficiência ou com mobilidade reduzida, conforme a NBR 9050 e NBR 15250. Devem atender às prescrições descritas a seguir. A superfície dos balcões de autoatendimento e das bilheterias e os dispositivos dos equipamentos de autoatendimento devem facilitar o recolhimento dos bilhetes e moedas.

Nas bilheterias, a altura do balcão não deve exceder 1,05 m. Nos equipamentos de autoatendimento, os dispositivos e comandos, as fendas para inserção e retirada de bilhetes, cartões de crédito de viagem, dinheiro e o conector de fone de ouvido devem estar localizados em altura entre 0,80 m e 1,20 m do piso, com profundidade de no máximo 0,30 m em relação à face frontal externa do equipamento.

Os demais dispositivos operáveis pelo usuário, inclusive os monitores, podem estar localizados em altura entre 0,40 m e 1,37 m em relação ao piso de referência, com profundidade de no máximo 0,30 m em relação à face frontal externa do equipamento. O monitor de vídeo dos equipamentos de autoatendimento deve ser posicionado de modo a garantir a visão de todas as informações exibidas por pessoas em pé e em cadeira de rodas.

A quantidade de bilheterias e equipamentos de autoatendimento para pessoa com deficiência ou com mobilidade reduzida deve ser determinada de acordo com a demanda da estação na hora de pico. A área de acomodação de filas das bilheterias ou de equipamentos de autoatendimento não deve interferir na área de circulação de rotas acessíveis. As bilheterias e os equipamentos de autoatendimento devem estar interligados aos acessos e às áreas essenciais através de rota acessível.

Em estações onde houver bilheterias e equipamentos de autoatendimento em diferentes locais, devem ser garantidos o atendimento e a prestação do serviço em todos esses locais, durante todo o período de funcionamento do sistema de trem urbano ou metropolitano. Pelo menos um equipamento em cada conjunto de equipamentos de controle de acesso deve permitir sua utilização por pessoas com deficiência ou com mobilidade reduzida.

Deve-se adequar a porta do carro ou a plataforma, ou ambos, no local de embarque e desembarque de pessoas em cadeira de rodas, de forma a atender às dimensões citadas. Podem ser feitas adaptações, utilizando-se dispositivos fixos ou móveis, atendendo às seguintes condições: não interferir ou prejudicar o intervalo entre trens e a regulação do sistema; ter superfície firme, estável e antiderrapante em qualquer condição; suportar carga de 300 kgf/m²; permanecer imóvel durante o embarque e o desembarque.

Os dispositivos móveis devem atender ainda às seguintes condições: ter largura mínima de 1,00 m; ter cor contrastante ou ter sinalização em cor contrastante, nos limites da área de circulação. Deve haver instruções de uso informando quanto aos cuidados durante o acionamento ou utilização desses dispositivos. Na inexistência ou inoperância dos dispositivos mencionados, deve haver procedimento e pessoal habilitado para auxiliar no embarque e desembarque de pessoa com deficiência ou com mobilidade reduzida.

Nas vias entre estações, sejam elas elevadas, em nível ou subterrâneas, deve ser possível a circulação assistida dos usuários em situação de emergência, transportados conforme procedimento do sistema de trem urbano ou metropolitanos. Devem ser previstos procedimentos que possibilitem o abandono do trem com segurança, notadamente das pessoas com deficiência ou com mobilidade reduzida, em situações de emergência, informando os usuários. O vão livre das portas de embarque e desembarque para pessoa com deficiência ou com mobilidade reduzida deve ter largura mínima de 1,20 m. Para os sistemas existentes, o vão livre das portas deve ter largura mínima de 0,80 m.

Quando houver portas e passagem entre carros e estas forem utilizadas em situações de emergência, elas podem ter vão livre mínimo de 0,60 m e desnível no piso de no máximo 1,5 cm. No interior do carro a ser utilizado por pessoa com deficiência ou com mobilidade reduzida, deve ser previsto local para posicionamento da pessoa em cadeira de rodas, livre de obstáculos, medindo 0,80 m x 1,20 m (módulo de referência).

A quantidade de módulos de referência deve ser definida de acordo com o intervalo entre trens, conforme segue: operação com intervalo entre trens menor ou igual a 10 min – mínimo de um módulo por trem; operação com intervalo entre trens maior do que 10 min – mínimo de dois módulos por trem. O local para pessoa em cadeira de rodas deve estar preferencialmente próximo à porta de embarque e desembarque.

A área de circulação interna do carro deve ser isenta de barreiras, desde a porta de embarque e desembarque até o local para posicionamento da pessoa em cadeira de rodas. Esta área de circulação deve permitir a manobra de cadeira de rodas, considerando o giro de 180º e 360°.

BS EN ISO 14005: a implementação da gestão ambiental em fases

Essa norma europeia, editada pelo BSI em 2019, é uma versão completamente revisada e atualizada da ISO 14005: 2010. Uma abordagem sistemática à gestão ambiental fornece os meios para o gerenciamento de riscos comerciais, demonstra um alto nível de comprometimento ambiental e uma abordagem em fases oferece várias vantagens.

A BS EN ISO 14005:2019 – Environmental management systems – Guidelines for a flexible approach to phased implementation é uma versão completamente revisada e atualizada da ISO 14005: 2010. Uma abordagem sistemática à gestão ambiental fornece os meios para o gerenciamento de riscos comerciais e demonstra um alto nível de comprometimento ambiental.

Muitas organizações já se beneficiam de um Sistema de Gestão Ambiental (SGA) formalizado, porém, muito mais organizações, particularmente pequenas e médias empresas (PME), carecem de um sistema formal e, portanto, perdem os benefícios que uma maior formalidade pode trazer. Este documento mostra como as organizações podem implementar um SGA, usando uma abordagem em fases para, finalmente, atender aos requisitos da ISO 14001. Cada fase incorpora seis estágios consecutivos. O número de fases é flexível. Isso permite que as organizações desenvolvam o escopo, ou seja, as atividades, produtos e serviços incluídos,

Uma abordagem em fases oferece várias vantagens. Por exemplo, as organizações podem avaliar prontamente como o tempo e o dinheiro investidos em um SGA fornecem um retorno. Eles podem desenvolver um sistema que atenda às suas necessidades, permitindo implementá-lo em seu próprio ritmo, dependendo dos recursos humanos e financeiros disponíveis. Sua abordagem pode ajudar as organizações a ver como as melhorias no gerenciamento ambiental podem reduzir custos, demonstrar conformidade legal, melhorar as relações com a comunidade e ajudar a atender às expectativas das partes interessadas.

A matriz de maturidade no Anexo A é uma ferramenta para medir o progresso da implementação do SGA. Isso é útil para rastrear as realizações dos objetivos ambientais de uma organização e benefícios associados e para garantir o uso eficiente de recursos financeiros e humanos. E uma folha de avaliação online e exemplos dentro da norma oferecem suporte aos usuários.

Conteúdo da norma

Prefácio

Introdução

1 Escopo

2 Referências normativas

3 Termos e definições

3.1 Termos relacionados à organização e liderança

3.2 Termos relacionados ao planejamento

3.3 Termos relacionados ao suporte e operação

3.4 Termos relacionados à avaliação e melhoria de desempenho

3.5 Outros termos

4 Benefícios de uma abordagem flexível e em fases

5 Fundamentos de um sistema de gestão ambiental

5.1 Geral

5.2 Liderança e compromisso

5.3 Planejamento baseado em contexto

5.4 Operação

5.5 Avaliação de desempenho

5.6 Melhoria

5.7 Atividades e processos de apoio

6 Abordagem faseada

6.1 Geral

6.2 Definir os resultados pretendidos da fase

6.3 Avaliar o status do sistema de gestão ambiental

6.4 Selecionar as áreas para melhoria do sistema de gestão ambiental (SGA)

6.5 Realizar uma análise de lacunas

6.6 Planejar e implementar melhorias no sistema de gestão ambiental

6.7 Verificar e revisar conquistas

Anexo A Usando uma matriz de maturidade para implementar um SGA

Bibliografia

As organizações enfrentam um número crescente de desafios causados pela deterioração do ambiente natural devido às atividades humanas. Por exemplo, a poluição está afetando o uso de água, ar e terra; os custos de matérias-primas e energia estão se tornando mais voláteis devido ao uso ineficiente e à escassez de recursos não renováveis; e as ameaças de tempestades, inundações ou secas estão aumentando como resultado do aumento da temperatura global e das mudanças climáticas.

Esses desafios estão causando efeitos significativos nos negócios e na sociedade. Reguladores, consumidores, clientes, comunidades locais e outras partes interessadas exigem garantias das organizações de que suas interações com o meio ambiente são gerenciadas com responsabilidade e que suas atividades, produtos e serviços não estão causando impactos ambientais negativos.

Uma abordagem sistemática à gestão ambiental fornece os meios para o gerenciamento de riscos comerciais e demonstra um alto nível de comprometimento ambiental. Isso permite que as organizações respondam às necessidades e expectativas das partes interessadas. Os benefícios comerciais de um sistema formal de gestão ambiental (SGA) incluem o uso mais eficiente de recursos, efeitos negativos reduzidos no meio ambiente, melhor conformidade com os requisitos legais e melhor relacionamento com os clientes.

Muitas organizações já se beneficiam de um SGA formalizado. Porém, muito mais organizações, particularmente pequenas e médias empresas (PME), carecem de um sistema formal e, portanto, perdem os benefícios que uma maior formalidade pode trazer. Uma abordagem sistemática à gestão ambiental pode proporcionar sucesso a longo prazo e permitir o desenvolvimento sustentável. Isso inclui proteger o meio ambiente, mitigar os potenciais efeitos adversos das condições ambientais nas organizações, ajudar no cumprimento das obrigações de conformidade, melhorar o desempenho ambiental, impedir que os impactos ambientais sejam deslocados involuntariamente em outras partes do ciclo de vida, obtendo benefícios financeiros e operacionais e apoiando comunicação com as partes interessadas relevantes.

A implementação completa de um SGA em toda a organização ao mesmo tempo, no entanto, pode ser difícil e depende da disponibilidade de equipe e outros recursos. Uma abordagem em fases permite que as organizações desenvolvam seu SGA gradualmente ao longo do tempo.

Uma abordagem em fases oferece várias vantagens. As organizações podem avaliar prontamente como o tempo e o dinheiro investidos em um SGA proporcionam um retorno. Podem desenvolver um sistema que atenda às suas necessidades, permitindo implementá-lo em seu próprio ritmo, dependendo dos recursos humanos e financeiros disponíveis. Essa abordagem pode ajudar as organizações a ver como as melhorias no gerenciamento ambiental podem reduzir custos, demonstrar conformidade legal, melhorar as relações com a comunidade e ajudar a atender às expectativas das partes interessadas.

Este documento mostra como as organizações podem implementar um SGA, usando uma abordagem em fases para, finalmente, atender aos requisitos da ISO 14001. Cada fase incorpora seis etapas consecutivas. O número de fases é flexível. Isso permite que as organizações desenvolvam o escopo, ou seja, as atividades, produtos e serviços incluídos e a maturidade de seu SGA, de acordo com seus objetivos e recursos disponíveis.

A abordagem em fases pode, por exemplo, começar com um projeto focado em um aspecto ambiental específico, como o uso de energia ou recursos naturais. Também poderia ser usado para atender às necessidades de uma determinada parte interessada, como uma exigência do cliente, ou para gerenciar um problema específico, como demonstrar conformidade legal. O SGA pode ser expandido ao longo do tempo, progredindo em mais fases, por exemplo, para cobrir mais aspectos ambientais, para abordar sistematicamente todas as necessidades e expectativas relevantes das partes interessadas ou para melhorar o desempenho ambiental além da conformidade legal.

As relações normativas da ISO 14001

A matriz de maturidade no Anexo A é uma ferramenta para medir o progresso da implementação do SGA. Isso é útil para rastrear as realizações dos objetivos ambientais de uma organização e benefícios associados e para garantir o uso eficiente de recursos financeiros e humanos. A estrutura da matriz de vencimentos incorpora linhas que correspondem aos diferentes elementos do SGA, conforme definido nas cláusulas da ISO 14001: 2015.

As colunas representam cinco níveis de maturidade. Cada elemento pode ser desenvolvido incrementalmente do nível de maturidade 1 até a maturidade completa no nível 5. Nesse ponto, o elemento atenderá aos requisitos da respectiva cláusula na ISO 14001: 2015.

Uma folha de avaliação que suporta a matriz de maturidade pode ser encontrada no site da ISO/TC 207/SC 1, https://committee.iso.org/home/tc207sc1. Ele segue a mesma estrutura da matriz de maturidade e ajuda as organizações a determinar seu nível de maturidade para cada elemento. O site também fornece exemplos, por exemplo, sobre como uma empresa desenvolveu um SGA completo usando a abordagem em fases.

Os ensaios em paletes plásticos

As forças a que os paletes são expostos durante o uso podem variar significativamente. Os procedimentos de ensaio descritos nesta norma são simulações aproximadas de utilização de paletes.

A NBR 16242 de 02/2020 – Paletes plásticos — Requisitos e métodos de ensaio especifica os requisitos e métodos de ensaio para classificação de paletes plásticos. Um palete plástico pode ser definido como uma plataforma fabricada em material plástico, destinada a suportar cargas, permitindo sua movimentação mecânica por meio do garfo girante.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executado o ensaio de carga dinâmica?

Qual o procedimento para o ensaio de porta-palete – flexão?

As forças a que os paletes são expostos durante o uso podem variar significativamente. Os procedimentos de ensaio descritos nesta norma são simulações aproximadas de utilização de paletes. Estes ensaios ajudam o fabricante de palete a estabelecer um balanço inicial aceitável entre o custo e o desempenho de um projeto de paletes.

Pretende-se que todos os resultados de ensaios realizados com esta norma sejam confirmados e verificados pelos ensaios de campo antes da publicação do desempenho ou da implementação comercial de um novo projeto de palete. É essencial ter cuidado ao comparar os resultados dos ensaios com a experiência histórica usando projetos de paletes existentes. As expectativas dos usuários de paletes é variável.

Alguns requerem maior desempenho e alguns aceitam níveis mais baixos de desempenho. Usuários estão aceitando diferentes níveis de risco ao utilizar paletes. Devido às expectativas dos usuários de palete serem variáveis, os resultados dos ensaios de desempenho nem sempre refletem a percepção do usuário. A diversidade de formas de utilização de paletes dificulta o estabelecimento da capacidade de carga. Recomenda-se que o usuário faça ensaios práticos referentes ao seu uso específico. Os paletes devem ser classificados conforme a tabela abaixo.

Os paletes plásticos devem ser fabricados com resinas termoplásticas, com ou sem a incorporação de aditivos e/ou pigmentos, a critério do fabricante, que deve assegurar a obtenção de um produto que atenda aos requisitos desta norma. Os paletes devem estar isentos de falhas de fabricação, como rachaduras, deformações, bordas afiadas e rebarbas que sejam perceptíveis a olho nu.

Para o ensaio de carga dinâmica – flexão, quando submetido ao ensaio de carga dinâmica – flexão, o palete deve atingir uma flecha máxima de 2,5% de lateral. Para a flecha residual, quando submetido ao ensaio de carga dinâmica – flecha residual, o palete deve apresentar uma flecha residual inferior a 0,8% de lateral dentro das 24 h seguintes ao término do ensaio de flexão.

Para o porta-palete, no ensaio de flexão, quando submetido a uma carga dinâmica – flexão, o palete deve atingir uma flecha máxima de 2,5% de lateral. Para a flecha residual, quando submetido ao ensaio de carga dinâmica – flecha residual, o palete deve apresentar uma flecha residual inferior a 0,6% de lateral dentro das 24 h seguintes ao término do ensaio de flexão.

Para a carga estática rígida, quando submetido ao ensaio de carga dinâmica – flexão, após a fratura do palete ou ao se atingir a deformação máxima permitida, o resultado a ser considerado para fins de classificação é de 80% do valor registrado. Antes da realização dos ensaios, condicionar as amostras a 23 °C ± 2 °C por um período mínimo de 24 h. Os ensaios devem ser realizados sob esta mesma condição ambiental.

Para os métodos de ensaio, a amostragem, em relação a realização dos ensaios, deve ser tomada, de modo aleatório, três unidades de um lote (uma unidade para cada ensaio). Para a carga dinâmica, o ensaio visa simular a movimentação do palete por meio de empilhadeira ou paleteira.

Para que o usuário possa usufruir de todas características e obter maior durabilidade de seus paletes, devem respeitar algumas premissas básicas: respeitar e entender as características de uso de cada modelo de palete; respeitar as capacidades de cargas indicadas para seu modelo de palete; evitar o choque ou batidas dos garfos da empilhadeira no palete; sempre posicionar de maneira correta os garfos das empilhadeiras; procurar sempre utilizar cargas uniformemente distribuídas.

O ensaio não destrutivo por meio de ondas guiadas em tubulações

As ondas guiadas são as ultrassônicas ou sônicas que se propagam ao longo da tubulação e são guiadas pelas suas superfícies ou pela sua forma, sendo o comprimento de onda da ordem de grandeza da espessura.

A NBR 16154 de 02/2020 – Ensaios não destrutivos — Ondas guiadas — Inspeção de dutos e tubulações aéreas estabelece os requisitos para a realização do ensaio não destrutivo por meio de ondas guiadas com propagação axial em tubulações, dutos e estruturas tubulares aéreas em temperaturas até 70°C. É aplicável à inspeção por ondas guiadas por meio de sistema computadorizado, utilizando técnica pulso-eco.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como fazer a escolha da posição de acoplamento (PA)?

Como realizar a verificação da qualidade dos dados?

Quais os níveis das curvas DAC (detection threshold)?

Quais os valores típicos de atenuação e de alcance de algumas condições de ensaio?

As ondas guiadas são as ultrassônicas ou sônicas que se propagam ao longo da tubulação e são guiadas pelas suas superfícies ou pela sua forma, sendo o comprimento de onda da ordem de grandeza da espessura. A posição de acoplamento (PA) é a do colar de cabeçotes no duto ou na tubulação, a partir da qual serão obtidos os dados para análise, que é referenciada no centro do colar de cabeçotes. A pessoa que executa o ensaio por ondas guiadas deve atender à NBR NM ISO 9712.

Podem ser realizados ensaios complementares, como, por exemplo, ensaios de ultrassom e ensaio visual, por pessoa que atenda à NBR NM ISO 9712. Os inspetores de ondas guiadas são divididos em três níveis: nível 1 (OG-N1): OG-N1, linhas apoiadas em suportes simples, em condições não atenuantes (atenuação < 1 dB/m); nível 2 (OG-N2): OG-N2-S1, linhas apoiadas em suportes soldados, em condições não atenuantes (atenuação < 1 dB/m); OG-N2-S2, linhas em condições atenuantes e aplicações avançadas (atenuação > 1 dB/m), por exemplo, tubulações enterradas, risers, travessia de estradas e taludes e similares; nível 3 (OG-N3).

O inspetor deve inspecionar somente tubos no âmbito da sua certificação e com o modelo de instrumento utilizado no exame de certificação. No caso de utilização de instrumento distinto daquele utilizado no seu exame de certificação, o profissional OG-N1 ou OG-N2, respeitando as atribuições de seu subnível de certificação, deve ser formalmente habilitado por um profissional OG-N3 ou pelo fabricante do instrumento.

O profissional OG-N3 deve comprovar, por meio de certificado, o treinamento na técnica de ondas guiadas no instrumento específico do fabricante. Se o ensaio por ondas guiadas envolver aplicações fora do escopo desta Norma, como tubulação enterrada, risers, por exemplo, o ensaio deve ser executado por um inspetor com qualificação específica e adequada para essa tarefa, sendo que, tanto a certificação do inspetor quanto os procedimentos complementares devem ser aprovados previamente pelo contratante. O ensaio por ondas guiadas deve ser realizado de acordo com um procedimento escrito, que deve conter no mínimo os requisitos listados na tabela abaixo.

O procedimento deve ser qualificado por inspetor nível 3 em ondas guiadas e submetido à aprovação prévia do contratante. Recomenda-se a apresentação de uma evidência de aplicação da técnica de ondas guiadas com resultado satisfatório na identificação de refletores em situação similar ao procedimento proposto. Alternativamente ao especificado sobre a apresentação de uma evidência de aplicação da técnica de ondas guiadas, recomenda-se a identificação de um refletor conhecido (solda, corrosão) no objeto a ser inspecionado, como evidência de detectabilidade da técnica de ondas guiadas.

Sempre que qualquer variável for alterada, deve ser emitida uma revisão do procedimento. Se a variável for essencial, o procedimento deve ser requalificado mediante aprovação prévia do contratante. O sistema de medição inclui os seguintes itens: um colar de cabeçotes de transmissão e de recepção utilizando a técnica pulso-eco; instrumento de ondas guiadas; programa de processamento de sinais de ondas guiadas.

O instrumento de ondas guiadas deve ser periodicamente calibrado. Os certificados de calibração devem ser emitidos por laboratórios acreditados conforme a NBR ISO/IEC 17025. Quando não houver laboratório acreditado para a grandeza a ser calibrada, podem ser utilizados laboratórios com padrões rastreados à Rede Brasileira de Calibração (RBC) ou laboratório com seu sistema metrológico nacional ou internacionalmente reconhecido.

A periodicidade de calibração dos instrumentos de medição e acessórios descritos acima depende da frequência e condições de utilização. Recomenda-se que a periodicidade de calibração atenda ao especificado na NBR ISO 10012, não podendo ser superior a 36 meses. A periodicidade de calibração do bloco-padrão não pode ser superior a 60 meses. O bloco-padrão está definido no Anexo A.

Qualquer reparo ou manutenção nos instrumentos de medição e no bloco-padrão implica na necessidade de nova calibração, independentemente da periodicidade estabelecida. Devem ser efetuadas verificações da sensibilidade e da determinação da posição angular do sistema de medição, conforme descrito no Anexo A.

Recomenda-se que as verificações sejam executadas no máximo a cada três meses, com registros dos arquivos eletrônicos gerados pelo instrumento de ondas guiadas e os respectivos relatórios impressos. Qualquer dano ou anomalia de funcionamento no sistema de inspeção implica na necessidade de nova verificação, independentemente da periodicidade estabelecida.

Antes de cada inspeção devem ser efetuadas verificações da operacionalidade do sistema de medição, conforme recomendações do fabricante, entretanto, devem ser verificados no mínimo os seguintes itens: funcionamento correto dos componentes eletrônicos (instrumento, computador, etc.); carga adequada da bateria; continuidade e estado geral dos cabos e suas conexões; funcionamento correto do colar de cabeçotes, módulo de cabeçotes e cabeçotes. Antes da inspeção deve ser enviado um questionário ao proprietário do objeto a ser inspecionado, buscando obter informações relevantes que auxiliem nos preparativos da varredura e na análise dos dados da inspeção.

Um modelo de questionário com as informações mínimas requeridas é apresentado no Anexo B. A tubulação deve estar isenta de revestimentos com espessura superior a 1 mm, produtos de corrosão não aderidos e sujidades que não permitam o perfeito acoplamento do colar à superfície do tubo. A preparação da superfície pode ser feita por meio de escovamento, esmerilhamento, etc.

Na PA deve ser removido no mínimo 500 mm do isolamento térmico. Em caso de restrições geométricas (traço de vapor), a remoção deve ser o suficiente para permitir o afastamento do traço de vapor para o perfeito acoplamento do colar. Sempre que possível, deve ser realizada inspeção visual para que áreas corroídas ou com potencial para tal não fiquem localizadas na zona morta ou no campo próximo.

Deve ser assegurado que a temperatura da superfície esteja dentro dos limites estabelecidos pelo fabricante. Em caso de ensaio a baixa temperatura, não pode existir camada de gelo entre o cabeçote e a superfície. Toda a indicação que for confirmada como descontinuidade deve ser classificada quanto à severidade.

A descontinuidade pode ser classificada como: severa: quando as amplitudes de ambos os modos de onda (simétrico e assimétrico) estiverem acima do limiar de classificação (DAC ou TCG); média: quando somente a amplitude do modo de onda simétrico estiver acima do limiar de classificação (DAC ou TCG); leve: quando as amplitudes de ambos os modos de onda (simétrico e assimétrico) estiverem abaixo do limiar de classificação (DAC ou TCG). Recomenda-se que, para toda descontinuidade classificada como média ou severa, seja feita de imediato uma inspeção subsequente com um método de ensaio não destrutivo quantitativo.

Recomenda-se que, para descontinuidade classificada como leve e que apresente amplitudes equivalentes do modo de onda simétrico e do modo assimétrico, seja feita a correlação de campo de imediato ou incluído no plano de inspeção de curto prazo com um método d e ensaio não destrutivo quantitativo.

No registro dos resultados deve ser emitido um relatório contendo no mínimo os seguintes itens: local da inspeção; nome do requisitante; data do teste; informações da tubulação: identificação alfanumérica – TAG; diâmetro; espessura temperatura; localização da PA (referência e distância da referência); nome, nível e assinatura do inspetor; nome da empresa executante; sistema de aquisição de dados computadorizado, incluindo programa de computador (software) e versão do programa; procedimento (número e revisão); isométrico (preferível) ou representação esquemática da tubulação; A-Scan obtido (incluindo zona morta, campo próximo e curvas DAC); relação sinal ruído na posição de acoplamento; C-Scan obtido (posição circunferencial em horas); limiares (DAC ou TCG) de análise, classificação e solda utilizados, em função da % VST; parâmetros de teste do A-Scan mostrado (frequência ou FR e modo de onda usado); comentários gerais (condição da superfície inspecionada, estado de corrosão e outros); comentários específicos dos sinais do A-Scan (distância ao centro do colar de cabeçotes, porcentagem de VST, indicar se o refletor é geométrico ou uma descontinuidade); fotografia da PA com a marcação na tubulação da posição (bordas) do colar, da orientação (3 h) e da direção (positiva) do teste realizado, assim como do nome do arquivo gerado; localização da posição de acoplamento fornecida pelo GPS, se requerido e aplicável; parecer indicando recomendação de ensaio complementar; indicar localização e comprimento do objeto que não pode ser inspecionado (quando aplicável); normas e/ou valores de referência para interpretação dos resultados. Deve ser fornecido arquivo eletrônico de toda a inspeção, gerado pelo programa utilizado no ensaio de ondas guiadas.

A biocompatibilidade de vias de gás de respiração

Deve-se conhecer os princípios gerais em relação à avaliação de BIOCOMPATIBILIDADE de materiais de PRODUTO PARA A SAÚDE, que compõem a VIA DE GÁS, mas não cobre os PERIGOS biológicos que surgem de qualquer falha mecânica, a não ser que a falha introduza um RISCO de toxicidade (por exemplo, pela geração de PARTÍCULAS).

A NBR ISO 18562-1 de 01/2020 – Avaliação de biocompatibilidade de vias de gás de respiração em aplicações de cuidados à saúde – Parte 1: Avaliação e ensaio dentro de um processo de gerenciamento de risco especifica os princípios gerais que governam a avaliação biológica dentro de um processo de gerenciamento de risco vias de gás produtos para a saúde, suas partes ou acessórios, que são destinadas a fornecer cuidado respiratório ou fornecer substâncias por meio do trato respiratório ao paciente em todos os ambientes; a categorização geral de vias de gás com base na natureza e na duração do seu contato com o fluxo de gás; a avaliação de dados existentes pertinentes de todas as fontes; a identificação de lacunas no conjunto de dados disponíveis sobre a base de uma análise de risco; a identificação de conjuntos de dados adicionais necessária para analisar a segurança biológica via de gás; a avaliação da segurança biológica da via de gás.

Este documento abrange os princípios gerais em relação à avaliação de BIOCOMPATIBILIDADE de materiais de PRODUTO PARA A SAÚDE, que compõem a VIA DE GÁS, mas não cobre os PERIGOS biológicos que surgem de qualquer falha mecânica, a não ser que a falha introduza um RISCO de toxicidade (por exemplo, pela geração de PARTÍCULAS). As outras partes da ISO 18562 abrangem ensaios específicos que tratam de substâncias potencialmente perigosas que são adicionadas ao fluxo de gás respiratório e estabelecem critérios de aceitação para estas substâncias.

Este documento trata de contaminação potencial do fluxo de gás que surge a partir de VIAS DE GÁS dentro do PRODUTO PARA A SAÚDE, que pode então ser conduzido ao PACIENTE. Este documento é aplicável à VIDA ÚTIL ESPERADA do PRODUTO PARA A SAÚDE em UTILIZAÇÃO NORMAL e leva em consideração os efeitos de qualquer processamento ou reprocessamento destinados. Este documento não trata da avaliação biológica de superfícies de PRODUTOS PARA A SAÚDE que estão em contato direto com o PACIENTE. Os requisitos para superfícies de contato direto são encontrados na série ISO 10993.

Os PRODUTOS PARA A SAÚDE, partes ou ACESSÓRIOS contendo VIAS DE GÁS que são tratados neste documento incluem, mas não se limitam a, ventiladores, estações de trabalho de anestesia (incluindo misturadores de gases), sistemas de respiração, dispositivos de conservação de oxigênio, concentradores de oxigênio, nebulizadores, conjuntos de mangueira de baixa pressão, umidificadores, permutadores de calor e umidade, monitores de gás respiratório, monitores de respiração, máscaras, bocais, ressuscitadores, tubos de respiração, filtros de sistemas de respiração, peças em Y, bem como quaisquer ACESSÓRIOS de respiração destinados à utilização com tais PRODUTOS PARA A SAÚDE. A câmara fechada de uma incubadora, incluindo o colchão, e a superfície interior da tampa de oxigênio, são consideradas VIAS DE GÁS e também são abordadas por este documento.

Este documento não aborda contaminações já presentes no gás fornecido das fontes de gás enquanto os PRODUTOS PARA A SAÚDE estiverem em UTILIZAÇÃO NORMAL. EXEMPLO: a contaminação que atinge o PRODUTO PARA A SAÚDE a partir de fontes de gás, como SISTEMAS DE TUBULAÇÃO DE GÁS MEDICINAL (incluindo as válvulas de retenção nas saídas da tubulação), saídas de reguladores de pressão conectados ou integrantes de um cilindro de gás medicinal, ou ar do ambiente, levado para dentro do PRODUTO PARA A SAÚDE, não é abordada pela ISO 18562 (todas as partes). Partes futuras podem ser adicionadas, de modo a tratar de outros aspectos pertinentes de ensaio biológico, incluindo contaminação adicional que pode surgir da VIA DE GÁS devido à presença de drogas e agentes anestésicos adicionados ao fluxo de gás. Algumas AUTORIDADES COMPETENTES requerem avaliação destes RISCOS como parte da avaliação biológica. Este documento foi preparado para abordar os princípios essenciais pertinentes de segurança e de desempenho, conforme indicado no Anexo B.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser a seleção de ensaios para a avaliação biológica?

Qual seria um fluxograma do PROCESSO para determinar quais ensaios serão considerados?

Qual seria uma concentração permitida a partir da EXPOSIÇÃO TOLERÁVEL?

Qual seria o limite permitido para PRODUTOS PARA A SAÚDE destinados à utilização de exposição limitada (≤24 h)?

Este documento representa a aplicação da ciência mais bem conhecida, de modo a aprimorar a segurança do PACIENTE, tratando-se do RISCO de substâncias potencialmente perigosas sendo transportadas ao PACIENTE pelo fluxo de gás. Este documento é destinado a abranger a avaliação biológica de VIAS DE GÁS de PRODUTOS PARA A SAÚDE dentro de um PROCESSO DE GERENCIAMENTO DE RISCO, como parte da avaliação e desenvolvimento geral de PRODUTO PARA A SAÚDE. Esta abordagem combina a revisão e a avaliação dos dados existentes de todas as fontes e, quando necessário, com a seleção e a aplicação de ensaios adicionais.

Em geral, a série ISO 10993 é destinada a cobrir a avaliação biológica de PRODUTOS PARA A SAÚDE. Entretanto, a série ISO 10993 não trata suficientemente a avaliação biológica de VIAS DE GÁS de PRODUTOS PARA A SAÚDE. Antes de este documento ser desenvolvido, certas AUTORIDADES COMPETENTES interpretaram a NBR ISO 10993-1:2013, Tabela A.1, de modo a significar que materiais na VIA DE GÁS formam contato indireto com o PACIENTE, e convém que sejam submetidos aos ensaios equivalentes àqueles requisitados para partes de contato de tecido de PRODUTOS PARA A SAÚDE.

Esta interpretação pode levar a ensaios com benefício questionável e também que possíveis PERIGOS não sejam detectados. A NBR ISO 10993-1:2013 afirma que não é destinada a fornecer um conjunto rígido de métodos de ensaio, uma vez que isto pode resultar em uma limitação desnecessária de desenvolvimento e de utilização de novos PRODUTOS PARA A SAÚDE. A NBR ISO 10993-1:2013 também afirma que onde uma determinada aplicação serve de garantia disso, especialistas dos produtos ou da área de aplicação em questão podem escolher estabelecer ensaios e critérios específicos, descritos em uma norma vertical específica do produto.

Esta nova série de normas é destinada a tratar das necessidades específicas para a avaliação de VIAS DE GÁS que não são adequadamente cobertas pela NBR ISO 10993-1:2013. Este documento fornece um guia para o desenvolvimento de um plano de avaliação biológica que minimiza o número e a exposição de ensaios de animais por meio da preferência ao ensaio de constituinte químico e em modelos in vitro. A versão inicial desta série de normas foi destinada a abranger apenas as substâncias encontradas frequentemente que são potencialmente danosas.

Considerou-se que era melhor obter um documento funcional publicado que faria o ensaio de grande parte das substâncias de interesse atualmente conhecidas. Com a utilização da abordagem LPT (LIMIAR DE PREOCUPAÇÃO TOXICOLÓGICA), este documento tem o potencial de ser utilizado para avaliar a segurança de essencialmente qualquer composto liberado de VIAS DE GÁS de PRODUTOS PARA A SAÚDE respiratórios, com pouquíssimas exceções (por exemplo, BCP, dioxinas), e não apenas as substâncias potencialmente danosas encontradas comumente.

Emendas posteriores e partes adicionais estão planejadas para explicitamente abranger substâncias menos comuns. Neste documento, os seguintes tipos de fonte são utilizados: requisitos e definições: letra vertical; especificações de ensaio: em itálico; material informativo que aparece fora de tabelas, como notas, exemplos e referências: em letra menor. Texto normativo de tabelas também está em letra menor; termos definidos na Seção 3 deste DOCUMENTO ou como observado: em versalete.

Neste documento, a conjunção “ou” é utilizada como “ou inclusivo”, de modo que a afirmação é verdadeira se qualquer combinação das condições for verdadeira. As formas verbais utilizadas neste documento estão em conformidade com a utilização descrita na ABNT DIRETIVA 3, 4.4. Para os efeitos deste documento, o verbo auxiliar: “deve” significa que a conformidade com um requisito ou com um ensaio é obrigatória para conformidade com este documento; “convém que” significa que a conformidade com um requisito ou com um ensaio é recomendada, mas não obrigatória para conformidade com este documento; “pode” é utilizado para descrever uma forma permitida de obter conformidade com um requisito ou ensaio.

Um asterisco (*) como o primeiro caractere de um título, ou no começo de um parágrafo ou no título de uma tabela, indica que há orientação ou justificativa relacionada àquele item no Anexo A. Chama-se atenção dos Organismos Membros para o fato de que os fabricantes de equipamentos e organizações de ensaio podem precisar de um período de transição após a publicação de uma nova publicação ABNT, com emendas ou revisada, dentro da qual fazer produtos de acordo com os novos requisitos e para se equipar para conduzir ensaios novos ou revisados. É recomendação do Comitê que o conteúdo desta publicação seja adotado para implementação nacional não antes de três anos a partir de dados de publicação para equipamentos recentemente projetados e não antes de cinco anos a partir de dados de publicação para equipamentos já em produção.

A avaliação de BIOCOMPATIBILIDADE de qualquer material ou de PRODUTO PARA A SAÚDE, parte ou ACESSÓRIO destinado à utilização com PACIENTES deve formar parte de um programa de avaliação de BIOCOMPATIBILIDADE estruturado dentro de um PROCESSO DE GERENCIAMENTO DE RISCO. A avaliação de BIOCOMPATIBILIDADE deve ser planejada, realizada e documentada por profissionais bem informados e com experiência. A figura abaixo ilustra este PROCESSO. O programa de avaliação deve incluir decisões informadas, documentadas, que avaliem as vantagens/desvantagens e a pertinência de: características físicas e químicas dos materiais candidatos variados sobre a VIDA ÚTIL ESPERADA do PRODUTO PARA A SAÚDE. Quando estas informações já estiverem documentadas no ARQUIVO DE GERENCIAMENTO DE RISCO para o PRODUTO PARA A SAÚDE, elas podem ser incluídas por referência.

A avaliação deve incluir qualquer histórico de dados de exposição humana; e qualquer toxicologia existente e outros dados de segurança de BIOCOMPATIBILIDADE sobre o produto e materiais componentes, produtos de decomposição e metabólitos. Convém que todos os PRODUTOS PARA A SAÚDE sejam avaliados para BIOCOMPATIBILIDADE, mas a avaliação não necessariamente implica submeter tudo a ensaio. Dependendo da FORMULAÇÃO final, da fabricação ou aplicação, uma avaliação pode resultar na conclusão de que nenhum ensaio ou nenhum ensaio adicional é necessário.

EXEMPLO: o PRODUTO PARA A SAÚDE tem uma similaridade demonstrável em uma função especificada e em uma forma física, tem FORMULAÇÃO idêntica, não contém nenhuma substância química adicional e utiliza os mesmos PROCESSOS de fabricação, de modo que é equivalente a uma parte do PRODUTO PARA A SAÚDE ou a um ACESSÓRIO que já tenha sido avaliado. Verificar conformidade por inspeção do plano de GERENCIAMENTO DE RISCO e do ARQUIVO DE GERENCIAMENTO DE RISCO.

Os ensaios descritos neste documento são ENSAIOS DE TIPO. ENSAIOS DE TIPO são realizados sobre o PRODUTO PARA A SAÚDE final, um componente do PRODUTO PARA A SAÚDE ou uma amostra representativa do PRODUTO PARA A SAÚDE, parte ou ACESSÓRIO sendo avaliado. Se amostras representativas forem utilizadas (ou seja, fabricadas ou processadas por métodos equivalentes), convém considerar se as diferenças entre a amostra representativa e o PRODUTO PARA A SAÚDE final ou componente poderiam ou não afetar os resultados do ensaio.

Convém que o ensaio de amostras representativas (fabricadas ou processadas por métodos equivalentes), em vez do PRODUTO PARA A SAÚDE final, seja corroborado por uma descrição de quaisquer diferenças entre a amostra representativa e o PRODUTO PARA A SAÚDE final, e uma justificativa detalhada do motivo pelo qual não se espera que cada diferença impacte a BIOCOMPATIBILIDADE do PRODUTO PARA A SAÚDE final. Algumas AUTORIDADES COMPETENTES avaliam estas diferenças e justificativas. Identificar todos os possíveis PERIGOS relacionados à BIOCOMPATIBILIDADE que podem chegar ao PACIENTE por meio das VIAS DE GÁS durante a utilização do PRODUTO PARA A SAÚDE.

Todos os possíveis PERIGOS relacionados à BIOCOMPATIBILIDADE conhecidos devem ser levados em consideração para cada material e para o PRODUTO PARA A SAÚDE final, parte ou ACESSÓRIO. Isto não implica que o ensaio para todos os PERIGOS possíveis seja necessário ou praticável. A NBR ISO 10993-1:2013, Seção 5 e Seção 6, apresenta requisitos adicionais para tipos adicionais e para durações de exposição do PACIENTE. EXEMPLO: para o PRODUTO PARA A SAÚDE (como uma máscara) que tem contato direto com o PACIENTE em adição ao contato com a VIA DE GÁS, uma avaliação da conformidade com as NBR ISO 18562‑1 e NBR ISO 10993‑1 pode ser requerida. Na seleção dos materiais a serem utilizados na fabricação de VIA DE GÁS, convém que a primeira consideração seja a adequação à finalidade em relação às características e às propriedades dos materiais, o que inclui as propriedades físicas, mecânicas, químicas e toxicológicas.

Convém que os materiais utilizados para fabricação dos componentes nas VIAS DE GÁS sejam adequados para a UTILIZAÇÃO DESTINADA e utilizem materiais com histórico demonstrável de utilização segura na aplicação destinada ou comparável, sempre que possível. O seguinte deve ser levado em consideração por sua relevância na avaliação biológica geral da VIA DE GÁS: material (is) de fabricação; aditivos destinados, contaminantes e resíduos de PROCESSO; substâncias liberadas na UTILIZAÇÃO NORMAL; produtos de degradação a partir da UTILIZAÇÃO NORMAL, que podem passar para o PACIENTE por meio das VIAS DE GÁS. A ISO 10993‑9 contém requisitos para os princípios gerais e as ISO 10993‑13, ISO 10993‑14 e NBR ISO 10993-15 contêm requisitos para produtos de degradação de polímeros, cerâmicas e metais, respectivamente.

Se ensaio para degradação usar apenas calor seco, então não há necessidade de aplicar as ISO 10993‑13, a ISO 10993‑14 e a NBR ISO 10993-15. A UTILIZAÇÃO NORMAL pode incluir utilização com gás de respiração aquecido e umidificado. Ensaios são realizados com a configuração de “pior cenário”. Isto pode significar ensaio de média com e sem calor e sem umidificação para estabelecer o pior cenário. Pode-se acrescentar que outros componentes e suas interações no PRODUTO PARA A SAÚDE final, parte ou ACESSÓRIO; o desempenho e características do PRODUTO PARA A SAÚDE final, parte ou ACESSÓRIO; as caraterísticas físicas do PRODUTO PARA A SAÚDE, parte ou ACESSÓRIO, incluindo, sem se limitar a estes: porosidade, tamanho e formato de partícula; e os efeitos de quaisquer etapas de processamento higiênico requerido antes da utilização ou da reutilização, se aplicável.

Verificar a conformidade por inspeção do plano de GERENCIAMENTO DE RISCO e do ARQUIVO DE GERENCIAMENTO DE RISCO. Para uma extensão da DETERMINAÇÃO DE RISCO, uma análise deve ser realizada sobre os PERIGOS identificados em 4.3, e deve ser determinado o RISCO que o PERIGO representa ao PACIENTE. Os resultados devem ser documentados. A NBR ISO 10993-1:2013, Figura 1, é uma representação gráfica do PROCESSO DE DETERMINAÇÃO DE RISCO. O rigor necessário da avaliação biológica é principalmente determinado pela duração e frequência de exposição e dos PERIGOS identificados para o PRODUTO PARA A SAÚDE.

As informações necessárias para corroborar a avaliação biológica, incluindo qualquer dado de ensaio, devem levar em consideração as características químicas e físicas dos materiais, a natureza eletromecânica do PRODUTO PARA A SAÚDE, bem como a frequência, duração e condições de exposição do PACIENTE ao gás a partir da VIA DE GÁS Isto permite a categorização de utilizações para facilitar a seleção de ensaios apropriados, se requerido. A NBR ISO 10993-1:2013, Seção 5, contém requisitos adicionais.

Para o plano de avaliação de BIOCOMPATIBILIDADE, tendo identificado os possíveis PERIGOS DE BIOCOMPATIBILIDADE e determinado os RISCOS que estes podem representar ao PACIENTE, para a sua criação deve-se detalhar o que é atualmente conhecido sobre a FORMULAÇÃO do material, aditivos e PROCESSOS auxiliares utilizados na fabricação das VIAS DE GÁS do PRODUTO PARA A SAÚDE e, portanto, deve identificar lacunas no conhecimento que podem ser preenchidos por trabalhos adicionais. Se um PERIGO em potencial for identificado, mas se puder demonstrar que o RISCO que representa ao PACIENTE é desprezível (por exemplo, a dose que PACIENTE recebe é menor do que a EXPOSIÇÃO TOLERÁVEL), então nenhum trabalho adicional sobre o PERIGO é requerido. A decisão deve ser documentada.

Se um PERIGO em potencial foi identificado, mas o RISCO que representa ao PACIENTE não for desprezível, ou o RISCO for desconhecido, então trabalhos adicionais para caracterizar ou atenuar o PERIGO são requeridos. Esta etapa pode envolver referências aos PRODUTOS PARA A SAÚDE prévios e similares e aos métodos de fabricação, acesso às informações confiáveis no domínio público ou realização de ensaios para coleta dos dados. Convém que todos os PRODUTOS PARA A SAÚDE sejam avaliados para BIOCOMPATIBILIDADE, mas a avaliação não necessariamente implica em ensaio.

Dependendo da FORMULAÇÃO final, fabricação ou aplicação, uma avaliação pode resultar na conclusão de que nenhum ensaio ou nenhum ensaio adicional é necessário. EXEMPLO: o PRODUTO PARA A SAÚDE tem uma similaridade demonstrável em uma função especificada e em uma forma física, tem FORMULAÇÃO idêntica, não contém substância química adicional e utiliza os mesmos PROCESSOS de fabricação, de modo que é equivalente a uma parte do PRODUTO PARA A SAÚDE, ou a um ACESSÓRIO que já tenha sido avaliado.

Para reduzir o ensaio em animais para VIA DE GÁS que pode ter líquidos de contato, deve ser realizada identificação de constituintes químicos de materiais e a consideração de caracterização química, e apenas se os resultados demonstrarem a presença de substâncias para as quais não existem dados toxicológicos suficientes para permitir a DETERMINAÇÃO DE RISCO, convém que qualquer ensaio biológico seja considerado. Certos efeitos locais, incluindo citotoxicidade, irritação e sensibilização, podem não ser avaliados adequadamente utilizando abordagem de caracterização química/DETERMINAÇÃO DE RISCO.

Como resultado, pode ser necessário a condução de ensaio biológico para avaliar estes pontos finais. Efeitos sistêmicos, incluindo toxicidade aguda, subaguda, crônica ou subcrônica, toxicidade de reprodução e de desenvolvimento, genotoxicidade e carcinogenicidade, podem frequentemente ser avaliados utilizando uma abordagem de caracterização química/DETERMINAÇÃO DE RISCO. Uma avaliação de MATÉRIA PARTICULADA deve ser incluída na avaliação de BIOCOMPATIBILIDADE. Resultados de ensaio não estão aptos a garantir isenção de potenciais PERIGOS BIOLÓGICOS.

Deste modo, investigações biológicas devem ser seguidas por observações criteriosas para reações adversas inesperadas ou para eventos em humanos durante a utilização do PRODUTO PARA A SAÚDE final, parte ou ACESSÓRIO. A gama de possíveis PERIGOS biológicos é ampla e pode incluir efeitos de curto prazo, bem como de longo prazo ou de efeitos tóxicos específicos.

A avaliação biológica de uma VIA DE GÁS deve levar em consideração a natureza e a mobilidade dos constituintes dos materiais utilizados para a fabricação do PRODUTO PARA A SAÚDE, parte ou ACESSÓRIO, e outras informações, outros ensaios não clínicos, estudos clínicos e experiência pós-venda para uma avaliação geral. Esta série não trata atualmente de PERIGOS DE BIOCOMPATIBILIDADE associados às substâncias sendo adicionadas ao fluxo de gás de respiração. Entretanto, quando aplicável, algumas AUTORIDADES COMPETENTES requerem que o FABRICANTE avalie o seguinte: compostos orgânicos semivoláteis e Compostos Orgânicos Muito Voláteis (COMVs); ozônio para VIAS DE GÁS em contato com partes eletromecânicas ou eletrostáticas ativas em CONDIÇÃO NORMAL; CO e CO2 para VIAS DE GÁS em que gases inorgânicos são gerados ou concentrados; PERCOLÁVEIS para VIAS DE GÁS em contato com agentes anestésicos em que o gás pode ser inspirado em CONDIÇÃO NORMAL; PERCOLÁVEIS para VIAS DE GÁS em contato com substâncias destinadas a serem liberadas por meio do trato respiratório (por exemplo, drogas de inalação).

Os requisitos das válvulas industriais para petróleo

Há todo um conceito para os projetos e ensaios de protótipos de válvulas industriais tipos gaveta, esfera, globo, retenção, macho e borboleta, nas classes de pressão 150, 300, 600, 800, 900, 1.500 e 2.500, utilizados nas instalações de exploração, produção, refino e transporte de produtos de petróleo.

A NBR 15827 de 12/2018 – Válvulas industriais para instalações de exploração, produção, refino e transporte de produtos de petróleo – Requisitos de projeto e ensaio de protótipo estabelece os requisitos para projetos e ensaios de protótipos de válvulas industriais tipos gaveta, esfera, globo, retenção, macho e borboleta, nas classes de pressão 150, 300, 600, 800, 900, 1.500 e 2.500, utilizados nas instalações de exploração, produção, refino e transporte de produtos de petróleo. Esta norma é aplicável às válvulas com ou sem acionamento manual, com ou sem redutor. Os redutores devem comprovar o pleno atendimento às premissas de projeto das válvulas, incluindo os ensaios cíclicos desta norma.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as faixas de abrangência do protótipo por diâmetro e classe de pressão?

Quais as siglas e abreviaturas usadas nessa norma?

Qual a ciclagem para válvulas tipo esfera, gaveta, globo, borboleta, macho e de retenção?

Quais os vazamentos permitidos?

Qual o critério de aceitação para válvulas com esfera flutuante?

Qual deve ser a especificação padronizada para as gaxetas?

As válvulas devem ser projetadas utilizando os padrões construtivos dados nas Tabelas 1 a 6 (disponíveis na norma). Exceto se indicado em contrário aos requisitos de documentação de projeto, memórias de cálculo e ensaios de protótipo são aplicáveis a todos os tipos de válvulas. O fabricante deve estabelecer como premissas de projeto os aspectos descritos a seguir.

A confiabilidade para a vida útil projetada, com base no número de ciclos esperados em operação real e no número máximo de ciclos a que um protótipo pode ser submetido e o número mínimo de ciclos nas condições de ensaio, a partir do qual é constatado o primeiro vazamento pela vedação da haste, para os projetos de válvulas que utilizem vedação por engaxetamento. A periodicidade de reaperto da vedação da haste, para as válvulas que utilizem vedação por engaxetamento, observando as taxas de vazamento (líquido e gás) por meio da vedação da haste, que após o reaperto deve ser sem vazamento visível (SVV).

Os critérios de aceitação para vedação em função dos requisitos normativos estabelecidos nesta norma e os critérios de aceitação de desempenho, em função dos requisitos normativos estabelecidos nesta norma: considerar como falha na validação do projeto qualquer não conformidade de desempenho do protótipo em relação aos requisitos estabelecidos nesta norma; em válvulas de acionamento manual que utilizem redutor, este é considerado parte integrante do projeto da válvula e deve ter suas características identificadas e controladas conforme esta norma.

Caso exista mudança no redutor, este pode ser qualificado em separado, para assegurar sua adequação ao projeto original, efetuando-se os ensaios de torque e ciclagem previstos para a válvula. Para aplicações específicas, podem ser solicitadas pelo comprador premissas complementares de projeto que atendam aos critérios de aceitação para vedação e de desempenho. Neste caso, devem ser estabelecidos procedimentos de ensaio de protótipo específicos com foco nessas necessidades.

O fabricante deve registrar explicitamente na documentação de projeto as restrições de projeto e de operação (por exemplo, posição de instalação, sentido de fluxo, regime de fluxo, pressão, temperatura, materiais resilientes etc. O material dos estojos, parafusos e porcas da união corpo-tampa, união corpo-tampa tipo castelo, união do corpo com a tampa do eixo trunnion das válvulas tipo esfera, união do corpo diretamente com o eixo trunnion das válvulas tipo esfera, quando este for solidário à sua tampa, e união do corpo com a tampa do eixo das válvulas tipo borboleta deve ser conforme as especificações listadas na Tabela 8 (disponível na norma).

Quando solicitado pelo cliente, os estojos ou parafusos e as porcas devem ser revestidos com zinco níquel (Zn-Ni) ASTM B 841, Classe 1, Tipo B/E, Grau 5 a 8, com alívio de tensões e de hidrogênio, conforme as ASTM B 849 e ASTM B 850. Para os estojos e parafusos no material ASTM A 320 Gr L7, quando o material do corpo da válvula for igual a ASTM A 350 Gr LF2 CL 1 ou ASTM A 352 Gr LCB, é aceitável o ensaio de impacto a –45 °C e, quando o material do corpo da válvula for igual a ASTM A 350 Gr LF3 ou ASTM A 352 Gr LC3, é aceitável o ensaio de impacto a –60 °C.

Os estojos de união do corpo-tampa (tipo esfera, retenção e macho) e corpo-tampa tipo castelo (tipo gaveta e globo) devem ser conforme ASME B 1.1, UNC-2A até 25,40 mm (1”) e 8UN-2A a partir de 28,57 mm (1 1/8”), com porcas sextavadas padrão ASME B 18.2.2, no número mínimo de quatro. O comprimento dos estojos deve ter no mínimo um e no máximo três fios de rosca, além da porca. Para as válvulas de diâmetro 40 (1 ½) e menores, é permitida a utilização de parafusos conforme ASME B18.2.1. Alternativamente os parafusos, estojos e porcas podem ser em padrão métrico.

As válvulas tipo esfera ensaiadas a fogo (fire tested type) devem ser certificadas com os estojos listados na Tabela 8 (disponível na norma). Para os casos não cobertos na Tabela 8, o fabricante pode especificar o material dos estojos. Neste caso, este conjunto deve ser certificado com ensaio a fogo. Como alternativa ao material ASTM A 193 GR B7, podem ser usados estojos no material ASTM A 193 GR B16.

Nas ligações aparafusadas da válvula ou redutor, não é permitido o uso de materiais com dureza acima de 35 HRC, devido à possibilidade de fragilização por hidrogênio. As válvulas devem conter placa de identificação conforme indicado na norma construtiva e atender às marcações e requisitos adicionais de 5.7.4 e 5.7.5. A placa de identificação deve ser fabricada em aço inoxidável e fixada como a seguir: em válvulas fundidas, deve ser fixada à superfície externa da aba do flange de ligação do corpo ou da tampa ou castelo, com elementos de fixação em aço inoxidável austenítico; em válvulas forjadas, deve ser fixada ao volante por meio de sua porca; em válvulas tipo wafer, deve ser fixada no corpo.

As válvulas ensaiadas a fogo devem ser identificadas na placa com a sigla ISO – FT e com a especificação do material dos internos (haste, obturador e sede) e das vedações (gaxetas e juntas). Além do requerido pela norma construtiva, a placa de identificação deve conter as seguintes informações: identificação desta norma (NBR 15827); especificação do material das gaxetas e junta de vedação; temperatura máxima de utilização contínua (para válvulas em condições especiais); número de série, individualizado por válvula.

Para as válvulas de retenção forjadas, a placa de identificação deve ser fixada ao tampo por meio de suas porcas ou de rebites, desde que a espessura mínima de parede não seja afetada. Os ensaios devem ser executados em laboratório próprio do fabricante ou contratado, que tenha sido avaliado por um organismo de terceira parte, com profissionais avaliados conforme os requisitos da NBR ISO IEC 17025.

Um organismo de terceira parte acreditado deve auditar o sistema de gestão da qualidade do fabricante, priorizando os controles referentes às etapas de projeto, fabricação e memorial descritivo das válvulas industriais, tendo como referência os itens indicados no Anexo G referentes à NBR ISO 9001. Engenheiro com mais de cinco anos de formado e experiência mínima de três anos, ou técnico com mais de oito anos de formado e cinco anos de experiência em projetos de equipamento mecânicos, com base nas normas API, BS, ASME e ANSI e análise estrutural por elementos finitos, ou quando aplicável, análise computacional de mecânica dos fluidos.

O fabricante deve apresentar os desenhos dimensionais de conjunto, em corte, com lista de todos os componentes e especificações dos materiais. O fabricante deve apresentar os desenhos de fabricação de todos os componentes, com respectivas revisões e procedimentos de montagem, incluindo tabela de torques de aperto dos elementos de fixação. Deve apresentar as memórias de cálculo, conforme detalhado nesta norma. A fim de preservar a propriedade intelectual do fabricante, os documentos citados em 6.1.1 a 6.1.3 não são anexados à documentação de projeto, porém devem estar disponíveis na fábrica para eventuais avaliações por parte do comprador.

O fabricante deve apresentar memória de cálculo da válvula ou do conjunto válvula-redutor (quando aplicável), comprovando o atendimento à ASME B16.34 e respectivos padrões construtivos. A memória de cálculo da válvula deve incluir análise das tensões e deformações resultantes, por cálculos analíticos e/ou modelos de elementos finitos, abrangendo o cálculo dos componentes críticos, como corpo, tampa, haste e elementos de fixação, assim como o cálculo das pressões das sedes sobre o obturador.

Considerar como parâmetros de entrada as temperaturas ambientes, máxima e mínima, conforme a tabela abaixo, e a correspondente pressão máxima de trabalho, conforme ASME B16.34. Os cálculos analíticos e/ou de elementos finitos são aplicáveis somente à válvula, não sendo necessária a análise de elementos finitos para o redutor. Os critérios de análise de tensões e tensões admissíveis devem ser conforme Código ASME Section VIII Division 2, exceto para o sistema de acionamento, cujas tensões devem ser limitadas a 67 % das tensões de escoamento conforme API 6D.

As tensões de cisalhamento, torção e compressão não podem exceder o limite especificado no API 6D. O fabricante deve disponibilizar estudo completo de folgas e tolerâncias, abrangendo condições de carregamento interno e influência da temperatura, conforme faixa de aplicação da tabela abaixo. O fabricante deve disponibilizar estudo completo com critério de seleção dos materiais resilientes das sedes, em função das classes de pressão e de temperatura da válvula, apresentando relatório com os critérios que influenciaram na seleção dos materiais.

Para as válvulas tipo esfera, o fabricante deve apresentar a tolerância de esfericidade e o grau de acabamento superficial da esfera e da área de vedação da haste, indicando a rugosidade em μm RA ou μinch rms. No caso de as válvulas tipo esfera possuírem vedação entre sede × esfera do tipo metal × metal, apresentar também o diferencial de dureza entre sedes e esfera, quando aplicável. Para as demais válvulas, o fabricante deve apresentar o grau de acabamento das sedes, obturadores e área de vedação das hastes μm RA ou μinch RMS, bem como durezas e diferenciais de dureza, onde aplicáveis.

O fabricante deve apresentar lista dos torques requeridos no eixo da válvula, contendo os seguintes torques: torque nominal de operação (TNO), torque máximo de operação (TMO) e torque máximo admissível (TMA), levando-se em conta as classes de pressão e de temperatura da válvula. Para válvulas tipo gaveta e válvulas tipo globo acionadas manualmente, o TNO deve atender à MSS SP-91; para as válvulas tipo esfera, o TNO deve atender à ISO 14313 (API 6D); e para as válvulas tipo borboleta, o TNO deve atender à API 609. A memória de cálculo do sistema de acionamento da válvula deve considerar como premissa de projeto o TMO, conforme 7.1.3.1.

O projeto de válvulas tipo retenção, globo e borboleta deve considerar estudo de mecânica dos fluidos, para líquidos e gases, que inclua a apresentação da curva de perdas de carga e do coeficiente de vazão, assim como evidências do comportamento estável dentro da faixa de vazão para válvula tipo retenção. A análise fluidodinâmica, quando requerida pelo usuário, pode ser realizada por simulação computacional (CFD) ou comprovação experimental, onde esta última pode ser realizada durante os ensaios de qualificação com protótipo.

ISO Survey 2016

Um total de 1.643.529 certificados válidos foram relatados na Pesquisa ISO Survey 2016 em comparação com 1.520.368 no ano anterior, ou seja, um aumento de 8%. Na pesquisa desse ano, foram adicionadas duas novas normas de sistema de gestão à pesquisa: a ISO 39001: 2012- Sistemas de gerenciamento de segurança rodoviária (RTS – Requisitos com orientação para uso e a ISO 28000: 2007 – Especificação para sistemas de gerenciamento de segurança para a cadeia de suprimentos, após as recomendações de especialistas internacionais de acreditação e certificação que foram consultados anualmente. Isso fez com que o total de normas pesquisadas subisse para 11.

O ISO Survey 2016 mostra um panorama anual do número de certificados válidos para as normas do sistema de gerenciamento ISO em todo o mundo. Para compilar as informações nesta pesquisa, foram contatados os organismos de certificação credenciados e solicitadas as informações sobre o número de certificados válidos até 31 de dezembro de 2016.

Deve-se ressaltar que a ISO em si não executa a certificação e, portanto, não emite certificados. Isso resulta na visão geral mais abrangente das certificações para essas normas atualmente disponíveis, apesar das flutuações no número de certificados de ano para ano devido a diferenças no número de organismos de certificação participantes e ao número de certificados que eles relatam. Um resumo dos resultados de 2016 é mostrado no quadro abaixo.

Clique na figura para uma melhor visualização

A ISO destacou que a pesquisa desse ano adicionou duas novas normas de gestão: a ISO 39001:2012 Road traffic safety (RTS) management systems – Requirements with guidance for use e a ISO 28000:2007 Specification for security management systems for the supply chain. Igualmente, foram comunicados 1.644.357 certificados válidos (dos 11 padrões abrangidos pela pesquisa), em comparação com 1.520.368 no ano anterior, ou seja, um aumento de 8%.

Um total de 1.106.356 certificados válidos foram reportados para a ISO 9001 (incluindo 80.596 emitidos para a versão 2015), um aumento de 7% em relação ao ano passado. Um total de 346.189 certificados válidos foram reportados para a ISO 14001 (incluindo 23.167 emitidos para a versão 2015), aumentando 8% em relação ao ano passado.

Também, um total de 20.216 certificados válidos foram reportados para ISO 50001 para gerenciamento de energia (69% a mais do que no ano passado) e 4.537 certificados válidos foram reportados para a ISO 20000-1 para serviço em gestão de tecnologia da informação (63% a mais em relação ao ano passado). O forte crescimento observado para estas normas pode ser porque elas são relativamente novas no mercado.

Quanto à ISO/IEC 27001 houve um crescimento anual de 20% ou 33.290 certificados em todo o mundo, enquanto a ISO 13485 para dispositivos médicos e a ISO/TS 16949 para o setor automotivo cresceu 13% e 7%, respectivamente.