Os requisitos das válvulas industriais para petróleo

Há todo um conceito para os projetos e ensaios de protótipos de válvulas industriais tipos gaveta, esfera, globo, retenção, macho e borboleta, nas classes de pressão 150, 300, 600, 800, 900, 1.500 e 2.500, utilizados nas instalações de exploração, produção, refino e transporte de produtos de petróleo.

A NBR 15827 de 12/2018 – Válvulas industriais para instalações de exploração, produção, refino e transporte de produtos de petróleo – Requisitos de projeto e ensaio de protótipo estabelece os requisitos para projetos e ensaios de protótipos de válvulas industriais tipos gaveta, esfera, globo, retenção, macho e borboleta, nas classes de pressão 150, 300, 600, 800, 900, 1.500 e 2.500, utilizados nas instalações de exploração, produção, refino e transporte de produtos de petróleo. Esta norma é aplicável às válvulas com ou sem acionamento manual, com ou sem redutor. Os redutores devem comprovar o pleno atendimento às premissas de projeto das válvulas, incluindo os ensaios cíclicos desta norma.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as faixas de abrangência do protótipo por diâmetro e classe de pressão?

Quais as siglas e abreviaturas usadas nessa norma?

Qual a ciclagem para válvulas tipo esfera, gaveta, globo, borboleta, macho e de retenção?

Quais os vazamentos permitidos?

Qual o critério de aceitação para válvulas com esfera flutuante?

Qual deve ser a especificação padronizada para as gaxetas?

As válvulas devem ser projetadas utilizando os padrões construtivos dados nas Tabelas 1 a 6 (disponíveis na norma). Exceto se indicado em contrário aos requisitos de documentação de projeto, memórias de cálculo e ensaios de protótipo são aplicáveis a todos os tipos de válvulas. O fabricante deve estabelecer como premissas de projeto os aspectos descritos a seguir.

A confiabilidade para a vida útil projetada, com base no número de ciclos esperados em operação real e no número máximo de ciclos a que um protótipo pode ser submetido e o número mínimo de ciclos nas condições de ensaio, a partir do qual é constatado o primeiro vazamento pela vedação da haste, para os projetos de válvulas que utilizem vedação por engaxetamento. A periodicidade de reaperto da vedação da haste, para as válvulas que utilizem vedação por engaxetamento, observando as taxas de vazamento (líquido e gás) por meio da vedação da haste, que após o reaperto deve ser sem vazamento visível (SVV).

Os critérios de aceitação para vedação em função dos requisitos normativos estabelecidos nesta norma e os critérios de aceitação de desempenho, em função dos requisitos normativos estabelecidos nesta norma: considerar como falha na validação do projeto qualquer não conformidade de desempenho do protótipo em relação aos requisitos estabelecidos nesta norma; em válvulas de acionamento manual que utilizem redutor, este é considerado parte integrante do projeto da válvula e deve ter suas características identificadas e controladas conforme esta norma.

Caso exista mudança no redutor, este pode ser qualificado em separado, para assegurar sua adequação ao projeto original, efetuando-se os ensaios de torque e ciclagem previstos para a válvula. Para aplicações específicas, podem ser solicitadas pelo comprador premissas complementares de projeto que atendam aos critérios de aceitação para vedação e de desempenho. Neste caso, devem ser estabelecidos procedimentos de ensaio de protótipo específicos com foco nessas necessidades.

O fabricante deve registrar explicitamente na documentação de projeto as restrições de projeto e de operação (por exemplo, posição de instalação, sentido de fluxo, regime de fluxo, pressão, temperatura, materiais resilientes etc. O material dos estojos, parafusos e porcas da união corpo-tampa, união corpo-tampa tipo castelo, união do corpo com a tampa do eixo trunnion das válvulas tipo esfera, união do corpo diretamente com o eixo trunnion das válvulas tipo esfera, quando este for solidário à sua tampa, e união do corpo com a tampa do eixo das válvulas tipo borboleta deve ser conforme as especificações listadas na Tabela 8 (disponível na norma).

Quando solicitado pelo cliente, os estojos ou parafusos e as porcas devem ser revestidos com zinco níquel (Zn-Ni) ASTM B 841, Classe 1, Tipo B/E, Grau 5 a 8, com alívio de tensões e de hidrogênio, conforme as ASTM B 849 e ASTM B 850. Para os estojos e parafusos no material ASTM A 320 Gr L7, quando o material do corpo da válvula for igual a ASTM A 350 Gr LF2 CL 1 ou ASTM A 352 Gr LCB, é aceitável o ensaio de impacto a –45 °C e, quando o material do corpo da válvula for igual a ASTM A 350 Gr LF3 ou ASTM A 352 Gr LC3, é aceitável o ensaio de impacto a –60 °C.

Os estojos de união do corpo-tampa (tipo esfera, retenção e macho) e corpo-tampa tipo castelo (tipo gaveta e globo) devem ser conforme ASME B 1.1, UNC-2A até 25,40 mm (1”) e 8UN-2A a partir de 28,57 mm (1 1/8”), com porcas sextavadas padrão ASME B 18.2.2, no número mínimo de quatro. O comprimento dos estojos deve ter no mínimo um e no máximo três fios de rosca, além da porca. Para as válvulas de diâmetro 40 (1 ½) e menores, é permitida a utilização de parafusos conforme ASME B18.2.1. Alternativamente os parafusos, estojos e porcas podem ser em padrão métrico.

As válvulas tipo esfera ensaiadas a fogo (fire tested type) devem ser certificadas com os estojos listados na Tabela 8 (disponível na norma). Para os casos não cobertos na Tabela 8, o fabricante pode especificar o material dos estojos. Neste caso, este conjunto deve ser certificado com ensaio a fogo. Como alternativa ao material ASTM A 193 GR B7, podem ser usados estojos no material ASTM A 193 GR B16.

Nas ligações aparafusadas da válvula ou redutor, não é permitido o uso de materiais com dureza acima de 35 HRC, devido à possibilidade de fragilização por hidrogênio. As válvulas devem conter placa de identificação conforme indicado na norma construtiva e atender às marcações e requisitos adicionais de 5.7.4 e 5.7.5. A placa de identificação deve ser fabricada em aço inoxidável e fixada como a seguir: em válvulas fundidas, deve ser fixada à superfície externa da aba do flange de ligação do corpo ou da tampa ou castelo, com elementos de fixação em aço inoxidável austenítico; em válvulas forjadas, deve ser fixada ao volante por meio de sua porca; em válvulas tipo wafer, deve ser fixada no corpo.

As válvulas ensaiadas a fogo devem ser identificadas na placa com a sigla ISO – FT e com a especificação do material dos internos (haste, obturador e sede) e das vedações (gaxetas e juntas). Além do requerido pela norma construtiva, a placa de identificação deve conter as seguintes informações: identificação desta norma (NBR 15827); especificação do material das gaxetas e junta de vedação; temperatura máxima de utilização contínua (para válvulas em condições especiais); número de série, individualizado por válvula.

Para as válvulas de retenção forjadas, a placa de identificação deve ser fixada ao tampo por meio de suas porcas ou de rebites, desde que a espessura mínima de parede não seja afetada. Os ensaios devem ser executados em laboratório próprio do fabricante ou contratado, que tenha sido avaliado por um organismo de terceira parte, com profissionais avaliados conforme os requisitos da NBR ISO IEC 17025.

Um organismo de terceira parte acreditado deve auditar o sistema de gestão da qualidade do fabricante, priorizando os controles referentes às etapas de projeto, fabricação e memorial descritivo das válvulas industriais, tendo como referência os itens indicados no Anexo G referentes à NBR ISO 9001. Engenheiro com mais de cinco anos de formado e experiência mínima de três anos, ou técnico com mais de oito anos de formado e cinco anos de experiência em projetos de equipamento mecânicos, com base nas normas API, BS, ASME e ANSI e análise estrutural por elementos finitos, ou quando aplicável, análise computacional de mecânica dos fluidos.

O fabricante deve apresentar os desenhos dimensionais de conjunto, em corte, com lista de todos os componentes e especificações dos materiais. O fabricante deve apresentar os desenhos de fabricação de todos os componentes, com respectivas revisões e procedimentos de montagem, incluindo tabela de torques de aperto dos elementos de fixação. Deve apresentar as memórias de cálculo, conforme detalhado nesta norma. A fim de preservar a propriedade intelectual do fabricante, os documentos citados em 6.1.1 a 6.1.3 não são anexados à documentação de projeto, porém devem estar disponíveis na fábrica para eventuais avaliações por parte do comprador.

O fabricante deve apresentar memória de cálculo da válvula ou do conjunto válvula-redutor (quando aplicável), comprovando o atendimento à ASME B16.34 e respectivos padrões construtivos. A memória de cálculo da válvula deve incluir análise das tensões e deformações resultantes, por cálculos analíticos e/ou modelos de elementos finitos, abrangendo o cálculo dos componentes críticos, como corpo, tampa, haste e elementos de fixação, assim como o cálculo das pressões das sedes sobre o obturador.

Considerar como parâmetros de entrada as temperaturas ambientes, máxima e mínima, conforme a tabela abaixo, e a correspondente pressão máxima de trabalho, conforme ASME B16.34. Os cálculos analíticos e/ou de elementos finitos são aplicáveis somente à válvula, não sendo necessária a análise de elementos finitos para o redutor. Os critérios de análise de tensões e tensões admissíveis devem ser conforme Código ASME Section VIII Division 2, exceto para o sistema de acionamento, cujas tensões devem ser limitadas a 67 % das tensões de escoamento conforme API 6D.

As tensões de cisalhamento, torção e compressão não podem exceder o limite especificado no API 6D. O fabricante deve disponibilizar estudo completo de folgas e tolerâncias, abrangendo condições de carregamento interno e influência da temperatura, conforme faixa de aplicação da tabela abaixo. O fabricante deve disponibilizar estudo completo com critério de seleção dos materiais resilientes das sedes, em função das classes de pressão e de temperatura da válvula, apresentando relatório com os critérios que influenciaram na seleção dos materiais.

Para as válvulas tipo esfera, o fabricante deve apresentar a tolerância de esfericidade e o grau de acabamento superficial da esfera e da área de vedação da haste, indicando a rugosidade em μm RA ou μinch rms. No caso de as válvulas tipo esfera possuírem vedação entre sede × esfera do tipo metal × metal, apresentar também o diferencial de dureza entre sedes e esfera, quando aplicável. Para as demais válvulas, o fabricante deve apresentar o grau de acabamento das sedes, obturadores e área de vedação das hastes μm RA ou μinch RMS, bem como durezas e diferenciais de dureza, onde aplicáveis.

O fabricante deve apresentar lista dos torques requeridos no eixo da válvula, contendo os seguintes torques: torque nominal de operação (TNO), torque máximo de operação (TMO) e torque máximo admissível (TMA), levando-se em conta as classes de pressão e de temperatura da válvula. Para válvulas tipo gaveta e válvulas tipo globo acionadas manualmente, o TNO deve atender à MSS SP-91; para as válvulas tipo esfera, o TNO deve atender à ISO 14313 (API 6D); e para as válvulas tipo borboleta, o TNO deve atender à API 609. A memória de cálculo do sistema de acionamento da válvula deve considerar como premissa de projeto o TMO, conforme 7.1.3.1.

O projeto de válvulas tipo retenção, globo e borboleta deve considerar estudo de mecânica dos fluidos, para líquidos e gases, que inclua a apresentação da curva de perdas de carga e do coeficiente de vazão, assim como evidências do comportamento estável dentro da faixa de vazão para válvula tipo retenção. A análise fluidodinâmica, quando requerida pelo usuário, pode ser realizada por simulação computacional (CFD) ou comprovação experimental, onde esta última pode ser realizada durante os ensaios de qualificação com protótipo.

As informações a serem fornecidas pelo fabricante de implantes para cirurgia

Devem ser fornecidas informações pelo fabricante do implante, referentes ao processamento pelo usuário de implantes para cirurgia não ativo ou de instrumentação, para uso em associação com implantes para cirurgia não ativos que requerem limpeza, seguida ou não de desinfecção, e esterilização, a fim de assegurar que o dispositivo médico seja seguro e eficaz para o uso pretendido.

A NBR 16809 de 12/2019 – Implantes para cirurgia — Processamento de produto — Informações a serem fornecidas pelo fabricante especifica os requisitos para as informações a serem fornecidas pelo fabricante, referentes ao processamento pelo usuário de implantes para cirurgia não ativo ou de instrumentação, para uso em associação com implantes para cirurgia não ativos que requerem limpeza, seguida ou não de desinfecção, e esterilização, a fim de assegurar que o dispositivo médico seja seguro e eficaz para o uso pretendido. Isto inclui informações para processamento antes de usar ou de reutilizar o dispositivo médico.

As disposições deste documento são aplicáveis aos dispositivos médicos destinados ao contato invasivo ou outro contato direto ou indireto com o paciente. Este documento especifica os requisitos para auxiliar o fabricante a fornecer instruções detalhadas de processamento que incluem, quando aplicáveis, as atividades relacionadas ao tratamento inicial no ponto de uso; a preparação antes da limpeza; à limpeza; a desinfecção; a secagem; a inspeção e manutenção; a embalagem; a esterilização; o armazenamento; e o transporte do implante e da instrumentação associada.

Este documento não estabelece instruções de processamento. Exclui o processamento de dispositivo médico especificado pelo fabricante como para uso único e fornecido como pronto para o uso. Neste documento, quando não especificado de outra forma, o termo dispositivo médico refere-se ao implante para cirurgia não ativo ou instrumentação para uso em associação com implantes para cirurgia não ativo; o termo instrumento refere-se à instrumentação para uso em associação com implantes para cirurgia não ativos; e o termo fabricante refere-se ao fabricante de implante para cirurgia não ativo.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as limitações e restrições ao processamento?

Como deve ser feita a limpeza automatizada?

Como deve ser executada a desinfecção manual?

Como deve ser feita a esterilização pelo usuário?

Este documento é aplicável aos fabricantes de dispositivos médicos que precisem ser processados pelo usuário ou por terceiros para estarem prontos para uso, abrangendo: implantes que são fornecidos não estéreis; instrumentação para uso em associação com implantes para cirurgia (ver 3.10), destinada ao reuso, que requer processamento para levá-la do estado após o uso clínico ao estado de limpeza, desinfecção e/ou esterilização e pronto para seu próximo uso; e implantes para cirurgia não ativos e instrumentação para uso em associação com implantes para cirurgia não ativos fornecidos como prontos para o uso, cujo estado de limpeza possa ter sido afetado devido a manuseio, transporte ou armazenamento impróprios, após liberado para comercialização pelo fabricante.

Os dispositivos médicos especificados pelo fabricante como na condição de pronto para o uso perdem esta condição, caso inapropriadamente manuseados, transportados ou armazenados. O restabelecimento desta condição não necessariamente pode ser conduzido por terceiros ou pelo usuário. Os avanços em tecnologia e conhecimento que resultaram no desenvolvimento de dispositivos médicos complexos para suporte aos cuidados de saúde dos pacientes trouxeram à luz concepção de dispositivos médicos potencialmente mais difíceis de limpar, desinfetar e/ou esterilizar.

Paralelamente, as tecnologias de limpeza, desinfecção e esterilização também sofreram mudanças significativas nas últimas décadas, proporcionando novos sistemas e abordagens que podem ser aplicados ao processamento destes dispositivos. Consequentemente, além da validação dos processos de limpeza, desinfecção e esterilização, a fim de assegurar que os dispositivos médicos sejam efetivamente processados, é necessário que os fabricantes forneçam instruções adequadas que auxiliem os usuários finais a realizar o processamento seguro e eficaz dos dispositivos, utilizando os equipamentos e processos disponíveis.

Um dispositivo médico que requeira algum processamento precisa ser fornecido com instruções detalhadas deste processamento, a fim de assegurar que, quando seguidos corretamente, os riscos de transmissão de agentes infecciosos sejam minimizados. Além disto, o processamento efetivo minimiza o risco de outros efeitos adversos em dispositivos médicos.

A limpeza é um passo importante para tornar seguro um dispositivo médico. Nos casos de reuso, a não remoção de contaminantes (por exemplo, sangue, tecidos, microrganismos, agentes de limpeza e lubrificantes) das superfícies internas e externas dos dispositivos pode comprometer qualquer processo de desinfecção e/ou esterilização subsequente ou o funcionamento correto do dispositivo médico. Embora projetados para serem fornecidos limpos, implantes fornecidos não estéreis também podem requerer limpeza antes do processamento posterior.

Após a limpeza, outros fatores podem afetar o uso seguro e eficaz de um dispositivo médico. Por exemplo, procedimentos para inspeção e ensaios funcionais podem ser necessários para assegurar que o dispositivo médico não representa um risco de segurança, quando usado. Os fabricantes podem auxiliar os usuários fornecendo instruções sobre a condução desta inspeção e ensaio.

O fabricante cujo dispositivo médico requeira ser processado antes do uso tem a responsabilidade de assegurar que o projeto proporcione a obtenção de um processamento eficaz. Isto inclui a consideração de processos validados comumente disponíveis. O Anexo A apresenta um guia para validação de procedimentos aplicável, a alguns exemplos de processos comumente disponíveis.

O fabricante deve validar cada processo identificado nas informações fornecidas com o dispositivo médico. A validação deve demonstrar que cada processo é adequado para o processamento do dispositivo médico. O fabricante deve ter evidência objetiva disponível de que a validação de cada procedimento de processamento foi realizada para confirmar se o dispositivo médico específico será limpo, desinfetado (se aplicável) e esterilizado, quando processado conforme as instruções fornecidas.

Além da demonstração da validade das informações fornecidas pelo fabricante, as autoridades nacionais podem exigir que a eficácia final do processo seja verificada pelo processador. Uma autoridade nacional pode permitir ou exigir o uso de um processo alternativo. Neste caso, geralmente, é exigida a validação deste processo pelo processador. Se um fabricante fornecer vários dispositivos médicos diferentes que compartilhem atributos comuns, os estudos de validação podem ser realizados como uma família de produtos.

Se esta abordagem for adotada, o fabricante deve demonstrar a aplicabilidade entre os diferentes dispositivos médicos, e os estudos de validação devem abordar o (s) atributo (s) do pior caso da família de produtos. O fabricante deve realizar uma análise de risco para determinar o conteúdo e os detalhes das informações a serem fornecidas ao usuário. O gerenciamento de risco realizado deve atender aos requisitos da NBR ISO 14971.

No processamento de implantes, a identificação dos processos sujeitos à análise de risco deve considerar os aspectos abordados em 5.2. Alguns dos aspectos pertinentes ao processamento que podem ser requeridos (mas não se limitando a eles) pela análise de risco são os seguintes: natureza e projeto do dispositivo médico; natureza da contaminação no dispositivo médico; uso pretendido; ciclo de vida do dispositivo médico; erro e uso indevido previsível pelo usuário; treinamento do usuário; equipamento necessário para processamento; acessórios e consumíveis necessários para o processamento; manutenção necessária do dispositivo médico; informações pós-mercado; limitação no número de reutilizações; avisos necessários.

Estes aspectos podem, também, ser benéficos para validar processos alternativos. As informações sobre a classificação de dispositivos médicos e identificação de aspectos de projeto que podem auxiliar em qualquer processo de análise de risco estão apresentadas no Anexo B. Implantes são necessariamente projetados como dispositivos médicos de uso único, portanto, não podem ser submetidos a qualquer processamento destinado ao reuso do implante.

Implantes fornecidos não estéreis são destinados à esterilização pelo usuário e, portanto, devem sempre estar acompanhados das informações requeridas para este processamento. Todo implante é projetado para ser fornecido limpo e embalado. No entanto, danos à embalagem podem requerer um processamento do implante para o restabelecimento da condição de como fornecido pelo fabricante, desde que atendidas as condições estabelecidas em Neste caso, o processamento inclui as etapas para limpeza (ver 6.6) e para esterilização (ver 6.9). Em princípio, um implante não é projetado para ser submetido a uma etapa de desinfecção. A desinfecção só pode ser admitida como uma etapa do processamento em casos onde a contaminação não esteja associada ao uso do implante. Exemplo: o processamento de um implante que retorna para a central de material sem ter sido empregado em qualquer etapa de implantação, mas que tenha sido contaminado com o fluido corpóreo do paciente devido ao manuseio pelo usuário (cirurgião, instrumentador etc.), necessariamente inclui uma etapa de desinfecção.

Nenhum implante é projetado para ser submetido à manutenção e aos ensaios de inspeção ou de funcionalidade associados a um processamento conduzido por terceira parte, uma vez que todo processo identificado nas informações fornecidas com o implante deve estar validado pelo fabricante, conforme estabelecido na Seção 4. Este requisito não descarta inspeções e ensaios de funcionalidade requeridos para o uso do implante a serem indicados nas suas instruções de uso, as quais caracterizam matérias fora do escopo deste documento.

Como condições para o processamento, qualquer evento adverso que predisponha um implante na condição de como fornecido pelo fabricante a um processamento prévio ao uso pelo usuário deve ser rigorosamente analisado, de modo a ser assegurado que: os requisitos intrínsecos de projeto não sejam alterados pelo evento adverso; e o processamento programado reestabeleça a condição de como fornecido pelo fabricante. As informações a serem fornecidas pelo fabricante devem estar estabelecidas no escopo do projeto do dispositivo médico.

No caso de instrumento fabricado e fornecido por terceira parte, é responsabilidade do fabricante de implante estabelecer e fornecer as informações sobre processamento a serem fornecidas pelo fabricante do instrumento. As informações estabelecidas em 6.2 a 6.13 devem considerar a natureza do dispositivo médico e o seu uso pretendido. Quando a desinfecção for o processo do terminal, o fabricante deve especificar o (s) método (s) validado (s) para reduzir o risco de transmissão de agentes infecciosos para um nível apropriado ao uso pretendido do dispositivo médico.

O fabricante deve especificar nas instruções de processamento qualquer técnica e qualquer acessório especial que permitam que o processador forneça um dispositivo médico adequado ao uso pretendido. Quando a esterilização for o processo do terminal, o fabricante deve especificar o (s) método (s) validado (s) para alcançar o nível de garantia de esterilidade requerido. O fabricante deve especificar nas instruções de processamento qualquer requisito específico que permita que o processador forneça um dispositivo médico adequado ao uso pretendido.

Ao fornecer instruções de processamento, o fabricante deve estar ciente e considerar as normas e diretrizes nacionais e internacionais disponíveis, a necessidade de formação específica do processador, e os equipamentos de processamento comumente disponíveis para o processador. O Anexo A ilustra informações que podem ajudar a identificar as informações necessárias. Os equipamentos ou materiais necessários nos processos especificados devem ser identificados por seus nomes genéricos ou por suas especificações.

É permitido que o fabricante inclua nomes comerciais nos casos em que os nomes genéricos não forneçam informações suficientes (ver Anexo C). Como instruções de processamento, pelo menos um método validado deve ser especificado para cada estágio aplicável do processamento do dispositivo médico. O método deve ser adequado e relevante para o mercado no qual se pretende que o dispositivo médico seja fornecido.

As informações sobre os métodos de processamento comumente utilizados estão apresentadas no Anexo A. As seguintes informações devem ser declaradas, quando forem críticas para a manutenção da função pretendida do dispositivo médico e a segurança do (s) usuário (s) e do paciente: detalhes das etapas do processo; uma descrição do equipamento e/ou acessórios; especificações para parâmetros de processo e suas tolerâncias.

Pode-se ressaltar que a limpeza completa antes da desinfecção ou esterilização é importante. Se um dispositivo médico não estiver limpo, o processo de desinfecção ou de esterilização pode ficar comprometido. A falha em processar dispositivos médicos de forma correta e eficaz pode resultar em risco de transmissão de agentes infecciosos. Da mesma forma, outros efeitos podem ocorrer, por exemplo, corrosão e/ou falha do dispositivo médico para funcionar corretamente.

A Tabela A.1 (disponível na norma) destina-se a auxiliar o fabricante a identificar métodos de processamento que possam ser considerados para inclusão nas instruções de processamento fornecidas. É uma compilação de etapas de processamento normalmente realizadas em uma unidade de saúde. É organizada pelas identificações do processo (por exemplo, preparação no ponto de uso, limpeza), das etapas de processamento de cada processo e dos métodos comumente usados para atingir o objetivo da etapa.

Seja crítico quanto à amostragem

Entendendo as diferentes abordagens para o monitoramento de processos e quando usá-las.

Manuel E. Peña-Rodríguez

A amostragem é um dos métodos mais utilizados em sistemas de qualidade para controlar a saída de qualquer processo. Especificamente, a amostragem permite que as organizações distingam entre um produto bom e um defeituoso. Desta forma, o produto defeituoso é rejeitado, enquanto o bom produto continua através do fluxo de produção.

Um dos tópicos mais discutidos na amostragem é o tamanho da amostra. Existem muitos métodos usados para determinar o tamanho da amostra. Há, no entanto, outro aspecto importante na seleção da amostra: a sua representatividade.

Para ser representativo, uma amostra deve ter a mesma chance de ser coletada como as outras. Suponha que um tamanho de amostra seja calculado como 32, por exemplo. A obtenção de uma amostra representativa significaria coletar quatro amostras a cada hora durante um turno de oito horas.

Uma amostra não representativa seria obtida se você coletasse as primeiras 32 amostras do turno ou as últimas 32 amostras do turno. Usando a primeira abordagem (quatro amostras a cada hora), seria mais fácil detectar defeitos se eles ocorressem aleatoriamente durante o turno. A amostragem apenas no início ou no final do turno, no entanto, torna difícil detectar defeitos se eles ocorrerem aleatoriamente durante o turno.

Um exemplo seria amostrar rótulos em um rolo contínuo de papel. Se uma organização apenas pega uma amostra no começo do lançamento ou no final do lançamento (ou ambos), como seria possível detectar defeitos em algum lugar no meio do lançamento? Até mesmo adicionar uma amostra no meio do rolo pode não ser suficiente.

O que acontecerá se, em três quartos do rolo, houver uma falha de energia que faça com que a impressora perca a programação? Se você esperar até a próxima amostra no final do lançamento, será tarde demais. Por essa razão, outra amostra deve ser coletada após qualquer interrupção planejada (ou não planejada) do processo.

Amostragem versus controle estatístico do processo

A amostragem é uma maneira fácil e econômica de monitorar um processo. A sua principal desvantagem é que ela não fornece muita informação sobre o nível de qualidade do processo. Apenas fornece informação binária: bom produto ou defeituoso.

Ela não diz o quão bom é o produto ou o quão ruim é o defeituoso. Com base no conceito tradicional de variação explicado na função de perda de Genichi Taguchi (veja a figura 1), a maioria das organizações mede a qualidade do produto em relação aos limites de especificação. Se o processo estiver dentro dos limites de especificação superior e inferior, o processo é considerado bom e nada mais é feito (lado esquerdo da figura 1).

Mas Taguchi explicou que essa não é uma boa abordagem. As perdas começam a se desenvolver assim que você se desvia do valor alvo (lado direito da Figura 1). Taguchi calculou as perdas usando a fórmula: L = k (y – T)², onde L é a perda monetária, k é um fator de custo, y é o valor real e T é o valor alvo.

Com base na função de perda de Taguchi, se você quiser reduzir as perdas, você deve se concentrar na variação – especificamente, na redução da variação do processo. A partir da fórmula, significa que o valor de saída (y) deve ser o mais próximo possível do valor alvo (T).

Como observado anteriormente, a amostragem não informa sobre a variação do processo. Só permite determinar se o produto é aceito (produto bom) ou rejeitado (produto defeituoso).

Portanto, se você quiser aprender sobre variação de processo, não deve confiar apenas na amostragem de aceitação. Você deve ter uma abordagem mais dinâmica. Um bom método é o controle estatístico de processo (statistical process control – SPC) usando um gráfico de controle.

Uma suposição bem conhecida é que todos os processos estão sujeitos a algum tipo de variação. Os dois principais tipos de variação são a de causa comum e a de causa especial. A variação de causa comum está presente em todos os processos porque nenhum processo é perfeito. É inerente a todo processo.

A variação de causa especial não está presente em todos os processos e é causada por eventos atribuíveis – isto é, por certas coisas que têm um impacto significativo no processo. Em um gráfico de controle, os limites de controle definem onde as causas comuns de variação são esperadas.

Em outras palavras, enquanto o processo estiver em controle estatístico, todos os pontos estarão dentro dos limites de controle definidos pelo intervalo de ± 3s da média, sem qualquer padrão não aleatório. Quando você vê um ponto fora desses limites de controle (ou pontos que mostram um padrão não aleatório), isso indica algum tipo de causa atribuível ou especial que deve ser estudada e corrigida.

Um gráfico de controle não apenas permite que você veja como a centralização e a variação do processo se comportam em uma escala baseada em tempo, mas também permite que você veja o resultado de algumas melhorias no processo. A figura 2 mostra um exemplo de um gráfico de controle no qual melhorias de processos foram implementadas. Observe que, como os limites de controle são calculados com base na variação do processo, quando a variação diminui, os limites de controle devem ser recalculados para refletir a nova variação menor.

Abordagens recomendadas em vários estágios

Agora que você conhece algumas das vantagens e desvantagens das cartas de controle de amostragem e o SPC, vamos explorar quando é conveniente usar amostragem e quando é conveniente usar gráficos de controle para monitorar a qualidade do processo. Vamos dividir o local de inspeção em três áreas: entrada, em processo e final.

Inspeção de entrada: nesta parte do processo, a organização está recebendo matérias-primas, materiais de embalagem, componentes comprados e assim por diante. É importante medir a qualidade dos materiais neste estágio para evitar a aceitação de produtos defeituosos que causem problemas a jusante.

Mas qual é a melhor abordagem nesta fase do processo? Como observado anteriormente, a amostragem por aceitação é uma maneira fácil e econômica de avaliar a qualidade do produto recebido. Os planos de amostragem de aceitação – como a ANSI/ASQ Z1.4 (para dados de atributo) e a ANSI/SQ Z1.9 (para dados variáveis) – são abordagens comuns nesse estágio.

A principal desvantagem desses planos de amostragem de aceitação é que, dependendo dos valores de limite de qualidade de aceitação (acceptance quality limit – AQL) selecionados, você poderia ter um plano que aceitaria o lote inteiro, mesmo com uma ou mais peças defeituosas. Mas esta não é uma restrição importante neste estágio. Por quê?

Porque os processos devem ter controles suficientes para detectar todas as peças defeituosas que não foram detectadas durante o processo de inspeção de entrada e rejeitá-las durante as etapas subsequentes do processo. Esses planos de amostragem de aceitação são projetados para fornecer uma alta probabilidade de aceitação se a porcentagem de defeituosos estiver dentro ou abaixo da AQL estabelecida. Em outras palavras, esses planos fornecem uma proteção para o fornecedor do material recebido porque você ainda aceitaria o lote mesmo com um pequeno número de defeitos.

Inspeção no processo: existem muitas abordagens que as organizações usam para inspecionar o produto enquanto o processo está em andamento. Por exemplo, muitas organizações usam planos de amostragem de aceitação, como a ANSI/ASQ Z1.4. Outras organizações desenvolvem algum tipo de amostragem e estabelecem limites de alerta e limites de ação para determinar o curso de ação após a coleta da amostra.

O principal problema com essas abordagens é que a decisão ainda é aprovada/reprovada (continue o processo ou pare o processo e faça alguns ajustes). Normalmente, a reação é tarde demais. Outra desvantagem desse tipo de abordagem é que ela não tem memória – ou seja, a decisão de cada dia é tomada, mas está registrada apenas na documentação desse dia.

Nesse caso, como os dados não são registrados em uma escala baseada em tempo, não é possível ver nenhuma tendência possível. Uma solução para esse dilema é registrar os dados e plotar em um gráfico de controle.

Por exemplo, uma organização pode estar amostrando peças em uma estação específica usando a abordagem de limite de alerta/limite de ação. No final do dia, se nada fora do limite de ação acontece, a organização apenas arquiva o formulário contendo o número de defeitos para esse dia. Se houver um evento fora do limite de ação, a organização ajusta o processo, registra a quantidade de defeitos e arquiva o formulário. No entanto, nada mais acontece.

A recomendação para essa organização é plotar o número de defeitos a cada dia (ou a cada turno, preferencialmente) em um gráfico de controle tipo c, que é um gráfico de controle para o número de defeitos. Após dados suficientes (pelo menos um mês) terem sido coletados, a organização deve calcular os limites de controle. A partir desse ponto, pode-se usar o gráfico de controle para avaliar o processo e determinar quando uma causa atribuível foi identificada.

O gráfico de controle é uma ferramenta de monitoramento que pode alimentar outras ferramentas estatísticas para melhorar os processos. Se os gráficos de controle mostrarem que a variação de turno para turno é muito alta, por exemplo, outras ferramentas podem ser usadas para determinar a origem de tal variabilidade, como o teste F, o teste de Levene ou o projeto de experimentos. Após as melhorias serem implementadas, os gráficos de controle podem ser usados para rastrear a melhoria, conforme mostrado na figura 2.

Inspeção final: Se todas as inspeções anteriores (entrada e no processo) forem bem executadas, não deve haver muitos defeitos no processo após sua conclusão. A figura 3 mostra como os defeitos devem ser canalizados por meio dos diferentes pontos de inspeção. Ainda assim, uma inspeção final é necessária como uma garantia de que nenhum produto defeituoso é liberado para o cliente.

Uma abordagem comum usada pelas organizações nesse estágio é implementar os mesmos planos de amostragem de aceitação usados na inspeção de entrada: ANSI/ASQ Z1.4 ou ANSI/ASQ Z1.9. No entanto, como mencionado anteriormente, há uma grande desvantagem em usar esse tipo de abordagem: aceitar muito com um ou mais defeitos.

Para evitar essa situação, muitas organizações começam a ajustar os planos de inspeção para obter um plano com aceitação de zero produto defeituoso e a rejeição de um ou mais produtos defeituosos. Na maioria das vezes, pode-se alcançar esse plano selecionando um AQL menor. Esta não é apenas uma aplicação incorreta do plano de amostragem, mas os tamanhos de amostragem obtidos por esses planos também são desnecessariamente altos.

Uma alternativa é usar o plano de amostragem de aceitação zero (c = 0) desenvolvido por Nicholas L. Squeglia. Este plano é uma adaptação dos planos de amostragem de aceitação cobertos anteriormente (especificamente, para a ANSI/ASQ Z1.4). No plano de amostragem de aceitação zero, no entanto, a probabilidade de aceitar um lote com uma certa porcentagem de produto defeituoso ou superior é muito baixa. Nesse caso, há uma proteção para os clientes de que nenhum produto defeituoso será liberado.

Esta salvaguarda para o cliente não é a única razão para se usar este tipo de plano na inspeção final. Na maioria das vezes, os tamanhos de amostra, calculados a partir dos planos de amostragem com aceitação zero, são muito menores do que aqueles para a ANSI/ASQ Z1.4 e com os mesmos valores de AQL. Em outras palavras, os tamanhos das amostras serão muito menores, mantendo a proteção para o cliente.

A tabela 1 mostra um exemplo de um plano de amostragem para um tamanho de lote de 12.000 peças e um AQL de 0.65. Usando a ANSI/ASQ Z1.4, um total de 315 amostras teria que ser coletado, enquanto usando o plano de amostragem c = 0, apenas 77 amostras teriam que ser coletadas (uma redução de 76%).

Não só há uma redução significativa no tamanho da amostra, mas para o plano da ANSI/ASQ Z1.4, o lote poderia ser aceito com cinco partes defeituosas e rejeitado com seis partes rejeitadas. Se zero peças defeituosas for o único nível aceito, o AQL deve ser reduzido para 0,040. Conforme observado anteriormente, a redução da AQL não é a abordagem correta.

É importante notar outro aspecto do plano de amostragem c = 0: Quando um ou mais produtos defeituosos são obtidos usando este plano, o lote é retido. A frase “reter o lote” é significativa porque não significa necessariamente rejeição.

De acordo com esses planos, o inspetor não rejeita necessariamente o lote se um ou mais produtos defeituosos forem encontrados. O inspetor aceita somente o lote se zero produto defeituoso for encontrado na amostra. A retenção do lote força a revisão e a disposição do pessoal de engenharia ou gerência para determinar a extensão e gravidade do produto defeituoso.

Melhorando as atividades de inspeção

A amostragem é uma consideração importante na maioria das organizações, especialmente quando a amostragem é destrutiva por natureza. As organizações gastam grandes quantidades de recursos (pessoal e econômica) durante as atividades de inspeção. Muitas vezes, mesmo com muitas amostras, o produto defeituoso é liberado para o cliente.

Isto é, em parte, porque as abordagens de amostragem corretas não foram implementadas. Ao implantar as abordagens corretas de inspeção de entrada, no processo e final, as organizações podem melhorar suas atividades de inspeção e fornecer um produto melhor para seus clientes.

Bibliografia

Peña-Rodríguez, Manuel E., Statistical Process Control for the FDA-Regulated Industry, ASQ Quality Press, 2013.

Squeglia, Nicholas L., Zero Acceptance Number Sampling Plans, fifth edition, ASQ Quality Press, 2008.

Taguchi, Genichi, Subir Chowdhury and Yuin Wu, Taguchi’s Quality Engineering Handbook, John Wiley & Sons, 2005.

Manuel E. Peña-Rodríguez é consultor da Business Excellence Consulting Inc. em Guaynabo, Porto Rico. Ele ganhou um Juris Doctor da Pontifícia Universidade Católica em Ponce, Porto Rico, e um mestrado em gerenciamento de engenharia pela Cornell University em Ithaca, NY. Peña-Rodríguez é membro sênior da ASQ e engenheiro de qualidade certificado pela ASQ, auditor, gerente de qualidade/excelência organizacional, Six Sigma Black Belt, auditor biomédico e auditor de pontos de controle de risco e análise crítica.