Identificando os produtos perigosos no transporte terrestre

O produtos perigosos são todos aqueles que podem trazer algum risco para a saúde das pessoas, para a segurança pública ou para o meio ambiente. De todos os segmentos que exercem atividades com produtos perigosos, as realizadas no transporte rodoviário são as que mais possuem ocorrências envolvendo acidentes com vazamento.

As liberações acidentais desses produtos químicos podem desencadear diferentes impactos, como danos à saúde, ao ecossistema, à segurança da população e ao patrimônio público ou privado. Por isso, a legislação prevê que todos os veículos que transportam produtos perigosos devem portar informações que facilitam a identificação do material que está sendo transportado e seus respectivos riscos. E é obrigatório cumprir as normas técnicas sobre o assunto.

Uma delas é a NBR 7500 (SB54) de 05/2018 – Identificação para o transporte terrestre, manuseio, movimentação e armazenamento de produtos que estabelece a simbologia convencional e o seu dimensionamento para identificar produtos perigosos, a ser aplicada nas unidades e equipamentos de transporte e nas embalagens/volumes, a fim de indicar os riscos e os cuidados a serem tomados no transporte terrestre, manuseio, movimentação e armazenamento.

Esta norma estabelece as características complementares ao uso dos rótulos de risco, dos painéis de segurança, dos símbolos especiais, dos rótulos especiais e dos símbolos de risco e de manuseio, bem como a sinalização das unidades e equipamentos de transporte e a identificação das embalagens/volumes de produtos perigosos discriminados na legislação vigente.

Esta norma estabelece os símbolos de manuseio, movimentação, armazenamento e transporte, para os produtos classificados como perigosos para transporte e os não perigosos, conforme previsto no Anexo P. Esta norma se aplica a todos os tipos de transportes e suas formas intermodais.

A identificação de riscos para os produtos perigosos é constituída de: sinalização da unidade ou equipamento de transporte (rótulos de risco, painéis de segurança e demais símbolos, quando aplicável); rotulagem (afixação dos rótulos de risco na embalagem/volume); marcação (número ONU e nome apropriado para embarque na embalagem/volume); e d) outros símbolos e rótulos aplicáveis às embalagens/volumes de acordo com o modal de transporte. A identificação de riscos nos locais de armazenamento e manuseio de produtos perigosos, quando exigido em legislação específica, deve ser feita por rótulos de risco que atendam ao estipulado no Anexos B e C.

O nome apropriado para embarque, classe ou subclasse, número ONU, risco subsidiário, número de risco, grupo de embalagem, bem como outras informações referentes aos produtos classificados como perigosos para o transporte, devem ser obtidos em legislação vigente. Como informação, a disposição dos rótulos de risco, dos painéis de segurança e demais símbolos na unidade de transporte é apresentada no Anexo R para o transporte rodoviário e no Anexo S para o transporte ferroviário. No Anexo U é apresentada, como informação, a identificação das embalagens.

O rótulo de risco tem a forma de um quadrado em um ângulo de 45°, dividido em duas metades, com as seguintes características: a metade superior, exceto nos rótulos de risco da classe 9, da classe 7 (destinados a material físsil) e os das subclasses 1.4, 1.5 e 1.6 da classe 1, deve conter o símbolo de identificação de risco centralizado, conforme o Anexo D (símbolos para os rótulos de risco), com a maior dimensão possível, desde que não toque a linha interna da borda, conforme apresentado no Anexo A. A metade inferior próximo ao vértice inferior deve conter: para as classes 3, 7, 8 e 9, o respectivo número da classe; para as subclasses 1.1, 1.2, 1.3, 1.4, 1.5 e 1.6, o número 1; para as subclasses 2.1, 2.2 e 2.3, o número 2; para as subclasses 4.1, 4.2 e 4.3, o número 4; para as subclasses 6.1 e 6.2, o número 6; para as subclasses 5.1 e 5.2 o respectivo número da subclasse.

Pode ser incluído na metade inferior, acima do número da classe ou subclasse (nos casos específicos das subclasses 5.1 e 5.2), texto como o número ONU ou palavras, exceto para a classe 7, que descrevam a classe ou subclasse de risco (por exemplo, “LÍQUIDO INFLAMÁVEL”), desde que o texto não obscureça ou prejudique os outros elementos do rótulo. O texto, quando incluso no rótulo de risco, pode ser apresentado em qualquer idioma ou até em dois idiomas diferentes.

Para veículos e equipamentos, quando for incluído o número ONU no rótulo de risco, ele deve ser incluído em um retângulo de fundo na cor branca, com os caracteres na cor preta e com altura mínima de 65 mm, conforme estabelecido na Figura L.2 (todas as figuras citadas estão disponíveis na norma). Para as embalagens/volumes de pilhas e baterias de lítio que não atendam à provisão especial 188 estabelecida na legislação vigente[2], deve ser usado o rótulo de risco da Figura A.9-a).

O número da classe ou subclasse de risco (no caso específico das subclasses 5.1 e 5.2) deve ser posicionado o mais próximo possível do ângulo inferior do rótulo de risco, conforme a Figura B.1, não podendo tocar na linha interna da borda, em caracteres com altura mínima de 25 mm para unidades ou equipamentos de transporte ou no mínimo 8 mm para embalagem. Nos Anexos B e C constam o desenho, a modulação e as dimensões dos rótulos de risco que são destinados à identificação das embalagens/volumes e à sinalização das unidades e equipamentos de transportes.

As cores dos rótulos de risco devem atender ao estipulado no Anexo G. A borda do rótulo de risco deve ter a mesma cor do seu fundo, com exceção dos rótulos de risco da classe 7 (Figuras A.7-b), A.7-c) e A.7-d)) e da classe 8 (Figura A.8), que devem ser na cor branca. Os símbolos, textos, números da classe ou subclasse e a linha interna que determina o limite da borda devem ser apresentados na cor preta em todos os rótulos de risco, exceto: no rótulo de risco da classe 8 (Figura A.8), onde o texto (quando apresentado) e o número da classe devem ser na cor branca; nos rótulos de risco de fundo totalmente verde (Figura A.2-b)), vermelho (Figura A.2-a) e Figura A.3) e azul (Figura A.4-c)), os símbolos, textos, números da classe ou subclasse e a linha interna que determina o limite da borda podem também ser apresentados na cor branca.

No rótulo de risco da subclasse 5.2 (Figura A.5-b)), onde o símbolo pode ser apresentado também na cor branca, a linha interna que determina o limite da borda do rótulo de risco na metade superior deve ser na cor branca e na metade inferior deve ser na cor preta, assim como o número da subclasse de risco. Os rótulos de risco devem ser afixados sobre um fundo de cor contrastante ou devem ser contornados em todo o seu perímetro por uma linha externa da borda pontilhada ou contínua, ou devem ser afixados em porta-placas, desde que o porta-placas seja de cor contrastante.

O rótulo de risco da subclasse 4.1 (Figura A.4-a)) deve ter o fundo na cor branca, com sete listras verticais na cor vermelha. Todas as listras devem ter larguras iguais e ser distribuídas uniformemente ao longo da diagonal do rótulo de risco. Os rótulos de risco da classe 9 (Figuras A.9) devem ter o fundo na cor branca e, somente na parte superior, deve ter sete listras verticais, na cor preta. Todas as listras devem ter larguras iguais e ser distribuídas uniformemente ao longo da diagonal do rótulo de risco.

Para as embalagens/volumes de pilhas e baterias de lítio que não atendam à provisão especial 188 estabelecida na legislação vigente, deve ser usado o rótulo de risco da Figura A.9-a). A indicação da classe ou subclasse de risco principal e subsidiário dos produtos perigosos correspondente aos rótulos de risco apresentados está no Anexo A. As classes e subclasses de risco principal e subsidiário dos produtos perigosos estão na Relação de Produtos Perigosos das Instruções Complementares ao Regulamento do Transporte Terrestre de Produtos Perigosos, nas colunas 3 e 4, respectivamente, exceto se disposto de forma diferente em uma provisão especial.

Em certos casos, uma provisão especial indicada na coluna 7 da relação de produtos perigosos pode exigir a utilização de um rótulo de risco subsidiário mesmo que não haja indicação na coluna 4, assim como pode isentar da utilização do rótulo de risco subsidiário quando este for inicialmente exigido nessa mesma coluna 4. Está dispensada a fixação de um rótulo de risco subsidiário na mesma unidade ou equipamento de transporte ou na mesma embalagem/volume, se tais riscos já estiverem indicados pelos rótulos de risco já utilizados para indicar os riscos principais.

Volumes contendo produtos perigosos da classe 8 (substâncias corrosivas) estão dispensados de exibir o rótulo de risco subsidiário correspondente à subclasse 6.1, se a toxicidade decorrer apenas do efeito destrutivo sobre os tecidos. Volumes contendo produtos perigosos da subclasse 4.2 não necessitam portar rótulo de risco subsidiário correspondente à subclasse 4.1, mesmo que tenham a indicação na legislação vigente. Os rótulos de risco (principal ou subsidiário) devem atender às disposições dos Anexos B e C, e devem estar padronizados conforme as Figuras do Anexo A.

Quando as dimensões não estiverem especificadas, todas as características devem ser em proporção aproximada àquelas mostradas no Anexo A. Os rótulos de risco podem ser ampliados ou reduzidos, desde que mantida a sua proporção, devendo atender ao estipulado nos Anexos B e C, de modo a impedir deformações, omissões ou distorções. Também são aceitos os modelos de rótulos de risco apresentados na legislação vigente e nas regulamentações internacionais.

O rótulo de risco pode ser intercambiável ou dobrável, desde que seja construído em material metálico e possua dispositivo de encaixe com quatro travas de segurança, projetado e afixado de forma que não haja movimentação das suas partes sobrepostas ou que não se percam em razão de impactos ou ações não intencionais durante o transporte, atendendo aos requisitos do Anexo E. Não é permitida a utilização do verso do rótulo de risco removível para identificar outra classe ou subclasse de risco. É proibida a sobreposição de rótulos de risco e de símbolos, exceto o previsto em 15.3.2.

Os rótulos de risco refletivos ou não, independentemente do material de fabricação utilizado, devem ser capazes de suportar intempéries, sem que ocorra redução substancial de sua eficácia, e devem permanecer intactos durante o trajeto, preservando a função a que se destinam. Os rótulos de risco utilizados na identificação da unidade ou equipamento de transporte podem ser de material refletivo, exceto as legendas ou símbolos de cor preta que não podem ser refletivos. Na opção de uso de material refletivo, recomenda-se utilizar películas retrorrefletivas tipo III ou IX, constantes na NBR 14644.

As disposições específicas para os rótulos de risco da classe 1 (explosivos) estão descritas em 4.1.23.1 a 4.1.23.5. Os rótulos de risco das subclasses 1.4, 1.5 e 1.6 (Figuras A.1-b), A.1-c) e A.1-d)) devem exibir na metade superior o número da subclasse e na metade inferior a letra correspondente ao grupo de compatibilidade; o número da classe deve estar no vértice inferior. Os algarismos dos rótulos de risco indicativos das subclasses 1.4, 1.5 e 1.6 devem estar centralizados na parte superior do rótulo de risco e devem medir aproximadamente 30 mm de altura e 5 mm de espessura para os rótulos de risco com dimensões de 100 mm × 100 mm, aproximadamente 75 mm de altura e 12,5 mm de espessura para os rótulos de risco com dimensões de 250 mm × 250 mm e aproximadamente 90 mm de altura e 15 mm de espessura para os rótulos de risco com dimensões de 300 mm × 300 mm.

Para a sinalização das unidades ou equipamentos de transporte, todas as características devem ser em proporção aproximada àquelas mostradas nas Figuras A.1-b), A.1-c) e A.1-d). Os rótulos de risco das subclasses 1.1, 1.2 e 1.3 da classe 1 (Figura A.1-a)) devem exibir na metade superior o símbolo de identificação do risco (Figura D.1) e na metade inferior o número da subclasse, a letra correspondente ao grupo de compatibilidade relativo à substância ou ao artigo; o número da classe deve estar no vértice inferior.

As unidades ou os equipamentos de transporte transportando substâncias ou artigos de diferentes subclasses da classe 1 devem portar somente o rótulo de risco correspondente à subclasse de maior risco, conforme a seguinte ordem: 1.1 (maior risco), 1.5, 1.2, 1.3, 1.6 e 1.4 (menor risco). Os grupos de compatibilidade não podem ser indicados nos rótulos de risco da classe 1, se a unidade ou o equipamento de transporte estiver transportando substâncias ou artigos que pertençam a mais de um grupo de compatibilidade. As disposições específicas para os rótulos de risco da classe 7 (materiais radioativos) estão descritas em 4.1.24.1 a 4.1.24.7.

Os rótulos de risco para as unidades ou equipamentos de transportes que transportem materiais radioativos devem ter dimensões mínimas de 250 mm × 250 mm, com uma linha interna da borda de no mínimo 2 mm na cor preta e paralela ao seu perímetro, como indicado no Anexo C. A distância entre a linha externa e a linha interna (largura da borda) deve medir 5 mm de largura, o número da classe 7 localizado próximo do vértice inferior deve ter dimensões mínimas de 25 mm e na metade superior deve constar o símbolo conforme a Figura D.4.

Quando a expedição consistir em material radioativo BAE-I (baixa atividade específica-I) ou OCS-I (objeto contaminado na superfície-I) sem embalagem/volume ou, ainda, quando se tratar de uma remessa de uso exclusivo de materiais radioativos, correspondentes a um único número ONU, este número, em caracteres na cor preta, com altura não inferior a 65 mm, pode ser inscrito na metade inferior do rótulo acima do número da classe.

O uso da palavra “RADIOATIVO” nos rótulos de risco da classe 7 (materiais radioativos) utilizados em embalagens/volumes [Figuras A.7-a), A.7-b) e A.7-c)] é obrigatório. No rótulo de risco da classe 7, específico para ser utilizado em veículos [Figura A.7-d)],o uso da palavra “RADIOATIVO” é opcional, podendo ser apresentada em qualquer idioma. Quando se tratar de transporte de apenas um material radioativo e este não apresentar risco subsidiário, o rótulo de risco destinado à unidade ou equipamento de transporte, conforme a Figura A.7-d), pode apresentar o número ONU na parte inferior, sendo que, neste caso específico, a unidade ou equipamento de transporte não necessita portar painéis de segurança.

No rótulo de risco da classe 7, correspondente a material físsil (Figura A.7-e)), na parte superior deve constar somente o texto “Físsil” e, na metade inferior, um retângulo de bordas pretas com o texto “Índice de Segurança de Criticidade” e o número da classe no ângulo inferior. Nos rótulos de risco da classe 7 indicados nas Figuras A.7-a), A.7-b), A.7-c) e A.7-e), os campos relacionados devem ser preenchidos com as seguintes inscrições. O CONTEÚDO (constante nas Figuras A.7-a), A.7-b), A.7-c)): exceto para material BAE-I, indicar o nome do radionuclídeo.

Para mistura de radionuclídeos, relacionar os nuclídeos, mais restritivos na medida em que o espaço sobre a linha do rótulo de risco assim permitir. Para material BAE ou OCS, após o nome do radionuclídeo, indicar o grupo, usando os termos “BAE-II”, “BAE-III”, “OCS-I” e “OCS-II”, conforme aplicável. Para material BAE-I, basta assinalar a expressão “BAE-I”, dispensando o nome do radionuclídeo. A ATIVIDADE (constante nas Figuras A.7-a), A.7-b), A.7-c)): indicar a atividade máxima de conteúdo radioativo durante o transporte, expressa em unidades Becquerel (Bq) com o prefixo adequado do Sistema Internacional de Unidades.

Para material físsil, pode ser assinalada a massa em gramas (g), ou seus múltiplos, em lugar da atividade. Para sobreembalagens, tanques e contentores usados como sobreembalagens, devem ser indicados no campo próprio o CONTEÚDO e a ATIVIDADE, como descrito acima, totalizando o conteúdo inteiro da sobreembalagem, tanque ou contentor. Para sobreembalagens ou contentores que contenham volumes com diferentes radionuclídeos, deve ser escrito nos rótulos “VEJA DOCUMENTOS DE TRANSPORTE”.

O ÍNDICE DE TRANSPORTE – IT (constante nas Figuras A.7-b) e A.7-c)): indicar índice de transporte de acordo com a tabela abaixo; o ÍNDICE DE SEGURANCA DE CRITICALIDADE – ISC (constante na Figura A.7-e)): o rótulo de risco indicado na Figura A.7-e) deve ser completado com o índice de segurança de criticidade (ISC), como consta no certificado de aprovação para arranjo especial ou no certificado de aprovação para projeto de embalagem emitido pela autoridade competente. Para sobreembalagens e contentores, o índice de segurança de criticidade (ISC) no rótulo deve ter a informação totalizada do conteúdo físsil da sobreembalagem ou do contentor.

O painel de segurança tem a forma de um retângulo com fundo de cor alaranjada, com borda na cor preta em todo o contorno, apresentando na parte superior os números de identificação de risco (número de risco) e na parte inferior o número ONU, ambos na cor preta. A modulação, os tipos de algarismos e letra para o painel de segurança estão descritos no Anexo H.

A parte superior do painel de segurança é destinada ao número de identificação de risco, que é constituído por dois ou três algarismos e, quando aplicável, pela letra X (usada quando o produto reagir perigosamente com água). Exceto para os explosivos (classe 1), o fabricante do produto é responsável pela indicação do número de risco quando este não constar na legislação vigente.

Os painéis de segurança para artigos e substâncias da classe 1 (explosivos) não podem apresentar o número de risco na parte superior, apresentando somente o número ONU na parte inferior, conforme exemplo da Figura I.1-b). O número de identificação de risco permite determinar imediatamente os riscos do produto, conforme a legislação vigente. Quando o risco associado a uma substância puder ser adequadamente indicado por um único algarismo, este deve ser seguido do algarismo “zero”.

A repetição de algarismos indica intensificação do risco específico. Por exemplo: 30 – líquido inflamável; 33 – líquido altamente inflamável. Na parte inferior do painel de segurança, deve ser exibido o número de identificação do produto (número ONU), que é um número de série dado ao artigo ou substância, de acordo com o sistema das Nações Unidas, formado por quatro algarismos, conforme a legislação vigente.

Quando se tratar de transporte de vários produtos perigosos diferentes na mesma unidade ou equipamento de transporte, deve ser identificada por meio de painel de segurança sem qualquer inscrição dos números de risco e número ONU (deve ser todo alaranjado), conforme o exemplo apresentado na Figura I.1-a). As cores do painel de segurança devem atender ao estipulado no Anexo G. Os painéis de segurança utilizados na identificação da unidade ou equipamento de transporte podem ser de material refletivo, com exceção da borda, dos números e da letra “X” (quando aplicável), que são apresentados na cor preta.

Na opção de uso de material refletivo, recomenda-se utilizar películas retrorrefletivas tipo III ou IX, constantes na NBR 14644. Os painéis de segurança (incluindo a borda, os numerais e a letra, quando aplicável) refletivos ou não, independentemente do material de fabricação utilizado, devem ser capazes de suportar intempéries, sem que ocorra redução substancial de sua eficácia, e devem permanecer intactos durante o trajeto, preservando a função a que se destinam.

A modulação e as dimensões do painel de segurança, dos algarismos e da letra usada no painel de segurança devem atender ao modelo estabelecido na Figura H.1 (exceto a largura do algarismo 1, que deve ser menor). Os algarismos e a letra do painel de segurança devem atender ao

modelo estabelecido na Figura H.2. Os algarismos e a letra do painel de segurança podem ser pintados, adesivados ou em alto relevo. No caso de painéis de segurança intercambiáveis, estes devem ser construídos em material metálico e possuir dispositivo de encaixe com trava segura superior ou lateral, como especificado no Anexo J.

Não é permitida a sobreposição de algarismo(s) e letra no painel de segurança. O símbolo para transporte de produto à temperatura elevada deve ter a forma de um triângulo equilátero na cor vermelha, medindo no mínimo 250 mm cada lado, com um termômetro ao centro também na cor vermelha, sobre um fundo de cor branca, conforme a Figura M.1. No transporte rodoviário, as unidades e equipamentos de transporte carregados com substância em estado líquido, que seja transportada ou oferecida para transporte a uma temperatura igual ou superior a 100 °C, ou com substância em estado sólido a uma temperatura igual ou superior a 240 °C, devem portar o símbolo para transporte de produto à temperatura elevada nas duas extremidades (frente e traseira) e nas duas laterais, conforme descrito em 7.5 e 8.5.

No transporte ferroviário, as unidades e equipamentos de transporte carregados com substância em estado líquido, que seja transportada ou oferecida para transporte a uma temperatura igual ou superior a 100 °C, ou com substância em estado sólido a uma temperatura igual ou superior a 240 °C, devem portar o símbolo para transporte de produto à temperatura elevada nas duas laterais, conforme descrito em 12.5 e 13.5.

O símbolo para o transporte de substâncias perigosas para o meio ambiente tem a forma de um quadrado, com a linha de contorno com largura mínima de 2 mm, na cor preta, apoiado sobre um ângulo de 45°, sendo centralizado o símbolo (peixe e árvore), também na cor preta, sobre um fundo de cor branca (embalagem ou veículo) ou de cor contrastante (embalagem), conforme a Figura M.2. Somente é exigido o símbolo para o transporte de substâncias perigosas para o meio ambiente nas unidades e equipamentos de transporte que estão transportando as substâncias que se enquadrem nos critérios de classificação dos números ONU 3077 e/ou ONU 3082.

Nas unidades e equipamentos de transporte rodoviário, o símbolo para o transporte de substâncias perigosas para o meio ambiente deve ter dimensões mínimas de 250 mm × 250 mm e ser exibido nas duas extremidades (frente e traseira) e nas duas laterais, conforme descrito em 7.6 e 8.6. Nas unidades de transporte ferroviário, o símbolo para o transporte de substâncias perigosas para o meio ambiente deve ter dimensões mínimas de 250 mm × 250 mm e ser exibido nas duas laterais.

Não custa lembrar que as atividades de manuseio, carregamento e descarregamento de produtos perigosos em locais públicos devem ser realizadas respeitando-se as condições de segurança relativas às características dos produtos transportados e à natureza de seus riscos. O envase e/ou a transferência de produto perigoso em via pública são permitidos apenas em caso de emergência ou se houver legislação específica.

As operações de transbordo em caso de emergência devem ser realizadas com a orientação do expedidor ou fabricante do produto, que deve, antes de iniciar o processo, informar à autoridade pública com circunscrição sobre a via que, se possível, deve estar presente e acionar, quando necessário, os demais órgãos envolvidos. A remoção dos resíduos gerados nos acidentes de transporte, do local do acidente até seu primeiro destino, pode ser feita atendendo ao estabelecido na NBR 13221 de 11/2017 – Transporte terrestre de resíduos que estabelece os requisitos para o transporte terrestre de resíduos, de modo a minimizar danos ao meio ambiente e a proteger a saúde pública.

Anúncios

Revestimentos cerâmicos devem obrigatoriamente ser fabricados conforme a norma técnica

Para a construção de um empreendimento, há um elevado número de especialistas envolvidos em todo o seu processo, desde o planejamento até o acabamento final. O projetista tem a função de conhecer e avaliar todas as etapas envolvidas no complexo sistema estrutural de uma edificação.

A elaboração dos projetos, onde nasce a edificação, pode resultar um produto de qualidade e possibilitar um planejamento eficiente com redução de custos e prazos. No que se refere ao projeto de especificação do sistema de revestimento cerâmico, a falta de conhecimento e informação sobre o sistema de revestimento cerâmico entre os profissionais da construção civil, entre eles os engenheiros, arquitetos e os assentadores, pode ser a causa principal dos problemas.

O desempenho do processo de revestimento cerâmico de um empreendimento depende da relação de todos os materiais e suas técnicas de aplicação específica, para aquela situação de projeto. Sobre a eficiência do sistema de revestimento cerâmico, precisamos considerar vários fatores para garantir um bom resultado, a apropriação dos materiais ao tipo de uso, a qualidade e o planejamento dos serviços de assentamento e a manutenção após a aplicação de acordo com o uso a que se destina.

O mais importante é que os revestimentos cerâmicos a ser utilizados na edificação cumpram, de forma obrigatória, a norma técnica. A NBR 13755 de 11/2017 – Revestimentos cerâmicos de fachadas e paredes externas com utilização de argamassa colante – Projeto, execução, inspeção e aceitação – Procedimento estabelece as condições exigíveis para projeto, execução, inspeção e aceitação de revestimentos de paredes externas e fachadas com placas cerâmicas ou pastilhas assentadas com argamassa colante. Aplica-se a paredes constituídas pelos materiais relacionados a seguir e revestidas com chapisco seguido de uma ou múltiplas camadas de argamassa (figura): concreto moldado in loco; concreto pré-moldado; alvenaria de tijolos maciços; alvenaria de blocos cerâmicos; alvenaria de blocos de concreto; alvenaria de blocos de concreto celular; e alvenaria de blocos sílico-calcáreos. Os revestimentos cerâmicos que não são contemplados neste escopo podem utilizar a NBR 15575 como orientação para avaliação de desempenho, mesmo quando não aplicados em edificações habitacionais. Não se aplica a revestimentos já existentes, ou seja, aqueles sob análise após a conclusão da obra, pois necessitam de detalhamento específico de acordo com sua idade e condições atuais de desempenho.

Esta edição da NBR 13755 foi completamente reformulada em relação à de 1996, tanto em termos de conteúdo como de abordagem. Foi consenso do comitê de revisão que este texto deveria possuir um caráter orientativo, semelhante a um guia, onde o leitor pudesse encontrar informações e conhecimento para sanar suas dúvidas e tomar decisões frente à enorme variabilidade dos projetos de revestimento.

Esta postura tornou o texto mais agradável de ler, mais acessível e ao mesmo tempo com maior espectro de aplicação, uma vez que é inviável contemplar todos os casos existentes em uma única norma. Outros aspectos importantes e consagrados no meio técnico encontram-se alocados no texto de forma prescritiva, limitando soluções reconhecidamente de maior risco. Por exemplo, a execução do painel teste foi padronizada, dado que representa valiosa fonte de informações para a confecção do projeto.

Ao mesmo tempo, o projeto precisa declarar quais variáveis foram levadas em consideração, motivo pelo qual uma lista mínima é requerida e deve ser explicitada por escrito. Foram também criados mais três anexos relevantes, um normativo e dois informativos. O Anexo B (normativo) contempla o ensaio de resistência superficial, há anos solicitado pelo meio técnico e já extensivamente utilizado nas obras.

O Anexo C (informativo) trata de explicações detalhadas da teoria das juntas de movimentação, onde o leitor pode encontrar as informações que embasaram o item sobre juntas no corpo do texto, inclusive sobre as juntas estruturais. Por fim, o Anexo D (informativo) apresenta algumas sugestões sobre técnicas de preparo da base com o objetivo de melhorar a aderência dos revestimentos.

O texto foi montado de forma que os projetos resultantes apresentem certa homogeneidade e possam ser comparados e compilados no futuro, o que proporcionará a evolução do conhecimento técnico, aumento da vida útil das fachadas cerâmicas e a elaboração de uma nova versão deste texto, paulatinamente mais precisa e completa. O recebimento de todos os insumos deve ser planejado de modo a minimizar o manuseio no canteiro de obras. Cada material deve ser armazenado segundo seu tipo (respeitando exigências ergonômicas) em locais secos, limpos, cobertos, sem contato com o piso, devidamente identificados e com controle de acesso. O cimento utilizado deve estar de acordo com as Normas Brasileiras específicas. Os agregados devem estar conforme a NBR 7211. A água potável de abastecimento público é adequada para uso como água de amassamento. Maiores detalhes podem ser encontrados na NBR 15900-1.

Tanto o chapisco como a argamassa para emboço podem ser industrializados ou preparados em obra. Manuseio, preparo e requisitos dos produtos devem estar de acordo com as prescrições da NBR 7200 e NBR 13281. As argamassas cimentícias para rejuntamento devem estar de acordo ou superar as prescrições da NBR 14992. Caso sejam utilizados outros produtos, como misturas preparadas em obra, argamassas cimentícias aditivadas (bicomponentes) ou argamassas não cimentícias, as respectivas especificações devem constar no projeto de revestimento de fachada (PRF).

Os rejuntes cimentícios, embora tenham a capacidade de atenuar a penetração de água, não são impermeáveis; assim, quando juntas impermeáveis são necessárias, outros tipos de produtos devem ser considerados, desde que compatíveis com o local de aplicação. Ainda assim, os revestimentos cerâmicos com placas e rejuntes impermeáveis não podem ser considerados sistemas de acabamento impermeável.

A argamassa colante deve estar em conformidade com a NBR 14081-1, quando aplicável, e deve estar indicada em projeto em todos os casos. O termo argamassa colante engloba não somente os produtos descritos pela NBR 14081-1, mas contempla também produtos cimentícios bicomponentes ou mesmo produtos não cimentícios. Para os produtos não contemplados pela NBR 14081-1, como os bicomponentes ou não cimentícios, as propriedades específicas devem estar indicadas em projeto desde que não inferiores às mencionadas nesta subseção.

Para o assentamento de placas cerâmicas ou pastilhas, a argamassa deve ser, no mínimo, do tipo AC III. Exceções, que permitam o uso de produtos tipo AC II, devem estar indicadas em projeto e apenas podem ser utilizadas em edifícios de altura total (computada do nível do solo ao ponto mais alto do sistema estrutural) de no máximo 15 m.

As placas cerâmicas devem atender às NBR 13818 e ABNT NBR 15463 (para porcelanatos) e devem apresentar absorção máxima de 6 %. Para regiões onde a temperatura atinja 0 °C, a absorção máxima não pode ser superior a 3 %. Também devem estar secas por ocasião do seu assentamento e a EPU (expansão por umidade), como especificado na NBR 13818:1997, Anexo J, deve ser indicada em projeto e estar limitada ao valor máximo de 0,6 mm/m.

Em casos específicos, a EPU de 0,6mm/m pode ser excessiva; então, recomenda-se o uso de placas com valores inferiores. Devem estar armazenadas na obra por lote, tonalidade, acabamento, etc., de acordo com o especificado nas embalagens e não podem apresentar engobe de muratura pulverulento em quantidade superior a 30 % (a avaliação da quantidade deve ser feita visualmente) da área do tardoz da placa.

As pastilhas devem atender aos mesmos itens indicados para placas cerâmicas (quando aplicáveis) e, além disso, caso sejam montadas em placas com auxílio de malhas, telas, pontos de cola ou outro processo que as mantenha unidas pelo tardoz, estes produtos não podem comprometer o desempenho da argamassa colante e argamassa para rejuntamento. Podem ser incorporadas ao chapisco, emboço, rejunte ou à argamassa colante para aumentar o desempenho destes materiais em alguns requisitos, como, por exemplo aderência, capacidade de deformação, impermeabilidade, etc.

O emprego destes produtos deve respeitar as especificações de uso do fabricante do rejunte ou argamassa colante, tanto em termos de tipo de aditivo como em quantidade adicionada. O desempenho final da argamassa não pode ser inferior aos requisitos mínimos do produto puro quando avaliado segundo sua norma específica. Na vedação das juntas de movimentação devem ser empregados selantes elastoméricos e as recomendações do fabricante devem ser estritamente seguidas, uma vez que suas propriedades podem variar significativamente.

Cuidados devem ser tomados, entretanto, com juntas estruturais, pois seu movimento previsto aliado à sua largura pode ultrapassar os limites de trabalho mesmo dos selantes de alta capacidade de movimento, culminando com a deterioração precoce da junta. Na etapa de aplicação, os selantes devem ser capazes de acomodar pequenas variações dimensionais toleradas em projeto; devem apresentar comportamento adequado para aplicações verticais, sem escorrimentos; devem apresentar tempo adequado de trabalhabilidade, secagem e cura (polimerização) em função das condições de utilização.

Além disto, os selantes devem apresentar uma série de propriedades que lhes garantam bom desempenho pelo tempo previsto em projeto, não sendo este menor que cinco anos. Devem ser impermeáveis à passagem de fluidos e apresentar resistência aos agentes químicos, intempéries, ação ultravioleta, temperatura, maresia (se necessário) e a demais agentes deletérios a que podem estar expostos.

Devem se manter íntegros, elásticos e coesos, sem perder a capacidade de absorver deformações; não podem causar manchas no emboço ou nas placas por exsudação de produtos químicos, como solventes e plastificantes; não podem formar gases e ondulações na superfície provenientes de materiais voláteis em sua composição; devem absorver as deformações cíclicas de contração e expansão previstas no projeto da junta sem se romper, fissurar ou perder aderência; e não podem induzir esforços deletérios nas bordas da junta.

Em caso de dúvida sobre a qualidade dos selantes, esta deve ser avaliada por laboratório especializado. A NBR 5674 apresenta diretrizes para a manutenção das fachadas com vistas a manter seu desempenho e vida útil. Alguns requisitos de desempenho dos selantes podem ser avaliados segundo a ISO 11600. Antes do início do assentamento das placas, o projeto de revestimento de fachada deve estar concluído e as equipes de obra – produção, controle e apoio logístico (almoxarifado, transporte) devem estar treinadas em todos os detalhes técnicos e estéticos envolvidos na produção.

A logística de execução e controle para aceitação do revestimento cerâmico deve estar acordada entre os envolvidos e as planilhas de verificação de serviços devem estar disponíveis. As equipes de inspeção e produção devem estar cientes dos detalhes do processo de aceitação: o que será inspecionado, como e quando, bem como as soluções a serem adotadas em caso de não conformidades.

Além da disponibilidade de equipamentos, materiais e ferramentas em quantidade suficiente e com a qualidade adequada. Uma vez que o revestimento de argamassa é afetado diretamente pelo comportamento da base, não convém que sua execução seja iniciada antes que a estrutura-suporte já esteja solicitada pelo seu peso próprio e sobrecarga de todas as alvenarias, prevenindo-se assim tensões advindas da deformação imediata, parte da deformação lenta, recalque admissível das fundações e retração das argamassas utilizadas nas alvenarias.

Dentro do contexto geral do sistema de revestimento de fachada, é apresentada na figura abaixo uma sugestão das etapas a serem seguidas no processo de assentamento, sendo estas uma sequência de subidas e descidas consecutivas dos serviços.

Após a finalização das camadas de argamassa, o assentamento das placas cerâmicas na fachada pode ser realizado de maneiras diversas, como por exemplo da cobertura ao térreo do prédio em uma visão geral do processo de assentamento; entretanto, cada pavimento, de baixo para cima; do térreo para a cobertura (pouco usual). O assentamento das placas cerâmicas só pode ocorrer após um período mínimo de 14 dias de cura do emboço.

No caso da ocorrência de chuvas, o assentamento pode ser executado desde que o emboço esteja na condição saturado superfície seca. Na fase de subida da etapa 2 pode ser executada uma primeira cheia de argamassa; porém, a verificação da qualidade do chapisco pode ser comprometida. Caso o emboço seja executado apenas na fase de descida e o mapeamento denuncie locais com espessura excessiva, especial atenção deve ser dedicada ao posicionamento de reforços.

Atlas do envenenamento alimentar no Brasil

Luiz Marques

No âmbito da expansão global do capitalismo comercial e industrial desde o século XVI, três aspectos indissociáveis conferem ao Brasil posições de indisputada proeminência. Somos o país que, durante quase quatro séculos, mais indivíduos escravizou em toda a história da escravidão humana. A destruição e degradação conjuntas das coberturas vegetais do país constituem, em rapidez e em escala, a mais fulminante destruição da biosfera cometida por uma nação ou império em toda a história da espécie humana. Levamos mais de quatro séculos para remover cerca de 1,2 milhão de km2 dos 1,3 milhão de km2 que compunham originariamente a Mata Atlântica (a destruição ganhou escala apenas a partir do século XIX e ainda continua) (1). Mas apenas nos últimos 50 anos mais de 3,3 milhões de km2 de cobertura vegetal nativa foram suprimidos ou degradados na Amazônia, no Cerrado e na Caatinga (2), sendo que mais quase 1 milhão de km2 podem ser legalmentedesmatados em todo o Brasil segundo o antigo e o novo Código Florestal (3).

O terceiro aspecto, enfim, diz respeito ao uso de agrotóxicos. “O Brasil é o campeão mundial no uso de produtos químicos na agricultura”, afirma José Roberto Postali Parra, ex-diretor da Escola Superior de Agricultura Luiz de Queiroz (Esalq/USP) (4). Nos últimos dez anos, de fato, o Brasil arrebatou dos EUA a posição de maior consumidor mundial de pesticidas (5).

Como bem diz seu nome, um pesticida industrial é um composto químico que visa atacar uma “peste”, termo que designa no jargão produtivista toda espécie que compita com a humana pelos mesmos alimentos ou tenha algum potencial de ameaça à produtividade ou saúde humana ou de espécies que servem de alimentação aos homens. O termo pesticida abrange herbicidas, inseticidas e fungicidas, aplicados os dois últimos em plantas e em animais. Pesticidas são usados também contra pássaros (corbicidas, por exemplo), vermes (nematicidas), mamíferos roedores (rodenticidas), microorganismos, etc. Para entender como e por que o Brasil galgou essa posição de maior consumidor desses compostos, dispomos agora de uma referência fundamental. Trata-se de Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia, de Larissa Mies Bombardi, do Departamento de Geografia da FFLCH/USP (6).  Coroando intervenções já dedicadas pela estudiosa ao problema desde 2011 (7), esse trabalho de maior fôlego eleva nosso conhecimento a outro patamar, inclusive por comparar sistematicamente o uso dos pesticidas e as legislações vigentes a esse respeito no Brasil e na União Europeia. Ele culmina num Atlas do uso de agrotóxicos no país, por estado, cultura agrícola e tipo de pesticida, além de uma distribuição geográfica, etária e étnica de suas principais vítimas diretas. Sobretudo, as análises de Bombardi lançam luz sobre os nexos entre o uso crescente de agrotóxicos no país e a liderança nacional, política e econômica, do agronegócio, em fina sintonia com as megacorporações agroquímicas oligopolizadas que controlam toda a cadeia alimentar: das sementes, agrotóxicos, fertilizantes e demais insumos à distribuição e negociação nos mercados futuros das commodities agrícolas. Após as fusões ou absorções ocorridas nos últimos anos, quase 95% desse mercado global é agora comandado por cinco megacorporações agroquímicas, sendo que apenas três delas controlam 72,6% dele, como mostra a Figura 1.

Figura 1 – As fusões e incorporações da Bayer/Monsanto, ChemChina/Syngenta e Dow/DuPont criam um controle quase total por apenas cinco megacorporações de todo o ciclo agroquímico | Fonte: Bloomberg, citado por Dani Bancroft, “Bayer offers Big Buy out for the infamous Monsanto”.  23/V/2016

Concentração fundiária e agronegócio

Talvez nenhum outro aspecto expresse com tanta crueza a desigualdade da sociedade brasileira quanto a concentração da propriedade fundiária. Embora os governos do PT exibam alguns resultados sociais muito positivos quando comparados a governos de outras siglas (8), no item propriedade fundiária seu pacto com o agronegócio apenas aprofundou o abismo histórico da desigualdade no país. Os governos do PT não apenas perpetuaram a tolerância à grilagem e à concentração da propriedade fundiária, mas acrescentaram a esse quadro de apropriação violenta da terra a participação direta do Estado no agronegócio e a quase inexistente carga tributária incidente sobre os imóveis rurais. Em 2015, apenas 0,1% de todos os recursos arrecadados pela Receita Federal veio do Imposto Territorial Rural (9). Assim, o traço mais saliente das mudanças na estrutura da propriedade fundiária na história recente do Brasil foi sua rápida e extrema concentração entre 2003 e 2014, como mostra a Figura 2.

Fig. 2 – Evolução da estrutura fundiária no Brasil entre 2003 e 2014. | Fonte: Incra, citado por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Tabela 1, p. 30

Em 2003, as 983 propriedades com mais de 10 mil hectares somavam 7% da área dos imóveis rurais no país. Em 2014, elas passaram a ser 3.057 e acumulavam 28% dessa área. Nesse universo do latifúndio, destaca-se a multiplicação dos megalatifúndios com mais de 100 mil hectares. Em 2003, eles eram apenas 22 e representavam 2% da área dos imóveis rurais do país. Em 2014, eles passaram a ser 365 e ocupavam 19% dessa área. No outro extremo da balança, as pequenas propriedades de até 10 hectares, que ocupavam 2% dessa área em 2003, representavam em 2014 apenas 1%.

Esse processo de concentração fundiária foi uma condição de possibilidade da consolidação de um novo modelo de economia rural, o agronegócio, adequado à globalização e à conversão dos alimentos agrícolas em soft commodities (soja, milho, café, cacau, gado etc), cujo valor é negociado na CME (Chicago Mercantile Exchange) e cuja destinação é, sobretudo, a China e, em segundo lugar, a Europa e os EUA. Como bem mostra Bombardi, o crescimento do agronegócio brasileiro apoia-se mais na expansão da área cultivada, frequentemente em detrimento das florestas, que em ganhos de produtividade e no manejo sustentável do solo e no respeito à biodiversidade, como mostra a Figura 3, que compara área, produto e produtividade (kg/ha) no cultivo da soja.

Fig. 3 – Comparação entre área (mil ha), produtividade (Kg/ha) e produto (em mil toneladas) da soja entre as safras de 2002/2003 e de 2015/2016 | Fonte: Companhia Nacional de Abastecimento, 2016, citado por por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Gráfico 2, p. 25.

Como se vê, a área de cultivo da soja aumentou de 18,5 milhões de hectares em 2002/2003 para 33 milhões em 2015/2016, um salto de 79% em 13 anos para um aumento equivalente de 84% da produção de soja no mesmo período, com incremento quase irrelevante da produtividade. Para o agronegócio é mais barato avançar sobre a floresta, processo que pode inclusive gerar lucro pela venda da madeira, que investir numa cultura de longo prazo. Seu lema é considerar a devastação ambiental como uma externalidade e aniquilar tudo o que ameace a máxima rentabilização imediata de sua mercadoria.

“A monocultura causa desequilíbrios”

Além de desmatamento, esse modelo monocultor e destrutivo de agricultura “causa desequilíbrios”, como reitera José Roberto Postali Parra, da Esalq/USP (10). Para o agronegócio, esses desequilíbrios têm uma solução simples: a supressão ou tentativa de supressão das espécies animais e vegetais (as espécies insensatamente chamadas “daninhas”) por meio do uso intensivo de agrotóxicos. Detentora dos prêmios Miss Desmatamento e Motosserra de Ouro, além de presidente da Confederação da Agricultura e Pecuária do Brasil (CNA) e Ministra da Agricultura durante o governo de Dilma Rousseff, Kátia Abreu definiu com rara felicidade o ideal da classe que ela representa: “Quanto mais defensivos melhor, porque a tendência é os preços caírem em função do aumento da oferta” (11). A Figura 4, abaixo, mostra os saltos sucessivos no uso de agrotóxicos a partir de 2006, de resto a taxas muito superiores às do aumento da área cultivada e do produto. Observe-se que entre 2002 e 2014, o consumo de agrotóxicos, medido por peso do ingrediente ativo, aumentou cerca de 340%, de cerca de 150 mil toneladas para mais de 500 mil toneladas de ingrediente ativo, uma taxa muito maior que os 84% de aumento do produto entre 2002/2003 e 2015/2016, no caso acima ilustrado da soja (de 52 para 97 milhões de toneladas nesse período).

Fig. 4 – Consumo de agrotóxicos no Brasil em toneladas do ingrediente ativo, 2000 –  2014 | Fonte: Ibama, citado por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Gráfico 10, p. 33

 

O Brasil participa com apenas 4% do comércio mundial do agronegócio (12), mas consome hoje cerca de 20% de todo agrotóxico comercializado no mundo todo. Mais importantes, entretanto, que esse desbalanço são:

(1) a nocividade, constatada ou potencial, para a saúde humana e para o meio ambiente dos ingredientes ativos utilizados;

(2) o uso de ingredientes proibidos no exterior;

(3) o Limite Máximo de Resíduos (LMR) permitido pela legislação brasileira para cada um desses ingredientes nas amostras de alimentos e de água. Como se verá abaixo, esses limites são muito superiores aos permitidos pela legislação europeia, a qual é, de resto, frequentemente acusada de ceder às pressões das megacorporações da agroquímica;

(4) o uso corrente de ingredientes proibidos no Brasil;

(5) as doses excessivas utilizadas;

(6) os resíduos desses compostos encontrados pela Anvisa nos alimentos, que, via de regra, excedem os limites estabelecidos pela legislação brasileira.

Exemplos dos problemas aqui elencados nos itens 4 a 6 abundam na imprensa e nos estudos científicos. A Agência Nacional de Vigilância Sanitária (Anvisa) “aponta que quase 30% dos principais alimentos da cesta brasileira apresentaram irregularidades no uso de defensivos agrícolas” (13). No ano passado, a revista Examenoticiou que a Anvisa “encontrou níveis elevados de resíduos agrotóxicos em um terço das frutas, vegetais e hortaliças analisadas entre 2011 e 2012. Pior, um a cada três exemplares avaliados apresenta ingredientes ativos não autorizados, entre eles dois agrotóxicos que nunca foram registrados no Brasil: o azaconazol e o tebufempirade (14) ”. Segundo a já citada reportagem da CBN, “em São Paulo, por exemplo, desde 2002, nenhuma multa por irregularidades foi aplicada, nem mesmo em casos de repetidas reincidências”. Baseando-se em pesquisas de Karen Friedrich, da Associação Brasileira de Saúde Coletiva (Abrasco) e da Fundação Oswaldo Cruz (Fiocruz), Marina Rossi afirma: “Segundo o Dossiê Abrasco (…), 70% dos alimentos in natura consumidos no país estão contaminados por agrotóxicos. Desses, segundo a Anvisa, 28% contêm substâncias não autorizadas. Isso sem contar os alimentos processados, que são feitos a partir de grãos geneticamente modificados e cheios dessas substâncias químicas (…). Mais da metade dos agrotóxicos usados no Brasil hoje são banidos em países da União Europeia e nos Estados Unidos” (15).

Sobre a nocividade dos ingredientes utilizados, muitos deles já proibidos no exterior, e sobre as brutais discrepâncias entre as legislações europeia e brasileira no tocante ao Limite Máximo de Resíduos (LMR) permitido de cada um desses ingredientes nas amostras de alimentos e de água (os itens 1 a 3, acima), os dados são igualmente estarrecedores. Em 6 de abril de 2015, o Instituto Nacional do Câncer José Alencar Gomes da Silva (INCA), órgão do Ministério da Saúde, divulgou um documento em que afirma: “Dentre os efeitos associados à exposição crônica a ingredientes ativos de agrotóxicos podem ser citados infertilidade, impotência, abortos, malformações, neurotoxicidade, desregulação hormonal, efeitos sobre o sistema imunológico e câncer. (…) Vale ressaltar que a presença de resíduos de agrotóxicos não ocorre apenas em alimentos in natura, mas também em muitos produtos alimentícios processados pela indústria, como biscoitos, salgadinhos, pães, cereais matinais, lasanhas, pizzas e outros que têm como ingredientes o trigo, o milho e a soja, por exemplo. Ainda podem estar presentes nas carnes e leites de animais que se alimentam de ração com traços de agrotóxicos, devido ao processo de bioacumulação” (16).

O aumento da variedade dos ingredientes ativos impulsionado pelas pesquisas agroquímicas é impressionante. Segundo a Agência de Proteção Ambiental dos EUA (EPA), havia em 2007 “mais de 1055 ingredientes ativos registrados como pesticidas, formulados em milhares de produtos disponíveis no mercado” (17). A Figura 5, abaixo, elenca os 10 ingredientes ativos mais utilizados na agricultura brasileira.

Fig. 5 – Os 10 ingredientes ativos mais vendidos no Brasil em 2014, em ordem decrescente | Fonte: Ibama, citado por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Gráfico 10, p. 35

Perturbadores endócrinos, carcinogênicos, mutagênicos, teratogênicos

Por motivos de espaço, reportamos abaixo a toxicidade de apenas cinco desses compostos para os humanos, não humanos e para o meio ambiente, bem como o Limite Máximo de Resíduos (LMR) permitido no produto e na água segundo a legislação europeia e a brasileira (18):

1º – Glifosato (glicina + fosfato). As sementes geneticamente modificadas, chamadas Roundup Ready (RR), da Monsanto, são capazes de resistir ao herbicida Roundup, o mais vendido no Brasil e no mundo, produzido à base de glifosato. Trata-se de um herbicida sistêmico, isto é, desenhado para matar quaisquer plantas, exceto as geneticamente modificadas para resistir a ele. Seu uso tem sido associado a maior incidência de câncer, à redução da progesterona em células de mamíferos, a abortos e a alterações teratogênicas por via placentária. Em 15 de março de 2015, o Centro Internacional de Pesquisas sobre o Câncer (IARC) considerou que havia “evidência suficiente” de que o composto causava câncer em animais e “evidência limitada” de que o causava em humanos, classificando assim o glifosato no Grupo 2A, isto é, como cancerígeno “provável no homem” (ao lado de quatro outros pesticidas) (19). O Limite Máximo de Resíduos (LMR) de glifosato permitido na soja na UE é de 0,05 mg/kg, no Brasil é de 10 mg/kg, portanto um limite 200 vezes maior.

2º – 2,4-D (ácido diclorofenóxiacético). Mais de 1.500 herbicidas contêm esse ingrediente ativo. A OMS coloca-o no grupo II, isto é, “moderadamente tóxico” (moderately hazardous) e o IARC afirma: “o herbicida 2,4-D foi classificado como possivelmente carcinogênico para humanos (Grupo 2B). (…) Há forte evidência de que 2,4-D induz estresse oxidativo, um mecanismo que pode ocorrer em humanos, e evidência moderada de que 2,4-D causa imunossupressão, a partir de estudos in vivo in vitro” (20). Para o National Resource Defense Council (NRDC), há provas conclusivas de que o 2,4-D é um perturbador endócrino, isto é, um composto que interfere no funcionamento normal do sistema hormonal dos organismos: “Estudos em laboratório sugerem que o 2,4-D pode impedir a ação normal de hormônios estrógenos, andrógenos e, mais conclusivamente, da tireoide (21). Dezenas de estudos epidemiológicos, animais e de laboratório mostraram uma associação entre 2,4-D (22) e perturbações da tireoide”. Luiz Leonardo Foloni (FEAGRI/Unicamp) assegura numa entrevista a irrestrita aceitação internacional do 2,4-D. Na realidade, esse composto foi banido no estado de Ontário, no Canadá, em 2009, na Austrália em 2013 e no Vietnã em 2017 (23). E há reiteradas demandas de proibição do 2,4-D nos EUA, não atendidas pelas autoridades desse país (24). O Limite Máximo de Resíduos (LMR) de 2,4-D permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama), no Brasil é de 30 μg, portanto um limite 300 vezes maior.

3º – Acefato. Pertencente à classe dos organofosforados, o acefato é o inseticida mais usado no Brasil (25). A OMS coloca-o no grupo II, isto é, “moderadamente tóxico” (moderately hazardous). O Limite Máximo de Resíduos (LMR) de acefato permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama); no Brasil, ele não tem limite estabelecido.

5º – Clorpirifós. Inseticida da classe dos organofosforados, que altera o funcionamento de neurotransmissores (acetilcolina) no sistema nervoso central. Em 2009, a Organização Mundial da Saúde (OMS) classifica o clorpirifós como “moderadamente tóxico” (II – Moderately hazardous). Mas em 2012, esse produto foi associado a potenciais riscos ao desenvolvimento neurológico e o editorial da revista Environmental Health Perspectives, de 25 de abril de 2012, intitulado “A Research Strategy to Discover the Environmental Causes of Autism and Neurodevelopmental Disabilities” (26), afirma que: “Estudos prospectivos (…) associaram comportamentos autistas a exposições pré-natais a inseticidas organofosforados clorpirifós”. Já em 2001, seu uso doméstico fora banido dos EUA e ao final da administração Obama, a Agência de Proteção Ambiental desse país (EPA) recomendou seu banimento total, recomendação anulada por Donald Trump, beneficiário durante a campanha eleitoral de doações da Dow Chemical, produtora desse composto (27). Na União Europeia (UE), a avaliação da toxicidade do cloropirifós está em curso de revisão. O Limite Máximo de Resíduos (LMR) de clorpirifós permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama), no Brasil é de 30 μg, portanto um limite 300 vezes maior.

7º – Atrazina. Produzido pela Syngenta, a atrazina é um herbicida que afeta a fotossíntese e atua em sinergia com outros herbicidas. Tyrone B. Hayes, da Universidade de Berkeley, e colegas mostraram que esse composto pode mudar o sexo da rã-de-unha africana (Xenopus laevis) e que “a atrazina e outros pesticidas perturbadores endócrinos são prováveis fatores em ação nos declínios globais dos anfíbios” (28). Em 2015, Andrea Vogel e colegas mostraram que a atrazina é um perturbador endócrino em invertebrados (29). A Itália e a Alemanha baniram a atrazina em 1991, e em 2004 a atrazina foi proibida em toda a UE (3). O Limite Máximo de Resíduos (LMR) de atrazina permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama), no Brasil é de 2 μg, portanto um limite 20 vezes maior.

A guerra química insensata e de antemão perdida contra a natureza

Há pelo menos 55 anos, desde o célebre livro de Rachel Carson, Primavera Silenciosa (1962), sabemos que os pesticidas industriais lançaram a espécie humana numa guerra biocida, suicida e de antemão perdida. A ideia mesma de um pesticida sintético usado sistematicamente contra outras espécies no fito de aniquilá-las dá prova cabal da insanidade da agricultura industrial: envenenam-se nossos alimentos para matar outras espécies ou impedi-las de comê-los. As doses do veneno, pequenas em relação à massa corpórea humana, não nos matam. Mas, ao atirarem numa espécie com uma metralhadora giratória, os pesticidas provocam “danos colaterais”: matam ou debilitam espécies não visadas, provocando desequilíbrios sistêmicos que promovem seleções artificiais capazes de reforçar a tolerância das espécies visadas, ou a invasão de espécies oportunistas, por vezes tão ou mais ameaçadoras para as plantações e para os homens que as espécies visadas pelos pesticidas. Além disso, a médio e longo prazo os pesticidas intoxicam e adoecem o próprio homem, tanto mais porque somos obrigados a aumentar as doses dos pesticidas e a combiná-los com outros em coquetéis cada vez mais tóxicos, à medida que as espécies visadas se tornam tolerantes à dose ou ao princípio ativo anterior. Uma suma de pesquisas científicas (31) mostra o caráter contraproducente dos agrotóxicos, seja do ponto de vista de seus efeitos sobre outras espécies – por exemplo, as abelhas e demais polinizadores –, seja do ponto de vista da saúde humana e de outras espécies não visadas, seja ainda da própria produtividade agrícola. Citemos apenas três desses estudos. Um documento da FAO de 2003 mostra que o uso crescente de pesticidas desde os anos 1960 não aumenta, mas, ao contrário, diminui relativamente as colheitas, sendo que as perdas de safra por causa de pestes eram em 1998 já da ordem de 25% a 50%, dependendo da cultura. O documento assim comenta esse fato: “É perturbador que ao longo dos últimos três ou quatro decênios, as perdas de colheitas em todas as maiores culturas aumentaram em termos relativos. (…) É interessante notar que o aumento das perdas de colheitas é acompanhado por um crescimento na taxa de uso de pesticidas” (32). Em 2013, um artigo publicado na revista Proceedings of the National Academy of Sciences refere-se ao morticínio de diversas espécies causado por pesticidas, mesmo utilizados em concentrações consideradas seguras pela legislação europeia: “Pesticidas causam efeitos estatisticamente significantes em espécies em ambas as regiões [Europa e Austrália], com perdas de até 42% nas populações taxonômicas registradas. Além disso, os efeitos na Europa foram detectados em concentrações que a atual legislação considera ambientalmente protetiva. Portanto, a atual avaliação de risco ecológico de pesticidas falha em proteger a biodiversidade, tornando necessárias novas abordagens envolvendo ecologia e ecotoxicologia” (33). Enfim, em 2014, um grupo internacional de trabalho de quatro anos sobre os pesticidas sistêmicos, o Task Force on Systemic Pesticides (TFSP), reunindo 29 pesquisadores, declara em seus resultados que os pesticidas sistêmicos (os neonicotinoides, por exemplo) constituem uma inequívoca e crescente ameaça tanto à agricultura quanto aos ecossistemas. Jean-Marc Bonmatin, um pesquisador do CNRS francês, pertencente a esse grupo de trabalho, assim resumiu esses resultados: “A evidência é clara. Estamos testemunhando uma ameaça à produtividade de nosso ambiente natural e agrícola, uma ameaça equivalente à dos organofosfatados ou DDT [denunciados em 1962 por Rachel Carson]. Longe de proteger a produção de alimentos, o uso de inseticidas neonicotinoides está ameaçando a própria infraestrutura que permite essa produção” (34).

Pesticidas, o outro lado da moeda das armas químicas de destruição em massa

Entre os pesticidas industriais e as guerras químicas há uma íntima interação, passada e presente. Ambos impõem-se como um fato absolutamente novo na história da destruição do meio ambiente pelo homem e de sua autointoxicação. Os inseticidas organoclorados e organofosforados, e os herbicidas baseados em hormônios sintéticos nascem nos anos 1920-1940 como resultado das pesquisas sobre armas químicas usadas durante a I Grande Guerra pelos dois campos beligerantes. Essa interação continua no período entre-guerras, em especial na Alemanha, então em busca de recuperar sua supremacia na indústria química. Em seu quadro de cientistas, a Degesh (Deutsche Gesellschaft für Schädlingsbekämpfung – Sociedade Alemã para o Controle de Pragas), criada em 1919, contava químicos como Fritz Haber (Prêmio Nobel) e Ferdinand Flury, que desenvolveu em 1920 o Zyklon A, um pesticida à base de cianureto, precedente imediato de outro inseticida, o Zyklon B, patenteado em 1926 por Walter Heerdt eusado sucessivamente nas câmaras de gás dos campos de extermínio de Auschwitz-Birkenau e Majdanek. Outro exemplo é o da IG Farben, de cujo desmembramento após 1945 resultou a Agfa, a BASF, a Hoechst e a Bayer. Para esse conglomerado industrial alemão, trabalhavam químicos como Gerhard Schrader (1903-1990), funcionário da Bayer e responsável pela descoberta e viabilização industrial dos compostos de organofosforados que agem sobre o sistema nervoso central. De tais compostos derivam pesticidas como o bladan e o parathion (E 605) e armas químicas como o Tabun (1936), o Sarin (1938), o Soman (1944) e o Cyclosarin (1949), as três primeiras desenvolvidas, ainda que não usadas, pelo exército alemão na II Grande Guerra. Após a guerra, Schrader foi por dois anos mantido prisioneiro dos Aliados, que o obrigaram a comunicar-lhes os resultados de suas pesquisas sobre ésteres de fosfato orgânicos, em seguida desenvolvidos na fabricação de novos pesticidas.

Essa interação entre pesticidas e armas químicas, hoje melhor denominadas químico-genéticas, continua em nossos dias. O Defense Advanced Research Projects Agency (Darpa), do Pentágono, está investindo US$ 100 milhões em projetos, potencialmente catastróficos, de “extinção genética” de espécies consideradas nocivas ao homem, sem esconder, contudo, seu interesse em possíveis desdobramentos militares dessas pesquisas (35). Um especialista da Convenção sobre Diversidade Biológica (CBD) da ONU declarou ao The Guardian: “Pode-se ser capaz de erradicar um vírus ou a inteira população de um mosquito, mas isso pode ter efeitos ecológicos em cascata”. O potencial militar das pesquisas em edição genética (o chamado “gene drive”) manifesta-se já no fato de que seu principal patrocinador é o Pentágono. Entre 2008 e 2014, o governo dos EUA investiu US$ 820 milhões em biologia sintética, sendo que desde 2012 a maior parte desse investimento veio do Darpa e de outras agências militares. Referindo-se ao risco de que armas baseadas em tecnologias químico-genéticas sejam usadas por “hostile or rogue actors”, um porta-voz do Darpa afirmou que essas pesquisas são de “crítica importância para permitir ao Departamento de Defesa defender seu pessoal e preservar sua prontidão militar. (….) É de responsabilidade do Darpa desenvolver tais pesquisas e tecnologias que podem proteger contra seu mau-uso, acidental ou intencional”. É preciso uma boa dose de amnésia para não perceber nessa interação “defensiva” entre o Pentágono e a pesquisa químico-genética de aniquilação biológica um revival das interações entre “defensivos agrícolas” e a guerra química e de extermínio humano, durante e após a I Grande Guerra (36).

Referências
[1] Segundo o Instituto Brasileiro de Florestas, a área original da Mata Atlântica era originalmente 1.315.460 km², 15% do território brasileiro. Atualmente o remanescente é 102.012 km², 7,91% da área original. Entre 1985 e 2013, a Mata Atlântica perdeu mais 18.509 km2. “A cada 2 dias, um Ibirapuera de Mata Atlântica desaparece”. Cf. SOS Mata Atlântica. “Divulgados novos dados sobre o desmatamento da Mata Atlântica”, 27/V/2014.

[2] Na Amazônia brasileira, a área de corte raso da floresta (1970-2017) chega a 790 mil km2, sendo 421.775 km2 de corte raso no acumulado de 1988-2016 (INPE). Mas “a área de corte raso e a de degradação representam juntas cerca de dois milhões de km2, ou seja 40% da floresta amazônica brasileira” (dados de 2013). Cf. A. D. Nobre, “Il faut un effort de guerre pour reboiser l’Amazonie”. Le Monde, 24/XI/2014. No Cerrado, um bioma de cerca de 2 milhões de km2, a devastação em 35 anos [1980-2015] foi da ordem de 1 milhão de km2. “Entre 2002 e 2011, as taxas de desmatamento nesse bioma (1% ao ano) foram 2,5 vezes maior que na Amazônia. (…) Mantidas as tendências atuais, 31% a 34% da área restante da cobertura vegetal do Cerrado deve ser suprimida até 2050 (…), levando à extinção ~480 espécies de plantas endêmicas – três vezes mais que todas as extinções documentadas desde 1500”. Cf. Bernardo B.N. Strassburg et al., “Moment of truth for the Cerrado hotspot”. Nature Ecology & Evolution, 23/III/2017. Segundo o INPE, a Caatinga já perdeu cerca de 45% dos 734.478 km² originais de sua vegetação natural.

[3] Mais precisamente, 957 mil km2, segundo Gerd Sparovek (Esalq/USP), Observatório do Código Florestal . Para Britaldo Soares Filho e colegas, “tanto o antigo quanto o novo Código Florestal permitem um desmatamento legal de ainda mais 88 (+/-6) milhões de hectares [880 mil km2] em propriedades privadas. Essa área de vegetação nativa, ao abrigo das exigências de Reserva Legal e Entornos de Cursos de Água, constituem um ‘excedente ambiental’ (“environmental surplus) com potencial de emissão de 18 Gt de CO2-eq”. Cf. Britaldo Soares-Filho et al.“Cracking Brazil’s Forest Code”. Science, 344, 6182, 25/IV2014, pp. 363-364.

[4] Entrevista concedida a Marcos Pivetta e Marcos de Oliveira, “Agricultor de insetos”. Pesquisa Fapesp, 18, 261, novembro de 2017, pp. 32-37.

[5] Cf. Michelle Moreira, “Brasil é o maior consumidor de agrotóxicos do mundo”. Agência Brasil, 3/XII/2015; Flávia Milhorance, “Brasil lidera o ranking de consumo de agrotóxicos”. O Globo, 8/IV/2015.

[6] Cf. Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia, Laboratório de Geografia Agrária, FFLCH/USP, Novembro, 2017, 296 p.

[7] Para a bibliografia anterior de Bombardi, veja-se <https://www.larissabombardi.blog.br/blog-geo>, em particular, “Intoxicação e morte por agrotóxicos no Brasil: a nova versão do capitalismo oligopolizado”. Boletim Dataluta, setembro de 2011 (em rede).

[8] Veja-se Sérgio Lírio, “O abismo não é intransponível”. Carta Capital, 29/XI/2017, pp. 26-28.

[9] Cf. Pedro Durán, “Desde 2009, o Brasil é o maior consumidor de agrotóxicos do mundo”. CBN, 3/V/2016.

[10] Pivetta & Oliveira, “Agricultor de insetos” (cit): “a monocultura causa desequilíbrios”.

[11] “Kátia Abreu quer liberação mais rápida de agrotóxicos pela ANVISA”. Viomundo, 19/X/2011.

[12] Cf. Dante D. G. Scolari, “Produção agrícola mundial: o potencial do Brasil”. Embrapa, 2007.

[13] Cf. Michelle Moreira, “Brasil é o maior consumidor de agrotóxicos do mundo”. Agência Brasil, 3/XII/2015.

[14] Cf. Vanessa Barbosa, “Anvisa aponta 13 alimentos que pecam no uso de agrotóxicos”. Exame, 13/IX/2016.

[15] Cf. Marina Rossi, “O ‘alarmante’ uso de agrotóxicos no Basil atinge 70% dos alimentos”. El País, edição em português, 30/IV/2015.

[16] Veja-se “Posicionamento do Insituto Nacional de Câncer José Alencar Gomes da Silva acerca dos Agrotóxicos”. 

[17] Cf. EPA, “Assessing Health Risks from Pesticides” (em rede).

[18] Os dados comparativos sobre os LMR no Brasil e na União Europeia (UE) são retirados do já citado trabalho de Bombardi.

[19] Cf. Daniel Cressey, « Widely used herbicide linked to cancer ». Nature, 24/III/2015: “Two of the pesticides — tetrachlorvinphos and parathion — were rated as “possibly carcinogenic to humans”, or category 2B. Three — malathion, diazinon and glyphosate — were rated as “probably carcinogenic to humans”, labelled category 2A”.

[20] Cf. IARC Monographs evaluate DDT, lindane, and 2,4-D. Press release n. 236, 23/VI/2015. Veja-se também OMS.

[21] Cf. Danielle Sedbrook, “2,4-D: The Most Dangerous Pesticide You’ve Never Heard Of”. NRDC, 15/III/2016.

[22] Veja-se sua entrevista | L. L. Foloni, O Herbicida 2,4-D: Uma Visão Geral, 2016.

[23] Cf. “APVMA [Australian Pesticides and Veterinary Medicines Authority]: Australia Bans Toxic Herbicide 2,4-D Products”. Sustainable Pulse, 24/VIII/2013; “Govt bans 2,4-D, paraquat in Vietnam”. Vietnamnet, 16/II/2017.

[24] Veja-se, por exemplo, Andrew Pollack, “E.P.A. Denies an Environmental Group’s Request to Ban a Widely Used Weed Killer”. The New York Times, 9/IV/2012.

[25] Cf. Idiana Tomazelli & Mariana Sallowicz, “Uso de agrotóxicos no País mais que dobra entre 2000 e 2012”. O Estado de São Paulo,19/VI/2015. “O agrotóxico mais empregado foi o glifosato, um herbicida apontado por pesquisadores como nocivo à saúde. Entre os inseticidas, o mais usado foi o acefato”.

[26] Cf. Philip J. Landrigan, Luca Lambertini, Linda S. Birnbaum, “A Research Strategy to Discover the Environmental Causes of Autism and Neurodevelopmental Disabilities” (Editorial). Environmental Health Perspectives, 25/IV/2012..

[27] Cf. “Don’t let feds make pesticide call”, Daily Record (USA Today), Editorial, 27/XI/2017.

[28] Cf. Tyrone B. Hayes et al., “Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)”. Proceedings of the National Academy of Sciences, 107, 10, 9/III/2010, pp. 4612-4617: “The present findings exemplify the role that atrazine and other endocrine-disrupting pesticides likely play in global amphibian declines”.

[29] Cf. Andrea Vogel et al., “Effects of atrazine exposure on male reproductive performance in Drosophila melangaster”. Journal of Insect Physiology, 72, janeiro, 2015, pp. 14-21.

[30] Cf. Franck Akerman, “The Economics of Atrazine”, International Journal of Occupational and Environmental Health, 13, 4, outubro-dezembro de 2007, pp. 441-449.

[31] Veja-se, por exemplo, Jan Dich et al., “Pesticides and Cancer”. Cancer, causes & control, maio, 1997, 8, 3, pp. 420-443. IDEM, “Pesticide and prostate cancer. Again”. Pesticide Action Network, 23/I/2013.(1997, 8, pp. 420-443); Idem (23/I/2013).

[32] Report of the First External Review of the Systemwide Programme on Integrated Pest Management (SP-IPM). Interim Science Council Secretariat – FAO, agosto de 2003.

[33] Cf. Mikhail A. Beketov et al., “Pesticides reduce regional biodiversity of stream invertebrates”. PNAS, online, 17/VI/2013.Também Sharon Oosthoek, “Pesticides spark broad biodiversity loss”. Nature, 17/VI/2013.

[34] Citado por Damian Carrington, “Insecticides put world food supplies at risk, say scientists”. TG, 24/VI/2014.

[35] Cf. Arthur Neslen, “Us military agency invests $ 100m in genetic extinction technologies”. The Guardian, 4/XII/2017.

[36] No período entreguerras, armas químicas continuaram a ser utilizadas pela aviação inglesa, por exemplo, em 1919 contra os bolcheviques e em 1925 contra a cidade de Sulaimaniya, capital do Kurdistão iraquiano; a aviação italiana utilizou-as em 1935 e 1936 em sua tentativa de exterminar a população da Etiópia, e o exército bolchevique, segundo uma documentação aparentemente confiável, dizimou com armas químicas os revoltosos de Tambov, uma das 118 revoltas camponesas contra o exército vermelho reportadas pela Cheka, em fevereiro de 1921. Cf. Eric Croddy, Clarisa Perez-Armendaruz & John Hart, Chemical and Biological Warfare. A comprehensive survey for the concerned citizen. Nova York, Springer-Verlag, 2002.

Luiz Marques é professor livre-docente do Departamento de História do IFCH /Unicamp. Pela editora da Unicamp, publicou Giorgio Vasari, Vida de Michelangelo (1568), 2011 e Capitalismo e Colapso ambiental, 2015, 2a edição, 2016. Coordena a coleção Palavra da Arte, dedicada às fontes da historiografia artística, e participa com outros colegas do coletivo Crisálida, Crises Socioambientais Labor Interdisciplinar Debate & Atualização (crisalida.eco.br) – Publicado originalmente no Jornal da Unicamp.

O perfil de textura

A textura é o conjunto de propriedades mecânicas, geométricas e de superfície de um produto, detectáveis pelos receptores mecânicos e tácteis e, eventualmente pelos receptores visuais e auditivos. A textura é uma característica importantíssima na avaliação da qualidade de um produto, sendo determinante na aceitabilidade do consumidor. A análise de textura, portanto, constitui o estudo científico através do uso de recursos instrumentais e de metodologias específicas com o objetivo de avaliar as propriedades mecânicas, geométricas e de superfície de produtos diversos.

Os métodos de perfil sensorial são procedimentos formais usados para avaliar de forma reprodutível os atributos separados de uma amostra e, em seguida, realizar a pontuação da sua intensidade em uma escala adequada. Os métodos podem ser utilizados para avaliar o odor, sabor, aparência e textura, separadamente ou em combinação.

Como uma consequência da natureza única da textura, os métodos foram desenvolvidos especificamente para o perfil de textura. As avaliações devem ser realizadas em um ambiente de teste que esteja em conformidade com a ISO 8589. Os materiais devem ser selecionados pelo supervisor do teste, de acordo com a natureza do produto, o número de amostras, etc., os quais não podem afetar de maneira alguma os resultados do teste.

A NBR ISO 11036 de 08/2017 – Análise sensorial – Metodologia – Perfil de textura descreve a metodologia de desenvolvimento do perfil de textura de produtos alimentícios (sólidos, semissólidos, líquidos) ou de produtos não alimentícios (por exemplo, cosméticos). Esta norma é, na prática, mais orientada à criação de perfis de textura de produtos alimentícios sólidos. Outros trabalhos serão realizados para tratar de forma mais detalhada a textura de bebidas e de produtos não alimentícios.

Este método é apenas uma abordagem para análise do perfil de textura sensorial, observando-se que existem outros métodos. Ele descreve várias etapas do processo para gerar uma descrição completa dos atributos de textura de um produto.

Este método pode ser usado para: pré-seleção e treinamento dos avaliadores; orientação dos avaliadores para o desenvolvimento de definições e técnicas de avaliação das características de textura; caracterização dos atributos de textura de um produto para estabelecer um perfil-padrão deste, a fim de discernir quaisquer alterações posteriores; melhoria dos produtos atuais e desenvolvimento de novos produtos; estudo dos vários fatores que podem afetar os atributos de textura de um produto; estes fatores podem ser, por exemplo uma mudança no processo, tempo, temperatura, ingredientes, embalagens ou estudo de vida útil e condições de armazenamento; comparação de um produto com outro produto similar para determinar a natureza e a intensidade das diferenças na textura; correlação das medidas sensoriais com as instrumentais e/ou físicas.

Se o equipamento calibrado, corresponder às necessidades do teste, ele deve ser usado. O conceito do perfil de textura baseia-se nos mesmos elementos do perfil de sabor. Portanto, o perfil pode incluir os seguintes componentes, dependendo do tipo de produto (alimentício ou não alimentício): atributos perceptíveis de textura, ou seja mecânicos, geométricos e outros; intensidade, isto é, o grau em que o atributo é percebido; ordem em que os atributos são percebidos, a qual pode ser descrita como  antes/ou sem mastigação: todos os atributos geométricos, umidade e gordura percebidos visualmente ou pelo toque (pele/mão, lábios); primeira mordida/gole: todos os atributos mecânicos e geométricos, bem como os atributos de gordura e umidade percebidos na boca; fase de mastigação: atributos percebidos pelos receptores táteis na boca durante a mastigação e/ou absorção; fase residual: mudanças que ocorrem durante a mastigação e/ou absorção, como a taxa e o tipo de fragmentação; deglutição: facilidade de engolir e descrição de qualquer resíduo remanescente na boca.

A textura é composta por diferentes propriedades, uma vez que a avaliação sensorial da textura é um processo dinâmico. Os atributos de textura podem ser agrupados em três classes principais de acordo com o grau em que cada um está presente e com a ordem em que eles acontecem. Os atributos de textura manifestam-se pela reação de um alimento para a sua redução. Eles são medidos por: cinestesia, que inclui as sensações de posição, movimento e tensão das partes do corpo, percebida através dos nervos e órgãos nos músculos, tendões e articulações; ou somestesia, que inclui as sensações de pressão (toque) e dor percebida por receptores localizados na pele e lábios, incluindo a mucosa oral, língua e membrana periodontal.

Os atributos mecânicos para produtos alimentícios semissólidos e sólidos podem ser divididos em cinco parâmetros primários e quatro parâmetros secundários (ver tabela abaixo). As definições de nomenclatura popular estão na ISO 5492.

Clique na tabela para uma melhor visualização

Como parâmetros primários, deve-se levar em conta a dureza: principais adjetivos usados incluem macio, firme e duro; coesividade: principais adjetivos usados incluem fraturabilidade (esmigalhado, crocante, quebradiço, esfarelento); mastigabilidade (tenro, borrachento, rijo); gomosidade (esfarelento, farinhento, pastoso, gomoso); viscosidade: principais adjetivos usados incluem fluido, ralo, viscoso; elasticidade: principais adjetivos incluem plástico, maleável, elástico, flexível; adesividade: principais adjetivos incluem pegajoso, grudento, aderente.

Os quatro primeiros parâmetros estão relacionados a forças de atração agindo entre as partículas de alimentos e se opondo à desintegração, enquanto que a adesividade está mais relacionada com as propriedades de superfície. Três parâmetros secundários adicionais foram identificados, a fim de fazer a caracterização tão significativa quanto possível para quem está habituado à terminologia popular e, ao mesmo tempo, mantendo-a de acordo com os princípios reológicos básicos.

Às vezes é mais conveniente avaliar qualquer característica sensorial na forma mais simples, por exemplo avaliar a firmeza, coesividade e elasticidade como atributos separados. Às vezes, com alguns produtos, é mais conveniente avaliar ou julgar um conceito ou fase como “mastigabilidade geral” e, em seguida, diretamente sob este conceito avaliar os seus componentes.

Como parâmetros secundários, leva-se em conta a fraturabilidade (fragilidade): relacionado aos parâmetros primários de dureza e coesividade; em produtos frágeis, a coesividade é baixa e a dureza pode variar de baixa a alta; mastigabilidade: relacionada aos parâmetros primários de dureza, coesividade e elasticidade; número de mastigadas; gomosidade: relacionado aos parâmetros primários de dureza e coesividade em alimentos semissólidos nos quais a dureza é baixa. Nem todas as escalas são igualmente apropriadas para descrever os alimentos.

Para alimentos líquidos, como bebidas, é necessária uma análise mais profunda que a obtida somente pelo parâmetro de viscosidade na análise-padrão do perfil de textura. O Anexo B propõe uma classificação dos termos relativos à análise sensorial de bebidas. Um estudo da textura de líquidos será realizado no futuro.

Para obter o máximo benefício do uso de escalas em um treinamento, para cada atributo deve ser definido o procedimento para avaliar o parâmetro específico que deve ser cuidadosamente explicado e padronizado entre os avaliadores. Três ou quatro amostras com diferentes intensidades para cada escala devem ser apresentadas a cada avaliador. Recomenda-se que um procedimento sensorial sempre acompanhe a definição do atributo de textura.

Os atributos geométricos são percebidos pelos receptores táteis localizados na pele (principalmente na língua), boca e garganta. Esses atributos também são diferenciados pela aparência dos produtos, sejam alimentos ou não. A granulosidade é um atributo geométrico de textura relacionado à percepção do tamanho, forma e quantidade de partículas em um produto.

Atributos relativos ao tamanho e forma das partículas podem ser demonstrados por produtos de referência do mesmo modo que os atributos mecânicos. Por exemplo, termos como liso, pulverulento (pó de giz), arenoso, granuloso, perolado, granulado, grosso e grumoso compreendem uma escala crescente de tamanho de partícula. A conformação é um atributo geométrico de textura relativo à percepção da forma e orientação de partículas de um produto. Atributos relativos à orientação de partículas representam estruturas altamente organizadas.

Diferentes termos correspondem a um determinado número de conformações. Por exemplo: “fibroso” refere-se a partículas longas ou filamentos orientados na mesma direção (por exemplo, aipo); “celular” refere-se a uma estrutura altamente organizada, composta por partículas esféricas ou ovais, que consistem em paredes finas ao redor de líquido ou gás (por exemplo, polpa de laranja, clara em neve); “cristalino” refere-se a partículas angulares, simétricas, tridimensionais (por exemplo açúcar granulado cristal); “aerado expandido” refere-se a células externas rígidas ou firmes, preenchidas com grandes, e muitas vezes desiguais, bolsas de ar (por exemplo, flocos de arroz, biscoito de polvilho); “aerado mousse/suflê” refere-se a células relativamente pequenas, preenchidas com ar e cercadas (normalmente, mas nem sempre) por paredes celulares suaves (por exemplo, marshmallows, merengues, espuma de poliuretano).

Atributos geométricos não servem para limites de escalas e, embora escalas e referências tenham sido desenvolvidas, referências das escalas de intensidade não foram publicadas. A avaliação é qualitativa e quantitativa quanto ao tipo e quantidade presentes. Os outros atributos (teor de umidade e de gordura) referem-se às qualidades de percepção bucal ou na pele, relacionados ao teor de umidade e de gordura de um produto pelos receptores táteis, e também podem estar relacionados com as propriedades lubrificantes do produto.

Recomenda-se que o atributo dinâmico de derretimento seja percebido no contato com a pele ou na boca (na presença de calor), onde a ideia de tempo/intensidade está relacionada ao tempo necessário para uma mudança de estado e a percepção na boca de diferentes texturas (por exemplo, deixar derreter simplesmente, sem mastigar, um pedaço de manteiga gelada ou um cubo de gelo colocado na boca). Os termos devem ser estabelecidos para descrever a textura de qualquer produto.

Tradicionalmente, isto é realizado fazendo com que um painel avalie várias amostras representativas da completa gama de variações de textura para um produto específico de interesse. Isto é útil para dar aos avaliadores uma ampla gama de termos, com definições claras e concisas, no início da sessão, para garantir que o maior número de atributos unidimensionais possíveis seja utilizado.

Os avaliadores, então, listam todos os termos que são aplicáveis para uma ou todas as amostras. Estes são, em seguida, discutidos sob a supervisão de um líder do painel e uma lista consensual de termos e definições é compilada. Recomenda-se que os seguintes pontos sejam considerados: se os termos incluem todas as características relevantes ao produto previstas no método básico; se algum dos termos têm o mesmo significado e podem ser combinados ou eliminados; se cada membro do painel concorda com a utilização de cada termo e sua definição.

Com base na classificação dos atributos de textura, escalas-padrão foram desenvolvidas para fornecer um método quantitativo específico para avaliação dos atributos mecânicos de textura. Essas escalas são somente ilustrativas do conceito básico da utilização de produtos de referência conhecidos para quantificar a intensidade de cada atributo sensorial de textura. Essas escalas refletem a faixa das intensidades dos atributos mecânicos que normalmente são encontrados nos gêneros alimentícios para a construção do perfil.

Elas podem ser adotadas sem modificação, ou outros produtos de referência podem ser selecionados de acordo com a disponibilidade local, hábitos alimentares, etc. Essas escalas, como apresentadas, são adequadas para treinamento. No entanto, elas não podem ser usadas para avaliar perfis de todos os produtos sem alguma adaptação.

Por exemplo, quando se avaliam produtos que são muito macios (por exemplo, variações de formulações de cream cheese), nessa ocasião a extremidade mais baixa da escala de dureza terá que ser expandida e outras porções excluídas. Portanto, qualquer parte das escalas pode ser expandida para permitir maior precisão na classificação de produtos semelhantes.

As escalas descritas oferecem uma base para avaliação quantitativa de textura e os valores obtidos resultam no “perfil de textura”. As escalas estão apresentadas no Anexo A. As escalas para coesividade e elasticidade são as sugeridas por Munoz e não fazem parte das escalas originalmente desenvolvidas por Szczesniak e Brands (ver Anexo C). A razão para isso é que nenhum conjunto adequado de produtos de referência foi desenvolvido para representar a variação de intensidades de coesividade.

A intenção de estabelecer escalas de produtos de referência é ressaltar a possibilidade de construir escalas de intensidade de atributos sensoriais de textura e selecionar alimentos bem conhecidos como exemplos de intensidades específicas desses atributos. É um método utilizado para treinar avaliadores a usar a mesma escala e avaliar o mesmo conceito sensorial, e também para falar a mesma linguagem.

Recomenda-se observar que: alguns alimentos podem não estar disponíveis em algumas partes do mundo; mesmo dentro de um país, alguns alimentos podem se tornar indisponíveis com o tempo; a intensidade dos atributos de textura de alguns alimentos pode variar devido ao uso de diferentes matérias-primas, ou diferença nos processos de fabricação. Sob essas condições, recomenda-se a seleção de outros produtos para preencher as escalas.

Cada escala deve abranger a faixa total da intensidade do atributo de textura encontrado nos produtos alimentícios. Recomenda-se que os produtos de referência selecionados idealmente incluam exemplos específicos para cada ponto da escala; possuam a intensidade desejada do atributo de textura, e esse atributo não pode ser ofuscado por outros atributos de textura; estejam prontamente disponíveis; tenham uma qualidade constante; sejam produtos, geralmente, familiares ou de marcas bem conhecidas; requeiram manipulação mínima para o preparo do produto para a avaliação; e sofram alteração mínima nos atributos de textura em pequenas variações de temperatura ou no armazenamento a curto prazo.

Recomenda-se evitar ao máximo itens especiais ou preparações laboratoriais. Recomenda-se selecionar produtos comerciais bem conhecidos por sua pequena variabilidade. Recomenda-se selecionar produtos comerciais exclusivamente com base na intensidade desejada, na intensidade particular do atributo e na reprodutibilidade de lote a lote, além de evitar frutas frescas e vegetais, quando possível, porque a textura varia muito de acordo com a variedade, grau de maturação e outros fatores.

Recomenda-se evitar itens que requeiram cozimento. Produtos de referência devem ser padronizados quanto ao tamanho, formato, temperatura e forma de apresentação (isto é, descascados, cortados, ralados/triturados). Os atributos de textura de alguns alimentos dependem da umidade do ambiente em que eles são armazenados (por exemplo, biscoitos, batata chips).

Nesses casos pode ser necessário controlar a umidade ambiente em que tais alimentos são testados e condicionar as amostras antes do teste, de modo que elas estejam em equilíbrio com estas condições. Os utensílios e recipientes usados pelos avaliadores também devem ser padronizados.

O transporte terrestre de produtos perigosos sem riscos deve ser feito conforme a normalização técnica

Os acidentes no transporte terrestre de produtos perigosos adquirem uma importância especial, uma vez que a intensidade de risco está associada à periculosidade do produto transportado. Considera-se produto perigoso aquele que representa risco para as pessoas, para a segurança pública ou para o meio ambiente, ou seja, produtos inflamáveis, explosivos, corrosivos, tóxicos, radioativos e outros produtos químicos que, embora não apresentem risco iminente, podem, em caso de acidentes, representar uma grave ameaça à população e ao meio ambiente.

Os acidentes no transporte desses produtos podem ter consequências catastróficas, sobretudo diante da proximidade de cidades e de populações lindeiras às principais rodovias. Além das perdas humanas de valor social incalculável, os custos decorrentes da contaminação ambiental atingem cifras muito elevadas.

Deve-se levar em consideração que, especificamente, num acidente de transporte rodoviário de produtos perigosos, ainda que a empresa transportadora tenha tomado todos os cuidados e não tenha, a princípio, culpa pelo acidente, a responsabilidade pelos danos ambientais causados continua sendo da empresa transportadora, pois a ausência de culpa, neste caso, não é mais excludente da responsabilidade de indenizar e reparar os danos. Assim, o melhor é cumprir as normas técnicas. A NBR 15481 de 08/2017 – Transporte rodoviário de produtos perigosos — Requisitos mínimos de segurança estabelece a verificação dos requisitos operacionais mínimos para o transporte rodoviário de produtos perigosos referentes à saúde, segurança, meio ambiente e qualidade, sem prejuízo da obrigatoriedade de cumprimento da legislação, regulamentos e normas vigentes. O objetivo é atender às legislações, regulamentos e normas vigentes de transporte de produtos perigosos, verificando o atendimento às condições mínimas de segurança. Pode ser aplicada ao transporte de produtos não perigosos, excluindo-se os itens obrigatórios específicos, sendo indicada expedidor, destinatário (quando aplicável) e transportador.

Os itens mínimos a serem verificados estão listados nos Anexos A e B (radioativos), porém o modelo da lista de verificação é opcional. As informações constantes no Anexo A podem ser escritas de maneira resumida de modo a facilitar a impressão, podendo ser suprimidos somente os itens que não se aplicam ao transporte de produtos perigosos da empresa. Os produtos que não podem ser expostos a intempéries devem estar em veículos com a carga protegida, como lonados, sider, contêiner ou baú. Os produtos classificados como perigosos para o transporte não podem ser transportados junto com alimentos, medicamentos ou objetos destinados ao uso/consumo humano ou animal, nem com embalagens destinadas a esses fins ou com produtos incompatíveis, conforme NBR 14619, salvo quando transportados em pequenos cofres de carga, conforme regulamentação.

É proibido o transporte de produtos para uso/consumo humano ou animal em tanques de carga destinados ao transporte de produtos perigosos a granel. O transporte de produto perigoso não pode ser realizado em veículos que tenham publicidade, propaganda, marca, inscrição de produtos para uso/consumo humano ou animal, para não induzir ao erro quando da operação de emergência. Quando houver troca de veículo em qualquer que seja a situação (como transbordo, redespacho etc.), o transportador redespachante da carga é o responsável pelas condições de segurança do veículo, equipamento e da carga, devendo atender a todos os requisitos da regulamentação e desta norma.

Dependendo das características específicas do produto, fica a critério da empresa que realizou a verificação a adoção de outros requisitos de segurança, como a proibição de uso de máquinas fotográficas, filmadoras, celular ou outros aparelhos/equipamentos capazes de provocar a ignição dos produtos ou de seus gases ou vapores. Não é permitido conduzir passageiros em veículos que transportam produtos classificados como perigosos, exceto no caso de quantidade limitada por veículo conforme regulamentação em vigor.

Antes da mobilização do veículo e/ou equipamento de transporte, a carga deve estar estivada e fixada para prevenir e evitar queda e/ou movimentação. Qualquer veículo/equipamento, se carregado com produtos perigosos, deve atender à legislação pertinente e às normas brasileiras. Caso seja detectado algum risco de acidente com a carga transportada, os envolvidos na operação devem tomar as providências cabíveis, não deixando que a carga continue sendo transportada até sanar o problema. A lista de verificação deve ficar à disposição do expedidor, do contratante, do destinatário, do transportador e das autoridades durante três meses, salvo em caso de acidente, hipótese em que deve ser conservada por dois anos.

A NBR 15480 de 05/2007 – Transporte rodoviário de produtos perigosos – Plano de ação de emergência (PAE) no atendimento a acidentes estabelece os requisitos mínimos para orientar a elaboração de um plano de ação de emergência (PAE) no atendimento a acidentes no transporte rodoviário de produtos perigosos. Orienta o desenvolvimento de um plano de emergência dirigido para as medidas que podem ser tomadas como reação organizada a uma situação de emergência no local. Essas ações não substituem nem se dirigem às medidas de prevenção, que desempenham papel na redução dos riscos potenciais de emergências.

Pode ser usada para o transporte de produtos não perigosos. Para uma melhor elaboração de um Plano de Ação de Emergência, pode ser elaborado um Plano de Gerenciamento de Risco ou uma Análise de Risco. O plano de emergência deve contemplar as hipóteses acidentais identificadas, suas causas, seus efeitos e medidas efetivas para o desencadeamento das ações de controle em cada uma dessas situações. Sua estrutura deve contemplar procedimentos e recursos, humanos e materiais, de modo a propiciar as condições para a adoção de ações, rápidas e eficazes, para fazer frente aos possíveis acidentes causados durante o transporte rodoviário de produtos perigosos.

O plano deve conter índice e páginas numeradas. Diagramas, listas e gráficos podem ser usados para mostrar a organização, resumir deveres e responsabilidades, ilustrar os procedimentos de comunicação e mostrar como proceder durante os horários administrativos e de turnos. O plano deve conter a listagem de acionamentos e de contatos. Para facilitar a elaboração do plano, são citados modelos orientativos nos anexos A, B e C.

O plano deve definir equipe própria ou terceirizada, responsável pelo gerenciamento/atendimento a emergência. O tamanho do esforço e o grau de detalhe necessário ao desenvolvimento e à implementação de um plano dependem de muitos fatores, tais como: os riscos associados aos processos; atividade com produtos perigosos; tamanho e localização dos cenários acidentais previstos; o número de pessoas envolvidas e a comunidade.

Clique nas figuras para uma melhor visualização

A NBR 14095 de 08/2008 – Transporte rodoviário de produtos perigosos – Área de estacionamento para veículos – Requisitos de segurança estabelece os requisitos mínimos de segurança exigíveis para áreas destinadas ao estacionamento de veículos rodoviários de transporte de produtos perigosos, carregados ou não descontaminados. Pode ser aplicada a áreas de estacionamento de empresas. O funcionamento das áreas de estacionamento para veículos rodoviários de transporte de produtos perigosos fica condicionado à autorização e fiscalização periódica dos órgãos competentes.

As áreas de estacionamento para veículos rodoviários de transporte de produtos perigosos devem dispor de Plano de Atendimento a Emergências, aprovado pelos órgãos competentes. O órgão de trânsito com circunscrição sobre a via deve promover a sinalização indicativa ao longo das vias, a respeito da área de estacionamento para veículos rodoviários de transporte de produtos perigosos. As áreas para instalação de estacionamento para veículos rodoviários de transporte de produtos perigosos devem estar distantes no mínimo 200 m de áreas povoadas, mananciais e de proteção ambiental.

A distância de 200 m pode ser reduzida, desde que disponha de dispositivos fixos de segurança (por exemplo, parede corta-fogo, sistema de aspersores, sistema de lançamento de água/espuma etc.). A implantação do estacionamento para veículos rodoviários de transporte de produtos perigosos deve ser antecedida de análise das áreas do entorno do estacionamento, a fim de verificar a existência de empreendimentos ou instalações que possam ser impactados pela ocorrência de possíveis emergências.

Todo veículo ao ser admitido na área de estacionamento de veículos rodoviários de transporte de produtos perigosos deve ser registrado em relatório (para exemplo, ver Anexo A). A finalidade deste registro é conhecer as unidades estacionadas, os produtos transportados, as condições dos veículos, os responsáveis e providenciar recursos, se necessário. Para abrigar veículos que apresentem vazamentos ou destinados ao transbordo, deve ser previsto o encaminhamento destes veículos ao local adequado,

A NBR 14064 de 07/2015 – Transporte rodoviário de produtos perigosos – Diretrizes do atendimento à emergência estabelece os requisitos e procedimentos operacionais mínimos a serem considerados nas ações de preparação e de resposta rápida aos acidentes envolvendo o Transporte Rodoviário de Produtos Perigosos (TRPP). As ações de resposta às emergências contidas nesta norma não limitam ou excluem a adoção de procedimentos e diretrizes mais rigorosos.

A norma tem como foco principal os aspectos de preparação, resposta e mitigação dos acidentes. Os aspectos de prevenção relacionados ao TRPP não são objeto desta norma, que pode ser aplicada ao atendimento a emergências com produtos ou substâncias que, embora não classificados como perigosos para o transporte, quando fora de sua contenção original (vazamento/derramamento), tenham potencial de oferecer riscos ao meio ambiente. Não se aplica aos produtos perigosos das classes de risco 1 (explosivos) e 7 (radioativos), que são de competência do Exército Brasileiro e da Comissão Nacional de Energia Nuclear (CNEN), respectivamente.

Na verdade, o progressivo aumento da fabricação de produtos químicos inflamáveis derivados do petróleo e as chamadas substâncias organossintéticas tóxicas produzidas pela descoberta da síntese química, aliada ao contínuo lançamento de novas substâncias no mercado mundial, tornam cada vez mais frequentes os acidentes com esses produtos, classificados como perigosos, principalmente nas operações de transporte em vias públicas.

O volume de produtos perigosos contidos em cargas transportadas no modal rodoviário vem crescendo muito, apesar de limitado ao conteúdo dos veículos transportadores, que também cresceu nos últimos anos com o avanço da tecnologia, e chegaram a dobrar de volume em veículos comerciais articulados compostos da unidade tratora e semirreboque (carretas).

Em São Paulo, um grande centro produtor e consumidor de insumos e produtos, interligado a outros polos industriais do país, as rodovias recebem boa parte das cargas de produtos perigosos do Brasil todo. De acordo com o Departamento de Estradas de Rodagem (DER), circulam pelas rodovias paulistas diariamente mais de 3.000 produtos perigosos, como líquidos inflamáveis, explosivos, corrosivos, gases, materiais radioativos e muitos outros.

Os acidentes no modal rodoviário envolvendo veículos que transportam cargas/produtos perigosos adquirem uma importância especial. Nestes eventos, a intensidade de risco está associada à periculosidade do material transportado com potencial para causar simultaneamente múltiplos danos ao meio ambiente e à saúde dos seres humanos expostos.

A NBR 9735 (NB 1058) de 08/2017 – Conjunto de equipamentos para emergências no transporte terrestre de produtos perigosos estabelece o conjunto mínimo de equipamentos para emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual, a ser utilizado pelo condutor e pessoal envolvido (se houver) no transporte, equipamentos para sinalização, da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para a carga. Não se aplica quando existir norma específica para o produto. Não se aplica aos equipamentos de proteção individual exigidos para as operações de manuseio, carga, descarga e transbordo, bem como aos equipamentos de proteção para o atendimento emergencial a serem utilizados pelas equipes de emergência pública ou privada, estabelecidos na ficha de emergência, conforme a NBR 7503.

A Comissão de Estudo elaborou esta norma com base nos conhecimentos e consulta realizados no mercado, porém sugere-se aos fabricantes ou importadores do produto perigoso para o transporte terrestre verificar se o conjunto de equipamento de proteção individual mínimo necessário à proteção do condutor e auxiliares, para avaliar a emergência (avarias no equipamento de transporte, veículo e embalagens) e ações iniciais, bem como o extintor de incêndio, são os indicados nesta norma. Caso estes equipamentos sejam inadequados ou insuficientes para o fim a que destina esta norma, qualquer parte interessada pode solicitar uma revisão para reavaliação inclusive do grupo do EPI e/ou do extintor.

O transportador deve fornecer o conjunto de equipamentos de proteção individual (EPI) e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em perfeito estado de conservação e funcionamento; além de propiciar o treinamento adequado ao condutor e aos auxiliares (se houver) envolvidos no transporte, sobre o uso, guarda e conservação destes equipamentos. Cabe ao expedidor fornecer o conjunto de equipamentos de proteção individual (EPI) e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em perfeito estado de conservação e funcionamento, juntamente com as devidas instruções para sua utilização, caso o transportador não os possua.

Para a realização do treinamento, o transportador deve atender às orientações dos fabricantes do produto perigoso e do equipamento de proteção individual. Para efetuar a avaliação da emergência e ações iniciais constantes no envelope para transporte, de acordo com a NBR 7503, o condutor e os auxiliares (se houver) devem utilizar o EPI indicado nesta norma, além do traje mínimo obrigatório que é composto de calça comprida, camisa ou camiseta, com mangas curtas ou compridas, e calçados fechados. Durante o transporte, o condutor e os auxiliares (se houver) devem utilizar o traje mínimo obrigatório.

Recomenda-se o uso de vestimenta com material refletivo para o condutor e auxiliares (se houver) envolvidos no transporte realizado no período noturno (do pôr do sol ao amanhecer). Na unidade de transporte, deve-se ter os conjuntos de equipamentos de proteção individual (EPI) para todas as pessoas envolvidas (condutor e auxiliares) no transporte. Todo o equipamento de proteção individual (EPI) deve apresentar, em caracteres indeléveis e bem visíveis, o nome comercial da empresa fabricante, o lote de fabricação e o número de Certificado de Aprovação (CA), ou, no caso de EPI importado, o nome do importador, o lote de fabricação e o número do CA.

Na impossibilidade de cumprir estas exigências, o órgão nacional competente em matéria de segurança e saúde no trabalho pode autorizar uma forma alternativa de gravação, a ser proposta pelo fabricante ou importador, devendo esta constar do CA. Para fins de utilização do EPI, desde que adquirido dentro do prazo de validade do CA, devem ser observados a vida útil indicada pelo fabricante, de acordo com as características dos materiais usados na sua composição, o uso ao qual se destina, as limitações de utilização, as condições de armazenamento e a própria utilização.

A observação desta validade de uso é do empregador que fornece o EPI aos seus trabalhadores. O uso do EPI que foi comercializado durante a validade do CA é permitido, visto que, à época de sua aquisição, a certificação junto ao Ministério do Trabalho e Emprego era válida, ou seja, após a aquisição final do EPI com CA válido, este pode ser utilizado desde que apresente perfeitas condições de uso, devendo atentar à validade do EPI informada pelo fabricante na embalagem e no manual de instruções do EPI, e não mais à validade do CA.

Os EPI devem estar higienizados, livres de contaminação e acondicionados juntos na cabine da unidade de transporte. Os EPI citados nesta Norma só devem ser utilizados em caso de emergência (avaliação e fuga), não podendo ser utilizados para outros fins. O filtro do equipamento de proteção respiratória deve ser substituído conforme especificação do fabricante (saturação pelo uso ou esgotamento da vida útil) ou em caso de danos que comprometam a eficácia do equipamento.

Os filtros podem estar lacrados e não acoplados às peças faciais inteiras ou às peças semifaciais durante o transporte, devendo o condutor e os auxiliares terem sido treinados para realizarem o devido acoplamento desses filtros. Os tipos de filtros químicos citados nesta norma são: amônia – indicado por NH3; dióxido de enxofre – indicado por SO2; gases ácidos – indicado por GA; monóxido de carbono – indicado por CO; vapores orgânicos – indicado por VO; polivalente (destinado à retenção simultânea das substâncias já citadas. Podem ser utilizados equipamentos de proteção respiratória com filtros polivalentes (PV) em substituição ao filtro especificado para cada grupo, exceto no caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono (ONU 1016) e chumbo tetraetila (ONU 1649).

Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes onde se exige o filtro, podem ser utilizados filtros polivalentes (PV) em substituição aos filtros especificados para os grupos, exceto para o caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono (ONU 1016) e chumbo tetraetila (ver ONU 1649). Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes, prevalece o de maior proteção, por exemplo, o conjunto de equipamento para respiração autônoma prevalece sobre os demais equipamentos de proteção respiratória, a peça facial inteira prevalece sobre a peça semifacial e/ou óculos de segurança contra respingos de produtos químicos, tipo ampla visão.

Para o transporte de produtos da classe de risco 7 (material radioativo), deve ser adotado o EPI previsto no grupo 12, além do previsto pela legislação vigente. Para os produtos de número ONU 2908, 2909, 2910 e 2911, volumes exceptivos, não é necessário portar EPI. A Comissão Nacional de Energia Nuclear (CNEN), quando aplicável, regulamenta EPI para transporte de produtos da classe de risco 7.

Para o transporte de produtos da classe de risco 1 (explosivos), deve ser adotado o EPI previsto no grupo 11, conforme 4.2.13, alínea k), além do previsto pela legislação vigente. O Ministério da Defesa – Exército Brasileiro, quando aplicável, regulamenta EPI para transporte de produtos da classe de risco 1. Os materiais de fabricação dos componentes dos equipamentos do conjunto para situações de emergência devem ser compatíveis e apropriados aos produtos perigosos transportados e de material antifaiscante, em se tratando de produtos cujo risco principal ou subsidiário seja inflamável, exceto o jogo de ferramentas e o (s) extintor (es) de incêndio.

Os equipamentos do conjunto para situações de emergência devem estar em qualquer local na unidade de transporte fora do compartimento de carga, podendo estar lacrados e/ou acondicionados em locais com chave, cadeado ou outro dispositivo de trava a fim de evitar roubo/furto dos equipamentos de emergência, exceto o (s) extintor (es) de incêndio. Somente para unidades de transporte com capacidade de carga de até 3 t, podem ser colocados no compartimento de carga, próximos a uma das portas ou tampa, não podendo ser obstruídos pela carga.

Qualquer unidade de transporte, se carregada com produtos perigosos no transporte rodoviário, ou vazia e contaminada, deve portar extintores de incêndio portáteis que atendam a NBR 15808 e com capacidade suficiente para combater princípio de incêndio: do motor ou de qualquer outra parte da unidade de transporte, conforme previsto na legislação de trânsito; da carga, conforme a tabela 3 (disponível na norma). Os agentes de extinção (tabela abaixo) não podem liberar gases tóxicos na cabina de condução, nem sob influência do calor de um incêndio.

Além disso, os extintores destinados a combater fogo no motor, se utilizados em incêndio da carga, não podem agravá-lo. Da mesma forma, os extintores destinados a combater incêndio da carga não podem agravar incêndio do motor. O extintor de incêndio não pode ser utilizado na inertização de atmosferas inflamáveis e explosivas, pois gera eletricidade estática. O extintor deve estar em local de fácil acesso aos ocupantes da unidade de transporte, para que seja permitida sua utilização inclusive em caso de princípio de incêndio na lona de freio.

O extintor de incêndio não pode ser instalado dentro do compartimento de carga. Somente para unidades de transporte com capacidade de carga de até 3 t, o extintor pode ser colocado no compartimento de carga, próximo a uma das portas ou tampa, não podendo ser obstruído pela carga. Os extintores devem atender à legislação vigente e estar com identificação legível. Os extintores têm a certificação do Inmetro e as empresas responsáveis pela manutenção e recarga dos extintores são acreditadas pelo Inmetro.

Os dispositivos de fixação do extintor devem possuir mecanismos de liberação, de forma a simplificar esta operação, que exijam movimentos manuais mínimos. Os dispositivos de fixação do extintor não podem possuir mecanismos que impeçam a sua imediata liberação, como chaves, cadeados ou ferramentas. A cada viagem devem ser verificados o estado de conservação do extintor e a sua carga, bem como os seus dispositivos de fixação.

No transporte a granel, os extintores não podem estar junto às válvulas de carregamento e/ou descarregamento. Para produtos perigosos inflamáveis ou produtos com risco subsidiário de inflamabilidade, os extintores devem estar localizados um do lado esquerdo e outro do lado direito da unidade de transporte.

No caso de unidade não automotora (reboque ou semirreboque), carregada ou contaminada com produto perigoso e desatrelada do caminhão-trator, pelo menos um extintor de incêndio deve estar no reboque ou semirreboque. Para o conjunto formado por caminhão-trator e semirreboque, os extintores podem estar localizados tanto em um como em outro. No caminhão-trator, os dispositivos de fixação do extintor devem situar-se na parte externa traseira, atrás da cabina do veículo.

No transporte de carga fracionada, o dispositivo de fixação do extintor deve situar-se na lateral do chassi ou à frente do compartimento de carga, obedecendo-se aos demais critérios estabelecidos nesta norma. Em equipamentos (tanques ou vasos de pressão) utilizados no transporte a granel, os dispositivos de fixação podem ser colocados diretamente no equipamento, desde que providos de empalme. A capacidade do agente extintor, por extintor de incêndio, deve obedecer ao descrito na tabela acima.

A qualidade do sistema de armazenamento subterrâneo de combustíveis (SASC)

Os vazamentos de derivados de petróleo e outros combustíveis podem causar contaminação de corpos d’ água subterrâneos e superficiais, do solo e do ar. Assim, toda instalação e sistema de armazenamento de combustível configura-se como empreendimento potencial poluidor e gerador de acidentes ambientais.

No armazenamento de líquidos inflamáveis e combustíveis, devem ser adotados métodos para detecção de vazamentos em sistemas de armazenamento de combustíveis subterrâneos, entre eles o monitoramento intersticial. O espaço intersticial é o espaço entre a parede interna (aço carbono) e a parede externa (termofixa) que permite o monitoramento da presença de líquidos, em um tanque de parede dupla.

A NBR 16619 de 07/2017 – Armazenamento de líquidos inflamáveis e combustíveis – Criação de espaço intersticial a partir da construção de parede dupla interna não metálica em tanques de parede simples, para armazenamento de líquido e combustível instalados em SASC estabelece os requisitos e procedimentos para criação de espaço intersticial a partir da construção de parede dupla interna em tanques de parede simples, para armazenamento de líquido e combustível instalados em SASC. Neste procedimento, aplica-se revestimento não metálico interno utilizando material adequado aos requisitos previstos nesta norma para a criação de espaço anular que permita a instalação de um sistema de monitoramento de vazamento.

Para aplicação desta norma, os seguintes itens devem ser atendidos: compósitos utilizados na aplicação do revestimento conforme a Seção 11; espessura do tanque metálico acima do limite mínimo admissível, conforme 10.1.2, garantida por pré-análise estrutural; tanque deve ser ensaiado conforme NBR 13784, e ser considerado estanque; tanque subterrâneo deve ter sido instalado conforme NBR 13781; todos os componentes do SASC, conforme NBR 13783, para posto revendedor; tanque fabricado conforme a norma vigente na época e com boca de visita com dimensional e conexões conforme NBR 16161; paralisação das atividades operacionais do posto revendedor ou ponto de abastecimento durante a execução dos serviços de desgaseificação conforme 8.3, e preparação de superfície conforme Seção 10.

O cumprimento dos requisitos e procedimentos para criação de espaço intersticial a partir da construção de parede dupla interna em tanque instalado deve ter sua conformidade certificada no âmbito do Sistema Brasileiro de Avaliação da Conformidade (SBAC). Para todas as fases e camadas de revestimento devem ser utilizadas resinas termofixas, epóxi ou poliéster com catalisador. Os sistemas de resinas utilizados podem ser: epóxi/epóxi, epóxi/poliéster ou poliéster/poliéster.

As resinas utilizadas devem ser compatíveis com a manutenção das especificações dos combustíveis armazenados, comprovada por laboratório acreditado no SBAC, através da realização dos ensaios estabelecidos na regulamentação da ANP por 60 dias de imersão da resina totalmente curada no combustível. A camada que fica em contato com o combustível deve ter espessura compatível com o sistema de resina empregado conforme recomendação do fabricante e em conformidade com as mesmas especificações do corpo de prova submetido aos ensaios. Caso seja utilizado o sistema epóxi para a construção desta camada, não podem ser aplicados aditivos que possam comprometer a resistência química do revestimento. O processo de cura e pós-cura deve seguir a orientação do fabricante.

Devem ser realizados ensaios para verificação das seguintes características do revestimento: resistência à flexão, conforme ASTM D 790; resistência ao impacto, conforme ASTM D 2794; dureza, conforme ensaio de dureza barcol da ASTM D 2583; integridade do filme, conforme ASTM D 543; aderência, conforme ASTM D 4541. Os corpos de prova devem ser ensaiados de acordo com os seguintes critérios: estabelecer valores de referência das propriedades fiscais, realizando ensaios citados em 6.1 em amostras do compósito novo (conjunto de revestimento). As amostras do composto podem ter suas propriedades físico-químicas modificadas ao entrarem em contato com os líquidos de imersão.

Após o estabelecimento destes valores referenciais, executar os ensaios de imersão conforme 6.3, terminado cada período de imersão, os corpos de prova devem ser novamente ensaiados, conforme 6.1 e os novos valores obtidos não podem ser inferiores a 30 % dos valores de referência para imersão em tolueno, xileno e água destilada, e 50 % dos valores de referência para os demais produtos citados em 6.3.

Os corpos de prova devem ser imersos nos líquidos mencionados na tabela abaixo por períodos de 1,3 e 6 meses a 38 °C ou 1,3, 6 e 12 meses a 23 °C. Os corpos de prova do material usados para o revestimento, retirados conforme especificado pelas correspondentes ASTM, devem ser ensaiados para determinar a compatibilidade do material com os produtos mencionados na tabela abaixo, que podem vir a ser armazenados no tanque.

Devem ser adotadas as práticas e procedimentos exigidos pelas NBR 14606 e NBR 14973, para limpeza e entrada, desgaseificação e ventilação do tanque, e qualquer trabalho a quente. Devem ser disponibilizados extintores de incêndio conforme estabelecido na NBR 14606. Toda a equipe envolvida nos trabalhos deve estar capacitada e treinada na utilização adequada dos extintores.

Deve ser assegurado que meios de comunicação estejam disponíveis em caso de emergência, e que a equipe envolvida nos trabalhos esteja ciente sobre para quem e para onde ligar, incluindo uma lista com telefones de emergência e com os recursos mais próximos para pronto atendimento. O trabalho não pode ser iniciado, se a direção do vento fizer com que os vapores expulsos do tanque sejam levados para áreas onde existem fontes ou potenciais fontes de ignição, ou para condições perigosas, como exposição a material tóxico.

Todas as tubulações e equipamentos ligados ao tanque devem ser desconectados. Após a desconexão, as tubulações devem ser tamponadas para assegurar que não haja a liberação de produtos ou vapores remanescentes. Deve ser assegurada a remoção ou o controle de todas as fontes de ignição na área em torno do tanque, da sua boca de visita e do ponto onde é feito o expurgo dos vapores removidos do tanque no processo, sempre que existir potencial de vapores inflamáveis serem expulsos para a atmosfera durante a preparação e aplicação do revestimento interno do tanque. Deve ser assegurado que não haja chama aberta e que equipamentos geradores de faíscas que estejam dentro de uma área com raio mínimo de 15 m (50 pés) ao redor do tanque sejam e permaneçam desligados. Os equipamentos elétricos usados na área de segurança devem ser à prova de explosão ou intrinsecamente seguros, conforme especificado pela NBR 14639, e devem ser inspecionados por uma pessoa qualificada e aprovados para uso em ambientes potencialmente perigosos.

Os equipamentos elétricos portáteis devem estar aterrados e conectados a dispositivos de desarme em caso de falha no aterramento, conforme NBR 5410. Deve ser designada pessoa capacitada para utilização de equipamento calibrado e aferido para teste de explosividade ao redor e a jusante do tanque durante a desgaseificação. O teor de oxigênio deve ser determinado antes da leitura da explosividade. Durante todo o processo de desgaseificação, o acesso ao posto deve ser interditado, as operações paralisadas e as instalações elétricas desligadas.

Somente após a conclusão deste processo o acesso ao posto deve ser permitido, as operações reiniciadas e as instalações elétricas religadas. A interdição do acesso ao posto deve ser feita mediante a utilização de fitas de sinalização ou similar com a presença de pessoas posicionadas adequadamente de modo a monitorar o perímetro interditado. Deve ser utilizado quadro elétrico temporário independente, para a ligação de todos os equipamentos elétricos necessários em todo o processo.

Todas as pessoas com permissão para entrar no tanque devem estar treinadas e familiarizadas com os procedimentos descritos na Seção 7 e na NBR 14606. Antes da entrada ou abertura da boca de visita, a atmosfera no interior do tanque deve ser ensaiada para os seguintes parâmetros: nível de oxigênio e o limite inferior de explosividade (LIE). Durante a permanência de pessoas no interior do tanque, deve ser mantida uma ventilação constante, que pode ser obtida através de um difusor de ar. Durante todo este período, a atmosfera no interior do tanque deve ser continuamente ensaiada para verificação dos níveis de oxigênio e LIE.

Todas as pessoas que acessarem o interior do tanque devem utilizar vestimentas e equipamento de proteção individual (EPI) conforme NBR 16577, incluindo botas resistentes a água e derivados do petróleo ou álcool, com solado isento de partes metálicas, roupas de proteção com mangas longas de material antiestático (por exemplo, algodão) e botas impermeáveis. Durante os serviços realizados no interior do tanque, deve ser disponibilizado sistema que permita o resgate rápido de pessoas de seu interior, em casos de emergência.

Todos os equipamentos de iluminação, portáteis ou não, que vierem a ser utilizados no interior do tanque, devem ser à prova de explosão ou intrinsecamente seguros. Todos os envolvidos com o processo de aplicação de revestimento interno em tanques devem estar cientes das precauções que devem ser tomadas para a garantia de sua saúde e segurança, conforme a seguir: manter os combustíveis distantes dos olhos, pele e boca, pois podem provocar sérias lesões ou mesmo a morte se inalados, absorvidos pela pele ou ingeridos; manter as áreas de trabalho dentro e em volta do tanque limpas e ventiladas; limpar imediatamente qualquer tipo de derrame.

O manuseio e disposição dos resíduos gerados durante o processo devem estar de acordo com as regulamentações e legislação em vigor. Deve-se ser utilizada água e sabão neutro ou qualquer outro produto aprovado para a limpeza de qualquer resíduo de combustíveis, de derivados de petróleo ou resíduo químico que entre em contato com a pele. Nunca utilizar gasolina ou solventes similares para a remoção de produto na pele. Os uniformes ou roupas de proteção que tenham sido encharcados com combustíveis devem ser deixados para secar ao ar livre, distantes de qualquer fonte de ignição ou centelha.

Deve-se obedecer aos limites de exposição aos produtos e utilizar o equipamento de proteção individual adequado, além de se evitar contato da pele e dos olhos com produto, borras, resíduos e incrustações, e evitar a inalação de vapores. Manter produto, borras, resíduos e incrustações longe dos olhos, pele e boca uma vez que oferecem riscos à saúde se forem inalados, absorvidos através da pele ou ingeridos. A remoção de incrustações em tanques que contiveram gasolina pode produzir atmosferas com quantidades prejudiciais de benzeno.

Todos os envolvidos no processo de aplicação do revestimento interno devem estar cientes de que, quando altas concentrações de vapores de hidrocarbonetos são inaladas, podem aparecer sintomas de intoxicação. Estes sintomas variam desde uma simples tontura ou sensação de euforia até inconsciência e são similares aos produzidos por bebidas alcoólicas ou gases anestésicos.

Caso os sintomas anteriormente descritos sejam identificados em qualquer indivíduo, este deve ser removido imediatamente para um local arejado. Quando a exposição a estes vapores for pequena, o simples fato de se respirar ar puro promove uma rápida recuperação. Nas situações em que ocorra uma parada respiratória, deve ser administrada imediatamente respiração por meios artificiais, seguida de uma imediata remoção para o hospital mais próximo.

Os envolvidos no processo de aplicação devem ser informados sobre os riscos à saúde e segurança e precauções cabíveis, para o controle da exposição aos materiais, produtos e substâncias utilizadas na aplicação do revestimento interno com base na FISPQ (Ficha de Informações de Segurança de Produtos Químicos). Todos os envolvidos no processo de aplicação de revestimento interno devem estar cientes dos riscos à saúde e segurança que são gerados pelas substâncias comumente encontradas em tanques para armazenamento de combustíveis.

Como projetar os dutos terrestres

O transporte por dutos utiliza um sistema de tubos ou cilindros, previamente preparados, formando uma linha chamada de transporte por dutos ou via que movimenta produtos de um ponto a outro. O transporte de cargas ocorre no interior dessa linha e o movimento se dá por pressão ou arraste por um elemento transportador. Assim, o transporte por dutos é constituído de terminais (com os equipamentos de propulsão do produto), tubos e as respectivas juntas de união.

Essa modalidade de transporte, especialmente quando comparada com os modais rodoviário e ferroviário, vem se revelando como uma das mais econômicas para grandes volumes de produto, principalmente de petróleo (e derivados), gás natural e álcool (etanol). Dessa forma, também podem ser transportados minério, cimento e cereais (minerodutos ou polidutos): o transporte é feito por tubulações que possuem bombas especiais, que impulsionam cargas sólidas ou em pó. Também se dá por meio de um fluido portador, como a água para o transporte do minério (média e longa distância) ou o ar, para o cimento e cereais (curta distância).

Carvão e resíduos sólidos (minerodutos): para esse tipo de carga utiliza-se uma cápsula para transportar a carga, por meio da tubulação, impulsionada por um fluido portador, água ou ar.

Águas servidas – esgoto (dutos de esgoto): as águas servidas ou esgotos produzidos pelo homem podem ser conduzidos por canalizações próprias até um destino final adequado.

Água potável (dutos de água): uma vez coletada em mananciais ou fontes, a água é conduzida por meio de tubulações até estações, para tratamento e distribuição, também por meio de tubulações. As tubulações envolvidas na coleta e distribuição são denominadas adutoras.

Quanto ao tipo de operação, está dividida em transporte ou transferência; quanto à rigidez, pode ser rígida ou flexível; quanto à localização, têm-se as formas enterrada, flutuante, aérea ou submarina; quanto à temperatura de operação, pode ser normal ou aquecida; e quanto ao material de constituição, divide-se em aço e materiais não metálicos. As operações de transporte ou de transferência de produtos por dutos podem ser realizadas por um sistema forçado (que utiliza um elemento de força para movimentar o produto dentro do duto); ou pelo sistema por gravidade (que utiliza apenas a força da gravidade para movimentar o produto dentro do duto). O sistema por gravidade apresenta vantagens sobre o sistema forçado, uma vez que não precisa de força motriz mecânica o que faz com que não haja gasto com energia, porém possui, como limitação, a condição de transportar apenas produtos fluidos, pouco viscosos.

A NBR 15280-1 de 06/2017 – Dutos terrestres – Parte 1: Projeto estabelece as condições e os requisitos mínimos exigidos para projeto, especificação de materiais e equipamentos, teste hidrostático e controle da corrosão em instalações dutoviárias terrestres. Aplica-se a instalações dutoviárias terrestres para movimentação de produtos líquidos ou liquefeitos, como petróleo, derivados de petróleo (nafta, gasolina, diesel, querosene, óleo combustível etc.), condensado de gás natural, gasolina natural, gás liquefeito de petróleo, amônia anidra, etanol e outros biocombustíveis.

As instalações dutoviárias terrestres abrangidas por esta parte são: os dutos que interligam estações de coleta e tratamento, plantas de processamento, bases de distribuição e terminais, incluindo as suas instalações complementares, como: câmaras de pigs; tubulações em estações de redução, limitação e alívio de pressão; tubulações em estações de medição de vazão; tubulações em áreas de válvulas intermediárias do duto; trecho terrestre de dutos provenientes de instalações marítimas; tubulações em bases de distribuição e terminais (terrestres e aquaviários); tubulações em píeres; tubulações em estações, inicial ou intermediária, de bombeamento ou de reaquecimento.

O duto, normalmente enterrado, segue em corredor delimitado, quando cruza qualquer uma das demais instalações (refinaria, campo de produção, base de distribuição, terminal, estação de bombeamento, etc.). No caso de ser o ponto inicial ou final do duto, o corredor delimitado para o duto segue até a câmara de pigs ou até a medição de vazão, na ausência da câmara de pigs, ou até a primeira válvula de bloqueio, na ausência das duas instalações anteriores. As tubulações que interligam as instalações entre dutos e parque de tanques em plantas de processamento podem ser projetadas de acordo com esta parte da NBR 15280. Neste caso, recomenda-se que seja delimitado um corredor dentro da unidade para passagem das tubulações.

A figura abaixo 1 apresenta um diagrama ilustrativo da abrangência das instalações que estão cobertas por esta parte da norma. As seguintes instalações são exemplos de plantas de processamento: refinarias, plantas de processamento de gás natural, plantas de amônia anidra e usinas de etanol e outros biocombustíveis. A estação de bombeamento inicial pode estar locada em qualquer uma das demais instalações (refinaria, campo de produção, base de distribuição, terminal etc.).

clique na figura para uma melhor visualização

A estação de bombeamento intermediário pode estar em área independente ou locada em qualquer uma das demais instalações (refinaria, campo de produção, base d e distribuição, terminal, etc.). A estação de aquecimento intermediário, utilizada em alguns dutos com produtos transportados aquecidos, pode estar em área independente ou locada em qualquer uma das demais instalações (refinaria, campo de produção, base de distribuição, terminal etc.). Aplica-se somente aos dutos e tubulações cujos tubos e demais componentes de tubulação são de aço-carbono. Aplica-se aos dutos e tubulações para movimentação de produtos líquidos ou liquefeitos, inflamáveis ou tóxicos, classificados segundo os danos potenciais que possam causar à integridade das pessoas, aos bens patrimoniais das comunidades e ao meio ambiente.

Esta Parte da NBR 15280 classifica os produtos transportados dentro das duas categorias de risco citadas a seguir: categoria I – produtos inflamáveis ou tóxicos, estáveis na fase líquida quando em condições de temperatura ambiente e pressão atmosférica. Os produtos da categoria I apresentam menores riscos potenciais que os da categoria II. Exemplos típicos são: petróleo, derivados líquidos de petróleo, metanol, etanol e outros biocombustíveis. Os produtos da categoria I possuem pressão de vapor absoluta igual ou inferior a 1,10 bar (1,12 kgf/cm2), a 38 °C, sendo denominados produtos de baixa pressão de vapor (BPV).

A categoria II inclui os produtos inflamáveis ou tóxicos, estáveis na fase gasosa quando em condições de temperatura ambiente e pressão atmosférica, mas que sob certas condições de temperatura ou pressão podem ser transportados como líquidos. Os produtos da categoria II apresentam maiores riscos potenciais que os da categoria I. Exemplos típicos são: gases liquefeitos de petróleo (GLP), eteno, propano, líquido de gás natural (LGN), amônia anidra. Os produtos da categoria II possuem pressão de vapor absoluta superior a 1,10 bar (1,12 kgf/cm²), a 38 °C, sendo denominados produtos de alta pressão de vapor (APV).

Não se aplica ao projeto de dutos e tubulações nas seguintes condições: movimentação de GLP na fase gasosa; movimentação de gás natural liquefeito (GNL); operação acima de 120 °C e abaixo de – 30 °C; tratamento e processamento de óleo; poços, cabeças de poços, separadores e outras facilidades de produção; movimentação de combustíveis líquidos para fornos e caldeiras; tubulações auxiliares de água, ar, vapor e óleo lubrificante; operação a pressões relativas iguais ou inferiores a 100 kPa (1 bar).

O projeto de um duto inclui outros itens fora do escopo desta Parte da NBR 15280, como: seleção da diretriz e do diâmetro, levantamento de condições ambientais, coleta de dados geomorfológicos, determinação dos teores de elementos contaminantes nos produtos transportados, investigações batimétricas, investigações de agressividade química do solo e estudos de impacto ambiental. Esta Parte da NBR 15280 adota o Sistema Internacional de Unidades (SI).

A pressão, as cargas externas e a variação da temperatura são os principais carregamentos nos dutos e tubulações. Medidas de proteção e de mitigação das tensões mecânicas devem ser adotadas em locais como: travessia de rios, áreas alagáveis, pontes, áreas com tráfego intenso e terrenos instáveis. Algumas destas medidas são: utilização de tubo camisa ou jaqueta de concreto, aumento da espessura de parede, aprofundamento do duto e utilização de placa de concreto.

A pressão de projeto (PMP), em qualquer ponto de um duto ou tubulação, deve atender às seguintes condições: ser igual ou superior à PMO; seu valor, acrescido de 10 %, deve ser igual ou superior à PMI. A pressão de projeto deve ser igual ou superior à PMP definida em 4.2.1. A verificação da espessura de parede quanto à resistência ao colapso deve utilizar o maior diferencial entre as pressões externa e interna, que possa ocorrer durante a vida útil da instalação. A pressão interna oriunda da expansão térmica do fluido por efeito de insolação deve ser considerada para trechos aéreos, entre bloqueios, de duto e tubulação.

Caso necessário, deve ser previsto dispositivo de alívio térmico que mantenha a pressão igual ou inferior a 110 % da pressão de projeto do respectivo trecho entre bloqueios. A pressão de ajuste dos dispositivos de alívio térmico de um equipamento segue a sua norma de projeto. A faixa da temperatura de projeto é definida pelos limites da temperatura do metal esperada para as condições normais de operação. Para instalações expostas ao sol, o limite superior da faixa de temperatura de projeto não pode ser inferior a 60 °C.

No caso da existência na instalação de dispositivos de proteção de temperatura, a definição dos limites superiores e inferiores da faixa de temperatura de projeto deve ser baseada nas temperaturas de metal esperadas quando da atuação destes dispositivos. Alguns materiais, qualificados em conformidade com as normas listadas no Anexo B, podem não ser adequados para utilização em dutos e tubulações que operem à temperatura próxima do limite inferior preconizado. Deve ser dada atenção às propriedades mecânicas e metalúrgicas nas baixas temperaturas, para os materiais empregados em instalações sujeitas às condições ambientais ou operacionais de baixas temperaturas.

O dimensionamento de tubos para a pressão interna resume-se na determinação da espessura nominal de parede. Para tubos curvados, obtidos a partir de tubos retos por conformação a frio, a espessura nominal a ser adotada é a mesma determinada para o tubo reto de mesmo diâmetro e material, operando à mesma pressão. Para flanges e conexões forjadas, com extremidades para solda de topo, fabricadas de acordo com uma das normas do Anexo B aplicável a estes componentes, a espessura nominal a ser adotada para a extremidade da peça (bisel) deve ser determinada por 5.2.1.

Nas extremidades para solda de topo, considerar na escolha do material a limitação para espessuras desiguais, definida no ASME B31.4. Considerar as restrições impostas pela variação do diâmetro interno para trechos sujeitos à passagem de pigs. Para peças forjadas com flange ou rosca, a espessura mínima de metal no corpo não pode ser inferior à especificada para as peças fabricadas no padrão ASME ou MSS, para a mesma classe de pressão. A espessura mínima de parede para tubos curvados por indução, obtidos segundo a NBR 15273, medida na região do extradorso da curva, deve ser igual à espessura total de um tubo reto de mesmo diâmetro e material, operando à mesma pressão.