A segurança no armazenamento de recipientes de gás liquefeito de petróleo (GLP)

Saiba quais são os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. 

A NBR 15514 de 08/2020 – Recipientes transportáveis de gás liquefeito de petróleo (GLP) — Área de armazenamento — Requisitos de segurança estabelece os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. Não se aplica às bases de armazenamento, envasamento e distribuição de GLP, para as quais é aplicável a NBR 15186, e aos recipientes transportáveis de GLP quando em uso. A não ser que seja especificado de outra forma por regulamentação legal, os requisitos desta norma não são obrigatórios para as instalações que já existiam ou tiveram sua construção, instalação e ampliação aprovadas e executadas anteriormente à data de publicação desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o empilhamento de recipientes transportáveis de GLP?

Como deve ser feito o empilhamento de recipientes em paletes estruturados?

Que medidas devem ser tomadas em relação à máquina de vendas de recipientes transportáveis de GLP?

Quais são as características da área de armazenamento de apoio?

Os locais que armazenam, para consumo próprio, cinco ou menos recipientes transportáveis, com massa líquida de até 13 kg de GLP (cheios, parcialmente cheios ou vazios), ou carga equivalente em outro tipo de recipiente, devem atender aos seguintes requisitos: estar em local aberto com ventilação natural; estar afastado no mínimo 1,5 m de outros produtos inflamáveis, de fontes de calor, de faíscas, ralos, caixas de gordura e de esgotos, bem como de galerias subterrâneas e similares; não podem estar expostos ao público. As áreas de armazenamento de recipientes transportáveis de GLP devem ser classificadas pela capacidade de armazenamento, em quilogramas de GLP, conforme tabela abaixo.

A capacidade de armazenamento, em quilogramas de GLP, de uma área deve ser limitada pela soma da massa líquida total preestabelecida nos recipientes transportáveis. Quando a área de armazenamento estiver instalada em postos revendedores de combustíveis líquidos-PR, ela deve ser limitada a uma única área, classe I ou II. O lote de recipientes transportáveis de GLP pode armazenar até 6.240 kg, em botijões ou cilindros, (novos, cheios, parcialmente cheios e vazios).

O local de assento dos recipientes transportáveis de GLP deve ter ventilação natural, piso plano pavimentado com superfície que suporte carga e descarga, podendo ter inclinação desde que não comprometa a estabilidade do empilhamento máximo estabelecido na Tabela 3, disponível na norma. O local de assento dos lotes pode ser localizado ao nível do solo ou plataforma elevada. As áreas de armazenamento de classe III ou superiores devem possuir corredores de circulação com no mínimo 1,0 m de largura, entre os lotes de recipientes e ao redor destes.

A plataforma elevada destinada a áreas de armazenamento de recipientes transportáveis de GLP, quando existente, deve ser construída com materiais incombustíveis e possuir ventilação natural de forma a evitar o acúmulo de gás. O corredor de circulação pode ter inclinação, podendo estar em nível diferente do local de assentamento dos lotes desde que não ultrapasse a diferença máxima de 0,2 m, conforme Figura A.1, disponível na norma. A área ou corredor de circulação pode estar situado em outro nível diferente do assentamento dos recipientes, desde que a diferença de altura não ultrapasse 0,2 m, conforme Figura A.2, disponível na norma.

Uma mesma área de armazenamento pode possuir lotes em diferentes níveis de altura. Caso uma área esteja 0,2 m acima das demais ou do solo, essa deve possuir corredor de circulação, conforme Figura A.3, disponível na norma. A delimitação da área de armazenamento deve ser através de pintura ou demarcação de material incombustível no piso ou por meio de cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível, para assegurar ampla ventilação.

Para as áreas de armazenamento de classe III e superiores, também deve ser demarcado o piso para o local do (s) lote (s) de recipientes. A área de armazenamento, quando coberta, deve ter no mínimo 2,6 m de altura não sendo permitido o cercamento total do limite da área de armazenamento por paredes, permitindo-se, entretanto, sua delimitação por no máximo duas paredes. A estrutura e a cobertura devem ser construídas com produto incombustível e fora da projeção da edificação, tendo a cobertura menor resistência mecânica do que a estrutura que a suporta.

Quando a delimitação da área de armazenamento é feita por paredes, estas devem estar posicionadas a no mínimo 1,0 m do limite do lote, não podendo ter cobertura e atendendo aos distanciamentos de segurança da respectiva classe. Quando a área de armazenamento for delimitada por paredes ou cercas deve possuir acesso através de uma ou mais aberturas (portões) de no mínimo 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos.

Quando o imóvel não for delimitado por muros, cercas ou outros materiais, as áreas de armazenamento de qualquer classe devem ser delimitadas por cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível. O imóvel que contenha qualquer classe de área de armazenamento deve possuir no mínimo uma abertura (portão), com dimensões mínimas de 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos, para permitir a evasão de pessoas em caso de emergência. Adicionalmente, o imóvel pode possuir outros acessos com dimensões quaisquer e com qualquer tipo de abertura.

Não é permitida a armazenagem de outros materiais e equipamentos na área de armazenamento dos recipientes transportáveis de GLP, excetuando-se aqueles exigidos pela legislação vigente, como: balança, material para teste de vazamento, extintor(es) e placa(s), e outros destinados à operação de carga e descarga, como: carrinho de transporte, rampa metálica, incluindo as disposições de 4.9 e 4.10. Os recipientes transportáveis de GLP devem estar dentro da área de armazenamento, com exceção do estabelecido em 7.2 e dos recipientes carregados em veículos previsto na Seção 8.

Os recipientes transportáveis de GLP que apresentem defeitos ou vazamentos devem ser identificados e organizados separadamente dentro da área de armazenamento. As operações de carga e descarga de recipientes transportáveis de GLP devem ser realizadas com cuidado, evitando-se impacto no solo ou na plataforma elevada, para que não sejam danificados. Não é permitida a circulação de pessoas não autorizadas na área de armazenamento.

O muro do limite do imóvel deve ser construído com material resistente ao fogo (TRRF 60 minutos), com altura mínima 1,8 m, sem aberturas, com comprimento mínimo de 1,0 m excedente da (s) extremidade (s) do lote. Os muros internos ao imóvel não podem ser considerados como limite de propriedade. A área de armazenamento deve ser mantida limpa, livre, e os lotes afastados 1,5 m de acumulações de materiais de fácil combustão.

Deve ser observada a distância mínima de 3,0 m contados a partir dos limites do lote até onde existam reservatórios de líquidos inflamáveis cujo volume seja superior a 50 L, exceto tanque de combustível de veículos. As tolerâncias dimensionais desta norma admitem um desvio de até 0,1 m para menos. O (s) lote (s) de recipientes devem estar a 1,0 m no mínimo de qualquer parede, exceto na condição prevista em 7.2.

As distâncias mínimas de segurança definidas na Tabela 4 (disponível na norma) podem ser reduzidas pela metade com a construção de paredes resistentes ao fogo, desde que observado o estabelecido na Seção 9. Na entrada do imóvel deve ser exibida placa que indique no mínimo a (s) classe (s) de armazenamento existente (s) e a capacidade de armazenamento de GLP, em quilogramas, de cada classe. Exibir as placa (s) em locais visíveis, a uma altura de mínimo 1,8 m, medida do piso acabado à base da placa, distribuída (s) ao longo do perímetro da(s) área(s) de armazenamento, com os seguintes dizeres: PERIGO – INFLAMÁVEL; PROIBIDO O USO DE FOGO OU DE QUALQUER INSTRUMENTO QUE PRODUZA FAÍSCA.

As quantidades mínimas de placas a serem exibidas são as seguintes: classes I e II – uma placa; classes III e superiores – duas placas. As dimensões das placas devem permitir a visualização e a identificação da sinalização a uma distância mínima de 3,0 m. Os afastamentos entre placas de mesmo dizeres devem ter entre si no máximo 15,0 m. A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura.

O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.4.8.1 A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura. O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.

Os requisitos dos cabos ópticos protegidos contra o ataque de roedores

Saiba como deve ser a fabricação dos cabos ópticos dielétricos protegidos contra o ataque de roedores. Os cabos com revestimento NR ou RC são indicados para instalações subterrâneas aplicadas em linhas de dutos e em instalações aéreas, espinado junto ao mensageiro.

A NBR 14773 de 07/2020 – Cabo óptico dielétrico protegido contra o ataque de roedores para aplicação subterrânea em duto ou aérea espinado — Especificação especifica os requisitos para a fabricação dos cabos ópticos dielétricos protegidos contra o ataque de roedores. Os cabos com revestimento NR ou RC são indicados para instalações subterrâneas aplicadas em linhas de dutos e em instalações aéreas, espinado junto ao mensageiro. Os cabos com revestimento COG, COR, COP ou LSZH são utilizados apenas para instalações subterrâneas em dutos ou internas. Um cabo óptico dielétrico protegido contra o ataque de roedores para aplicação subterrânea em duto ou aérea espinado é um conjunto constituído por fibras ópticas monomodo ou multimodo de índice gradual, revestidas em acrilato, com elemento (s) de proteção da (s) unidade (s) básica (s), eventuais enchimentos; com elemento (s) de proteção da (s) unidade (s) básica (s) e núcleo resistente à penetração de umidade, e protegidos por revestimento interno de material termoplástico, uma barreira resistente à ação de roedores e revestimento externo de material termoplástico.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido o material hidroexpansível?

Qual é o código de cores das unidades básicas?

Quais são as cores das fibras ópticas?

Como deve ser executada a barreira resistente à ação de roedores?

Como deve ser feita a marcação métrica sequencial?

Na fabricação dos cabos ópticos dielétricos protegidos contra o ataque de roedores para aplicação em linhas de dutos ou aérea espinado, devem ser observados processos de modo que os cabos prontos satisfaçam os requisitos especificados nesta norma. Os cabos ópticos dielétricos protegidos contra o ataque de roedores para aplicação em linhas de dutos ou aérea espinado são designados pelo seguinte código: CFOA – X – Y – W – Z – K, onde CFOA é o cabo com fibra óptica revestida em acrilato; X é o tipo de fibra óptica, conforme a tabela abaixo; Y é a aplicação do cabo e formação do núcleo, conforme a tabela abaixo; W é o tipo de barreira à penetração de umidade, conforme a tabela abaixo; Z é o número de fibras ópticas, conforme a tabela abaixo. Outras quantidades de fibras por cabo podem ser adotadas, sendo objeto de acordo entre o comprador e o fornecedor. K é o grau de proteção do cabo quanto ao comportamento frente à chama, conforme a tabela abaixo e especificado em 5.2.7 (Comportamento frente à chama). A gravação do termo NR é facultativa.

Os materiais constituintes dos cabos ópticos dielétricos protegidos contra o ataque de roedores para aplicação em linhas de dutos ou aérea espinado devem ser dielétricos. Os materiais utilizados na fabricação do cabo devem ser compatíveis entre si. Os materiais utilizados na fabricação dos cabos com função estrutural devem ter as suas características contínuas ao longo de todo o comprimento do cabo. As fibras ópticas tipo multimodo de índice gradual, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13487.

As fibras ópticas tipo monomodo com dispersão normal, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13488. As fibras ópticas tipo monomodo com dispersão deslocada e não nula, utilizadas na fabricação dos cabos, devem estar conforme a NBR 14604. As fibras ópticas tipo monomodo com baixa sensibilidade a curvatura, utilizadas na fabricação dos cabos, devem estar conforme a NBR 16028.

Não são permitidas emendas nas fibras ópticas durante o processo de fabricação do cabo. O núcleo deve ser constituído por unidades básicas. Os cabos ópticos devem ser fabricados com unidades básicas de 2, 4, 6, 8, 12, 16, 24, 36 ou 48 fibras ópticas. As unidades básicas devem ser dispostas em elementos de proteção adequados, de modo a atender aos requisitos especificados nesta norma.

Os elementos de proteção podem ser constituídos por tubos de material polimérico encordoados em uma ou mais coroas, ou de forma longitudinal. Os elementos de proteção encordoados devem ser reunidos com passo e sentido escolhidos pelo fabricante, de modo a satisfazer as características previstas nesta norma. Podem ser colocados enchimentos de material polimérico compatível com os demais materiais do cabo, a fim de formar um núcleo cilíndrico.

No caso de cabos ópticos constituídos por elementos de proteção encordoados dispostos em mais de uma coroa, opcionalmente estas coroas podem ser separadas por fitas, a fim de facilitar a sua identificação. O núcleo pode ser constituído por um único elemento de proteção central de material polimérico. É recomendado que cabos ópticos compostos por elementos de proteção encordoados de até 12 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter 2 ou 6 fibras ópticas.

É recomendado que cabos ópticos compostos por elementos de proteção encordoados de 18 a 36 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter 6 ou 12 fibras ópticas. É recomendado que cabos ópticos compostos por elementos de proteção encordoados de 48 a 288 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter 12 ou 24 fibras ópticas. É recomendado que cabos ópticos compostos por elementos de proteção encordoados com capacidade superior a 288 fibras ópticas sejam constituídos por unidades básicas onde cada unidade pode conter 24, 36 ou 48 fibras ópticas.

Os elementos de proteção das unidades básicas devem ser preenchidos com composto não higroscópico ou com materiais hidroexpansíveis que assegurem o enchimento dos espaços intersticiais. O núcleo do cabo óptico geleado deve ser preenchido com composto não higroscópico que assegure o enchimento dos espaços intersticiais e limite a penetração e propagação de umidade no interior do cabo. O núcleo do cabo óptico seco deve ser protegido com materiais hidroexpansíveis, de forma a assegurar a sua resistência à penetração de umidade.

Os compostos de preenchimento e os materiais hidroexpansíveis devem ser homogêneos e inodoros, e devem permitir a identificação visual das partes componentes do cabo. Os compostos de preenchimento e os materiais hidroexpansíveis devem ser livres de impurezas, partículas metálicas ou outros materiais estranhos.

Os compostos de preenchimento e os materiais hidroexpansíveis devem ser facilmente removíveis e não tóxicos, e não podem provocar danos ao operador. Os compostos de preenchimento e os materiais hidroexpansíveis devem apresentar características que não degradem os componentes do cabo. O núcleo do cabo óptico deve ser protegido termicamente, de modo que sejam evitados danos às fibras ópticas e às unidades básicas, não permitindo a adesão entre elas, provocada pela transferência de calor durante a aplicação dos revestimentos.

O desempenho dos dutos corrugados de polietileno

Saiba quais são os requisitos gerais e de desempenho, bem como os métodos de ensaio, para fabricação de dutos corrugados de polietileno, empregados em instalações de infraestrutura elétrica (baixa, média ou alta-tensão) e/ou de telecomunicações, podendo estar confinados, enterrados ou aparentes.

A NBR 15715 de 07/2020 – Sistemas de dutos corrugados de polietileno (PE) para infraestrutura de cabos de energia e telecomunicações — Requisitos e métodos de ensaio especifica os requisitos gerais e de desempenho, bem como os métodos de ensaio, para fabricação de dutos corrugados de polietileno, empregados em instalações de infraestrutura elétrica (baixa, média ou alta-tensão) e/ou de telecomunicações, podendo estar confinados, enterrados ou aparentes. Esta norma não especifica os requisitos a serem atendidos pelos eletrodutos utilizados em sistemas elétricos prediais.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as características dimensionais dos dutos corrugados?

Como deve ser feita a marcação dos dutos corrugados?

Qual deve ser o plano de amostragem para verificação dimensional e visual?

Como deve ser executada a aceitação e rejeição na inspeção de recebimento?

A matéria-prima para a fabricação dos dutos corrugados deve ser o composto de polietileno, que é o material fabricado com resina à base de polietileno, contendo os aditivos e pigmentos necessários. As conexões devem ser fabricadas com composto de polietileno, polipropileno ou PVC. Os dutos corrugados e suas conexões devem atender à classificação da tabela abaixo, quanto à sua aplicação e a sua classificação à propagação de chama. Os dutos corrugados devem atender à classificação da tabela abaixo, quanto à sua aplicação e classificação de resistência à compressão.

Recomenda-se que o fabricante adote um controle do processo de fabricação capaz de assegurar que os produtos que fabrica estejam de acordo com esta Norma. Como referência informativa, pode ser utilizado o Anexo A. Os sistemas de dutos corrugados, quando montados de acordo com as instruções do fabricante, devem ter resistência apropriada às influências externas, conforme a classificação declarada pelo fabricante.

Os dutos corrugados e as conexões devem suportar os esforços normais que ocorrem durante o transporte, armazenamento, instalação recomendada e aplicação. Devem ser fabricados por processo de extrusão e as conexões podem ser fabricadas por qualquer processo de transformação, desde que atendam aos requisitos desta norma. A cor dos dutos corrugados e das conexões deve ser estabelecida entre o fabricante e o comprador, porém recomenda-se a utilização da cor preta.

Os dutos corrugados devem ser aditivados com absorvedores e estabilizantes que assegurem suas propriedades, quando expostos a intempéries durante o período de armazenamento. As superfícies dos dutos corrugados e conexões devem apresentar cor e aspecto uniformes e devem ser isentas de corpos estranhos, bolhas, fraturas do fundido, trincas ou outros defeitos visuais que comprometam o desempenho do produto. O fornecimento e o acondicionamento devem atender ao seguinte: os dutos corrugados devem ser fornecidos em barras com comprimentos múltiplos de 6 m ou em rolos com comprimentos múltiplos de 25 m; quando transportados, os dutos corrugados e conexões não podem ficar expostos à fonte de calor e agente químico agressivo, devendo ser acondicionados adequadamente para que não se soltem durante o transporte e para que preservem sua integridade mecânica.

Os dutos corrugados que não forem na cor preta e as conexões não podem ser estocados em locais sujeitos a intempéries por período superior a seis meses. Para os dutos corrugados pretos, em locais sujeitos a intempéries, recomenda-se que o período de estocagem não seja superior a 12 meses. Para períodos maiores de armazenamento, recomenda-se que os dutos sejam guardados protegidos dos raios solares ou intempéries.

Os dutos corrugados em barras devem ser fornecidos acompanhados de suas respectivas luvas de emenda e dos elementos de vedação, de forma a garantir a resistência às influências externas e, para os dutos corrugados em rolos, o fornecimento de luvas, tampões e elementos de vedação deve ser objeto de acordo entre o comprador e o fornecedor. Os dutos corrugados em rolos devem ser fornecidos com fio-guia interno, cujas extremidades devem ser amarradas nas pontas do duto. A unidade de compra do duto é o metro e das conexões é a peça.

Os dutos corrugados fabricados conforme esta norma devem ser compatíveis entre si, utilizando-se conexões de transição correspondentes. Os dutos corrugados e as conexões devem ser apropriados para a montagem da junta de vedação. Quaisquer que sejam os tipos de juntas formadas, seu desempenho deve ser garantido pela verificação da resistência às influências externas. A junta de vedação deve ser montada segundo as instruções do fabricante.

O duto corrugado deve suportar a carga mínima de 450 N ou 680 N, de acordo com a sua classificação indicada na tabela acima, quando submetido ao ensaio de resistência à compressão. Após o ensaio, os corpos de prova não podem apresentar fissuras, trincas ou estrangulamentos. O ensaio de resistência à compressão deve ser realizado de acordo com o Anexo C.

Quanto à resistência à curvatura, esse ensaio deve ser aplicado somente para os dutos corrugados fornecidos em rolos, aplicando o raio de curvatura indicado pelo fabricante do duto. O duto corrugado deve permitir a passagem de uma esfera ou gabarito cilíndrico com diâmetro de 95% do diâmetro interno mínimo do duto corrugado, quando submetido à curvatura. Após o ensaio, os corpos de prova não podem apresentar quebra, trinca ou fissuras. O ensaio de resistência à curvatura deve ser realizado de acordo com o Anexo D. O duto corrugado e a conexão devem resistir ao impacto sem apresentar quebra, rachaduras ou trincas que permitam a passagem de água ou luz entre os seus meios interior e exterior.

As juntas entre os dutos corrugados e as conexões devem apresentar grau de proteção às influências externas de classificação mínima IP38. A junta é constituída de segmentos de dutos corrugados, conexões e/ou elementos de vedação (quando aplicável). Se necessário, as extremidades abertas do conjunto montado podem ser fechadas ou não incluídas no ensaio.

A montagem das juntas deve ser realizada de acordo com as instruções indicadas no manual técnico do fabricante. A conformidade, de acordo com a classificação informada pelo fabricante, deve atender aos requisitos descritos a seguir, conforme aplicável. O ensaio de verificação da resistência às influências externas da junta deve ser realizado de acordo com a NBR IEC 60529.

Para os efeitos de aplicação da NBR IEC 60529, onde é utilizado o termo invólucro nesta norma é utilizado o termo junta. O conjunto montado deve ser ensaiado de acordo com o ensaio apropriado da NBR IEC 60529, considerando o primeiro numeral característico de proteção especificado pelo fabricante e os respectivos requisitos específicos do grau de proteção contra ingresso de objetos sólidos estranhos.

O conjunto montado ensaiado para o primeiro numeral característico 5 ou 6 deve ser considerado aprovado no ensaio se não houver penetração de poeira visível a olho nu, sem ampliação adicional. O conjunto montado deve ser ensaiado de acordo com o ensaio apropriado da NBR IEC 60529, considerando o segundo numeral característico de proteção e os respectivos requisitos específicos contra a penetração de água. O conjunto montado ensaiado deve ser considerado aprovado no ensaio se não houver penetração de água suficiente para formar uma gota visível a olho nu, sem ampliação adicional.

O ensaio do teor de negro de fumo deve ser aplicado somente ao duto corrugado fornecido na cor preta e somente para sua camada externa. A parede externa do duto corrugado na cor preta deve ser pigmentada com negro de fumo dispersado homogênea e adequadamente, com conteúdo na massa do composto de (2,5 ± 0,5) %. O ensaio de determinação do teor de negro de fumo deve ser realizado de acordo com a ISO 6964.

O ensaio de resistência ao intemperismo artificial deve ser aplicado somente ao duto corrugado fornecido em qualquer cor diferente da cor preta. A parede externa do duto corrugado não fornecido na cor preta deve ser aditivada com protetores ultravioletas dispersados homogênea e adequadamente, permitindo sua proteção dentro do período de estocagem às intempéries. Os resultados dos ensaios de tração no escoamento e alongamento na ruptura dos corpos de prova antes do envelhecimento, comparados com os resultados após o envelhecimento, devem ter variação máxima dentro do intervalo de ‒ 25% a + 25%. O ensaio de resistência ao intemperismo artificial deve ser realizado de acordo com o Anexo F.

O ensaio de dispersão de pigmentos deve ser aplicado somente à camada externa dos dutos corrugados. Este ensaio não é aplicado aos dutos corrugados classificados como não propagantes à chama. O duto corrugado deve apresentar uma dispersão de pigmentos que atenda à classificação máxima grau 3.

O ensaio de dispersão de pigmentos deve ser realizado de acordo com a NBR ISO 18553. O ensaio de resistência à chama deve ser aplicado somente aos dutos corrugados e às conexões classificados como não propagantes de chama. Os corpos de prova do duto corrugado não podem inflamar, para que sejam considerados resistentes à chama.

Se os corpos de prova queimarem ou forem consumidos sem queimar, o duto corrugado deve ser considerado aprovado, se os três corpos de prova atenderem a todos os requisitos a seguir: não pode haver combustão por mais 30 s após a remoção da chama; após ter cessado a combustão e após o corpo de prova ter sido limpo, utilizando-se um pedaço de tecido embebido em água, a amostra não pode apresentar evidência de queima ou carbonização a menos de 50 mm de qualquer parte da abraçadeira; e não pode ocorrer combustão no lenço de papel. O ensaio de resistência à chama do duto corrugado deve ser realizado de acordo com o Anexo G.

O projeto de estação de bombeamento ou elevatória de água

Saiba quais são os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

A NBR 12214 de 07/2020 – Projeto de estação de bombeamento ou de estação elevatória de água — Requisitos especifica os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como estabelecer a vazão para dimensionamento?

Como calcular o dimensionamento do volume útil da câmara de sucção ou do poço de sucção?

Como projetar a câmara de sucção para bomba tipo submersível?

Como executar o dimensionamento dos barriletes de sucção e de recalque?

Os elementos necessários para o desenvolvimento do projeto são os seguintes: a caracterização da estação de bombeamento ou estação elevatória, pontos de sucção e de recalque/descarga, vazão de dimensionamento, características físico-químicas e biológicas da água a ser bombeada ou elevada, níveis de enchente ou inundação no local; o levantamento planialtimétrico cadastral da área da estação de bombeamento ou elevatória com detalhes da vegetação, tipo de pavimento, acesso, obras especiais, indicação das interferências; o cadastro de unidade (s) operacional (is) relacionada (s) à estação de bombeamento ou elevatória e de interferências; as informações ou levantamentos socioambientais, geotécnicos, geológicos e arqueológicos, vazão de outorga, se aplicável; os dados físicos e operacionais do sistema de abastecimento de água existente; a disponibilidade de energia elétrica; os estudos, planejamentos e projetos existentes correlacionados; o estudo de concepção do sistema de abastecimento, elaborado conforme a NBR 12211; os planos diretores do sistema de abastecimento de água e demais planos diretores; o plano de urbanização, legislação relativa ao uso e ocupação do solo; restrição ambiental que interfira na área de influência do projeto; plano de saneamento básico; as condições mínimas de segurança e medicina do trabalho, conforme legislação e normas vigentes; os critérios, procedimentos e diretrizes da prestadora de serviço ou da contratante do sistema de abastecimento de água.

As atividades necessárias para o desenvolvimento do projeto são as seguintes: validar o estudo de concepção e/ou realizar estudo técnico, econômico, social, financeiro e ambiental; analisar as instalações do sistema de bombeamento ou elevatória existente, objetivando seu aproveitamento, quando for o caso; avaliar e considerar na solução técnica a restrição ambiental incidente, quando existir; avaliar o acesso da estação de bombeamento ou elevatória; complementar os levantamentos topográficos, as interferências, os estudos geológicos, geotécnicos e arqueológicos, quando necessário; determinar as vazões de projeto do sistema de bombeamento, levando em conta as condições operacionais do sistema de abastecimento; determinar a altura manométrica; determinar o tipo e o arranjo físico da elevatória; dimensionar a casa de bombas; selecionar os equipamentos de movimentação de carga e serviços auxiliares; determinar os sistemas de acionamento, medição e controle; determinar o traçado das tubulações de sucção e recalque; dimensionar e selecionar o material das tubulações de sucção e recalque; avaliar os diferentes materiais aplicados (conjunto motor-bomba, componentes, equipamentos, tubulações), de modo a compatibilizar as melhores soluções técnicas e econômicas com tempo de vida útil requerido no estudo e/ou projeto; dimensionar a câmara de sucção, quando necessário; elaborar as especificações dos equipamentos, das conexões e das tubulações; estudar os efeitos dos transitórios hidráulicos e selecionar o(s) dispositivo(s) de proteção do sistema; avaliar a resistência mecânica das partes componentes do sistema de bombeamento ou elevatória às ações internas e externas atuantes; detalhar as etapas de implantação; detalhar a interdependência das atividades e o plano de execução das obras, otimizando o tempo de paralisação do sistema, quando necessário; prever a implantação de dispositivos que permitam os procedimentos de limpeza, esgotamento, drenagem, desinfecção, estanqueidade, da estação de bombeamento ou elevatória; compatibilizar o projeto da estação de bombeamento ou elevatória com os demais projetos complementares [arquitetônico, estruturais, hidrossanitários, elétricos (inclusive iluminação), eletromecânicos, automação, monitoramento, instrumentação, ventilação, acústica, combate a incêndio, inspeção, urbanização, acessos, segurança].

Os elementos que devem compor o projeto são os seguintes: o memorial descritivo e justificativo, contendo os estudos, cálculos realizados, simulações hidráulicas; as peças gráficas do projeto, em escalas adequadas, atendendo às normas técnicas aplicáveis e às recomendações e padronizações da prestadora de serviço ou da contratante; o orçamento detalhado das obras, conforme etapas determinadas para a implantação; as diretrizes operacionais contendo o plano de operação e controle previsto para o sistema de bombeamento ou elevatória, detalhamento das vazões máximas e mínimas operacionais, quando aplicável; as diretrizes para pré-operação, comissionamento e/ou operação assistida, quando aplicável.

Para a determinação do local adequado para a implantação da estação de bombeamento ou elevatória, devem ser levados em consideração os seguintes fatores, de importância ponderada em função das condições técnicas e econômicas de cada projeto: desnível geométrico; características morfológicas; traçado da adutora, conforme a NBR 12215-1; desapropriação, legalização de áreas; acessos permanentes e que permitam a movimentação do transporte para a manutenção; proteções contra enchentes, inundações e enxurradas; estabilidade contra erosão; disponibilidade de energia elétrica; remanejamento de interferências; segurança contra assoreamento no ponto de tomada ou da captação d´água e na região próxima a estes pontos; Net Positive Succion Head (NPSH) disponível, sendo determinado considerando o nível mínimo operacional na câmara de sucção (positivo ou negativo), a temperatura ambiente média e a altitude do local onde será implantada a estação de bombeamento ou elevatória; disponibilidade de área para ampliações futuras, quando necessário.

A determinação dos levantamentos a serem efetuados deve ser precedida de inspeção de campo. Para a locação da estação de bombeamento ou elevatória, os levantamentos topográficos devem ser planialtimétricos cadastrais em extensão, detalhamento e precisão, permitindo no mínimo: mostrar os limites de propriedades e benfeitorias existentes, com indicação dos proprietários; os níveis máximos observados em corpos de água superficiais; os tipos de vegetação, os usos do solo e a exploração do subsolo; os tipos de pavimento, indicação e mapeamento das interferências superficiais e do subsolo.

Deve-se justificar a posição adotada; as obras especiais. Indicar as vias de acesso para a implantação, operação e manutenção da estação de bombeamento ou elevatória. As sondagens devem ser em número, tipo e profundidade que permitam determinar a fundação da estação de bombeamento ou elevatória, determinar o nível atual do lençol freático e elaborar o projeto das obras especiais, permitindo estabelecer o processo de escavação, a fundação e demais elementos estruturais.

As interferências não visíveis devem ser levantadas a partir das informações existentes nos projetos e cadastros, pelo acesso à câmara e/ou à caixa de inspeção existente, por meio de levantamento topográfico, da realização de furos de sondagem de prospecção eletromagnética. Deve-se avaliar as instalações do sistema de bombeamento existente e seu ciclo operacional, elaborando diagnóstico que permita a sua otimização e adequação técnica.

Na elaboração de novos estudos e projetos, as partes com aproveitamento total e/ou parcial existentes devem satisfazer as condições desta norma ou adaptar-se a ela, mediante alterações ou complementações. Deve ser analisado o impacto do sistema projetado sobre as instalações existentes. Devem ser levantadas as características hidráulicas e morfológicas das instalações existentes e a serem projetadas das unidades construtivas.

Por exemplo, da captação à margem de mananciais, compreendendo: número, forma, dimensões e material dos canais ou tubulações; cota do fundo dos canais ou tubulações na entrada da câmara de sucção; níveis máximo (cota de enchente e/ou nível de inundação) e mínimo da água nos canais à entrada da câmara de sucção; características da água, condicionantes ou necessárias para a seleção dos equipamentos; velocidade de entrada na câmara de sucção, que não pode ser superior a 0,60 m/s. Da captação direta no manancial, compreendendo: os perfis de fundo do manancial no local da captação, por meio de no mínimo três seções batimétricas, distanciadas em no máximo 20 m entre si ou conforme necessidade local determinada pela prestadora de serviço ou contratante; os níveis máximo (cota de enchente e nível de inundação) e mínimo da água; a velocidade da água no local da captação; as obras complementares projetadas; as características da água, condicionantes ou necessárias para a seleção dos equipamentos. Da sucção em reservatório, compreendendo as características gerais do reservatório: tipo, material, forma, dimensões e número de câmaras; as cotas geométricas e operacionais do reservatório, e cotas do terreno; as características da água, condicionantes ou necessárias à seleção do equipamento.

A conformidade das chapas e bobinas de aço laminadas

Saiba quais são os requisitos para os produtos planos de aço-carbono de baixa liga com espessura mínima nominal de 0,50 mm, laminado, revestido por uma liga metálica protetiva contra corrosão ou sem revestimento, para peças e blanks submetidos a tratamento térmico de austenitização e estampagem a quente seguida de resfriamento rápido para endurecimento (têmpera).

A NBR 16875 de 07/2020 – Chapas e bobinas de aço laminadas, revestidas ou não, para peças estampadas a quente — Requisitos estabelece os requisitos para os produtos planos de aço-carbono de baixa liga com espessura mínima nominal de 0,50 mm, laminado, revestido por uma liga metálica protetiva contra corrosão ou sem revestimento, para peças e blanks submetidos a tratamento térmico de austenitização e estampagem a quente seguida de resfriamento rápido para endurecimento (têmpera).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os valores de dureza superficial e de microdureza pós-tratamento?

Por que deve ser feita a análise química da corrida?

O que deve constar da declaração de qualidade?

Como devem ser feitos os ensaios mecânicos?

Esta norma estabelece os requisitos mínimos para o fornecimento de chapas e bobinas de aço destinadas ao processo de estampagem a quente seguidas de têmpera. As chapas e bobinas de aço-carbono especificados por esta norma são uma indicação do valor de limite de resistência à tração após todo o processo térmico e mecânico de estampagem ocorrido. Os graus dos aços, suas respectivas composições químicas bem como as propriedades mecânicas antes (pré) e após (pós) o processo térmico e mecânico de estampagem estão indicadas nas tabelas abaixo. Os graus dos aços devem atender à especificação de composição química estabelecida na tabela abaixo.

Os graus dos aços e seus requisitos de propriedade mecânica de tração são dados na tabela abaixo, onde “pré”, significa os valores de referência antes do processo de tratamento térmico e estampagem a quente e “pós”, significa os valores finais de garantia. Os requisitos de pós-estampagem se referem antes da cura da pintura e devem ser acordados entre os responsáveis pela estampagem a quente e os clientes finais. O ensaio de tração e seus procedimentos devem estar em conformidade com as normas respectivas de seus produtos, sendo para o não revestido a NBR 11888, para os produtos revestidos por zinco e liga zinco-ferro a ABNT NBR 7008-1, liga zinco-níquel conforme a NBR 14964 e liga alumínio-silício conforme a NBR 16539.

A direção de ensaio é longitudinal à direção de laminação na pré-estampagem. As faixas de especificações mecânicas podem ser negociadas com os fornecedores. O valor de alongamento ao ensaio de tração pode ser realizado em outra base de medida, desde que informado e em conformidade com a norma ISO 2566-1. Caso não seja possível a retirada de corpos de prova para realização de ensaio de tração, ensaios de dureza (superficial ou microdureza) podem ser realizados em regiões acordadas entre o cliente final e o responsável pela estampagem a quente.

A superfície da peça deve ser preparada eliminando o revestimento ou o óxido existente, para a medição da dureza no substrato. As propriedades mecânicas são de responsabilidade da empresa de estampagem a quente, dado que as características químicas apresentadas na tabela acima sejam consideradas.

Quando aplicável, o revestimento do substrato pode ser de zinco ou liga zinco-ferro conforme a NBR 7008-1, liga zinco-níquel conforme a NBR 14964 ou liga alumínio-silício de acordo com a NBR 16539. A qualidade superficial das chapas e bobinas de aço-carbono fornecidas para o processo de estampagem a quente admite imperfeições leves a moderadas compatíveis ao tipo de aplicação. O grau de superfície deve seguir os requerimentos estabelecidos nas respectivas normas de seus produtos, não podendo ser um iniciador de dano a estrutura do aço-base durante o processo de estampagem a quente, nem em processos posteriores.

As chapas e bobinas de aço-carbono podem ou não ser fornecidas revestidas e de acordo com as respectivas normas de seus produtos. O revestimento tem por objetivo não realizar processos posteriores de retirada de óxidos de superfície, dar maior eficiência no controle de descarbonetação bem como a proteção contra intempéries após o processo de estampagem a quente. A qualidade do revestimento pré-estampagem deve atender aos pré-requisitos estabelecidos nas respectivas normas de seus produtos.

Pequenas imperfeições no revestimento, como trincas causadas pelo processo de estampagem a quente são inerentes ao processo. As imperfeições possíveis, além dos níveis de aceitação, devem ser acordadas entre o responsável pelo processo de estampagem a quente e o cliente final. Após o processo de estampagem a quente os diferentes revestimentos passam por transformações metalúrgicas e suas espessuras podem ser alteradas. As características metalúrgicas e dimensionais do revestimento devem ser acordadas entre o responsável pela estampagem e o cliente.

O material de pré-estampagem deve estar de acordo com as normas vigentes e não pode apresentar desvios de qualidade que possam influenciar na sanidade do revestimento. O revestimento não pode iniciar irregularidades estruturais (microtrincas no aço-base) e de corrosão quando em aplicação. Os itens listados a seguir são as informações que, no mínimo, devem ser descritas na ordem de compra das chapas e bobinas de aço carbono por esta norma: grau do aço e número desta norma; dimensão nominal em milímetros: espessura × largura × comprimento (no caso de chapas); revestimento (quando aplicável); massa (toneladas); aplicação específica ou uso final; faixa de peso unitário da bobina ou do fardo de chapas. As tolerâncias dimensionais e de forma devem estar de acordo com as respectivas normas de seus produtos. Qualquer requisito diferente do estabelecido por esta norma fica condicionado ao acordo entre o cliente e o fornecedor.

A execução de obras com tubos pré-moldados de concreto

Saiba quais são os os requisitos para a execução de obras com tubos pré-moldados de concreto conforme a NBR 8890, aduelas (galerias celulares) pré-moldadas de concreto conforme a NBR 15396, galerias técnicas conforme a NBR 16584 e poços de visita para inspeção conforme a NBR 16085.

A NBR 15645 de 07/2020 – Execução de obras utilizando tubos e aduelas pré-moldados em concreto estabelece os requisitos para a execução de obras com tubos pré-moldados de concreto conforme a NBR 8890, aduelas (galerias celulares) pré-moldadas de concreto conforme a NBR 15396, galerias técnicas conforme a NBR 16584 e poços de visita para inspeção conforme a NBR 16085. Esta norma é aplicável à execução de redes de drenagem pluvial, coletores, interceptores e emissários de esgoto sanitário, que trabalhem sem pressão interna e cujo líquido conduzido seja água de chuva, esgotos domésticos ou efluentes industriais. Adicionalmente, esta norma se aplica à execução de redes de galerias técnicas para passagem de redes de telecomunicação, telefonia, fibra ótica, água fria, gás, eletricidade e demais serviços correlatos, realizadas com tubos, aduelas ou galerias técnicas pré-moldados em concreto. Esta norma não se aplica a execução de obras por métodos não destrutivos com tubos cravados mecanicamente (pipe jacking).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executada a descarga dos produtos?

Qual a altura máxima de empilhamento?

O que deve ser observado no levantamento ou rompimento do pavimento?

Qual deve ser a largura de vala para os tubos de concreto?

As obras devem obedecer rigorosamente às plantas, desenhos e detalhes de projeto, às recomendações específicas dos fabricantes dos materiais a serem empregados e aos demais elementos que a fiscalização venha a fornecer. Em caso de divergência de informações de projeto, o projetista deve ser consultado. Todos os aspectos particulares encontrados na execução da obra e possíveis interferências devem ser comunicados à fiscalização ou contratante para as devidas providências.

A construção deve ser acompanhada pela fiscalização ou contratante. O material a ser fornecido e aplicado deve obedecer às normas brasileiras pertinentes. Deve ser respeitada a legislação ambiental vigente. A demarcação e o acompanhamento dos serviços a serem executados devem ser efetuados por equipe de topografia. Qualquer serviço que não seja projetado e especificado não pode ser executado sem autorização da fiscalização ou contratante da obra, exceto os eventuais de emergência, necessários à estabilidade e segurança da obra e do pessoal envolvido.

O construtor deve manter no escritório da obra as plantas, perfis e especificações de projeto para consulta de seu preposto e da fiscalização ou contratante. As frentes de trabalho devem ser programadas em comum acordo com a entidade a quem cabe a autorização para a abertura de valas e remanejamento do tráfego. O construtor deve providenciar a sinalização da obra, segundo as legislações vigentes e órgãos competentes.

Não é permitido o bloqueio, obstrução ou eliminação de canalizações existentes, salvo nos casos em que o interessado apresentar projeto para análise do responsável pela interferência, que forneça a aprovação, mediante termo circunstanciado. O construtor deve observar a legislação do Ministério do Trabalho que determina obrigações no campo da segurança, higiene e medicina do trabalho.

O construtor é responsável quanto ao uso obrigatório e correto pelos operários dos equipamentos de proteção individual de acordo com as normas de serviço de segurança, higiene e medicina do trabalho. O construtor deve promover, por sua conta, o seguro de prevenção de acidentes de trabalho, dano de propriedade, fogo, acidente de veículos, transporte de materiais e outro tipo de seguro que achar conveniente. Caso seja necessário o uso de explosivos, o construtor deve obedecer às normas específicas de segurança e controle para armazenamento de explosivos e inflamáveis, estabelecidas pelos órgãos responsáveis.

O uso de explosivos deve ser executado por profissional devidamente habilitado e autorizado previamente pelos órgãos responsáveis, cabendo ao construtor tomar as providências para eliminar a possibilidade de danos físicos e materiais. O encargo pela contratação da obra é do proprietário da obra, no caso de obra privada, ou do administrador contratante, no caso de obra pública. A contratação da obra deve cumprir as especificações desta norma. A documentação comprobatória do cumprimento desta norma (projeto, relatórios de ensaio, laudos e outros) deve estar disponível no canteiro de obra, durante toda a construção, e deve ser arquivada e preservada pelo prazo previsto na legislação vigente.

Cabe ao encarregado pela execução as seguintes responsabilidades, a serem explicitadas nos contratos: atendimento a todos os requisitos de projeto, inclusive quanto à escolha dos materiais a serem empregados, devendo qualquer alteração ser submetida previamente à aprovação da fiscalização; aceitação dos tubos, aduelas e poços de visita de concreto, com base em inspeção visual e recebimento de laudos de inspeção dos lotes fornecidos, conforme as NBR 8890, NBR 15396 e NBR 16085, e apresentação de projeto estrutural específico, elaborado por responsável técnico e acompanhado da respectiva ART; cuidados requeridos pelo processo construtivo de todas as etapas da obra; cumprimento das especificações das normas de segurança, com fornecimento e fiscalização da utilização de equipamentos de proteção individual (EPI) por parte de todos os envolvidos na execução da obra; sinalização das obras conforme projeto e autorização específica do poder público competente; apresentação de projeto executivo final da obra (as-built).

A documentação relativa ao cumprimento das especificações de projeto e das normas brasileiras deve ser disponibilizada no canteiro de obras durante o prazo de execução da obra. Cabem à fiscalização as seguintes responsabilidades, a serem explicitadas nos contratos: acompanhar a execução da obra com base no projeto; verificar se o recebimento dos tubos, aduelas e poços de visita de concreto está de acordo com as especificações das NBR 8890, NBR 15396 e NBR 16085, respectivamente; interromper a execução da obra quando do não cumprimento das especificações de projeto, normas técnicas ou outras situações que comprometam a qualidade e segurança da obra; verificar a necessidade de ensaios para avaliação das etapas da obra antes da liberação dos trechos para operação; emitir parecer referente ao recebimento definitivo da obra.

Cabem ao projetista as seguintes responsabilidades, a serem explicitadas nos contratos e em todos os desenhos e memoriais descritivos: cumprir as especificações das normas brasileiras na execução de projetos de redes coletoras de esgoto sanitário, interceptores, galerias de águas pluviais, canalizações de córregos e afins. No caso de uso de especificações do órgão contratante, estas devem atender no mínimo aos requisitos desta norma.

Deve especificar o tipo de utilização, o grau de agressividade do meio externo, o diâmetro nominal ou seção do conduto, a classe de resistência (no caso dos tubos de concreto) e a carga total existente (no caso das aduelas), a altura de aterro, o tipo de junta, o tipo de encaixe e qualquer outro parâmetro que possa afetar a composição ou a utilização a rede de modo satisfatório, visando a durabilidade e a funcionalidade. Também deve especificar o tipo de envolvimento a ser dado à tubulação, com indicação das características do solo de base e reaterro, assim como detalhes executivos de passagens notáveis e base de apoio das tubulações e especificar a declividade e o posicionamento da tubulação, profundidades, cobrimentos mínimos, pontos de passagem obrigatórios, interferências de qualquer natureza, tipo de pavimento, tipo da base de apoio da tubulação e tipo de rebaixamento do lençol freático. Deve desenvolver o projeto executivo de escoramento de vala.

O fabricante de tubos, aduelas e/ou poços de visita de concreto são responsáveis pela qualidade dos produtos por ele fornecidos à obra. Estes produtos devem cumprir as especificações das NBR 8890, NBR 15396 e NBR 16085, conforme o caso. A documentação relativa ao cumprimento das especificações das normas brasileiras deve ser disponibilizada para o responsável pela obra e também arquivada na empresa fabricante de tubos, aduelas e/ou poços de visita de concreto durante o prazo previsto na legislação vigente.

A contratada, antes de iniciar qualquer trabalho, deve providenciar, para aprovação da fiscalização, a planta geral do canteiro, indicando localização do terreno; acessos; redes de água, esgoto, energia elétrica, telefone e outros; localização e dimensão de todas as edificações. A segurança, a guarda e a conservação de todo o material, equipamentos, ferramentas, utensílios e instalações das obras são de responsabilidade da contratada. A contratada deve manter livre o acesso aos extintores, mangueiras e demais equipamentos situados no canteiro, a fim de combater eficientemente o fogo no caso de incêndio, ficando proibida a queima de qualquer espécie de material no local da obra.

Os EPI e os equipamentos de proteção coletiva (EPC) devem ser armazenados de forma adequada e ser de uso obrigatório na obra, conforme norma regulamentadora NR 6 do Ministério do Trabalho. Por ocasião da entrega dos tubos, aduelas e poços de visita de concreto, a fiscalização deve estar presente na obra para verificar o material e supervisionar a sua descarga e estocagem. Os tubos, aduelas e poços de visita de concreto e seus acessórios devem ser entregues na obra, acompanhados dos relatórios de inspeção.

O comprador deve ter livre acesso aos locais em que as peças encomendadas estejam estocadas, podendo, a seu critério, acompanhar o processo produtivo e os ensaios para recebimento dos produtos previstos nas normas NBR 8890, NBR 15396 e NBR 16085. A inspeção pode ser feita diretamente pelo comprador ou por inspetor credenciado. O fornecedor deve proporcionar todas as facilidades para que o inspetor possa certificar-se de que as peças estão em conformidade com as normas pertinentes.

Os tubos, aduelas e poços de visita de concreto que, por meio de verificação visual, apresentarem danos além dos limites estabelecidos nas NBR 8890, NBR 15396 ou NBR 16085, conforme o caso, no momento de sua utilização, devem ser rejeitados. Caso o construtor receba e aplique tubos, aduelas, poços de visita e seus acessórios recebidos danificados ou sem exigência de inspeção (ver NBR 8890, NBR 15396 ou NBR 16085, conforme o caso), a responsabilidade por qualquer problema executivo decorrente do material aplicado ou sinistro na obra é de seu inteiro encargo.

As coberturas e os fechamentos laterais com telhas de fibrocimento sem amianto

As coberturas e os fechamentos laterais devem ser executados segundo projetos que atendam aos requisitos desta norma, tendo em vista o emprego racional do material, de modo a obter: a proteção contra intempéries e segurança; a estanqueidade correta; e os bons resultados estéticos.

A NBR 7196 de 07/2020 – Telhas de fibrocimento sem amianto – Execução de coberturas e fechamentos laterais – Procedimento estabelece os requisitos para execução de coberturas e fechamentos laterais com telhas onduladas e estruturais de fibrocimento sem amianto, especificadas na NBR 15210 (todas as partes).

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os requisitos de fixação para coberturas usando telha-padrão tipo P7-0,92 m?

Quais são os requisitos de fixação para fechamento lateral usando telha-padrão tipo P7-1,10 m?

Como devem ser feitos os projetos de montagem das telhas estruturais?

Como deve ser feita a movimentação no canteiro de obras das telhas estruturais?

As coberturas e os fechamentos laterais devem ser executados segundo projetos que atendam aos requisitos desta norma, tendo em vista o emprego racional do material, de modo a obter: a proteção contra intempéries e segurança; a estanqueidade correta; e os bons resultados estéticos. Os projetos devem indicar: referência, quantidade, dimensão, posição e tipo das telhas, peças complementares, vedações e elementos de fixação; especificação da estrutura do telhado e posição dos apoios das telhas; inclinação da (s) cobertura (s) e fechamento (s) lateral (is); recobrimentos transversais e longitudinais; detalhes, como arremates, cortes, furações, sentido e sequência de montagem e outros.

As recomendações específicas de cada fabricante devem constar nos seus catálogos e informações técnicas, os quais devem estar datados (mês/ano). Devem ser adotadas soluções construtivas que propiciem, à cobertura ou ao fechamento lateral, resistência à ação do vento de até 60 km/h, conforme critérios de cálculo da NBR 6123. Os esforços devidos à ação do vento devem ser obtidos a partir do cálculo dos esforços atuantes, segundo a NBR 6123, considerando-se, para as coberturas, o peso próprio da telha especificado pelos fabricantes, acrescido do peso resultante dos recobrimentos transversais e longitudinais.

Caso as solicitações previstas para a cobertura ou fechamento lateral sejam superiores ao valor especificado, devem ser tomadas precauções especiais quanto aos vãos e balanços a serem usados, assim como quanto ao número e tipo de fixadores, conforme recomendações do fabricante. Os painéis solares, aparelhos de ar-condicionado, antenas, placas de aquecimento e outros equipamentos devem ser fixados na estrutura da cobertura e não diretamente nas telhas. As precauções especiais referidas podem ser verificadas pela NBR 5643 ou outro método escolhido em comum acordo entre fabricante e comprador, devendo a carga aplicada no ensaio ser mantida durante 3 min e ser superior ao valor obtido em 4.1.5. As telhas devem resistir às solicitações de flexão devidas somente aos esforços provenientes do peso próprio, ação do vento e chuva.

As telhas não podem ficar sujeitas às solicitações secundárias provenientes de deformações ou movimentações da estrutura, trepidações, impactos e cargas permanentes. As juntas de dilatação da cobertura devem corresponder às juntas existentes na estrutura, para permitir movimentação independente da cobertura e da estrutura. As peças complementares que atuam como arremates da cobertura não podem constituir vínculos rígidos com outras partes da edificação. Para os fechamentos laterais, devem ser seguidas as exigências e recomendações estabelecidas para coberturas, atendendo-se às observações indicadas nas seções específicas a cada tipo de telha.

Para execução de coberturas e fechamentos laterais, devem ser seguidos os requisitos da legislação vigente para trabalho em altura. As telhas devem ser apoiadas sobre elementos coplanares. A direção da geratriz das ondas de uma telha deve coincidir com a direção da maior declividade da superfície da cobertura onde foi aplicada. Para a montagem das coberturas e fechamentos laterais, as telhas devem ser instaladas na posição normal, com a face lisa, que contém a marcação, voltada para o lado externo.

As telhas devem ser fixadas em apoios por meio dos elementos de fixação e seus respectivos conjuntos de vedação. Os elementos de fixação devem ser fabricados em aço-carbono SAE 1010/1020, devidamente protegidos contra a corrosão por galvanização a fogo, com a espessura mínima de 70 μm, ou outro processo com desempenho equivalente. Os elementos de fixação devem ter as características geométricas e dimensionais estabelecidas a seguir e conforme especificação do fabricante: parafuso com rosca soberba, conforme a figura e a tabela abaixo; ganchos com rosca, conforme a figura abaixo; pinos com rosca; ganchos chatos de seção retangular; pregos.

 

Para outros tipos de coberturas, consultar as recomendações do fabricante. A distância mínima do centro dos furos até a extremidade livre da telha deve ser de 100 mm para as telhas estruturais e de 50 mm para os demais tipos de telha. Admite-se que essa distância seja de 25 mm para as telhas de perfil P3. Na instalação ou manutenção da cobertura, os montadores não podem pisar diretamente na telha, exceto nas coberturas executadas com telhas estruturais, conforme recomendações do fabricante. A montagem das telhas deve ser feita por faixas, no sentido do beiral para a cumeeira. A sequência de faixas deve ser no sentido contrário ao dos ventos predominantes na região.

Para permitir uma montagem perfeita da cumeeira, manter alinhadas as ondas das telhas nas duas-águas da cobertura. As furações e cortes das telhas devem ser executados segundo as recomendações do fabricante e utilizando-se os equipamentos de proteção individual (EPI) adequados e outros dispositivos de segurança previstos na legislação em vigor. A furação das telhas não pode ser feita com uso de martelo ou outras ferramentas de impacto, prego ou parafuso, com exceção do prego para as telhas tipo ondas pequenas.

Os elementos de fixação devem permitir a livre dilatação das telhas. Para tanto, deve-se prover folgas entre as telhas e os ganchos chatos, assim como a furação nas telhas com diâmetro 2 mm maior do que o diâmetro do parafuso ou do gancho com rosca. Não podem ser utilizados parafusos tipo autobrocante. A fixação dos ganchos chatos nas terças de madeira deve ser feita com dois pregos ou parafusos. Não são permitidos recortes parciais nas telhas com a finalidade de adaptá-las aos ganchos chatos.

Nos cruzamentos de recobrimento longitudinal com recobrimento transversal, os cantos de duas das quatro telhas que compõem o cruzamento devem ser cortados, para evitar a sobreposição de quatro espessuras, devendo este procedimento ser estendido também às peças complementares. Não há necessidade de corte de cantos para as telhas tipo pequenas ondas. Na execução dos cortes, não podem ser utilizadas ferramentas que provoquem torções, trincas ou desfolhamentos.

As telhas devem ser içadas até o telhado com uso de dispositivos que não provoquem esforços de compressão nas bordas laterais. As telhas devem ser manuseadas por duas pessoas segurando na crista da segunda e da penúltima onda, e nunca pelas bordas laterais, para que não provoquem flexões e trincas longitudinais. As telhas devem ser estocadas em local plano, firme e isento de objetos que possam danificá-las, e o mais próximo possível do local de seu içamento para o telhado. Quando as telhas forem empilhadas horizontalmente, devem ser assentadas usando calços adequados, posicionados de acordo com as recomendações do fabricante.

Quando as telhas forem empilhadas verticalmente, devem ser observadas as seguintes recomendações: a inclinação deve ser de 5° a 15° em relação à vertical; o apoio horizontal das telhas deve ser em dois sarrafos; o apoio da extremidade superior da primeira telha, em toda a sua largura, em um encosto de madeira, deve ter seção mínima de 50 mm × 10 mm; as telhas estruturais não podem ser empilhadas verticalmente. As telhas estruturais com largura útil igual ou superior a 700 mm não podem ser solicitadas com esforço acidental superior a 2 kN. As telhas com largura útil inferior a 700 mm não podem ser solicitadas com esforço acidental superior a 1,5 kN.

As telhas estruturais não podem ser solicitadas com esforço acidental maior do que 1 kN na extremidade do balanço livre, não ultrapassando 30 % do valor máximo da resistência à flexão correspondente à telha estrutural estabelecida na NBR 15210 (todas as partes). A flecha máxima admissível, após a montagem da telha, no meio do vão, é de L/100, onde L é o valor do vão máximo, expresso em metros (m). Deve ser usada a inclinação mínima indicada pelo fabricante, cujo valor foi especificado levando em conta que a telha estrutural, mesmo estando com a flecha máxima admissível (ver 6.4.12), ainda deve permitir escoamento das águas pluviais.

API STD 6FA: o ensaio de válvulas em incêndio

Essa norma, publicada em 2020 pela American Petroleum Institute (API), estabelece os requisitos para ensaiar e avaliar o desempenho contendo pressão das válvulas API 6A e API 6D quando expostas ao fogo. Os requisitos de desempenho desta norma estabelecem critérios de qualificação para todos os tamanhos e classificações de pressão.

A API STD 6FA:2020 – Standard for Fire Test for Valves estabelece os requisitos para ensaiar e avaliar o desempenho contendo pressão das válvulas API 6A e API 6D quando expostas ao fogo. Os requisitos de desempenho desta norma estabelecem critérios de qualificação para todos os tamanhos e classificações de pressão. Esta norma pode ser aplicada a válvulas que não atendem aos requisitos da API 6A ou API 6D, a critério do usuário.

Esta norma se aplica a válvulas com um ou mais membros de fechamento. Estabelece níveis aceitáveis de vazamento através da válvula de ensaio e vazamento externo após exposição a um incêndio por um período de 30 minutos. O período de ensaio de exposição ao fogo foi estabelecido com base no tempo máximo necessário para extinguir a maioria dos incêndios.

Os incêndios de maior duração são considerados de grande magnitude, com consequências maiores do que as previstas neste ensaio. Esta norma não se destina a atender à qualificação de atuadores de válvulas (incluindo caixas de engrenagens operadas manualmente). Não cobre a penetração nos limites de pressão, conexões externas ou conexões finais.

Conteúdo da norma

1 Escopo…………………………… 1

2 Referências normativas………………………. 1

3 Termos, definições, acrônimos, abreviações, símbolos e unidades…………………. 1

3.1 Termos e definições………………………………… 1

3.2 Acrônimos, abreviações, símbolos e unidades……….. ……. 2

4 Ensaio de incêndio………………….. 3

4.1 Geral…………………………….. 3

4.2 Válvula de ensaio………………. ……. 4

4.3 Instalação do ensaio…………………… 4

4.4 Procedimento de ensaio………………………. 9

4.5 Marcação de produtos ensaiados…………………. 13

5 Dimensionamento…………………….. ……… 13

5.1 Ensaio de validação com base em outros projetos……….. 13

5.2 Permissões de escala por tamanho……………………. 14

5.3 Permissões de escala por classificação de pressão……… 15

5.4 Permissões de escala para materiais não metálicos………………. 15

5.5 Permissões de escala para materiais metálicos…………………….. 16

6 Certificado de conformidade…… ………………………… 17

Anexo A (informativo) Qualificação estendida de material não metálico…………………. 18

Figuras

1 Esquema dos sistemas sugeridos para ensaio de incêndio para válvulas……………….. 6

2 Localização dos calorímetros…………………………… 7

3 Localização das válvulas de retenção flangeadas com calorímetros…………….. 8

4 Localização das válvulas de retenção tipo calorímetro – wafer……………………………….. 8

5 Projeto dos calorímetros em cubos…………………… 9

A.1 Etapas para a qualificação de elastômeros, incluindo exemplos…………………….. 19

A.2 Etapas para a qualificação de plásticos, incluindo exemplos……………………….. 20

Tabelas

1 Pressão de ensaio da válvula API 6A durante o ensaio de incêndio……..11

2 Pressão de ensaio da válvula API 6D durante o ensaio de incêndio……. 11

3 Qualificação pelo tamanho da válvula no ensaio da válvula 6A….. 14

4 Qualificação pelo tamanho da válvula no ensaio da válvula 6D……. 14

5 Qualificação por classificação de pressão do ensaio da válvula 6A. 15

6 Qualificação por pressão nominal no ensaio da válvula 6D ……. 15

A.1 Etapas para a qualificação de elastômeros, incluindo exemplos……..19

A.2 Etapas para a qualificação de plásticos, incluindo exemplos…………..20

Tabelas

1 Pressão de ensaio da válvula API 6A durante o ensaio de incêndio……..11

2 Pressão de ensaio da válvula API 6D durante o ensaio de incêndio……… 11

3 Qualificação pelo tamanho da válvula no ensaio da válvula 6A…………. 14

4 Qualificação pelo tamanho da válvula no ensaio da válvula 6D………….. 14

5 Qualificação por classificação de pressão do ensaio da válvula 6A………. 15

6 Qualificação por pressão nominal no ensaio da válvula 6D………………..15

A.1 Qualificação pelo tamanho da válvula no ensaio da válvula 6A………. 20

A.2 Qualificação pelo tamanho da válvula no ensaio da válvula 6D………..21

A.4 Qualificação por pressão nominal no ensaio da válvula 6D……………..22

A.5 Exemplo de tabela DMA para material plástico na válvula de ensaio original…….24

A.6 Exemplo de tabela DMA para material plástico na segunda válvula de ensaio……. 24

Esta norma não se destina a impedir que um fabricante ofereça ou que o comprador aceite equipamentos alternativos ou soluções de engenharia para a aplicação individual. Isso pode ser particularmente aplicável quando houver tecnologia inovadora ou em desenvolvimento. Quando uma alternativa é oferecida, o fabricante deve identificar qualquer variação deste padrão e fornecer detalhes. Os Anexos informativos são apenas para fins informativos e não são requisitos obrigatórios. Os Anexos normativos são indispensáveis e obrigatórios para a aplicação deste documento.

Alterações da 4ª para a 5ª Edição

Essa norma é o resultado da atualização dos requisitos do API Standard 6FA, quarta edição, para incluir os requisitos da API 6FD – Fire Test for Check Valves, em sua totalidade. Com a publicação deste documento, o documento API 6FD foi cancelado.

Unidades de medida

Nessa norma, os dados são expressos em unidades usuais dos EUA (USC) e métricas (SI).

O alívio normal e emergencial de vapores em tanques de armazenamento

Saiba quais são os requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão.

A NBR ISO 28300 de 06/2020 – Indústrias de petróleo, petroquímica e gás natural — Alívio de tanques de armazenamento atmosféricos e de baixa pressão trata dos requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão. Nesta norma são discutidas as causas de sobrepressão e vácuo; determinação de requisitos de alívio; tipos de alívio; seleção e instalação de dispositivos de alívio; e ensaios e marcação de dispositivos de alívio. Esta norma considera tanques contendo petróleo e seus derivados, mas pode também ser aplicados aos tanques contendo outros líquidos. Entretanto, é necessário utilizar uma análise de engenharia e uma avaliação técnica adequadas quando se aplicar esta norma a outros líquidos. Não se aplica aos tanques de teto flutuante externo.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os requisitos de alívio para aspiração?

Qual é o fator de redução para tanques com isolamento?

Quais os requisitos de alívio em presença de fogo?

Qual é a capacidade de alívio?

Esta norma foi elaborada a partir da 5ª edição da API 2000 e da EN 14015:2005, com a intenção de que a 6ª edição da API 2000 seja idêntica a esta norma. Foi desenvolvida a partir de conhecimentos acumulados e da experiência de engenheiros qualificados em indústrias de óleo, petróleo, petroquímica, química e de armazenamento de líquido a granel. Estudos de engenharia de um tanque particular podem indicar uma capacidade apropriada de alívio que não esteja de acordo com a capacidade estimada de alívio determinada por esta norma.

As muitas variáveis associadas aos requisitos de alívio para o tanque podem tornar impraticável a definição de regras simples que são aplicáveis a todos os locais e condições. Onde for aplicável nesta norma, as unidades de medidas inglesas (USC) são incluídas para informação entre parênteses ou em tabelas separadas. Para determinação das possíveis causas de sobrepressão e vácuo em um tanque, considerar o seguinte: movimento de enchimento e esvaziamento de líquido do tanque; respiração (aspiração e expiração) do tanque devido a mudanças climáticas (por exemplo, mudanças de pressão e temperatura); exposição ao fogo; outras circunstâncias resultantes de falhas de equipamento e erros operacionais.

Existem outras circunstâncias que convém que sejam consideradas, mas não foram incluídas nesta norma. O processo de enchimento e esvaziamento de um tanque pode ser por bombeamento, gravidade ou diferença de pressão. O vácuo pode resultar do esvaziamento do tanque. A sobrepressão pode resultar do enchimento do tanque e da vaporização normal ou instantânea do líquido. A vaporização instantânea pode ser significativa para líquidos próximos ou acima do seu ponto de ebulição na pressão do tanque.

O vácuo pode resultar da contração ou condensação de vapores causada pela diminuição da temperatura atmosférica ou outras mudanças climáticas, como mudanças de vento, precipitação atmosférica, etc. Sobrepressão pode resultar da expansão ou vaporização causada pelo aumento da temperatura atmosférica ou outras mudanças climáticas. A sobrepressão pode resultar da expansão dos vapores ou da vaporização do líquido que ocorre quando o tanque absorve calor do fogo externo.

Quando as possíveis causas de sobrepressão ou vácuo no tanque estiverem sendo determinadas, devem ser consideradas e avaliadas outras circunstâncias resultantes de falhas de equipamentos ou erros operacionais. Os métodos de cálculos para estas circunstâncias não estão previstos nesta norma. A transferência de líquido desde outros vasos, caminhões-tanque e carros-tanque pode ser auxiliada ou realizada inteiramente pela pressurização destes com um gás, mas o tanque de recepção pode encontrar uma oscilação de fluxo ao final da transferência, devido à passagem do gás/vapor.

Dependendo da pressão preexistente e do espaço livre no tanque de recepção, o volume de gás/vapor adicional pode ser suficiente para exercer pressão excessiva neste tanque. A ação de controle é garantir o enchimento até um nível máximo, de modo que reste pouco espaço dentro do tanque, para não absorver a oscilação de pressão. Colchões de inertização e purgas são utilizados nos tanques para proteger o seu conteúdo contra contaminação, manter atmosferas não inflamáveis e reduzir a inflamabilidade destes vapores aliviados do tanque.

Um sistema de inertização e purga normalmente tem um regulador de alimentação e de contrapressão para manter a pressão interna do tanque dentro de uma faixa operacional estreita. A falha deste regulador pode resultar em fluxo de gás descontrolado para o tanque e, subsequentemente, pressão excessiva no tanque, redução do fluxo de gás ou perda total do fluxo de gás. A falha fechada do regulador de contrapressão pode resultar em bloqueio da saída e sobrepressão.

Se o regulador de contrapressão estiver conectado a um sistema de recuperação do vapor, a sua falha aberta pode resultar em vácuo. Vapor, água quente e óleo quente são meios comuns de aquecimento para tanques que contêm substâncias que precisam ser mantidas a temperaturas elevadas. A falha de uma válvula de controle de suprimento de calor para o tanque, do elemento sensor de temperatura ou do sistema de controle pode resultar em aumento de aquecimento no tanque. A vaporização do líquido estocado pode resultar na sobrepressão do tanque.

Tanques aquecidos que contenham duas fases de líquido apresentam possibilidade de uma vaporização rápida, se a fase inferior for aquecida até a temperatura onde a sua densidade torna-se inferior à densidade do líquido superior. Estas condições devem ser evitadas na especificação do projeto e nos procedimentos operacionais. Se o tanque mantido em elevadas temperaturas estiver vazio, isso pode resultar em uma vaporização excessiva na alimentação do tanque.

Se o sistema de controle de temperatura do tanque estiver funcionando com o sensor de temperatura exposto ao vapor, o meio usado no aquecimento do tanque pode circular com uma vazão máxima, elevando até a máxima temperatura da parede do tanque. Enchimento do tanque sob estas condições pode resultar em uma vaporização excessiva durante a alimentação deste. A vaporização excessiva da alimentação é interrompida tão logo as paredes do tanque sejam esfriadas e com o nível do líquido cobrindo o sensor de temperatura.

Para tanques com camisas de resfriamento ou serpentinas, deve ser considerada a vaporização líquida como resultado da perda do fluxo de meio resfriador deste. A falha mecânica de um dispositivo interno de aquecimento ou resfriamento do tanque pode expor o conteúdo do tanque ao meio de aquecimento ou de resfriamento usado no dispositivo. Para tanques de baixa pressão, pode-se assumir que a direção de fluxo do meio de transferência de calor esteja dentro do tanque quando houver falha do dispositivo.

Deve-se considerar a compatibilidade química entre o conteúdo do tanque e o meio de transferência de calor. Pode ser necessário haver alívio do meio de transferência de calor (por exemplo, vapor). A falha do sistema de coleta de alívio deve ser avaliada quando o vapor de um tanque for coletado para tratamento ou direcionado para um sistema de tratamento de alívio. Falhas afetando a segurança de um tanque podem incluir o desenvolvimento de contrapressões a partir de problemas na tubulação [selo líquido (liquid-filled pockets) e crescimento de sólidos], outro equipamento de alívio ou alívio para o tubo de comunicação (header) ou bloqueio devido à falha do equipamento.

Quando apropriado, pode ser usado um dispositivo de alívio de emergência com ajuste de pressão maior que o sistema de tratamento de alívio, aliviando para a atmosfera. Falhas de energia local, da fábrica e utilidades devem ser consideradas possíveis causas de sobrepressão e formação de vácuo. A perda de energia elétrica afeta diretamente qualquer válvula motorizada ou controles, e pode também interromper o suprimento de ar de instrumento. Durante este tipo de falha elétrica pode haver também a perda de fluidos de aquecimento e resfriamento.

A mudança de temperatura no fluido de alimentação do tanque devido à perda de resfriamento ou aumento de aquecimento pode causar sobrepressão neste tanque. Fluido de alimentação à temperatura baixa pode resultar em condensação de vapor e contração, causando vácuo. Os conteúdos de alguns tanques podem estar submetidos a reações químicas que podem gerar calor e/ou vapores.

Alguns exemplos de reações químicas incluem a alimentação inadvertida de água em tanques contendo ácidos e/ou ácidos usados, gerando vapor e/ou vaporização de hidrocarbonetos leves; reações fora de controle em tanques contendo hidroperóxido de cumeno, etc. Em alguns casos pode haver formação de espuma, causando alívio de dupla fase. Para avaliar estes casos, pode ser usada a tecnologia disponível no Design Institute for Emergency Relief Systems (DIERS) do grupo de usuários do American Institute of Chemical Engineers (AICHE) ou do grupo europeu do DIERS.

Para informação sobre proteção para evitar o transbordo de líquido, ver as API 2510, API RP 2350 e EN 13616. A prevenção contra o transbordo de líquido do tanque é efetuada pela salvaguarda de instrumentos e/ou por ações efetivas de intervenção do operador. Um aumento ou queda da pressão barométrica pode causar vácuo ou sobrepressão em um tanque. Esta situação deve ser considerada para tanques de estocagem refrigerados.

O efeito de falha aberta ou fechada de uma válvula de controle deve ser considerado para determinar o valor de pressão ou vácuo devido ao desbalanceamento de massa e/ou de energia. Por exemplo, a falha de uma válvula de controle na linha de líquido para um tanque deve ser considerada, porque pode sobrecarregar o equipamento de troca térmica, resultando na admissão, para dentro do tanque, de material em alta temperatura. A falha de uma válvula de controle também pode causar a queda do nível de líquido abaixo do bocal de saída do vaso pressurizado, permitindo a entrada de vapor em alta pressão neste tanque.

Se um tanque não isolado termicamente for preenchido com vapor, a taxa de condensação devido ao resfriamento ambiental pode exceder as taxas de alívio especificadas nesta norma. O uso de grandes aberturas (boca de visita aberta), o controle da taxa de resfriamento ou a injeção de gás não-condensável, como ar ou nitrogênio, são procedimentos frequentemente necessários para evitar a formação de vácuo interno excessivo. Tanques não isolados termicamente com espaços de vapores excepcionalmente quentes podem, durante uma tempestade, exceder os requisitos de aspiração térmica previstos nesta norma.

A contração de vapor pode causar um vácuo excessivo no tanque. Recomenda-se, para tanques aquecidos não isolados, com temperatura de espaço-vapor superior a 48,9°C (120°F), que seja realizada uma análise crítica de engenharia. Os conteúdos dos tanques podem ignitar, produzindo uma deflagração interna com sobrepressões que podem se desenvolver muito rapidamente, além da capacidade dos dispositivos de alívio. Para alívio de explosão, ver NFPA 68 e EN 13237. Para inertização, ver Anexo F.

A alimentação de produtos mais voláteis, do que aqueles normalmente armazenados, pode ser possível devido a distúrbios no processo a montante ou por erro humano. Isso pode resultar em sobrepressão. É necessário quantificar os requisitos de alívio para excesso de pressão ou vácuo produzido por qualquer causa aplicável, como apresentado para estabelecer as bases de projeto para o dimensionamento dos dispositivos de alívio ou quaisquer outros meios de proteção adequada.

Para auxiliar a quantificação, esta norma apresenta orientação para o cálculo detalhado referente às seguintes condições normalmente encontradas: aspiração normal resultante da máxima vazão de descarga do tanque (efeitos de transferência de líquido); aspiração normal resultante da contração ou condensação de vapores, causada pela máxima diminuição de temperatura do espaço-vapor (efeitos térmicos); expiração normal resultante da máxima vazão de entrada de líquido no tanque e máxima vaporização causada por tal entrada de líquido (efeitos de transferência de líquido); expiração normal resultante da expansão do vapor e vaporização do líquido causada pelo máximo aumento de temperatura do espaço-vapor (efeitos térmicos); alívios de emergência resultantes de exposição ao fogo externo.

Ao determinar os requisitos de alívio, deve ser considerado como base de projeto, o requisito da maior ocorrência individual ou qualquer combinação razoável e provável de ocorrências. No mínimo, deve ser considerada a combinação dos efeitos térmicos e de transferência de líquido para determinar a vazão de aspiração ou de expiração normal total. Exceto no caso de tanques de armazenamento refrigerados, é prática comum considerar somente a aspiração normal total para determinação dos requisitos necessários de alívio.

Isto é, cargas de aspiração devido a outras circunstâncias descritas são geralmente consideradas não coincidentes com a aspiração normal. Isto é considerado uma aproximação razoável, porque a aspiração térmica é uma condição severa e de curta duração. Para expiração total, considerar os cenários descritos e determinar se estes são coincidentes com os fluxos de expiração normal.

A ficha de emergência no transporte terrestre de produtos perigosos

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque.

A NBR 7503 de 06/2020 – Transporte terrestre de produtos perigosos — Ficha de emergência — Requisitos mínimos estabelece os requisitos mínimos para o preenchimento da ficha de emergência destinada a prestar informações de segurança do produto perigoso em caso de emergência ou acidente durante o transporte terrestre de produtos perigosos.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como podem ser definidas a equipagem e as partes por milhão?

Qual é o modelo de uma ficha de emergência?

Qual é a sequência de áreas e informações da ficha de emergência?

Os acidentes no transporte terrestre de produtos perigosos adquirem uma importância especial, uma vez que a intensidade de risco está associada à periculosidade do produto transportado. Considera-se produto perigoso aquele que representa risco para as pessoas, para a segurança pública ou para o meio ambiente, ou seja, produtos inflamáveis, explosivos, corrosivos, tóxicos, radioativos e outros produtos químicos que, embora não apresentem risco iminente, podem, em caso de acidentes, representar uma grave ameaça à população e ao meio ambiente.

Os acidentes no transporte desses produtos podem ter consequências catastróficas, sobretudo diante da proximidade de cidades e de populações lindeiras às principais rodovias. Além das perdas humanas de valor social incalculável, os custos decorrentes da contaminação ambiental atingem cifras muito elevadas. Deve-se levar em consideração que, especificamente, num acidente de transporte rodoviário de produtos perigosos, ainda que a empresa transportadora tenha tomado todos os cuidados e não tenha, a princípio, culpa pelo acidente, a responsabilidade pelos danos ambientais causados continua sendo da empresa transportadora, pois a ausência de culpa, neste caso, não é mais excludente da responsabilidade de indenizar e reparar os danos.

Assim, para diferentes produtos com o mesmo número ONU, o mesmo nome apropriado para embarque (inclusive o nome técnico, quando aplicável), mesmo grupo de embalagem, mesmo número de risco e o mesmo estado físico, pode ser usada a mesma ficha de emergência, desde que sejam aplicáveis as mesmas informações de emergência, exceto quando previsto em legislação vigente. A ficha de emergência é destinada às equipes de atendimento à emergência. As informações de segurança do produto transportado, bem como as orientações sobre as medidas de proteção e ações em caso de emergência devem constar na ficha de emergência para facilitar a atividade das equipes em uma emergência.

Os expedidores de produtos perigosos são responsáveis pela elaboração da ficha de emergência dos produtos com base nas informações fornecidas pelo fabricante ou importador do produto. O idioma a ser usado deve ser o oficial do Brasil. O modelo de ficha de emergência desta norma pode ser utilizado como instruções escritas para o caso de qualquer acidente com produtos perigosos, constantes no Acordo para a facilitação do transporte de produtos perigosos no Mercosul, desde que redigida nos idiomas oficiais dos países de origem, trânsito e destino.

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque. Esta norma permite flexibilidade para adaptar diferentes sistemas de edição, leiaute e transmissão de texto. É livre a formatação dos títulos e textos, como, fonte, tamanho, cor, maiúsculo, minúsculo, sublinhado etc.

A área “A” deve conter o seguinte: o título: “Ficha de emergência”; a identificação do expedidor, tanto para produtos nacionais quanto para importados, os títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Expedidor”: deve ser preenchido com a identificação do expedidor e o uso do título “Expedidor” é facultativo; logomarca da empresa: nesta área pode (facultativo) ser colocada a logomarca (logotipo) da empresa expedidora.

Caso a logomarca da empresa seja inserida, pode ser impressa em qualquer cor; título “Endereço”: deve ser preenchido com o endereço do Expedidor, sendo facultativa a inclusão do CEP. Não é necessário que o endereço constante na ficha de emergência seja o mesmo do documento fiscal, podendo ser o endereço da matriz ou de uma das filiais do expedidor, se houver. O uso do título “Endereço” é facultativo. O título “Telefone” ou “Telefones”: deve ser preenchido com o número do telefone do expedidor. Deve conter ainda o número do telefone (disponível 24 h por dia) da equipe que possa fornecer informações técnicas sobre o produto perigoso em caso de emergência. Este telefone pode ser do expedidor, do transportador, do fabricante, do importador, do distribuidor ou empresa contratada para atendimento à emergência.

Caso o telefone da equipe que possa fornecer informações técnicas sobre o produto seja do próprio expedidor, pode constar apenas o número de um telefone do expedidor. O uso do título “Telefone” ou “Telefones” é facultativo; títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Número de risco”: deve ser preenchido com o número de risco do produto perigoso.

No caso específico dos explosivos da classe 1 que não possuem número de risco, deve ser colocada a sigla “NA” referente à informação de “não aplicável”; título “Número da ONU” ou “Número ONU”: devendo ser preenchido com o número da ONU do produto perigoso; título “Classe ou subclasse de risco”: deve ser preenchido com o número da classe de risco do produto perigoso, nos casos específicos das classes 3, 7, 8 e 9. Nos casos das classes de risco 2, 4, 5 e 6, onde há subdivisão em subclasses de risco, deve ser informado o número da subclasse de risco do produto perigoso.

No caso específico da classe 1, devem ser informados o número da subclasse de risco e a letra correspondente ao grupo de compatibilidade do explosivo. A classe ou subclasse de risco se refere ao risco principal do produto perigoso. Quando existir risco subsidiário para o produto, pode ser incluído nesta área ou na área “B”. Caso opte por incluir nesta área, deve ser incluído o título “Risco subsidiário” e preenchido com o número da classe ou subclasse de risco subsidiário do produto perigoso; título “Descrição da classe ou subclasse de risco”: deve ser preenchido com a definição (nome) da classe ou subclasse de risco do produto perigoso.

A definição (nome) da classe ou subclasse de risco se refere ao risco principal do produto. No caso da Classe 9, em razão da definição (nome) ser extensa, na descrição da classe de risco, podem constar apenas as palavras “Substâncias e artigos perigosos diversos”. No caso da subclasse, podem constar apenas as palavras “Sólidos inflamáveis”. No caso específico da classe 1, deve ser preenchido com a definição (nome) “Explosivos”, referente à classe de risco, e não as definições (nomes) das subclasses. Quando existir risco subsidiário para o produto e for incluído nesta área, este título “Descrição da classe ou subclasse de risco” deve ser preenchido com a definição (nome) da classe ou subclasse de risco principal e subsidiário do produto perigoso.

O título “Grupo de embalagem” deve ser preenchido em algarismos romanos o grupo de embalagem do produto perigoso indicado na coluna 6 ou em provisão especial da relação de produtos perigosos. Nos casos onde na coluna 6 ou em alguma provisão especial não constar o grupo de embalagem, deve ser colocada a sigla “NA” referente à informação de “não aplicável”. O grupo de embalagem, quando exigido, consta na coluna 6 ou em alguma provisão especial da relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação em vigor.

O título: “Nome apropriado para embarque”. O nome apropriado para embarque do produto perigoso deve ser preenchido conforme previsto na relação de produtos perigosos das instruções complementares do regulamento de transporte terrestre de produtos perigosos da legislação vigente. Para resíduo classificado como perigoso para o transporte terrestre, é opcional a inclusão da palavra “Resíduo” antes do nome apropriado para embarque na ficha de emergência. Para o número ONU 1263 ou ONU 3066, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS” acondicionadas no mesmo volume; ONU 3470, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” acondicionadas no mesmo volume.

ONU 3464, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” acondicionadas no mesmo volume. ONU 1210, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” pode ser utilizado para expedições de embalagens contendo “TINTA PARA IMPRESSÃO” ou “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” acondicionadas no mesmo volume.

O título “Nome comercial”: tanto o título como o nome comercial do produto perigoso podem (facultativo) ser acrescidos abaixo do nome apropriado para embarque. O nome apropriado para embarque consta na relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação vigente. Para o caso dos produtos que possuem as provisões especiais 274 e 318, é colocado o nome técnico entre parênteses imediatamente após o nome apropriado para embarque. A área “B” é destinada ao título “Aspecto”.

Esta área deve ser preenchida com a descrição do estado físico do produto, podendo-se citar cor e odor. Pode ser incluída nesta área ou na área “A” a descrição do risco subsidiário do produto, quando existir. Incompatibilidades químicas previstas na NBR 14619 podem ser expressas neste campo, bem como os produtos não classificados como perigosos que possam acarretar reações químicas que ofereçam risco. Incompatibilidades químicas previstas na FISPQ e não previstas na NBR 14619 podem ser incluídas nesta área, quando aplicável no transporte.

A área “C” é destinada ao título “EPI de uso exclusivo da equipe de atendimento à emergência” ou ao título “EPI de uso exclusivo para a equipe de atendimento à emergência”. Devem ser mencionados, única e exclusivamente, os equipamentos de proteção individual para o (s) integrante (s) da equipe que forem atender à emergência, devendo-se citar a vestimenta apropriada (por exemplo, roupa, capacete, luva, bota, etc.) e o equipamento de proteção respiratória, quando exigido: tipo da máscara (peça semifacial, peça facial inteira etc.) e tipo de filtro (químico, mecânico ou combinado).

Em razão da ficha de emergência ser destinada às equipes de atendimento à emergência, neste campo não pode ser incluído o EPI do motorista ou da equipagem (transporte ferroviário), constante na NBR 9735. Após a relação dos equipamentos, pode ser incluída a seguinte frase: “O EPI do motorista está especificado na NBR 9735”. No caso de transporte ferroviário, o termo “motorista” pode ser substituído por “equipagem”, ou utilizar os dois termos “motorista e/ou equipagem”. No caso de transporte ferroviário, entende-se que o termo “motorista” é aplicável também à equipagem do transporte ferroviário.