A medição da resistividade do solo para fins de aterramento elétrico

O aterramento tem como função proteger os equipamentos elétricos, usuários e garantir o bom funcionamento do circuito. Existem tipos de aterramento distintos, sendo alguns deles com variações. É uma das formas mais seguras de interferência na corrente elétrica para proteger e garantir o bom funcionamento da instalação, além de atender as exigências das normas técnicas.

Em resumo, o aterramento elétrico significa colocar as instalações e equipamentos no mesmo potencial, de modo que a diferença de potencial entre a terra e o equipamento seja o menor possível. O aterramento (terra) é o conector com diferença de potencial igual a zero, a diferença entre ele e o neutro é que ele não altera o seu valor por meio de problemas que podem ser eliminados para a terra, o que não permite que fugas de energia fiquem na superfície de aparelhos elétricos.

A NBR 7117 (NB716) de 07/2012 – Medição da resistividade e determinação da estratificação do solo estabelece os requisitos para medição da resistividade e determinação da estratificação do solo. Fornece subsídios para aplicação em projetos de aterramentos elétricos. A sua aplicabilidade pode ter restrições em instalações de grandes dimensões, onde são necessários recursos de geofísica não abordados. Não se aplica a estratificações oblíquas e verticais. Entende-se por projetos de malhas de aterramento de instalações de grandes dimensões, os parques eólicos, complexos hidrelétricos e industriais.

O solo é um meio geralmente heterogêneo, de modo que o valor de sua resistividade varia de local para local em função do tipo, nível de umidade, profundidade das camadas, idade de formação geológica, temperatura, salinidade e outros fatores naturais, sendo também afetado por fatores externos como contaminação e compactação. Exemplos de variação da resistividade em função de alguns destes parâmetros são mostrados na tabela e na figura.

A determinação dos valores das resistividades do solo e de sua estratificação é de importância fundamental para o cálculo das características de um sistema de aterramento, subsidiando o desenvolvimento de projetos, bem como a determinação de seus potenciais de passo e toque. Em geral, o solo é constituído por diversas camadas, cada uma apresentando um certo valor de resistividade e uma espessura própria.

O valor de resistividade do solo é determinado por meio de medições, cujos resultados recebem um tratamento matemático, de modo a se obter a estratificação do solo em camadas paralelas ou horizontais, de diferentes resistividades (p) e de espessuras (e) definidas. Considerando-se, portanto, a heterogeneidade do solo, verificada pela variação de sua resistividade à medida em que suas camadas são pesquisadas, há necessidade de procurar meios e métodos que determinem essas variações, sem que seja necessário lançar mão de prospecções geológicas, o que, decerto, inviabilizaria os estudos para implantação de sistemas de aterramento.

Assim sendo, foram desenvolvidos métodos de prospecção geoelétricos que se caracterizam pela facilidade operacional e precisão fornecidas. A complexidade adicional causada pelos solos não uniformes é comum, e apenas em poucos casos a resistividade é constante com o aumento da profundidade, ou seja, homogênea. Basicamente, os métodos que utilizam sondagem elétrica procuram determinar a distribuição vertical de resistividade, abaixo do ponto em estudo, resultando então em camadas horizontais, geralmente causadas por processos sedimentares.

Dispondo-se de dois eletrodos de corrente pelos quais se faz circular uma corrente I, e de dois eletrodos de potencial que detectarão uma diferença de potencial V, pode-se mostrar que a resistividade do solo é proporcional a V/I, sendo o fator de proporcionalidade uma função do método empregado. Em função de pesquisas já realizadas pode-se dizer que metade da corrente injetada no solo, circula acima de uma profundidade igual à metade da distância entre eletrodos, e que grande parte da corrente flui acima da profundidade igual à separação entre eles.

Para estas conclusões pressupõe-se a condição de solos homogêneos, não sendo as mesmas condições válidas para solos estratificados, nos quais a densidade de corrente varia de acordo com a distribuição de resistividades. Os gradientes de potencial da superfície do solo, dentro ou adjacentes a um eletrodo, são principalmente uma função da resistividade da camada superficial do solo.

Por outro lado, a resistência do eletrodo de terra é primariamente uma função de suas dimensões e das resistividades das camadas mais profundas do solo, especialmente se o eletrodo for de grandes dimensões. Estratificações oblíquas e verticais, derivadas de acidentes geológicos, não são objeto de estudo desta norma. São considerados, os seguintes métodos de medição: amostragem física do solo; método da variação de profundidade; método dos dois eletrodos; método dos quatro eletrodos, com os seguintes arranjos: arranjo do eletrodo central; arranjo de Lee; arranjo de Wenner; arranjo Schlumberger – Palmer.

O método da variação de profundidade, também conhecido como “método de três eletrodos”, consiste em um ensaio de resistência de terra executado para várias profundidades (L) do eletrodo de ensaio de diâmetro (d). O valor da resistência medida (Rm) refletirá a variação da resistividade, relativa ao incremento de profundidade. Usualmente, o eletrodo de ensaio é uma haste devido à facilidade de sua cravação no solo. As medições citadas podem ser executadas usando um dos métodos para medição da resistência de aterramento, descritos na NBR 15749.

O método de variação de profundidade fornece informações úteis sobre a natureza do solo na vizinhança da haste. Contudo, se um grande volume de solo precisar ser investigado, é preferível que se use o método dos quatros eletrodos, já que o cravamento de hastes longas não é prático. Este método supõe que o aterramento a ser ensaiado seja composto de uma haste de aterramento de comprimento L. O raio r da haste é pequeno ao se comparar com L. Os valores de resistividade obtidos com esse método são médios e não podem ser extrapolados.

O método dos quatro eletrodos (geral) é o mais aplicado para medição da resistividade média de grandes volumes de terra. Pequenos eletrodos são cravados no solo a pequenas profundidades, alinhados e espaçados em intervalos não necessariamente iguais. A corrente de ensaio I é injetada entre os dois eletrodos externos e a diferença de potencial V é medida entre os dois eletrodos internos com um potenciômetro ou um voltímetro de alta impedância.

O arranjo de Schlumberger é uma disposição para o método dos quatro pontos onde o espaçamento central é mantido fixo (normalmente igual a 1,0 m), enquanto os outros espaçamentos variam de forma uniforme. Daí uma alta sensibilidade na medição dos potenciais é necessária, especialmente se a fonte do terrômetro for de baixa potência.

O arranjo Schlumberger – Palmer é usado para medir resistividades com grandes espaçamentos, especialmente em terrenos de alta resistividade (da ordem de ou superior a 3 000 Wm), com os eletrodos de potencial situados muito próximos aos eletrodos de corrente correspondentes para melhorar a resolução da medida da tensão. Mesmo assim, os terrômetros convencionais, de baixa potência (com corrente compatível com a sensibilidade do aparelho), dificilmente operam de forma eficiente.

Deve ser considerada a variação sazonal da resistividade do solo, devendo ser realizada uma medição no período mais crítico. De maneira geral, a situação mais crítica é a de solo seco, que ocorre após um período de sete dias sem chuvas. Esse período deve ser observado sempre para comprovação da situação mais crítica, caso seja necessária.

Para estimativa de projeto ou casos especiais, podem ser efetuadas medições com o solo na situação que não seja a mais crítica. Uma medição posterior é necessária, caso acordado entre as partes. Em áreas onde seja necessário corrigir o nível do terreno, pelo menos uma das medições deve ser realizada após a conclusão da terraplenagem.

Pontos de uma mesma área em que sejam obtidos valores de resistividade com desvio superior a 50% em relação ao valor médio das medições realizadas podem caracterizar uma subárea específica, devendo ser realizadas medições complementares ao seu redor, para ratificação do resultado; se isso não for possível, considerar a conveniência de descartar a linha de medição. No caso de medições de resistividade próximas a malhas existentes, objetos condutores enterrados ou cercas aterradas, deve-se afastar a linha de medição a uma distância onde as interferências sejam reduzidas para evitar ou atenuar os efeitos da proximidade com massas metálicas enterradas próximo à linha de medição.

No caso de medições de resistividade próximas a aterramentos de redes de energia e de telecomunicações, de linhas de transmissão ou de quaisquer outras fontes de interferências, deve-se afastar a linha de medição e utilizar instrumentos que possuam filtros que separem os resultados do sinal injetado para evitar ou atenuar os efeitos da proximidade com circuitos potencialmente interferentes. Para projetos de linhas de transmissão devem ser realizadas duas medições em direções ortogonais nos pontos escolhidos, preferencialmente no sentido longitudinal ao encaminhamento da linha de transmissão e outra perpendicular, que devem coincidir com a localização das estruturas.

Cada linha de medição deve abranger diferentes distâncias entre eletrodos, que se estendam no mínimo até a maior dimensão (diagonal) do terreno a ser ocupado pela malha. A linha de medição deve ser prospectada a partir de uma distância entre eletrodos de 1 m e prosseguir, se possível, em potência de 2, a saber: 1, 2, 4, 8, 16, 32, 64 m etc. Podem ser utilizadas distâncias intermediárias entre eletrodos.

Condições diferentes das acima indicadas só podem ser definidas sob justificativas técnicas e após expressa concordância entre os agentes envolvidos, observadas as condições específicas do local. Na execução das medições devem-se anotar todas as características locais e os resultados obtidos em planilhas, como a apresentada no Anexo B.

Durante a medição de resistividade devem ser tomados alguns cuidados, como: não fazer medições sob condições atmosféricas adversas, tendo-se em vista a possibilidade de ocorrência de descargas atmosféricas; utilizar equipamentos de proteção individual (EPI) compatíveis com o tipo e o local da medição a ser realizada; evitar que pessoas estranhas e animais aproximem-se do local; não tocar nos eletrodos durante a medição.

A interpretação dos resultados obtidos no campo é a parte mais crítica do processo de medição e, consequentemente, necessita de maiores cuidados na sua validação. Como já mencionado, a variação da resistividade do solo pode ser grande e complexa por causa da sua heterogeneidade e, portanto, há necessidade de se estabelecer uma equivalência para estrutura do solo.

Esta equivalência depende: da exatidão e extensão das medições; do método usado; da complexidade matemática envolvida; da finalidade das medições. Quando o solo for do tipo não homogêneo, é recomendável a disponibilidade de ferramentas computacionais adequadas.

A interpretação do método dos quatro eletrodos é similar àquela do método de profundidade já descrito. No caso do arranjo de Wenner, a resistividade medida é registrada em função do espaçamento a do eletrodo. A curva resultante indica a estrutura do solo. A interpretação da curva obtida pode indicar desvios nas medições ou necessidade de informação adicional sobre o solo, inclusive de medições em profundidades adicionais.

Anúncios

Como evitar acidentes com a rede elétrica

Clicando aqui é possível ter conhecimento dos Projetos de Normas Brasileiras e Mercosul, disponíveis para Consulta Nacional. Selecione o Comitê Técnico desejado e clique sobre o código ou título para consultar e votar.

Rodrigo Cunha

“Não corro riscos de acidentes com a rede elétrica. É apenas baixa tensão”. O seu caixão pode ficar um pouco mais aberto com um golpe de baixa tensão, mas, mesmo assim, você ainda estará morto. A única diferença entre baixa e alta tensão é a rapidez com que esta pode matá-lo. Se a alta tensão mata instantaneamente, a baixa tensão apenas prolonga um pouco mais o desfecho fatal.

Estudos sobre exposições a choques de baixa tensão apontam que um choque de 120 volts pode matar em até 48 horas. Além disso, muitos médicos da sala de emergência não estão familiarizados com o choque elétrico e um eletrocardiograma pode não mostrar que existe um problema. A lesão no músculo cardíaco tende a se espalhar ao longo do tempo e nem sempre pode ser identificada nesse tipo de exame.

Ao se trabalhar em sistemas ou equipamentos energizados ao invés de desligá-los, isso é “coisa de homem”. É muito comum em usinas de energia nunca desenergizar os equipamentos.

No entanto, a desenergização é a única maneira possível de eliminar totalmente os riscos. O Equipamento de Proteção Individual (EPI) apenas aumenta as suas chances de sobrevivência, mas não afasta o perigo. Certifique-se de que o equipamento a ser manipulado e os sistemas estejam em condições de trabalho seguras do ponto de vista da eletricidade e o EPI e todos os procedimentos apropriados sejam utilizados para a proteção do profissional.

Outro problema: não usar os Equipamentos de Proteção Individual. As pessoas realmente não gostam de usar luvas de isolamento de borracha e outros tipos de equipamentos de proteção. O argumento é que é muito quente, desconfortável, restringe o movimento e retarda todo o trabalho.

Não apenas por usá-lo, mas por ter de selecionar o EPI certo e ficar colocando-o e tirando-o a cada momento. Só que este mesmo EPI também salvará sua vida. Um dos momentos mais prováveis de as pessoas negligenciam o uso dos equipamentos de proteção é justamente durante a resolução de problemas.

A lógica parece ser: “Eu não estou realmente trabalhando nisso, apenas testando”. No entanto, pesquisas revelam que 24% dos acidentes elétricos são causados durante a resolução de problemas, testes de tensão e atividades similares. Temos uma tendência a ignorar os perigos associados às tarefas que consideramos “seguras”.

Não se pode dormir durante um treinamento de segurança. Nada como um bom cochilo para nos prepararmos para um árduo dia de trabalho! Reuniões e treinamentos de segurança podem ser chatos e cansativos, mas são fundamentais para a prevenção de possíveis problemas. Por isso, é tão importante que os treinamentos sejam focados, concisos e interessantes, caso contrário, ninguém escuta.

Quando os medidores estiverem desgastados, é hora de substituí-los. Não seja emocionalmente apegado aos seus equipamentos. Se você realmente ama seu antigo testador de tensão, leve-o para casa e faça um pequeno santuário, assim você estará realmente seguro. O comitê da NFPA (Códigos Nacionais Contra Incêndio) estava preocupado o suficiente com o uso deste tipo de equipamento que inseriu dois requisitos diferentes orientando para o trabalho com ferramentas elétricas portáteis e equipamentos de teste adequadamente classificados.

Um item fundamental: não vestir o equipamento de segurança correto. Não, não estou me repetindo. Algumas pessoas pensam que, se vestirem algo por meio do EPI, qualquer coisa, isso deve ser suficiente. Embora seja verdade que as lesões sofridas provavelmente não serão tão graves quanto se você não vestir nenhum equipamento, há uma grande probabilidade de que, se o EPI correto fosse utilizado, você não sofreria nenhuma lesão.

Isso reafirma o que já foi escrito, pois se você não prestar atenção durante o treinamento de segurança, provavelmente você não poderá escolher o equipamento correto. Você sabe como interpretar as etiquetas Arc Flash? O que você faz se não houver uma etiqueta Arc Flash nos equipamentos de energia elétrica? Você sabe como usar as tabelas do NFPA 70E? Você se refere às notas quando usa as tabelas?

Se você responder “não” a qualquer uma dessas questões, não está escolhendo o EPI correto. Na verdade, você provavelmente não seria considerado qualificado pelos órgãos reguladores. Sua empresa tem a responsabilidade de fornecer treinamento para que você atenda a definição destes órgãos como um eletricista qualificado, caso contrário você estará exposto ao perigo. É o seu corpo que será queimado! Você precisa fazer a lição de casa para se proteger.

Não realizar a manutenção necessária dos equipamentos e sistema de energia é muito comum. Muitas vezes, as empresas consideram os custos de manutenção como uma despesa indireta. Nada poderia estar mais longe da verdade.

O problema é que é difícil depositar as economias em algo que não aparece. Falhas não programadas, perda de produção, compra de equipamentos em preços premium, horas extras, eliminação do equipamento de cratera, por exemplo.

Aqueles de nós que já atravessaram as batalhas envolvidas com os processos de manutenção, conhecem bem os custos de uma postura negligente. Mas, para os novos gerentes e certas contabilidades mais recentes, é realmente difícil de compreender esta necessidade.

Não carregar suas luvas. Já observei em aulas de treinamento de segurança que pouquíssimas pessoas realmente carregam sempre com elas suas luvas isolantes de borracha. Bem, adivinhe, se você não as carrega, quer dizer que tampouco as usa. Isso pode vir acompanhado do pensamento de que uma carga de baixa tensão não irá te machucar. “Nós ficamos apenas tontos e isso não é um grande problema!”, pensam. No início de 2008, no Texas, três trabalhadores da TXU trabalhavam em um transformador de 120/220 volts. Um dos trabalhadores levantou-se e disse: “Bem, meninos. Parece que eu consegui de novo!”, deu três passos e estava morto. Carregue suas luvas e use-as, sempre.

As pessoas tendem a odiar a papelada. Esta é, porém, uma boa hora para abrir uma exceção. A OSHA quer que o profissional planeje cada trabalho, tenha as ferramentas e equipamentos adequados para a sua segurança e siga um planejamento. A Licença de Trabalho Elétrico Energizado fornece os meios para planejar cada trabalho, avaliar os riscos, escolher o EPI mais adequado e documentá-lo.

Nós passamos pela vida cometendo pequenos erros atrás de pequenos erros e nada acontece, até o momento de um acidente, e quando este acontece, perdemos o controle. Por isso, o melhor a se fazer é evitar e prever as falhas, reforçando a segurança em nosso ambiente de trabalho.

Rodrigo Cunha é gerente de produto e aplicação da Fluke do Brasil.

Monitoramento do consumo de energia

Cursos pela internet

Conheça um programa especial de cursos pela internet, com as últimas tendências do mercado. Fique atento aos cursos que estão disponíveis. Acesse o link https://www.target.com.br/produtos/cursos-tecnicos/disponiveis-pela-internet

Cinco razões para criar o seu próprio registro.

Rodrigo Cunha

A indústria brasileira já convive com os impactos econômicos do aumento do custo da energia elétrica e se vê obrigada a rever as suas estratégias de consumo. Mensurar o consumo de energia de forma eficiente tornou-se imperativo para que as organizações obtenham um maior controle deste processo. Por isso, fique atento para garantir e maximizar a segurança nas medições elétricas, a precisão das informações e o controle dos processos. Assim, será possível otimizar o desempenho dentro do ambiente de trabalho.

  1. Segurança

É fundamental que os eletricistas realizem estudos de carga antes de adicionar uma carga elétrica a um painel ou serviço já existente. A razão disso é avaliar se existe capacidade suficiente para novas cargas, demanda solicitada pelo inspetor elétrico, engenheiro responsável pelo projeto ou diretamente pelo cliente. Estudos de carga envolvem o uso de um registrador para documentar os níveis de carga existentes (consumo de correntes trifásicas) com excesso de operação. É este o ponto no qual entra o fator segurança. Pelo lado positivo, um estudo de carga pode ser usado para garantir a adesão das regulamentações locais de segurança. Já pelo negativo, a falha na realização de um estudo de carga antes de adicionar novas cargas pode resultar na sobrecarga de uma fonte elétrica existente, gerando riscos de acidentes elétricos e de confiabilidade.

  1. Gerenciamento dos custos de energia e percepção da possibilidade de economia

Embora as despesas com energia sejam uma parte importante dos custos operacionais gerais, muitas empresas não percebem onde seu orçamento destinado aos custos de energia está sendo gasto, já que recebem apenas uma fatura mensal que não especifica quando houve – ou não – uso excessivo de energia. Ao registrar o consumo de energia na entrada de serviço principal e, em seguida, em grandes cargas e fornecimentos secundários, as empresas podem então avaliar a quantidade de energia que está sendo usada, quando, por quem e, ainda, o seu custo por hora. Sem falhas, os dados apresentarão graves desperdícios de energia que podem ser eliminados apenas com mudanças operacionais, como o desligamento de algumas cargas, redução de cargas durante os horários de pico ou mesmo com o ajuste da programação para que as cargas passem a operar nos horários em que as taxas estejam mais baixas.

  1. Precisão na conta elétrica

Os donos de instalações de grande e médio porte, geralmente instalam submedidores para registrar seu consumo de energia. No entanto, esses medidores são, normalmente, instalados de forma inadequada, colocando em dúvida a confiabilidade do faturamento. Os problemas de instalação variam de transdutores de corrente instalados com a frente para o lado errado, instalados na fase errada ou de erros de configuração de submedidores. Uma boa prática é verificar a leitura com um registrador de energia portátil, que oferece dados com uma comparação rigorosa do que está sendo faturado e do que foi de fato utilizado. Um grande desvio entre o total cobrado pelo consumo de energia e os dados do registrador pode ser um sinal para investigar a configuração do submedidor.

  1. Descontos e incentivos financeiros

As empresas prestadoras de serviço público oferecem incentivos e descontos como uma forma de encorajar seus clientes a reduzirem o consumo de energia. O objetivo é servir mais clientes com a mesma fonte de alimentação, visto que é proibida a construção de novas fábricas de geração de energia. Muitos incentivos e descontos estão disponíveis hoje para aprimorar fábricas já existentes, como motores de alta eficiência e iluminação com economia de energia, assim como substituição de arranque do motor por energia de frequência variável. Para receber o incentivo financeiro, a empresa de serviços públicos precisará de uma verificação constante da economia de energia, cenário ideal para os estudos de carga. O estudo de carga de pré-aprimoramento documentará o consumo de energia existente para oferecer dados de parâmetro, enquanto que o estudo de pós-aprimoramento, verificará a economia de energia obtida após a conclusão das modificações.

  1. Identificação e solução de problemas

Muitas vezes, a única forma de resolver um problema é por meio da coleta e análise de dados de um certo período. Para esses cenários de resolução de problemas, os registradores de energia são extremamente importantes, além de terem um preço mais acessível e serem mais fáceis de usar do que um analisador de potência complexo. Um bom exemplo é quando um disjuntor é ativado aleatoriamente. Eventos óbvios, como o arranque de um grande motor, não devem ser o motivo. Na verdade, ativações podem aparecer de forma totalmente aleatória ou pode acontecer quando o técnico não está por perto para observar (no meio da noite, por exemplo). Como o técnico de manutenção não pode monitorar a carga até que o disjuntor seja ativado, conectar um registrador de energia à lateral de carga do disjuntor para registrar o consumo de corrente pode ajudar na solução de problemas de ativação.

Rodrigo Cunha é gerente de produto e aplicação da Fluke do Brasil.

Os acidentes fatais com energia elétrica

Em 2016, foram 599 as mortes decorrentes de acidentes com eletricidade. Dessas, 171 estão relacionadas a acidentes domésticos que poderiam ser evitados com a adequação das instalações elétricas nas moradias, ainda carentes de medidas de proteção e dispositivos que garantam a segurança das pessoas e do patrimônio. Uma pesquisa conduzida pelo Instituto Brasileiro do Cobre (Procobre) e pela Associação Brasileira de Conscientização para os Perigos da Eletricidade (Abracopel) revela que somente 29% das residências brasileiras possuem projeto elétrico – 25% deles elaborados por eletricistas -, 52% dos imóveis possuem fio terra instalado e apenas 27% das moradias possuem DR, um dispositivo de proteção que, ao interromper a fuga de corrente, reduz o risco das consequências de um choque elétrico.

“O cenário é bastante preocupante e mostra a necessidade de readequação das instalações elétricas, principalmente dos imóveis com idade média de 20 anos de construção”, diz Antonio Maschietto, diretor adjunto do Procobre. O “Raio-X das Instalações Elétricas”, nome dado à pesquisa, aponta que 60% das moradias com esse tempo de construção nunca passaram por nenhum tipo de reforma para atualização das instalações elétricas.

De acordo com a pesquisa, apenas 35 % dos imóveis adotam o padrão de tomada de três polos, vigente no Brasil. O levantamento também revela que metade dos quadros elétricos não possui qualquer identificação de componentes do circuito. “Identificamos que em 37 % das moradias o quadro de distribuição elétrica sequer oferece a proteção contra choques elétricos por contato direto. A falta dessa proteção expõe ao risco de choque elétrico qualquer pessoa que toque inadvertidamente em partes energizadas no interior do quadro de distribuição, especialmente aquelas que têm pouco conhecimento sobre eletricidade”, afirma Maschietto.

Um dado curioso está relacionado ao uso de benjamins, extensões e T’s, utilizados por 57 % das famílias pesquisadas. Nesse caso, a idade de construção do imóvel mostrou pouca relação com o uso expressivo dos componentes.

Quando perguntados se gostariam de possuir mais tomadas nas residências, os moradores de 46% dos imóveis com mais de 20 anos de construção responderam que sim, ao passo que 41 % dos que residem em imóveis mais novos, com cinco anos de construção, apontaram a mesma necessidade. “O déficit de tomadas nas residências é alarmante e demonstra que o dimensionamento das instalações elétricas está ultrapassado, não tendo acompanhado o aumento no uso de equipamentos eletroeletrônicos”, diz Maschietto. Segundo os moradores, os cômodos que mais precisam de tomadas são, respectivamente, quarto (33%), sala (30%), cozinha (22%) e área de serviço (15%).

Quando perguntados sobre a sensação de segurança ao utilizar as instalações elétricas da residência, 34 % dos moradores disseram não se sentirem seguros em casa. Desses, 19 % afirmaram já terem levado pelo menos um choque elétrico. “As pessoas sabem, muitas vezes, que as condições das instalações elétricas na moradia não são adequadas, mas existe uma incredulidade de que vão levar choque e de que um acidente com eletricidade pode oferecer risco de morte”, destaca Maschietto. A partir de 50 V o corpo humano já sente os efeitos de uma descarga elétrica. Um choque elétrico acima desse valor pode ser fatal, dependendo do caminho que ele percorra pelo corpo e a sua duração.

Outro fator de preocupação apontado pela pesquisa está relacionado à instalação dos chuveiros elétricos. Menos da metade dos chuveiros (43 %) está ligada ao fio terra e o conjunto plugue e tomada para ligação do chuveiro ainda é encontrado em 8 % dos imóveis. “Esse tipo de conexão pode originar mau contato, sobrecarga e incêndio e está vedado desde 2004, pela NBR 5410”, esclarece Maschietto. A NBR 5410 de 09/2004 – Instalações elétricas de baixa tensão estabelece as condições a que devem satisfazer as instalações elétricas de baixa tensão, a fim de garantir a segurança de pessoas e animais, o funcionamento adequado da instalação e a conservação dos bens. Aplica-se principalmente às instalações elétricas de edificações, qualquer que seja seu uso (residencial, comercial, público, industrial, de serviços, agropecuário, hortigranjeiro, etc.), incluindo as pré-fabricadas.

O tempo de construção do imóvel mostrou relação direta ao maior risco do patrimônio a incêndios e dos moradores à exposição de choques elétricos. Outro fator de agravamento de risco identificado na pesquisa refere-se ao tipo da obra, se realizada por construtoras – mais propensas ao cumprimento das regulamentações vigentes – ou resultado da autoconstrução, tipo de obra predominante no Brasil.

Segundo a Abracopel, os acidentes com origem elétrica vêm em uma escalada ascendente desde 2013, quando foi iniciada a pesquisa. Naquele ano, foram registrados 1038 eventos. Em 2014, 1223, em 2015, 1248 e em 2016 foram 1319 os acidentes, acréscimo de 5,7 % frente aos eventos registrados em 2015.

No ano passado, o número de mortes (599) apresentou ligeiro aumento em relação ao ano anterior (1,5 %), com nove vítimas a mais que 2015. O número de incêndios (215), por sua vez, mostrou aumento alarmante, de quase 75 %, se comparado aos 123 registros de 2015.

O levantamento estatístico sobre a situação das instalações elétricas residenciais brasileiras foi realizado de agosto a outubro de 2016, em 999 domicílios, pelo Instituto de Pesquisa Qualibest. A margem de confiança da amostra é de 95 %.

Recomendações de segurança

Fazer a manutenção periódica das instalações elétricas e redimensioná-las e/ou renová-las sempre que preciso (sugere-se a revisão a cada 10 anos).

Instalar o fio terra e os DRs (dispositivos diferenciais residuais).

Usar protetores de tomadas sempre que estiverem fora de uso para evitar a exposição de crianças pequenas ao risco de contato com a eletricidade.

Quando possível, substituir as tomadas de dois pinos (antigas) por tomadas do novo padrão com três pinos.

Desligar o disjuntor no quadro de distribuição, antes de qualquer serviço que envolva o contato com a eletricidade em casa.

Evitar o uso de eletrodomésticos e/ou eletroeletrônicos em locais úmidos.

Sempre desligar o chuveiro antes de trocar a chave da temperatura.

Não fazer uso de eletrodomésticos e/ou eletroeletrônicos conectados à tomada durante tempestades e vendavais.

Evitar o uso permanente de benjamins, extensões e T’s, preferindo a instalação de novas tomadas.

Chamar sempre um profissional qualificado, que entenda os perigos e riscos da eletricidade, para realizar serviços no imóvel.

Desmistificando o captor Early Streamer Emission (ESE)

“A ciência que estuda a proteção contra raios evolui a cada ano que passa e pode-se dizer que o homem já conhece muito sobre o fenômeno chamado raio, mais ainda não conhece tudo. E o captor ESE eletrônico existente hoje pode até não ser ainda a solução definitiva, mas está bem próximo disso. Atualmente esta é a melhor opção que se tem para a proteção de grandes áreas.” (Hélio Blauth)

 Hayrton Rodrigues do Prado Filho, jornalista profissional registrado no Ministério do Trabalho e Previdência Social sob o nº 12.113 e no Sindicato dos Jornalistas Profissionais do Estado de São Paulo sob o nº 6.008

A tecnologia ESE ou para-raios com dispositivo de ionização (PDI) foi desenvolvida na França a partir de 1986 com o Prevectron da Indelec e o Pulsar da Helita. Seu funcionamento baseia-se nas características elétricas da formação do raio. O raio inicia produzindo um traçador descendente que se propaga em qualquer direção. Num segundo instante, das estruturas e objetos pontiagudos do solo são gerados traçadores ascendentes que tentam se encontrar com o traçador descendente. Num terceiro instante ocorre o encontro do traçador descendente com um dos traçadores ascendentes, formando assim um canal ionizado para o raio acontecer.

Conforme explica Hélio Blauth (helioblauth@gmail.com), engenheiro em eletrônica, formado pela PUC – RS em dezembro de 1972, com atuação na atividade de pesquisas, projetos e implantação de sistemas de proteção contra descargas atmosféricas desde 1975 e autor do livro “A prática na instalação de para-raios – Volume II”, o objetivo do sistema externo de proteção contra o raio é proporcionar um ponto de impacto para que a descarga possa ocorrer de maneira segura e controlada, proporcionando à corrente do raio um caminho seguro até a terra, sem danificar a estrutura a ser protegida. O PDI se caracteriza com a emissão de um traçador ascendente continuo antes que qualquer outro objeto dentro do seu raio de proteção, o que permite oferecer um raio de proteção maior que uma ponta simples (captor Franklin).

As normas técnicas para o PDI são baseadas nos modelos eletrogeométricos (modelo de todas as normas NFPA, IEC e NBR), sendo a norma francesa NFC 17.102 considerada a norma de referência. Ela foi traduzida em espanhol com a denominação de UNE 21186 e para o português com o nome de NP 4426.

No Brasil, existe o Protocolo de Cooperação Técnica celebrado entre o Inmetro e o Instituto Português de Qualidade (IPQ) que é uma declaração de interesse entre os participantes. Este protocolo regulamenta a partilha das suas experiências, informações e outras formas de cooperação, como também a promoção de projetos comuns na área da qualidade e metrologia. Assim, na falta de uma norma brasileira específica para os captores de tecnologia ESE, poderá ser utilizada a Norma Portuguesa NP 4426 – Proteção contra descargas atmosféricas – Sistemas com dispositivo de ionização não radioativo.

Dessa forma, a NP 4426, especifica, no estado atual do conhecimento e da tecnologia, os requisitos para desenvolver projetos para sistemas de proteção satisfatórios contra descargas atmosféricas.  Tais projetos contemplam proteções de estruturas (prédios, instalações, equipamentos etc.) e áreas abertas (áreas de armazenamento, áreas de lazer ou desportivas, etc.), com a utilização de captores com dispositivo de ionização.

A exemplo das demais normas sobre Sistemas de Proteção contra Descargas Atmosféricas (SPDA), uma instalação de proteção contra descargas atmosféricas concebida e construída de acordo com a NP 4426, ao que concerne a fenômenos naturais, não pode garantir a proteção absoluta de estruturas, pessoas ou objetos. Contudo, a aplicação destas recomendações deve reduzir significativamente o risco de danos causados por descargas atmosféricas em estruturas ou áreas abertas protegidas.

Segundo a NP 4426, os para-raios com dispositivo de ionização (PDI) geram um traçador ascendente de inicialização mais rápido que um para-raios de haste simples. Ele é composto por uma ponta de captura, um dispositivo de ionização, um elemento de fixação e uma ligação aos condutores de descida.

“Dessa forma”, acrescenta Blauth, “um Sistema de Proteção contra Descargas Atmosféricas com dispositivo de ionização (SPDI) é um projeto completo baseado em um ou mais PDI e todos os elementos necessários para conduzir a corrente da descarga atmosférica à terra com toda a segurança a fim de proteger uma estrutura, um edifício ou uma área aberta contra os impactos diretos das descargas atmosféricas. Este sistema de proteção inclui tanto as proteções interiores (áreas fechadas) como exteriores (áreas abertas) contra descargas atmosféricas”.

A necessidade de proteção é determinada por muitos parâmetros, incluindo densidade de descargas atmosféricas da zona em questão. Um método de análise de risco é proposto no Anexo A da norma portuguesa. A densidade de descarga atmosféricas é apresentada no Anexo B ou pelos dados locais, incluindo por exemplo a rede de detecção, mapas e estatísticas que são fornecidos pelo Instituto Nacional de Pesquisas Espaciais (INPE).

Outras considerações podem levar à adoção de medidas de proteção, por outras razões não estatísticas. Podem ser, por exemplo, regulamentos obrigatórios ou considerações pessoais uma vez que alguns fatores não podem ser avaliados: o desejo de evitar risco de vida ou fornecer aos ocupantes de um edifício uma certa segurança. Nestes casos, podem requerer a utilização duma proteção, mesmo que o nível de risco calculado seja inferior ao nível tolerável.

Em função do nível de proteção contra descargas atmosféricas necessário, deve-se desenvolver um projeto para determinar o posicionamento dos captores, as trajetórias dos condutores de descida e a localização e o tipo de ligação à terra. Devem ser tomadas em consideração as restrições de arquitetura da edificação a ser protegida, durante o projeto do SPDA. Este fato pode implicar em reduzir significativamente a eficácia do sistema a ser utilizado.

Convém que essas considerações sejam baseadas nos dados disponíveis, incluindo os seguintes: forma e inclinação dos telhados; material do telhado, paredes e da estrutura interna; as partes metálicas do telhado e grandes elementos metálicos externos, tais como: tubulações de gás, equipamentos de ar condicionado, escadas, antenas, depósitos de água, etc. Também devem ser considerados os componentes metálicos dos telhados como calhas, algerozes e tubos de queda pluviais, bem como  partes proeminentes da estrutura e o material que eles compõem (condutor ou não).

De uma maneira geral, deverá ser considerada no projeto a presença de objetos e estruturas metálicas localizadas sobre a cobertura da edificação a ser protegida. Um PDI é caracterizado pela sua eficácia ΔT, determinada através do ensaio de avaliação (Anexo C). O valor máximo de ΔT permitido é de 60 us, mesmo quando o valor dos resultados dos ensaios é superior.

O raio teórico de proteção de um PDI é determinado pela equação apresentada no item 5.2.3.2 da NP 4426, onde:

Rp é o raio de proteção a ser determinado

h é a diferença de altura entre captor e o ponto mais alto da edificação a ser protegida. A equação é válida somente para valores de h iguais ou inferiores a 5 metros.

D é o raio da esfera rolante, em relação ao Nível de proteção considerado.

ΔT é o tempo de antecipação do PDI em relação a uma ponteira simples, em microssegundos. É a característica principal do captor a ser utilizado.

 

(clique na imagem para uma melhor visualização)

“Em termos práticos, o raio teórico de proteção de um captor ESE (PDI) pode chegar até 79 metros, dependendo do nível de segurança escolhido, do tempo de antecipação ΔT do captor utilizado e da altura de instalação do mesmo em relação ao ponto mais alto da edificação a ser protegida. Hoje, o PDI está sendo utilizado no mundo inteiro porque oferece um custo reduzido e um raio de proteção maior permitindo, por exemplo, a proteção de áreas abertas tais como campos de futebol, áreas de lazer, praias, estacionamentos, clubes, minerações, campos de golfe, etc. A tecnologia PDI é uma opção e alternativa largamente utilizada e comprovada que permite uma proteção onde seria difícil ou até impossível com sistemas convencionais”, complementa Hélio Blauth.

Igualmente, há a Norma Regulamentadora nº 10 (NR 10), constante da Portaria nº 598 de 07/12/2004 do Ministério do Trabalho e Emprego (MTE), que estabelece os requisitos e condições mínimas para a implementação de medidas de controle e sistemas preventivos de acidentes com eletricidade. Hoje, observa-se uma grande quantidade de acidentes de trabalho que vem ocorrendo nesta atividade, principalmente com mortes de trabalhadores que lidam com alta tensão e a terceirização de trabalhadores tem contribuído muito para a elevação de acidentes.

Ela se aplica às fases de geração, transmissão, distribuição e consumo, incluindo as etapas de projeto, construção, montagem, operação, manutenção das instalações elétricas e quaisquer trabalhos realizados nas suas proximidades, observando-se as normas técnicas oficiais estabelecidas pelos órgãos competentes e, na ausência ou omissão destas, as normas internacionais cabíveis.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital Banas Qualidade e editor do blog Qualidade Onlinehayrton@hayrtonprado.jor.br

Quatro pontos de atenção para melhorar a eficiência energética nas empresas

Normas comentadas

NBR 14039 – COMENTADA de 05/2005Instalações elétricas de média tensão de 1,0 kV a 36,2 kV – Versão comentada.

Nr. de Páginas: 87

NBR 5410 – COMENTADA de 09/2004Instalações elétricas de baixa tensão – Versão comentada.

Nr. de Páginas:209

Em razão das perdas por aquecimento de equipamentos e instalações elétricas, estima-se que uma parte significativa da energia gerada anualmente no Brasil seja desperdiçada. Isso poderia ser revertido pela melhora no aproveitamento e pelo uso racional das fontes de energia. O entendimento desse potencial de economia – de fazer mais com menos – é o que define eficiência energética.

Para que as empresas estejam alertas sobre como diminuir o consumo de energia, Glycon Garcia, engenheiro eletricista, diretor executivo do Instituto Brasileiro do Cobre (Procobre), relaciona os pontos-chave para ganho de eficiência energética. A eficiência energética na iluminação está diretamente relacionada ao tipo de lâmpada e luminária utilizadas. Por isso, o ideal é que seja feito um estudo luminotécnico para indicar as melhores opções em cada situação.

Uma tendência que vem ganhando força no mercado a cada dia é o uso de lâmpadas LED. “A durabilidade de uma lâmpada LED equivale a de 50 lâmpadas incandescentes. Ela rende algo entre 20 mil e 100 mil horas, enquanto a vida útil da incandescente não passa de mil horas e a fluorescente entre 5 mil e 10 mil”, explica. De acordo com Garcia, as empresas conseguiriam diminuir o peso da fatura de consumo se planejassem esse sistema e adotassem, por exemplo, fotocélulas em fachadas, sensores de presença em locais de pouca movimentação, painéis solares fotovoltaicos, para aproveitar os recursos naturais, entre outros componentes.

A substituição de motores elétricos antigos por motores de alto rendimento, com maior presença de cobre, também é uma alternativa de economia no consumo de energia elétrica e aumento da produtividade nas empresas. Hoje, de acordo com Ministério de Minas e Energia (MME), os motores representam a maior parte do consumo da energia gerada no País. Grande parte desse consumo é explicado pela prática de recondicionamento, que torna os motores antigos menos eficientes. “Os motores de alto rendimento, com maior condutividade elétrica, diminuem perdas de energia e ainda têm a vantagem de uma maior vida útil, se comparados aos motores convencionais”, afirma Garcia.

De acordo com o diretor do Procobre, a venda de motores novos no Brasil equivale à quantidade de motores reformados. A cada reforma, estima-se que a perda de eficiência energética seja de até 3% e é comum um motor ser recondicionado mais de uma vez, aumentando o custo operacional e o desperdício de energia elétrica.“Além dos motores, os sistemas elétricos e os sistemas de controles de motores, geradores, transformadores de distribuição e até eletrodomésticos, se mais eficientes, poderiam contribuir para a redução do consumo de energia elétrica a um custo menor que a do investimento em geração de energia”, diz o engenheiro. As empresas conseguiriam ainda reduzir custos de manutenção e aumentar a produtividade com a troca dos motores antigos por novos.

Ao conduzirem energia, as próprias instalações sofrem perdas elétricas. Atualmente, existe uma discussão junto à ABNT sobre quais os parâmetros que devem ser observados para redução dessas perdas. O diretor do Procobre chama a atenção para o uso de materiais de boa qualidade e também para o local de instalação de alguns componentes.

“Quanto maior o comprimento de um cabo, maior a perda. Uma mudança de posição em relação ao item de maior consumo energético, em alguns casos, pode gerar economia”, acrescenta. Também faz o alerta de que pouco adianta ter instalações bem dimensionadas e equipamentos eficientes, se o uso não for racional. Por isso, a importância de criar bons hábitos no uso da energia elétrica, evitando desperdícios.

Em um conceito abrangente, que engloba aquecimento, ventilação, ar-condicionado e refrigeração, a climatização é outro ponto chave que deve ser observado sob o conceito de eficiência energética. No caso dos aparelhos de ar-condicionado, além do correto dimensionamento para o ambiente onde será instalado, um estudo pode identificar se é mais vantajoso para a empresa manter um sistema de ar-condicionado central ou distribuído, por exemplo. “Outro item a ser observado é a classificação energética desses aparelhos”, destaca Garcia. “Em uma escala de A (mais eficientes) a G (menos eficientes), os equipamentos são classificados levando em conta a relação entre capacidade e consumo”.

Energia para crescer

Normas comentadas

NBR 14039 – COMENTADA de 05/2005Instalações elétricas de média tensão de 1,0 kV a 36,2 kV – Versão comentada.

Nr. de Páginas: 87

NBR 5410 – COMENTADA de 09/2004Instalações elétricas de baixa tensão – Versão comentada.

Nr. de Páginas:209

Luiz Gonzaga Bertelli é presidente do Conselho de Administração do CIEE

Num país de tantas urgências, não é nada fácil definir prioridades. Mas não é tarefa impossível, com políticas setoriais baseadas em planejamento que unam viabilidade técnica e resultados de alcance não apenas econômico, mas também social, com o objetivo de sustentar e até agilizar a retomada do desenvolvimento nacional.

Questão fundamental é garantir a geração de energia elétrica em volume suficiente para atender ao aumento de consumo previsto até nos mais conservadores cenários desenhados para os próximos anos. Para isso, será preciso equacionar soluções que permitam anular ou, pelo menos, minimizar obstáculos em duas frentes.

No ambiente interno, as dificuldades residem na carência de recursos públicos para investimentos em larga escala, grandes empreiteiras enredadas na Lava Jato, empresas estatais com caixa esvaziada, as mudanças climáticas. No lado internacional, a escalada do dólar, a tendência de elevação de juros nos Estados Unidos e o efeito Trump ameaçam comprometer o ingresso de capitais externo e a importação de equipamentos e insumos.

Opção que ganha força no debate para reduzir a forte preponderância da geração hídrica na matriz energética, a expansão das termelétricas a gás têm a  desfavor  o compromisso de reduzir a emissão de gases de efeito estufa e a dependência de importações a preços que podem complicar as distribuidoras e onerar os consumidores finais, pressionando a inflação. E outras fontes renováveis, de geração limpa, poderá lembrar o leitor.

Com exceção da energia eólica, que cobre por aproximadamente 5% do consumo de eletricidade, as outras fontes – apesar das reconhecidas e até decantadas potencialidades brasileiras – continuam quase à margem do precário planejamento governamental para esse estratégico setor. Analistas com visão mais otimistas apostam fichas no avanço da energia fotovoltaica, com aproveitamento da nossa fartura de sol. Outros, como este articulista, continuam sonhando com estímulos para a cogeração com biomassa, com suas apreciáveis vantagens econômicas e ambientais.