Os planos de desativação de empreendimentos com contaminação do solo e/ou de águas subterrâneas

Saiba quais são os procedimentos para a elaboração de planos de desativação total ou parcial de empreendimentos com potencial de contaminação do solo e/ou de águas subterrâneas, de acordo com a legislação vigente. . Não se aplica aos planos de desativação de empreendimentos cuja desativação é pautada por legislações específicas. 

A NBR 16901 de 12/2020 – Gerenciamento de áreas contaminadas — Plano de desativação de empreendimentos com potencial de contaminação — Procedimento estabelece o procedimento para a elaboração de planos de desativação total ou parcial de empreendimentos com potencial de contaminação do solo e/ou de águas subterrâneas, de acordo com a legislação vigente. . Não se aplica aos planos de desativação de empreendimentos cuja desativação é pautada por legislações específicas. A avaliação preliminar é uma verificação inicial, realizada com base nas informações disponíveis, públicas ou privadas, visando fundamentar a suspeita de contaminação de uma área e com o objetivo de identificar as fontes primárias e as potencialidades de contaminação, com base na caracterização das atividades historicamente desenvolvidas e em desenvolvimento no local, embasando o planejamento das ações a serem executadas nas etapas seguintes do gerenciamento de áreas contaminadas.

Confira algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que deve informar o inventário de resíduos?

Qual o objetivo do plano de demolição das estruturas de alvenaria e/ou metálicas?

Por que elaborar um relatório completo de execução do plano de desativação?

Quais são os exemplos de resíduos sólidos?

O gerenciamento de áreas contaminadas (GAC) é um conjunto de medidas que asseguram o conhecimento das características das áreas contaminadas e a definição das medidas de intervenção mais adequadas a serem requeridas, visando eliminar ou minimizar os danos e/ou riscos aos bens a proteger, gerados pelos contaminantes nelas contidas. A tabela abaixo fornece exemplos de produtos e materiais onde substâncias químicas com potencial de contaminação são comumente encontradas.

O plano de desativação deve ser baseado em meios e técnicas disponíveis à época de sua realização, devendo ser observados os seguintes fatores limitantes primordiais: a impossibilidade de acesso irrestrito ao imóvel e instalações existentes no local, pelos mais diversos motivos; a ausência de informações detalhadas e precisas sobre as atividades atuais e pretéritas desenvolvidas no imóvel. Embora estas limitações não inviabilizem a elaboração do plano de desativação, elas devem ser evidenciadas no relatório técnico.

O plano de desativação deve ser elaborado pelo profissional técnico habilitado e apoiado pelo responsável pelo empreendimento, cuja responsabilidade deve ser limitada pela disponibilidade de informações no momento e nas circunstâncias em que este seja realizado. Na avaliação da pertinência das informações obtidas durante a condução do levantamento das informações necessárias ao plano de desativação, o profissional técnico habilitado e o responsável pelo empreendimento devem ter cautela e razoabilidade no trato das informações do empreendimento em desativação.

O surgimento de fatos novos ou anteriormente desconhecidos, o desenvolvimento tecnológico e outros fatores não podem ser utilizados para a desqualificação do plano de desativação. A elaboração do plano de desativação deve ter como base, mas não estar limitada a, as informações e dados históricos gerados e disponibilizados a partir das etapas realizadas relacionadas ao gerenciamento de áreas contaminadas.

A NBR 16209 se aplica em estudos de avaliação de risco à saúde humana para fins de remediação e reabilitação de áreas contaminadas e, por outro lado, nos casos específicos de avaliação de risco à saúde humana para fins de saúde pública, com foco na gestão pública de saúde, essa avaliação é desenvolvida utilizando as diretrizes estabelecidas pelo Ministério da Saúde. Durante a execução das demais etapas do gerenciamento de áreas contaminadas, o modelo conceitual, inicialmente estabelecido na etapa de avaliação preliminar, deve ser continuamente atualizado de acordo com os dados obtidos.

Os resultados das etapas do gerenciamento de áreas contaminadas produzirão elementos para a tomada de decisão sobre as medidas que devem ser adotadas, permitindo a compatibilização do local quanto ao seu uso futuro. Após a avaliação de risco à saúde humana, deve ser realizado um plano de intervenção para a área, conforme a NBR 16784-1, se aplicável. O plano de intervenção deve contemplar um conjunto de medidas que devem ser estabelecidas em função dos objetivos a serem atingidos, da natureza dos contaminantes, das características do meio, dos cenários de exposição, do nível de risco existente, das metas de reabilitação, do uso pretendido para o local, da proteção dos bens a proteger e da sustentabilidade associada às medidas.

Deve-se mapear e identificar eventuais intervenções e potenciais riscos sobre habitats protegidos e bens a proteger, decorrentes dos trabalhos de desativação, respeitando-se a legislação vigente e os procedimentos estabelecidos para cada caso pelos órgãos competentes, para a avaliação e controle destes potenciais riscos. O plano de desativação deve ser elaborado com base na documentação disponibilizada pelo responsável pelo empreendimento, nos projetos executivos e nos memoriais descritivos, bem como na inspeção de verificação das instalações.

O plano de desativação deve conter no mínimo o seguinte: a caracterização da área de estudo, incluindo descrição e identificação da instalação, dos equipamentos e dos processos produtivos (atuais e históricos); o levantamento dos produtos e materiais, equipamentos e estruturas com potencial de contaminação do solo e/ou de águas subterrâneas, incluindo matéria-prima e produtos acabados (atuais e históricos); o inventário de resíduos; o plano de gerenciamento de resíduos sólidos; a verificação por suspeitas ou indícios de contaminação nas estruturas (como pisos, paredes, etc.); a especificação técnica para desativação e/ou descontaminação dos equipamentos e instalações identificados; e a destinação final dos equipamentos e materiais.

A descrição e identificação da instalação, dos equipamentos e dos processos produtivos (atuais e históricos) devem ocorrer com acompanhamento técnico criterioso, orientação consultiva dos procedimentos a serem adotados, realização de registro fotográfico e elaboração de listagem e/ou memorial descritivo. A descrição e a identificação da instalação, dos equipamentos e dos processos produtivos (atuais e históricos) devem apresentar a relação e localização em planta, em escala adequada, de obras de infraestrutura, como ruas, rede de distribuição de energia elétrica e utilidades, sistemas de drenagem, efluentes industriais e sanitários (por exemplo, estação de tratamento de efluentes (ETE), estação de tratamento de água (ETA), estações elevatórias, caixas de contenção e de passagem), dutos de insumos e de matérias primas e demais informações pertinentes às particularidades da instalação; edificações e demais estruturas metálicas e não metálicas, entre outras; equipamentos instalados e suas características principais (potência, dimensão, capacidade e quantidade); tanques, linhas de transferência ou estruturas de armazenamento aéreos e/ou subterrâneos, instalações (por exemplo, caixa de contenção) e tubulações associadas (relacionadas a processo, utilidades e especificação técnica), com respectiva quantidade e capacidade volumétrica.

Deve-se realizar o inventário atual e histórico dos produtos químicos e materiais com potencial de contaminação do solo e/ou de águas subterrâneas presentes no empreendimento, incluindo matérias primas, insumos e produtos acabados. A lista de produtos deve ser acompanhada de suas respectivas Fichas de Informação de Segurança de Produtos Químicos (FISPQ). Deve-se apresentar uma planta do empreendimento indicando onde cada um dos produtos encontrava-se armazenado, o histórico de uso e armazenamento, as quantidades e/ou os volumes e a forma de acondicionamento e, principalmente, onde cada um se inseria no processo produtivo, quando aplicável.

Deve-se realizar o levantamento de produtos e materiais com potencial de contaminação do solo e/ou de águas subterrâneas, equipamentos e estruturas que contenham, em sua composição, substâncias que gerem risco à saúde humana ou ao meio ambiente (ver tabela acima). A confirmação da presença destas substâncias nos materiais pode ser feita considerando-se a data de fabricação de compostos atualmente em desuso ou de análises químicas específicas.

Deve ser apresentado o levantamento quantitativo de cada um dos materiais identificados, bem como suas localizações em planta e sua destinação final. Estes materiais identificados devem fazer parte do documento que contenha todas as informações sobre a forma de gerenciamento dos resíduos sólidos gerados durante o processo de desativação.

O manejo de árvores urbanas em obras

Entenda os parâmetros para o manejo de árvores durante o planejamento, parcelamento de terrenos e construção em um local, bem como para a sua conservação após a obra.

A NBR 16246-4 de 11/2020 – Florestas urbanas – Manejo de árvores, arbustos e outras plantas lenhosas – Parte 4: Manejando árvores em obras estabelece os requisitos para o manejo de árvores durante o planejamento, parcelamento de terrenos e construção em um local, bem como para a sua conservação após a obra. Este documento pode ser utilizado como referência por profissionais da administração pública municipal, estadual e federal, assim como por prestadores de serviço particulares, proprietários de imóveis, concessionárias de serviços públicos e outros, na elaboração de suas especificações de conservação. Neste documento o termo árvore também inclui arbustos e outras plantas lenhosas e o termo parcelamento de terrenos inclui a implantação de loteamentos.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que é uma avaliação dos recursos arbóreos?

O que é um plano de manejo das árvores?

Quais os fatores a serem considerados ao avaliar a adequação para conservação?

O que são árvores ruins?

As árvores devem ser conservadas durante o planejamento, desenvolvimento e construção em um local por várias razões, incluindo fatores econômicos, sociais, ambientais e culturais. Por exemplo, as árvores podem ser conservadas para que indivíduos ou comunidades façam melhor uso de seus recursos. A importância deste processo está no estabelecimento dos requisitos e recomendações para a elaboração de um relatório de manejo das árvores, que pode ser utilizado por qualquer profissional ou organização envolvidos com as atividades de cuidado, manutenção ou conservação de árvores. (ver figura abaixo com um fluxograma de planejamento do manejo)

Pode-se definir os impactos das obras como uma consequência das atividades relacionadas às obras, como parcelamento de terrenos e construção, que causem danos as árvores diretamente, como cortes de raízes e galhos, ou indiretamente, como a compactação do solo. Já o inventário das árvores é uma lista de todas as árvores existentes no terreno, que fornece informações descritivas sobre toda a área do projeto. O levantamento das árvores é uma relação e descrição das árvores em toda ou parte da área do projeto, com base em critérios estabelecidos.

Dessa forma, o objetivo do manejo é conservar as árvores durante as fases de planejamento, projeto, pré-construção, construção e pós-construção das atividades de parcelamento de terrenos e construção no local. O Anexo A apresenta o fluxograma do planejamento do manejo das árvores. Os arboristas devem seguir as práticas apropriadas de trabalho seguro, conforme legislação aplicável.

Este documento estabelece o que este plano deve conter. O conteúdo do plano pode ser alterado com base no escopo de projetos específicos. O plano de manejo das árvores deve ser elaborado por um arborista qualificado durante o planejamento das atividades de parcelamento de terrenos e construção no local, e deve incluir as especificações.

Os planos de manejo das árvores devem estar em conformidade com a legislação aplicável e com as NBR 16246-1 e NBR 16246-3. As especificações não são estabelecidas neste documento, pois elas variam dependendo das espécies das árvores, condições do solo, atividade de construção ou demolição, etc. Os órgãos competentes podem exigir que um plano de manejo das árvores seja apresentado, se forem desenvolvidos critérios específicos em nível nacional, estadual ou municipal, como, por exemplo, número de árvores afetadas, tamanho e espécies de árvores afetadas; tamanho do lote; tipo e zoneamento das obras de parcelamento de terrenos e construção civil.

Um levantamento das árvores deve incluir uma avaliação dos recursos arbóreos e relatar todos os aspectos relevantes. Um arborista ou outra pessoa qualificada deve ser responsável pela avaliação dos recursos arbóreos. Uma arborista é um indivíduo que exerce a atividade da arboricultura e que, pela experiência, educação e treinamento complementar, possui competência e atribuição profissional para prestar ou supervisionar o manejo de árvores e outras plantas lenhosas.

O objetivo da avaliação dos recursos arbóreos deve ser estabelecido. Se for observada uma condição que exija atenção, além do escopo original do trabalho, ela deve ser relatada a um supervisor imediato, ao proprietário ou à pessoa responsável por autorizar o trabalho. Durante a avaliação dos recursos arbóreos, devem ser estabelecidas as classificações de adequação para conservação (ver Anexo B). Na fase de elaboração do projeto, deve ser realizada uma avaliação dos impactos da implantação do projeto nas árvores existentes no local e a avaliação quanto à adequação para conservação das árvores (ver Anexo B).

Um relatório de manejo das árvores deve ser elaborado, incluindo o seguinte: a localização em planta planialtimétrica, em escala adequada, das árvores encontradas no levantamento; a descrição da população arbórea existente (por exemplo, espécies, parâmetros dendrológicos e condições fitossanitárias); a classificação da adequação para conservação (boa, moderada, ruim); os limites da construção, incluindo demolição, alteração do nível do solo (aterros e escavações) e drenagem, obras de instalações e redes de distribuição de serviços públicos e projeto paisagístico; avaliação dos impactos da implantação do projeto nas árvores; as observações sobre a proximidade das árvores com as estruturas, estradas e redes de distribuição de serviços públicos existentes e propostos; as recomendações para conservação ou remoção (ver 4.4.2); recomendações para mudanças de projeto (ver 4.4.2); as recomendações e especificações para conservação de árvores (ver 4.4.2); e as recomendações e especificações pós-construção.

O plano de manejo das árvores deve recomendar ações para a conservação destas, as quais convém que sejam levadas em consideração nos planos de implantação e construção no local. Este plano deve estabelecer: as árvores a serem conservadas e removidas; as especificações de manutenção das árvores de médio e longo prazos; as zonas de proteção de árvores; as barreiras da zona de proteção das árvores; os controles de erosão do solo; as áreas de preparação e armazenamento; os serviços de utilidade pública, como distribuição de gás, energia, etc.; as rotas de trânsito no local durante a obra; outras atividades no local; e as consequências pelo não atendimento das recomendações para conservação das árvores.

As árvores a serem conservadas e removidas, descritas no plano, devem ser consideradas nos planos de demolição. As ações para conservação das árvores devem ser comunicadas àqueles que irão implementar o plano de manejo das árvores. As barreiras da zona de proteção das árvores devem ser instaladas antes do início dos trabalhos no local.

As operações de remoção de árvores não podem danificar as árvores que devem ser conservadas. A implementação das ações para conservação das árvores deve ser monitorada por um arborista. O não atendimento das recomendações para conversação das árvores deve ser documentado. No caso de danos a barreiras e/ou árvores, ações corretivas devem ser especificadas e implementadas.

A integridade e a saúde das árvores devem ser monitoradas, bem como as barreiras da zona de proteção das árvores. As ações de conservação de árvores devem ser revisadas, se a atividade de construção tiver alterado significativamente as necessidades de saúde e manutenção das árvores. A integridade e a saúde das árvores devem ser monitoradas.

A manutenção das árvores deve ser realizada apenas por arboristas ou arboristas em treinamento sob supervisão de um arborista. As especificações de manutenção das árvores a médio e longo prazos devem ser implementadas, dentro de um horizonte temporal estabelecido pelo arborista responsável. Esta implementação deve ser acompanhada por um arborista.

A determinação da resistência de aderência à tração em textura

Conheça o método de ensaio para determinação da resistência de aderência à tração em textura na direção perpendicular ao substrato, antes e após o ensaio de intemperismo acelerado, utilizando a placa de policarbonato como substrato.

A NBR 16912 de 11/2020 – Textura – Determinação da resistência de aderência à tração especifica o método de ensaio para determinação da resistência de aderência à tração em textura na direção perpendicular ao substrato, antes e após o ensaio de intemperismo acelerado, utilizando a placa de policarbonato como substrato.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido o substrato?

Como deve ser feita a cola homogeneizada e aplicada na pastilha dolly?

Como executar o encaixe do equipamento abrindo o engate inferior para encaixe na pastilha dolly?

Qual seria um exemplo de tabela para inserção dos resultados do ensaio de determinação da resistência de aderência à tração de textura?

Pode-se definir a aderência como a capacidade do revestimento de resistir às tensões atuantes na interface com o substrato e a resistência de aderência à tração como a tensão máxima suportada por uma área limitada de revestimento (corpo de prova), na interface de avaliação, quando submetida a um esforço normal de tração. A aparelhagem para o ensaio deve incluir um molde de aço inoxidável vazado, com medidas externas de 152 mm × 76 mm, espessura de (1,5 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm, para grãos finos e médios.

Um molde de aço inoxidável vazado, com medidas externas de 152 mm × 76 mm, espessura de (3,0 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm, para grãos grossos. Incluir um cronômetro, balança semianalítica com sensibilidade de contagem de 0,1 g, um dinamômetro de tração que permita a aplicação contínua de carga, de fácil manuseio, baixo peso, dotado de dispositivo para leitura de carga que apresente um erro máximo de 2%.

O equipamento deve garantir a aplicação da carga centrada e ortogonal ao plano do revestimento. Deve-se ter um aparelho de ensaio de intemperismo acelerado com sistema de radiação e condensação, com controle de temperatura do painel negro, provido de oito lâmpadas UVB-313 – 40 W, uma máquina fotográfica, uma furadeira de bancada ou dispositivo similar, com controle de velocidade para corte dos corpos de prova e que promova estabilidade durante o corte, de modo a evitar vibrações prejudiciais à integridade do corpo de prova.

Incluir os materiais como uma pastilha dolly: peça metálica circular não deformável sob a carga do ensaio, de seção circular, com 50 mm de diâmetro e com dispositivo no centro para o acoplamento do equipamento de tração; um dispositivo de corte (serra copo): consiste em um copo cilíndrico de altura superior à espessura do sistema de revestimento ensaiado, com borda diamantada com diâmetro de 55 mm, provida de um dispositivo que garanta a estabilidade do copo durante o corte, de modo a evitar vibrações prejudiciais à integridade do corpo de prova.

Deve-se dispor de cola: à base de resina epóxi, poliéster ou similar, com secagem de 90 min ao toque, destinada à colagem da pastilha na superfície do corpo de prova. A cola deve apresentar propriedades mecânicas compatíveis com o sistema em ensaio e atender às condições de umidade do revestimento. Recomenda-se o uso de um adesivo de alta viscosidade para evita r problemas de escorrimento. Incorporar uma placa lisa e rígida de policarbonato, não absorvente e não oxidável, com dimensões de 152 mm × 76 mm e espessura de (4 ± 1) mm, uma espátula para pintura, com largura superior à janela; uma lixa para metal número 240.

Além disso, deve incluir uma fita adesiva tipo crepe. pano macio, papel absorvente, pincel de pelos macios e largura de 6,3 cm a 7,6 cm (2 ½ pol. a 3 pol.). Incluir também os reagentes: água destilada e álcool etílico. Deve-se preparar os corpos de prova em triplicata, lixar de forma cruzada as placas de policarbonato com a lixa para metal, até o fosqueamento total da placa, limpar as placas com pano umedecido com álcool etílico, diluir o produto conforme a diluição informada pelo fabricante. Caso seja informada uma faixa de diluição, o valor a ser considerado é o valor médio.

Deve-se homogeneizar o produto, pesar as placas de policarbonato e anotar as suas respectivas massas. Colocar a placa rígida em uma superfície plana e firme. Colocar o molde sobre a placa rígida, fixando o conjunto com auxílio da fita adesiva. Para texturas com grãos finos e médios, utilizar o molde de aço inoxidável vazado com medidas externas de 152 mm × 76 mm, espessura de (1,5 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm.

Para texturas com grãos grossos, utilizar o molde de aço inoxidável vazado com medidas externas de 152 mm × 76 mm, espessura de (3,0 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm. Aplicar o produto com o auxílio da espátula, de maneira a não formar bolhas, deixando a superfície o mais uniforme possível. Se, durante a aplicação, houver risco ocasionado pelo grão, deve-se repetir o procedimento até que a aplicação fique uniforme. Cuidar para que não haja excesso de textura sobre o molde durante a puxada.

Remover o molde cuidadosamente. Remover eventuais resíduos formados na retirada do molde, na placa de policarbonato, em torno do produto aplicado. Com a textura ainda úmida, pesar os corpos de prova e anotar as suas respectivas massas. Verificar se a variação entre as massas dos corpos de prova é de no máximo ± 10%. Caso a variação da massa entre corpos de prova seja maior do que a tolerância, repetir a aplicação.

Deixar curar por 14 dias, na horizontal, em ambiente com troca de ar à temperatura de (25 ± 2) °C e umidade de (60 ± 5) %. O tempo de secagem dos corpos de prova pode ter uma tolerância de 1 h. Apresentar registros a cada 30 min. Para colagens das pastilhas, seguir o descrito em seguida. Aguardar os 14 dias de cura. Lixar a pastilha dolly de forma cruzada para a remoção de resíduos de cola. A superfície da pastilha dolly deve estar isenta de qualquer resíduo de ensaios anteriores (ver figura abaixo).

Recomenda-se, para a preparação de três corpos de prova, utilizar 2,5 g de cola do componente A e 2 g de cola do componente B. Preparando a cola nessa quantidade, mantêm-se as características da cola em todas as amostras. Pesar 2,5 g do componente A, tarar a balança e adicionar 2 g do componente B. O ensaio deve ser realizado em triplicata, para avaliação sem envelhecimento (0 h de exposição à radiação UVB) e para avaliação com envelhecimento acordado entre as partes.

A exposição em aparelho de ensaio de intemperismo acelerado com sistema de radiação e condensação, com controle de temperatura do painel negro, deve obedecer à NBR 15380:2015, Ciclo 2. As amostras que vão passar por envelhecimento acelerado devem ser colocadas na câmara com os corpos de prova voltados para as lâmpadas.

Programar a câmara para manter 4 h de exposição ao UV a (60 ± 3) °C e 4 h de condensação de umidade a (50 ± 3) %, conforme à NBR 15380:2015, Ciclo 2. O início de funcionamento da câmara, com data, hora e horímetro total para cada amostra, deve ser registrado na planilha de controle de tempo de ensaio do aparelho de ensaio de intemperismo acelerado com sistema de radiação e condensação, com controle de temperatura do painel negro.

Realizar a colagem das pastilhas tanto para os ensaios sem envelhecimento como para os com envelhecimento. O relatório deve conter as seguintes informações: identificação do produto; data da realização do ensaio; período de realização do ensaio; registro do controle de temperatura do período de secagem descrito em 5.14.9; resultados individuais de carga e tensão de ruptura e suas médias associadas a: período de envelhecimento; percentuais de coesão dos tipos de ruptura obtidos; registro fotográfico de cada corpo de prova após a ruptura, identificando-os; condições ambiente do ensaio.

O projeto de estação de bombeamento ou de estação elevatória de esgoto

Saiba quais são os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de esgoto.

A NBR 12208 de 10/2020 – Projeto de estação de bombeamento ou de estação elevatória de esgoto — Requisitos especifica os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de esgoto.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser projetada a câmara de sucção (ou poço de sucção) para bomba tipo submersível?

Quais são os materiais a serem aplicados na estrutura da câmara de sucção (ou poço de sucção)?

Qual deve ser a velocidade no barrilete de recalque?

O que se deve levar em consideração no cálculo da altura manométrica?

Existem alguns elementos necessários para o desenvolvimento do projeto. Por exemplo, a caracterização da estação de bombeamento ou estação elevatória, pontos de sucção e de recalque/descarga, vazão de dimensionamento, características físico-químicas e biológicas do esgoto a ser bombeado ou elevado, níveis de enchente ou inundação no local; o levantamento planialtimétrico cadastral da área da estação de bombeamento ou elevatória com detalhes da vegetação, tipo de pavimento, acesso, obras especiais, indicação das interferências. O cadastro de unidade (s) operacional (is) relacionada (s) à estação de bombeamento ou elevatória e de interferências e as informações ou levantamentos socioambientais, geotécnicos, geológicos e arqueológicos, vazão de outorga, se aplicável.

Importante conhecer os dados físicos e operacionais do sistema de esgotamento sanitário existente; a disponibilidade de energia elétrica; os estudos, planejamentos e projetos existentes correlacionados; os estudo de concepção do sistema de esgotamento sanitário, elaborado conforme a ABNT NBR 9648; os planos diretores do sistema de esgotamento sanitário e demais planos diretores e o plano de urbanização, legislação relativa ao uso e ocupação do solo.

Deve-se levar em conta a restrição ambiental que interfira na área de influência do projeto; o plano de saneamento básico; as condições mínimas de segurança e medicina do trabalho, conforme legislação e normas vigentes; as legislações pertinentes vigentes; os critérios, procedimentos e diretrizes da prestadora de serviço ou contratante do sistema de esgotamento sanitário; e as vazões médias afluentes, inicial e final (Qi e Qf), definidas conforme literatura específica.

As atividades necessárias para o desenvolvimento do projeto são as seguintes: validar o estudo de concepção e/ou realizar estudo técnico, econômico, social, financeiro e ambiental; analisar as instalações do sistema de bombeamento ou elevatória existente, objetivando seu aproveitamento, quando for o caso; avaliar e considerar na solução técnica a restrição ambiental incidente, quando existir; avaliar o acesso a estação de bombeamento ou elevatória; complementar os levantamentos topográficos, as interferências, os estudos geológicos, geotécnicos e arqueológicos, quando necessário; determinar as vazões de projeto do sistema de bombeamento, levando em conta as condições operacionais do sistema de esgotamento sanitário.

Deve-se, também, determinar a altura manométrica; determinar o tipo e o arranjo físico da elevatória; dimensionar a casa de bombas, quando aplicável; selecionar os equipamentos de movimentação de carga e serviços auxiliares; determinar os sistemas de acionamento, medição e controle; determinar o traçado das tubulações de sucção e recalque; dimensionar e selecionar o material das tubulações de sucção e recalque; avaliar os diferentes materiais aplicados (conjunto motor-bomba, componentes, equipamentos, tubulações), de modo a compatibilizar as melhores soluções técnicas e econômicas com tempo de vida útil requerido no estudo e/ou projeto; dimensionar a câmara de sucção ou poço de sucção, quando necessário; elaborar as especificações dos equipamentos, das conexões e das tubulações; estudar os efeitos dos transitórios hidráulicos e selecionar o (s) dispositivo (s) de proteção do sistema; avaliar a resistência mecânica das partes componentes do sistema de bombeamento ou elevatória às ações internas e externas atuantes; detalhar as etapas de implantação; detalhar a interdependência das atividades e o plano de execução das obras, otimizando o tempo de paralisação do sistema, quando necessário; e prever a implantação de dispositivos que permitam os procedimentos de limpeza, esgotamento, drenagem, estanqueidade, by-pass, da estação de bombeamento ou da elevatória.

É importante compatibilizar o projeto da estação de bombeamento ou elevatória com os demais projetos complementares [arquitetônico, estruturais, hidrossanitários, elétricos (inclusive iluminação), eletromecânicos, automação, monitoramento, instrumentação, ventilação, acústica, combate a incêndio, inspeção, urbanização, acessos, segurança]. Os elementos que devem compor o projeto são os seguintes: memorial descritivo e justificativo, contendo os estudos, cálculos realizados, simulações hidráulicas; peças gráficas do projeto, em escalas adequadas, atendendo às normas técnicas aplicáveis e às recomendações e padronizações da prestadora de serviço ou contratante; orçamento detalhado das obras, conforme etapas determinadas para a implantação; as diretrizes operacionais contendo o plano de operação e controle previsto para o sistema de bombeamento ou elevatória, detalhamento das vazões máximas e mínimas operacionais, quando aplicável; e as diretrizes para pré-operação, comissionamento e/ou operação assistida, quando aplicável.

Para a determinação do local adequado para a implantação da estação de bombeamento ou elevatória, devem ser levados em consideração os seguintes fatores, de importância ponderada em função das condições técnicas e econômicas de cada projeto: desnível geométrico, o menor possível; as características morfológicas; o traçado da linha de recalque, conforme a NBR 16682; buscar o menor possível tecnicamente; desapropriação, legalização de áreas; os acessos permanentes e que permitam a movimentação do transporte para a manutenção; as proteções contra enchentes, inundações e enxurradas; a estabilidade contra erosão; a disponibilidade de energia elétrica; o mapeamento, identificação, adequação da solução técnica a ser adotada em função das interferências levantadas em campo, projeto de remanejamento das interferências; e o impacto quanto à produção de ruídos e/ou vibrações, emissão de odores, atendimento ao zoneamento e uso de ocupação do solo, harmonização da obra com o ambiente circunvizinho.

O local da estação deve ter a segurança contra assoreamento no ponto de lançamento de efluente, proveniente do sistema de recalque, e na região próxima a este ponto; o Net Positive Succion Head (NPSH) ou o potencial energético disponível no local, que é resultante da pressão atmosférica no local, menos ou mais o desnível geométrico da sucção, pressão de vapor e perda de carga na sucção e ele deve ser determinado considerando o nível mínimo operacional na câmara de sucção (positivo ou negativo), a temperatura ambiente média e a altitude do local onde será implantada a estação de bombeamento ou elevatória; e a disponibilidade de área para ampliações futuras, quando necessário.

Quanto aos elementos topográficos, geotécnicos, geológicos e arqueológicos na área de abrangência da estação de bombeamento ou elevatória a sua determinação dos levantamentos a serem efetuados deve ser precedida de inspeção de campo. Para a locação da estação de bombeamento ou elevatória, os levantamentos topográficos devem ser planialtimétricos cadastrais em extensão, detalhamento e precisão, permitindo no mínimo: mostrar: os limites de propriedades e benfeitorias existentes, com indicação dos proprietários; os níveis máximos observados em corpos de água superficiais; os tipos de vegetação, os usos do solo e a exploração do subsolo; os tipos de pavimento, indicação e mapeamento das interferências superficiais e do subsolo.

Igualmente deve-se justificar: a posição adotada; as obras especiais; além de se indicar as vias de acesso para a implantação, operação e manutenção da estação de bombeamento ou elevatória. As sondagens devem ser em número, tipo e profundidade que permitam determinar a fundação da estação de bombeamento ou elevatória, determinar o nível atual do lençol freático e elaborar o projeto das obras especiais, permitindo estabelecer o processo de escavação, a fundação e demais elementos estruturais. As interferências não visíveis devem ser levantadas a partir das informações existentes nos projetos e cadastros, pelo acesso à câmara e/ou à caixa de inspeção existente, por meio de levantamento topográfico, da realização de furos de sondagem, de prospecção eletromagnética.

Se houver um sistema de bombeamento existente, deve-se avaliar essas instalações do sistema de bombeamento existente e seu ciclo operacional, elaborando diagnóstico que permita a sua otimização e adequação técnica. Na elaboração de novos estudos e projetos, as partes com aproveitamento total e/ou parcial existentes devem satisfazer as condições desta Norma ou adaptar-se a ela, mediante alterações ou complementações. Deve ser analisado o impacto do sistema projetado sobre as instalações existentes.

Devem ser levantadas as características hidráulicas e morfológicas das instalações existentes e a serem projetadas das seguintes unidades construtivas descritas a seguir. Do lançamento de efluente em rio, mar, compreendendo: os perfis de fundo do rio no local do lançamento, por meio de no mínimo três seções batimétricas, distanciadas em no máximo 20 m entre si ou conforme necessidade local determinada pela prestadora de serviço ou contratante para avaliação da situação local; os níveis máximos (cota de enchente e nível de inundação); a cota do fundo do canal ou da tubulação no ponto de lançamento; as características do efluente, condicionantes para atender à legislação aplicável; a velocidade da água no local do lançamento; as obras complementares projetadas; e a dispersão do efluente no leito do rio, no mar.

Quanto à vazão para dimensionamento, deve atender ao horizonte do estudo ou do projeto, que deve ser estabelecido por critério técnico da prestadora de serviço ou contratante responsável pelo sistema de esgotamento sanitário. O índice de perda total (real e aparente) deve ser considerado na vazão, levando em consideração as metas resultantes das ações e dos planos de controle e redução de perdas da prestadora de serviço ou contratante do sistema de abastecimento e sua evolução no horizonte do estudo ou do projeto.

Os coeficientes k1, k2 e k3 devem ser obtidos a partir dos dados existentes da localidade. Quando da inexistência de histórico, adotar valores explicitados na literatura específica. Deve ser verificada a condição operacional para a vazão máxima afluente de horizonte do estudo ou do projeto e mínima de início de operação, as vazões afluentes inicial e final (Qi e Qf), considerando a (s) etapa (s) intermediária (s), conforme estudo e/ou projeto em desenvolvimento, avaliadas atendendo aos critérios da NBR 9648, NBR 9649 e NBR 12207, e a operação horossazonal relacionada à eficiência energética.

A contribuição de tempo seco deve ser considerada, quando existente. O dimensionamento e a análise do funcionamento global do sistema hidráulico devem ser realizados por simulações hidráulicas, que garantam as vazões, pressões e velocidades, e incluam o estudo das condições operacionais da estação de bombeamento ou elevatória projetada e/ou existente, se houver, e sua influência no sistema ao qual é interligada. Deve ser estabelecido o procedimento operacional do sistema de bombeamento, avaliando o período de parada e partida, considerando os períodos de manutenção e limpeza, disponibilidade de energia elétrica, vazões mínimas operacionais, aplicação de conversor de frequência, visando a otimizar o volume da câmara de sucção e compensação entre pequenas e grandes vazões.

Devem ser determinadas as cotas piezométricas, máxima e mínima, na extremidade de jusante da estação de bombeamento ou elevatória, a partir dos dados do cadastro, dos levantamentos topográficos, do projeto existente. Devem ser previstos espaços livres entre paredes, pisos e tubulações, visando a facilitar o acesso, o manuseio e a movimentação dos equipamentos e das ferramentas, com o objetivo de reduzir riscos de acidentes e custos pela demora na manutenção.

Recomenda-se prever sistema de bombeamento adicional de pequeno porte para o enchimento de linhas de recalque longas e/ou de grandes diâmetros. Pode ser previsto canal afluente a montante da câmara de sucção, para as seguintes finalidades: reunião de contribuições; regularização do fluxo; canal de desvio (by-pass) e/ou dois canais de entrada, sendo um principal e um reserva; instalação de extravasor; instalação de comportas; instalação de dispositivos para medição; inspeção e manutenção.

Deve ser considerado para o dimensionamento do canal afluente ou tubulação afluente a velocidade mínima de 0,40 m/s para vazão afluente inicial. O Anexo A estabelece requisitos específicos para o dimensionamento do canal afluente para elevatórias de menor porte. Na entrada da estação de bombeamento ou elevatória, deve-se prever a instalação de dispositivo para remoção de sólidos grosseiros, por meio de grades, cesto, peneira ou triturador, de acordo com a NBR 12209 e/ou as orientações indicadas pela prestadora de serviço ou contratante ou fabricante do equipamento.

Em estação de bombeamento ou elevatória projetada em local que exija especial atenção, como em área de manancial, parques, entre outros, recomenda-se instalar sensor de nível a montante do dispositivo para orientação e determinação da frequência de limpeza. Em estação de bombeamento ou elevatória de maior porte, recomenda-se a utilização de equipamentos mecanizados para facilitar a operação do dispositivo. O Anexo A estabelece requisitos específicos para o dispositivo para remoção de sólidos grosseiros para elevatórias de menor porte.

Deve-se prever equipamentos para condicionamento dos detritos (caçamba ou outros) com volume suficiente para comportar resíduos de um dia, devidamente fechados para evitar mau cheiro, insetos e roedores, acúmulo de água de chuva. Os resíduos gerados podem ser destinados a aterros sanitários municipais ou regionais, devidamente licenciados e/ou gerenciados por terceiros, obedecendo aos critérios e requisitos estabelecidos em legislação aplicável.

Na entrada da estação de bombeamento ou elevatória, em função do tipo de solo, do material da tubulação da rede coletora, da profundidade de chegada e das condições operacionais, deve-se prever dispositivo para remoção de areia conforme a NBR 12209 e as orientações indicadas pela prestadora de serviço ou contratante ou fabricante do equipamento. Quando instalados, devem ser localizados após o dispositivo para remoção de sólidos.

O dispositivo para remoção de areia/desarenador pode ser dispensado, quando for comprovado que o transporte de sólidos sedimentáveis não é prejudicial ao sistema de recalque. Em caso de estação de bombeamento ou elevatória com profundidade superior a 5 m verificar a possibilidade de instalação de PV com degrau para reduzir a areia em movimento no processo antes da estação, visando a facilitar o processo de instalação, manutenção e limpeza. O PV com degrau para reduzir a areia em movimento no processo pode ser aplicado para menores profundidades, desde que atenda às condições técnicas exigidas na NBR 12209 e desde que seja aprovado pela prestadora de serviço ou contratante.

O Anexo A estabelece requisitos específicos para o dispositivo para remoção de areia para elevatórias de menor porte. O dispositivo para remoção de areia deve ter dimensões mínimas que permitam livre acesso para limpeza e manutenção do dispositivo, depósito da areia em função da velocidade, do volume de material carreado e da frequência de limpeza. Prever dispositivo que possibilite o monitoramento da velocidade, a jusante dele, por meio de calha Parshall ou vertedor.

O dimensionamento da câmara de sucção ou do poço de sucção deve ser calculado, atendendo à literatura específica aplicável e à ANSI/HI 9.8. O volume útil mínimo da câmara de sucção ou do poço de sucção deve ser calculado, considerando: vazões afluentes inicial e final (Qi e Qf); vazão de operação; submergência mínima; quantidade de conjunto(s) motor-bomba (s) a ser (em) instalado (s); número de acionamentos, intervalo de partidas; metodologia de cálculo para cada tipo de bomba conforme literatura específica; condições de contorno operacional; orientações indicadas pela prestadora de serviço ou contratante ou fabricante do equipamento.

Recomenda-se projetar as bombas com o número de partidas máximas por hora inferior ou igual a 5. O Anexo A estabelece requisitos específicos para o dimensionamento do volume útil da câmara de sucção para elevatórias de menor porte. Deve ser o menor tempo de detenção possível e, portanto, eventuais folgas nas dimensões da câmara de sucção ou poço de sucção devem ser eliminadas. O maior valor recomendado é de 30 min.

A forma e as dimensões da câmara de sucção não podem prejudicar o desempenho das bombas e as condições de operação, permitir o fluxo hidráulico em qualquer bomba de maneira uniforme, estável e livre de formação de vórtices e ar arrastado, a distribuição controlada da vazão. A câmara de sucção não pode ter caminhos preferenciais, zonas mortas, esgoto parado. A adoção da forma e dimensão deve atender aos requisitos estabelecidos na ANSI/HI 9.8.

A falta de uniformidade por meio da conexão de entrada pode resultar em bombas que não operem em condições ideais de projeto e com menor eficiência hidráulica. A forma e as dimensões da câmara de sucção devem ser determinadas quando selecionado (s) o (s) conjunto (s) motor-bomba (s) e estabelecidos o sistema operacional das bombas e as despesas operacionais, incluindo a energia elétrica, ao longo da vida útil do sistema.

A forma e as dimensões da câmara de sucção devem ser determinadas a partir do volume útil calculado e respeitando os seguintes requisitos: atender ao tempo máximo de detenção; a entrada de esgoto na câmara de sucção deve ser projetada de modo que haja quebra de velocidade por meio físico adequado, não permitir descarga livre na entrada; na câmara de sucção, a velocidade de aproximação para a tomada de esgoto não pode ser superior a 0,60 m/s; o fundo da câmara de sucção deve ter declividade para o ponto de saída, a fim de facilitar sua limpeza. Em elevatória de menor porte, com área de base total igual ou inferior a 8 m2, o fundo da câmara de sucção pode ser executado sem declividade.

Deve-se avaliar a necessidade de instalação de escada para acesso na câmara de sucção, atendendo às recomendações da prestadora de serviço ou contratante; avaliar a necessidade de guarda-corpo ou outra estrutura, garantindo a segurança nas operações de montagem, desmontagem, manutenção; prever acesso (s) operacional (is) por meio de abertura (s) para entrada de pessoal e/ou equipamentos compatíveis com as dimensões do sistema, ou atender à orientação da prestadora de serviço ou contratante; as dimensões das câmaras devem ser projetadas para permitir o acesso para limpeza e manutenção.

Deve-se prever como executar a drenagem da câmara de sucção; prever ventilação na câmara de sucção para eliminação de gases, equalização de pressão entre a câmara de sucção e o ambiente externo da estação de bombeamento ou elevatória, compatível com a necessidade e o porte da estação de bombeamento ou estação elevatória, atender aos requisitos estabelecidos na NBR 16577 quanto ao espaço confinado e à legislação em vigor, e atender à NBR IEC 60079 quanto à utilização de equipamentos em atmosferas explosivas. O Anexo A estabelece requisitos específicos para a ventilação na câmara de sucção de elevatórias de menor porte. Deve-se atender à legislação em vigor.

As cidades inteligentes para comunidades sustentáveis

Conheça as orientações para líderes em cidades e comunidades inteligentes (dos setores público, privado e terceiro setor) sobre como desenvolver um modelo operacional aberto, colaborativo, centrado no cidadão e habilitado digitalmente para a sua cidade, que coloque sua visão para um futuro sustentável.

A NBR ISO 37106 de 10/2020 – Cidades e comunidades sustentáveis — Orientação para o estabelecimento de modelos operacionais de cidades inteligentes para comunidades sustentáveis fornece orientação para líderes em cidades e comunidades inteligentes (dos setores público, privado e terceiro setor) sobre como desenvolver um modelo operacional aberto, colaborativo, centrado no cidadão e habilitado digitalmente para a sua cidade, que coloque sua visão para um futuro sustentável. Este documento não descreve um modelo de tamanho único para o futuro das cidades. Em vez disto, o foco está nos processos de capacitação pelos quais o uso inovador de tecnologia e dados, juntamente com a mudança organizacional, pode ajudar cada cidade a fornecer a sua própria visão específica para um futuro sustentável de maneira mais eficiente, eficaz e ágil.

Este documento fornece ferramentas comprovadas, que as cidades podem implantar, ao operacionalizar a visão, a estratégia e a agenda política que desenvolveram, após a adoção da NBR ISO 37101, do sistema de gestão para o desenvolvimento sustentável das comunidades. Também pode ser usado, no todo ou em parte, por cidades que não se comprometeram com a implantação do sistema de gestão da NBR ISO 37101.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como fazer o estabelecimento de uma terminologia e um modelo de referência comuns?

Como realizar a gestão de empreendimentos e infraestruturas de cidades inteligentes?

Qual seria um resumo dos princípios de entrega das cidades inteligentes?

Quais os propósitos a serem considerados pelas comunidades?

Quais são as necessidades de liderança e governança para as cidades inteligentes?

Este documento ajuda as cidades, oferecendo uma visão para um futuro sustentável, fornecendo um conjunto de ferramentas de “práticas inteligentes” para gerenciar governança, serviços, dados e sistemas em toda a cidade de forma aberta, colaborativa, centrada no cidadão e digitalmente habilitada. Define um modelo operacional inteligente para as cidades, o que lhes permite operacionalizar sua visão, estratégia e políticas em um ritmo mais rápido, com maior agilidade e menor risco de entrega.

Isto significa, em particular, um foco em permitir que as cidades: tornem as necessidades atuais e futuras do cidadão a força motriz por trás da tomada de decisões de investimento, planejamento e entrega de todos os espaços e sistemas da cidade; integrem planejamento físico e digital; identifiquem, antecipem e respondam aos desafios emergentes de forma sistemática, ágil e sustentável; criem uma mudança na capacidade de entrega conjunta e de inovação por meio das fronteiras organizacionais dentro da cidade. Embora muitos dos princípios e metodologias estabelecidos por este documento sejam relevantes dentro de setores verticais específicos das cidades (por exemplo, água, resíduos, energia, agricultura urbana, transporte, TI), o foco é maior nas questões e desafios envolvidos na junção de todos.

Esta é uma abordagem estratégica de toda a cidade para o uso de dados inteligentes, formas inteligentes de trabalhar e tecnologias inteligentes. Central para este documento é, portanto, uma forte ênfase na liderança e governança, cultura, inovação do modelo de negócios e no papel ativo desempenhado pelos cidadãos, empresas e sociedade civil na criação, entrega e uso de espaços e serviços da cidade. Este documento é destinado aos líderes da cidade. Grande parte da orientação também pode ser útil para líderes de outras comunidades que não em escala de cidade, incluindo áreas urbanas menores e iniciativas maiores em escala regional.

Mas o principal público pretendido, com quem a orientação foi desenvolvida e validada, é a liderança da cidade, incluindo: os desenvolvedores de políticas nas autoridades locais – tanto os responsáveis pelo projeto de serviço, comissionamento e função de entrega, quanto os responsáveis pelo papel de liderança da comunidade, em particular: líderes eleitos; altos executivos de autoridades locais (incluindo diretores executivos, diretores de informação e diretores de departamentos-chave); altos executivos de outros órgãos públicos com mandato em toda a cidade; outras partes interessadas em liderar e moldar o ambiente da cidade, incluindo: os altos executivos do setor privado que desejem se associar e ajudar as cidades na transformação dos sistemas da cidade para criar valor compartilhado; os líderes de organizações do terceiro setor ativas dentro da cidade; os líderes nos setores de educação superior e posterior; os inovadores e representantes da comunidade.

Além deste público de liderança, o documento será de interesse para todas as partes envolvidas em cidades inteligentes, incluindo cidadãos individuais. A definição de trabalho de uma cidade inteligente usada para os propósitos deste documento é aquela aprovada pelo ISO TMB. Convém que uma cidade inteligente seja descrita como aumentando drasticamente o ritmo em que melhora a sua sustentabilidade e resiliência … melhorando fundamentalmente como ela envolve a sociedade, como ela aplica métodos de liderança colaborativa, como funciona em disciplinas e sistemas de cidades e como usa dados e tecnologias integradas … para transformar serviços e qualidade de vida para aqueles que estão envolvidos com a cidade (moradores, empresas, visitantes).

Isto é deliberadamente apresentado como uma definição de trabalho, e não uma concebida definição definitiva que todas as cidades irão seguir. Embora haja um forte grau de convergência entre as estratégias de cidades inteligentes que estão sendo desenvolvidas em todo o mundo, há também uma diversidade significativa. Todas as cidades que embarcam no desenvolvimento de uma estratégia de cidade inteligente podem definir as suas próprias razões para fazê-lo, em seu próprio idioma.

O processo de discussão e debate entre as partes interessadas para definir o que, para eles, significa “Smart Paris”, “Smart Tokyo” ou “Smart Toronto” é importante. O modelo operacional tradicional de uma cidade é baseado em prestadores de serviços orientados para funções que operem como silos verticais não conectados, que muitas vezes não são construídos em torno das necessidades do usuário. Este documento especifica as melhores práticas para se mudar para um “modelo operacional de cidade inteligente” – que permita às cidades impulsionar a inovação e a colaboração entre estes silos verticais e operacionalizar sua visão, estratégia e políticas em um ritmo mais rápido, com maior agilidade e menor risco.

Tradicionalmente, as definições de orçamento, responsabilização, tomada de decisões e prestação de serviços foram integradas em cadeias de entrega verticalmente integradas dentro das cidades – silos de entrega que são construídos em torno de funções, não de necessidades do usuário. Isto é ilustrado na figura abaixo: o cidadão ou empresa teve que se envolver separadamente com cada silo, estabelecendo conexões para si mesmo, em vez de receber um serviço contínuo e conectado que atenda às suas necessidades; os dados e as informações foram bloqueados nestes silos, limitando o potencial de colaboração e inovação em toda a cidade e limitando o potencial de impulsionar mudanças em toda a cidade com velocidade. A outra figura resume a mudança desta maneira tradicional de operar, que as cidades inteligentes estão buscando implementar.

As principais características desta mudança para um modelo operacional de cidade inteligente incluem: investir em dados inteligentes, ou seja, que a garantia de dados sobre o desempenho e a utilização de ativos físicos, espaciais e digitais da cidade fique disponível em tempo real e de forma aberta e interoperável, a fim de permitir a integração em tempo real e a otimização de recursos da cidade; gerenciar os dados da cidade como um ativo, dentro da autoridade local e em colaboração com outros proprietários de dados significativos em toda a cidade; habilitar para ser conduzida externamente; inovação liderada pela comunidade, pelos cidadãos, empresas e sociedade civil, abrindo os dados e serviços da cidade para o bem comum: em nível técnico, por meio do desenvolvimento de plataformas de dados abertos; e em nível empresarial, por meio de medidas para permitir um mercado próspero na reutilização de dados públicos juntamente com a divulgação de dados de entidades comerciais de uma forma comercialmente apropriada; habilitar para ser conduzida internamente; inovação liderada pela cidade para fornecer serviços mais sustentáveis e centrados no cidadão.

Tudo isso serve para proporcionar serviços públicos aos cidadãos e empresas, acessíveis em balcão único, por meio de vários canais, que envolvem os cidadãos, empresas e comunidades diretamente na criação de serviços, e que são construídos em torno das necessidades do usuário e não das estruturas organizacionais da cidade; estabelecer uma arquitetura integrada de negócios e informações que possibilite uma visão de toda a cidade dos grupos específicos de clientes para os serviços urbanos (por exemplo, passageiros, idosos, famílias problemáticas, pessoas com deficiência). Também, pode estabelecer orçamentos holísticos e flexíveis, com foco no valor do dinheiro além dos limites departamentais padrão e estabelecer processos de gestão de governança e de partes interessadas em toda a cidade para apoiar e avaliar estas mudanças.

O conteúdo deste documento pode ser visto esquematicamente na Figura 3 que está disponível na norma. No nível superior, ele é composto por quatro componentes necessários para suportar a mudança para um modelo operacional de cidade inteligente: [A] Princípios de entrega: uma declaração de valores que os líderes da cidade podem usar para orientar a tomada de decisões à medida que buscam operacionalizar sua visão e estratégia para a cidade; [B] Principais processos de entrega em toda a cidade: um conjunto de notas de orientação práticas sobre como lidar com os desafios de toda a cidade conectados por meio dos silos da cidade; [C] Estratégia de realização de benefícios: orientação sobre como garantir uma linha de visão limpa entre os investimentos em cidades inteligentes e os resultados sociais, econômicos e ambientais que a cidade pretende alcançar, onde os benefícios pretendidos são claramente articulados, medidos, gerenciados, entregues e avaliados na prática; [D] Gestão de riscos: uma lista de verificação de temas que convém que uma cidade monitore regularmente para garantir que está gerenciando efetivamente os principais riscos para fornecer sua visão e estratégia.

Estes componentes são descritos com mais detalhes nas Seções 5 a 8. Notas de orientação detalhadas são fornecidas em cada um dos subcomponentes ilustrados na Figura 3, com cada nota de orientação estruturada usando uma linguagem de padrão comum. Para facilitar a referência, em resumo das recomendações há um sumário de todas as recomendações contidas neste documento. Estas são então descritas em mais detalhes nas seções subsequentes deste documento.

O desempenho das câmaras de contenção em polietileno

Deve-se entender os requisitos de desempenho e os ensaios de câmaras de contenção fabricadas em polietileno e dispositivos associados, instaladas em sistema de armazenamento subterrâneo de combustíveis (SASC) de posto revendedor veicular ou ponto de abastecimento.

A NBR 15118 de 10/2020 – Câmaras de contenção e dispositivos associados para sistema de armazenamento subterrâneo de combustíveis — Requisitos e métodos de ensaio especifica os requisitos de desempenho e os ensaios de câmaras de contenção fabricadas em polietileno e dispositivos associados, instaladas em sistema de armazenamento subterrâneo de combustíveis (SASC) de posto revendedor veicular ou ponto de abastecimento.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executado o ensaio de envelhecimento em estufa com ar em câmara de contenção da descarga de combustível?

Quais são os fluidos de imersão para reservatório em câmara de contenção da descarga de combustível?

Como deve ser feito o ensaio de impacto a frio em câmara de contenção da descarga de combustível?

Como deve ser executada a avaliação dimensional em câmara de acesso à boca de visita?

Essa norma especifica os requisitos de desempenho e os ensaios de câmaras de contenção fabricadas em polietileno e dispositivos associados, instaladas em sistema de armazenamento subterrâneo de combustíveis (SASC) de posto revendedor veicular ou ponto de abastecimento. As câmaras de contenção e os dispositivos associados devem ser instalados conforme a NBR 16764, ensaiados conforme a Seção 5 desta norma e projetados para suportar cargas estáticas e dinâmicas inerentes à sua aplicação.

O polietileno utilizado na fabricação das câmaras de contenção deve atender a um dos seguintes requisitos de resistência ao tensofissuramento, conforme a ASTM D1693, na condição de 50°C e F50, comprovada pelo fabricante do polietileno. A resistência deve ser igual ou maior que 145 h na concentração de 10%, ou igual ou maior que 1.000 h na concentração de 100%. As partes em borracha devem ser fabricadas com acrilonitrila e butadieno, código M4BK710 A24 B14 EA14 EF11 F21, conforme a ASTM D2000.

As câmaras de contenção são dos tipos: câmara de contenção da descarga de combustível (spill de descarga); câmara de acesso à boca-de-visita (sump de tanque); câmara de contenção sob a unidade de abastecimento (sump de bomba); câmara de contenção da interligação da unidade de filtragem (sump de filtro); câmara de contenção para emenda mecânica de tubulação (sump de emenda); câmara de medição (spill de medição). O fabricante deve declarar o peso mínimo de cada câmara de contenção. O polietileno utilizado na fabricação das câmaras de contenção deve atender a um dos seguintes requisitos de resistência ao tensofissuramento, conforme ASTM D 1693, na condição de 50 °C e F50, comprovado pelo fabricante do polietileno: resistência igual ou maior que 145 h na concentração de 10%, ou resistência igual ou maior que 1.000 h na concentração de 100%. A câmara de contenção da descarga de combustível (spill de descarga) é um recipiente formado por reservatório estanque e câmara de calçada, usado no ponto de descarregamento ou de medição de combustível, para contenção de possíveis derrames.

A câmara de contenção deve: ser projetada e fabricada para montagem na tubulação de descarga de combustível; ser capaz de conter provisoriamente eventual derramamento na operação de descarga de combustível; permitir a absorção de movimentos do solo e de acomodação do tanque; opcionalmente, possuir dispositivo que possibilite a drenagem ou escoamento do líquido nela contido e, quando da operação de descarga de combustível, verificar o interior da câmara, eliminando, de modo adequado, produto, água ou impurezas, quando encontrados; possuir capacidade mínima de 18 L; possuir câmara de calçada projetada e fabricada de forma a inibir a entrada de líquido presente na pista, dimensionada para admitir o tráfego de veículos; possuir aro da câmara de calçada acoplado à câmara de contenção; em seu conjunto (flange de vedação e câmara de contenção), quando aplicável, proporcionar a adequada instalação dos demais equipamentos, conforme a NBR 13783; ser projetada e fabricada de forma a permitir a limpeza adequada do seu interior.

A câmara de acesso à boca-de-visita (sump de tanque) é um recipiente estanque, com tampa, para contenção de possíveis vazamentos e acesso às conexões e/ou equipamentos instalados em seu interior. A câmara de contenção deve ser projetada e fabricada para ser instalada sobre a boca-de-visita do tanque; ser capaz de conter provisoriamente eventual vazamento de tubulações, conexões e equipamentos instalados em seu interior; possuir tampa que permita o acesso e a retirada da tampa da boca-de-visita do tanque, com abertura superior, para fixação da tampa do reservatório, com dimensão mínima de 765 mm; depois de instalada, ser capaz de suportar as pressões exercidas pelo solo; ser fornecida com sistema de fixação à boca-de-visita do tanque dimensionado conforme as NBR 13212 ou NBR 13312; permitir a instalação do flange de vedação, mantendo a estanqueidade do conjunto; em seu conjunto (flange de vedação e câmara de acesso à boca-de-visita), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783; possuir altura total da base inferior até a extremidade da tampa, com no mínimo 850 mm; possuir área destinada à fixação do flange de vedação, com altura mínima de 350 mm, em relação à base inferior da câmara de contenção.

A câmara de contenção sob a unidade de abastecimento (sump de bomba) é um recipiente estanque usado sob a unidade de abastecimento de combustível, para contenção de possíveis vazamentos e derrames. O fabricante deve definir os modelos de câmaras de contenção correspondentes à unidade abastecedora a que se destina. A câmara de contenção deve ser capaz de conter provisoriamente eventual vazamento e derrame de tubulações, conexões e equipamentos instalados em seu interior; depois de instalada, ser capaz de suportar as pressões exercidas pelo solo; possuir dispositivo que permita a fixação da unidade abastecedora e a ancoragem da câmara de contenção ao pavimento; permitir a instalação do flange de vedação, mantendo a estanqueidade do conjunto; em seu conjunto (flange de vedação e câmara de contenção), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783; possuir altura total mínima de 625 mm; permitir a instalação dos componentes de interligação da unidade abastecedora correspondente ao modelo da câmara de contenção.

A câmara de contenção da interligação da unidade de filtragem (sump de filtro) é um recipiente estanque usado para conter as conexões e equipamentos de interligação da unidade de filtragem, para contenção de possíveis vazamentos. O fabricante deve definir os modelos de câmaras de contenção correspondentes à unidade de filtragem a que destina. A câmara de contenção deve ser capaz de conter provisoriamente eventual vazamento de tubulações, conexões e equipamentos instalados em seu interior; possibilitar acesso às conexões e equipamentos da interligação da unidade de filtragem, instalados em seu interior; quando instalada, suportar as pressões exercidas pelo solo; permitir a instalação de flange de vedação e manter a estanqueidade do conjunto; permitir a instalação dos componentes de interligação da unidade de filtragem correspondente ao modelo da câmara de contenção; em seu conjunto (flange de vedação e câmara de contenção), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783.

A câmara de contenção para emenda mecânica de tubulação é um recipiente estanque, com tampa, para contenção de possíveis vazamentos e acesso à (s) tubulação (ões) e conexão (ões) de emenda instalado(s) em seu interior. A câmara de contenção deve ser capaz de conter provisoriamente eventual vazamento de tubo (s) e conexão (ões) instalado (s) em seu interior; possuir tampa que permita o acesso ao seu interior; depois de instalada, ser capaz de suportar as pressões exercidas pelo solo; permitir a instalação do flange de vedação, mantendo a estanqueidade do conjunto; em seu conjunto (flange de vedação e câmara de contenção), proporcionar a instalação adequada dos demais equipamentos, conforme a NBR 13783.

A câmara de medição é um recipiente formado por reservatório estanque e câmara de calçada, usado no ponto de medição de combustível. A câmara de contenção deve ser projetada e fabricada para montagem na tubulação de medição do tanque; permitir a absorção de movimentos do solo e de acomodação do tanque; possuir câmara de calçada projetada e fabricada de forma a inibir a entrada de líquido presente na pista, dimensionada para admitir o tráfego de veículos; possuir aro da câmara de calçada acoplado à câmara de contenção.

Os dispositivos associados são a câmara de calçada; os flanges de vedação (boot); a câmara de monitoramento do interstício do tanque de parede dupla (spill de monitoramento); a caixa de passagem para sensor de monitoramento do interstício do tanque de parede dupla. Todas as câmaras de contenção e os dispositivos associados, exceto a caixa de passagem para sensor de monitoramento do interstício do tanque de parede dupla, devem ser ensaiados para demonstrar a sua adequabilidade ao emprego pretendido, conforme os Anexos A a E.

Para os flanges de vedação (boot), os ensaios específicos devem ser realizados com o conjunto montado em câmara de contenção. Quando os ensaios previstos nesta norma forem bem-sucedidos, as câmaras de contenção e os dispositivos associados devem ser considerados aprovados para sua aplicação. Os ensaios de qualificação devem ser efetuados sempre que houver mudança na matéria-prima (especificação, formulação e/ou fornecedor), processo (planta, processos e/ou equipamentos) e/ou projeto.

O ensaio dimensional deve ser realizado, em 15% das peças de cada lote de produção, conforme estabelecido pelo fabricante. Deve ser efetuada a análise dimensional sem que discrepâncias sejam identificadas. No caso específico da espessura das paredes do corpo plástico do reservatório da câmara, as amostras devem ser verificadas em quantidades de pontos suficientes para verificação da espessura mínima especificada nos projetos dos produtos qualificados.

As operações seguras com o hexafluoreto de enxofre (SF6)

Deve-se entender os procedimentos para manuseio seguro de SF6 durante a instalação, comissionamento, operações normais ou anormais, e descarte de equipamentos de manobra e controle de alta tensão em fim de vida útil.

A NBR 16902 de 09/2020 – Hexafluoreto de enxofre (SF6) para equipamentos elétricos – Requisitos para manutenção estabelece os procedimentos para manuseio seguro de SF6 durante a instalação, comissionamento, operações normais ou anormais, e descarte de equipamentos de manobra e controle de alta tensão em fim de vida útil. Os procedimentos descritos devem ser considerados como os requisitos mínimos necessários para garantir a segurança dos serviços que envolvem manuseio de SF6 e minimizar as suas emissões para o meio ambiente. Para os efeitos desta norma, é considerada como alta tensão a nominal acima de 1.000 V. No entanto, o termo média tensão é comumente utilizado para sistemas de distribuição com tensões acima de 1 kV até e inclusive 52 kV.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as regulamentações internacionais para transporte de SF6?

Quais são as medidas a serem tomadas para trabalhar em equipamentos elétricos que utilizam gás SF6?

Quais são as medidas de segurança ao abrir ou acessar compartimentos de gás?

Quais são as soluções de neutralização?

A tecnologia do SF6 já vem sendo utilizada em equipamentos de manobra e controle há mais de 30 anos. Sua aplicação é mais comum em equipamentos elétricos com classe de tensão acima de 1 kV até tensões mais elevadas, para as quais estes equipamentos são fabricados. Estima-se que milhões de diferentes tipos de unidades preenchidas com SF6 estejam atualmente em serviço.

Tecnicamente há três métodos disponíveis para contenção do gás, de acordo com a IEC 62271-1: os sistemas de pressão controlada que não são mais utilizados para novos equipamentos devido a níveis inaceitáveis de taxa de vazamento; e os sistemas de pressão fechados, usados nos modernos equipamentos elétricos de alta tensão. Os valores padrão para taxas de vazamento são 0,5% e 1% por ano e por compartimento de gás e os sistemas de pressão selados de modernos equipamentos elétricos de média tensão (comercialmente conhecidos como produtos selados por toda vida útil ou sistemas hermeticamente selados).

A estanqueidade de sistemas de pressão selados é especificada pela expectativa de vida útil. A expectativa de vida útil com relação ao desempenho com vazamentos é especificada pelo fabricante. Os valores preferenciais são 20, 30 e 40 anos. Para atender totalmente aos requisitos de expectativa de vida útil, a taxa de vazamento de sistemas de pressão selados de SF6 deve ser inferior a 0,1% ao ano.

A longa experiência com o uso de SF6 em equipamentos de manobra e controle evidencia que algumas precauções e procedimentos elementares devem ser adotados de forma que sejam obtidos benefícios na operação, na segurança no trabalho e nas questões ambientais, como a operação segura do equipamento; a otimização das fontes e ferramentas necessárias; a minimização do tempo de interrupção de funcionamento dos equipamentos; o treinamento normalizado para o pessoal que manuseia SF6; a redução da quantidade de gás emitida durante operações de manuseio de gás até o limite físico funcional; a prevenção de quaisquer emissões deliberadas como, por exemplo, descargas na atmosfera; a redução de perdas e emissões de SF6 durante comissionamentos, serviços, operações e procedimentos de fim de vida útil a níveis mínimos.

A não ser que seja especificado de outra forma pelo fabricante do equipamento no manual de instruções operacionais, a seguinte sequência detalhada de operações com evacuação de ar/nitrogênio e enchimento com SF6 em cada compartimento deve ser realizada com o preparo do equipamento de manuseio de SF6 ao verificar se o regenerador de SF6 está funcionando adequadamente, e que as conexões estão limpas e secas para evitar contaminações. Verificar a validade da calibração dos instrumentos sujeitos a calibração.

Quanto à instalação de absorvedor de umidade no compartimento, rapidamente inserir os materiais absorvedores de umidade no compartimento. Iniciar a evacuação imediatamente em seguida. Para a evacuação, conectar a bomba de vácuo e deixar operando até atingir uma pressão de evacuação abaixo de 2 kPa no compartimento de gás. Para a estabilização do vácuo, manter a bomba de vácuo operando por pelo menos 30 min após atingir uma pressão de evacuação abaixo de 2 kPa no compartimento de gás. Interromper o processo de vácuo e proceder a leitura do manômetro. O SF6 a ser introduzido no compartimento de gás deve ser de grau técnico ou usado adequado para reuso.

Realizar a retenção do vácuo, se necessário e a pressão no compartimento deve permanecer abaixo de 2 kPa pelo tempo informado no manual de instrução de operação e manutenção do fabricante original do equipamento. Para a documentação, registrar o nome do fabricante do equipamento, o número de série do compartimento de gás, a pressão de evacuação (isto é, o conteúdo residual de ar), a temperatura ambiente, e a data para futuras referências.

Para o enchimento com SF6, conectar o recipiente com SF6 e encher o compartimento até atingir a pressão nominal de enchimento. Utilizar uma válvula de segurança, um regulador de fluxo e um manômetro calibrado para evitar enchimento excessivo. O SF6 a ser introduzido no compartimento de gás deve ser de grau técnico ou usado adequado para reuso. Não é necessário realizar previamente a medição da qualidade do SF6, quando este gás vier do fornecedor em recipientes selados, quando este gás for armazenado em recipientes selados com etiqueta informando que está adequado para reuso ou quando há certificado de qualidade.

Em todos os demais casos, a qualidade do SF6 deve ser verificada antes da operação de enchimento. A medição da qualidade do SF6 engloba os conteúdos de umidade, o porcentual de pureza do SF6 e a acidez residual. Para a documentação, registrar o nome do fabricante do equipamento, o número de série do compartimento de gás, a pressão final de enchimento, a temperatura ambiente e a data para futuras referências.

Para a verificação do sensor de pressão/densidade, conferir o funcionamento do sensor de densidade/pressão. Esta ação pode ser realizada durante a operação de enchimento e não pode ser considerada como uma calibração. Durante os procedimentos de verificação dos sensores de pressão/densidade, consultar manual do fabricante do equipamento em relação à influência de histerese sobre os sensores de pressão e densidade.

Deve-se verificar a estanqueidade de todas as conexões feitas em campo conforme requisitado pelo fabricante do equipamento no manual de instruções operacionais. Para a medição da qualidade do SF6, aguardar o período especificado pelo fabricante do equipamento no manual de instruções operacionais antes de medir o conteúdo de umidade, o porcentual de pureza do SF6 e a acidez residual. Se o compartimento de gás for de pequeno volume, pode ser necessária a reposição de SF6 após a medição da qualidade do SF6.

Como documentação, registrar o nome do fabricante, o número de série do compartimento de gás, o funcionamento do sensor de pressão/densidade, o conteúdo de umidade, o porcentual de pureza do SF6, a acidez residual, a temperatura ambiente e a data para futuras referências. A não ser que seja especificado de outra forma pelo fabricante do equipamento no manual de instruções operacionais, a seguinte sequência detalhada de operações para complementação com SF6 em compartimentos previamente enchidos.

Para o preparo do equipamento de manuseio de SF6, verificar se as conexões estão limpas e secas, se as mangueiras foram evacuadas e se estão com SF6. Verificar se não há vazamentos nos acoplamentos para evitar contaminações. Verificar a validade da calibração dos instrumentos sujeitos a calibração.

Para a complementação com SF6, conectar o recipiente com SF6 e encher o compartimento até atingir a sua pressão nominal. Utilizar uma válvula de segurança, um regulador de fluxo e um manômetro calibrado para evitar enchimento excessivo. O SF6 a ser introduzido no compartimento de gás deve ser SF6 de grau técnico ou SF6 usado adequado para reuso. Não é necessário realizar previamente a medição da qualidade do SF6, quando este gás vier do fornecedor em recipientes selados, quando este gás for armazenado em recipientes selados com etiqueta informando que está adequado para reuso ou quando há certificado de qualidade.

Em todos os demais casos, a qualidade do SF6 deve ser verificada antes da operação de enchimento. A medição da qualidade do SF6 engloba os conteúdos de umidade, o percentual de pureza do SF6 e a acidez residual. Como documentação, registrar o nome do fabricante, o número de série do compartimento de gás, a pressão final de enchimento, a temperatura ambiente e a data para futuras referências.

Para a verificação do sensor de pressão/densidade, conferir o funcionamento do sensor de densidade/pressão. Esta ação pode ser realizada durante a operação de enchimento e não deve ser considerada como uma calibração. Durante os procedimentos de verificação dos sensores de pressão/densidade, consultar manual do fabricante do equipamento quanto a influência de histerese sobre os sensores de pressão e densidade.

Verificar a estanqueidade de todas as conexões feitas em campo conforme requisitado pelo fabricante do equipamento no manual de instruções operacionais. Para a medição da qualidade do SF6, aguardar o período especificado pelo fabricante do equipamento no manual de instruções operacionais antes de medir o conteúdo de umidade, o percentual de pureza do SF6 e a acidez residual. Se o compartimento de gás for de pequeno volume, pode ser necessária a reposição de SF6 após a medição da qualidade do SF6.

Para a documentação, registrar o nome do fabricante, o número de série do compartimento de gás, o funcionamento do sensor de pressão/densidade, o conteúdo de umidade, o percentual de pureza do SF6, a acidez residual, a temperatura ambiente e a data para futuras referências. A maioria dos equipamentos de manobra e controle de média tensão são sistemas de pressão selados.

Tipicamente este tipo de equipamento é preenchido com SF6 em fábrica e nenhum manuseio de SF6 adicional é necessário durante toda sua expectativa de vida operacional. Exemplos de sistemas de pressão selados são disjuntores com tubos a vácuo e alguns tipos de disjuntores à SF6 de média tensão. Eles são comercialmente chamados como selados por toda a vida, já que não requerem manuseio de gás em campo durante toda a sua vida útil, tipicamente 40 anos.

O descarte no fim da vida útil é realizado sob a responsabilidade do usuário e realizado de acordo com as instruções do fabricante. Terceiros, como empresas de serviços, também podem executar o descarte no fim da vida útil. Os sistemas de pressão selados são completamente montados e ensaiados em fábrica. Como o SF6 neste caso é manuseado apenas duas vezes (no enchimento do gás no início, e no recolhimento do gás no final) durante toda a vida útil do produto e isto é feito em um ambiente controlado, perdas por manuseio podem ser consideradas como sendo da mesma ordem de magnitude de perdas por vazamentos.

Os recipientes devem ser recarregáveis (recipientes não recarregáveis são proibidos) e etiquetados para clara identificação de seu conteúdo; recipientes contendo SF6 de grau técnico e SF6 usado adequado para reuso em campo devem ser fisicamente separados daqueles contendo SF6 usado adequado para reuso ou SF6 usado não adequado para reuso. A tabela abaixo fornece uma visão geral de todos os métodos de armazenamento sobre os quais um recipiente pode ser baseado.

As regulamentações internacionais para embarque de equipamentos elétricos contendo SF6 ou recipientes de SF6 estão disponíveis para transporte rodoviário (ADR), ferroviário (RID), marítimo (código IMDG) e aéreo (IATA – DGR). Estes são semelhantes quanto à numeração da ONU, classificação, etiquetagem de perigo, classificação final, e documentação de transporte. No entanto, diferem quanto ao idioma oficial, conforme a seguir: ADR: alemão, francês, inglês; RID: inglês; Código IMDG: inglês; IATA – DGR: inglês.

As oportunidades e os desafios para ampliar o investimento privado em saneamento no Brasil

A aprovação e sanção da Lei 14.026 – a Lei de Saneamento Básico – foi um marco na história recente do Brasil. Segundo estimativas da OMS/UNICEF, em 2017 o país estava posicionado em 117º lugar em percentual da população com acesso a serviços básicos de saneamento, com implicações de primeira ordem para a saúde das famílias, aprendizado das crianças, produtividade dos trabalhadores e competitividade das empresas. Com cerca de 100 milhões de brasileiros sem saneamento básico; proporção elevada de escolas do ensino fundamental à margem do mínimo aceitável em termos de acesso; e doenças de veiculação hídrica crescendo a um ritmo superior ao da população, a situação há muito se tornou insustentável.

Cláudio R. Frischtak

A aprovação e sanção da Lei 14.026 – a Lei de Saneamento Básico – foi um marco na história recente do Brasil. Segundo estimativas da OMS/UNICEF, em 2017 o país estava posicionado em 117º lugar em percentual da população com acesso a serviços básicos de saneamento (1), com implicações de primeira ordem para a saúde das famílias, aprendizado das crianças, produtividade dos trabalhadores e competitividade das empresas. Com cerca de 100 milhões de brasileiros sem saneamento básico; proporção elevada de escolas do ensino fundamental à margem do mínimo aceitável em termos de acesso (2); e doenças de veiculação hídrica crescendo a um ritmo superior ao da população, a situação há muito se tornou insustentável (3).

O setor de saneamento básico é provido basicamente por entes estatais: departamentos e autarquias no âmbito municipal; e 26 empresas estatais nos estados e Distrito Federal. De modo geral essas instituições, que detém 93% do mercado, operam sob um regime regulatório falho e fragmentado; com contratos frágeis que pouco vinculam em termos de obrigações, metas e penalidades pelo seu não cumprimento; e cuja governança não impede a captura das instituições estatais por interesses políticos, corporativos e econômicos. Há relevantes exceções – principalmente no âmbito dos municípios – mas assim permanecem. Já o setor privado não apenas tem um papel secundário, mas em contraposição ao setor público, enfrenta agências que fiscalizam com relativo maior rigor, e está sujeito a contratos vinculantes. A lei veio para reduzir essa assimetria e abrir o setor à competição.

Um dos elementos, portanto, responsáveis pelo atraso do país em saneamento básico e o enorme custo em termos de bem-estar das famílias e competitividade das empresas é resultado da ausência – para os entes públicos que detém acima de 90% do mercado no país – de metas de cobertura e qualidade de serviços, assim como de eficiência operacional. A lei obriga a que se preencha essa lacuna, e um decreto do executivo irá detalhar a metodologia para comprovação de capacidade econômico-financeira de contratada para prestação dos serviços públicos de saneamento básico, de modo que o ente – público ou privado – que assumir a obrigação de universalização e melhoria operacional deverá demonstrar a capacidade de cumprir com o contratado.

A universalização dos serviços até 2033 é uma enorme oportunidade para o setor privado, mas também um desafio. Em 2019, o investimento em saneamento totalizou R$ 14,6 bilhões, e projeta-se um valor semelhante em 2020. No período 2001-20 o investimento médio do setor foi de 0,21% do PIB, e a universalização irá demandar investimentos adicionais de R$ 30 bilhões por ano até 2033. Empresas estatais e autarquias (ou departamentos municipais) não têm como mobilizar esses recursos; o setor privado irá liderar essa nova fase.

O hiato a ser coberto – R$ 30 bilhões – dará um impulso não desprezível na construção civil e serviços de engenharia e correlatos, pois estima-se que no conjunto absorverão 90% desses recursos. Apenas para dimensionar a ordem de magnitude: em 2018, o valor das obras e serviços das empresas de infraestrutura somaram R$ 87 bilhões (PAIC, IBGE); em 2019, o PIB da construção civil foi de R$ 230,4 bilhões (IBGE).

O novo marco é o ponto de partida; provê maior segurança jurídica para os investidores. Nesse contexto, espera-se que o Congresso sustente os vetos do executivo, ampliando a competição e eficiência no setor. Ato contínuo é essencial uniformizar as regras e melhorar a qualidade da regulação, de forma a minimizar o risco – e o prêmio – regulatório. A Agência Nacional de Águas e Saneamento Básico (ANA) terá um papel de relevância, pois assim dita a nova lei.

Assim, torna-se imperativo – pela dimensão dos investimentos – pensar em novas estruturas de financiamento, particularmente em como viabilizar o verdadeiro project finance. Finalmente, nos casos de maior complexidade e magnitude, o BNDES se torna a instituição que reduz os custos de coordenação e informação, sendo instrumental em prover credibilidade e transparência ao processo. A Caixa poderia ter papel semelhante em operações menores, que envolvem municípios isolados ou mesmo consorciados. Dado o tamanho do desafio, é essencial que as duas instituições, assim como os bancos regionais, se engajem no processo de atrair o setor privado – incumbentes e entrantes – para transformar o setor de saneamento no país, e transitarmos rapidamente para o século 21.

Referências

(1) WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (www.washdata.org)

(2) Segundo o Censo Escolar 2018 INEP, de 181,9 mil escolas da educação básica (ensino infantil, fundamental e médio), 16% não contavam com banheiro dentro do prédio da escola; 49% não estavam ligadas à rede de esgoto; 26% não possuíam acesso a água encanada; e 21% não tinham coleta periódica de lixo.

(3) No período 2010-18, o número de casos de Doenças Diarreicas Agudas cresceu a uma média de 2,3% a.a., chegando a 4,97 milhões, enquanto que a população cresceu a uma média de 0,8% no período de acordo com o IBGE.

Cláudio Frischtak é fundador e sócio da Inter.B Consultoria e Diretor Nacional na International Growth Center (LSE). Foi professor (adjunct) na Universidade de Georgetown e Principal Economist do Banco Mundial (1984-91). Publicações recentes do autor incluem: “Uma Estimativa do Estoque de Capital de Infraestrutura no Brasil”, em Desafios da Nação (IPEA, 2018); “Industries without smokestacks: Telecommunication and ICT-Based Services Trade”, em Industries without smokestacks: Industrialization in Africa Reconsidered (Oxford University Press, 2018); e “Science and Innovation in Brazil: where to now?”, em Innovation in Brazil: Advancing Development in the 21st Century (Routledge, 2019).

 

Fonte: BNDES

A conformidade da proteção catódica de estruturas complexas

Saiba quais são os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares.

A NBR 16896 de 08/2020 – Proteção catódica de estruturas complexas — Requisitos estabelece os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares. As estruturas compostas por outros metais, como aço inoxidável ou alumínio, podem ser protegidas aplicando-se os conceitos e requisitos descritos nesta norma, com exceção dos critérios de proteção, que são exclusivos para o aço-carbono. Esta norma visa eliminar a corrosão acelerada causada pelo acoplamento galvânico.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as técnicas de proteção catódica para estruturas complexas?

O que são os leitos de anodos?

Como deve ser executada a instalação de sistemas de proteção catódica?

Como deve ser feita a verificação da eficácia da proteção catódica?

Pode-se dizer que a proteção catódica é um método de prevenção da corrosão em estruturas metálicas submersas e subterrâneas. É um dos métodos mais eficazes para prevenir a corrosão em uma superfície metálica, sendo usada para proteger várias estruturas contra a corrosão, como navios, flutuadores offshore, equipamentos submarinos, portos, dutos, tanques. Ou seja, basicamente todas as estruturas metálicas submersas ou enterradas.

A técnica se baseia na conversão de áreas ativas de uma superfície metálica em passivas, ou seja, torná-las o cátodo de uma célula eletroquímica. Com o fornecimento de corrente, o potencial do metal é reduzido, o ataque de corrosão cessará e a proteção catódica será alcançada. A proteção catódica pode ser alcançada por: proteção anódica catódica sacrificial e proteção catódica de corrente impressa, muitas vezes referida como ICCP.

No caso dos anodos para a proteção catódica, ao processo de fundição dos anodos deve resultar uma liga com perfeita homogeneização dos componentes em toda a extensão de seu corpo, sem defeitos internos ou externos. O forno para fundição da liga deve ter capacidade igual ou superior à massa do anodo a ser fabricado. O vazamento da liga deve ser contínuo, não sendo admitidas interrupções na alimentação.

O material da alma do anodo deve ser o aço. O aço deve ter teor de carbono ≤ 0,28%. Antes do processo de fundição, o aço deve ser revestido com zinco aderente, aplicado por qualquer meio comercial adequado, ou ter superfície limpa através de um jateamento até atingir o grau Sa 2½, conforme NBR 7348. A alma deve ter boa aderência ao corpo do anodo, não apresentando vazios entre as superfícies de contato.

Os profissionais envolvidos com o projeto, a supervisão da instalação e do comissionamento, e a supervisão da operação e da manutenção do sistema de proteção catódica devem ter o nível adequado de competência para a realização de suas atribuições. Recomenda-se que a competência do pessoal de proteção catódica seja demonstrada de acordo com a NBR 15653 ou por outro procedimento equivalente. Convém que sejam usados os critérios de proteção catódica estabelecidos na NBR ISO 15589-1, mesmo para estruturas classificadas como complexas. No entanto, as características das estruturas complexas e os fatores que as influenciam (ver Seção 6) significam que nem sempre é possível determinar ou alcançar os critérios de proteção catódica tradicionais.

Nesse caso, os métodos de verificação alternativos podem ser utilizados para garantir uma redução adequada da taxa de corrosão. Estes critérios são derivados daqueles contidos na EN 14505. Todos os potenciais devem ser medidos em relação a um eletrodo de referência de cobre/sulfato de cobre saturado. Recomenda-se que os pontos de posicionamento de eletrodos de referência sejam marcados em campo, assim como que o mapa de localização do sistema de aterramento seja avaliado para determinação dos pontos de medição.

Pode-se definir o potencial ON como o de um tubo-eletrólito medido durante a operação contínua do sistema de proteção catódica. Ele é igual ou mais negativo que –0,85 V, se o ponto de medição se situar na área de influência do eletrodo externo. O critério da aplicação de corrente tem o objetivo de demonstrar que a corrente é capaz de entrar na estrutura nos locais inspecionados. Consiste em ligar a fonte de corrente de proteção catódica e avaliar a alteração do potencial natural ou de corrosão, que deve instantaneamente ficar pelo menos 0,3 V mais negativo.

Isso indica que uma quantidade suficiente de corrente está entrando na estrutura. Uma despolarização em cupom de proteção catódica de, no mínimo, 0,1 V, medindo o potencial OFF do cupom imediatamente e após até 1 h de desconexão. Recomenda-se atender a mais de um desses critérios para comprovar que toda a estrutura complexa está protegida adequadamente.

Podem ser usados métodos alternativos, caso se possa demonstrar que o controle da corrosão é atingido. Técnicas de inspeção do revestimento, associadas a escavações para correlação ou inspeção com pipeline inspection gauges (pig) instrumentado, podem ser utilizados, quando disponíveis. O sistema de proteção catódica depende do tamanho e do formato da estrutura complexa, do tipo de revestimento, da ação agressiva do solo e de sua resistividade, das interferências de corrente contínua (cc) e corrente alternada (ca), de regulamentos nacionais, bem como de critérios técnicos e econômicos.

Para uma proteção catódica eficiente, recomenda-se que as condições estabelecidas a seguir sejam atendidas. Para a continuidade elétrica, convém que todas as partes metálicas de uma estrutura complexa a ser protegida sejam eletricamente contínuas. Recomenda-se que eletrodos externos também sejam eletricamente contínuos.

O cálculo da corrente drenada e vida útil: Para que o sistema de proteção catódica seja devidamente projetado, recomenda-se que a forma e a extensão da estrutura sejam claramente definidas em termos de sua localização e isolamento elétrico de estruturas externas. Se o isolamento elétrico for ineficaz e não puder ser restaurado a suas condições originais, convém que a extensão da estrutura complexa seja revisada para levar isso em conta.

Para os revestimentos externos, ou seja, os revestimentos protetores nem sempre são aplicados nos componentes em uma estrutura complexa (por exemplo, sistemas de aterramento). Os componentes não revestidos elevam significativamente as demandas de corrente de proteção, aumentando, por conseguinte, as dificuldades associadas à aplicação da proteção catódica assim como os riscos de interferência. Sempre que possível, convém que componentes metálicos enterrados sejam devidamente revestidos.

Devem ser levantadas as características dos componentes metálicos relevantes que compõem a estrutura complexa, incluindo os tipos de material e suas áreas superficiais enterradas. Os eletrodos externos relevantes devem ser levantados. Embora não haja um compromisso do projeto em proteger essas estruturas, elas consomem parte da corrente injetada pelo sistema de proteção catódica e devem ser consideradas no dimensionamento.

Devem ser consideradas no projeto as especificidades dos revestimentos aplicados em todos os componentes de uma estrutura complexa, incluindo a sua compatibilidade com o uso de proteção catódica. Convém que sejam consideradas no projeto as condições ambientais específicas, como, por exemplo, o teor de cloretos (caso partes da estrutura seja em aço inoxidável), a presença de bactérias ou contaminantes, etc.

Para a blindagem elétrica, convém que sejam levantadas as estruturas físicas ou os materiais específicos, situados no entorno da estrutura complexa, que possam atuar como blindagem elétrica ou restringir a distribuição da corrente destinada à proteção catódica. As blindagens elétricas podem ser condutoras ou não condutoras, conforme exemplos descritos a seguir. As condutoras são as estruturas em concreto armado, estacas metálicas, poços metálicos, tubulações metálicas, aterramento elétrico, tubos-camisa, etc. As não condutoras incluem as mantas geotêxteis ou poliméricas, materiais de proteção mecânica, concreto impermeabilizado, etc.

No estabelecimento dos locais para instalação de anodos e de eletrodos de referência estacionários deve ser considerada a localização das blindagens elétricas. Devem ser considerados no projeto todos os componentes e acessórios destinados a promover o isolamento elétrico entre estruturas metálicas. Eventuais caminhos elétricos paralelos que possam comprometer o isolamento elétrico devem ser levantados.

As fontes de caminhos elétricos paralelos típicos são: aterramentos elétricos, cabos de instrumentação e telemetria, suportes metálicos de tubulações, ferragens de estruturas de concreto armado, etc. Os curtos-circuitos eletrolíticos podem ocorrer em regiões com eletrólitos de baixa resistividade, onde há circulação de corrente iônica entre as estruturas metálicas que, a princípio, estariam isoladas eletricamente.

As situações típicas de curtos-circuitos eletrolíticos que devem ser mapeadas são o curto-circuito devido ao transporte de fluido de baixa resistividade entre as extremidades de uma junta isolante; o curto-circuito em solos contaminados com vazamentos de fluidos de baixa resistividade. Os detalhes referentes às juntas de isolamento elétrico são apresentados na NBR ISO 15589-1. Devem ser levantadas todas as possíveis fontes de interferência elétrica cc ou ca existentes nas proximidades da estrutura complexa.

As fontes de interferência cc mais comuns são os sistemas de tração eletrificados e os sistemas de proteção catódica existentes. As fontes de interferência ca mais usuais são as linhas de transmissão em alta-tensão e as subestações elétricas. Convém que sejam levantadas todas as estruturas metálicas existentes nas proximidades da estrutura complexa e que possam sofrer interferência cc do sistema de proteção catódica da estrutura complexa. No projeto devem ser adotadas medidas para mitigar ou reduzir seus efeitos.

O projeto de estação de bombeamento ou elevatória de água

Saiba quais são os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

A NBR 12214 de 07/2020 – Projeto de estação de bombeamento ou de estação elevatória de água — Requisitos especifica os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como estabelecer a vazão para dimensionamento?

Como calcular o dimensionamento do volume útil da câmara de sucção ou do poço de sucção?

Como projetar a câmara de sucção para bomba tipo submersível?

Como executar o dimensionamento dos barriletes de sucção e de recalque?

Os elementos necessários para o desenvolvimento do projeto são os seguintes: a caracterização da estação de bombeamento ou estação elevatória, pontos de sucção e de recalque/descarga, vazão de dimensionamento, características físico-químicas e biológicas da água a ser bombeada ou elevada, níveis de enchente ou inundação no local; o levantamento planialtimétrico cadastral da área da estação de bombeamento ou elevatória com detalhes da vegetação, tipo de pavimento, acesso, obras especiais, indicação das interferências; o cadastro de unidade (s) operacional (is) relacionada (s) à estação de bombeamento ou elevatória e de interferências; as informações ou levantamentos socioambientais, geotécnicos, geológicos e arqueológicos, vazão de outorga, se aplicável; os dados físicos e operacionais do sistema de abastecimento de água existente; a disponibilidade de energia elétrica; os estudos, planejamentos e projetos existentes correlacionados; o estudo de concepção do sistema de abastecimento, elaborado conforme a NBR 12211; os planos diretores do sistema de abastecimento de água e demais planos diretores; o plano de urbanização, legislação relativa ao uso e ocupação do solo; restrição ambiental que interfira na área de influência do projeto; plano de saneamento básico; as condições mínimas de segurança e medicina do trabalho, conforme legislação e normas vigentes; os critérios, procedimentos e diretrizes da prestadora de serviço ou da contratante do sistema de abastecimento de água.

As atividades necessárias para o desenvolvimento do projeto são as seguintes: validar o estudo de concepção e/ou realizar estudo técnico, econômico, social, financeiro e ambiental; analisar as instalações do sistema de bombeamento ou elevatória existente, objetivando seu aproveitamento, quando for o caso; avaliar e considerar na solução técnica a restrição ambiental incidente, quando existir; avaliar o acesso da estação de bombeamento ou elevatória; complementar os levantamentos topográficos, as interferências, os estudos geológicos, geotécnicos e arqueológicos, quando necessário; determinar as vazões de projeto do sistema de bombeamento, levando em conta as condições operacionais do sistema de abastecimento; determinar a altura manométrica; determinar o tipo e o arranjo físico da elevatória; dimensionar a casa de bombas; selecionar os equipamentos de movimentação de carga e serviços auxiliares; determinar os sistemas de acionamento, medição e controle; determinar o traçado das tubulações de sucção e recalque; dimensionar e selecionar o material das tubulações de sucção e recalque; avaliar os diferentes materiais aplicados (conjunto motor-bomba, componentes, equipamentos, tubulações), de modo a compatibilizar as melhores soluções técnicas e econômicas com tempo de vida útil requerido no estudo e/ou projeto; dimensionar a câmara de sucção, quando necessário; elaborar as especificações dos equipamentos, das conexões e das tubulações; estudar os efeitos dos transitórios hidráulicos e selecionar o(s) dispositivo(s) de proteção do sistema; avaliar a resistência mecânica das partes componentes do sistema de bombeamento ou elevatória às ações internas e externas atuantes; detalhar as etapas de implantação; detalhar a interdependência das atividades e o plano de execução das obras, otimizando o tempo de paralisação do sistema, quando necessário; prever a implantação de dispositivos que permitam os procedimentos de limpeza, esgotamento, drenagem, desinfecção, estanqueidade, da estação de bombeamento ou elevatória; compatibilizar o projeto da estação de bombeamento ou elevatória com os demais projetos complementares [arquitetônico, estruturais, hidrossanitários, elétricos (inclusive iluminação), eletromecânicos, automação, monitoramento, instrumentação, ventilação, acústica, combate a incêndio, inspeção, urbanização, acessos, segurança].

Os elementos que devem compor o projeto são os seguintes: o memorial descritivo e justificativo, contendo os estudos, cálculos realizados, simulações hidráulicas; as peças gráficas do projeto, em escalas adequadas, atendendo às normas técnicas aplicáveis e às recomendações e padronizações da prestadora de serviço ou da contratante; o orçamento detalhado das obras, conforme etapas determinadas para a implantação; as diretrizes operacionais contendo o plano de operação e controle previsto para o sistema de bombeamento ou elevatória, detalhamento das vazões máximas e mínimas operacionais, quando aplicável; as diretrizes para pré-operação, comissionamento e/ou operação assistida, quando aplicável.

Para a determinação do local adequado para a implantação da estação de bombeamento ou elevatória, devem ser levados em consideração os seguintes fatores, de importância ponderada em função das condições técnicas e econômicas de cada projeto: desnível geométrico; características morfológicas; traçado da adutora, conforme a NBR 12215-1; desapropriação, legalização de áreas; acessos permanentes e que permitam a movimentação do transporte para a manutenção; proteções contra enchentes, inundações e enxurradas; estabilidade contra erosão; disponibilidade de energia elétrica; remanejamento de interferências; segurança contra assoreamento no ponto de tomada ou da captação d´água e na região próxima a estes pontos; Net Positive Succion Head (NPSH) disponível, sendo determinado considerando o nível mínimo operacional na câmara de sucção (positivo ou negativo), a temperatura ambiente média e a altitude do local onde será implantada a estação de bombeamento ou elevatória; disponibilidade de área para ampliações futuras, quando necessário.

A determinação dos levantamentos a serem efetuados deve ser precedida de inspeção de campo. Para a locação da estação de bombeamento ou elevatória, os levantamentos topográficos devem ser planialtimétricos cadastrais em extensão, detalhamento e precisão, permitindo no mínimo: mostrar os limites de propriedades e benfeitorias existentes, com indicação dos proprietários; os níveis máximos observados em corpos de água superficiais; os tipos de vegetação, os usos do solo e a exploração do subsolo; os tipos de pavimento, indicação e mapeamento das interferências superficiais e do subsolo.

Deve-se justificar a posição adotada; as obras especiais. Indicar as vias de acesso para a implantação, operação e manutenção da estação de bombeamento ou elevatória. As sondagens devem ser em número, tipo e profundidade que permitam determinar a fundação da estação de bombeamento ou elevatória, determinar o nível atual do lençol freático e elaborar o projeto das obras especiais, permitindo estabelecer o processo de escavação, a fundação e demais elementos estruturais.

As interferências não visíveis devem ser levantadas a partir das informações existentes nos projetos e cadastros, pelo acesso à câmara e/ou à caixa de inspeção existente, por meio de levantamento topográfico, da realização de furos de sondagem de prospecção eletromagnética. Deve-se avaliar as instalações do sistema de bombeamento existente e seu ciclo operacional, elaborando diagnóstico que permita a sua otimização e adequação técnica.

Na elaboração de novos estudos e projetos, as partes com aproveitamento total e/ou parcial existentes devem satisfazer as condições desta norma ou adaptar-se a ela, mediante alterações ou complementações. Deve ser analisado o impacto do sistema projetado sobre as instalações existentes. Devem ser levantadas as características hidráulicas e morfológicas das instalações existentes e a serem projetadas das unidades construtivas.

Por exemplo, da captação à margem de mananciais, compreendendo: número, forma, dimensões e material dos canais ou tubulações; cota do fundo dos canais ou tubulações na entrada da câmara de sucção; níveis máximo (cota de enchente e/ou nível de inundação) e mínimo da água nos canais à entrada da câmara de sucção; características da água, condicionantes ou necessárias para a seleção dos equipamentos; velocidade de entrada na câmara de sucção, que não pode ser superior a 0,60 m/s. Da captação direta no manancial, compreendendo: os perfis de fundo do manancial no local da captação, por meio de no mínimo três seções batimétricas, distanciadas em no máximo 20 m entre si ou conforme necessidade local determinada pela prestadora de serviço ou contratante; os níveis máximo (cota de enchente e nível de inundação) e mínimo da água; a velocidade da água no local da captação; as obras complementares projetadas; as características da água, condicionantes ou necessárias para a seleção dos equipamentos. Da sucção em reservatório, compreendendo as características gerais do reservatório: tipo, material, forma, dimensões e número de câmaras; as cotas geométricas e operacionais do reservatório, e cotas do terreno; as características da água, condicionantes ou necessárias à seleção do equipamento.