IEC 61326-1: os requisitos EMC de equipamentos elétricos para medição e controle

Essa norma internacional, editada em 2020 pela International Electrotechnical Commission (IEC), especifica os requisitos de imunidade e emissões com relação à compatibilidade eletromagnética (EMC) de equipamentos elétricos, operando com uma fonte ou bateria inferior a 1.000 V ca ou 1.500 V cc ou do circuito sendo medido. Os equipamentos destinados ao uso profissional, de processo industrial, de fabricação industrial e educacional são cobertos por esta parte.

A IEC 61326-1:2020 – Electrical equipment for measurement, control and laboratory use – EMC requirements – Part 1: General requirements especifica os requisitos de imunidade e emissões com relação à compatibilidade eletromagnética (EMC) de equipamentos elétricos, operando com uma fonte ou bateria inferior a 1.000 V ca ou 1.500 V cc ou do circuito sendo medido. Os equipamentos destinados ao uso profissional, de processo industrial, de fabricação industrial e educacional são cobertos por esta parte. Inclui equipamentos e dispositivos de computação para a medição e ensaio; equipamentos para o controle; uso em laboratório; acessórios destinados ao uso como equipamentos de manuseio de amostras, destinado ao uso em locais industriais e não industriais.

Os dispositivos de computação e os conjuntos e equipamentos semelhantes dentro do escopo de equipamentos de tecnologia da informação e em conformidade com as normas ITE EMC aplicáveis podem ser usados em sistemas dentro do escopo desta parte da IEC 61326 sem ensaios adicionais, se forem adequados para o ambiente eletromagnético pretendido. Em geral, considera-se que esta norma de família de produtos tem precedência sobre as normas EMC genéricas correspondentes.

Os seguintes equipamentos são cobertos por este documento. Medição elétrica e equipamento de ensaio: são equipamentos que, por meios elétricos, medem, indicam ou registram uma ou mais grandezas elétricas ou não elétricas, também equipamentos não medidores como geradores de sinais, padrões de medição, fontes de alimentação e transdutores. Equipamento de controle elétrico: Este é o equipamento que controla uma ou mais grandezas de saída para valores específicos, com cada valor determinado por configurações manuais, por programação local ou remota, ou por uma ou mais variáveis de entrada.

Isso inclui os equipamentos de medição e controle de processos industriais que consistem em dispositivos como os controladores e reguladores de processo; os controladores programáveis; as unidades de alimentação de equipamentos e sistemas (centralizado ou dedicado); os indicadores e gravadores analógicos/digitais; a instrumentação de processo; os transdutores, posicionadores, atuadores inteligentes, etc. Equipamento elétrico de laboratório, incluindo equipamento médico para diagnóstico in vitro: Este é o equipamento usado para preparar ou analisar materiais, ou medir, indicar ou monitorar quantidades físicas. Este equipamento também pode ser usado em outras áreas que não laboratórios.

Em termos de requisitos de emissão, o equipamento deve ser classificado em equipamento de Classe A ou Classe B, de acordo com os requisitos e os procedimentos do CISPR 11. Os requisitos de emissão correspondentes estão descritos na Cláusula 7. Os requisitos de emissão e imunidade especificados visam alcançar a compatibilidade eletromagnética entre equipamentos cobertos por este documento e outros equipamentos que possam operar em locais com ambientes eletromagnéticos considerados neste documento. A orientação para uma avaliação sobre o risco de atingir a EMC é fornecida no Anexo B.

CONTEÚDO DA NORMA

PREFÁCIO………………….. 4

INTRODUÇÃO……………… 6

1 Escopo……………………… 7

2 Referências normativas ………. ….. 8

3 Termos, definições e abreviações………….. 9

3.1 Termos e definições ……………………….. 9

3.2 Abreviações……………………………….. 12

4 Geral…………………….. ………………….. 12

5 Plano de ensaio EMC …………… ……………. 12

5.1 Geral………………. …………… 12

5.2 Configuração do EUT durante o ensaio…………………. 13

5.2.1 Geral……………………… ……… 13

5.2.2 Composição do EUT……………………………. 13

5.2.3 Montagem do ESE ……………………………… 13

5.2.4 Portas E/S…………………….. ……… 13

5.2.5 Equipamento auxiliar …………………… 13

5.2.6 Cabeamento e aterramento…………………. 13

5.3 Condições de operação do ESE durante o ensaio…………. 13

5.3.1 Modos de operação…………………………… 13

5.3.2 Condições ambientais ………………………14

5.3.3 Software EUT durante o ensaio…………………. 14

5.4 Especificação de desempenho funcional…………………. 14

5.5 Descrição do ensaio…………………………… … 14

6 Requisitos de imunidade …………………………. 14

6.1 Condições durante os ensaios…………………… 14

6.2 Requisitos do ensaio de imunidade…………………… 14

6.3 Aspectos aleatórios ……………………………… … 17

6.4 Critérios de desempenho………………………………….. 18

6.4.1 Geral………………………… 18

6.4.2 Critério de desempenho A…………………………. 18

6.4.3 Critério de desempenho B………………………… 18

6.4.4 Critério de desempenho C………………………… 18

7 Requisitos de emissão ………………………………. 19

7.1 Condições durante as medições……………………… 19

7.2 Limites de emissão………………………….. ….. 19

8 Resultados e relatório do ensaio……………………… 19

9 Instruções de uso……………………………… …….. 20

Anexo A (normativo) Requisitos de ensaio de imunidade para o equipamento de ensaio medição portátil alimentado por bateria ou pelo circuito sendo medido…………………………….. 21

Anexo B (informativo) Guia para análise e avaliação de compatibilidade eletromagnética…………………. 22

B.1 Geral………………………… 22

B.2 Análise de risco………………….. ………. 22

B.3 Avaliação de risco……………………. …. 22

Bibliografia………….. ………………….. 24

Figura 1 – Exemplos de portas………………………. … 11

Tabela 1 – Requisitos de ensaio de imunidade para equipamentos destinados a serem usados em um ambiente eletromagnético básico……….. ……… 15

Tabela 2 – Requisitos de ensaio de imunidade para equipamentos destinados a serem usados em um ambiente eletromagnético industrial…………. 16

Tabela 3 – Requisitos de ensaio de imunidade para equipamentos destinados a serem usados em um ambiente eletromagnético controlado……………….. 17

Tabela A.1 – Requisitos de ensaio de imunidade para equipamento de medição e ensaio portátil…………….. 21

Os instrumentos e equipamentos dentro do escopo deste documento podem freqüentemente ser geograficamente difundidos e, portanto, operar sob uma ampla gama de condições ambientais. A limitação de emissões eletromagnéticas indesejadas garante que nenhum outro equipamento instalado nas proximidades é indevidamente influenciado pelo equipamento em consideração. Os limites são mais ou menos especificados pela IEC e pelo Comitê Especial Internacional em publicações de interferência de rádio (International Special Committee on Radio Interference – CISPR).

No entanto, o equipamento deve funcionar sem degradação indevida em um ambiente eletromagnético típico para os locais onde deve ser operado. A este respeito, o documento especifica três tipos diferentes de ambiente eletromagnético e os níveis para a imunidade. Informações mais detalhadas sobre questões relacionadas a ambientes eletromagnéticos são fornecidas em IEC TR 61000-2-5. Os riscos especiais, envolvendo, por exemplo, quedas de raio nas proximidades ou diretas, interrupção do circuito ou radiação eletromagnética excepcionalmente alta nas proximidades, não são cobertos.

Os sistemas elétricos e/ou eletrônicos complexos devem exigir planejamento de EMC em todas as fases de seu projeto e instalação, levando em consideração o ambiente eletromagnético, quaisquer requisitos especiais e a gravidade das falhas. Esta parte da IEC 61326 especifica os requisitos EMC que são geralmente aplicáveis a todos equipamentos dentro de seu escopo. Para certos tipos de equipamento, esses requisitos serão complementados ou modificados pelos requisitos especiais de uma, ou mais de uma, parte particular IEC 61326-2 (todas as partes). Devem ser lidos em conjunto com os requisitos IEC 61326-1.

O funcionamento das ligações flexíveis para aparelhos sanitários

Deve-se entender os requisitos mínimos para fabricação, utilização e funcionamento de ligações flexíveis para aparelhos hidráulicos sanitários utilizados em instalações hidráulicas de água potável.

A NBR 14878 de 11/2020 – Ligações flexíveis para aparelhos hidráulicos sanitários – Requisitos e métodos de ensaio especifica os requisitos mínimos para fabricação, utilização e funcionamento de ligações flexíveis para aparelhos hidráulicos sanitários utilizados em instalações hidráulicas de água potável. Especifica também os métodos de ensaios a serem executados nas ligações flexíveis, simulando, por meio de ensaios mecânicos (laboratório), uma utilização prolongada para verificação da durabilidade dos componentes e os esforços a que podem ser submetidos durante sua utilização.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as dimensões com o uso da canopla e qual é o comprimento da ligação flexível?

Quais devem ser os ensaios para cada tipo de ligação flexível?

Quais são as condições para a verificação de estanqueidade das ligações flexíveis constantemente pressurizadas?

Como deve ser realizado o ensaio de resistência à corrosão?

As ligações flexíveis, abordadas nessa norma, são aquelas para a adução de água potável, quente ou fria, constantemente pressurizada ou não, do ponto de instalação ao aparelho hidráulico sanitário, bem como aquelas para a adução de água potável, quente ou fria, do aparelho hidráulico para as duchas manuais. As ligações flexíveis abrangidas por essa norma são utilizadas: nas ligações do ponto de instalação aos aparelhos hidráulicos sanitários; como componente de ligação de aparelhos hidráulicos sanitários às duchas manuais.

Todas as figuras utilizadas nesta norma têm caráter ilustrativo e foram inseridas no texto para auxiliar no entendimento das definições, não sendo utilizadas de forma restritiva. A ligação flexível para aparelhos hidráulicos sanitários é uma unidade de compra fabricada com ou sem tubo interno, recobertas ou não externamente, e compostas por uma conexão de entrada e uma conexão de saída.

Os materiais empregados na ligação flexível devem ser resistentes à corrosão e às solicitações dos esforços mecânicos que os componentes estão sujeitos quando da sua instalação, uso e manutenção e não podem facilitar o desenvolvimento de atividade biológica. Os materiais não mencionados e aqueles desconhecidos por ocasião da elaboração desta norma podem ser empregados, desde que atendam aos seus requisitos bem como aos princípios que os norteiam.

Na fabricação dos componentes da ligação flexível, os materiais metálicos e não metálicos devem estar de acordo com as normas correspondentes para cada tipo de material e devem atender aos requisitos desta norma. Em algum componente da ligação flexível, mas não limitado a corpo, conexões ou canopla, deve estar marcado, de forma permanente e legível, após a instalação, o nome ou a marca de identificação do fabricante.

Na embalagem ou na própria ligação flexível, devem estar marcadas, de forma legível e permanente, e disponível ao consumidor no momento da compra, as seguintes informações: nome ou marca de identificação do fabricante; diâmetro nominal do produto (DN); tipo de utilização (água fria e/ou água quente); pressão de serviço (PS); comprimento da ligação flexível; materiais empregados na fabricação dos componentes; referência a esta norma, por exemplo, NBR 14878; temperatura máxima admissível; marca e modelo do fabricante do produto para o qual é destinado no caso de ser uma peça de reposição.

O fabricante deve fornecer, junto com a ligação flexível, as seguintes informações técnicas: procedimentos para instalação; orientações para uso e conservação. Recomenda-se que informações de cuidado com a instalação, para evitar possível estrangulamento da ligação flexível, sejam indicadas na embalagem do produto.

A ligação flexível, quando identificada em sua embalagem como peça de reposição, deve atender a todos os requisitos desta norma. Quando a ligação flexível for fornecida pelo mesmo fabricante do produto ao qual ela faz parte, esta é dispensada do requisito de marcação e dimensões relacionadas a sua conexão específica a este produto.

As ligações flexíveis compreendidas por esta norma devem ter desempenho adequado à pressão de 400 kPa, de acordo com as NBR 5626 e NBR 7198, podendo, portanto, ser especificadas para instalações onde a pressão máxima de abastecimento alcance este valor. A guarnição utilizada deve permitir a adequada vedação na entrada e na saída da ligação flexível, propiciando a estanqueidade da ligação.

Os niples devem possuir diâmetro nominal DN15 ou DN20, e devem ser providos de rosca fabricada de acordo com a NBR 8133, G 1/2 B ou G 3/4 B, respectivamente. Excepcionalmente, este niple pode ser provido de rosca fabricada de acordo com a NBR NM ISO 7-1, R 1/2 ou R 3/4. As porcas-união devem possuir diâmetro nominal DN15 ou DN20, e devem ser providas de rosca fabricada de acordo com a NBR 8133, G 1/2 ou G 3/4, respectivamente. As ligações flexíveis devem atender aos valores especificados na tabela abaixo, para as dimensões especificadas na outra figura, e devem ser verificadas de acordo com o Anexo A.

As dimensões de comprimento mínimo do niple (B) e de comprimento mínimo de rosca útil externa (C) devem ser verificadas com a canopla, quando fornecida com o produto, e esta deve atender ao diâmetro mínimo (D) especificado na tabela acima. O comprimento da ligação flexível deve ser indicado pelo fabricante e verificado de acordo com o Anexo B considerando a tolerância de ± 5 %, aplicando um esforço de tração de 10 N. Somente as conexões entre ligações flexíveis e duchas manuais estão dispensadas da verificação dimensional, podendo ter diâmetros e sistemas de conexões diferenciadas.

Quanto ao acabamento superficial, as superfícies internas e externas da ligação flexível devem ser livres de riscos, rebarbas, cortes, deformações ou outros defeitos superficiais que indiquem descontinuidade do material e/ou do processo de fabricação. O revestimento de superfície aplicado em superfícies aparentes, em componentes e subconjuntos da ligação flexível, deve estar de acordo com a NBR 10283. O revestimento eletrostático aplicado em superfícies aparentes, em componentes e subconjuntos da ligação flexível, deve estar de acordo com a NBR 11003.

O revestimento metalizado aplicado em superfícies aparentes, em componentes e subconjuntos da ligação flexível, deve estar de acordo com as NBR 10283 e NBR 11003. As ligações flexíveis constituídas 100% de material plástico, sem nenhum tipo de revestimento ou pintura, excetuando-se as marcações obrigatórias, estão dispensadas da verificação da resistência à corrosão.

Para as ligações flexíveis constantemente pressurizadas, o corpo de prova deve apresentar vazão mínima de 0,10 L/s, à pressão dinâmica de 15 kPa, quando submetido ao método de ensaio descrito no Anexo C. Para o ensaio de resistência ao golpe de aríete, o corpo de prova, quando submetido ao ensaio de verificação da resistência ao golpe de aríete, com pressão estática de (400 ± 10) kPa, 30 000 ciclos de sobrepressão de (200 ± 10) kPa, com temperatura de (30 ± 5) °C para ligações flexíveis destinadas à condução exclusiva de água fria ou de (65 ± 5) °C para ligações flexíveis destinadas à condução de água fria e água quente, não pode apresentar ocorrência de vazamentos, trincas, fissuras ou deformações permanentes. O ensaio deve ser realizado de acordo com o Anexo E.

Ao final dos ciclos, deve-se submeter o corpo de prova ao ensaio especificado no item ensaio de estanqueidade. No caso da ligação flexível não apresentar o tipo de utilização (água fria e/ou água quente), como especificado em 4.3, o ensaio deve ser realizado na temperatura de (65 ± 5) °C. Para a inspeção, os requisitos de desempenho devem estar em acordo com e assegurar por meio dos resultados dos ensaios efetuados por entidades neutras, ou expressa em declaração do fabricante, quando solicitado. Os requisitos de desempenho devem ser analisados com um número de amostras, de acordo com a NBR 5426, para amostragem dupla-normal, NQA 6,5 e nível de inspeção S3.

A conformidade dos vidros termoendurecidos planos

Conheça os requisitos gerais, métodos de ensaio e precauções necessárias para assegurar a segurança, durabilidade e qualidade do vidro termoendurecido plano.

A NBR 16918 de 11/2020 – Vidro termoendurecido especifica os requisitos gerais, métodos de ensaio e precauções necessárias para assegurar a segurança, durabilidade e qualidade do vidro termoendurecido plano. Outros requisitos, não especificados nesta Norma, podem ser aplicáveis ao vidro termoendurecido que é incorporado em conjuntos, por exemplo, o vidro laminado ou insulado, ou vidros revestidos para controle solar. Estes requisitos adicionais são especificados nas normas dos respectivos produtos. O vidro termoendurecido é aquele que, mediante um processo controlado de aquecimento e resfriamento, tem suas resistências mecânica e térmica aumentadas. As resistências mecânica e térmica são geradas pelo nível de compressão superficial. Estas propriedades não dependem das dimensões da peça.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as tolerâncias na largura B e no comprimento H?

Qual a diferença máxima entre as diagonais?

O que são as ondas de roletes (roller wave), apenas para vidro termoendurecido horizontalmente?

Quais são os valores máximos permitidos para elevação de borda?

O vidro termoendurecido deve atingir uma tensão de superfície residual entre 3.500 psi e 7.500 psi. Possui maior resistência às tensões térmica e mecânica em comparação com o vidro comum, mas não pode ser considerado um vidro de segurança. O vidro termoendurecido é desenvolvido a partir de um vidro monolítico que atende aos requisitos de uma das seguintes normas: vidro float, de acordo com a NBR NM 294; vidro impresso, de acordo com a NBR NM 297; vidro revestido de controle solar, de acordo com a NBR 16023.

No caso de quebra, o vidro termoendurecido possui características similares às do vidro float. A fragmentação pode ser realizada em amostras de ensaio sem retenção mecânica em suas bordas. A fragmentação do vidro instalado pode não corresponder à do vidro termoendurecido no ensaio de fragmentação, devido ao tipo de fixação, às dimensões da peça e ao processamento, por exemplo, laminação.

As características da quebra do vidro não são afetadas por temperaturas entre – 50 °C a +100 °C. As distorções ópticas em vidros float, ainda que pouco perceptíveis, podem ser oriundas do seu processo de fabricação, e podem também ser geradas ou acentuadas nos procedimentos de laminação, insulamento, tratamentos térmicos (têmpera, curvação e termoendurecimento), fixação dos vidros nas esquadrias e na instalação das esquadrias nas fachadas. Esta característica não é um defeito e sim uma propriedade do material, todavia, torna-se um defeito quando não controlada e limitada.

Nenhum vidro é isento de apresentar algum nível de distorção óptica, inclusive os vidros produzidos pelo processo float, sejam eles incolores, coloridos e/ou de controle solar. Pequenas variações de planicidade na superfície dos vidros são imperceptíveis quando estes são observados de perto, mas assumem proporções visíveis quando a distância do observador é aumentada. Fatores como ângulo de observação, iluminância, tipo de vidro e o clima podem influenciar na visualização.

Quanto à anisotropia, pode dizer que o procedimento de termoendurecimento produz áreas com tensões diferentes na sessão transversal do vidro. Estas áreas de tensão produzem um efeito de dupla reflexão no vidro que é visível sob luz polarizada. Este efeito se manifesta sob a forma de manchas coloridas. A luz polarizada ocorre durante o dia e sua quantidade depende da estação climática do ano e do ângulo da luz solar.

A anisotropia também pode ser observada em função da umidade do ar e até da espessura do vidro. O efeito de dupla reflexão é mais evidente sob um determinado ângulo de visão ou com lentes polarizadas. A anisotropia não é um defeito e sim um efeito visível, inerente ao processo de fabricação.

As propriedades mecânicas do vidro termoendurecido não variam quando instaladas, com temperaturas até 200 °C, e não são afetadas por temperaturas inferiores a 0 °C. O vidro termoendurecido é capaz de resistir tanto às variações repentinas de temperatura como às diferenças de temperaturas de até 100 °C. Esta propriedade não tem relação com a capacidade de resistência ao fogo. A tabela abaixo apresenta os valores das tensões máximas admissíveis para vidros termoendurecidos, de acordo com o apoio do painel e a duração da carga, por exemplo, 3 s para rajadas de vento e acima de um ano para cargas permanentes, como objetos sobre pisos ou pressão de água em piscinas e aquários.

O processo de termoendurecimento não modifica a espessura da peça, portanto as tolerâncias de espessura devem atender aos requisitos das normas referentes ao vidro utilizado, sendo a NBR NM 294, para o vidro float, e a NBR NM 297 para vidro impresso. Quando as dimensões do vidro termoendurecido são especificadas para peças retangulares, a primeira dimensão deve ser a largura, B, e a segunda dimensão, o comprimento, H. Deve-se indicar que a dimensão para a largura é representada como B, e que o comprimento é representado como H, quando se refere a sua posição para instalação.

Em função da natureza do procedimento de termoendurecimento, pode não ser possível obter um vidro tão plano como o float. Esta diferença de planicidade depende do tipo de vidro (como revestido, impresso etc.), das medidas do vidro como a espessura nominal, a largura e o comprimento, a proporção entre as dimensões, e também do processo de termoendurecimento utilizado (forno vertical ou horizontal).

Os vidros tratados termicamente podem ter a sua planicidade alterada, resultando assim em distorções ópticas e estas podem se tornar mais perceptíveis pelos tipos de alteração na planicidade. As pinças utilizadas para suspender o vidro durante o termoendurecimento produzem depressões na superfície do vidro, denominadas como marcas de pinças. Os centros das marcas de pinças são situados até um máximo de 20 mm a partir da borda.

Uma deformação da borda menor que 2 mm pode ser produzida na região da marca de pinça e também pode haver uma região de distorções ópticas com raio máximo de 100 mm. Após o processo de termoendurecimento, o vidro não pode ser cortado, serrado, perfurado, nem sofrer acabamento de borda ou abrasão superficial. Todos esses procedimentos só podem ser realizados antes do processo de termoendurecimento.

Todo vidro a ser submetido ao processo de termoendurecimento deve ter sua borda trabalhada antes do processo, sendo no mínimo lixado com lixa umedecida, de forma a eliminar qualquer defeito de borda. Os fornecedores do vidro termoendurecido devem ser consultados sobre os diversos tipos de acabamento de bordas existentes, que podem variar em função das exigências do projeto e da tecnologia empregada por cada processador.

Toda chapa de vidro termoendurecido deve ser marcada de forma indelével e permanente com as seguintes informações: logomarca do fabricante e/ou nome do fabricante do vidro; identificação do tipo de vidro com o texto “Vidro Termoendurecido” ou “VTE” – abreviação da expressão em português ou “HS” – abreviação da expressão em inglês. A marcação de identificação permanente deve ser aplicada nas peças de vidro próxima a um dos cantos, onde deve estar totalmente visível e legível quando o vidro for instalado.

Se houver solicitação do cliente para que a marcação seja aplicada em local não visível, isso deve ser acordado previamente entre as partes. As informações adicionais também podem ser gravadas, desde que previamente acordada entre o fabricante e o consumidor.

Os programas de pré-requisitos (PPR) para o transporte e a armazenagem de alimentos

Deve-se entender os parâmetros para o estabelecimento, a implementação e a manutenção de programas de pré-requisitos (PPR) para transporte e armazenagem da cadeia produtiva de alimentos, para auxiliar no controle de perigos à segurança de alimentos.

A ABNT ISO/TS22002-5 de 11/2020 – Programa de pré-requisitos na segurança de alimentos – Parte 5: Transporte e armazenagem especifica os requisitos para estabelecimento, implementação e manutenção de programas de pré-requisitos (PPR) para transporte e armazenagem da cadeia produtiva de alimentos, para auxiliar no controle de perigos à segurança de alimentos. Este documento é aplicável a todas as organizações, independentemente do porte ou da complexidade, que estão envolvidas nas atividades de transporte e armazenagem na cadeia produtiva de alimentos e que desejam implementar os PPR, de forma a atender aos requisitos especificados na NBR ISO 22000.

Este documento não é concebido nem destinado ao uso em outros segmentos da cadeia produtiva de alimentos. Neste documento, o transporte e a armazenagem estão alinhados à ABNT ISO/TS 22003:2016, Anexo A, Categoria G. Este documento inclui todos os alimentos e rações e alimentos embalados e materiais de embalagem. Animais vivos estão excluídos do escopo deste documento, exceto quando destinados diretamente ao consumo, por exemplo, moluscos, crustáceos e peixes vivos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser projetado o equipamento?

Como devem ser executadas as operações de transporte e armazenagem?

Como devem ser feitas as condições controladas?

Como devem ser providas as instalações do pessoal?

O sistema de armazenagem e transporte é um elemento integrante da cadeia produtiva de alimentos. Os atores da cadeia de suprimentos, como os produtores e processadores de alimentos, contam com práticas adequadas de armazenagem e transporte que assegurem que os seus produtos cheguem seguros e em boas condições ao seu destino final. O papel das organizações envolvidas na rede de transporte é proteger os alimentos, ingredientes, matérias primas e embalagens em sua custódia durante o transporte e a armazenagem.

A NBR ISO 22000 estabelece os requisitos específicos do sistema de gestão para organizações na cadeia produtiva de alimentos. Um desses requisitos é que as organizações estabeleçam, implementem e mantenham programas de pré-requisito (PPR) que auxiliem o controle de perigos relacionados à segurança de alimentos. Este documento é destinado a oferecer apoio aos sistemas de gestão projetados para atender aos requisitos especificados na NBR ISO 22000 e estabelecer os requisitos de forma detalhada para os programas relacionados ao transporte e à armazenagem.

Este documento não duplica os requisitos estabelecidos na NBR ISO 22000 e é destinado a ser usado em conjunto com ela. Assim, a organização deve estabelecer os seus PPR pertinentes para a categoria de produtos, com base em códigos de práticas reconhecidos da indústria. Alguns exemplos são dados na NBR ISO 22000 para sistemas de gestão de segurança de alimentos.

Ao estabelecer os PPR para transporte e/ou armazenagem, os grupos de produtos podem ser classificados da seguinte maneira: mercadorias não embaladas, com temperatura e/ou outras condições não controladas; mercadorias não embaladas, com temperatura e/ou outras condições controladas; mercadorias embaladas, com temperatura e/ou outras condições não controladas; mercadorias embaladas, com temperatura e/ou outras condições controladas. As práticas aplicadas pela organização durante o transporte e a armazenagem de mercadorias devem ser projetadas, documentadas e implementadas para manter as condições apropriadas de armazenagem e integridade das mercadorias.

As mercadorias devem ser carregadas, transportadas e descarregadas em condições adequadas, para prevenir danos físicos, contaminação cruzada e deterioração, incluindo, mas não se limitando a: contaminação e/ou crescimento microbiológico (por exemplo, crescimento bacteriano resultante do abuso de temperatura de mercadorias que requerem controle de temperatura); contaminação física (por exemplo, contaminação de vidro por lâmpadas quebradas, lascas de madeira de paletes, poeira, pragas); contaminação química (por exemplo, alérgenos, alterações do produto, produtos químicos de limpeza).

As operações de transporte e armazenagem de alimentos são de natureza diversa, e nem todos os requisitos especificados neste documento se aplicam a um local ou processo individual. Nos casos em que são feitas exclusões ou implementadas medidas alternativas, estas devem ser justificadas.

Quaisquer exclusões ou medidas alternativas adotadas não podem afetar a capacidade da organização de cumprir esses requisitos. Os locais devem ser projetados, construídos e mantidos de maneira apropriada à natureza das operações de transporte e armazenagem a serem realizadas e para minimizar a probabilidade de contaminação. Os limites do local devem ser claramente identificados.

A área deve ser mantida em boas condições. A vegetação deve ser cuidada ou removida. Caminhos, pátios e áreas de estacionamento devem ser drenados para evitar água parada e devem ser submetidos à manutenção. As áreas de carregamento devem ser construídas de modo a proteger as mercadorias durante condições climáticas adversas, ser fáceis de limpar e impedir acesso de aves e outras pragas.

Devem-se considerar as fontes potenciais de contaminação do ambiente local, por exemplo, odores, poeira, radiação. Nos casos em que substâncias potencialmente perigosas possam entrar nas mercadorias, devem ser tomadas medidas efetivas para proteger contra possíveis contaminações. As medidas em vigor devem ser analisadas criticamente, de forma periódica, quanto à sua eficácia. Os leiautes internos devem ser projetados, construídos e mantidos para facilitar as boas práticas de higiene e para minimizar a probabilidade de contaminação (por exemplo, vazamentos).

Os padrões de movimentação de mercadorias e pessoas, e a disposição dos equipamentos devem ser projetados para proteger contra potenciais fontes de contaminação. O local deve fornecer espaço adequado ou separação por tempo, com um fluxo lógico de mercadorias e de pessoas, e separação física proporcional ao risco de contaminação (cruzada). As aberturas destinadas à transferência de mercadorias devem ser projetadas para minimizar a entrada de matérias estranhas e pragas.

Todas as aberturas devem ser fechadas quando não estiverem em uso. As paredes e pisos devem ser laváveis/limpáveis. Os materiais utilizados na construção das instalações devem ser adequados ao sistema de limpeza a ser utilizado. Janelas de abertura externa, exaustores de teto ou ventiladores nas áreas onde as mercadorias podem ser armazenadas devem ser protegidos contra insetos.

As portas de abertura externa devem ser fechadas ou protegidas, quando não estiverem sendo usadas. Se presentes, drenos internos e externos devem ser projetados, construídos e localizados de forma a evitar o risco de contaminação das mercadorias. Qualquer dreno na instalação deve ser de fácil acesso para limpeza e reparo.

O fornecimento e as rotas de transporte de utilidades para e em torno das áreas de transporte e armazenagem devem ser projetados ou dispostos de forma a permitir a segregação de mercadorias e a minimizar o risco de contaminação. As atividades de manutenção e serviço devem ser organizadas para assegurar que a segurança dos alimentos não seja comprometida.

O suprimento de água deve ser adequado ao uso pretendido e deve ser suficiente para atender às necessidades do(s) processo(s). As instalações para armazenagem, transporte e, quando necessário, o controle de temperatura da água, devem ser adequadas para atender aos requisitos especificados. A água não potável deve ter um sistema de suprimento separado, claramente identificado e não conectado ao sistema de água potável, para impedir a mistura.

Devem ser tomadas medidas para evitar que a água não potável reflua no sistema potável. Onde forem fornecidas instalações para cantinas e banheiros, a água potável deve ser fornecida para beber e para lavagem das mãos. Onde a organização tratar a água de abastecimento (por exemplo, cloração), as verificações devem assegurar que a água seja adequada para o uso pretendido.

Água não potável pode ser usada, por exemplo, para lavar a área circundante do armazém, lavar bombas externas e drenos externos, o sistema automático de combate a incêndios, descarga de vasos sanitários e mictórios, a torre de resfriamento e o condensador. Os produtos químicos e os auxiliares de processamento devem ser: identificados; adequados para o uso pretendido; armazenados em uma área separada e segura (bloqueada ou de outro modo de acesso controlado), quando não estiverem em uso imediato.

Os sistemas de ventilação devem ser projetados e construídos de maneira a impedir que o ar flua de áreas contaminadas para áreas limpas. Os diferenciais de pressão de ar especificados devem ser mantidos. Os sistemas devem estar acessíveis para limpeza, troca de filtro e manutenção. A ventilação (natural ou mecânica) deve ser adequada para remover o excesso de vapor, poeira e odores indesejados e para facilitar a secagem após a limpeza úmida.

Ao trabalhar com mercadorias vulneráveis não embaladas, o suprimento de ar deve ser controlado para minimizar o risco de contaminação transportada pelo ar. As portas de entrada de ar externas devem ser examinadas periodicamente quanto à integridade física. Os sistemas devem ser limpos e mantidos conforme necessário.

Os gases e o ar comprimido destinados ao contato com alimentos (incluindo os utilizados para transporte, sopro ou secagem de mercadorias ou equipamentos) devem ser de uma fonte aprovada para uso em contato com alimentos e filtrados para remover poeira, óleo e água. Os sistemas de gás e ar comprimido usados para transporte e armazenagem de mercadorias (por exemplo, carregamento/descarregamento de mercadorias a granel) devem ser construídos e mantidos de modo a evitar contaminação.

Convém que a filtragem do ar esteja o mais próximo possível do ponto de contato com alimentos. Convém que compressores isentos de óleo sejam usados para a produção de ar comprimido. Onde o óleo é usado para compressores e existe a possibilidade de o ar entrar em contato com as mercadorias, o óleo usado deve ser de grau alimentício. Os requisitos de filtragem, umidade (% UR) e microbiologia devem ser especificados, se aplicável.

A intensidade da iluminação fornecida deve ser adequada à natureza da operação. Convém que as luminárias sejam protegidas. Quando não for fornecida proteção total, deve haver um procedimento para o gerenciamento de vidro e/ou plástico. Nos casos em que as mercadorias possam estar contaminadas devido à (s) luminária (s) quebrada (s), devem ser tomadas correções imediatas e ações corretivas devem evitar a recorrência.

A conformidade dos dispositivos eletromecânicos para circuito de comando

Deve-se entender as funções dos dispositivos para circuitos de comando e elementos de comutação, destinados a comandar, sinalizar, intertravar, etc. os dispositivos de manobra e comando. 

A NBR IEC 60947-5-1 de 10/2020 – Dispositivos de manobra e comando de baixa tensão – Parte 5-1: Dispositivos e elementos de comutação para circuitos de comando — Dispositivos eletromecânicos para circuito de comando aplica-se aos dispositivos para circuitos de comando e elementos de comutação, destinados a comandar, sinalizar, intertravar, etc. os dispositivos de manobra e comando. Aplica-se aos dispositivos para circuitos de comando com tensão nominal não superior a 1.000 V em corrente alternada (a uma frequência não superior a 1 000 Hz) ou 600 V em corrente contínua. Porém, para tensões de utilização inferiores a 100 V em corrente alternada ou corrente contínua, ver nota 2 de 4.3.1.1.

Esta norma aplica-se aos tipos específicos de dispositivos para circuito de comando, como: auxiliares manuais de comando, por exemplo, botões de pressão, comutadores rotativos, interruptor a pedal, etc.; auxiliares eletromagnéticos de comandos, sejam temporizados ou instantâneos, por exemplo, contatores auxiliares; auxiliares automáticos de comando, por exemplo, detectores de pressão (pressostato), detectores de temperatura (termostato), programadores, etc.; interruptores de posição, por exemplo comandos auxiliares acionados por parte de uma máquina ou mecanismo; dispositivo de comando associado, por exemplo, sinalizador luminoso, etc. Um dispositivo para circuitos de comando compreende um auxiliar de comando e os dispositivos associados como um sinalizador luminoso. Um auxiliar de comando compreende um elemento de comutação e um sistema de atuação. Um elemento de comutação pode ser um elemento de contato ou um elemento a semicondutor.

Esta norma também é aplicável aos tipos determinados de elementos de comutação associados a outros dispositivos (cujos circuitos principais são cobertos por outras normas), como os contatos auxiliares de um dispositivo de manobra (por exemplo, contator, disjuntor, etc.) que não são previstos para serem utilizados exclusivamente com a bobina daquele dispositivo; contatos de intertravamento das portas dos invólucros; contatos de circuitos de comando dos interruptores rotativos; contatos de circuitos de comando dos relés de sobrecarga. Os contatores auxiliares também satisfazem os requisitos e os ensaios da NBR IEC 60947-4-1, com exceção da categoria de utilização que satisfaz esta norma. Ela não inclui os relés cobertos pela IEC 60255 ou pela série da IEC 61810, nem os dispositivos de comandos elétricos automáticos para utilização doméstica e similares.

Os requisitos relativos às cores de sinalizadores luminosos, botões de pressão, etc. são encontrados na IEC 60073 e também na CIE S 0004/E-2001, da Comissão Internacional de Iluminação (CIE). Esta norma tem por objetivo estabelecer: as características dos dispositivos para circuitos de comando; os requisitos elétricos e mecânicos no que se refere a: diferentes funções que devem ser desempenhadas; significação das características nominais e das marcações nos dispositivos; os ensaios de verificação das características nominais; as condições de funcionamento às quais devem satisfazer os dispositivos para circuitos de comando, no que se refere a condições ambientais, inclusive àquelas referentes ao equipamento e seu invólucro; propriedades dielétricas; e bornes.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as informações que devem ser fornecidas pelo fabricante dos produtos?

Quais devem ser as marcações de identificação do dispositivo para circuito de comando?

Por que é importante ter um diagrama de funcionamento?

Quais são as condições normais de serviço, de montagem e de transporte?

Convém que as características dos dispositivos e dos elementos de comutação para os circuitos de comando sejam declaradas nos termos seguintes, onde as condições são aplicáveis: tipo de equipamento (ver 4.2); valores nominais e valores-limites dos elementos de comutação (ver 4.3); categorias de utilização dos elementos de comutação (ver 4.4); as características nas condições de carga normal e anormal (ver 4.3.6). A aplicação principal de um auxiliar de comando é a comutação de cargas, como indicado para as várias categorias de utilização da tabela abaixo.

Outras aplicações, por exemplo, o comando de lâmpadas de filamento de tungstênio, motores pequenos, etc., não são tratadas em detalhes nesta norma. A utilização normal de um auxiliar de comando é para fechar, manter fechado e abrir circuitos, conforme a categoria de utilização indicada na tabela abaixo. As condições anormais podem ocorrer, por exemplo, quando o circuito magnético de um eletroímã, embora a bobina seja alimentada, não fechar. Um auxiliar de comando deve ser capaz de interromper a corrente correspondente nas condições de utilização.

O tipo dos elementos de comutação deve ser definido como auxiliares manuais de comando, por exemplo, botões de pressão, comutadores rotativos, interruptores a pedal, etc.; auxiliares eletromagnéticos de comando, temporizados ou instantâneos, por exemplo, contatores auxiliares; auxiliares automáticos de comando, por exemplo, detectores de pressão com contatos, detectores de temperatura com contatos (termostato), programadores, etc.; interruptores de posição; equipamento de comando associado, por exemplo, sinalizador luminoso, etc.

O tipo dos elementos de comutação deve ser definido como contatos auxiliares de um dispositivo de manobra (por exemplo, contator, disjuntor etc.) que não são previstos para serem utilizados exclusivamente com a bobina daquele dispositivo; contatos de intertravamento das portas de invólucro; contatos de circuito de comando de interruptores rotativos; contatos de circuito de comando de relés de sobrecarga. O número de polos deve ser definido. A natureza da corrente deve ser definida: corrente alternada ou corrente contínua. O meio de interrupção deve ser definido: ar, óleo, gás, vácuo, etc. O método de manobra deve ser definido: manual, eletromagnético, pneumático, eletropneumático.

O método de comando deve ser definido: automático; não automático; semiautomático. Os valores nominais relativos aos elementos de comutação de um dispositivo para circuito de comando devem ser fixados de acordo com essa norma, inclusive, mas não é necessário especificar todos os valores listados. Um elemento de comutação é definido para as tensões nominais indicadas. A IEC 60947-1:2007, 4.3.1.1, é aplicável, com as seguintes adições: para circuitos trifásicos, Ue é declarado como tensão eficaz entre fases.

Um elemento de comutação pode ser caracterizado por várias combinações de tensão nominal de utilização e de corrente nominal de utilização. Os auxiliares de comando tratados nesta norma não são normalmente previstos para serem utilizados com tensões muito baixas e eles podem não ser apropriados para um determinado serviço. É recomendado solicitar orientação do fabricante relativa a qualquer aplicação com um valor baixo de tensão de utilização, por exemplo, abaixo de 100 V ca ou cc.

Um elemento de comutação deve satisfazer os requisitos indicados na tabela 4 (disponível na norma), correspondendo à categoria de utilização atribuída, e os requisitos de acordo com a tensão nominal de utilização. Para um elemento de comutação para o qual uma categoria de utilização é atribuída, não é necessário especificar separadamente capacidades de estabelecimento e de interrupção. Um elemento de comutação projetado para comandar pequenos motores e cargas de lâmpadas de filamento de tungstênio deve ter uma categoria de utilização indicada na NBR IEC 60947-4-1 e deve satisfazer os requisitos correspondentes desta publicação.

Um elemento de comutação deve satisfazer os requisitos dados na Tabela 5 (disponível na norma), que correspondem à categoria de utilização atribuída. Um exemplo de uma condição anormal de utilização é aquela onde o eletroímã não funciona e os elementos de comutação têm que interromper a corrente de estabelecimento. As categorias de utilização, como indicadas na tabela abaixo, são consideradas normalizadas. Qualquer outro tipo de aplicação deve ser baseado em acordo entre o fabricante e o usuário, mas as informações dadas no catálogo do fabricante ou oferta podem constituir tal acordo.

O fabricante deve declarar se os elementos de contato de um dispositivo para circuito de comando estão eletricamente separados ou não (ver 2.3.3.7). Os elementos de contato separados devem ser considerados de polaridade oposta, salvo indicação contrária do fabricante. O valor de funcionamento e o valor de retorno da grandeza de atuação são determinados em valores crescentes uniformes e em valores decrescentes normais da grandeza de atuação. Salvo especificação em contrário, a taxa de mudança deve ser regular e tal que o valor de funcionamento (ou de retorno) seja atingido em não menos de 10 s.

Os valores de funcionamento e de retorno podem ser valores fixos, ou um deles ou ambos podem ser reguláveis (ou o valor diferencial pode ser regulável). Onde apropriado, o fabricante deve indicar um valor suportável, ou um valor máximo superior ao valor de regulagem mais elevado de funcionamento ou um valor mínimo inferior ao valor de regulagem mais baixo do valor de retorno. Um valor suportável implica nenhum dano ao auxiliar automático de comando ou nenhuma mudança em suas características.

Os auxiliares automáticos de comando com dois ou mais elementos de contato que não são individualmente reguláveis podem ter valores de funcionamento e de retorno diferentes para cada elemento de contato. Um auxiliar automático de comando com dois ou mais elementos de contato individualmente reguláveis é considerado uma combinação de auxiliares automáticos de comando.

Os equipamentos eletromédicos em serviços de emergência

Deve-se entender a segurança básica e ao desempenho essencial dos equipamentos eletromédicos e dos sistemas eletromédicos, a partir daqui referidos como equipamentos EM e sistemas EM, os quais são destinados, como indicado nas instruções para utilização fornecidas pelo fabricante, à utilização em ambientes SME (serviços médicos de emergência).

A NBR IEC 60601-1-12 de 10/2020 – Equipamento eletromédico – Parte 1-12: Requisitos gerais para segurança básica e desempenho essencial — Norma Colateral: Requisitos para equipamentos eletromédicos e sistemas eletromédicos destinados à utilização em ambientes de serviços de emergência médica é aplicável à SEGURANÇA BÁSICA e ao DESEMPENHO ESSENCIAL dos EQUIPAMENTOS ELETROMÉDICOS e dos SISTEMAS ELETROMÉDICOS, a partir daqui referidos como EQUIPAMENTOS EM e SISTEMAS EM, os quais são destinados, como indicado nas instruções para utilização fornecidas pelo FABRICANTE, à utilização em AMBIENTES SME (SERVIÇOS MÉDICOS DE EMERGÊNCIA). Para os efeitos desta Norma, a intenção do FABRICANTE está indicada nas instruções para utilização. A ORGANIZAÇÃO RESPONSÁVEL e o OPERADOR precisam estar cientes de que qualquer outra utilização que não seja a UTILIZAÇÃO DESTINADA pelo FABRICANTE pode resultar em uma SITUAÇÃO PERIGOSA para o PACIENTE.

O AMBIENTE SME inclui a resposta e a provisão de suporte à vida em um cenário de emergência a um PACIENTE relatado como apresentando lesão ou doença, em um ambiente pré-hospitalar, assim como o transporte do PACIENTE até uma unidade profissional de cuidado à saúde apropriada para prestar cuidados adicionais com a manutenção constante do cuidado de suporte à vida. Inclui, ainda, o fornecimento de monitoramento, tratamento ou diagnóstico durante o transporte entre unidades profissionais de cuidado à saúde. Esta norma não é aplicável, a não ser que as considerações adicionais da NBR IEC 60601-1-11 ou desta norma colateral sejam adicionadas, aos EQUIPAMENTOS EM e SISTEMAS EM destinados unicamente à utilização em AMBIENTES DOMÉSTICOS DE CUIDADO À SAÚDE, que foram abordados na NBR IEC 60601-1-11, ou destinados unicamente à utilização em unidades profissionais de cuidado à saúde, que foram abordados na NBR IEC 60601-1.

Os EQUIPAMENTOS EM e SISTEMAS EM não são, geralmente, destinados a um único ambiente. Esses EQUIPAMENTOS EM ou SISTEMAS EM podem ser destinados a múltiplos ambientes de utilização e, como tal, estarão contidos no escopo desta norma se também forem destinados à utilização em AMBIENTES SME. EXEMPLO EQUIPAMENTOS EM ou SISTEMAS EM destinados tanto a AMBIENTES SME quanto a ambientes de unidades profissionais de cuidado à saúde. Os EQUIPAMENTOS EM e SISTEMAS EM podem ser utilizados, nos AMBIENTES SME, em locais com fontes elétricas não confiáveis e condições ambientai s externas.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a classificação dos Equipamentos EM e dos Sistemas EM?

Quais são os requisitos adicionais para marcação de classificação IP?

Quais são os requisitos adicionais para fontes de alimentação elétrica?

Quais são os requisitos adicionais para mensagens do EQUIPAMENTO EM?

Quais são os requisitos adicionais para penetração de água ou de material particulado nos Equipamentos EM e nos Sistemas EM?

A prática médica está cada vez mais utilizando EQUIPAMENTOS ELETROMÉDICOS e SISTEMAS ELETROMÉDICOS para monitoramento, tratamento ou diagnóstico de PACIENTES em AMBIENTES DE SERVIÇOS DE EMERGÊNCIA MÉDICA (ver 3.1). A segurança de EQUIPAMENTOS ELETROMÉDICOS neste ambiente não controlado e adverso constitui um motivo de preocupação. Esta norma colateral foi desenvolvida em conjunto com médicos, engenheiros e reguladores.

A terminologia, os requisitos, as recomendações gerais e as orientações desta norma colateral são destinadas a serem úteis para FABRICANTES de EQUIPAMENTOS ELETROMÉDICOS e SISTEMAS ELETROMÉDICOS e para comitês técnicos responsáveis pelo desenvolvimento de normas particulares. o objetivo desta norma colateral é fornecer requisitos gerais para EQUIPAMENTOS EM e SISTEMAS EM transportados para o local de uma emergência e utilizados tanto nesse local como em transporte, em situações nas quais as condições ambientais diferirem das condições internas.

O objetivo dela é especificar requisitos gerais adicionais àqueles da norma geral, que servirão como base para as normas particulares. Para EQUIPAMENTOS EM e SISTEMAS EM, esta norma colateral complementa a ABNT NBR IEC 60601-1, que será daqui por diante denominada norma geral. Em referência à NBR IEC 60601-1 ou a esta norma colateral, em conjunto ou individualmente, as seguintes convenções são utilizadas: a Norma Geral” se refere à NBR IEC 60601-1, individualmente; esta Norma Colateral se refere à NBR IEC 60601-1-12, individualmente; esta norma se refere à combinação da norma geral com esta norma colateral.

Um requisito em uma norma particular tem prioridade sobre o requisito correspondente nesta norma colateral. Para EQUIPAMENTOS EM ou SISTEMAS EM destinados a AMBIENTES SME, são aplicáveis as características da REDE DE ALIMENTAÇÃO ELÉTRICA especificadas em 4.10.2 da norma geral, com as seguintes considerações adicionais. Deve-se considerar que a REDE DE ALIMENTAÇÃO ELÉTRICA em AMBIENTES SME possua as seguintes características: tensão não acima de 110% nem abaixo de 85% da tensão NOMINAL entre qualquer um dos condutores do sistema ou entre qualquer condutor e o aterramento.

A faixa DECLARADA de tensão NOMINAL dos EQUIPAMENTOS EM em AMBIENTES SME deve incluir, pelo menos, 12,4 V a 15,1 V para operação a partir de uma REDE DE ALIMENTAÇÃO ELÉTRICA cc de 12 V e pelo menos 24,8 V a 30,3 V para operação a partir de uma REDE DE ALIMENTAÇÃO ELÉTRICA cc de 24 V. EQUIPAMENTOS EM e SISTEMAS EM em AMBIENTES SME devem manter a SEGURANÇA BÁSICA e o DESEMPENHO ESSENCIAL durante e após uma queda de 30 s em 10 V a partir de uma REDE DE ALIMENTAÇÃO ELÉTRICA cc de 12 V e durante e após uma queda de 30 s em 20 V para operação a partir de uma REDE DE ALIMENTAÇÃO ELÉTRICA cc de 24 V.

Para EQUIPAMENTOS EM ou SISTEMAS EM destinados a receberem alimentação elétrica em uma aeronave, a REDE DE ALIMENTAÇÃO ELÉTRICA deve estar em conformidade com a EUROCAE ED-14G ou da RTCA DO-160G, Seção 16. Na NBR IEC 60601-1:2010, o FABRICANTE especifica, na descrição técnica (ver 7.9.3.1, segundo item), as condições ambientais de utilização aceitáveis, incluindo condições para transporte e armazenamento. Essas condições são referenciadas nos requisitos para ensaios ao longo da norma geral (por exemplo, 5.3 e 11.1.1).

As instruções para utilização devem indicar as condições ambientais aceitáveis de transporte e armazenamento do EQUIPAMENTO EM após o EQUIPAMENTO EM ter sido removido de sua embalagem de proteção e, posteriormente, entre uma utilização e outra. A menos que haja outra indicação nas instruções para utilização, o EQUIPAMENTO EM deve estar em conformidade com esta norma e deve permanecer operacional na UTILIZAÇÃO NORMAL após transporte ou armazenamento, conforme as suas especificações, na seguinte faixa de condições ambientais: – 40 °C a + 5 °C sem controle de umidade relativa; + 5 °C a + 35 °C a uma umidade relativa de até 90 %, não condensante; > 35 °C a 70 °C a uma pressão de vapor de água de até 50 hPa; após ter sido removido de sua embalagem de proteção e, posteriormente, entre uma utilização e outra. Isso representa a classe 7K4, como descrito na IEC TR 60721-4-7:2001.

Se as instruções para utilização especificarem uma faixa mais restrita de condições ambientais de transporte e armazenamento entre uma utilização e outra, essas condições ambientais devem ser: justificadas no arquivo de GERENCIAMENTO DE RISCO; marcadas no EQUIPAMENTO EM, a não ser que esta marcação não seja viável; neste caso, a faixa mais restrita precisa, somente, estar contida nas instruções para utilização; e marcadas no invólucro para transporte, se as instruções para utilização indicarem que o EQUIPAMENTO EM é destinado a ser transportado ou armazenado em um invólucro para transporte entre uma utilização e outra. As instruções para utilização devem indicar as condições ambientais de operação contínua aceitáveis do EQUIPAMENTO EM.

A não ser que haja outra indicação nas instruções para utilização, o EQUIPAMENTO EM deve estar em conformidade com suas especificações e com todos os requisitos desta norma, quando operado em UTILIZAÇÃO NORMAL, nas seguintes condições ambientais de operação: faixa de temperatura de 0 °C a + 40 °C; faixa de umidade relativa de 15% a 90%, não condensante, mas que não requer uma pressão parcial de vapor de água maior do que 50 hPa; e faixa de pressão atmosférica de 620 hPa a 1 060 hPa. Isso representa a classe 7K1, como descrito no IEC TR 60721-4-7:2001.

Se as instruções para utilização especificarem uma faixa mais restrita de condições ambientais de operação contínua, essas condições devem estar: justificadas no ARQUIVO DE GERENCIAMENTO DE RISCO; marcadas no EQUIPAMENTO EM, a não ser que esta marcação não seja viável. Nesse caso, a faixa mais restrita precisa somente deve estar contida nas instruções para utilização; e marcadas no invólucro para transporte, se as instruções para utilização indicarem que o EQUIPAMENTO EM é destinado a ser transportado ou armazenado em um invólucro para transporte entre uma utilização e outra.

Os símbolos 5.3.5 (ISO 7000-0534), 5.3.6 (ISO 7000-0533) ou 5.3.7 (ISO 7000-0632) da NBR ISO 15223-1:2015 podem ser utilizados para marcar a faixa de temperatura (ver Tabela C.1, símbolos 2, 3 e 4). O símbolo 5.3.8 (ISO 7000-2620) da NBR ISO 15223-1:2015 pode ser utilizado para marcar a faixa de umidade (ver Tabela C.1, símbolo 5), e o símbolo 5.3.9 (ISO 7000-2621) da NBR ISO 15223-1:2015 pode ser utilizado para marcar a faixa de pressão atmosférica (ver Tabela C.1, símbolo 6). Quando o EQUIPAMENTO EM possuir diferentes marcações para condições contínuas de operação e condições transitórias de operação (ver 4.2.2.2), essas marcações devem estar acompanhadas de uma marcação complementar (como, por exemplo, texto apropriado).

O EQUIPAMENTO EM deve estar em conformidade com suas especificações e com todos os requisitos desta norma, quando operado em UTILIZAÇÃO NORMAL, nas condições ambientais de operação especificadas. Se houver variações nas leituras ou no desempenho, uma tabela de valores corrigidos deve estar contida nas instruções para utilização. Esta tabela de correção deve indicar a extensão da variação entre os valores instantâneos e os valores indicados ou estabelecidos.

A conformidade é verificada por meio do seguinte ensaio e, quando uma faixa mais restrita estiver especificada nas instruções para utilização, por meio da inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO. Deve-se ajustar o EQUIPAMENTO EM para operação de acordo com sua UTILIZAÇÃO DESTINADA. Expor o EQUIPAMENTO EM a 20 °C ± 4 °C: por pelo menos 6 h, ou garantir que o EQUIPAMENTO EM atinja ESTABILIDADE TÉRMICA por pelo menos 2 h.

Deve-se avaliar o EQUIPAMENTO EM em relação às suas especificações e garantir que ele forneça a SEGURANÇA BÁSICA e o desempenho essencial. Avaliar o EQUIPAMENTO EM em relação às suas especificações e garantir que ele forneça a SEGURANÇA BÁSICA e o desempenho essencial sob a menor pressão atmosférica especificada. Avaliar o EQUIPAMENTO EM em relação às suas especificações e garantir que ele forneça a SEGURANÇA BÁSICA e o desempenho essencial sob a maior pressão atmosférica especificada.

Para EQUIPAMENTOS EM que sejam sensíveis à pressão (como, por exemplo, os que utilizam ou medem gases ou pressões ou que utilizam interruptores de membrana), pode ser necessário avaliar a SEGURANÇA BÁSICA e o DESEMPENHO ESSENCIAL durante as alterações de pressão, em qualquer direção. Deve-se aliviar a pressão na câmara de pressão e resfriar o EQUIPAMENTO EM às suas condições ambientais de operação contínua mais baixas especificadas (temperatura 0 −4 °C e umidade relativa menor do que ou igual a 15%). Manter o EQUIPAMENTO EM nas suas condições ambientais de operação contínua mais baixas especificadas: por pelo menos 6 h, ou para garantir que o EQUIPAMENTO EM atinja ESTABILIDADE TÉRMICA por pelo menos 2 h.

Deve-se avaliar o EQUIPAMENTO EM em relação às suas especificações e garantir que ele forneça a SEGURANÇA BÁSICA e o DESEMPENHO ESSENCIAL. Aquecer o EQUIPAMENTO EM às suas condições ambientais de operação contínua mais altas especificadas, mas sem requerer uma pressão parcial de vapor de água maior do que 50 hPa, (temperatura -40 °C). Manter o EQUIPAMENTO EM nas condições de aquecimento por pelo menos 6 h, ou para garantir que o EQUIPAMENTO EM atinja ESTABILIDADE TÉRMICA por pelo menos 2 h. Deve-se avaliar o EQUIPAMENTO EM em relação às suas especificações e garantir que ele forneça a SEGURANÇA BÁSICA e o DESEMPENHO ESSENCIAL.

As instruções para utilização devem indicar as condições ambientais transitórias de operação aceitáveis do EQUIPAMENTO EM de AMBIENTES SME. A não ser que haja outra indicação nas instruções para utilização, o EQUIPAMENTO EM deve estar em conformidade com suas especificações e com todos os requisitos desta norma durante a operação na UTILIZAÇÃO NORMAL, por um período não menor do que 20 min, nas seguintes condições ambientais de operação: faixa de temperatura de – 20 °C a + 50 °C; faixa de umidade relativa de 15% a 90%, não condensante, mas que não requer uma pressão parcial de vapor de água maior do que 50 hPa.

Se as instruções para utilização especificarem uma faixa mais restrita de condições ambientais transitórias de operação, essas condições devem ser: justificadas no ARQUIVO DE GERENCIAMENTO DE RISCO; marcadas no EQUIPAMENTO EM, a não ser que esta marcação não seja viável na prática. Nesse caso, a faixa mais restrita precisa ser informada apenas nas instruções para utilização. Os símbolos 5.3.5 (ISO 7000-0534), 5.3.6 (ISO 7000-0533) ou 5.3.7 (ISO 7000-0632) da NBR ISO 15223-1:2015 podem ser utilizados para marcar a faixa de temperatura (ver Tabela C.1, símbolos 2, 3 e 4). O símbolo 5.3.8 (ISO 7000-2620) da ABNT NBR ISO 15223-1:2015 pode ser utilizado para marcar a faixa de umidade (ver Tabela C.1, símbolo 5), e o símbolo 5.3.9 (ISO 7000-2621) da NBR ISO 15223-1:2015 pode ser utilizado para marcar a faixa de pressão atmosférica (ver Tabela C.1, símbolo 6).

Quando o EQUIPAMENTO EM possuir marcações diferentes para as condições contínuas de operação (ver 4.2.2.1) e as condições transitórias de operação, essas marcações devem estar acompanhadas de uma marcação complementar (como, por exemplo, texto apropriado). O EQUIPAMENTO EM deve estar em conformidade com suas especificações e com todos os requisitos desta norma, quando operado em UTILIZAÇÃO NORMAL, nas condições ambientais de operação especificadas.

A conformidade é verificada por meio do seguinte ensaio e, quando uma faixa mais restrita estiver especificada nas instruções para utilização, por meio da inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO. Expor o EQUIPAMENTO EM a 20 °C ± 4 °C: por pelo menos 6 h, ou para garantir que o EQUIPAMENTO EM atinja ESTABILIDADE TÉRMICA por pelo menos 2 h. Avaliar o EQUIPAMENTO EM em relação às suas especificações e garantir que ele forneça a SEGURANÇA BÁSICA e o DESEMPENHO ESSENCIAL.

Expor o EQUIPAMENTO EM às suas condições ambientais transitórias de operação mais baixas especificadas (temperatura 0 −4 °C e umidade relativa menor do que ou igual a 15 %), avaliando o EQUIPAMENTO EM em relação às suas especificações e garantindo que ele forneça a SEGURANÇA BÁSICA e o DESEMPENHO ESSENCIAL por 20 min. Expor o EQUIPAMENTO EM a 20 °C ± 4 °C: por, pelo menos, 6 h, ou para garantir que o EQUIPAMENTO EM atinja ESTABILIDADE TÉRMICA por pelo menos 2 h.

O desempenho das câmaras de contenção em polietileno

Deve-se entender os requisitos de desempenho e os ensaios de câmaras de contenção fabricadas em polietileno e dispositivos associados, instaladas em sistema de armazenamento subterrâneo de combustíveis (SASC) de posto revendedor veicular ou ponto de abastecimento.

A NBR 15118 de 10/2020 – Câmaras de contenção e dispositivos associados para sistema de armazenamento subterrâneo de combustíveis — Requisitos e métodos de ensaio especifica os requisitos de desempenho e os ensaios de câmaras de contenção fabricadas em polietileno e dispositivos associados, instaladas em sistema de armazenamento subterrâneo de combustíveis (SASC) de posto revendedor veicular ou ponto de abastecimento.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executado o ensaio de envelhecimento em estufa com ar em câmara de contenção da descarga de combustível?

Quais são os fluidos de imersão para reservatório em câmara de contenção da descarga de combustível?

Como deve ser feito o ensaio de impacto a frio em câmara de contenção da descarga de combustível?

Como deve ser executada a avaliação dimensional em câmara de acesso à boca de visita?

Essa norma especifica os requisitos de desempenho e os ensaios de câmaras de contenção fabricadas em polietileno e dispositivos associados, instaladas em sistema de armazenamento subterrâneo de combustíveis (SASC) de posto revendedor veicular ou ponto de abastecimento. As câmaras de contenção e os dispositivos associados devem ser instalados conforme a NBR 16764, ensaiados conforme a Seção 5 desta norma e projetados para suportar cargas estáticas e dinâmicas inerentes à sua aplicação.

O polietileno utilizado na fabricação das câmaras de contenção deve atender a um dos seguintes requisitos de resistência ao tensofissuramento, conforme a ASTM D1693, na condição de 50°C e F50, comprovada pelo fabricante do polietileno. A resistência deve ser igual ou maior que 145 h na concentração de 10%, ou igual ou maior que 1.000 h na concentração de 100%. As partes em borracha devem ser fabricadas com acrilonitrila e butadieno, código M4BK710 A24 B14 EA14 EF11 F21, conforme a ASTM D2000.

As câmaras de contenção são dos tipos: câmara de contenção da descarga de combustível (spill de descarga); câmara de acesso à boca-de-visita (sump de tanque); câmara de contenção sob a unidade de abastecimento (sump de bomba); câmara de contenção da interligação da unidade de filtragem (sump de filtro); câmara de contenção para emenda mecânica de tubulação (sump de emenda); câmara de medição (spill de medição). O fabricante deve declarar o peso mínimo de cada câmara de contenção. O polietileno utilizado na fabricação das câmaras de contenção deve atender a um dos seguintes requisitos de resistência ao tensofissuramento, conforme ASTM D 1693, na condição de 50 °C e F50, comprovado pelo fabricante do polietileno: resistência igual ou maior que 145 h na concentração de 10%, ou resistência igual ou maior que 1.000 h na concentração de 100%. A câmara de contenção da descarga de combustível (spill de descarga) é um recipiente formado por reservatório estanque e câmara de calçada, usado no ponto de descarregamento ou de medição de combustível, para contenção de possíveis derrames.

A câmara de contenção deve: ser projetada e fabricada para montagem na tubulação de descarga de combustível; ser capaz de conter provisoriamente eventual derramamento na operação de descarga de combustível; permitir a absorção de movimentos do solo e de acomodação do tanque; opcionalmente, possuir dispositivo que possibilite a drenagem ou escoamento do líquido nela contido e, quando da operação de descarga de combustível, verificar o interior da câmara, eliminando, de modo adequado, produto, água ou impurezas, quando encontrados; possuir capacidade mínima de 18 L; possuir câmara de calçada projetada e fabricada de forma a inibir a entrada de líquido presente na pista, dimensionada para admitir o tráfego de veículos; possuir aro da câmara de calçada acoplado à câmara de contenção; em seu conjunto (flange de vedação e câmara de contenção), quando aplicável, proporcionar a adequada instalação dos demais equipamentos, conforme a NBR 13783; ser projetada e fabricada de forma a permitir a limpeza adequada do seu interior.

A câmara de acesso à boca-de-visita (sump de tanque) é um recipiente estanque, com tampa, para contenção de possíveis vazamentos e acesso às conexões e/ou equipamentos instalados em seu interior. A câmara de contenção deve ser projetada e fabricada para ser instalada sobre a boca-de-visita do tanque; ser capaz de conter provisoriamente eventual vazamento de tubulações, conexões e equipamentos instalados em seu interior; possuir tampa que permita o acesso e a retirada da tampa da boca-de-visita do tanque, com abertura superior, para fixação da tampa do reservatório, com dimensão mínima de 765 mm; depois de instalada, ser capaz de suportar as pressões exercidas pelo solo; ser fornecida com sistema de fixação à boca-de-visita do tanque dimensionado conforme as NBR 13212 ou NBR 13312; permitir a instalação do flange de vedação, mantendo a estanqueidade do conjunto; em seu conjunto (flange de vedação e câmara de acesso à boca-de-visita), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783; possuir altura total da base inferior até a extremidade da tampa, com no mínimo 850 mm; possuir área destinada à fixação do flange de vedação, com altura mínima de 350 mm, em relação à base inferior da câmara de contenção.

A câmara de contenção sob a unidade de abastecimento (sump de bomba) é um recipiente estanque usado sob a unidade de abastecimento de combustível, para contenção de possíveis vazamentos e derrames. O fabricante deve definir os modelos de câmaras de contenção correspondentes à unidade abastecedora a que se destina. A câmara de contenção deve ser capaz de conter provisoriamente eventual vazamento e derrame de tubulações, conexões e equipamentos instalados em seu interior; depois de instalada, ser capaz de suportar as pressões exercidas pelo solo; possuir dispositivo que permita a fixação da unidade abastecedora e a ancoragem da câmara de contenção ao pavimento; permitir a instalação do flange de vedação, mantendo a estanqueidade do conjunto; em seu conjunto (flange de vedação e câmara de contenção), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783; possuir altura total mínima de 625 mm; permitir a instalação dos componentes de interligação da unidade abastecedora correspondente ao modelo da câmara de contenção.

A câmara de contenção da interligação da unidade de filtragem (sump de filtro) é um recipiente estanque usado para conter as conexões e equipamentos de interligação da unidade de filtragem, para contenção de possíveis vazamentos. O fabricante deve definir os modelos de câmaras de contenção correspondentes à unidade de filtragem a que destina. A câmara de contenção deve ser capaz de conter provisoriamente eventual vazamento de tubulações, conexões e equipamentos instalados em seu interior; possibilitar acesso às conexões e equipamentos da interligação da unidade de filtragem, instalados em seu interior; quando instalada, suportar as pressões exercidas pelo solo; permitir a instalação de flange de vedação e manter a estanqueidade do conjunto; permitir a instalação dos componentes de interligação da unidade de filtragem correspondente ao modelo da câmara de contenção; em seu conjunto (flange de vedação e câmara de contenção), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783.

A câmara de contenção para emenda mecânica de tubulação é um recipiente estanque, com tampa, para contenção de possíveis vazamentos e acesso à (s) tubulação (ões) e conexão (ões) de emenda instalado(s) em seu interior. A câmara de contenção deve ser capaz de conter provisoriamente eventual vazamento de tubo (s) e conexão (ões) instalado (s) em seu interior; possuir tampa que permita o acesso ao seu interior; depois de instalada, ser capaz de suportar as pressões exercidas pelo solo; permitir a instalação do flange de vedação, mantendo a estanqueidade do conjunto; em seu conjunto (flange de vedação e câmara de contenção), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783.

A câmara de medição é um recipiente formado por reservatório estanque e câmara de calçada, usado no ponto de medição de combustível. A câmara de contenção deve ser projetada e fabricada para montagem na tubulação de medição do tanque; permitir a absorção de movimentos do solo e de acomodação do tanque; possuir câmara de calçada projetada e fabricada de forma a inibir a entrada de líquido presente na pista, dimensionada para admitir o tráfego de veículos; possuir aro da câmara de calçada acoplado à câmara de contenção.

Os dispositivos associados são a câmara de calçada; os flanges de vedação (boot); a câmara de monitoramento do interstício do tanque de parede dupla (spill de monitoramento); a caixa de passagem para sensor de monitoramento do interstício do tanque de parede dupla. Todas as câmaras de contenção e os dispositivos associados, exceto a caixa de passagem para sensor de monitoramento do interstício do tanque de parede dupla, devem ser ensaiados para demonstrar a sua adequabilidade ao emprego pretendido, conforme os Anexos A a E.

Para os flanges de vedação (boot), os ensaios específicos devem ser realizados com o conjunto montado em câmara de contenção. Quando os ensaios previstos nesta norma forem bem-sucedidos, as câmaras de contenção e os dispositivos associados devem ser considerados aprovados para sua aplicação. Os ensaios de qualificação devem ser efetuados sempre que houver mudança na matéria-prima (especificação, formulação e/ou fornecedor), processo (planta, processos e/ou equipamentos) e/ou projeto.

O ensaio dimensional deve ser realizado, em 15% das peças de cada lote de produção, conforme estabelecido pelo fabricante. Deve ser efetuada a análise dimensional sem que discrepâncias sejam identificadas. No caso específico da espessura das paredes do corpo plástico do reservatório da câmara, as amostras devem ser verificadas em quantidades de pontos suficientes para verificação da espessura mínima especificada nos projetos dos produtos qualificados.

Os ensaios gerais em equipamentos eletromédicos

Sempre que possível, convém que as normas contenham as especificações de ensaio para a verificação completa e clara da conformidade com os requisitos técnicos.

A ABNT IEC/TR 62354 de 10/2020 – Procedimentos de ensaio gerais para equipamentos eletromédicos é aplicável aos equipamentos eletromédicos (conforme definido nas Subseções 3.63 da NBR IEC 60601-1:2010 e 2.2.15 da NBR IEC 60601-1:1994), doravante denominados Equipamentos EM. O objetivo deste Relatório Técnico é fornecer orientação sobre os procedimentos de ensaio gerais, de acordo com a NBR IEC 60601-1:1994 (incluindo a norma colateral da NBR IEC 60601-1-1:2004), assim como com a NBR IEC 60601-1:2010 e a NBR IEC 60601-1:2010/EMENDA 1:2016.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os requisitos para uma conexão a uma fonte de alimentação separada?

Quais os requisitos gerais para o equipamento de medição e de ensaio?

Quais são as especificações para a exatidão da faixa de medição?

Quais as grandezas fora do sistema SI de unidades que podem ser utilizadas?

O IEC/TR 60513, (Fundamental aspects of safety standards for medical electrical equipment), publicada pelo subcomitê 62A da IEC, forneceu a base para a inclusão dos métodos de ensaio para o EQUIPAMENTO EM nas normas de segurança. “Requisitos técnicos e métodos de ensaio são elementos inter-relacionados das normas de produto e convém que sempre sejam considerados de forma conjunta.

Convém que as normas de produto identifiquem quando os julgamentos médicos informados são requeridos para decidir se um requisito em particular é aplicável. Sempre que possível, convém que as normas contenham as especificações de ensaio para a verificação completa e clara da conformidade com os requisitos técnicos. Em alguns casos, a declaração de conformidade, como “inspeção visual”, “ensaio manual” ou similar, é adequada para este propósito, se tal método fornece uma avaliação exata.

Convém que seja fácil reconhecer quais métodos de ensaio são aplicáveis a cada requisito técnico. Convém que títulos apropriados designem o ensaio apropriado e que uma referência seja feita à seção que contém o requisito. Isso também é aplicável às referências feitas a outras normas de ensaio relevantes.

Foi considerado necessário fornecer suporte à NBR IEC60601-1, com orientações para PROCEDIMENTOS de ensaio gerais para EQUIPAMENTOS ELETROMÉDICOS. Quando do desenvolvimento dos PROCEDIMENTOS de ensaio, as recomendações presentes no IEC/TR 60513 e no ISO/IEC Guide 51 foram consideradas conforme a seguir. Convém que os resultados de ensaio sejam reprodutíveis dentro dos limites especificados. Quando considerado necessário, convém que o método de ensaio incorpore uma declaração quanto ao seu limite de incerteza. Quando a sequência de ensaios puder influenciar os resultados, convém que a sequência correta seja especificada. Há, também, um apoio crescente à ideia de que convém que todos os PROCEDIMENTOS de ensaio para o EQUIPAMENTO EM sejam encontrados em uma única norma internacional.

A NBR ISO/IEC 17025, Requisitos gerais para a competência dos laboratórios de ensaio e calibração, enfatiza a necessidade para uma única série de requisitos que abranja os PROCEDIMENTOS de ensaio. O IEC/TR 60513 inclui um novo princípio essencial com relação aos ensaios: “Ao especificar os requisitos mínimos de segurança, uma provisão é feita para avaliar a adequação do PROCESSO de projeto, o que fornece uma alternativa apropriada à aplicação dos ensaios em laboratório com critérios específicos de aprovação/reprovação (por exemplo, ao avaliar a segurança de novas tecnologias, como sistemas eletrônicos programáveis)”.

Os “ENSAIOS DE TIPO” são requeridos para a verificação da SEGURANÇA BÁSICA e do DESEMPENHO ESSENCIAL do projeto do produto. Os ensaios descritos neste Relatório Técnico também podem ser utilizados pelo FABRICANTE para garantir a qualidade do produto e do PROCESSO de fabricação. Ver Anexo I. Um ensaio não precisa ser realizado, se a análise mostrar que a condição sendo ensaiada foi adequadamente avaliada por outros ensaios ou métodos.

Convém que os resultados da ANÁLISE DE RISCO sejam utilizados de forma adicional para determinar qual (is) combinação (ões) de falhas simultâneas convém que sejam ensaiada (s). Os resultados de ensaio podem fazer com que seja necessário revisar a ANÁLISE DE RISCO. Ao ensaiar o EQUIPAMENTO EM, convém que as informações relevantes fornecidas pelo FABRICANTE nas instruções para utilização sejam levadas em consideração.

Antes do início do ensaio, convém que o EQUIPAMENTO EM sob ensaio (o equipamento sob ensaio ou ESE) seja desconectado da REDE DE ALIMENTAÇÃO ELÉTRICA. Se isto não for possível, convém que precauções especiais sejam tomadas para prevenir DANO ao pessoal que executa os ensaios e as medições ou a outras pessoas que possam ser afetadas.

Conexões, como linhas de dados ou condutores de aterramento funcionais, podem atuar como CONEXÕES DE ATERRAMENTO PARA PROTEÇÃO. Essas CONEXÕES DE ATERRAMENTO PARA PROTEÇÃO adicionais, mas não intencionais, podem levar a erros de medição. A menos que especificado de outra forma na NBR IEC 60601-1, o EQUIPAMENTO EM deve ser ensaiado nas condições de trabalho menos favoráveis. As condições de trabalho são especificadas nos DOCUMENTOS ACOMPANHANTES.

As condições de trabalho menos favoráveis devem ser documentadas para cada ensaio onde elas são aplicáveis. Considerando a temperatura, a umidade e a pressão ambiente indicadas na descrição técnica, convém que os ensaios sejam executados nos extremos de pior caso, dependendo do ensaio e dos efeitos destes parâmetros nos resultados de ensaio. Se o ensaio não for impactado por esses parâmetros, então o ensaio pode ser conduzido em qualquer ponto dentro da faixa especificada.

Convém que tampas e invólucros sejam abertos somente: se requerido nas instruções para utilização do EQUIPAMENTO EM, ou se especificado neste Relatório Técnico, ou se houver uma indicação de PERIGO ou SITUAÇÃO PERIGOSA. Convém que seja dada atenção especial ao seguinte: convém que todos os fusíveis acessíveis externamente sejam marcados (tipo, classificações) no EQUIPAMENTO EM ou marcados por referência e especificados nos DOCUMENTOS ACOMPANHANTES; convém que as marcações sejam legíveis e completas; qualquer dano.

Convém que ACESSÓRIOS relevantes sejam avaliados juntamente com o EQUIPAMENTO EM (por exemplo, CABOS FLEXÍVEIS DE ALIMENTAÇÃO REMOVÍVEIS ou FIXOS, cabos do PACIENTE, tubulação etc.). Convém que toda a documentação requerida, tal como as instruções para utilização, estejam presentes e completas e reflitam a revisão atual do EQUIPAMENTO EM.

Alguns ensaios especificados neste documento são conduzidos na CONDIÇÃO NORMAL, enquanto outros são conduzidos nas CONDIÇÕES ANORMAIS SOB UMA SÓ FALHA. A CONDIÇÃO NORMAL e as CONDIÇÕES ANORMAIS SOB UMA SÓ FALHA estão descritas tanto na NBR IEC 60601-1:1994 quanto na NBR IEC 60601-1:2010. Os ENSAIOS DE TIPO são executados em uma amostra representativa do item sendo avaliado. Múltiplas amostras podem ser utilizadas simultaneamente, se a validação dos resultados não for significativamente afetada.

A menos que declarado de outra forma, os ensaios neste Relatório Técnico devem ser sequenciados de uma maneira que os resultados de qualquer ensaio não influenciem os resultados de outros ensaios. Convém que os ensaios, se aplicável, sejam executados na sequência indicada no Anexo A, a menos que indicado de outra forma pelas normas específicas. Entretanto, isso não exclui a possibilidade de conduzir um ensaio que possa levar a uma falha, segundo sugerido pela inspeção preliminar.

Os ensaios para PERIGOS de radiação, biocompatibilidade, USABILIDADE, sistemas de alarmes, SEMP e compatibilidade eletromagnética podem ser executados independentemente dos ensaios especificados neste documento. Convém que os ensaios especificados para SISTEMAS EM sejam executados na mesma sequência que os ensaios para EQUIPAMENTOS EM. Convém que as seguintes condições gerais de ensaio descritas a seguir sejam aplicadas. Após o ESE ter sido ajustado para a UTILIZAÇÃO NORMAL, os ensaios são realizados nas condições de trabalho menos favoráveis, as quais são especificadas nos DOCUMENTOS ACOMPANHANTES.

O ESE deve estar blindado contra outras influências (por exemplo, correntes de ar) que possam afetar a validação dos ensaios. Nos casos em que as temperaturas ambientes não puderem ser mantidas, as condições de ensaio devem ser, consequentemente, modificadas, e os resultados ajustados de forma apropriada. Estes ensaios devem ser executados por pessoal qualificado. As qualificações incluem treinamento sobre o assunto, conhecimento, experiência e familiaridade com as tecnologias e regulamentações relevantes.

Convém que o pessoal responsável seja capaz de avaliar a segurança e reconhecer possíveis consequências e PERIGOS que possam surgir do EQUIPAMENTO EM não conforme. Convém que os ACESSÓRIOS para o EQUIPAMENTO EM, os quais podem afetar a segurança do ESE ou os resultados das medições, sejam incluídos nos ensaios. Os ACESSÓRIOS incluídos nos ensaios devem ser documentados. Todos os ensaios devem ser executados de tal maneira que não seja apresentado RISCO algum ao pessoal responsável pelo ensaio, aos PACIENTES ou a outras pessoas.

Se não indicado de outra forma, todos os valores para corrente e tensão são valores eficazes (r.m.s.) ou valores cc, conforme apropriado. Convém que todos os ensaios executados sejam documentados de forma completa. Convém que a documentação contenha pelo menos os seguintes dados: a identificação do organismo de ensaio (por exemplo, organização, departamento); os nomes dos responsáveis pela execução dos ensaios e da (s) avaliação (ões); a identificação do EQUIPAMENTO EM (por exemplo, tipo, número de série, número do inventário) e dos ACESSÓRIOS ensaiados; as medições (valores medidos, método de medição, equipamento de medição, condições ambientais); a data e a assinatura do responsável pela execução da avaliação; e, se aplicável, convém que o EQUIPAMENTO EM ensaiado esteja marcado/identificado de forma apropriada.

Além dos ENSAIOS DE TIPO, o FABRICANTE do EQUIPAMENTO EM pode estabelecer o intervalo e a extensão do ensaio para inspeção periódica, e deve disponibilizar essas informações nos DOCUMENTOS ACOMPANHANTES. Ao estabelecer o intervalo dos ensaios, convém que as seguintes considerações sejam levadas em conta: o nível de RISCO do EQUIPAMENTO EM, conforme descrito no ARQUIVO DE GERENCIAMENTO DE RISCO, a frequência de sua utilização, o ambiente operacional, o tipo do EQUIPAMENTO EM (ESTACIONÁRIO, MÓVEL, de emergência), e a frequência de ocorrência de falhas no produto.

Se os DOCUMENTOS ACOMPANHANTES não trouxerem informações sobre o intervalo de ensaio para a inspeção periódica (por exemplo, para um EQUIPAMENTO EM mais antigo), ele pode ser estabelecido por uma pessoa competente. Ao especificar o nível de RISCO, convém que os fatores e as recomendações do FABRICANTE acima sejam levados em consideração. O intervalo de ensaio para a inspeção periódica pode estar na faixa de 6 a 36 meses.

Em caso de necessidade de reparos ou modificações após uma falha ou a probabilidade de ocorrência de uma falha durante a sequência de ensaios, o laboratório de ensaio e o fornecedor do EQUIPAMENTO EM podem entrar em acordo sobre a utilização de uma nova amostra na qual todos os ensaios relevantes sejam realizados novamente ou, preferencialmente, sobre a realização de todos os reparos ou modificações necessárias, depois das quais somente ensaios relevantes sejam repetidos. A menos que especificado de outra forma na NBR IEC 60601-1, o EQUIPAMENTO EM deve ser ensaiado nas condições de trabalho menos favoráveis.

As condições de trabalho são especificadas nos DOCUMENTOS ACOMPANHANTES. As condições de trabalho menos favoráveis devem ser documentadas para cada ensaio ao qual elas se aplicam. O EQUIPAMENTO EM com valores operacionais que podem ser ajustados ou controlados pelo OPERADOR é ajustado, como parte dos ensaios, para valores menos favoráveis para o ensaio relevante, mas de acordo com as instruções para utilização.

Se os resultados de ensaio forem influenciados pela pressão e fluxo de entrada ou pela composição química do líquido de resfriamento, o ensaio deve ser realizado dentro dos limites para essas características, conforme requerido na descrição técnica. Quando a água de resfriamento for requerida, deve ser utilizada água potável. Exceto em casos especiais, como suportes do PACIENTE e colchões d’água, supõe-se que o contato com o EQUIPAMENTO EM seja feito com: uma mão, simulada para medições da CORRENTE DE FUGA por uma folha metálica de 10 cm × 20 cm (ou menor, se o EQUIPAMENTO EM total for menor); um dedo, esticado ou dobrado em uma posição natural, simulado por um dedo de ensaio padrão, fornecido com uma placa de fim de curso; ou uma aresta ou fenda que possa ser puxada para fora, permitindo a entrada subsequente de um dedo, simulado por uma combinação de gancho de ensaio e dedo de ensaio padrão.

Consulta pública para atualizar o Programa Brasileiro de Etiquetagem Veicular (PBEV)

Para atualizar a regulamentação do Programa Brasileiro de Etiquetagem Veicular (PBEV), o Inmetro colocou em consulta pública proposta para alteração dos requisitos de avaliação da conformidade para veículos leves de passeio e comerciais leve. O processo está aberto até o dia 7 de dezembro de 2020. Críticas e sugestões deverão ser encaminhadas no formato especificado em http://www.inmetro.gov.br/legislacao/rtac/pdf/RTAC002669.pdf

Com a adesão de 100% da frota nacional e coordenado pelo Inmetro, em parceria com o Ibama (Instituto Brasileiro do Meio Ambiente e dos Recursos Naturais Renováveis), Cetesb (Companhia Ambiental do Estado de São Paulo) e Petrobras, o PBEV chegará ao seu 13º ciclo em 2021 refletindo o desenho atual do mercado automotivo do País. A nova versão do PBEV mostrará a presença cada vez maior de modelos de veículos leves de passageiros e comerciais leves com motores híbridos e elétricos. A lista atualizada será publicada em janeiro do ano que vem.

Além disso, a tabela de classificação atualiza as categorias de veículos em função dos vários lançamentos de modelos com novas configurações e dimensões; reduz as faixas de tolerância e define novas medidas de consumo por tipo de veículos para os próximos anos. “Tudo isso evidencia a esperada evolução e melhoria contínua do PBEV”, assinala Victor Simão, coordenador do Programa.

Com a chegada dos híbridos e elétricos, o Inmetro também precisou atualizar a base normativa referenciada na regulamentação para a nova métrica de cálculo da eficiência desses veículos, com base na NBR 16567 de 09/2020 – Veículos rodoviários híbridos elétricos leves – Medição de emissão de escapamento e consumo de combustível e energia – Métodos de ensaio que estabelece um método para medição e cálculo das emissões de gases de escapamento e do consumo de combustível e energia em veículos leves elétricos híbridos e híbridos plug-in, nos ciclos de condução urbano – CCU e estrada – CCE, assim como em outros ciclos, se requeridos, desde que o veículo funcione sob condições representativas do uso normal.

Em relação à inovação tecnológica, Victor Simão destacou a tendência do downsizing (redução) no tamanho dos motores, proporcionando maior eficiência energética com melhor desempenho, e processo crescente de eletrificação dos veículos. A tabela do PBEV 2021 tem a inclusão de novos modelos na categoria SUV, compactos e utilitários com motores elétricos, como os lançamentos do Peugeot 208 E-GT, importado da França, o VW Golf GTE, o Renault Kangoo ZE e o Chery Arrizo 5E, modelos que possuem ambas as versões com motores a combustão e elétricos.

O Programa Brasileiro de Etiquetagem Veicular (PBEV) foi criado em 2008, com a adesão de apenas três marcas, no total de dez modelos. Atualmente, 12 anos depois, fazem parte do Programa 36 marcas, no total de 1.034 modelos/versões, reunidos em 15 categorias. Com a adesão de todos os fabricantes nacionais e importadores, 100% dos carros comercializados no país são etiquetados – isso significa uma frota nacional de mais de 40 milhões de veículos classificados que recebem do Inmetro a Etiqueta Nacional de Conservação de Energia (ENCE).

Os automóveis que são mais eficientes e obtêm as melhores classificações em sua categoria e também no ranking geral serão contemplados adicionalmente com o Selo Conpet de Eficiência Energética, concedido pela Petrobras, parceira do Inmetro no PBEV. Ao atingir os 100% de adesão de fabricantes e importadores, o PBEV atende a uma das metas do Programa Rota 2030 – Mobilidade e Logística, do governo federal, cujas diretrizes incentivam o ganho de eficiência energética, desempenho estrutural e a disponibilidade de tecnologias inovadoras à automação dos veículos comercializados no Brasil. A contrapartida é a concessão de incentivos fiscais às empresas do setor que investem em P&D (Pesquisa e Desenvolvimento) e inovação.

“Apesar de ter como público-alvo o setor automotivo, contemplando as montadoras e importadores de veículos, os fabricantes de autopeças e os trabalhadores da cadeia de suprimentos do setor também são beneficiados pelos resultados do Rota 2030. A sociedade como um todo sai ganhando, especialmente no aumento da eficiência energética e da segurança dos veículos comercializados no país”, conclui Victor Simão.

 

O uso do corta-chamas para evitar riscos em instalações industriais

Saiba como se deve fazer a seleção de corta-chamas, de acordo com a NBR ISO 16852, para os diferentes cenários com as melhores práticas para seleção, instalação e manutenção destes. 

A NBR 16906 de 09/2020 – Corta-chamas — Requisitos de seleção, instalação, especificação e manutenção estabelece os requisitos para a seleção de corta-chamas, de acordo com a NBR ISO 16852, para os diferentes cenários com as melhores práticas para seleção, instalação e manutenção destes. Descreve os possíveis riscos que podem ocorrer em instalações industriais e fornece os tipos de proteção para uso do corta-chamas. Esta norma se destina principalmente a técnicos responsáveis pelo projeto e pela operação segura de instalações industriais e de equipamentos que usam líquidos, vapores ou gases inflamáveis.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os limites de velocidade máxima de fluxo?

Como fazer a seleção de corta-chamas?

Como deve ser feita a marcação de equipamentos com limites de aplicação?

Quais são os limites de instalação dos corta-chamas?

O corta-chamas é um dispositivo instalado na abertura de um equipamento ou no duto de conexão de um sistema de processo e cuja função pretendida é permitir o fluxo, mas evitar a transmissão da chama. Os corta-chamas são necessários para proteger os equipamentos e as tubulações contra vários tipos de explosão que possam ocorrer nos seus interiores. Entretanto, esta segurança depende da seleção do tipo adequado de corta-chamas, de sua correta instalação e da sua manutenção.

Esta norma fornece orientações importantes para o uso de corta-chamas, além das orientações dos manuais de operação dos fabricantes e das resoluções de segurança e ambientais. Os corta-chamas são projetados para uso em áreas com risco de explosão.

É prioridade dar atenção à prevenção de formação de atmosferas explosivas em unidades de processo para evitar o desenvolvimento de uma potencial explosão. A prevenção de explosão pode ser efetuada pela redução de uso ou limitando a concentração das substâncias inflamáveis no processo. A prevenção também pode ser realizada por meio da inertização de equipamentos.

Caso a prevenção da formação de atmosfera explosiva não seja possível, é necessário se evitar a presença de qualquer fonte de ignição no local. Para tanto, o uso de medidas de proteção auxilia a evitar ou a reduzir a probabilidade de ocorrência de potenciais fontes de ignição. É possível que a probabilidade de formação de atmosfera explosiva e de fonte de ignição esteja presente no mesmo tempo e local. Neste caso, é preciso determinar as medidas corretas de proteção do equipamento.

Uma medida de segurança recomendada é a classificação de área pelo conceito de zonas de risco de explosão, de acordo com a NBR IEC 60079-10-1. Os corta-chamas devem ser ensaiados de acordo com a NBR ISO 16852 e atender a todos os requisitos de segurança desta norma. Em muitos casos, não é possível identificar previamente a possibilidade de formação de atmosferas explosivas ou de fontes de ignição. Para tanto, é necessário adotar medidas para minimizar os efeitos da explosão. Os tipos de medidas de segurança contra os efeitos de uma explosão são: projeto de equipamentos resistentes à explosão; alívio de explosão; supressão de explosão; prevenção da formação de chama e da propagação da explosão.

A ocorrência de uma explosão em uma unidade de processo pode se propagar para partes a montante e a jusante de sua ocorrência, podendo causar explosões secundárias. A aceleração causada por acessórios da unidade de processo ou pela propagação por tubulações pode intensificar os efeitos de uma explosão. As pressões decorrentes de uma explosão podem ser superiores à pressão máxima de explosão sob condições normais de operação, e podem destruir partes da unidade de processo, mesmo que estas tenham sido projetadas para resistir à pressão de explosão ou para resistência mecânica.

Portanto, é importante limitar possíveis explosões em determinadas partes da unidade de processo. Esta limitação pode ser obtida pela técnica de bloqueio mecânico de uma explosão. Este bloqueio normalmente é efetuado por válvulas de isolamento ou corta-chamas. As áreas perigosas de instalações industriais são classificadas de acordo com a NBR IEC 60079-10-1, em zonas de riscos de explosão, dependendo da frequência e da duração da presença de atmosferas explosivas, conforme tabela abaixo.

As aberturas de equipamentos (reatores, vasos de pressão, etc.) à prova de explosão, onde explosões internas possam ocorrer, devem ser equipadas com corta-chamas à prova de deflagrações volumétricas, de modo a prevenir a propagação da explosão do interior para o exterior desses equipamentos, quando estiverem conectados a outros equipamentos não resistentes a essa condição, ou se houver a presença de pessoas no local do alívio.

De acordo com a NBR ISO 16852, o conceito de segurança de instalações industriais usando corta-chamas à prova de detonações estáveis depende da probabilidade de ocorrência de eventos adversos (transmissão de chama de uma fonte de ignição), e da extensão das consequências destes eventos (capacidade destrutiva da onda de choque da explosão). A tabela abaixo apresenta a quantidade requerida de medidas independentes de proteção contra a transmissão de chama diante das consequências graves da explosão, conforme a NBR ISO 16852.

Dependendo da classificação de áreas e da probabilidade de presença de fontes de ignição, os corta-chamas podem ser usados em combinação com outras medidas de proteção, por exemplo, os corta-chamas em série, sistemas de inertização, sistemas de controle de concentração, válvulas de isolamento, sensores de temperatura e/ou controle de potenciais fontes de ignição. Caso as misturas inflamáveis sejam processadas durante a operação em grandes volumes e por longos períodos (por exemplo, durante o enchimento de tanques e/ou transferência de vapores a uma unidade de incineração), é necessário prever a formação de combustão contínua no corta-chamas.

Caso os corta-chamas não sejam adequados para combustão contínua, são requeridas medidas adicionais para evitar esta condição. Os corta-chamas são equipamentos que permitem a passagem de misturas gasosas através deles, mas impedem a transmissão de chama, prevenindo uma explosão ou um fogo maior. Existem diversas situações em que se aplicam os corta-chamas.

Os riscos de explosão dependem dos processos de combustão, que são função das condições e estrutura dos ambientes. Os corta-chamas são projetados para processos específicos de combustão. Assim sendo, há uma grande variedade de tipos de corta-chamas (por exemplo, em linha ou fim de linha, para tubulações de grandes e pequenos diâmetros, etc.). Existem alguns possíveis locais típicos de instalação de corta-chamas, por exemplo: tanques de armazenamento; sistemas de processamento; sistema de combustão de vapores, incineradores, tochas (flares); navios, plataformas marítimas (offshore), veículos e sistemas de carregamento; unidades de recuperação de vapores; integrado a bombas, a sopradores e outras máquinas.

Para as condições de operação que levam à combustão estabilizada das misturas diretamente sobre o elemento do corta-chamas, há apenas uma segurança limitada em tempo contra a transmissão de chama. Nesse caso, os corta-chamas em linha devem ser equipados com sensores de temperatura para detectar a chama e disparar medidas para suprimir a combustão estabilizada (por exemplo, funções de emergência, como desligar a unidade de processo, inertização, etc.) na metade do tempo para o qual o dispositivo for resistente à combustão de curta duração.