O desempenho dos perfis de PVC rígido para a fabricação de esquadrias

Conheça as especificações de desempenho para os perfis de poli(cloreto de vinila) não plastificados (PVC rígido), utilizados na fabricação de esquadrias.

A NBR 16851-1 de 08/2020 – Esquadrias — Perfis de PVC rígido para a fabricação de esquadrias – Parte 1: Requisitos para perfis de cores claras especifica os requisitos de desempenho para os perfis de poli(cloreto de vinila) não plastificados (PVC rígido), utilizados na fabricação de esquadrias. Aplica-se apenas aos perfis com superfícies claras, com valores de coordenadas cromáticas dentro das seguintes faixas: L* ≥ 82; –2,5 ≤ a* ≤ 5; –5 ≤ b* ≤ 15. Não se aplica a qualquer outra tecnologia de fabricação de perfis de PVC rígido para esquadrias que não a mencionada em 1.2. Exemplos de outras tecnologias de fabricação de PVC rígidos para esquadrias que não estão contempladas nesta norma são: perfis pintados, perfis colaminados (com película decorativa), perfis com acabamento colorido obtidos por coextrusão e perfis de PVC rígidos reforçados (por exemplo, com fibra de vidro).

A NBR 16851-2 de 08/2020 – Esquadrias — Perfis de PVC rígido para a fabricação de esquadrias – Parte 2: Métodos de ensaio para perfis de cores claras especifica os métodos de ensaio para os perfis de poli(cloreto de vinila) não plastificados (PVC rígido), utilizados na fabricação de esquadrias. Aplica-se apenas aos perfis com superfícies claras, com valores de coordenadas cromáticas dentro das seguintes faixas: L* ≥ 82; –2,5 ≤ a* ≤ 5; –5 ≤ b* ≤ 15. Não se aplica a qualquer outra tecnologia de fabricação de perfis de PVC rígido para esquadrias que não a mencionada em 1.2. Exemplos de outras tecnologias de fabricação de PVC rígidos para esquadrias que não estão contempladas nesta Norma são: perfis pintados, perfis colaminados (com película decorativa), perfis com acabamento colorido obtidos por coextrusão e perfis de PVC rígido reforçado (por exemplo, com fibra de vidro).

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser a resistência de cantos soldados e de juntas “T” soldadas de perfis principais?

Qual é a classificação dos perfis de acordo com a resistência ao impacto de queda de massa?

Como deve ser executada a determinação da massa linear?

Como deve ser feita a determinação da estabilidade dimensional?

Uma esquadria, ao ser fabricada com perfis de PVC rígido, assegura ao produto final a resistência ao ataque das intempéries permitindo aos fabricantes de esquadrias e ao consumidor final o uso adequado deste produto. A resistência às intempéries é um ponto de atenção para qualquer produto aplicado na construção civil. As alterações químicas podem comprometer o desempenho estrutural dos perfis de PVC rígido utilizados em uma esquadria.

Além disso, as normas NBR 10821-2 e NBR 10821-4, estabelecem o desempenho das esquadrias. Portanto, a falta de atenção aos agentes agressivos das intempéries pode expor os usuários das esquadrias a riscos a sua saúde e segurança, bem como pode ocasionar prejuízo econômico, em função da necessidade de reparos ou da substituição da esquadria fabricada com perfis de PVC rígido. A partir das premissas mencionadas anteriormente, houve a solicitação à Comissão de Estudos Especial de Esquadrias (ABNT/CEE-191) para a criação de uma norma técnica que trate deste assunto. Diante do seu escopo de atuação esta demanda foi apresentada e aprovada, e esta norma foi elaborada tomando por base o seguinte documento técnico: a BS EN 12608-1:2016, que é referência em técnicas de resistência ao intemperismo consagrada mundialmente, estudando e avaliando produtos na Europa nos últimos 60 anos.

Para avaliação da conformidade de produtos finais com perfis de PVC, como esquadrias, guarda-corpos, entre outros, devem ser considerados os requisitos constantes em 4.2.1, 4.2.2 e 4.3 a 4.9. Os demais requisitos previstos nesta norma aplicam-se para avaliações de composições de matérias-primas para a fabricação de perfis cujos efeitos não podem ser previstos baseados em experiências anteriores.

Entende-se como mudança fundamental tais como: introdução ou supressão de insumos; alteração relevante de dosagem de insumos da formulação; alteração relevante do processo de manufatura. Os compostos de PVC rígido utilizados na fabricação de perfis, quando ensaiados por espectrometria de raios X, de acordo com a IEC 62321-3-1, não podem indicar concentração de chumbo superior a 0,1%. O teor de dióxido de titânio dos compostos de PVC rígido utilizados na fabricação de perfis não pode ser inferior a 5,0%. A verificação deve ser realizada conforme a NBR 16851-2:2020, Seção 14.

A temperatura média de amolecimento Vicat obtida no ensaio deve ser ≥ 75 °C, e cada valor individual deve ser ≥ 73 °C. O ensaio deve ser realizado de acordo com a NBR NM 82, com taxa de aquecimento de (50 ± 5) °C/h e carga de (50 ± 1) N. Quando as amostras forem extraídas diretamente do perfil extrudado de PVC, e durante a realização dos ensaios, caso sejam obtidas temperaturas Vicat inconsistentes e não necessariamente diferentes entre diferentes amostras, proceder conforme a seguir: descartar as amostras extraídas diretamente dos perfis e que já foram ensaiadas; coletar novas amostras para obtenção das placas prensadas conforme a NBR 16851-2:2020, Seção 4; realizar novamente o ensaio de temperatura de amolecimento Vicat; e, em caso de disputa, o ensaio em placas prensadas é o método de referência.

O módulo de elasticidade na flexão média (Ef), obtido no ensaio, deve ser ≥ 2 200 N/mm², e cada valor individual deve ser > 2.000 N/mm². O ensaio deve ser realizado de acordo com a ISO 178, à temperatura de (23 ± 2) °C. Os resultados díspares e as inconsistências no ensaio de determinação do módulo de elasticidade na flexão podem ser causados pela ausência de correto alinhamento no momento do corte do perfil, ou em virtude da alteração da espessura da parede quando de sua extrusão.

Ambos os casos podem ser solucionados mediante preparação de placas prensadas conforme NBR 16851-2:2020, Seção 4, garantindo obtenção de amostras planas e desprovidas de imperfeições geométricas. Em caso de disputa, o ensaio em placas prensadas é o método de referência. A resistência média ao impacto na tração obtida no ensaio deve ser ≥ 600 kJ/m², e cada valor individual deve ser ≥ 450 kJ/m². O ensaio deve ser realizado conforme a ISO 8256, utilizando corpos de prova do tipo 5, à temperatura de (23 ± 2) °C. Os corpos de prova para realização deste ensaio devem ser retirados diretamente dos perfis.

A resistência média do perfil ao impacto de Charpy deve atender aos requisitos descritos a seguir. A resistência ao impacto Charpy, antes da exposição em câmara de UV, deve ser ≥ 55 kJ/m² e a redução da resistência ao impacto Charpy, após exposição por 2.000 h em câmara de UV, deve ser ≤ 40 %. Este ensaio deve ser realizado de acordo com a NBR 16851-2:2020, Seção 13, e com a ISO 179-1, utilizando-se o método designado ISO 179-1/1fA, à temperatura de (23 ± 2) °C.

Após 6.000 h de exposição, a diferença de cor entre o corpo de prova exposto e o não exposto à câmara dotada de lâmpada de arco de xenônio, expressa em ΔE*, deve ser menor ou igual a 5, e │Δb*│ deve ser menor ou igual a 3. O ensaio deve ser realizado conforme a NBR 16851-2:2020, Seção 11. A cor do perfil deve ser a mesma e uniforme em todas as paredes externas. As superfícies do perfil devem ser lisas e livres de pite, impurezas, cavidades ou outros defeitos. As arestas do perfil não podem ter rebarbas.

Os acordos posteriores relacionados à aparência do perfil, como tolerâncias na cor de referência, podem ser feitos entre o cliente e o fabricante, e não fazem parte dos requisitos desta norma, desde que os demais requisitos sejam obedecidos. A aparência do perfil é determinada observando-o à vista normal ou corrigida a uma distância de 1 m, com grau de iluminação do ambiente entre 750 lux e 1.500 lux. As dimensões da seção do perfil devem estar de acordo com o declarado pelo fabricante. As tolerâncias das dimensões externas do perfil, em relação ao seu formatonominal, devem estar de acordo com a tabela abaixo.

O desvio de linearidade, determinado conforme a NBR 16851-2:2020, Seção 6, deve ser ≤ 1 mm para o comprimento de 1 m. A determinação das dimensões deve ser realizada conforme a NBR 16851-2:2020, Seção 5. A massa linear dos perfis principais deve ser ≥ 95 % de sua massa linear nominal. O ensaio deve ser realizado conforme a NBR 16851-2:2020, Seção 7.

As variações longitudinais para perfis principais devem atender aos requisitos a seguir: a variação longitudinal (R) para cada par de marcas de cada corpo de prova deve ser ≤ 2,0 %; a diferença de variação longitudinal entre as superfícies visíveis opostas (ΔR), deve ser ≤ 0,4 % em todos os corpos de prova. O ensaio deve ser realizado conforme a NBR 16851-2:2020, Seção 8.

Pode-se especificar um procedimento de preparo de amostras a partir de perfis de PVC rígido, de grânulos ou pó, para a determinação das características do material empregado na fabricação de perfis. Para as placas para ensaio, preparar as placas prensadas de acordo com a ISO 21306-2, Seção 4. As placas prensadas devem ser provenientes de: perfil de PVC rígido extrudado moído; grânulos; ou pó. As placas prensadas devem passar por calandra ou moinho de rolos e então devem ser prensadas. A velocidade diferencial entre os dois rolos do misturador deve ser de 1:1,2. A placa prensada deve possuir espessura de (4 ± 0,2) mm.

Resfriar a placa, conforme a ISO 21306-2:2019, Tabela 2. O resfriamento deve ocorrer preferencialmente à taxa de (15 ± 3) °C/min. Para a determinação das dimensões da seção, o método de ensaio determina as dimensões externas e as espessuras das paredes externas de um perfil de PVC rígido utilizado na fabricação de esquadrias. O corpo de prova consiste em uma seção de perfil de PVC rígido com no mínimo 50 mm de comprimento.

Usa-se como aparelhagem, um instrumento de medição de distâncias com precisão mínima de 0,05 mm. Deve-se condicionar o corpo de prova na temperatura de (23 ± 2) °C por no mínimo 1 h antes do ensaio. Medir as dimensões externas (altura e profundidade) a (23 ± 2) °C. As medições devem ser realizadas em pontos ao menos 1 mm distantes de cantos ou junções. Para a expressão dos resultados, devem ser anotadas todas as dimensões medidas.

Recomenda-se que as medidas sejam anotadas em uma figura representativa da seção do perfil. O relatório do ensaio deve conter as seguintes informações: número desta norma; laboratório responsável pelo ensaio; identificação completa do perfil; data da realização do ensaio; aparelhagem utilizada; altura do perfil; profundidade do perfil; espessura das paredes externas em todos os pontos medidos; qualquer incidente que possa ter influenciado ou não o resultado do ensaio.

Para a determinação do desvio de linearidade, o corpo de prova consiste em uma seção de perfil de PVC rígido com (1.000 ± 1) mm de comprimento. A aparelhagem a ser utilizada no ensaio está relacionada a seguir: instrumento de medição de distâncias com precisão mínima de 0,1 mm; base de apoio plana.

O valor do desvio de linearidade, expresso em milímetros por metro (mm/m), é obtido dividindo-se a maior distância medida entre a base plana e o corpo de prova pelo comprimento do corpo de prova. O relatório do ensaio deve conter as seguintes informações: número desta norma; laboratório responsável pelo ensaio; identificação completa do perfil; data da realização do ensaio; aparelhagem utilizada; comprimento do corpo de prova; distância máxima entre a base plana e o corpo de prova nas duas direções medidas; valor do desvio de linearidade; qualquer incidente que possa ter influenciado ou não o resultado do ensaio.

API STD 6AV2: a instalação e a manutenção de válvulas de segurança

Essa norma, editada em 2020 pelo American Petroleum Institute (API), fornece os requisitos para a instalação e a manutenção de válvulas de segurança. Estão incluídos os requisitos para receber a inspeção, a instalação, a manutenção, os reparos em campo e fora do local, procedimentos de ensaios com critérios de aceitação e relatório de falha e documentação. Os sistemas de energia e controle para válvulas de segurança não estão incluídos.

A API STD 6AV2:2020 – Installation, Maintenance, and Repair of Safety Valves (SSV, USV, and BSDV) fornece os requisitos para a instalação e a manutenção de válvulas de segurança. Estão incluídos os requisitos para receber a inspeção, a instalação, a manutenção, os reparos em campo e fora do local, procedimentos de ensaios com critérios de aceitação e relatório de falha e documentação. Os sistemas de energia e controle para válvulas de segurança não estão incluídos. A válvula de segurança, conforme usada nesta norma, denota uma válvula de superfície (surface safety valve – SSV), uma válvula de segurança subaquática (underwater safety valve – USV) ou uma válvula de desligamento de embarque (boarding shutdown valve – BSDV). O ensaio do sistema de desligamento de segurança e a sua frequência estão fora do escopo desta norma.

Conteúdo da norma

1 Escopo…………………….. ……….. 1

2 Referências normativas…………….. 1

3 Termos, definições, acrônimos e abreviações………….. 1

3.1 Termos e definições ………………………………… 1

3.2 Siglas e abreviações………………………. 2

4 Inspeção de recebimento……………………….. 3

5 Instalação, manutenção e ensaio. ……………. 3

5.1 Geral…………………………….. ……… 3

5.2 Procedimentos de trabalho………………… 3

5.3 Instalação…………………………….. …. 4

5.4 Ensaio………………………………………. 4

5.5 Manutenção…………………………… 4

6 Reparo e remanufatura…………………. 5

6.1 Reparo no campo de válvulas de segurança……… 5

6.2 Reparo/remanufatura fora do local da válvula de segurança…………. 6

7 Procedimentos de ensaio…………………………. 8

7.1 Geral……………………………….. ……… 8

7.2 Ensaio periódico de operação/pressão…… ……….. 8

7.3 Ensaio após a instalação/reparos de campo………….. 10

8 Relatório de falha…………………………… 12

8.1 Geral…………………………………. ……. 12

8.2 Relatório de falha…………………….. 12

8.3 Responsabilidades do relatório………………… 13

9 Requisitos de documentação………………………. 13

Anexo A (informativo) Cálculo de acúmulo de pressão…….. 16

Bibliografia…….. 26

Figuras

1 Folha de registro de reparo no campo de válvula de segurança……….. 6

2 Folha de dados de ensaio funcional da válvula de segurança para reparos de instalação/campo… …………………. 7

3 Folha de dados de ensaio funcional da válvula de segurança para ensaios periódicos…………………… 10

4 Lista de verificação de falha para válvulas de segurança de superfície e válvulas de segurança subaquáticas………. 15

A.1 Diagrama de fluxo de cálculo………………….. 18

Tabelas

A.1 Nomenclatura…………………… 17

A válvula de segurança é um conjunto de válvulas que fecha em caso de perda de alimentação. A arquitetura do sistema e os sistemas de energia/controle para válvulas de segurança são abordados nos documentos do sistema de segurança, como a API 14C. A válvula de segurança de superfície (SSV) ou válvula de segurança subaquática (USV) é normalmente a segunda válvula na corrente de fluxo da cabeça do poço e da árvore. Para uma instalação de superfície offshore, a válvula de desligamento de embarque (BSDV) é normalmente a segunda válvula no fluxo de fluxo, entre um sistema de produção subaquático e a instalação de superfície.

Esta edição da API 6AV2 contém algumas alterações principais em relação às edições anteriores. Foi alterado o título da norma para incluir válvulas de desligamento de embarque, que é um novo tipo de válvula de segurança no API 6A, 21ª Edição. O termo válvula de segurança substituiu SSV e USV em todo o documento. Este termo agora inclui SSV, USV e BSDV.

Os requisitos para reparos externos de válvulas de segurança agora se referem ao API 6AR. O ensaio e a possível reparação da válvula de segurança são tratados na norma. A operação completa do sistema para atender o operador e os possíveis requisitos regulamentares não são especificados. Foram adicionados os requisitos para o estabelecimento da definição do produto pelo provedor de serviços. O termo definição original do produto e os requisitos associados foram removidos.

A conformidade da proteção catódica de estruturas complexas

Saiba quais são os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares.

A NBR 16896 de 08/2020 – Proteção catódica de estruturas complexas — Requisitos estabelece os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares. As estruturas compostas por outros metais, como aço inoxidável ou alumínio, podem ser protegidas aplicando-se os conceitos e requisitos descritos nesta norma, com exceção dos critérios de proteção, que são exclusivos para o aço-carbono. Esta norma visa eliminar a corrosão acelerada causada pelo acoplamento galvânico.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as técnicas de proteção catódica para estruturas complexas?

O que são os leitos de anodos?

Como deve ser executada a instalação de sistemas de proteção catódica?

Como deve ser feita a verificação da eficácia da proteção catódica?

Pode-se dizer que a proteção catódica é um método de prevenção da corrosão em estruturas metálicas submersas e subterrâneas. É um dos métodos mais eficazes para prevenir a corrosão em uma superfície metálica, sendo usada para proteger várias estruturas contra a corrosão, como navios, flutuadores offshore, equipamentos submarinos, portos, dutos, tanques. Ou seja, basicamente todas as estruturas metálicas submersas ou enterradas.

A técnica se baseia na conversão de áreas ativas de uma superfície metálica em passivas, ou seja, torná-las o cátodo de uma célula eletroquímica. Com o fornecimento de corrente, o potencial do metal é reduzido, o ataque de corrosão cessará e a proteção catódica será alcançada. A proteção catódica pode ser alcançada por: proteção anódica catódica sacrificial e proteção catódica de corrente impressa, muitas vezes referida como ICCP.

No caso dos anodos para a proteção catódica, ao processo de fundição dos anodos deve resultar uma liga com perfeita homogeneização dos componentes em toda a extensão de seu corpo, sem defeitos internos ou externos. O forno para fundição da liga deve ter capacidade igual ou superior à massa do anodo a ser fabricado. O vazamento da liga deve ser contínuo, não sendo admitidas interrupções na alimentação.

O material da alma do anodo deve ser o aço. O aço deve ter teor de carbono ≤ 0,28%. Antes do processo de fundição, o aço deve ser revestido com zinco aderente, aplicado por qualquer meio comercial adequado, ou ter superfície limpa através de um jateamento até atingir o grau Sa 2½, conforme NBR 7348. A alma deve ter boa aderência ao corpo do anodo, não apresentando vazios entre as superfícies de contato.

Os profissionais envolvidos com o projeto, a supervisão da instalação e do comissionamento, e a supervisão da operação e da manutenção do sistema de proteção catódica devem ter o nível adequado de competência para a realização de suas atribuições. Recomenda-se que a competência do pessoal de proteção catódica seja demonstrada de acordo com a NBR 15653 ou por outro procedimento equivalente. Convém que sejam usados os critérios de proteção catódica estabelecidos na NBR ISO 15589-1, mesmo para estruturas classificadas como complexas. No entanto, as características das estruturas complexas e os fatores que as influenciam (ver Seção 6) significam que nem sempre é possível determinar ou alcançar os critérios de proteção catódica tradicionais.

Nesse caso, os métodos de verificação alternativos podem ser utilizados para garantir uma redução adequada da taxa de corrosão. Estes critérios são derivados daqueles contidos na EN 14505. Todos os potenciais devem ser medidos em relação a um eletrodo de referência de cobre/sulfato de cobre saturado. Recomenda-se que os pontos de posicionamento de eletrodos de referência sejam marcados em campo, assim como que o mapa de localização do sistema de aterramento seja avaliado para determinação dos pontos de medição.

Pode-se definir o potencial ON como o de um tubo-eletrólito medido durante a operação contínua do sistema de proteção catódica. Ele é igual ou mais negativo que –0,85 V, se o ponto de medição se situar na área de influência do eletrodo externo. O critério da aplicação de corrente tem o objetivo de demonstrar que a corrente é capaz de entrar na estrutura nos locais inspecionados. Consiste em ligar a fonte de corrente de proteção catódica e avaliar a alteração do potencial natural ou de corrosão, que deve instantaneamente ficar pelo menos 0,3 V mais negativo.

Isso indica que uma quantidade suficiente de corrente está entrando na estrutura. Uma despolarização em cupom de proteção catódica de, no mínimo, 0,1 V, medindo o potencial OFF do cupom imediatamente e após até 1 h de desconexão. Recomenda-se atender a mais de um desses critérios para comprovar que toda a estrutura complexa está protegida adequadamente.

Podem ser usados métodos alternativos, caso se possa demonstrar que o controle da corrosão é atingido. Técnicas de inspeção do revestimento, associadas a escavações para correlação ou inspeção com pipeline inspection gauges (pig) instrumentado, podem ser utilizados, quando disponíveis. O sistema de proteção catódica depende do tamanho e do formato da estrutura complexa, do tipo de revestimento, da ação agressiva do solo e de sua resistividade, das interferências de corrente contínua (cc) e corrente alternada (ca), de regulamentos nacionais, bem como de critérios técnicos e econômicos.

Para uma proteção catódica eficiente, recomenda-se que as condições estabelecidas a seguir sejam atendidas. Para a continuidade elétrica, convém que todas as partes metálicas de uma estrutura complexa a ser protegida sejam eletricamente contínuas. Recomenda-se que eletrodos externos também sejam eletricamente contínuos.

O cálculo da corrente drenada e vida útil: Para que o sistema de proteção catódica seja devidamente projetado, recomenda-se que a forma e a extensão da estrutura sejam claramente definidas em termos de sua localização e isolamento elétrico de estruturas externas. Se o isolamento elétrico for ineficaz e não puder ser restaurado a suas condições originais, convém que a extensão da estrutura complexa seja revisada para levar isso em conta.

Para os revestimentos externos, ou seja, os revestimentos protetores nem sempre são aplicados nos componentes em uma estrutura complexa (por exemplo, sistemas de aterramento). Os componentes não revestidos elevam significativamente as demandas de corrente de proteção, aumentando, por conseguinte, as dificuldades associadas à aplicação da proteção catódica assim como os riscos de interferência. Sempre que possível, convém que componentes metálicos enterrados sejam devidamente revestidos.

Devem ser levantadas as características dos componentes metálicos relevantes que compõem a estrutura complexa, incluindo os tipos de material e suas áreas superficiais enterradas. Os eletrodos externos relevantes devem ser levantados. Embora não haja um compromisso do projeto em proteger essas estruturas, elas consomem parte da corrente injetada pelo sistema de proteção catódica e devem ser consideradas no dimensionamento.

Devem ser consideradas no projeto as especificidades dos revestimentos aplicados em todos os componentes de uma estrutura complexa, incluindo a sua compatibilidade com o uso de proteção catódica. Convém que sejam consideradas no projeto as condições ambientais específicas, como, por exemplo, o teor de cloretos (caso partes da estrutura seja em aço inoxidável), a presença de bactérias ou contaminantes, etc.

Para a blindagem elétrica, convém que sejam levantadas as estruturas físicas ou os materiais específicos, situados no entorno da estrutura complexa, que possam atuar como blindagem elétrica ou restringir a distribuição da corrente destinada à proteção catódica. As blindagens elétricas podem ser condutoras ou não condutoras, conforme exemplos descritos a seguir. As condutoras são as estruturas em concreto armado, estacas metálicas, poços metálicos, tubulações metálicas, aterramento elétrico, tubos-camisa, etc. As não condutoras incluem as mantas geotêxteis ou poliméricas, materiais de proteção mecânica, concreto impermeabilizado, etc.

No estabelecimento dos locais para instalação de anodos e de eletrodos de referência estacionários deve ser considerada a localização das blindagens elétricas. Devem ser considerados no projeto todos os componentes e acessórios destinados a promover o isolamento elétrico entre estruturas metálicas. Eventuais caminhos elétricos paralelos que possam comprometer o isolamento elétrico devem ser levantados.

As fontes de caminhos elétricos paralelos típicos são: aterramentos elétricos, cabos de instrumentação e telemetria, suportes metálicos de tubulações, ferragens de estruturas de concreto armado, etc. Os curtos-circuitos eletrolíticos podem ocorrer em regiões com eletrólitos de baixa resistividade, onde há circulação de corrente iônica entre as estruturas metálicas que, a princípio, estariam isoladas eletricamente.

As situações típicas de curtos-circuitos eletrolíticos que devem ser mapeadas são o curto-circuito devido ao transporte de fluido de baixa resistividade entre as extremidades de uma junta isolante; o curto-circuito em solos contaminados com vazamentos de fluidos de baixa resistividade. Os detalhes referentes às juntas de isolamento elétrico são apresentados na NBR ISO 15589-1. Devem ser levantadas todas as possíveis fontes de interferência elétrica cc ou ca existentes nas proximidades da estrutura complexa.

As fontes de interferência cc mais comuns são os sistemas de tração eletrificados e os sistemas de proteção catódica existentes. As fontes de interferência ca mais usuais são as linhas de transmissão em alta-tensão e as subestações elétricas. Convém que sejam levantadas todas as estruturas metálicas existentes nas proximidades da estrutura complexa e que possam sofrer interferência cc do sistema de proteção catódica da estrutura complexa. No projeto devem ser adotadas medidas para mitigar ou reduzir seus efeitos.

A acessibilidade a edificações e equipamentos urbanos

Conheça critérios e parâmetros técnicos a serem observados quanto ao projeto, construção, instalação e adaptação do meio urbano e rural, e de edificações às condições de acessibilidade. No estabelecimento desses critérios e parâmetros técnicos foram consideradas diversas condições de mobilidade e de percepção do ambiente, com ou sem a ajuda de aparelhos específicos, como próteses, aparelhos de apoio, cadeiras de rodas, bengalas de rastreamento, sistemas assistivos de audição ou qualquer outro que venha a complementar necessidades individuais.

Republicada com a incorporação de emenda, a NBR 9050 de 08/2020 – Acessibilidade a edificações, mobiliário, espaços e equipamentos urbanos estabelece critérios e parâmetros técnicos a serem observados quanto ao projeto, construção, instalação e adaptação do meio urbano e rural, e de edificações às condições de acessibilidade. No estabelecimento desses critérios e parâmetros técnicos foram consideradas diversas condições de mobilidade e de percepção do ambiente, com ou sem a ajuda de aparelhos específicos, como próteses, aparelhos de apoio, cadeiras de rodas, bengalas de rastreamento, sistemas assistivos de audição ou qualquer outro que venha a complementar necessidades individuais.

Esta norma visa proporcionar a utilização de maneira autônoma, independente e segura do ambiente, edificações, mobiliário, equipamentos urbanos e elementos à maior quantidade possível de pessoas, independentemente de idade, estatura ou limitação de mobilidade ou percepção. As áreas técnicas de serviço ou de acesso restrito, como casas de máquinas, barriletes, passagem de uso técnico, e outros similares, não precisam ser acessíveis. As edificações residenciais multifamiliares, condomínios e conjuntos habitacionais necessitam ser acessíveis em suas áreas de uso comum. As unidades autônomas acessíveis são localizadas em rota acessível. Para serem considerados acessíveis, todos os espaços, edificações, mobiliários e equipamentos urbanos que vierem a ser projetados, construídos, montados ou implantados, bem como as reformas e ampliações de edificações e equipamentos urbanos, atendem ao disposto nesta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feita a aplicação e formas de informação e sinalização?

Como deve ser feita a crominância ou a aplicação de cores nos sinais?

Como devem ser executados os símbolos táteis?

Qual é o símbolo internacional de acesso – SAI?

Pode-se definir a acessibilidade como a possibilidade e condição de alcance, percepção e entendimento para utilização, com segurança e autonomia, de espaços, mobiliários, equipamentos urbanos, edificações, transportes, informação e comunicação, inclusive seus sistemas e tecnologias, bem como outros serviços e instalações abertos ao público, de uso público ou privado de uso coletivo, tanto na zona urbana como na rural, por pessoa com deficiência ou mobilidade reduzida. Quanto aos parâmetros antropométricos, para a determinação das dimensões referenciais, foram consideradas as medidas entre 5% a 95% da população brasileira, ou seja, os extremos correspondentes a mulheres de baixa estatura e homens de estatura elevada. A figura abaixo apresenta as dimensões referenciais para deslocamento de pessoas em pé.

A figura abaixo apresenta as dimensões referenciais para cadeiras de rodas manuais ou motorizadas, sem scooter (reboque). A largura mínima frontal das cadeiras esportivas ou cambadas é de 1,00 m.

Os mobiliários com altura entre 0,60 m até 2,10 m do piso podem representar riscos para pessoas com deficiências visuais, caso tenham saliências com mais de 0,10 m de profundidade. Quando da impossibilidade de um mobiliário ser instalado fora da rota acessível, ele deve ser projetado com diferença mínima em valor de reflexão da luz (LRV) de 30 pontos, em relação ao plano de fundo, e ser detectável com bengala longa ou atender ao descrito em 5.4.6.3. As medidas necessárias para a manobra de cadeira de rodas sem deslocamento são: para rotação de 90° = 1,20 m × 1,20 m; para rotação de 180° = 1,50 m × 1,20 m; para rotação de 360° = círculo com diâmetro de 1,50 m.

Devem ser previstas proteções contra queda em áreas de circulação limitadas por superfícies laterais, planas ou inclinadas, com declives em relação ao plano de circulação e que tenham a altura do desnível igual ou acima de 0,18 m. Excetuam-se locais de embarque e desembarque de transportes coletivos. Há na norma modelos de medidas de proteção. A implantação de margem plana localizada ao lado da faixa de circulação, com pelo menos 0,60 m de largura antes do trecho em desnível. A faixa de proteção deve ter piso diferenciado quanto ao contraste tátil e visual de no mínimo 30 pontos aferidos pelo valor da luz refletida (LRV), em relação ao piso da área de circulação.

A instalação de proteção lateral com características de guarda corpo em áreas de circulação elevadas, rampas, terraços sem vedação lateral que estejam delimitadas em um ou ambos os lados por superfície que se incline para baixo com desnível superior a 0,60 m e inclinação igual ou superior a 1:2. A área de transferência deve ter no mínimo as dimensões do módulo de referência (M.R.). Devem ser garantidas as condições de deslocamento e manobra para o posicionamento do M.R. junto ao local de transferência.

A altura do assento do local para o qual for feita a transferência deve ser semelhante à do assento da cadeira de rodas. Nos locais de transferência, devem ser instaladas barras de apoio, nas situações previstas nas Seções 7 a 10. Para a realização da transferência, deve ser garantido um ângulo de alcance que permita a execução adequada das forças de tração e compressão (ver 4.6.4). Diversas situações de transferência estão ilustradas nas Seções 7 a 10.

Em relação à área de aproximação, deve ser garantido o posicionamento frontal ou lateral da área definida pelo M.R. em relação ao objeto, avançando sob este entre 0,25 m e 0,50 m, em função da atividade a ser desenvolvida. A superfície de trabalho acessível é um plano horizontal ou inclinado para desenvolvimento de tarefas manuais ou leitura. A Figura 18 (disponível na norma) apresenta, na vista horizontal, as áreas de alcance em superfícies de trabalho, conforme o seguinte: A1 × A2 = 1,50 m × 0,50 m = alcance máximo para atividades eventuais; B1 × B2 = 1,00 m × 0,40 m = alcance para atividades sem necessidade de precisão; C1 × C2 = 0,35 m × 0,25 m = alcance para atividades por tempo prolongado.

Os objetos como corrimãos e barras de apoio, entre outros, devem estar afastados no mínimo 40 mm da parede ou com obstáculos. Quando o objeto for embutido em nichos, deve-se prever também uma distância livre mínima de 150 mm. Os corrimãos e as barras de apoio, entre outros, devem ter seção circular com diâmetro entre 30 mm e 45 mm, ou seção elíptica, desde que a dimensão maior seja de 45 mm e a menor de 30 mm. São admitidos outros formatos de seção, desde que sua parte superior atenda às condições desta Subseção. Garantir um arco da seção do corrimão de 270°.

Os elementos de acionamento para abertura de portas devem possuir formato de fácil pega, não exigindo firmeza, precisão ou torção do pulso para seu acionamento. As maçanetas devem preferencialmente ser do tipo alavanca, possuir pelo menos 100 mm de comprimento e acabamento sem arestas e recurvado na extremidade, apresentando uma distância mínima de 40 mm da superfície da porta. Devem ser instaladas a uma altura que pode variar entre 0,80 m e 1,10 m do piso acabado. Os puxadores verticais para portas devem ter diâmetro entre 25 mm e 35 mm, com afastamento de no mínimo 40 mm entre o puxador e a superfície da porta.

O puxador vertical deve ter comprimento mínimo de 0,30 m, afastado 0,10 m do batente. Devem ser instalados a uma altura medida da metade do puxador até o piso acabado de 0,80 m a 1,10 m, conforme Figura 24 (disponível na norma). Os puxadores horizontais para portas devem ter diâmetro entre 25 mm e 35 mm, com afastamento de no mínimo 40 mm entre o puxador e a superfície da porta.

O puxador horizontal deve ter comprimento mínimo de 0,40 m, afastado 0,10 m do batente (do lado das dobradiças), conforme Figura 24. Devem ser instalados na altura da maçaneta e, na sua inexistência, a uma altura entre 0,80 m a 1,10 m medidos do eixo do puxador ao piso acabado. Em caso de porta de sanitários deve atender os requisitos de 6.11.2.7. As barras antipânico devem ser apropriadas ao tipo de porta em que são instaladas e devem atender integralmente ao disposto na NBR 11785.

Se instaladas em portas corta-fogo, devem apresentar tempo requerido de resistência ao fogo compatível com a resistência ao fogo destas portas. Devem ser instaladas a uma altura de 0,90 m do piso acabado. Os assentos para pessoas obesas (P.O) devem ter profundidade do assento mínima de 0,47 m e máxima de 0,51 m, medida entre sua parte frontal e o ponto mais frontal do encosto tomado no eixo de simetria; largura do assento mínima de 0,75 m, medida entre as bordas laterais no terço mais próximo do encosto. É admissível que o assento para pessoa obesa tenha a largura resultante de dois assentos comuns, desde que seja superior a esta medida de 0,75 m.

Deve ter altura do assento mínima de 0,41 m e máxima de 0,45 m, medida na sua parte mais alta e frontal; ângulo de inclinação do assento em relação ao plano horizontal, de 2°a 5°; e ângulo entre assento e encosto de 100° a 105°. Quando providos de apoios de braços, estes devem ter altura entre 0,23 m e 0,27 m em relação ao assento. Os assentos devem suportar uma carga de 250 kg.

A percepção do som está relacionada a inúmeras variáveis que vão desde limitações físicas, sensoriais e cognitivas da pessoa até a qualidade do som emitido, quanto ao seu conteúdo, forma, modo de transmissão e contraste entre o som emitido e o ruído de fundo. Um som é caracterizado por três variáveis: frequência, intensidade e duração. O ouvido humano é capaz de perceber melhor os sons na frequência entre 20 Hz e 20.000 Hz, intensidade entre 20 dB a 120 dB e duração mínima de 1 s. Sons acima de 120 dB causam desconforto e sons acima de 140 dB podem causar sensação de dor.

Ressalte-se que os elementos de orientação e direcionamento devem ser instalados com forma lógica de orientação, quando não houver guias ou linhas de balizamento. O local determinado para posicionamento do intérprete de Libras deve ser identificado com o símbolo internacional de pessoas com deficiência auditiva. Deve ser garantido um foco de luz posicionado de forma a iluminar o intérprete de sinais, desde a cabeça até os joelhos. Este foco não pode projetar sombra no plano atrás do intérprete de sinais.

Os planos e mapas acessíveis de orientação podem ser instalados, dependendo da funcionalidade e da circulação no espaço. A redação de textos contendo orientações, instruções de uso de áreas, objetos, equipamentos, regulamentos, normas de conduta e utilização deve: ser objetiva; quando tátil, conter informações essenciais em alto relevo e em Braille; conter sentença completa, na ordem: sujeito, verbo e predicado; estar na forma ativa e não passiva; estar na forma afirmativa e não negativa; enfatizar a sequência das ações.

Em sinalização, entende-se por tipografia as letras, números e sinais utilizados em placas, sinais visuais ou táteis, e por fonte tipográfica um conjunto de caracteres em um estilo coerente. Recomenda-se a combinação de letras maiúsculas e minúsculas (caixas alta e baixa), letras sem serifa, evitando-se, ainda, fontes itálicas, decoradas, manuscritas, com sombras, com aparência tridimensional ou distorcidas. A diagramação consiste no ato de compor e distribuir textos, símbolos e imagens sobre um elemento de informação em uma lógica organizacional.

A conformidade das obras em alvenaria estrutural

A solução estrutural adotada em projeto deve atender aos requisitos de qualidade estabelecidos relativos à capacidade resistente, ao desempenho em serviço e à durabilidade da estrutura. O projeto deve ser consistente de modo a assegurar a segurança à ruptura.

A NBR 16868-1 de 08/2020 – Alvenaria estrutural – Parte 1: Projeto estabelece os requisitos para o projeto de estruturas de alvenaria. Também se aplica à análise do desempenho estrutural de elementos de alvenaria inseridos em outros sistemas estruturais. Esta parte não inclui requisitos para evitar estados-limite gerados por ações como sismos, impactos, explosões e fogo. Esta norma só é aplicável à alvenaria de blocos e tijolos cerâmicos e de blocos de concreto. A NBR 16868-2 de 08/2020 – Alvenaria estrutural – Parte 2: Execução e controle de obras estabelece os requisitos para execução e controle de obras de alvenaria estrutural. A NBR 16868-3 de 08/2020 – Alvenaria estrutural – Parte 3: Métodos de ensaio estabelece os métodos de ensaio de elementos em alvenaria construídos com blocos e tijolos cerâmicos e de concreto (prisma, pequena parede e parede), submetidos a esforços de compressão axial, cisalhamento, flexão e flexocompressão.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os símbolos e abreviaturas usadas na parte 1?

Quais são as propriedades da alvenaria e de seus componentes?

Quais as disposições gerais para o recebimento e armazenamento dos materiais e componentes?

Quais as medidas no recebimento de aço para as armaduras?

Como deve ser executado o ensaio para a determinação da resistência à compressão de pequenas paredes?

Qual o procedimento de preparação dos prismas para o ensaio para a determinação da resistência à compressão de prismas?

A solução estrutural adotada em projeto deve atender aos requisitos de qualidade estabelecidos relativos à capacidade resistente, ao desempenho em serviço e à durabilidade da estrutura. O projeto deve ser consistente de modo a assegurar a segurança à ruptura. A estrutura não pode apresentar danos que comprometam em parte ou totalmente o uso para o qual foi projetada e deve ter capacidade de manter-se em condições plenas de utilização durante sua vida útil. A estrutura deve ter capacidade de resistir às influências ambientais previstas e definidas em conjunto pelo projetista estrutural e seu contratante, no início dos trabalhos de elaboração do projeto.

O projeto de uma estrutura de alvenaria deve ser elaborado, adotando-se: o sistema estrutural adequado à função desejada para a edificação; as ações compatíveis e representativas; o dimensionamento e verificação de todos os elementos estruturais presentes; a especificação de materiais e componentes apropriados e de acordo com os dimensionamentos efetuados; e os procedimentos de controle para projeto. O projeto estrutural, antes de ser liberado para execução, deve ser devidamente compatibilizado com os projetos das demais especialidades técnicas. As interferências desses outros projetos em elementos de alvenaria estrutural devem ser solucionadas antes de sua aprovação final.

O projeto de estrutura de alvenaria deve ser constituído por desenhos técnicos e especificações. Esses documentos devem conter todas as informações necessárias à execução da estrutura de acordo com os critérios adotados, conforme descrito a seguir. O projeto deve apresentar desenhos técnicos detalhando as fiadas diferenciadas, exceto na altura das aberturas, e as elevações de todas as paredes. Em casos especiais de elementos longos repetitivos (como muros, por exemplo), plantas e elevações podem ser representadas parcialmente. Devem ser apresentados, sempre que presentes o posicionamento dos blocos ou tijolos especiais; os detalhes de amarração das paredes; localização dos pontos grauteados e das armaduras; o posicionamento das juntas de controle e de dilatação.

As especificações de projeto devem conter as resistências características à compressão dos prismas ocos e prismas cheios, e grautes, as faixas de resistência média à compressão (ou as classes conforme a NBR 13281) das argamassas, assim como a categoria, classe e bitola dos aços a serem adotados. Também podem ser apresentados os valores de resistência sugeridos para os blocos ou tijolos, de forma que as resistências de prisma especificadas sejam atingidas. O planejamento e procedimentos de controle devem atender a NBR 16868-2.

Entende-se por avaliação de conformidade do projeto de estruturas de alvenaria a verificação e a análise crítica do projeto, realizadas com o objetivo de avaliar se o projeto atende aos requisitos aplicáveis. A avaliação da conformidade do projeto de estruturas de alvenaria deve contemplar, entre outras, as seguintes atividades (integral ou parcialmente): verificar se as premissas adotadas para o projeto estão de acordo com o previsto na parte 1 e se todos os seus requisitos foram considerados; analisar as considerações de cálculo e verificar os resultados dos cálculos; analisar os desenhos que compõem o projeto, inclusive os detalhes construtivos.

A avaliação da conformidade do projeto deve ser realizada por profissional habilitado e independente em relação ao projetista da estrutura. A avaliação deve ser registrada em documento específico que deve acompanhar a documentação do projeto citada nesta parte 1 da NBR 16868. A responsabilidade pela escolha do profissional que for realizar a avaliação da conformidade do projeto cabe ao contratante do projeto da estrutura. Esta responsabilidade pode ser do proprietário da obra, que, no caso de não ter os conhecimentos técnicos necessários para a escolha do profissional responsável pela avaliação da conformidade do projeto, pode designar um representante ou preposto para substituí-lo nesta atribuição.

A avaliação da conformidade do projeto é obrigatória e deve ser realizada antes da fase de construção e, de preferência, simultaneamente com a fase de projeto. É recomendável que o profissional escolhido para realizar a avaliação da conformidade do projeto possua experiência em estruturas de alvenaria. Recomenda-se ao projetista da estrutura alertar o seu contratante sobre a obrigatoriedade da avaliação da conformidade do seu projeto nos termos previstos nesta subseção.

Cabe ao contratante informar ao projetista da estrutura quem é o profissional responsável pela avaliação da conformidade do projeto. Os valores das propriedades da alvenaria podem ser adotados de acordo com a tabela abaixo. Com relação à geometria, a parede construída com junta amarrada no plano da parede pode ser estrutural. Toda parede com junta não amarrada no seu plano deve ser considerada não estrutural, salvo se existir comprovação experimental de sua eficiência.

A resistência característica à compressão simples da alvenaria fk deve ser determinada com base no ensaio de paredes (ver NBR 16868-3). No caso de alvenaria de blocos de 190 mm de altura e junta de argamassa de 10 mm, esse valor pode ser estimado como 70% da resistência característica de compressão simples de prisma fpk ou 85% da pequena parede fppk. No caso de uso de tijolos, a resistência característica à compressão simples da alvenaria pode ser estimada como 60% da resistência característica de compressão simples de prisma fpk. As resistências características de paredes ou prismas devem ser determinadas de acordo com as especificações da NBR 16868-3.

Se as juntas horizontais forem assentadas com argamassa parcial (argamassa horizontal disposta apenas sobre as paredes longitudinais dos blocos) e se a resistência for determinada com base no ensaio de prisma ou pequena parede, moldados com a argamassa aplicada em toda a área líquida dos blocos, a resistência característica à compressão simples da alvenaria deve ser corrigida pelo fator 0,80. Quando a geometria do bloco não permitir alinhamento vertical entre os septos transversais dos blocos na elevação da parede, o cálculo deve ser feito considerando argamassa parcial. Os pontos eventuais de desalinhamento podem ser desconsiderados. O controle da execução da alvenaria estrutural deve ser planejado, considerando-se, minimamente, os seguintes aspectos: atendimento a um projeto estrutural elaborado conforme a NBR 16868-1 e devidamente compatibilizado com os projetos das demais especialidades técnicas. Deve fazer a determinação dos responsáveis pela execução do controle e circulação das informações e a determinação dos responsáveis pelo tratamento e resolução das não conformidades.

Proceder à definição da forma de registro e arquivamento das informações e estabelecer os procedimentos específicos para o controle dos materiais e componentes, do processo de execução da alvenaria e para a sua aceitação. A argamassa de assentamento deve atender integralmente às especificações da NBR 13279, além da resistência e outras especificações do projeto estrutural.

O ensaio de resistência à compressão deve ser realizado de acordo com o Anexo A, ou conforme a NBR 13279. A aderência da argamassa com o bloco ou tijolo deve ser determinada pelos ensaios de resistência de tração na flexão do prisma, conforme a NBR 16868-3. Esses procedimentos devem ser atendidos tanto pelas argamassas preparadas em obra quanto pelas industrializadas. No caso das argamassas preparadas em obra, que utilizem os materiais listados abaixo, as seguintes normas devem ser atendidas nas suas especificações: cimento: NBR 16697; cal: NBR 7175; areia: NBR 7211.

O graute deve atender às especificações do projeto estrutural. A resistência à compressão do graute deve assegurar que a resistência do prisma grauteado atinja a especificada pelo projetista. O graute deve ser ensaiado quanto à resistência à compressão, conforme a NBR 5739. O graute deve ter características no estado fresco que garantam o completo preenchimento dos furos e não pode apresentar retração que provoque o seu descolamento das paredes dos blocos.

A critério do projetista, pode-se empregar argamassa de assentamento utilizada na obra para preenchimento dos vazados, em elementos de alvenaria não armados e sem qualquer tipo de armadura, seja construtiva ou dimensionada, e desde que os ensaios do prisma apresentem os resultados especificados pelo projetista. Antes do início da obra, deve ser feita a caracterização da resistência à compressão dos materiais, componentes e da alvenaria a serem utilizados na construção. Os blocos ou tijolos, argamassa e graute devem ser ensaiados conforme Seção 5.

Para argamassas industrializadas, ou dosadas em obra com adição de incorporadores de ar, a resistência de à tração na flexão deve ser determinada. No caso de argamassa industrializada, o ensaio pode ser fornecido pelo fabricante, realizado por laboratório de terceira parte, sendo aceitos resultados realizados com o mesmo tipo de bloco ou tijolo e argamassa. O ensaio para a determinação da resistência à compressão de paredes deve usar como a aparelhagem: os dispositivos para aplicação de cargas; três defletômetros com resolução mínima de 0,01 mm. Os corpos de prova devem ter as dimensões que os tornem representativos da estrutura real e devem ser construídos de forma que sejam minimizadas as influências das variações das características dos materiais e da mão de obra na resistência das paredes.

Não sendo praticável reproduzir as paredes nas suas dimensões reais, admite-se como sendo corpos de prova representativos aqueles que tenham por dimensões mínimas 1,20 m × 2,60 m (largura × altura). As paredes devem ser ensaiadas aplicando-se cargas uniformemente distribuídas. Isto pode ser conseguido em um sistema de reação como o mostrado na figura abaixo, devendo ser utilizados no mínimo dois macacos hidráulicos equiespaçados.

O sistema de reação e de carregamento deve permitir a determinação da carga de ruptura com exatidão de 3%. O uso de um macaco único é permitido apenas em condição especial de máquina de grande porte e assegurando a distribuição uniforme do carregamento sobre todas as faces das paredes. Os encurtamentos médios das paredes devem ser determinados por meio de no mínimo dois defletômetros, com resolução mínima de 0,01 mm, instalados nas laterais da parede, conforme mostrado na figura abaixo.

Adicionalmente, nas paredes com índice de esbeltez maior que 25, deve ser instalado um defletômetro no meio do terço superior da parede, para a determinação do deslocamento horizontal desta. Nos casos em que o índice de esbeltez da parede é menor do que 25, a colocação deste defletômetro é opcional. Os equipamentos descritos nesta subseção podem ser substituídos por outros que permitam pelo menos a mesma resolução e posição de leitura. O índice de esbeltez é a relação entre a altura e a espessura da parede.

Quando houver necessidade do transporte do corpo de prova para a máquina de ensaio, essa operação deve ser efetuada com as paredes na vertical, sem choques que possam comprometer a integridade do corpo de prova. As paredes devem ser construídas em ambientes protegidos, com temperatura de (25 ± 10) °C e umidade relativa do ar de 40% a 90%. As paredes devem ser construídas entre duas guias (gabaritos) e com o uso de fio de prumo e nível, a fim de assegurar a verticalidade.

O desempenho dos dutos corrugados de polietileno

Saiba quais são os requisitos gerais e de desempenho, bem como os métodos de ensaio, para fabricação de dutos corrugados de polietileno, empregados em instalações de infraestrutura elétrica (baixa, média ou alta-tensão) e/ou de telecomunicações, podendo estar confinados, enterrados ou aparentes.

A NBR 15715 de 07/2020 – Sistemas de dutos corrugados de polietileno (PE) para infraestrutura de cabos de energia e telecomunicações — Requisitos e métodos de ensaio especifica os requisitos gerais e de desempenho, bem como os métodos de ensaio, para fabricação de dutos corrugados de polietileno, empregados em instalações de infraestrutura elétrica (baixa, média ou alta-tensão) e/ou de telecomunicações, podendo estar confinados, enterrados ou aparentes. Esta norma não especifica os requisitos a serem atendidos pelos eletrodutos utilizados em sistemas elétricos prediais.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as características dimensionais dos dutos corrugados?

Como deve ser feita a marcação dos dutos corrugados?

Qual deve ser o plano de amostragem para verificação dimensional e visual?

Como deve ser executada a aceitação e rejeição na inspeção de recebimento?

A matéria-prima para a fabricação dos dutos corrugados deve ser o composto de polietileno, que é o material fabricado com resina à base de polietileno, contendo os aditivos e pigmentos necessários. As conexões devem ser fabricadas com composto de polietileno, polipropileno ou PVC. Os dutos corrugados e suas conexões devem atender à classificação da tabela abaixo, quanto à sua aplicação e a sua classificação à propagação de chama. Os dutos corrugados devem atender à classificação da tabela abaixo, quanto à sua aplicação e classificação de resistência à compressão.

Recomenda-se que o fabricante adote um controle do processo de fabricação capaz de assegurar que os produtos que fabrica estejam de acordo com esta Norma. Como referência informativa, pode ser utilizado o Anexo A. Os sistemas de dutos corrugados, quando montados de acordo com as instruções do fabricante, devem ter resistência apropriada às influências externas, conforme a classificação declarada pelo fabricante.

Os dutos corrugados e as conexões devem suportar os esforços normais que ocorrem durante o transporte, armazenamento, instalação recomendada e aplicação. Devem ser fabricados por processo de extrusão e as conexões podem ser fabricadas por qualquer processo de transformação, desde que atendam aos requisitos desta norma. A cor dos dutos corrugados e das conexões deve ser estabelecida entre o fabricante e o comprador, porém recomenda-se a utilização da cor preta.

Os dutos corrugados devem ser aditivados com absorvedores e estabilizantes que assegurem suas propriedades, quando expostos a intempéries durante o período de armazenamento. As superfícies dos dutos corrugados e conexões devem apresentar cor e aspecto uniformes e devem ser isentas de corpos estranhos, bolhas, fraturas do fundido, trincas ou outros defeitos visuais que comprometam o desempenho do produto. O fornecimento e o acondicionamento devem atender ao seguinte: os dutos corrugados devem ser fornecidos em barras com comprimentos múltiplos de 6 m ou em rolos com comprimentos múltiplos de 25 m; quando transportados, os dutos corrugados e conexões não podem ficar expostos à fonte de calor e agente químico agressivo, devendo ser acondicionados adequadamente para que não se soltem durante o transporte e para que preservem sua integridade mecânica.

Os dutos corrugados que não forem na cor preta e as conexões não podem ser estocados em locais sujeitos a intempéries por período superior a seis meses. Para os dutos corrugados pretos, em locais sujeitos a intempéries, recomenda-se que o período de estocagem não seja superior a 12 meses. Para períodos maiores de armazenamento, recomenda-se que os dutos sejam guardados protegidos dos raios solares ou intempéries.

Os dutos corrugados em barras devem ser fornecidos acompanhados de suas respectivas luvas de emenda e dos elementos de vedação, de forma a garantir a resistência às influências externas e, para os dutos corrugados em rolos, o fornecimento de luvas, tampões e elementos de vedação deve ser objeto de acordo entre o comprador e o fornecedor. Os dutos corrugados em rolos devem ser fornecidos com fio-guia interno, cujas extremidades devem ser amarradas nas pontas do duto. A unidade de compra do duto é o metro e das conexões é a peça.

Os dutos corrugados fabricados conforme esta norma devem ser compatíveis entre si, utilizando-se conexões de transição correspondentes. Os dutos corrugados e as conexões devem ser apropriados para a montagem da junta de vedação. Quaisquer que sejam os tipos de juntas formadas, seu desempenho deve ser garantido pela verificação da resistência às influências externas. A junta de vedação deve ser montada segundo as instruções do fabricante.

O duto corrugado deve suportar a carga mínima de 450 N ou 680 N, de acordo com a sua classificação indicada na tabela acima, quando submetido ao ensaio de resistência à compressão. Após o ensaio, os corpos de prova não podem apresentar fissuras, trincas ou estrangulamentos. O ensaio de resistência à compressão deve ser realizado de acordo com o Anexo C.

Quanto à resistência à curvatura, esse ensaio deve ser aplicado somente para os dutos corrugados fornecidos em rolos, aplicando o raio de curvatura indicado pelo fabricante do duto. O duto corrugado deve permitir a passagem de uma esfera ou gabarito cilíndrico com diâmetro de 95% do diâmetro interno mínimo do duto corrugado, quando submetido à curvatura. Após o ensaio, os corpos de prova não podem apresentar quebra, trinca ou fissuras. O ensaio de resistência à curvatura deve ser realizado de acordo com o Anexo D. O duto corrugado e a conexão devem resistir ao impacto sem apresentar quebra, rachaduras ou trincas que permitam a passagem de água ou luz entre os seus meios interior e exterior.

As juntas entre os dutos corrugados e as conexões devem apresentar grau de proteção às influências externas de classificação mínima IP38. A junta é constituída de segmentos de dutos corrugados, conexões e/ou elementos de vedação (quando aplicável). Se necessário, as extremidades abertas do conjunto montado podem ser fechadas ou não incluídas no ensaio.

A montagem das juntas deve ser realizada de acordo com as instruções indicadas no manual técnico do fabricante. A conformidade, de acordo com a classificação informada pelo fabricante, deve atender aos requisitos descritos a seguir, conforme aplicável. O ensaio de verificação da resistência às influências externas da junta deve ser realizado de acordo com a NBR IEC 60529.

Para os efeitos de aplicação da NBR IEC 60529, onde é utilizado o termo invólucro nesta norma é utilizado o termo junta. O conjunto montado deve ser ensaiado de acordo com o ensaio apropriado da NBR IEC 60529, considerando o primeiro numeral característico de proteção especificado pelo fabricante e os respectivos requisitos específicos do grau de proteção contra ingresso de objetos sólidos estranhos.

O conjunto montado ensaiado para o primeiro numeral característico 5 ou 6 deve ser considerado aprovado no ensaio se não houver penetração de poeira visível a olho nu, sem ampliação adicional. O conjunto montado deve ser ensaiado de acordo com o ensaio apropriado da NBR IEC 60529, considerando o segundo numeral característico de proteção e os respectivos requisitos específicos contra a penetração de água. O conjunto montado ensaiado deve ser considerado aprovado no ensaio se não houver penetração de água suficiente para formar uma gota visível a olho nu, sem ampliação adicional.

O ensaio do teor de negro de fumo deve ser aplicado somente ao duto corrugado fornecido na cor preta e somente para sua camada externa. A parede externa do duto corrugado na cor preta deve ser pigmentada com negro de fumo dispersado homogênea e adequadamente, com conteúdo na massa do composto de (2,5 ± 0,5) %. O ensaio de determinação do teor de negro de fumo deve ser realizado de acordo com a ISO 6964.

O ensaio de resistência ao intemperismo artificial deve ser aplicado somente ao duto corrugado fornecido em qualquer cor diferente da cor preta. A parede externa do duto corrugado não fornecido na cor preta deve ser aditivada com protetores ultravioletas dispersados homogênea e adequadamente, permitindo sua proteção dentro do período de estocagem às intempéries. Os resultados dos ensaios de tração no escoamento e alongamento na ruptura dos corpos de prova antes do envelhecimento, comparados com os resultados após o envelhecimento, devem ter variação máxima dentro do intervalo de ‒ 25% a + 25%. O ensaio de resistência ao intemperismo artificial deve ser realizado de acordo com o Anexo F.

O ensaio de dispersão de pigmentos deve ser aplicado somente à camada externa dos dutos corrugados. Este ensaio não é aplicado aos dutos corrugados classificados como não propagantes à chama. O duto corrugado deve apresentar uma dispersão de pigmentos que atenda à classificação máxima grau 3.

O ensaio de dispersão de pigmentos deve ser realizado de acordo com a NBR ISO 18553. O ensaio de resistência à chama deve ser aplicado somente aos dutos corrugados e às conexões classificados como não propagantes de chama. Os corpos de prova do duto corrugado não podem inflamar, para que sejam considerados resistentes à chama.

Se os corpos de prova queimarem ou forem consumidos sem queimar, o duto corrugado deve ser considerado aprovado, se os três corpos de prova atenderem a todos os requisitos a seguir: não pode haver combustão por mais 30 s após a remoção da chama; após ter cessado a combustão e após o corpo de prova ter sido limpo, utilizando-se um pedaço de tecido embebido em água, a amostra não pode apresentar evidência de queima ou carbonização a menos de 50 mm de qualquer parte da abraçadeira; e não pode ocorrer combustão no lenço de papel. O ensaio de resistência à chama do duto corrugado deve ser realizado de acordo com o Anexo G.

O planejamento do cabeamento estruturado

Saiba quais são os requisitos para o planejamento do cabeamento e infraestruturas de cabeamento (incluindo o cabeamento, caminhos, espaços, aterramento e equipotencialização) em suporte às normas de cabeamento estruturado e outros documentos.

A NBR 16869-1 de 07/2020 – Cabeamento estruturado – Parte 1: Requisitos para planejamento especifica os requisitos para o planejamento do cabeamento e infraestruturas de cabeamento (incluindo o cabeamento, caminhos, espaços, aterramento e equipotencialização) em suporte às normas de cabeamento estruturado e outros documentos. Os seguintes aspectos são abordados: as práticas de instalação; o planejamento da instalação; a documentação; a administração; os ensaios; e a inspeção. Os requisitos de segurança elétrica, incêndio e compatibilidade eletromagnética (EMC) estão fora do escopo desta norma. Esta parte é aplicável ao planejamento de projeto e instalação de sistemas de cabeamento estruturado.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as abreviaturas usadas nessa norma?

Como deve ser executado o ensaio de enlace permanente?

Como deve ser feita a medição dos parâmetros de alien crosstalk?

Quais são os requisitos do plano de qualidade?

Uma especificação de instalação deve ser feita pelo contratante e deve ser entregue ao instalador previamente, compreendendo: as especificações técnicas (ver 5.3); o escopo do trabalho (ver 5.5); um plano de qualidade (ver 6.1). Diferentes tipos de infraestruturas podem compartilhar os mesmos espaços destinados ao cabeamento e causar interferências mecânicas. Portanto, o instalador deve ter acesso ao detalhamento de: outros serviços do edifício como distribuição elétrica e aterramento; sistemas de gestão do edifício, incluindo segurança, controle de acesso, etc.; sistemas para detecção de fogo e fumaça e controles associados a eles; aquecimento, ventilação e ar-condicionado (HVAC); maquinário industrial, ilhas de automação, etc. e cuidados relacionados a eles; sistemas de água, esgoto, combate a incêndio, ar comprimido, óleo lubrificante, fluido hidráulico, material seco e saídas de troca de calor; especificações de ambientes e equipamentos hospitalares.

A especificação da instalação deve assegurar que o instalador tenha acesso às legislações, regulamentações, padrões e políticas internas referentes a: edificação; ambiente; segurança do trabalho; segurança patrimonial; autorização do contratante; credenciamento (certificações e qualificações) profissional. É de responsabilidade do instalador demonstrar o cumprimento do acima estabelecido. A especificação da instalação deve detalhar os contatos no local de instalação responsáveis por: requisitos operacionais; restrições, permissões e acessos aplicáveis; conhecimento de áreas perigosas; requisitos técnicos; documentação do cabeamento existente; compatibilidade com os componentes de cabeamento existente; materiais e equipamentos a serem disponibilizados para o instalador de cabeamento pelo contratante; armazenamento dos materiais; remoção, descarte e reciclagem do excesso e entulho; saúde ocupacional e segurança do trabalho; instalação de cabeamento por terceiros; contratante principal e/ou subcontratantes; transferência de responsabilidade e/ou propriedade.

Convém que a especificação de instalação assegure a execução adequada do projeto, de modo garantir a expansão no cabeamento para acomodar usuários, aplicações e serviços adicionais no que diz respeito a: caminhos e sistemas de distribuição de cabos; gabinetes e racks; pontos de terminação; demanda de energia elétrica. As especificações técnicas devem conter os requisitos de desempenho e detalhes do cabeamento e componentes associados, a base da avaliação de desempenho do cabeamento e as práticas de instalação utilizadas.

As especificações técnicas devem abranger tanto as novas instalações quanto as ampliações das instalações existentes. Devem detalhar a localidade e os requisitos de qualquer interface de rede externa (ver NBR 16415). As especificações técnicas devem estabelecer: o nível de administração a ser aplicado à infraestrutura de cabeamento (ver Seção 8); o escopo da documentação a ser fornecida pelo instalador, incluindo quaisquer requisitos necessários para relacionar registros entre si e de outros serviços do edifício; o formato (impresso, eletrônico, etc.) da documentação (ver Seção 8); identificadores a serem adotados pelo instalador (ver Seção 8); a especificação dos elementos de identificação ou etiquetas; os requisitos para ensaios de aceitação (ver Seção 9); os requisitos para inspeção (ver Seção 10); o padrão de tratamento dos canais e enlaces que não atendam aos requisitos de inspeção e ensaios de aceitação; o formato do resultado dos ensaios e documentação da inspeção (ver Seções 9 e 10), que contêm os resultados de passa/falha, e as ações tomadas para reparar ou corrigir falhas de instalação.

A especificação técnica deve: identificar e classificar quaisquer potenciais perigos dentro dos caminhos e espaços e pontos determinação. A classificação de perigo de áreas contendo (ou com a intenção de conter) equipamento e cabeamento de fibra óptica é descrita na IEC 60825-2 e é usada para orientar as práticas adequadas de instalação e identificação. Também deve-se detalhar os limites das áreas contendo perigo ou áreas potencialmente perigosas; incluir todas as normas regulamentadoras aplicáveis ao local da instalação.

As especificações técnicas devem detalhar as medidas necessárias para prevenir o acesso não autorizado aos caminhos, espaços, gabinetes e racks. As especificações técnicas devem detalhar as condições ambientais previstas de instalação e operação. A classificação MICE descrita na NBR 16521 deve ser usada onde as condições ambientais e a instalação prevista estejam dentro dos limites definidos por M3I3C3E3. Adicionalmente, as seguintes condições ambientais devem ser observadas: ataque biológico (bolor ou outros fungos); dano físico (acidental ou intencional), incluindo dano causado por animais; presença ou potencial presença de perigos, como contaminações por líquidos, gases ou materiais explosivos; fluxo de ar (causado por sistemas de aquecimento e ventilação); efeitos meteorológicos (vento, chuva e inundação); impactos naturais (raios, terremotos etc.). Ver IEC 60721 para classificações ambientais.

Convém que as especificações técnicas prevejam uma análise de riscos, incluindo condições ambientais anômalas (mudanças de temperatura, inundações, etc.), que podem afetar a determinação dos requisitos dos componentes ou o método de mitigação possível. A especificação da instalação deve: conter uma lista de itens tratados no plano de qualidade aplicável à instalação definido pelo contratante; identificar as responsabilidades por quaisquer tarefas adicionais necessárias para permitir o cumprimento do plano de qualidade (ver Seção 6).

Um plano de qualidade que aborda os requisitos de instalação deve ser produzido pelo instalador de acordo com os requisitos desta norma. O plano de qualidade deve ser acordado com o contratante antes do início da instalação. O plano de qualidade deve claramente apresentar as medidas e procedimentos a serem adotados para demonstrar conformidade com: os requisitos desta norma; os requisitos do projeto de cabeamento; a especificação da instalação.

O plano de qualidade deve detalhar os procedimentos: para a transferência de responsabilidades entre o instalador e o contratante; para a aceitação dos componentes de cabeamento (incluindo a verificação das especificações físicas, mecânicas, ópticas ou elétricas, baseadas nas especificações dos fabricantes ou fornecedores e normas aplicáveis). Os componentes do cabeamento a serem instalados podem ser fornecidos pelo instalador, desde que em comum acordo com o contratante.

Devem ser detalhados os procedimentos a serem adotados para verificar a compatibilidade entre os componentes do cabeamento a serem usados durante a instalação; a serem adotados para verificar a compatibilidade com algum cabeamento existente; para abordar o impacto de potenciais incompatibilidades; para garantir a seleção de patch cords adequados para uso nos canais de cabeamento.

Onde, em qualquer ponto durante o processo de instalação, a inspeção ou ensaio do cabeamento ou seus componentes for especificado na especificação da instalação ou por outras normas, o plano de qualidade deve detalhar: o equipamento de inspeção e ensaio; o estado de calibração do equipamento de inspeção e ensaio; os planos de amostragem (ver 6.2); os procedimentos de ensaios (ver 9.5.1); o tratamento dos resultados que não estejam em conformidade com as especificações de ensaio ou que apresentem valores marginais, ou seja, dentro do limite de precisão especificado do equipamento de medição (ver 6.3 e 6.4).

A tabela abaixo mostra dois grupos de ensaios para cabeamento balanceado (verificação básica e parâmetros de transmissão), usando os parâmetros que estabelecem as classes de enlaces e canais em relação ao cabeamento projetado. Esta subseção especifica os requisitos e recomendações para ensaios desses grupos de parâmetros. Os procedimentos de ensaio e equipamentos para enlaces e canais do cabeamento balanceado estão especificados na Seção 9. Os requisitos são estabelecidos para outros parâmetros de transmissão que não são considerados atingidos pelo projeto.

Recomenda-se que o modelo de ensaio de enlace permanente seja especificado como requisito de projeto, pois este traz margem adequada para suportar a variedade de patch cords utilizados para conformar canais. Independentemente dos requisitos da especificação da instalação, os parâmetros de verificação básica da tabela acima devem ser medidos para toda a instalação. Os parâmetros de transmissão da tabela acima, com exceção dos parâmetros de alien crosstalk, devem ser medidos para todos os enlaces permanentes da instalação de cabeamento balanceado de classes D, E, F ou FA. Caso a especificação da instalação exija a medição dos parâmetros de alien crosstalk para essas classes de desempenho, o instalador deve incluir esses parâmetros nos ensaios.

IEC TR 63099-2: as tecnologias de rádio sobre fibra para detecção de campo elétrico

Esse relatório técnico (Technical Report – TR), editado em 2020 pela International Electrotechnical Commission (IEC), fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos.

A IEC TR 63099-2:2020 – Transmitting equipment for radiocommunication – Radio-over-fibre technologies for electromagnetic-field measurement – Part 2: Radio-over-fibre technologies for electric-field sensing fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos. Os fundamentos teóricos de medição de campo elétrico e método de calibração de sensores de campo elétrico estão além do escopo deste documento.

Conteúdo da norma

PREFÁCIO……………………. 3

INTRODUÇÃO…………….. 5

1 Escopo……………………… 6

2 Referências normativas……. ….. 6

3 Termos, definições e termos abreviados………………… 6

3.1 Termos e definições……………………………. 6

3.2 Termos abreviados………………………. .. 7

4 Exemplos práticos de sistema de detecção de campo elétrico usando tecnologias RoF…………… 7

4.1 Visão geral………… …………… 7

4.2 Características do sistema de detecção de campo elétrico usando tecnologias RoF……………… 7

4.3 Lista de exemplos de implementação………………….. 7

4.4 Sensor de campo elétrico de 3 eixos usando moduladores ópticos LN …… 7

4.4.1 Configuração do sistema…………….. 7

4.4.2 Especificações………………………….. 9

4.4.3 Exemplo de resultados de medição……………. 10

4.5 Sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe………….. 13

4.6 Sondas de campo elétrico usando VCSEL………………….. 14

Bibliografia……………. ………………….. 16

Figura 1 – Diagrama do sistema do sensor óptico de campo E……………… 8

Figura 2 – Estrutura da unidade principal do sensor……………….. 9

Figura 3 – Sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 10

Figura 4 – Resultados da avaliação de sensibilidade e faixa dinâmica de medição……………. 11

Figura 5 – Avaliação da isotropia do sensor na célula TEM até 1 GHz……………… 11

Figura 6 – Configuração de medição para isotropia do campo elétrico tipo diodo convencional com sensor de campo elétrico usando modulador LN…….. ……………….. 12

Figura 7 – Resultados da medição do padrão de sensibilidade do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador LN de acordo com norma IEEE 1309…. ……………… 13

Figura 8 – Características de frequência de isotropia do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador óptico LN………………….. 13

Figura 9 – Representação esquemática do sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe…………… 14

Figura 10 – Representação esquemática do sensor de campo elétrico usando VCSEL, consistindo em uma cabeça de sensor em miniatura que está exclusivamente ligada por meio de fibra óptica a uma unidade remota……………………. 15

Tabela 1 – Especificação do sistema de detecção de campo elétrico de três eixos usando modulador óptico LN……………………… 9

Tabela 2 – Especificação do sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 12

Este documento fornece informações sobre as aplicações atuais e mais recentes para detecção do campo elétrico usando a tecnologia de rádio sobre fibra. Os sistemas de medição de campo elétrico são cobertos e eles estão praticamente em uso ou serão usados em breve. Seria benéfico para desenvolvedores de sistema e usuários de sistema nas áreas de medição de campo elétrico. Por ser um Relatório Técnico, este documento não contém requisitos e é apenas informativo.

A gestão da qualidade para a fabricação de equipamentos e componentes “Ex”

Conheça as informações e os requisitos específicos para o estabelecimento e manutenção de um sistema de gestão da qualidade para a fabricação de equipamentos e componentes “Ex”, de acordo com a sua certificação. Embora este documento não dispense a utilização de outros sistemas de gestão da qualidade que sejam compatíveis com os objetivos da NBR ISO 9001:2015 e que proporcionem resultados equivalentes.

A NBR ISO/IEC 80079-34 de 07/2020 – Atmosferas explosivas – Parte 34: Aplicação de sistemas de gestão da qualidade para a fabricação de produtos “Ex” especifica as informações e os requisitos específicos para o estabelecimento e manutenção de um sistema de gestão da qualidade para a fabricação de equipamentos e componentes “Ex”, de acordo com a sua certificação. Embora este documento não dispense a utilização de outros sistemas de gestão da qualidade que sejam compatíveis com os objetivos da NBR ISO 9001:2015 e que proporcionem resultados equivalentes, os requisitos mínimos são apresentados neste documento.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o controle de processos, produtos e serviços providos externamente?

Qual deve ser o tipo e extensão do controle?

O que deve ser feito em relação à informação para provedores externos?

Qual deve ser o procedimento para a identificação e rastreabilidade?

Esse documento especifica os requisitos para um sistema de gestão da qualidade que possa ser utilizado por uma organização para a fabricação de equipamentos, componentes e sistemas “Ex”. Pode ser utilizado também por terceiras partes, incluindo organismos de certificação, para avaliar a capacidade de uma organização de atender aos requisitos do sistema de avaliação da conformidade ou requisitos legais. A aplicação desta norma é destinada a abranger tanto equipamentos elétricos como não elétricos, sistemas de proteção, dispositivos de segurança, componentes “Ex” e suas combinações.

O conteúdo detalhado (por exemplo, anexos) é normalmente focado em documentos existentes. Os requisitos da qualidade de fabricantes representam parte integrante da maioria de sistemas de certificação e, como tal, este documento foi elaborado considerando os requisitos do sistema de certificação IECEx para equipamentos. Este documento é destinado a ser utilizado como suporte aos requisitos do sistema de certificação para atmosferas explosivas da Diretiva ATEX, para o sistema de gestão da qualidade dos fabricantes, e pode ser aplicado em sistemas nacionais ou regionais de certificação que sejam relacionados à fabricação de equipamentos, componentes e sistemas com tipos de proteção “Ex”. No Anexo D é apresentada uma matriz de correlação em relação aos requisitos da NBR ISO/IEC 80079-34:2014 e desta NBR ISO/IEC 80079-34:2020.

No item entendendo a organização e o seu contexto, a NBR ISO 9001:2015, 4.1, se aplica, com a seguinte adição: em relação a este documento, o contexto da organização deve assegurar que o produto “Ex” esteja de acordo com o seu certificado Ex e com a documentação técnica. No item sistema de gestão da qualidade e seus processos, a NBR ISO 9001:2015, 4.4, se aplica com a seguinte adição: o sistema de gestão da qualidade deve assegurar que o produto “Ex” esteja de acordo com o tipo descrito no certificado e na documentação técnica.

No item papéis, responsabilidades e autoridades organizacionais, a NBR ISO 9001:2015, 5.3, se aplica com a seguinte adição: pessoal “Ex” autorizado deve ser apontado com autoridade e responsabilidades estabelecidas e documentadas para assegurar que os seguintes requisitos sejam atendidos: a coordenação efetiva das atividades relacionadas aos produtos “Ex”; o contato com o emissor do certificado “Ex” (quando não emitido pelo fabricante) em relação a qualquer proposta de alteração do projeto especificado no certificado “Ex” e na documentação técnica; o contato com o organismo de certificação responsável pela verificação do sistema de gestão da qualidade em relação à atualização pretendida do sistema de gestão da qualidade. Não é prático para o fabricante informar ao organismo responsável a verificação do sistema de gestão da qualidade toda vez que o sistema for atualizado. É apenas prático informar sobre atualizações significativas do sistema de gestão da qualidade, relevantes para o tipo de proteção.

De forma similar, não é prático especificar, em termos gerais, quais os tipos de atualização que são ou não são significativos. Portanto, é recomendado que o fabricante informe ao organismo responsável a verificação do sistema de gestão da qualidade sobre qualquer atualização do sistema de gestão da qualidade que tenha consequências sobre a conformidade dos produtos. A mudança do pessoal “Ex” autorizado é considerada uma alteração significativa.

Acrescentar que a autorização para a aprovação inicial e as alterações de desenhos relacionados, se apropriado; a autorização de concessões (ver 8.7 f); a exatidão das informações relevantes em relação ao produto “Ex”, fornecidas pelo cliente para qualquer literatura comercial, e instruções de instalação (as quais devem incluir as condições específicas aplicáveis de utilização e quaisquer relações de limitações). Os números de certificados com um sufixo “X” contêm condições específicas de utilização.

Os números de componentes certificados (com um sufixo “U”) podem conter relações de limitações. Agregar que a coordenação efetiva dos processos de fabricação em relação aos produtos “Ex”, incluindo produtos fornecidos externamente, serviços e processos detalhados em 8.4; no caso de um fabricante com múltiplas instalações de fabricação, uma pessoa “Ex” autorizada com responsabilidades pertinentes deve ser indicada para cada instalação. Os registros evidenciando isto devem estar disponíveis e ser mantidos como informação documentada.

No item recursos de monitoramento e medição, a NBR ISO 9001:2015, 7.1.5, se aplica com a seguinte adição: quando o monitoramento ou a medição é utilizado para verificar a conformidade de produtos “Ex”, o equipamento de medição deve ser calibrado e um certificado válido dessa calibração deve existir. A verificação de equipamento de medição contra equipamento calibrado é permitida, contanto que seja corretamente documentada.

O certificado de calibração deve atender a um dos seguintes requisitos descritos. Quando um certificado de calibração ostentar o logotipo de acreditação de um laboratório de calibração acreditado (que demonstre que suas operações estão de acordo com as normas reconhecidas internacionalmente e estão cobertas por um acordo internacional multilateral), o laboratório de calibração não está sujeito a uma avaliação adicional.

Quando o certificado de calibração não ostentar o logotipo de acreditação de uma autoridade de acreditação nacional, cada certificado de calibração deve incluir no mínimo as seguintes informações: uma identificação não ambígua do item calibrado; evidência de que as medições são rastreáveis a padrões de medição nacionais ou internacionais; o método de calibração; uma declaração de conformidade com qualquer especificação aplicável; os resultados da calibração; a incerteza da medição, quando aplicável; as condições ambientais, quando necessário; a data de calibração; a assinatura da pessoa, sob cuja autoridade o certificado foi emitido; o nome e o endereço da organização emissora e a data de emissão do certificado; e uma identificação única do certificado de calibração.

Quando o certificado de calibração não contiver o logotipo de acreditação de uma autoridade de acreditação nacional ou não contiver as informações relacionadas na NBR ISO 9001:2015, 7.1.5 b), o fabricante deve demonstrar uma relação válida a padrões de medição nacionais ou internacionais, ou de acordo com outros meios (por exemplo, um documento de avaliação do laboratório).

Para o controle de informação documentada, a NBR ISO 9001:2015, 7.5.3, se aplica com a seguinte adição: a documentação técnica e a documentação do fabricante devem ser controladas; os procedimentos documentados devem assegurar que as informações contidas na documentação do fabricante sejam compatíveis com a documentação técnica. O fabricante não pode, inicialmente, aprovar ou, subsequentemente, alterar os desenhos relacionados, a menos que estejam em conformidade com os documentos da certificação.

Além disso, o sistema de gestão da qualidade deve assegurar que nenhum fator (tipo, característica, posição etc.) especificado no certificado do produto “Ex” e na documentação técnica (por exemplo, desenhos de certificação) seja modificado, a menos que permitido pelo emissor do certificado. Deve haver um sistema documentado que referencie todos os desenhos relacionados aos documentos pertinentes da certificação e quando existirem desenhos de certificação associados a mais de um certificado de produto “Ex, deve haver um sistema documentado para assegurar ações simultâneas e suplementares em caso de alterações nesses documentos; Alguns fabricantes utilizam os mesmos componentes com desenhos de mesmo número em mais de um produto que possuem mais de uma pessoa responsável para os produtos acabados.

Um sistema de gestão da qualidade compatível assegura que a mudança do componente para um produto não seja implementada sem a aprovação das pessoas responsáveis para todos os produtos acabados que utilizam aquele componente. Quando o fabricante também possui desenhos para equipamentos não destinados à utilização em atmosferas explosivas, deve possuir um sistema para identificar claramente tanto os desenhos relacionados quanto os de certificação; Os exemplos a seguir indicam alguns métodos de identificação: a utilização de marcações visuais; a utilização de uma única série de números de desenhos, por exemplo, todos os desenhos de produtos certificados possuem um prefixo “Ex” no número do desenho; pode também ser aceitável a utilização de um banco de dados computadorizado contendo a correlação de “listas de materiais” que identifique todos os documentos dos componentes “Ex” críticos e que controle alterações não autorizadas.

O fabricante deve documentar o organismo responsável pela verificação do sistema de gestão da qualidade de cada certificado de conformidade “Ex”. Em alguns esquemas de certificação, o organismo responsável pela verificação do sistema de gestão da qualidade associado a cada certificado “Ex” pode ser diferente do organismo que emitiu o certificado de conformidade “Ex” e, portanto, necessita ser claramente identificado.

Quando os documentos técnicos ou do fabricante são fornecidos a terceiros, esses documentos devem ser fornecidos de forma a não causar uma interpretação errônea. O fabricante deve possuir um sistema documentado para verificar anualmente a validade de todos os documentos relativos aos certificados de conformidade “Ex”, normas, regulamentos e outros documentos de origem externa. O fabricante deve manter os registros da qualidade adequados para demonstrar a conformidade dos produtos “Ex”. É requerido uma retenção de no mínimo dez anos após a colocação do produto “Ex” (lote) no mercado.

A lista dos registros da qualidade que requerem controle e retenção, onde aplicável, no mínimo deve ser: aqueles exigidos por requisitos regulatórios; a informação documentada sobre a qualidade; as responsabilidades e autoridades para a designação e comunicação com a organização de funções relevantes aos produtos “Ex”; os pedidos de clientes; a análise crítica do contrato; os registros de treinamento; as alterações e o desenvolvimento do projeto; os dados de inspeção e ensaio (por lote); os dados da calibração; a rastreabilidade da fabricação; a avaliação dos provedores externos; os dados de expedição (cliente, data de saída e quantidade, incluindo números de série quando disponíveis); e outras informações documentadas, se necessárias.

A tubulação em polietileno para líquidos inflamáveis e combustíveis

Saiba quais são os requisitos de desempenho da tubulação não metálica, fabricada em polietileno de alta densidade (PEAD), aplicada às instalações subterrâneas de transferência de combustível líquido, seus vapores e ARLA 32, em sistemas de armazenamento subterrâneo de combustíveis (SASC) e em sistemas de armazenamento aéreo de combustíveis (SAAC).

A NBR 14722 de 07/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Tubulação não metálica subterrânea — Polietileno especifica os requisitos de desempenho da tubulação não metálica, fabricada em polietileno de alta densidade (PEAD), aplicada às instalações subterrâneas de transferência de combustível líquido, seus vapores e ARLA 32, em sistemas de armazenamento subterrâneo de combustíveis (SASC) e em sistemas de armazenamento aéreo de combustíveis (SAAC), estabelecendo ensaios que garantam sua funcionalidade, segurança e proteção ambiental. Não é aplicável à tubulação destinada à condução de Gás Natural (GN) e Gás Liquefeito de Petróleo (GLP). A tubulação deve ser um conjunto de tubo, conexão e transição, projetados e ensaiados em conjunto, conforme estabelecido nesta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser o método para o ensaio de pressão negativa?

Qual deve ser o método para ensaio de compressão diametral em temperatura elevada?

Como deve ser executado o ensaio de resistência à perfuração?

Qual é a máxima permeabilidade aos fluidos de ensaio?

Todo tubo, conexão e transição devem ser submetidos aos ensaios de qualificação para demonstrar a sua adequabilidade a esta norma. Os ensaios de qualificação devem ser efetuados sempre que houver qualquer alteração na matéria prima, no processo de fabricação ou no projeto. Os tubos, conexões e transições disponibilizados para uso devem ser produzidos conforme processo e materiais aprovados nos ensaios de qualificação. Considerar o Anexo A para avaliação da conformidade, listando ensaios para qualificação, ensaios de controle de fabricação e ensaios de auditoria. A matéria prima para fabricação dos tubos deve ser o composto de polietileno, contendo somente aditivos e pigmentos necessários para atender aos requisitos desta norma na fabricação e aplicação do tubo, incluindo processabilidade, homogeneidade e uniformidade do composto.

O composto de polietileno deve ser o fornecido pelo fabricante do polímero, de forma que o fabricante do tubo nada acrescente à matéria prima adquirida. A classificação do composto deve ser comprovada pelo seu fabricante com a apresentação da curva de regressão, para cada código de composto. Os compostos de polietileno devem ser classificados como PE 80 ou PE 100, conforme a ISO 12162, utilizando-se o método de extrapolação da ISO 9080, onde: PE 80: MRS = 8 MPa, quando 8 ≤ LPL < 10 MPa; PE 100: MRS = 10 MPa, quando LPL ≥ 10 MPa. MRS – Minimum required strength/LPL – Lower confidence limit of the predicted hydrostatic strength.

O fabricante do composto deve comprovar que o seu produto atende às características das tabelas abaixo, exceto para o teor de negro de fumo, quando a cor do tubo for diferente de preto. O fabricante do composto de polietileno deve comprovar os resultados dos ensaios indicados nas tabelas por meio de um certificado da qualidade de cada lote produzido, de forma que todas as amostras atendam aos seus requisitos.

O material utilizado para fabricação da camada de barreira físico-química interna (liner) fica a critério de cada fabricante. Os tubos, para os efeitos desta norma, são classificados em classe 1: tubo primário com tubo de contenção secundária, onde o tubo primário é encamisado pelo tubo de contenção secundária no processo de fabricação; classe 2: tubo primário de parede simples. O tubo primário das classes 1 e 2 deve atender aos requisitos descritos abaixo e o tubo secundário (contenção ou segunda parede) da classe 1 deve atender aos requisitos descritos abaixo.

O tubo primário deve ser fabricado com múltiplas camadas, sendo uma camada estrutural de polietileno de alta densidade (PEAD), PE80 ou PE100, e no mínimo uma segunda camada interna visível como barreira físico-química interna contra permeabilidade (liner). O tubo de contenção secundária deve ser fabricado em polietileno de alta densidade (PEAD), PE80 ou PE100, e deve ser capaz de conter e possibilitar a detecção de vazamento. O tubo de contenção secundário não pode ser fornecido separadamente do tubo primário.

Toda tubulação deve possuir conexão que permita a interligação sem vazamento com componentes do SASC. A conexão, seja mecânica ou eletrossoldável, deve ter projeto compatível com o projeto da tubulação que se deseja aplicar. Os tipos de interligações entre tubo, conexão e/ou transição são descritos a seguir. A conexão mecânica e/ou transição mecânica é aplicável à interligação sem aplicação de calor, que assegure estanqueidade e resistência a esforços axiais. A conexão e/ou transição para interligação mecânica deve ser feita em aço inoxidável ou metal niquelado. Os selos de vedação, quando aplicáveis, devem ser de elastômero, polímero, plástico ou metais macios maleáveis, resistentes a combustíveis e fluidos de ensaio.

O processo é executado com conexão que possua filamentos elétricos, nos quais é aplicada uma diferença de potencial elétrico, gerando calor que possibilite a soldagem por fusão da conexão ao tubo ou outra conexão. O diâmetro externo e a espessura da parede do tubo devem ser estabelecidos pelo fabricante, desde que a relação diâmetro externo nominal por espessura mínima da base estrutural (SDR) seja igual ou menor que 17, quando fabricado em PE100, e 13,6, quando fabricado em PE80, para tubo primário, e 26 para tubo secundário. O diâmetro externo e a ovalização máxima permitida devem ser de acordo com a ISO 4427-2. A espessura da camada estrutural do tubo deve ser marcada em milímetros, conforme a Seção 7.

A tubulação deve ser totalmente operacional entre – 20 °C e + 50 °C. A tubulação primária deve ser projetada e fabricada para operar com classe de pressão nominal mínima de PN8 (8 bar). As conexões e transições correspondentes ao tubo devem suportar pressão igual ou superior ao tubo. A classe de pressão do tubo deve ser marcada no tubo conforme a Seção 7.

Pode-se acrescentar que os ensaios de qualificação são realizados para comprovar que o sistema de tubulação (composto por tubos, conexões, transições e respectiva montagem) está em conformidade com os requisitos indicados nesta norma. Os ensaios de qualificação devem ser considerados válidos até que ocorra alteração em algum dos itens a seguir: matéria prima (por exemplo, composto, adesivo e liner): todos os ensaios de qualificação devem ser repetidos; projeto (por exemplo, espessura, diâmetros, transição e conexão): todos os ensaios de qualificação devem ser repetidos; processo de fabricação (por exemplo, alteração de equipamentos e sistema de produção): apenas os ensaios mecânicos devem ser repetidos.

Os ensaios de controle de fabricação (BRT – Batch Release Tests) devem ser realizados pelo fabricante em cada lote de fabricação de tubo. Um lote de fabricação de tubo deve ser liberado para fornecimento quando todos os ensaios e inspeções especificados tiverem sido realizados nas frequências especificadas e forem considerados conformes.

Se um tubo falhar em relação a quaisquer características, o lote de fabricação de tubo deve ser rejeitado ou os procedimentos de reensaio devem ser executados para a característica na qual o tubo falhou. Para cada lote de fabricação de tubo, o fabricante deve gerar um relatório com os resultados dos ensaios, contendo no mínimo o seguinte: diâmetro externo nominal (DE) do tubo; pressão nominal (PN); código de rastreabilidade; data de início da fabricação do lote; identificação do composto de polietileno utilizado e demais matérias primas, com respectivos lotes e certificados do fornecedor; quantidade do lote de fabricação, em metros.