A conformidade da proteção catódica de estruturas complexas

Saiba quais são os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares.

A NBR 16896 de 08/2020 – Proteção catódica de estruturas complexas — Requisitos estabelece os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares. As estruturas compostas por outros metais, como aço inoxidável ou alumínio, podem ser protegidas aplicando-se os conceitos e requisitos descritos nesta norma, com exceção dos critérios de proteção, que são exclusivos para o aço-carbono. Esta norma visa eliminar a corrosão acelerada causada pelo acoplamento galvânico.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as técnicas de proteção catódica para estruturas complexas?

O que são os leitos de anodos?

Como deve ser executada a instalação de sistemas de proteção catódica?

Como deve ser feita a verificação da eficácia da proteção catódica?

Pode-se dizer que a proteção catódica é um método de prevenção da corrosão em estruturas metálicas submersas e subterrâneas. É um dos métodos mais eficazes para prevenir a corrosão em uma superfície metálica, sendo usada para proteger várias estruturas contra a corrosão, como navios, flutuadores offshore, equipamentos submarinos, portos, dutos, tanques. Ou seja, basicamente todas as estruturas metálicas submersas ou enterradas.

A técnica se baseia na conversão de áreas ativas de uma superfície metálica em passivas, ou seja, torná-las o cátodo de uma célula eletroquímica. Com o fornecimento de corrente, o potencial do metal é reduzido, o ataque de corrosão cessará e a proteção catódica será alcançada. A proteção catódica pode ser alcançada por: proteção anódica catódica sacrificial e proteção catódica de corrente impressa, muitas vezes referida como ICCP.

No caso dos anodos para a proteção catódica, ao processo de fundição dos anodos deve resultar uma liga com perfeita homogeneização dos componentes em toda a extensão de seu corpo, sem defeitos internos ou externos. O forno para fundição da liga deve ter capacidade igual ou superior à massa do anodo a ser fabricado. O vazamento da liga deve ser contínuo, não sendo admitidas interrupções na alimentação.

O material da alma do anodo deve ser o aço. O aço deve ter teor de carbono ≤ 0,28%. Antes do processo de fundição, o aço deve ser revestido com zinco aderente, aplicado por qualquer meio comercial adequado, ou ter superfície limpa através de um jateamento até atingir o grau Sa 2½, conforme NBR 7348. A alma deve ter boa aderência ao corpo do anodo, não apresentando vazios entre as superfícies de contato.

Os profissionais envolvidos com o projeto, a supervisão da instalação e do comissionamento, e a supervisão da operação e da manutenção do sistema de proteção catódica devem ter o nível adequado de competência para a realização de suas atribuições. Recomenda-se que a competência do pessoal de proteção catódica seja demonstrada de acordo com a NBR 15653 ou por outro procedimento equivalente. Convém que sejam usados os critérios de proteção catódica estabelecidos na NBR ISO 15589-1, mesmo para estruturas classificadas como complexas. No entanto, as características das estruturas complexas e os fatores que as influenciam (ver Seção 6) significam que nem sempre é possível determinar ou alcançar os critérios de proteção catódica tradicionais.

Nesse caso, os métodos de verificação alternativos podem ser utilizados para garantir uma redução adequada da taxa de corrosão. Estes critérios são derivados daqueles contidos na EN 14505. Todos os potenciais devem ser medidos em relação a um eletrodo de referência de cobre/sulfato de cobre saturado. Recomenda-se que os pontos de posicionamento de eletrodos de referência sejam marcados em campo, assim como que o mapa de localização do sistema de aterramento seja avaliado para determinação dos pontos de medição.

Pode-se definir o potencial ON como o de um tubo-eletrólito medido durante a operação contínua do sistema de proteção catódica. Ele é igual ou mais negativo que –0,85 V, se o ponto de medição se situar na área de influência do eletrodo externo. O critério da aplicação de corrente tem o objetivo de demonstrar que a corrente é capaz de entrar na estrutura nos locais inspecionados. Consiste em ligar a fonte de corrente de proteção catódica e avaliar a alteração do potencial natural ou de corrosão, que deve instantaneamente ficar pelo menos 0,3 V mais negativo.

Isso indica que uma quantidade suficiente de corrente está entrando na estrutura. Uma despolarização em cupom de proteção catódica de, no mínimo, 0,1 V, medindo o potencial OFF do cupom imediatamente e após até 1 h de desconexão. Recomenda-se atender a mais de um desses critérios para comprovar que toda a estrutura complexa está protegida adequadamente.

Podem ser usados métodos alternativos, caso se possa demonstrar que o controle da corrosão é atingido. Técnicas de inspeção do revestimento, associadas a escavações para correlação ou inspeção com pipeline inspection gauges (pig) instrumentado, podem ser utilizados, quando disponíveis. O sistema de proteção catódica depende do tamanho e do formato da estrutura complexa, do tipo de revestimento, da ação agressiva do solo e de sua resistividade, das interferências de corrente contínua (cc) e corrente alternada (ca), de regulamentos nacionais, bem como de critérios técnicos e econômicos.

Para uma proteção catódica eficiente, recomenda-se que as condições estabelecidas a seguir sejam atendidas. Para a continuidade elétrica, convém que todas as partes metálicas de uma estrutura complexa a ser protegida sejam eletricamente contínuas. Recomenda-se que eletrodos externos também sejam eletricamente contínuos.

O cálculo da corrente drenada e vida útil: Para que o sistema de proteção catódica seja devidamente projetado, recomenda-se que a forma e a extensão da estrutura sejam claramente definidas em termos de sua localização e isolamento elétrico de estruturas externas. Se o isolamento elétrico for ineficaz e não puder ser restaurado a suas condições originais, convém que a extensão da estrutura complexa seja revisada para levar isso em conta.

Para os revestimentos externos, ou seja, os revestimentos protetores nem sempre são aplicados nos componentes em uma estrutura complexa (por exemplo, sistemas de aterramento). Os componentes não revestidos elevam significativamente as demandas de corrente de proteção, aumentando, por conseguinte, as dificuldades associadas à aplicação da proteção catódica assim como os riscos de interferência. Sempre que possível, convém que componentes metálicos enterrados sejam devidamente revestidos.

Devem ser levantadas as características dos componentes metálicos relevantes que compõem a estrutura complexa, incluindo os tipos de material e suas áreas superficiais enterradas. Os eletrodos externos relevantes devem ser levantados. Embora não haja um compromisso do projeto em proteger essas estruturas, elas consomem parte da corrente injetada pelo sistema de proteção catódica e devem ser consideradas no dimensionamento.

Devem ser consideradas no projeto as especificidades dos revestimentos aplicados em todos os componentes de uma estrutura complexa, incluindo a sua compatibilidade com o uso de proteção catódica. Convém que sejam consideradas no projeto as condições ambientais específicas, como, por exemplo, o teor de cloretos (caso partes da estrutura seja em aço inoxidável), a presença de bactérias ou contaminantes, etc.

Para a blindagem elétrica, convém que sejam levantadas as estruturas físicas ou os materiais específicos, situados no entorno da estrutura complexa, que possam atuar como blindagem elétrica ou restringir a distribuição da corrente destinada à proteção catódica. As blindagens elétricas podem ser condutoras ou não condutoras, conforme exemplos descritos a seguir. As condutoras são as estruturas em concreto armado, estacas metálicas, poços metálicos, tubulações metálicas, aterramento elétrico, tubos-camisa, etc. As não condutoras incluem as mantas geotêxteis ou poliméricas, materiais de proteção mecânica, concreto impermeabilizado, etc.

No estabelecimento dos locais para instalação de anodos e de eletrodos de referência estacionários deve ser considerada a localização das blindagens elétricas. Devem ser considerados no projeto todos os componentes e acessórios destinados a promover o isolamento elétrico entre estruturas metálicas. Eventuais caminhos elétricos paralelos que possam comprometer o isolamento elétrico devem ser levantados.

As fontes de caminhos elétricos paralelos típicos são: aterramentos elétricos, cabos de instrumentação e telemetria, suportes metálicos de tubulações, ferragens de estruturas de concreto armado, etc. Os curtos-circuitos eletrolíticos podem ocorrer em regiões com eletrólitos de baixa resistividade, onde há circulação de corrente iônica entre as estruturas metálicas que, a princípio, estariam isoladas eletricamente.

As situações típicas de curtos-circuitos eletrolíticos que devem ser mapeadas são o curto-circuito devido ao transporte de fluido de baixa resistividade entre as extremidades de uma junta isolante; o curto-circuito em solos contaminados com vazamentos de fluidos de baixa resistividade. Os detalhes referentes às juntas de isolamento elétrico são apresentados na NBR ISO 15589-1. Devem ser levantadas todas as possíveis fontes de interferência elétrica cc ou ca existentes nas proximidades da estrutura complexa.

As fontes de interferência cc mais comuns são os sistemas de tração eletrificados e os sistemas de proteção catódica existentes. As fontes de interferência ca mais usuais são as linhas de transmissão em alta-tensão e as subestações elétricas. Convém que sejam levantadas todas as estruturas metálicas existentes nas proximidades da estrutura complexa e que possam sofrer interferência cc do sistema de proteção catódica da estrutura complexa. No projeto devem ser adotadas medidas para mitigar ou reduzir seus efeitos.

O projeto de estação de bombeamento ou elevatória de água

Saiba quais são os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

A NBR 12214 de 07/2020 – Projeto de estação de bombeamento ou de estação elevatória de água — Requisitos especifica os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como estabelecer a vazão para dimensionamento?

Como calcular o dimensionamento do volume útil da câmara de sucção ou do poço de sucção?

Como projetar a câmara de sucção para bomba tipo submersível?

Como executar o dimensionamento dos barriletes de sucção e de recalque?

Os elementos necessários para o desenvolvimento do projeto são os seguintes: a caracterização da estação de bombeamento ou estação elevatória, pontos de sucção e de recalque/descarga, vazão de dimensionamento, características físico-químicas e biológicas da água a ser bombeada ou elevada, níveis de enchente ou inundação no local; o levantamento planialtimétrico cadastral da área da estação de bombeamento ou elevatória com detalhes da vegetação, tipo de pavimento, acesso, obras especiais, indicação das interferências; o cadastro de unidade (s) operacional (is) relacionada (s) à estação de bombeamento ou elevatória e de interferências; as informações ou levantamentos socioambientais, geotécnicos, geológicos e arqueológicos, vazão de outorga, se aplicável; os dados físicos e operacionais do sistema de abastecimento de água existente; a disponibilidade de energia elétrica; os estudos, planejamentos e projetos existentes correlacionados; o estudo de concepção do sistema de abastecimento, elaborado conforme a NBR 12211; os planos diretores do sistema de abastecimento de água e demais planos diretores; o plano de urbanização, legislação relativa ao uso e ocupação do solo; restrição ambiental que interfira na área de influência do projeto; plano de saneamento básico; as condições mínimas de segurança e medicina do trabalho, conforme legislação e normas vigentes; os critérios, procedimentos e diretrizes da prestadora de serviço ou da contratante do sistema de abastecimento de água.

As atividades necessárias para o desenvolvimento do projeto são as seguintes: validar o estudo de concepção e/ou realizar estudo técnico, econômico, social, financeiro e ambiental; analisar as instalações do sistema de bombeamento ou elevatória existente, objetivando seu aproveitamento, quando for o caso; avaliar e considerar na solução técnica a restrição ambiental incidente, quando existir; avaliar o acesso da estação de bombeamento ou elevatória; complementar os levantamentos topográficos, as interferências, os estudos geológicos, geotécnicos e arqueológicos, quando necessário; determinar as vazões de projeto do sistema de bombeamento, levando em conta as condições operacionais do sistema de abastecimento; determinar a altura manométrica; determinar o tipo e o arranjo físico da elevatória; dimensionar a casa de bombas; selecionar os equipamentos de movimentação de carga e serviços auxiliares; determinar os sistemas de acionamento, medição e controle; determinar o traçado das tubulações de sucção e recalque; dimensionar e selecionar o material das tubulações de sucção e recalque; avaliar os diferentes materiais aplicados (conjunto motor-bomba, componentes, equipamentos, tubulações), de modo a compatibilizar as melhores soluções técnicas e econômicas com tempo de vida útil requerido no estudo e/ou projeto; dimensionar a câmara de sucção, quando necessário; elaborar as especificações dos equipamentos, das conexões e das tubulações; estudar os efeitos dos transitórios hidráulicos e selecionar o(s) dispositivo(s) de proteção do sistema; avaliar a resistência mecânica das partes componentes do sistema de bombeamento ou elevatória às ações internas e externas atuantes; detalhar as etapas de implantação; detalhar a interdependência das atividades e o plano de execução das obras, otimizando o tempo de paralisação do sistema, quando necessário; prever a implantação de dispositivos que permitam os procedimentos de limpeza, esgotamento, drenagem, desinfecção, estanqueidade, da estação de bombeamento ou elevatória; compatibilizar o projeto da estação de bombeamento ou elevatória com os demais projetos complementares [arquitetônico, estruturais, hidrossanitários, elétricos (inclusive iluminação), eletromecânicos, automação, monitoramento, instrumentação, ventilação, acústica, combate a incêndio, inspeção, urbanização, acessos, segurança].

Os elementos que devem compor o projeto são os seguintes: o memorial descritivo e justificativo, contendo os estudos, cálculos realizados, simulações hidráulicas; as peças gráficas do projeto, em escalas adequadas, atendendo às normas técnicas aplicáveis e às recomendações e padronizações da prestadora de serviço ou da contratante; o orçamento detalhado das obras, conforme etapas determinadas para a implantação; as diretrizes operacionais contendo o plano de operação e controle previsto para o sistema de bombeamento ou elevatória, detalhamento das vazões máximas e mínimas operacionais, quando aplicável; as diretrizes para pré-operação, comissionamento e/ou operação assistida, quando aplicável.

Para a determinação do local adequado para a implantação da estação de bombeamento ou elevatória, devem ser levados em consideração os seguintes fatores, de importância ponderada em função das condições técnicas e econômicas de cada projeto: desnível geométrico; características morfológicas; traçado da adutora, conforme a NBR 12215-1; desapropriação, legalização de áreas; acessos permanentes e que permitam a movimentação do transporte para a manutenção; proteções contra enchentes, inundações e enxurradas; estabilidade contra erosão; disponibilidade de energia elétrica; remanejamento de interferências; segurança contra assoreamento no ponto de tomada ou da captação d´água e na região próxima a estes pontos; Net Positive Succion Head (NPSH) disponível, sendo determinado considerando o nível mínimo operacional na câmara de sucção (positivo ou negativo), a temperatura ambiente média e a altitude do local onde será implantada a estação de bombeamento ou elevatória; disponibilidade de área para ampliações futuras, quando necessário.

A determinação dos levantamentos a serem efetuados deve ser precedida de inspeção de campo. Para a locação da estação de bombeamento ou elevatória, os levantamentos topográficos devem ser planialtimétricos cadastrais em extensão, detalhamento e precisão, permitindo no mínimo: mostrar os limites de propriedades e benfeitorias existentes, com indicação dos proprietários; os níveis máximos observados em corpos de água superficiais; os tipos de vegetação, os usos do solo e a exploração do subsolo; os tipos de pavimento, indicação e mapeamento das interferências superficiais e do subsolo.

Deve-se justificar a posição adotada; as obras especiais. Indicar as vias de acesso para a implantação, operação e manutenção da estação de bombeamento ou elevatória. As sondagens devem ser em número, tipo e profundidade que permitam determinar a fundação da estação de bombeamento ou elevatória, determinar o nível atual do lençol freático e elaborar o projeto das obras especiais, permitindo estabelecer o processo de escavação, a fundação e demais elementos estruturais.

As interferências não visíveis devem ser levantadas a partir das informações existentes nos projetos e cadastros, pelo acesso à câmara e/ou à caixa de inspeção existente, por meio de levantamento topográfico, da realização de furos de sondagem de prospecção eletromagnética. Deve-se avaliar as instalações do sistema de bombeamento existente e seu ciclo operacional, elaborando diagnóstico que permita a sua otimização e adequação técnica.

Na elaboração de novos estudos e projetos, as partes com aproveitamento total e/ou parcial existentes devem satisfazer as condições desta norma ou adaptar-se a ela, mediante alterações ou complementações. Deve ser analisado o impacto do sistema projetado sobre as instalações existentes. Devem ser levantadas as características hidráulicas e morfológicas das instalações existentes e a serem projetadas das unidades construtivas.

Por exemplo, da captação à margem de mananciais, compreendendo: número, forma, dimensões e material dos canais ou tubulações; cota do fundo dos canais ou tubulações na entrada da câmara de sucção; níveis máximo (cota de enchente e/ou nível de inundação) e mínimo da água nos canais à entrada da câmara de sucção; características da água, condicionantes ou necessárias para a seleção dos equipamentos; velocidade de entrada na câmara de sucção, que não pode ser superior a 0,60 m/s. Da captação direta no manancial, compreendendo: os perfis de fundo do manancial no local da captação, por meio de no mínimo três seções batimétricas, distanciadas em no máximo 20 m entre si ou conforme necessidade local determinada pela prestadora de serviço ou contratante; os níveis máximo (cota de enchente e nível de inundação) e mínimo da água; a velocidade da água no local da captação; as obras complementares projetadas; as características da água, condicionantes ou necessárias para a seleção dos equipamentos. Da sucção em reservatório, compreendendo as características gerais do reservatório: tipo, material, forma, dimensões e número de câmaras; as cotas geométricas e operacionais do reservatório, e cotas do terreno; as características da água, condicionantes ou necessárias à seleção do equipamento.

A ficha de emergência no transporte terrestre de produtos perigosos

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque.

A NBR 7503 de 06/2020 – Transporte terrestre de produtos perigosos — Ficha de emergência — Requisitos mínimos estabelece os requisitos mínimos para o preenchimento da ficha de emergência destinada a prestar informações de segurança do produto perigoso em caso de emergência ou acidente durante o transporte terrestre de produtos perigosos.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como podem ser definidas a equipagem e as partes por milhão?

Qual é o modelo de uma ficha de emergência?

Qual é a sequência de áreas e informações da ficha de emergência?

Os acidentes no transporte terrestre de produtos perigosos adquirem uma importância especial, uma vez que a intensidade de risco está associada à periculosidade do produto transportado. Considera-se produto perigoso aquele que representa risco para as pessoas, para a segurança pública ou para o meio ambiente, ou seja, produtos inflamáveis, explosivos, corrosivos, tóxicos, radioativos e outros produtos químicos que, embora não apresentem risco iminente, podem, em caso de acidentes, representar uma grave ameaça à população e ao meio ambiente.

Os acidentes no transporte desses produtos podem ter consequências catastróficas, sobretudo diante da proximidade de cidades e de populações lindeiras às principais rodovias. Além das perdas humanas de valor social incalculável, os custos decorrentes da contaminação ambiental atingem cifras muito elevadas. Deve-se levar em consideração que, especificamente, num acidente de transporte rodoviário de produtos perigosos, ainda que a empresa transportadora tenha tomado todos os cuidados e não tenha, a princípio, culpa pelo acidente, a responsabilidade pelos danos ambientais causados continua sendo da empresa transportadora, pois a ausência de culpa, neste caso, não é mais excludente da responsabilidade de indenizar e reparar os danos.

Assim, para diferentes produtos com o mesmo número ONU, o mesmo nome apropriado para embarque (inclusive o nome técnico, quando aplicável), mesmo grupo de embalagem, mesmo número de risco e o mesmo estado físico, pode ser usada a mesma ficha de emergência, desde que sejam aplicáveis as mesmas informações de emergência, exceto quando previsto em legislação vigente. A ficha de emergência é destinada às equipes de atendimento à emergência. As informações de segurança do produto transportado, bem como as orientações sobre as medidas de proteção e ações em caso de emergência devem constar na ficha de emergência para facilitar a atividade das equipes em uma emergência.

Os expedidores de produtos perigosos são responsáveis pela elaboração da ficha de emergência dos produtos com base nas informações fornecidas pelo fabricante ou importador do produto. O idioma a ser usado deve ser o oficial do Brasil. O modelo de ficha de emergência desta norma pode ser utilizado como instruções escritas para o caso de qualquer acidente com produtos perigosos, constantes no Acordo para a facilitação do transporte de produtos perigosos no Mercosul, desde que redigida nos idiomas oficiais dos países de origem, trânsito e destino.

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque. Esta norma permite flexibilidade para adaptar diferentes sistemas de edição, leiaute e transmissão de texto. É livre a formatação dos títulos e textos, como, fonte, tamanho, cor, maiúsculo, minúsculo, sublinhado etc.

A área “A” deve conter o seguinte: o título: “Ficha de emergência”; a identificação do expedidor, tanto para produtos nacionais quanto para importados, os títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Expedidor”: deve ser preenchido com a identificação do expedidor e o uso do título “Expedidor” é facultativo; logomarca da empresa: nesta área pode (facultativo) ser colocada a logomarca (logotipo) da empresa expedidora.

Caso a logomarca da empresa seja inserida, pode ser impressa em qualquer cor; título “Endereço”: deve ser preenchido com o endereço do Expedidor, sendo facultativa a inclusão do CEP. Não é necessário que o endereço constante na ficha de emergência seja o mesmo do documento fiscal, podendo ser o endereço da matriz ou de uma das filiais do expedidor, se houver. O uso do título “Endereço” é facultativo. O título “Telefone” ou “Telefones”: deve ser preenchido com o número do telefone do expedidor. Deve conter ainda o número do telefone (disponível 24 h por dia) da equipe que possa fornecer informações técnicas sobre o produto perigoso em caso de emergência. Este telefone pode ser do expedidor, do transportador, do fabricante, do importador, do distribuidor ou empresa contratada para atendimento à emergência.

Caso o telefone da equipe que possa fornecer informações técnicas sobre o produto seja do próprio expedidor, pode constar apenas o número de um telefone do expedidor. O uso do título “Telefone” ou “Telefones” é facultativo; títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Número de risco”: deve ser preenchido com o número de risco do produto perigoso.

No caso específico dos explosivos da classe 1 que não possuem número de risco, deve ser colocada a sigla “NA” referente à informação de “não aplicável”; título “Número da ONU” ou “Número ONU”: devendo ser preenchido com o número da ONU do produto perigoso; título “Classe ou subclasse de risco”: deve ser preenchido com o número da classe de risco do produto perigoso, nos casos específicos das classes 3, 7, 8 e 9. Nos casos das classes de risco 2, 4, 5 e 6, onde há subdivisão em subclasses de risco, deve ser informado o número da subclasse de risco do produto perigoso.

No caso específico da classe 1, devem ser informados o número da subclasse de risco e a letra correspondente ao grupo de compatibilidade do explosivo. A classe ou subclasse de risco se refere ao risco principal do produto perigoso. Quando existir risco subsidiário para o produto, pode ser incluído nesta área ou na área “B”. Caso opte por incluir nesta área, deve ser incluído o título “Risco subsidiário” e preenchido com o número da classe ou subclasse de risco subsidiário do produto perigoso; título “Descrição da classe ou subclasse de risco”: deve ser preenchido com a definição (nome) da classe ou subclasse de risco do produto perigoso.

A definição (nome) da classe ou subclasse de risco se refere ao risco principal do produto. No caso da Classe 9, em razão da definição (nome) ser extensa, na descrição da classe de risco, podem constar apenas as palavras “Substâncias e artigos perigosos diversos”. No caso da subclasse, podem constar apenas as palavras “Sólidos inflamáveis”. No caso específico da classe 1, deve ser preenchido com a definição (nome) “Explosivos”, referente à classe de risco, e não as definições (nomes) das subclasses. Quando existir risco subsidiário para o produto e for incluído nesta área, este título “Descrição da classe ou subclasse de risco” deve ser preenchido com a definição (nome) da classe ou subclasse de risco principal e subsidiário do produto perigoso.

O título “Grupo de embalagem” deve ser preenchido em algarismos romanos o grupo de embalagem do produto perigoso indicado na coluna 6 ou em provisão especial da relação de produtos perigosos. Nos casos onde na coluna 6 ou em alguma provisão especial não constar o grupo de embalagem, deve ser colocada a sigla “NA” referente à informação de “não aplicável”. O grupo de embalagem, quando exigido, consta na coluna 6 ou em alguma provisão especial da relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação em vigor.

O título: “Nome apropriado para embarque”. O nome apropriado para embarque do produto perigoso deve ser preenchido conforme previsto na relação de produtos perigosos das instruções complementares do regulamento de transporte terrestre de produtos perigosos da legislação vigente. Para resíduo classificado como perigoso para o transporte terrestre, é opcional a inclusão da palavra “Resíduo” antes do nome apropriado para embarque na ficha de emergência. Para o número ONU 1263 ou ONU 3066, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS” acondicionadas no mesmo volume; ONU 3470, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” acondicionadas no mesmo volume.

ONU 3464, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” acondicionadas no mesmo volume. ONU 1210, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” pode ser utilizado para expedições de embalagens contendo “TINTA PARA IMPRESSÃO” ou “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” acondicionadas no mesmo volume.

O título “Nome comercial”: tanto o título como o nome comercial do produto perigoso podem (facultativo) ser acrescidos abaixo do nome apropriado para embarque. O nome apropriado para embarque consta na relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação vigente. Para o caso dos produtos que possuem as provisões especiais 274 e 318, é colocado o nome técnico entre parênteses imediatamente após o nome apropriado para embarque. A área “B” é destinada ao título “Aspecto”.

Esta área deve ser preenchida com a descrição do estado físico do produto, podendo-se citar cor e odor. Pode ser incluída nesta área ou na área “A” a descrição do risco subsidiário do produto, quando existir. Incompatibilidades químicas previstas na NBR 14619 podem ser expressas neste campo, bem como os produtos não classificados como perigosos que possam acarretar reações químicas que ofereçam risco. Incompatibilidades químicas previstas na FISPQ e não previstas na NBR 14619 podem ser incluídas nesta área, quando aplicável no transporte.

A área “C” é destinada ao título “EPI de uso exclusivo da equipe de atendimento à emergência” ou ao título “EPI de uso exclusivo para a equipe de atendimento à emergência”. Devem ser mencionados, única e exclusivamente, os equipamentos de proteção individual para o (s) integrante (s) da equipe que forem atender à emergência, devendo-se citar a vestimenta apropriada (por exemplo, roupa, capacete, luva, bota, etc.) e o equipamento de proteção respiratória, quando exigido: tipo da máscara (peça semifacial, peça facial inteira etc.) e tipo de filtro (químico, mecânico ou combinado).

Em razão da ficha de emergência ser destinada às equipes de atendimento à emergência, neste campo não pode ser incluído o EPI do motorista ou da equipagem (transporte ferroviário), constante na NBR 9735. Após a relação dos equipamentos, pode ser incluída a seguinte frase: “O EPI do motorista está especificado na NBR 9735”. No caso de transporte ferroviário, o termo “motorista” pode ser substituído por “equipagem”, ou utilizar os dois termos “motorista e/ou equipagem”. No caso de transporte ferroviário, entende-se que o termo “motorista” é aplicável também à equipagem do transporte ferroviário.

Os ensaios em solos

Há vários ensaios em solos e um deles é a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas.

A NBR 16843 de 05/2020 – Solo — Determinação do índice de vazios mínimo de solos não coesivos especifica o método de determinação do índice de vazios mínimo (mín.) de solos granulares, não coesivos, contendo no máximo 12 % (em massa) de material que passa na peneira de 0,075 mm. Esta norma também especifica o método para o cálculo de compacidade relativa correspondente a um determinado índice de vazio mínimo do material ensaiado.

A NBR 16853 de 05/2020 – Solo — Ensaio de adensamento unidimensional especifica o método de ensaio para determinação das propriedades de adensamento do solo, caracterizadas pela velocidade e magnitude das deformações, quando o solo é lateralmente confinado e axialmente carregado e drenado. A NBR 16867 de 05/2020 – Solo – Determinação da massa específica aparente de amostras indeformadas — Método da balança hidrostática especifica um método para determinação da massa específica aparente de amostras indeformadas de solo, com emprego da balança hidrostática. Esta norma é aplicável somente a materiais que possam ser adequadamente talhados.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o método do enchimento com água para a determinação do índice de vazios?

Como deve ser a mesa vibratória para realizar peneiramento para a determinação do índice de vazios?

Como deve ser os corpos de prova para determinação das propriedades de adensamento do solo?

Como deve ser feito a montagem do corpo de prova na célula de adensamento?

Como fazer a determinação da massa específica aparente da parafina?

Para a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas. Nesta norma, o índice de vazios mínimo absoluto não é necessariamente obtido.

Para os solos não coesivos, os índices de vazios máximo e mínimo constituem-se nos parâmetros básicos para avaliação do estado de compacidade. Para tanto, a compacidade relativa, como especificada em 7.4, fornece uma indicação do estado de compacidade de uma determinada massa de solo, seja uma ocorrência natural, seja construída pelo homem. No entanto, as propriedades de engenharia, como a resistência ao cisalhamento, compressibilidade e permeabilidade de um dado material, compactado por métodos distintos, para um mesmo estado de compacidade, podem variar consideravelmente.

Por outro lado, solos distintos, no mesmo estado de compacidade, podem apresentar diferenças ainda mais acentuadas dessas propriedades, dependendo da granulometria, formato dos grãos, etc. Por esse motivo, discernimento considerável deve ser usado ao se relacionarem as propriedades de engenharia dos solos com o estado de compacidade. A amplitude dupla de vibração vertical tem efeito significativo no índice de vazios obtido. Para uma mesa vibratória e molde específicos, o menor índice de vazios de um dado material pode ser obtido para uma amplitude dupla diferente das especificadas nesta norma, ou seja, o índice de vazios pode inicialmente diminuir com o aumento da amplitude dupla de vibração, atingir um mínimo e então aumentar com o incremento da amplitude dupla.

Portanto, a relação entre o menor índice de vazios e a amplitude dupla de vibração ótima pode variar com o tipo de solo. A aparelhagem necessária para a execução do ensaio é a seguinte: estufa capaz de manter a temperatura entre 105 °C e 110 °C; peneiras de 75 mm, 38 mm, 19 mm, 9,5 mm, 4,8 mm e 0,075 mm, de acordo com as NBR NM ISO 2395 e NBR NM ISO 3310-1; balanças que permitam pesar nominalmente 40 kg, 10 kg e 1,5 kg, com precisões de 5 g, 1g e 0,1 g, respectivamente; outros equipamentos, como bandeja metálica, conchas metálicas, pá, escova de cerdas macias, cronômetro com indicação de minutos e segundos, e paquímetro que possibilite leituras de no mínimo 30 mm, com precisão de 0,2 mm.

O conjunto para a realização do ensaio pelo método A deve conter o seguinte: moldes cilíndricos metálicos padrões, com volumes nominais de 2.830 cm³ e 14.200 cm³; tubo-guia com dispositivo de fixação ao molde, para cada tamanho de molde. Para facilitar a centralização do tubo-guia acima do molde, ele deve ser dotado de três dispositivos de fixação. Incluir um disco-base da sobrecarga, para cada tamanho de molde, perfurado e dotado de três pinos para centralização da sobrecarga; sobrecarga de seção circular dotada de alça para cada tamanho de molde.

A massa total do disco-base e sobrecarga deve ser suficiente para a aplicação de uma pressão de (13,8 ± 0,1) kPa. Incorporar uma alça dotada de rosca para colocação e retirada do disco-base; suporte encaixável no guia do molde, ao qual fica acoplado um deflectômetro, para medir a diferença de elevação entre o topo do molde e o disco-base da sobrecarga, após a densificação. O deflectômetro deve possibilitar medições de no mínimo 50 mm, com resoluções de 0,02 mm, devendo ser instalado de modo que a sua haste fique paralela ao eixo barra de calibração metálica (opcional), com largura de aproximadamente 7 cm, altura de 0,5 cm e comprimento adequado.

Incluir uma mesa vibratória eletromagnética de aço, com vibração vertical acionada por um vibrador eletromagnético do tipo impacto sólido, com massa maior que 45 kg. A mesa deve ser instalada em ambiente acusticamente isolado do restante do laboratório, sobre um piso ou laje de concreto, com massa de 500 kg, de modo que vibrações excessivas não sejam transmitidas a outras áreas onde estejam sendo realizados outros ensaios. O tampo da mesa deve ter dimensões adequadas, que confiram rigidez suficiente, de forma que o conjunto molde + tubo-guia + sobrecarga fique firmemente fixado e rigidamente apoiado durante o ensaio, devendo por este motivo ser dotado de dispositivo de fixação ao conjunto mencionado.

O conjunto para a realização do ensaio pelo método B deve conter o seguinte: cilindro de Proctor, com volume nominal de 1.000 cm³, de acordo com a NBR 7182, soldado à base, de modo que o conjunto resulte estanque. A base do molde deve ser mais espessa que a normalmente utilizada no ensaio de compactação, além de ser dotada de dispositivo de fixação à mesa vibratória. Deve-se dispor de um tubo-guia, constituído por outro cilindro de Proctor solidário ao colarinho; disco-base da sobrecarga, perfurado e dotado de dispositivo para centralização da sobrecarga; sobrecarga de seção circular dotada de alça. A massa total do disco-base e da sobrecarga deve ser suficiente para aplicação de uma pressão de (13,8 ± 0,1) kPa.

Deve-se incluir uma mesa vibratória, do tipo utilizado para realizar o peneiramento de amostras na análise granulométrica. Este método de ensaio para determinação das propriedades de adensamento do solo requer que um elemento de solo, mantido lateralmente confinado, seja axialmente carregado em incrementos, com pressão mantida constante em cada incremento, até que todo o excesso de pressão na água dos poros tenha sido dissipado. Durante o processo de compressão, medidas de variação de altura da amostra são feitas, e estes dados são usados no cálculo do parâmetro que descreve a relação entre a pressão efetiva e o índice de vazios, bem como a evolução das deformações em função do tempo.

Os dados de ensaio de adensamento podem ser utilizados na estimativa, tanto da magnitude dos recalques totais e diferenciais de uma estrutura ou de um aterro, como da velocidade desses recalques. Como aparelhagem, usar um sistema de aplicação de carga (prensa de adensamento), que permite a aplicação e manutenção das cargas verticais especificadas, ao longo do período necessário de tempo, e com uma precisão de 0,5% da carga aplicada. Quando da aplicação de um incremento de carga, a transferência para o corpo de prova deve ocorrer em um intervalo de tempo não superior a 2 s e sem impacto significativo.

Usar uma célula de adensamento apropriada para conter o corpo de prova e que proporcione meios para aplicação de cargas verticais, medida da variação da altura do corpo de prova e sua eventual submersão. Esta célula consiste em uma base rígida, um anel para manter o corpo de prova, pedras porosas e um cabeçote rígido de carregamento. O anel pode ser do tipo fixo (indeslocável em relação à base rígida) ou flutuante (deslocável em relação à base, sendo suportado pelo atrito lateral desenvolvido entre o corpo de prova e o anel), conforme os esquemas indicados na figura abaixo.

Incluir um anel de adensamento, conforme a seguir: o diâmetro interno do anel deve ser no mínimo de 50 mm (preferencialmente 100 mm) e, no caso de amostras extrudadas e talhadas, no mínimo 5 mm (preferencialmente 10 mm) menor do que o diâmetro interno do tubo de amostragem; a altura do anel deve ser no mínimo de 13 mm e não inferior a dez vezes o máximo diâmetro de partícula do corpo de prova; a relação entre o diâmetro interno e a altura do anel deve ser no mínimo de 2,5 (preferencialmente 3,0); a rigidez do anel deve ser tal que, sob a condição de pressão hidrostática igual à máxima pressão axial a ser aplicada ao corpo de prova, a variação do diâmetro do anel não exceda 0,03%; o anel de adensamento deve ser feito de material não corrosível (preferencialmente aço inoxidável), e sua superfície interna deve ser altamente polida ou recoberta com material de baixo atrito, por exemplo, politetrafluoroetileno (PTFE).

Recomenda-se, antes do ensaio, untar a superfície interna do anel com graxa de silicone. O anel fixo permite a execução de ensaios de permeabilidade, junto com o ensaio de adensamento. Quando o solo a ser ensaiado se constituir de material muito mole, não se utiliza anel flutuante. Usar pedras porosas, conforme a seguir. As pedras porosas devem ser confeccionadas com material quimicamente inerte em relação ao solo e à água dos poros. Devem ser constituídas de poros com dimensões suficientemente pequenas, de forma a se evitar a intrusão de partículas de solo.

Se necessário, papel-filtro resistente pode ser utilizado entre o corpo de prova e a pedra porosa para impedir a infiltração de solo e facilitar a limpeza posterior da pedra. O conjunto pedra porosa e papel-filtro deve apresentar permeabilidade suficientemente alta, de modo a não retardar a drenagem do corpo de prova. As pedras porosas devem ser uniformes e estar sempre limpas e livres de trincas.

A adequabilidade de pedra porosa sob o ponto de vista de permeabilidade e limpeza pode ser comprovada por meio de ensaios expeditos, submetendo-a a uma carga hidráulica da ordem de 10 cm e observando-se o gotejamento em sua face inferior. o diâmetro da pedra porosa do topo deve ser 0,2 mm a 0,5 mm menor que o diâmetro interno do anel. Se for utilizado anel flutuante, a pedra de base deve apresentar o mesmo diâmetro da pedra do topo. Recomenda-se a utilização de pedras biseladas, com a face de maior diâmetro em contato com o solo. As pedras porosas devem ser espessas o suficiente para se evitar a sua quebra, sendo de topo, na sua face superior, protegida por um disco metálico (cabeçote) rígido, resistente à corrosão e com diâmetro igual ao da pedra.

Já a aparelhagem necessária para o ensaio para determinação da massa específica aparente de amostras indeformadas de solo é a seguinte: estufa capaz de manter a temperatura de 60 °C a 65 °C e de 105 °C a 110 °C; balança que permita pesar nominalmente 1,5 kg, com precisão de 0,1 g e sensibilidade compatível; moldura que possa ser acoplada ao prato da balança, sendo que balanças que disponham de dispositivo adequado para realização deste ensaio prescindem de tal moldura. Incluir um recipiente contendo água, de dimensões adequadas, para imersão do corpo de prova; fogareiro ou aquecedor para derreter a parafina; linha comum, ou preferencialmente de náilon, e utensílios como panela, faca, espátula, pincel, etc.; parafina isenta de impurezas e com massa específica aparente, no estado sólido, conhecida e verificada a cada mudança de lote.

IEEE 1248: o comissionamento de sistemas elétricos em usinas hidrelétricas

Essa norma é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

A IEEE 1248:2020 – Guide for the Commissioning of Electrical Systems in Hydroelectric Power Plants é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

Em resumo, o guia descreve os ensaios realizados e fornece os processos a serem seguidos durante o comissionamento de sistemas elétricos e de controle em usinas hidrelétricas. São fornecidas orientações sobre métodos a serem utilizados, organização e execução dos ensaios.

Embora o guia não forneça os procedimentos prescritivos específicos para instalações e equipamentos, os ensaios são descritos juntamente com os padrões de referência para obter mais informações. O comissionamento de equipamentos elétricos pode ser para uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização de equipamentos elétricos existentes.

Conteúdo da norma

1. Visão geral………………………. 10

1.1 Escopo………………………….. 10

1.2 Objetivo………………………. 10

1.3 Organização…………………… 10

2 Referências normativas………. 11

3 Definições, acrônimos e abreviações……………… …. 11

3.1 Definições………………………………………… 11

3.2 Acrônimos e abreviações……….. …………. 12

4. Planejamento, funções e responsabilidades do comissionamento…………………… 13

4.1 Planejamento…………………… 13

4.2 Proprietário……………………. 14

4.3 Empreiteiro……………………… 14

4.4 Engenheiro………………………. 15

4.5 Fabricante/fornecedor……………. 16

5. Fases do programa de comissionamento ……………. 16

5.1 Fase de ensaio de construção… …………………. 17

5.2 Fase de ensaio pré-operacional ………………. 18

5.3 Fase de ensaio operacional…………………. 18

5.4 Ensaio de desempenho.. …………………….. 19

6. Implementação do comissionamento….. …………… 19

6.1 Geral…………. ……………………………………. 19

6.2 Fase de conclusão da construção………. ………. 19

6.3 Fase de ensaio pré-operacional……….. ………….. 20

6.4 Fase de ensaio operacional e inicialização da unidade……………………. 21

6.5 Ensaio de desempenho……………………. 21

7. Aplicação deste guia……………………… 21

7.1 Geral…………………………………. 21

7.2 Usando este guia para desenvolver um programa de ensaio…………………….. 22

7.3 Coordenar ensaios de comissionamento de sistemas e unidades………………… 26

8. Equipamentos na planta……………………… 27

8.1 Lista de equipamentos e matrizes de ensaio….. …… 27

9. Descrições dos ensaios……………………… 64

9.1 Geral …………………………………….. 64

9.2 Ensaios de construção…………………….. 66

9.3 Ensaios pré-operacionais……………….. 101

9.4 Ensaios operacionais…………………….. 123

9.5 Ensaios de desempenho……………….. 137

10. Documentação………………………… 143

10.1 Manutenção de registros……………… 143

10.2 Documentação de engenharia ……….. 143

10.3 Documentação de fábrica… ……………… 143

10.4 Documentação no local…. ………………… 144

Anexo A (informativo) Bibliografia……… ……….. 145

A.1 Turbinas, geradores e motores……. ………. 145

A.2 Transformadores……………………………. 146

A.3 Reguladores………………………………. 147

A.4 Cabos e pista…… ……………………….. 147

A.5 Proteção e retransmissão……………….. 148

A.6 Excitação……………………………. 148

A.7 Isolamento…………………………… 148

A.8 Baterias, UPS e sistemas de energia em espera……… 149

A.9 Disjuntores, painéis, painéis e centros de controle de motores……………… 149

A.10 Controle e SCADA………………….. 150

A.11 Aterramento…………………………. 150

A.12 Definições, códigos, referências e tabelas………………. 151

A.13 Manutenção……….. …………………………….. 151

A.14 Proteção contra incêndio…………………… 151

A.15 Diversos………………………….. 152

Este guia foi desenvolvido para auxiliar os engenheiros envolvidos no comissionamento de equipamentos elétricos em relação ao seguinte: ensaios específicos de equipamentos elétricos; programa de ensaio para colocar o equipamento em operação; o comissionamento de equipamentos elétricos pode ser para o seguinte: uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização do equipamento existente.

O guia descreve o desenvolvimento de uma organização de inicialização, seguida de uma descrição do fases de comissionamento de uma usina hidrelétrica. As informações principais estão contidas no formato de matriz para cada tipo principal de equipamento elétrico, que identifica os vários ensaios associados ao equipamento. As informações são fornecidas para cada ensaio específico, incluindo o seguinte: uma breve descrição; documentos comprovativos; equipamento necessário; duração ou tempo necessário.

Com base nas informações acima, são fornecidas orientações para o planejamento, desenvolvimento e documentação de um programa de comissionamento. Este guia aborda a energia hidrelétrica convencional. Partes do guia são relevantes para instalações de armazenamento bombeado, mas os recursos exclusivos das instalações de armazenamento bombeado não são abordados especificamente.

O guia também contém uma bibliografia de normas do setor, práticas recomendadas e guias que podem ser usado como recursos pelo engenheiro envolvido no comissionamento de equipamentos elétricos. A listagem destina-se a auxiliar na preparação para o início de uma usina hidrelétrica ou para um ensaio específico. Uma revisão de documentos é incentivada.

Todos os ensaios devem ser feitos de acordo com as especificações do equipamento e contratos com referência e em conjunto com as normas pertinentes da indústria. A revisão mais recente das normas e os guias listados no Anexo A devem ser usados. Uma lista de documentos comprovativos, que inclui itens bibliográficos e documentos gerais, é fornecido para cada ensaio na Cláusula 9 deste guia.

BS EN ISO 14005: a implementação da gestão ambiental em fases

Essa norma europeia, editada pelo BSI em 2019, é uma versão completamente revisada e atualizada da ISO 14005: 2010. Uma abordagem sistemática à gestão ambiental fornece os meios para o gerenciamento de riscos comerciais, demonstra um alto nível de comprometimento ambiental e uma abordagem em fases oferece várias vantagens.

A BS EN ISO 14005:2019 – Environmental management systems – Guidelines for a flexible approach to phased implementation é uma versão completamente revisada e atualizada da ISO 14005: 2010. Uma abordagem sistemática à gestão ambiental fornece os meios para o gerenciamento de riscos comerciais e demonstra um alto nível de comprometimento ambiental.

Muitas organizações já se beneficiam de um Sistema de Gestão Ambiental (SGA) formalizado, porém, muito mais organizações, particularmente pequenas e médias empresas (PME), carecem de um sistema formal e, portanto, perdem os benefícios que uma maior formalidade pode trazer. Este documento mostra como as organizações podem implementar um SGA, usando uma abordagem em fases para, finalmente, atender aos requisitos da ISO 14001. Cada fase incorpora seis estágios consecutivos. O número de fases é flexível. Isso permite que as organizações desenvolvam o escopo, ou seja, as atividades, produtos e serviços incluídos,

Uma abordagem em fases oferece várias vantagens. Por exemplo, as organizações podem avaliar prontamente como o tempo e o dinheiro investidos em um SGA fornecem um retorno. Eles podem desenvolver um sistema que atenda às suas necessidades, permitindo implementá-lo em seu próprio ritmo, dependendo dos recursos humanos e financeiros disponíveis. Sua abordagem pode ajudar as organizações a ver como as melhorias no gerenciamento ambiental podem reduzir custos, demonstrar conformidade legal, melhorar as relações com a comunidade e ajudar a atender às expectativas das partes interessadas.

A matriz de maturidade no Anexo A é uma ferramenta para medir o progresso da implementação do SGA. Isso é útil para rastrear as realizações dos objetivos ambientais de uma organização e benefícios associados e para garantir o uso eficiente de recursos financeiros e humanos. E uma folha de avaliação online e exemplos dentro da norma oferecem suporte aos usuários.

Conteúdo da norma

Prefácio

Introdução

1 Escopo

2 Referências normativas

3 Termos e definições

3.1 Termos relacionados à organização e liderança

3.2 Termos relacionados ao planejamento

3.3 Termos relacionados ao suporte e operação

3.4 Termos relacionados à avaliação e melhoria de desempenho

3.5 Outros termos

4 Benefícios de uma abordagem flexível e em fases

5 Fundamentos de um sistema de gestão ambiental

5.1 Geral

5.2 Liderança e compromisso

5.3 Planejamento baseado em contexto

5.4 Operação

5.5 Avaliação de desempenho

5.6 Melhoria

5.7 Atividades e processos de apoio

6 Abordagem faseada

6.1 Geral

6.2 Definir os resultados pretendidos da fase

6.3 Avaliar o status do sistema de gestão ambiental

6.4 Selecionar as áreas para melhoria do sistema de gestão ambiental (SGA)

6.5 Realizar uma análise de lacunas

6.6 Planejar e implementar melhorias no sistema de gestão ambiental

6.7 Verificar e revisar conquistas

Anexo A Usando uma matriz de maturidade para implementar um SGA

Bibliografia

As organizações enfrentam um número crescente de desafios causados pela deterioração do ambiente natural devido às atividades humanas. Por exemplo, a poluição está afetando o uso de água, ar e terra; os custos de matérias-primas e energia estão se tornando mais voláteis devido ao uso ineficiente e à escassez de recursos não renováveis; e as ameaças de tempestades, inundações ou secas estão aumentando como resultado do aumento da temperatura global e das mudanças climáticas.

Esses desafios estão causando efeitos significativos nos negócios e na sociedade. Reguladores, consumidores, clientes, comunidades locais e outras partes interessadas exigem garantias das organizações de que suas interações com o meio ambiente são gerenciadas com responsabilidade e que suas atividades, produtos e serviços não estão causando impactos ambientais negativos.

Uma abordagem sistemática à gestão ambiental fornece os meios para o gerenciamento de riscos comerciais e demonstra um alto nível de comprometimento ambiental. Isso permite que as organizações respondam às necessidades e expectativas das partes interessadas. Os benefícios comerciais de um sistema formal de gestão ambiental (SGA) incluem o uso mais eficiente de recursos, efeitos negativos reduzidos no meio ambiente, melhor conformidade com os requisitos legais e melhor relacionamento com os clientes.

Muitas organizações já se beneficiam de um SGA formalizado. Porém, muito mais organizações, particularmente pequenas e médias empresas (PME), carecem de um sistema formal e, portanto, perdem os benefícios que uma maior formalidade pode trazer. Uma abordagem sistemática à gestão ambiental pode proporcionar sucesso a longo prazo e permitir o desenvolvimento sustentável. Isso inclui proteger o meio ambiente, mitigar os potenciais efeitos adversos das condições ambientais nas organizações, ajudar no cumprimento das obrigações de conformidade, melhorar o desempenho ambiental, impedir que os impactos ambientais sejam deslocados involuntariamente em outras partes do ciclo de vida, obtendo benefícios financeiros e operacionais e apoiando comunicação com as partes interessadas relevantes.

A implementação completa de um SGA em toda a organização ao mesmo tempo, no entanto, pode ser difícil e depende da disponibilidade de equipe e outros recursos. Uma abordagem em fases permite que as organizações desenvolvam seu SGA gradualmente ao longo do tempo.

Uma abordagem em fases oferece várias vantagens. As organizações podem avaliar prontamente como o tempo e o dinheiro investidos em um SGA proporcionam um retorno. Podem desenvolver um sistema que atenda às suas necessidades, permitindo implementá-lo em seu próprio ritmo, dependendo dos recursos humanos e financeiros disponíveis. Essa abordagem pode ajudar as organizações a ver como as melhorias no gerenciamento ambiental podem reduzir custos, demonstrar conformidade legal, melhorar as relações com a comunidade e ajudar a atender às expectativas das partes interessadas.

Este documento mostra como as organizações podem implementar um SGA, usando uma abordagem em fases para, finalmente, atender aos requisitos da ISO 14001. Cada fase incorpora seis etapas consecutivas. O número de fases é flexível. Isso permite que as organizações desenvolvam o escopo, ou seja, as atividades, produtos e serviços incluídos e a maturidade de seu SGA, de acordo com seus objetivos e recursos disponíveis.

A abordagem em fases pode, por exemplo, começar com um projeto focado em um aspecto ambiental específico, como o uso de energia ou recursos naturais. Também poderia ser usado para atender às necessidades de uma determinada parte interessada, como uma exigência do cliente, ou para gerenciar um problema específico, como demonstrar conformidade legal. O SGA pode ser expandido ao longo do tempo, progredindo em mais fases, por exemplo, para cobrir mais aspectos ambientais, para abordar sistematicamente todas as necessidades e expectativas relevantes das partes interessadas ou para melhorar o desempenho ambiental além da conformidade legal.

As relações normativas da ISO 14001

A matriz de maturidade no Anexo A é uma ferramenta para medir o progresso da implementação do SGA. Isso é útil para rastrear as realizações dos objetivos ambientais de uma organização e benefícios associados e para garantir o uso eficiente de recursos financeiros e humanos. A estrutura da matriz de vencimentos incorpora linhas que correspondem aos diferentes elementos do SGA, conforme definido nas cláusulas da ISO 14001: 2015.

As colunas representam cinco níveis de maturidade. Cada elemento pode ser desenvolvido incrementalmente do nível de maturidade 1 até a maturidade completa no nível 5. Nesse ponto, o elemento atenderá aos requisitos da respectiva cláusula na ISO 14001: 2015.

Uma folha de avaliação que suporta a matriz de maturidade pode ser encontrada no site da ISO/TC 207/SC 1, https://committee.iso.org/home/tc207sc1. Ele segue a mesma estrutura da matriz de maturidade e ajuda as organizações a determinar seu nível de maturidade para cada elemento. O site também fornece exemplos, por exemplo, sobre como uma empresa desenvolveu um SGA completo usando a abordagem em fases.

Os resíduos sólidos urbanos para fins energéticos

Considerando a crescente preocupação da sociedade com relação às questões ambientais e ao desenvolvimento sustentável, tornou-se necessária a criação de uma norma sobre o aproveitamento energético de resíduos sólidos urbanos, que promova a sua utilização de forma segura e sustentável, aumentando a confiabilidade das práticas de recuperação energética.

A NBR 16849 de 02/2020 – Resíduos sólidos urbanos para fins energéticos – Requisitos estabelece os requisitos para aproveitamento energético de resíduos sólidos urbanos com ou sem incorporação de outros resíduos classe II – Não perigosos, abrangendo os aspectos de elegibilidade de resíduos, registros e rastreabilidade, amostragem e formação dos lotes, armazenamento, preparo de resíduos sólidos urbanos para fins energéticos (RSUE), classificação dos lotes gerados e uso do RSUE nas unidades de recuperação energética (URE), conforme a cadeia de custódia, respeitando a hierarquia de gestão e gerenciamento de resíduos. Não é aplicável aos processos de recuperação energética que utilizam resíduos sólidos urbanos: bruto, sem qualquer tipo de preparo; sem recuperação energética; com preparação prévia, mas sem formação de lote e especificação mínima de qualidade para uso como RSUE.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual seria o processo de avaliação da elegibilidade para o emprego de resíduos classe II – não perigosos?

Quais os limites para classificação dos RSUE?

Quais as especificações complementares para os lotes de RSUE na expedição?

O que deve estabelecer o plano de amostragem?

Considerando a crescente preocupação da sociedade com relação às questões ambientais e ao desenvolvimento sustentável, tornou-se necessária a criação de uma norma sobre o aproveitamento energético de resíduos sólidos urbanos, que promova a sua utilização de forma segura e sustentável, aumentando a confiabilidade das práticas de recuperação energética. Esta norma visa facilitar a comunicação entre as partes interessadas envolvidas na cadeia de custódia de seleção, preparação e uso para fins energéticos do resíduo sólido urbano, bem como facilitar a interação com questões ambientais.

O uso racional de resíduos na preparação e o emprego de tecnologias adequadas de queima são, portanto, essenciais para alcançar os objetivos desta norma. Da mesma forma, definições claras e abrangentes sobre os requisitos de aceitação de resíduos para o preparo de resíduos sólidos urbanos para fins energéticos (RSUE), bem como a definição das classes dos lotes desse tipo de resíduo, são de grande importância para a promoção de práticas seguras de recuperação energética.

Assim, ela estabelece os requisitos para aproveitamento energético de resíduos sólidos urbanos com ou sem incorporação de outros resíduos classe II – não perigosos, abrangendo os aspectos de elegibilidade de resíduos, registros e rastreabilidade, amostragem e formação dos lotes, armazenamento, preparo de RSUE, classificação dos lotes gerados e uso do RSUE nas unidades de recuperação energética (URE), conforme a cadeia de custódia descrita na figura a abaixo, respeitando a hierarquia de gestão e gerenciamento de resíduos.

Inserir lixo2

Já a figura abaixo apresenta o macroprocesso de seleção, preparo e uso de resíduos sólidos urbanos, com ou sem incorporação de outros resíduos não perigosos ao longo de sua cadeia de custódia, a partir da UP-RSUE até a URE. Este macroprocesso tem como objetivo assegurar a destinação ambientalmente adequada de resíduos sólidos urbanos, misturados ou não a outros resíduos classe II – não perigosos, por meio de recuperação energética.

As etapas do macroprocesso são as seguintes: seleção dos resíduos (aplicação dos requisitos de elegibilidade); recebimento na UP-RSUE; armazenamento dos resíduos recebidos; planejamento da produção (aplicação das especificações estabelecidas pelo destinador); preparo do RSUE; armazenamento dos RSUE; amostragem; classificação dos lotes de RSUE (aplicação dos critérios de classificação, bem como das demais especificações do destinador); preparo dos lotes para expedição para a URE; expedição para a URE; uso dos lotes de RSUE (recuperação energética) nas URE.

Inserir lixo3

Os resíduos utilizados para a composição de um lote de RSUE devem ter a sua origem determinada e registrada, constando nos Laudos de Caracterização dos Resíduos as especificações obrigatórias e complementares acordadas entre as partes. As especificações do resíduo devem fazer parte do contrato entre o gerador do resíduo e a UP-RSUE. Esse conjunto de informações deve incluir tanto as especificações obrigatórias quanto as especificações complementares, quando aplicável.

O gerador do resíduo e a UP-RSUE devem estabelecer procedimentos que assegurem a conformidade dos lotes com as especificações estabelecidas e as tratativas, em casos de não conformidade. O gerador do resíduo e a UP-RSUE devem estabelecer um plano de amostragem desses resíduos.

O Laudo de Caracterização do Resíduo de cada lote recebido pode apresentar qualquer das seguintes propriedades, conforme acordado entre as partes: tipo de preparação e tratamento: processo ao qual o resíduo sólido urbano e outros resíduos compatíveis foram submetidos, indicando se houve a preparação de mistura de resíduos; formato predominante das partículas, referente ao resíduo fornecido, por exemplo, pellets, fardos, briquetes, lascas, flocos ou pó; tamanho das partículas; teor de cinzas; teor de umidade; concentração de metais: determinação da concentração de um ou mais metais em base seca e a partir de método analítico apropriado dos seguintes metais: antimônio, arsênio, berílio, cádmio, chumbo, cobalto, cobre, cromo, estanho, manganês, mercúrio, níquel, platina, paládio, ródio, selênio, tálio, telúrio, vanádio e zinco.

Outros metais podem ser acrescentados, mediante manifestação de interesse da UP-RSUE. Outras propriedades e características: o Laudo de Caracterização do Resíduo pode conter características econômicas, técnicas ou ambientais, conforme o interesse do cliente, por exemplo, densidade aparente, teor de voláteis, concentrações dos principais constituintes ou de outros elementos-traço (oligoelementos), presença de elementos específicos, odores característicos, temperatura de ignição, etc.

O sistema de armazenamento subterrâneo combustíveis e óleos

Os empreendimentos que possuam sistema de armazenamento subterrâneo de combustível (SASC), considerado o ambiente do empreendimento e seu entorno, devem ser classificados como Classe Única.

A NBR 13786 de 12/2019 – Armazenamento de líquidos inflamáveis e combustíveis – Seleção dos componentes do combustível (SASC) e sistema de armazenamento subterrâneo de óleo lubrificante usado e contaminado (OLUC) estabelece os componentes mínimos do sistema de armazenamento subterrâneo e distribuição de combustíveis líquidos (SASC) e do sistema subterrâneo de armazenamento de óleo lubrificante usado e contaminado (OLUC), considerando os aspectos de segurança ambiental, pessoal, ocupacional e patrimonial, aplicáveis a posto revendedor (PR), posto de abastecimento (PA) e instalação de sistema retalhista (ISR).

Acesse alguns questionamentos relacionados a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definida uma instalação de sistema retalhista (ISR)?

Como deve ser fabricado o tanque de armazenamento subterrâneo do SASC?

Como deve ser fabricado o sistema de monitoramento e detecção de vazamento (SMDV) do OLUC?

Os empreendimentos que possuam sistema de armazenamento subterrâneo de combustível (SASC), considerado o ambiente do empreendimento e seu entorno, devem ser classificados como Classe Única. As classes 2 e 3 descritas na edição anterior desta norma foram unificadas e especificadas como Classe Única.

Os empreendimentos que possuam sistema de armazenamento subterrâneo de combustível (SASC) devem possuir no mínimo os componentes relacionados nesta Seção. Os componentes relacionados nesta Seção devem ser instalados conforme a NBR 13783.

Os componentes relacionados nesta Seção, após instalados, devem ser operados, inspecionados e mantidos conforme as NBR 15594-1 e NBR 15594-3. O SASC deve possuir um sistema eletrônico de medição de estoque, fabricado conforme a NBR 16718, e deve atender aos requisitos da NBR 13784, em todos os compartimentos dos tanques de armazenamento do SASC instalados, para permitir o controle de estoque conforme a NBR 13787.

O SASC deve possuir sistema de monitoramento e detecção de vazamento, fabricado conforme a NBR 16718, e deve atender aos requisitos da NBR 13784 no interstício de todos os tanques subterrâneos de armazenamento instalados e nas seguintes câmaras de contenção instaladas: no acesso à boca de visita de tanque (sump de tanque); sob a unidade abastecedora (sump de bomba); para interligação (sump de interligação); da unidade de filtragem (sump de filtro). Quando instalado sistema de bomba submersa, deve ser previsto um sistema adicional de detecção de vazamento na tubulação de bomba submersa, conforme a NBR 13784.

O SASC deve possuir câmaras de contenção, fabricadas conforme a NBR 15118, relacionadas a seguir: câmara de contenção da unidade abastecedora, em todas as unidades abastecedoras instaladas (sump de bomba); câmara de contenção da unidade de filtragem, quando existente (sump de filtro); câmara de contenção para interligação de tubulação, quando necessário, conforme a NBR 13783 (sump de interligação); câmara de contenção da boca de visita do tanque, em todas as bocas de visita de tanques instalados (sump de tanque); câmara de contenção da descarga de combustível, em todos os pontos de descarga de combustível (spill de descarga); câmara de contenção de medição, em todos os compartimentos de tanques instalados (spill de medição); câmara de contenção do monitoramento intersticial, em todos os tanques instalados (spill de monitoramento intersticial).

Todos os pontos de descarga de combustível do SASC, no interior do spill de descarga, devem possuir dispositivo de descarga selada, fabricado conforme a NBR 15138. O SASC deve possuir válvula de retenção na tubulação de sucção, fabricada conforme a NBR 15139, sob a unidade abastecedora e sob a unidade de filtragem. Alternativamente, pode ser considerada a válvula de retenção incorporada à unidade de bombeamento da unidade abastecedora ou da unidade de filtragem.

É recomendado que o sistema opere apenas com uma válvula de retenção em uma mesma tubulação de sucção, evitando perda de carga desnecessária. Não pode ser instalada qualquer outra válvula de retenção na tubulação de sucção, incluindo o trecho da tubulação de sucção no interior do tanque, como “válvula de pé”, entre outras.

Esta Seção não é aplicável à tubulação que opera com pressão positiva. O sistema de armazenamento subterrâneo do OLUC deve possuir câmaras de contenção, fabricadas conforme a NBR 15118, relacionadas a seguir: câmara de contenção da boca de visita do tanque, em todas as bocas de visita de tanques instalados (sump de tanque), exceto para tanques com capacidade de 1 000 L e 2 000 L; câmara de contenção da descarga de OLUC, em todos os pontos de descarga de OLUC (spill de descarga); câmara de contenção do monitoramento intersticial, em todos os tanques instalados (spill de monitoramento intersticial). O tanque de armazenamento subterrâneo do OLUC deve ser fabricado conforme as NBR 16161 e NBR 16713.

Custos econômicos da poluição e degradação ambiental no Brasil

José Galizia Tundisi

Há uma permanente e inexorável degradação ambiental no Brasil, resultante de décadas de má administração na área ambiental, descaso de autoridades municipais e de muitos estados relativamente à poluição, e o avanço permanente de urbanização e de infraestrutura que alteram os ambientes naturais e contribuem para um crescimento dos problemas de poluição e contaminação.

A expansão de fronteira agrícola com o aumento do desmatamento; o uso intensivo do solo e das bacias hidrográficas, com práticas agrícolas defasadas, aplicações exageradas de fertilizantes e defensivos agrícolas; a crescente urbanização que trata somente 40% dos esgotos domésticos do Brasil; os inúmeros problemas resultantes da disposição de resíduos sólidos, que contribuem para uma poluição difusa persistente, do solo, da água e do ar; e um aumento da toxicidade em geral do solo, água e ar, que seguramente afetam a saúde humana, o funcionamento dos ecossistemas, reduzem a biodiversidade e comprometem os recursos naturais são todos causas efetivas.

A mineração é uma das atividades que mais causam problemas na deterioração da qualidade das águas superficiais e subterrâneas, na paisagem e na biodiversidade terrestre e aquática. Além dos acidentes, como o caso da Samarco no Vale do Rio Doce, que causam enormes impactos e grandes prejuízos em pouco tempo.

As áreas costeiras também são afetadas por estuários contaminados e com alto grau de poluentes, e por degradação gerada por sedimentos em suspensão e deterioração das regiões costeiras.

Dentre os principais problemas de contaminação e poluição do Brasil, está o da deterioração das águas superficiais e subterrâneas. Muitas reservas de águas doces que abastecem cidades e condomínios estão contaminadas, o que demanda um enorme investimento para o tratamento da água a fim de torná-la potável. Há poucas regiões do Brasil atualmente com águas naturais pristinas e sem contaminação.

Todo este conjunto de problemas, que resulta da intensificação das atividades humanas-urbanização, produção de alimentos, produção de energia, resulta em um impacto econômico certamente de grandes proporções ainda não mensurado adequadamente, mas certamente muito significativo (Tundisi et al., 2015).

Por exemplo, o tratamento de água para produção de água potável é extremamente dispendioso. São precisos de R$ 200,00 a R$ 300,00 reais para a produção de 1.000 m³ de água potável a partir de fontes degradadas. O custo para tratar águas pristinas e não contaminadas pode chegar, no máximo, a R$ 10,00 reais (Tundisi & Matsumura-Tundisi, 2010). Este é um exemplo.

Há outros custos não contabilizados: internações por doenças de veiculação hídrica; número de horas de trabalho perdidas por ausência devido a doenças com origem nas águas contaminadas; número de horas perdidas nas escolas por ausência devido a doenças de veiculação hídrica; intoxicações por substâncias tóxicas – não custa repetir.

Há, portanto, um enorme conjunto de danos à saúde pública, não contabilizados ou dimensionados, resultantes da poluição e contaminação. Em áreas metropolitanas a baixa qualidade do ar pode produzir inúmeras doenças respiratórias cujo impacto econômico deve ser mensurado.

A degradação ambiental no Brasil decorre de um quadro cada vez mais difícil de controlar: as leis existentes são adequadas, já a fiscalização é, no entanto, ineficiente e o treinamento e capacitação de agentes públicos são precários ou reduzidos. O monitoramento é pouco efetivo em escala nacional. Esta deveria prover um banco de dados competente e útil para promover políticas de recuperação e conservação.

Um dos problemas que mais afetam a população está relacionado com a qualidade das águas. Recreação, turismo e o abastecimento público ficam ameaçados pela eutrofização, que representa o impacto de nitrogênio e fósforo por esgotos não tratados. Sobre esse conjunto complexo deve-se ainda considerar o impacto das mudanças climáticas e o acúmulo dos POPs (Poluentes Orgânicos Persistentes) nas águas superficiais e subterrâneas.

Tais poluentes, uma inexorável e permanente contaminação, são resultado da adição de medicamentos, cosméticos, antibióticos, hormônios dissolvidos nas águas de rios, represas e águas subterrâneas e constituem a mais recente ameaça à saúde humana, à biodiversidade e ao funcionamento dos ecossistemas (Young et al., 2015).

O Brasil muito se beneficiaria se o custo agregado deste conjunto todo de degradações fosse contabilizado. Deve-se ainda considerar o investimento na recuperação de sistemas degradados, o que amplia a necessidade de investimentos nessa área. Quanto custa a poluição no Brasil? Com a palavra, os economistas para apresentarem os estudos com as ferramentas de que dispõem.

Investir em saneamento básico no Brasil para colocá-lo em um lugar mais privilegiado juntamente com os países desenvolvidos deve ser uma política de Estado de longa e permanente duração. Para tanto, é necessário calcular e dimensionar quanto se deve investir ao longo dos próximos 20 anos.

O país progrediu em modernização, mas não progrediu em desenvolvimento. Este é o dilema que precisa ser resolvido para ingressar o Brasil definitivamente no século 21. Ainda estamos longe. Existem tecnologia, conhecimento, informação. A execução é, no entanto, precária. (Tundisi & Matsumura-Tundisi, 2016).

Bibliografia

Tundisi, J.G. & Matsumura-Tundisi, T., 2010. Impactos potenciais das alterações do Código Florestal nos recursos hídricos. Biota Neotrop. 10 (4), pp 67-76, 2010. http://www.biotaneotropica.org.br/v10n4/pt/abstract?article+bn01110042010, ISSN 1676-0603.

Tundisi, J.G., Matsumura-Tundisi, T., Ciminelli, V.S., Barbosa, F.A.R., 2015a. Water availability, water quality water governance. In: Cudennec, C. et al. (Eds). Hydrological Sciences and Water Security: Past,Present and Future, vol. 366. PIAHS, pp. 75-79.

Tundisi, J.G. & Matsumura-Tundisi, T. Integrating ecohydrology, water management and watershed economy: case studies from Brazil. Ecohydrology & Hydrobiology. vol. 16, pp. 83-91, 2016.

Young, G., Demuth S., Mishra, A. & CUDENNEC C. Hydrological Sciences and Water Security: and overview. In: CUDENNEC, C. et al. (Editors). Hydrological Sciences and Water Security. Past, Present,Future. IAHS Publ. 366, pp. 1-6, 2015.

José Galizia Tundisi é professor titular aposentado da Escola de Engenharia de São Carlos da USP, professor titular da Universidade Feevale (RS) e membro titular da Academia Brasileira de Ciências.

Os objetivos do desenvolvimento sustentável no Antropoceno

Paulo Artaxo

O planeta está passando por uma série de processos de transformação muito fortes e rápidos, com o potencial de dificuldades importantes para as gerações futuras em termos de viabilidade como sociedade sustentável. Certamente estamos caminhando neste início de Antropoceno a um planeta com clima mais instável e violento, além da evidente escassez de recursos naturais. E somos nós que estamos promovendo tais mudanças, muitas das quais sequer nos demos conta.

Nosso planeta Terra tem uma história longa, de cerca de 4,5 bilhões de anos. O homem moderno só apareceu muito recentemente (200 mil anos atrás), e a civilização tal qual a conhecemos hoje existe há apenas 6 mil anos, minúsculo intervalo na vida de nosso planeta.

Foi, contudo, nesse último milênio, que o nosso planeta passou por mudanças significativas, estando hoje muito diferente do que era àquela época. Mudanças no uso do solo em larga escala tiveram início no desenvolvimento da agricultura, inicialmente em pequena escala, mas que hoje tomaram proporções planetárias.

A partir do século 19, o homem descobriu que queimar carvão, petróleo ou gás natural poderia produzir trabalho mecânico, e com esta descoberta na Inglaterra teve início a revolução industrial, que tantos progressos trouxe à humanidade. Porém, com o progresso vieram também os problemas, e um deles é o uso excessivo de recursos naturais como água, minerais, combustíveis fósseis e outros, que são finitos.

Com uma crescente população de 7 bilhões de pessoas em 2016, cuja estimativa é que tenhamos cerca de 10 bilhões de pessoas em algumas décadas, é fundamental pensarmos na sustentabilidade do planeta a longo prazo.

Entre as 9 milhões de espécies biológicas em nosso planeta, somos uma única, controlando a biosfera da Terra, a tal ponto que estamos alterando a composição da atmosfera e o clima de nosso planeta, com fortes consequências para todas as 9 milhões de espécies.

Áreas enormes das Américas, Europa e Ásia que eram florestas, há alguns séculos, hoje são áreas cultivadas ou com estradas e áreas urbanas, o que significa forte mudança no uso do solo, com reflexos em várias propriedades que regulam o clima do planeta, tais como o balanço radioativo.

Hoje, temos cerca de 1,3 bilhão de automóveis circulando na Terra; estima-se que podemos ter 2 bilhões de automóveis em algumas décadas. Parece claro que não se pode continuar dessa forma, pois estamos esgotando rapidamente os finitos recursos naturais de nosso planeta.

Para estudar essa questão, um grupo de cientistas mundiais fundou uma atividade chamada em inglês de Future Earth, ou Terra Futura (site: http://www.futureearth.org/). Essa iniciativa visa a entender como o desenvolvimento de nosso planeta pode se tornar sustentável a longo prazo.

O objetivo do Future Earth é produzir o conhecimento científico necessário para minimizar os riscos das mudanças climáticas globais e realizar a transição para a sustentabilidade global, se é que isso pode ser possível. Garantir a sustentabilidade de nossa sociedade vai envolver fortes mudanças de atitude de e para todos nós. A enorme desigualdade na distribuição das riquezas de nosso planeta traz instabilidade política, econômica e social, e é preciso minimizá-la para evitar conflitos ainda mais sérios.

Com estas preocupações em mente, as Nações Unidas estruturaram os chamados Objetivos de Desenvolvimento Sustentável (ODS) que consistem em um conjunto de metas acordadas pelos 193 países membros da ONU, visando ao desenvolvimento sustentável de nosso planeta a longo prazo.

Este é um dos resultados da Rio+20, e entraram em vigor em 1 de janeiro de 2016, com um prazo de realização até 31 de dezembro de 2030. Para cada ODS, são estruturados 169 metas e indicadores globais de acompanhamento da implementação dos ODS. Os 17 Objetivos de Desenvolvimento Sustentável são:

– Acabar com a pobreza em todas as suas formas, em todos os lugares;

– Acabar com a fome, alcançar a segurança alimentar, melhorar a nutrição;

– Assegurar uma vida saudável e promover o bem-estar para todos;

– Garantir educação inclusiva, equitativa e de qualidade;

– Alcançar a igualdade de gênero e empoderar todas as mulheres e meninas;

– Garantir disponibilidade e manejo sustentável da água;

– Garantir acesso à energia barata, confiável, sustentável;

– Promover o crescimento econômico sustentado, inclusivo e sustentável;

– Construir infraestrutura resiliente, promover a industrialização inclusiva;

– Reduzir a desigualdade entre os países e dentro deles;

– Tornar as cidades e os assentamentos humanos inclusivos, seguros, resilientes;

– Assegurar padrões de consumo e produção sustentáveis;

– Tomar medidas urgentes para combater a mudança do clima;

– Conservar e promover o uso sustentável dos oceanos;

– Proteger, recuperar e promover o uso sustentável das florestas;

– Promover sociedades pacíficas e inclusivas para o desenvolvimento sustentável;

– Fortalecer os mecanismos de implementação e revitalizar a parceria global.

A figura abaixo ilustra de modo pictórico estes ODS, que são abrangentes e visam a construir uma nova sociedade em nosso planeta.

Estes objetivos fazem parte da Agenda 2030 para o desenvolvimento sustentável, estruturado pela ONU, onde desenvolvimento sustentável é definido como o desenvolvimento que procura satisfazer às necessidades da geração atual, sem comprometer a capacidade das futuras gerações de satisfazerem as suas próprias necessidades.

Desenvolvimento sustentável demanda um esforço conjunto para a construção de um futuro inclusivo, resiliente e sustentável para todas as pessoas e todo o planeta. A questão das mudanças climáticas é um ponto central, onde se observa que a mudança do clima já impacta a saúde pública, segurança alimentar e hídrica, migração, paz e segurança.

A mudança do clima, se não for controlada, reduzirá os ganhos de desenvolvimento alcançados nas últimas décadas e impedirá possíveis ganhos futuros. As ações relacionadas à mudança do clima darão impulso ao desenvolvimento sustentável.

Se conseguirmos atingir a maior parte destes ODS, teremos um planeta mais igualitário, justo e sustentável. Os ODS, embora de natureza global e universalmente aplicáveis, dialogam com as políticas e ações nos âmbitos regional e local.

Na disseminação e no alcance das metas estabelecidas pelos ODS, é preciso promover a atuação dos governantes e gestores locais como protagonistas da conscientização e mobilização em torno dessa agenda global.

O Brasil ao longo dos últimos dez anos trabalhou em políticas de inclusão que tiraram milhões de pessoas da pobreza extrema. Este esforço deve continuar, com a intensificação de políticas sociais visando à integração de milhões de brasileiros na construção de uma sociedade mais justa e igualitária, trazendo desenvolvimento sustentável e justiça social. Essa é uma tarefa de todos os brasileiros.

Paulo Artaxo é professor do Instituto de Física da Universidade de São Paulo.