As especificações para a fabricação dos cabos ópticos internos

Deve-se entender os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

A NBR 14771 de 07/2020 – Cabo óptico interno — Especificação especifica os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o código de cores das unidades básicas, dos elementos ópticos e dos cordões ópticos?

Quais são as cores das fibras ópticas?

Como deve ser executado o revestimento externo?

Quais devem ser os requisitos ópticos desses cabos?

O cabo óptico interno é um conjunto constituído por unidades básicas de cordões ópticos, elementos ópticos ou fibras ópticas, elemento de tração dielétrico, eventuais enchimentos e núcleo seco, protegidos por uma capa externa de material termoplástico retardante à chama. prontos satisfaçam os requisitos especificados nesta norma. Os cabos ópticos internos são designados pelo seguinte código: CFOI – X – Y – Z – W, onde CFOI é o cabo óptico interno; X é o tipo de fibra óptica, conforme a tabela abaixo; Y é a formação do núcleo, conforme a tabela abaixo; Z é o número de fibras ópticas, conforme a tabela abaixo; W é o grau de proteção do cabo quanto ao comportamento frente à chama, conforme a tabela abaixo e ao comportamento frente à chama.

Os materiais constituintes dos cabos ópticos internos devem ser dielétricos. Os materiais utilizados na fabricação do cabo devem ser compatíveis entre si. Os materiais utilizados na fabricação dos cabos com função estrutural devem ter suas características contínuas ao longo de todo o comprimento do cabo.

As fibras ópticas tipo multimodo índice gradual, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13487. As fibras ópticas tipo monomodo com dispersão normal, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13488. As fibras ópticas tipo monomodo com dispersão deslocada e não nula, utilizadas na fabricação dos cabos, devem estar conforme a NBR 14604.

As fibras ópticas tipo monomodo com baixa sensibilidade à curvatura, utilizadas na fabricação dos cabos, devem estar conforme a NBR 16028. Não são permitidas emendas nas fibras ópticas durante o processo de fabricação do cabo. O núcleo deve ser constituído por unidades básicas de fibras ópticas, cordões ópticos ou elementos ópticos. Os cabos ópticos internos devem ser fabricados com unidades básicas de 2, 4, 6, 8, 12, 16, 24, 36 ou 48 fibras ópticas. O núcleo deve ser constituído por unidades básicas.

As unidades básicas devem ser dispostas em elementos de proteção adequados, de modo a atender aos requisitos especificados nesta norma. Os elementos de proteção podem ser constituídos por tubos de material polimérico encordoados em uma ou mais coroas ou de forma longitudinal. Os elementos de proteção encordoados devem ser reunidos com passo e sentido escolhidos pelo fabricante, de modo a satisfazer as características previstas nesta norma.

No caso de cabos ópticos constituídos por elementos de proteção encordoados dispostos em mais de uma coroa, opcionalmente estas coroas podem ser separadas por fitas, a fim de facilitar a sua identificação. É recomendado que os cabos ópticos compostos por elementos de proteção de até 12 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter duas ou seis fibras ópticas. Para os cabos ópticos de 18 a 36 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha seis ou 12 fibras ópticas.

Para os cabos ópticos de 48 a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 12 ou 24 fibras ópticas. Para os cabos ópticos superiores a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 24, 36 ou 48 fibras ópticas. Para o núcleo constituído por fibras ópticas dispostas em tubo único (central loose tube), a construção deve conter um único tubo central de material polimérico contendo uma ou mais unidades básicas.

Os cabos ópticos de até 48 fibras ópticas devem ser constituídos por fibras ópticas reunidas. Os cabos ópticos acima de 48 até 72 fibras ópticas devem ser constituídos por unidades básicas. Para o núcleo constituído por unidades básicas de cordões ópticos monofibra, o cordão óptico deve ser conforme a NBR 14106. A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada das unidades básicas, dos elementos ópticos e dos cordões ópticos.

Os cabos de até 12 fibras ópticas devem ser constituídos por cordões ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis cordões ópticos. Para cabos ópticos de 48 a 72 fibras, é recomendado que cada unidade básica contenha 12 cordões ópticos. O cordão óptico deve ser conforme a NBR 14106.

A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada conforme essa norma e os cabos de até 12 fibras ópticas devem ser constituídos por um ou mais cordões ópticos. Para cabos de 18 a 288 fibras ópticas, é recomendado que cada unidade básica contenha seis ou 12 cordões ópticos.

Para o núcleo constituído por unidades básicas de elementos ópticos, a unidade básica de elementos ópticos deve ser constituída por até 12 elementos agrupados e deve ser identificada conforme essa norma. Os cabos de até 12 fibras ópticas devem ser constituídos por elementos ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis elementos ópticos.

Para cabos ópticos de 48 a 144 fibras, é recomendado que cada unidade básica contenha 12 elementos ópticos. Podem ser colocados enchimentos de material polimérico compatível com os demais materiais do cabo, a fim de formar o núcleo cilíndrico. No núcleo do cabo pode haver uma identificação legível e indelével, contendo impressos o nome do fabricante e o ano de fabricação, em intervalos não superiores a 50 cm, ao longo do eixo do cabo.

Sobre o revestimento externo devem ser gravados o nome do fabricante, a designação do cabo, o número do lote e o ano de fabricação, de forma legível e indelével, em intervalos de 1 m ao longo do eixo do cabo. A pedido do comprador, podem ser impressas informações adicionais. A marcação métrica sequencial deve ser feita em intervalos de 1 m ao longo do revestimento externo do cabo óptico interno. A marcação deve ser feita com algarismos de altura, forma, espaçamento e método de gravação ou impressão tais que se obtenha legibilidade perfeita e permanente. Não são permitidas marcações ilegíveis adjacentes.

Na medida da marcação do comprimento ao longo do eixo do cabo, é tolerada uma variação para menos de até 0,5%, não havendo restrição de tolerância para mais. A marcação inicial deve ser feita em contraste com a cor da capa do cabo, sendo preferencialmente azul ou preta para cabos de cores claras, e branca para cabos de cores escuras ou em relevo. Se a marcação não satisfizer os requisitos anteriores, é permitida a remarcação na cor amarela.

A remarcação deve ser feita de forma a não se sobrepor à marcação inicial defeituosa. Cada lance de cabo deve ser fornecido acondicionado em um carretel de madeira com diâmetro mínimo do tambor de 22 vezes o diâmetro externo do cabo. A largura total do carretel não pode exceder 1,5 m e a altura total não pode ser superior a 2,1 m.

Os carretéis devem conter um número de voltas tal que entre a camada superior e as bordas dos discos laterais exista um espaço livre mínimo de 6 cm. Os carretéis utilizados devem estar conforme a NBR 11137. As extremidades do cabo devem ser solidamente presas à estrutura do carretel, de modo a não permitir que o cabo se solte ou se desenrole durante o transporte.

A extremidade interna do cabo na bobina deve estar protegida para evitar danos durante o transporte, ser acessível para ensaios, possuir um comprimento livre de no mínimo 2 m e ser acomodada com diâmetro de no mínimo 22 vezes o diâmetro externo do cabo. Após efetuados todos os ensaios requeridos para o cabo, as extremidades do lance devem ser fechadas, a fim de prevenir a entrada de umidade. Cada lance do cabo óptico interno deve ter um comprimento nominal de 1.000 m, podendo, a pedido do comprador, ser fornecido em comprimento específico. A tolerância de cada lance deve ser de + 3%, não sendo admitidos comprimentos inferiores ao especificado.

Devem ser identificadas em cada bobina, com caracteres perfeitamente legíveis e indeléveis, as seguintes informações: nome do comprador; nome do fabricante; número da bobina; designação do cabo; comprimento real do cabo na bobina, expresso em metros (m); massa bruta e massa líquida, expressas em quilogramas (kg); uma seta ou marcação apropriada para indicar o sentido em que o cabo deve ser desenrolado; identificação de remarcação, quando aplicável. O transporte, armazenamento e utilização das bobinas dos cabos ópticos internos devem ser feitos conforme a NBR 7310.

O projeto de estação de bombeamento ou elevatória de água

Saiba quais são os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

A NBR 12214 de 07/2020 – Projeto de estação de bombeamento ou de estação elevatória de água — Requisitos especifica os requisitos para a elaboração de projeto de estação de bombeamento ou de estação elevatória de água.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como estabelecer a vazão para dimensionamento?

Como calcular o dimensionamento do volume útil da câmara de sucção ou do poço de sucção?

Como projetar a câmara de sucção para bomba tipo submersível?

Como executar o dimensionamento dos barriletes de sucção e de recalque?

Os elementos necessários para o desenvolvimento do projeto são os seguintes: a caracterização da estação de bombeamento ou estação elevatória, pontos de sucção e de recalque/descarga, vazão de dimensionamento, características físico-químicas e biológicas da água a ser bombeada ou elevada, níveis de enchente ou inundação no local; o levantamento planialtimétrico cadastral da área da estação de bombeamento ou elevatória com detalhes da vegetação, tipo de pavimento, acesso, obras especiais, indicação das interferências; o cadastro de unidade (s) operacional (is) relacionada (s) à estação de bombeamento ou elevatória e de interferências; as informações ou levantamentos socioambientais, geotécnicos, geológicos e arqueológicos, vazão de outorga, se aplicável; os dados físicos e operacionais do sistema de abastecimento de água existente; a disponibilidade de energia elétrica; os estudos, planejamentos e projetos existentes correlacionados; o estudo de concepção do sistema de abastecimento, elaborado conforme a NBR 12211; os planos diretores do sistema de abastecimento de água e demais planos diretores; o plano de urbanização, legislação relativa ao uso e ocupação do solo; restrição ambiental que interfira na área de influência do projeto; plano de saneamento básico; as condições mínimas de segurança e medicina do trabalho, conforme legislação e normas vigentes; os critérios, procedimentos e diretrizes da prestadora de serviço ou da contratante do sistema de abastecimento de água.

As atividades necessárias para o desenvolvimento do projeto são as seguintes: validar o estudo de concepção e/ou realizar estudo técnico, econômico, social, financeiro e ambiental; analisar as instalações do sistema de bombeamento ou elevatória existente, objetivando seu aproveitamento, quando for o caso; avaliar e considerar na solução técnica a restrição ambiental incidente, quando existir; avaliar o acesso da estação de bombeamento ou elevatória; complementar os levantamentos topográficos, as interferências, os estudos geológicos, geotécnicos e arqueológicos, quando necessário; determinar as vazões de projeto do sistema de bombeamento, levando em conta as condições operacionais do sistema de abastecimento; determinar a altura manométrica; determinar o tipo e o arranjo físico da elevatória; dimensionar a casa de bombas; selecionar os equipamentos de movimentação de carga e serviços auxiliares; determinar os sistemas de acionamento, medição e controle; determinar o traçado das tubulações de sucção e recalque; dimensionar e selecionar o material das tubulações de sucção e recalque; avaliar os diferentes materiais aplicados (conjunto motor-bomba, componentes, equipamentos, tubulações), de modo a compatibilizar as melhores soluções técnicas e econômicas com tempo de vida útil requerido no estudo e/ou projeto; dimensionar a câmara de sucção, quando necessário; elaborar as especificações dos equipamentos, das conexões e das tubulações; estudar os efeitos dos transitórios hidráulicos e selecionar o(s) dispositivo(s) de proteção do sistema; avaliar a resistência mecânica das partes componentes do sistema de bombeamento ou elevatória às ações internas e externas atuantes; detalhar as etapas de implantação; detalhar a interdependência das atividades e o plano de execução das obras, otimizando o tempo de paralisação do sistema, quando necessário; prever a implantação de dispositivos que permitam os procedimentos de limpeza, esgotamento, drenagem, desinfecção, estanqueidade, da estação de bombeamento ou elevatória; compatibilizar o projeto da estação de bombeamento ou elevatória com os demais projetos complementares [arquitetônico, estruturais, hidrossanitários, elétricos (inclusive iluminação), eletromecânicos, automação, monitoramento, instrumentação, ventilação, acústica, combate a incêndio, inspeção, urbanização, acessos, segurança].

Os elementos que devem compor o projeto são os seguintes: o memorial descritivo e justificativo, contendo os estudos, cálculos realizados, simulações hidráulicas; as peças gráficas do projeto, em escalas adequadas, atendendo às normas técnicas aplicáveis e às recomendações e padronizações da prestadora de serviço ou da contratante; o orçamento detalhado das obras, conforme etapas determinadas para a implantação; as diretrizes operacionais contendo o plano de operação e controle previsto para o sistema de bombeamento ou elevatória, detalhamento das vazões máximas e mínimas operacionais, quando aplicável; as diretrizes para pré-operação, comissionamento e/ou operação assistida, quando aplicável.

Para a determinação do local adequado para a implantação da estação de bombeamento ou elevatória, devem ser levados em consideração os seguintes fatores, de importância ponderada em função das condições técnicas e econômicas de cada projeto: desnível geométrico; características morfológicas; traçado da adutora, conforme a NBR 12215-1; desapropriação, legalização de áreas; acessos permanentes e que permitam a movimentação do transporte para a manutenção; proteções contra enchentes, inundações e enxurradas; estabilidade contra erosão; disponibilidade de energia elétrica; remanejamento de interferências; segurança contra assoreamento no ponto de tomada ou da captação d´água e na região próxima a estes pontos; Net Positive Succion Head (NPSH) disponível, sendo determinado considerando o nível mínimo operacional na câmara de sucção (positivo ou negativo), a temperatura ambiente média e a altitude do local onde será implantada a estação de bombeamento ou elevatória; disponibilidade de área para ampliações futuras, quando necessário.

A determinação dos levantamentos a serem efetuados deve ser precedida de inspeção de campo. Para a locação da estação de bombeamento ou elevatória, os levantamentos topográficos devem ser planialtimétricos cadastrais em extensão, detalhamento e precisão, permitindo no mínimo: mostrar os limites de propriedades e benfeitorias existentes, com indicação dos proprietários; os níveis máximos observados em corpos de água superficiais; os tipos de vegetação, os usos do solo e a exploração do subsolo; os tipos de pavimento, indicação e mapeamento das interferências superficiais e do subsolo.

Deve-se justificar a posição adotada; as obras especiais. Indicar as vias de acesso para a implantação, operação e manutenção da estação de bombeamento ou elevatória. As sondagens devem ser em número, tipo e profundidade que permitam determinar a fundação da estação de bombeamento ou elevatória, determinar o nível atual do lençol freático e elaborar o projeto das obras especiais, permitindo estabelecer o processo de escavação, a fundação e demais elementos estruturais.

As interferências não visíveis devem ser levantadas a partir das informações existentes nos projetos e cadastros, pelo acesso à câmara e/ou à caixa de inspeção existente, por meio de levantamento topográfico, da realização de furos de sondagem de prospecção eletromagnética. Deve-se avaliar as instalações do sistema de bombeamento existente e seu ciclo operacional, elaborando diagnóstico que permita a sua otimização e adequação técnica.

Na elaboração de novos estudos e projetos, as partes com aproveitamento total e/ou parcial existentes devem satisfazer as condições desta norma ou adaptar-se a ela, mediante alterações ou complementações. Deve ser analisado o impacto do sistema projetado sobre as instalações existentes. Devem ser levantadas as características hidráulicas e morfológicas das instalações existentes e a serem projetadas das unidades construtivas.

Por exemplo, da captação à margem de mananciais, compreendendo: número, forma, dimensões e material dos canais ou tubulações; cota do fundo dos canais ou tubulações na entrada da câmara de sucção; níveis máximo (cota de enchente e/ou nível de inundação) e mínimo da água nos canais à entrada da câmara de sucção; características da água, condicionantes ou necessárias para a seleção dos equipamentos; velocidade de entrada na câmara de sucção, que não pode ser superior a 0,60 m/s. Da captação direta no manancial, compreendendo: os perfis de fundo do manancial no local da captação, por meio de no mínimo três seções batimétricas, distanciadas em no máximo 20 m entre si ou conforme necessidade local determinada pela prestadora de serviço ou contratante; os níveis máximo (cota de enchente e nível de inundação) e mínimo da água; a velocidade da água no local da captação; as obras complementares projetadas; as características da água, condicionantes ou necessárias para a seleção dos equipamentos. Da sucção em reservatório, compreendendo as características gerais do reservatório: tipo, material, forma, dimensões e número de câmaras; as cotas geométricas e operacionais do reservatório, e cotas do terreno; as características da água, condicionantes ou necessárias à seleção do equipamento.

A execução de obras com tubos pré-moldados de concreto

Saiba quais são os os requisitos para a execução de obras com tubos pré-moldados de concreto conforme a NBR 8890, aduelas (galerias celulares) pré-moldadas de concreto conforme a NBR 15396, galerias técnicas conforme a NBR 16584 e poços de visita para inspeção conforme a NBR 16085.

A NBR 15645 de 07/2020 – Execução de obras utilizando tubos e aduelas pré-moldados em concreto estabelece os requisitos para a execução de obras com tubos pré-moldados de concreto conforme a NBR 8890, aduelas (galerias celulares) pré-moldadas de concreto conforme a NBR 15396, galerias técnicas conforme a NBR 16584 e poços de visita para inspeção conforme a NBR 16085. Esta norma é aplicável à execução de redes de drenagem pluvial, coletores, interceptores e emissários de esgoto sanitário, que trabalhem sem pressão interna e cujo líquido conduzido seja água de chuva, esgotos domésticos ou efluentes industriais. Adicionalmente, esta norma se aplica à execução de redes de galerias técnicas para passagem de redes de telecomunicação, telefonia, fibra ótica, água fria, gás, eletricidade e demais serviços correlatos, realizadas com tubos, aduelas ou galerias técnicas pré-moldados em concreto. Esta norma não se aplica a execução de obras por métodos não destrutivos com tubos cravados mecanicamente (pipe jacking).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executada a descarga dos produtos?

Qual a altura máxima de empilhamento?

O que deve ser observado no levantamento ou rompimento do pavimento?

Qual deve ser a largura de vala para os tubos de concreto?

As obras devem obedecer rigorosamente às plantas, desenhos e detalhes de projeto, às recomendações específicas dos fabricantes dos materiais a serem empregados e aos demais elementos que a fiscalização venha a fornecer. Em caso de divergência de informações de projeto, o projetista deve ser consultado. Todos os aspectos particulares encontrados na execução da obra e possíveis interferências devem ser comunicados à fiscalização ou contratante para as devidas providências.

A construção deve ser acompanhada pela fiscalização ou contratante. O material a ser fornecido e aplicado deve obedecer às normas brasileiras pertinentes. Deve ser respeitada a legislação ambiental vigente. A demarcação e o acompanhamento dos serviços a serem executados devem ser efetuados por equipe de topografia. Qualquer serviço que não seja projetado e especificado não pode ser executado sem autorização da fiscalização ou contratante da obra, exceto os eventuais de emergência, necessários à estabilidade e segurança da obra e do pessoal envolvido.

O construtor deve manter no escritório da obra as plantas, perfis e especificações de projeto para consulta de seu preposto e da fiscalização ou contratante. As frentes de trabalho devem ser programadas em comum acordo com a entidade a quem cabe a autorização para a abertura de valas e remanejamento do tráfego. O construtor deve providenciar a sinalização da obra, segundo as legislações vigentes e órgãos competentes.

Não é permitido o bloqueio, obstrução ou eliminação de canalizações existentes, salvo nos casos em que o interessado apresentar projeto para análise do responsável pela interferência, que forneça a aprovação, mediante termo circunstanciado. O construtor deve observar a legislação do Ministério do Trabalho que determina obrigações no campo da segurança, higiene e medicina do trabalho.

O construtor é responsável quanto ao uso obrigatório e correto pelos operários dos equipamentos de proteção individual de acordo com as normas de serviço de segurança, higiene e medicina do trabalho. O construtor deve promover, por sua conta, o seguro de prevenção de acidentes de trabalho, dano de propriedade, fogo, acidente de veículos, transporte de materiais e outro tipo de seguro que achar conveniente. Caso seja necessário o uso de explosivos, o construtor deve obedecer às normas específicas de segurança e controle para armazenamento de explosivos e inflamáveis, estabelecidas pelos órgãos responsáveis.

O uso de explosivos deve ser executado por profissional devidamente habilitado e autorizado previamente pelos órgãos responsáveis, cabendo ao construtor tomar as providências para eliminar a possibilidade de danos físicos e materiais. O encargo pela contratação da obra é do proprietário da obra, no caso de obra privada, ou do administrador contratante, no caso de obra pública. A contratação da obra deve cumprir as especificações desta norma. A documentação comprobatória do cumprimento desta norma (projeto, relatórios de ensaio, laudos e outros) deve estar disponível no canteiro de obra, durante toda a construção, e deve ser arquivada e preservada pelo prazo previsto na legislação vigente.

Cabe ao encarregado pela execução as seguintes responsabilidades, a serem explicitadas nos contratos: atendimento a todos os requisitos de projeto, inclusive quanto à escolha dos materiais a serem empregados, devendo qualquer alteração ser submetida previamente à aprovação da fiscalização; aceitação dos tubos, aduelas e poços de visita de concreto, com base em inspeção visual e recebimento de laudos de inspeção dos lotes fornecidos, conforme as NBR 8890, NBR 15396 e NBR 16085, e apresentação de projeto estrutural específico, elaborado por responsável técnico e acompanhado da respectiva ART; cuidados requeridos pelo processo construtivo de todas as etapas da obra; cumprimento das especificações das normas de segurança, com fornecimento e fiscalização da utilização de equipamentos de proteção individual (EPI) por parte de todos os envolvidos na execução da obra; sinalização das obras conforme projeto e autorização específica do poder público competente; apresentação de projeto executivo final da obra (as-built).

A documentação relativa ao cumprimento das especificações de projeto e das normas brasileiras deve ser disponibilizada no canteiro de obras durante o prazo de execução da obra. Cabem à fiscalização as seguintes responsabilidades, a serem explicitadas nos contratos: acompanhar a execução da obra com base no projeto; verificar se o recebimento dos tubos, aduelas e poços de visita de concreto está de acordo com as especificações das NBR 8890, NBR 15396 e NBR 16085, respectivamente; interromper a execução da obra quando do não cumprimento das especificações de projeto, normas técnicas ou outras situações que comprometam a qualidade e segurança da obra; verificar a necessidade de ensaios para avaliação das etapas da obra antes da liberação dos trechos para operação; emitir parecer referente ao recebimento definitivo da obra.

Cabem ao projetista as seguintes responsabilidades, a serem explicitadas nos contratos e em todos os desenhos e memoriais descritivos: cumprir as especificações das normas brasileiras na execução de projetos de redes coletoras de esgoto sanitário, interceptores, galerias de águas pluviais, canalizações de córregos e afins. No caso de uso de especificações do órgão contratante, estas devem atender no mínimo aos requisitos desta norma.

Deve especificar o tipo de utilização, o grau de agressividade do meio externo, o diâmetro nominal ou seção do conduto, a classe de resistência (no caso dos tubos de concreto) e a carga total existente (no caso das aduelas), a altura de aterro, o tipo de junta, o tipo de encaixe e qualquer outro parâmetro que possa afetar a composição ou a utilização a rede de modo satisfatório, visando a durabilidade e a funcionalidade. Também deve especificar o tipo de envolvimento a ser dado à tubulação, com indicação das características do solo de base e reaterro, assim como detalhes executivos de passagens notáveis e base de apoio das tubulações e especificar a declividade e o posicionamento da tubulação, profundidades, cobrimentos mínimos, pontos de passagem obrigatórios, interferências de qualquer natureza, tipo de pavimento, tipo da base de apoio da tubulação e tipo de rebaixamento do lençol freático. Deve desenvolver o projeto executivo de escoramento de vala.

O fabricante de tubos, aduelas e/ou poços de visita de concreto são responsáveis pela qualidade dos produtos por ele fornecidos à obra. Estes produtos devem cumprir as especificações das NBR 8890, NBR 15396 e NBR 16085, conforme o caso. A documentação relativa ao cumprimento das especificações das normas brasileiras deve ser disponibilizada para o responsável pela obra e também arquivada na empresa fabricante de tubos, aduelas e/ou poços de visita de concreto durante o prazo previsto na legislação vigente.

A contratada, antes de iniciar qualquer trabalho, deve providenciar, para aprovação da fiscalização, a planta geral do canteiro, indicando localização do terreno; acessos; redes de água, esgoto, energia elétrica, telefone e outros; localização e dimensão de todas as edificações. A segurança, a guarda e a conservação de todo o material, equipamentos, ferramentas, utensílios e instalações das obras são de responsabilidade da contratada. A contratada deve manter livre o acesso aos extintores, mangueiras e demais equipamentos situados no canteiro, a fim de combater eficientemente o fogo no caso de incêndio, ficando proibida a queima de qualquer espécie de material no local da obra.

Os EPI e os equipamentos de proteção coletiva (EPC) devem ser armazenados de forma adequada e ser de uso obrigatório na obra, conforme norma regulamentadora NR 6 do Ministério do Trabalho. Por ocasião da entrega dos tubos, aduelas e poços de visita de concreto, a fiscalização deve estar presente na obra para verificar o material e supervisionar a sua descarga e estocagem. Os tubos, aduelas e poços de visita de concreto e seus acessórios devem ser entregues na obra, acompanhados dos relatórios de inspeção.

O comprador deve ter livre acesso aos locais em que as peças encomendadas estejam estocadas, podendo, a seu critério, acompanhar o processo produtivo e os ensaios para recebimento dos produtos previstos nas normas NBR 8890, NBR 15396 e NBR 16085. A inspeção pode ser feita diretamente pelo comprador ou por inspetor credenciado. O fornecedor deve proporcionar todas as facilidades para que o inspetor possa certificar-se de que as peças estão em conformidade com as normas pertinentes.

Os tubos, aduelas e poços de visita de concreto que, por meio de verificação visual, apresentarem danos além dos limites estabelecidos nas NBR 8890, NBR 15396 ou NBR 16085, conforme o caso, no momento de sua utilização, devem ser rejeitados. Caso o construtor receba e aplique tubos, aduelas, poços de visita e seus acessórios recebidos danificados ou sem exigência de inspeção (ver NBR 8890, NBR 15396 ou NBR 16085, conforme o caso), a responsabilidade por qualquer problema executivo decorrente do material aplicado ou sinistro na obra é de seu inteiro encargo.

Os perfis laminados a quente para uso estrutural

Conheça as dimensões e as tolerâncias de perfis laminados a quente para uso estrutural. O aço dos perfis fornecidos segundo esta norma para uso estrutural deve estar em conformidade com o especificado na NBR 7007.

A NBR 15980 de 07/2020 – Perfis laminados de aço para uso estrutural — Dimensões e tolerâncias estabelece as dimensões e as tolerâncias de perfis laminados a quente para uso estrutural. O aço dos perfis fornecidos segundo esta norma para uso estrutural deve estar em conformidade com o especificado na NBR 7007. As dimensões e as tolerâncias desta norma podem ser utilizadas para perfis laminados a quente para uso não estrutural. Não se aplica às cantoneiras utilizadas na produção de torres de transmissão, torres de distribuição de energia elétrica, estruturas de subestações e torres de telecomunicações.

A revisão desta norma teve como objetivo atualizar o seu conteúdo a fim de deixá-la alinhada com as melhores práticas existentes no mercado, tanto na produção dos materiais quanto na sua utilização. Assim foram realizadas alterações de cunho técnico, como a adição de bitolas e tolerâncias dimensionais e de cunho documental, houve atualização no modo de fazer encomenda e no conteúdo da declaração (certificado).

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os símbolos usados nessa norma?

Quais são as bitolas padronizadas para perfil U?

Quais são as bitolas padronizadas para perfil HP?

Quais são as tolerâncias para perfil L?

As dimensões nominais e a massa dos perfis prescritos nesta norma estão indicadas nas tabelas do Anexo A. As massas por unidade de comprimento foram calculadas considerando-se densidade de massa de 7,85 g/cm³ referente às dimensões nominais. Outras dimensões de perfis podem ser produzidas mediante acordo prévio entre o consumidor e o produtor seguindo as respectivas tolerâncias dimensionais desta norma.

Os comprimentos normais de fornecimento são de 6.000 mm e 12.000 mm. A tolerância de corte deve obedecer à medida mínima do comprimento nominal até 100 mm deste comprimento. Comprimentos específicos devem ser objeto de acordo entre o produtor e o consumidor. As tolerâncias dimensionais, de paralelismo das faces da aba, de assimetria da alma, esquadro das extremidades e empeno dos perfis, descritos nesta Norma, são indicadas nas tabelas do Anexo B.

As massas dos perfis com pelo menos uma dimensão com mais de 76 mm, não podem variar mais do que 2,5% da massa teórica especificada, exceto para os perfis com menos de 150 kg/m, onde a variação deve ficar entre – 2,5 % e + 3,0 % da massa teórica especificada. Os produtos são fornecidos no estado natural de laminação, sendo permitido o acabamento a frio. A existência de descontinuidades, como trincas, dobras, cavidade e riscos, é permitida, desde que a profundidade dessas descontinuidades seja menor do que a especificada na tabela abaixo.

Os defeitos que não podem ser reparados por esmerilhamento podem ser reparados por solda, desde que a soma das áreas com solda não exceda 15 % da área sob inspeção. O recondicionamento com solda será efetuado mediante procedimentos com materiais de enchimento compatíveis. A área do cordão de solda deve ser nivelada por esmerilhamento até que o produto atenda às tolerâncias dimensionais admitidas nesta norma.

Os perfis devem ser fornecidos em feixes de massa entre 500 kg e 5.000 kg. As condições de fornecimento diferentes das descritas em 4.6.1 devem ser objeto de acordo entre o produtor e o consumidor. Para as tolerâncias aplicáveis às embalagens deve ser observado: para perfis com massas lineares iguais ou inferiores a 12 kg/m a tolerância máxima permitida é de ± 10 %, de acordo com a especificação do produto. Para perfis com massa superior a 12 kg/m, a tolerância máxima permitida é de ±20 %, de acordo com a especificação do produto.

Nos pedidos de compra deve constar o seguinte: nome do produto; denominação comercial, em polegadas ou referência em milímetro do produto, segundo esta norma; quantidade, em quilogramas, ou número de peças, conforme acordado com o produtor; comprimento, em metros; número e ano desta norma; grau do aço, segundo a NBR 7007, ou tipo particular, quando houver; outros requisitos adicionais, se necessário. Os perfis devem ser fornecidos em corridas ou lotes separados, em volumes, e identificados por plaqueta ou etiqueta resistente às intempéries, firmemente presa à embalagem, contendo pelo menos as seguintes informações, registradas de forma indelével: nome do produto; denominação comercial em polegada ou referência em milímetro; identificação do produtor ou fornecedor; número da corrida ou do lote; referência à NBR 7007 e respectivo grau do aço, ou tipo particular (norma/grau do aço), quando houver; massa do volume, em quilogramas; comprimento, em metros.

O produtor deve fornecer uma declaração contendo no mínimo: nome do produto; denominação comercial, em polegadas ou referência em milímetros, do produto, segundo esta norma; massa, em quilogramas ou toneladas; número desta norma; grau do aço, conforme a NBR 7007, ou tipo particular, quando houver; composição química da corrida ou lote; propriedades mecânicas (situação somente aplicável se o grau do aço for segundo a NBR 7007); outros requisitos adicionais, desde que acordados entre o produtor e o consumidor, se necessário (ver Seção 5); nome do produtor ou fornecedor; número da nota fiscal;  nome do cliente.

Requisitos suplementares podem ser solicitados pelo consumidor, desde que especificados no pedido de compra. Os ensaios devem ser conduzidos pelo produtor. A análise química do produto, quando solicitada, deve ser feita para elementos específicos de acordo com a norma requisitada no pedido de compra. As amostras para análise devem ser retiradas em local adjacente ao dos corpos de prova utilizados nos ensaios de tração. O ensaio de impacto Charpy, quando solicitado no pedido de compra, deve ser feito de acordo com a NBR ISO 148-1. A temperatura do ensaio e os requisitos relativos à energia absorvida devem ser especificados no pedido de compra.

ASME B46.1: a textura das superfícies

Essa norma, editada em 2019 pela American Society of Mechanical Engineers (ASME), refere-se às irregularidades geométricas das superfícies. Ela define a textura da superfície e seus constituintes: rugosidade, ondulação e postura. Também estabelece os parâmetros para especificar a textura de uma superfície. Os termos e as classificações desta norma referem-se a superfícies produzidas por meios como abrasão, fundição, revestimento, corte, gravação, deformação plástica, sinterização, desgaste, erosão, etc.

A ASME B46.1:2019 – Surface Texture (Surface Roughness, Waviness, and Lay) refere-se às irregularidades geométricas das superfícies. Ela define a textura da superfície e seus constituintes: rugosidade, ondulação e postura. Também estabelece os parâmetros para especificar a textura de uma superfície. Os termos e as classificações desta norma referem-se a superfícies produzidas por meios como abrasão, fundição, revestimento, corte, gravação, deformação plástica, sinterização, desgaste, erosão, etc.

Destina-se a engenheiros de projeto, desenhistas, técnicos do setor mecânico, de manufatura, produção, ferramentas/instrumentos, qualidade, processos e projetos, especialistas em CAD/CAM/CAE, inspetores e educadores em uma ampla gama de manufatura global. Dá ênfase especial às indústrias aeroespacial, automotiva, médica, instrumentação de precisão e indústrias relacionadas.

Conteúdo da norma

Prefácio . . . . . . . . . . . . . . . . . . . . . ix

Lista do Comitê . . . . . . . . . . . . . … xi

Correspondência com o Comitê B46. . . . . . . . . . . xii

Sumário executivo. . . . . . . . . . . . . . . . . . . xiv

Sumário de mudanças . . . . . . . . . . . . . . . . . . xv

Seção 1 Termos relacionados à textura da superfície. . . . . . . 1

1-1 Geral . . . . . . . . . . . . . . . . . . . . . . . 1

1-2 Definições relacionadas às superfícies. . . . . . . . . . . 1

1-3 Definições relacionadas à medição da textura da superfície por métodos de perfil. . . . 3

1-4 Definições dos parâmetros de superfície para métodos de criação de perfil.. . . . . . . . . . 6

1-5 Definições relacionadas à medição da textura da superfície por perfil de área e métodos. . . . . . . . . . . . . . . . 15

1-6 Definições dos parâmetros de superfície para os perfis de área e métodos……… 16

Seção 2 Classificação de instrumentos para medição de textura de superfície. . . . . . . . . . 21

2-1 Escopo.. . . . . . . . . . . . . . . . . . 21

2-2 Recomendação. . . . . . . . . . . . . . . . 21

2-3 Esquema de classificação. . . . . . . . . . . . . . 22

Seção 3 Terminologia e procedimentos de medição para criação de perfil, contato e instrumentos sem skid . . . . . . . . 24

3-1 Escopo. . . . . . . . . . . . . . . . . . 24

3-2 Referências.  . . . . . . . . . . . . . . 24

3-3 Terminologia. . . . . . . . . . . . . . . . . 24

3-4 Procedimento de medição. . . . . . . . 29

Seção 4 Procedimentos de medição para contato, instrumentos com skid . . . . . . . . . . . . . 31

4-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . . . 31

4-2 Referências. . . . . . . . . . . . . . . . . . . . 31

4-3 Finalidade. . . . . . . . . . . . . . . . . . . . . . 31

4-4 Instrumentação. . . . . . . . . . . . . . . . . . . . 31

Seção 5 Técnicas de medição para o perfil de área. . . . . . 36

5-1 Escopo. .. . . . . . . . . . . . . . . . . . . . . . . . . 36

5-2 Referências. .. . . . . . . . . . . . . . . . . . . . 36

5-3 Recomendações . . . . . . . . . . . . . . . . . . . 36

5-4 Métodos de imagem. . . . . . . . . . . . . . . . . 36

5-5 Métodos de digitalização.  . . . . . . . . . . . . . 36

Seção 6 Técnicas de medição para a média da área. . . . . . . 37

6-1 Escopo..  . . . . . . . . . . . . . . . . . . . . . . . 37

6-2 Exemplos de métodos de média de área. . . . . . . 37

Seção 7 Textura da superfície do nanômetro e medidas da altura do degrau por perfil de instrumentos com caneta . .  . 38

7-1 Escopo . . . . . . . . . . . . . . . . . 38

7-2 Documentos aplicáveis . . . . . . . . . . . . . . . 38

7-3 Definições. . . . . . . . . . . . . . . . . . . . . . . 38

7-4 Recomendações.. . . . . . . . . . . . . . . . . . . 39

7-5 Preparação para medição. . . . . . . . . . . . 40

7-6 Artefatos de calibração.. . . . . . . . . . . . . . . . 41

7-7 Relatórios. . . . . . . . . . . . . . . . . . . . . . . 42

Seção 8 Rugosidade da superfície do nanômetro da medida com a interferometria de medição de fase de microscopia….43

8-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . 43

8-2 Descrição e definições: Interferômetro de medição de fase sem contato. .  . . . . . 43

8-3 Principais fontes de incerteza. . . . . . . . . . . . . . 43

8-4 Requisitos do instrumento para interferômetro de medição de fase sem contato.  . . . . . . . 45

8-5 Métodos de ensaio. . . . . . . . . . . . . 45

8-6 Procedimentos de medição. .  . . . . . . . . . . . 45

8-7 Análise de dados e relatórios. . . . . . . . . . . . . 46

8-8 Referências. .. . . . . . . . . . . . . . . . . . . . . 46

Seção 9 Filtragem de perfis de superfície.. . . . . . 47

9-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . . . . 47

9-2 Referências. . . . . . . . . . . . . . . . . . . . 47

9-3 Definições e especificações gerais.. . . . . . . . 47

9-4 Especificação do filtro 2RC para aspereza.  . . . . . . 48

9-5 Filtro gaussiano correto de fases para rugosidade. . . . . 50

9-6 Filtragem de ondulação. . . . . . . . . . . . . . . . . 53

9-7 Filtragem de superfícies com propriedades funcionais estratificadas. . .  . . . . . . . . . 55

Seção 10 Terminologia e procedimentos para avaliação de texturas de superfície usando a geometria fractal  . . . . . . 56

10-1 Geral. . . . . . . . . . . . . . . . . . . . . 56

10-2 Definições relativas à análise de superfícies com base em fractal.  . . . . . . . . . . 56

10-3 Relatando os resultados das análises fractais . . . . . . 59

10-4 Referências. . . . . . . . . . . . . . . . . 61

Seção 11 Especificações e procedimentos para amostras de referência de precisão… . . . . . . . 63

11-1 Escopo.  . . . . . . . . . . . . . . . . . . . . . 63

11-2 Referências. . . . . . . . . . . . . . . . . . .  63

11-3 Definições. . . . . . . . . . . . . . . . . . . . . 63

11-4 Amostras de referência: forma e aplicação do perfil.. . . 63

11-5 Requisitos físicos. . . . . . . . . . . . . . . . . 64

11-6 Cálculo do valor atribuído.. . . . . . . . . . . . . 64

11-7 Requisitos mecânicos.  . . . . . . . . . . . . . . . . 65

11-8 Marcação. . . . . . . . . . . . . . . . . . . . . . . . 66

11-9 Intervalo de calibração.  . . . . . . . . . . . . . . 66

Seção 12 Especificações e procedimentos para amostras de comparação de rugosidade. . . . . . . . . . 75

12-1 Escopo. . . . . . . . . . . . . . . . . 75

12-2 Referências. .. . . . . . . . . . . . . . . . . . 75

12-3 Definições. .  . . . . . . . . . . . . . . . . . 75

12-4 Amostras de comparação de rugosidade. . . . . . . 75

12-5 Características da superfície. .. . . . . . . . . . . . . 75

12-6 Graus de rugosidade nominal.. . . . . . . . . . . 75

12-7 Tamanho, forma e configuração da amostra.  . . . . . 75

12-8 Calibração de amostras de comparação . . . . . . . . 76

12-9 Marcação. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Em casos de discordância quanto à interpretação das medições de textura da superfície, recomenda-se que as medições com instrumentos baseados em caneta sem skid e com filtro gaussiano sejam usadas como base para a interpretação. Alguns parâmetros-chave de medição devem ser estabelecidos para especificação e medição adequadas da textura da superfície.

Muitos parâmetros de altura do acabamento da superfície estão em uso em todo o mundo. Desde a especificação mais simples de um único parâmetro de rugosidade até várias especificações de parâmetro de rugosidade e ondulação de uma determinada superfície, os projetistas de produtos têm muitas opções para especificar a textura da superfície para controlar a função da superfície. Entre esses extremos, os projetistas devem considerar a necessidade de controlar a altura da rugosidade (por exemplo, Ra ou Rz), consistência da altura da rugosidade (por exemplo, Rmax) e altura da ondulação (por exemplo, Wt).

A ondulação é um recurso secundário de comprimento de onda mais longo, que apenas preocupa funções específicas da superfície e processos de acabamento. Uma descrição completa dos vários parâmetros de textura pode ser encontrada na Seção 1. Para os símbolos de textura de superfície, uma vez estabelecidos os vários parâmetros principais de medição, a ISO 1302: 2002 pode ser usada para estabelecer a indicação apropriada nos desenhos de engenharia relevantes.

Os tubos de PVC para o transporte de água ou de esgoto sob pressão

A NBR 7665 de 03/2020 – Sistemas de transporte de água ou de esgoto sob pressão — Tubos de PVC-M DEFOFO com junta elástica — Requisitos especifica os requisitos para tubos de poli (cloreto de vinila) (PVC), com tensão circunferencial admissível de 12 MPa, com diâmetros externos equivalentes aos dos tubos de ferro fundido, DEFOFO, com junta elástica, para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água e sistemas pressurizados de esgoto, com pressões máximas de serviço (incluindo sobrepressões provenientes de variações dinâmicas, inclusive transitórios hidráulicos) de 1,0 MPa, 1,25 MPa ou 1,60 MPa, à temperatura de 25 °C. Nas aplicações específicas em sistemas enterrados de esgotamento pressurizado, recomenda-se a utilização de um dispositivo que minimize a ocorrência de oscilações da pressurização, o que não elimina a ocorrência de transientes hidráulicos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a resistência à pressão hidrostática interna de longa duração?

Quais são as dimensões dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa de tubos de junta elástica com anel removível alojado na bolsa?

Para temperaturas de fluidos até 25 °C, a pressão de serviço permissível (PFA) equivale à pressão nominal (PN). Para temperaturas de fluidos acima de 25 °C e até 45 °C, deve ser aplicado à pressão nominal um fator de correção, fT, como indicado a seguir: PFA = fT × PN. Este fator é apresentado no gráfico da figura abaixo.

É responsabilidade do usuário aplicar os produtos conforme os requisitos desta norma e recomendações dos fabricantes. Os tubos objetos desta norma devem ser armazenados e instalados conforme os procedimentos especificados na NBR 9822. A resina de PVC utilizada na produção do composto de PVC-M deve ser do tipo suspensão e apresentar valor K maior ou igual a 65, quando determinado de acordo com a NBR 13610.

O composto de PVC-M deve estar aditivado somente com produtos necessários à sua transformação e à utilização dos tubos de acordo com esta norma. Os pigmentos devem estar total e adequadamente dispersos no composto a ser empregado na fabricação dos tubos. Os pigmentos e o sistema de aditivação devem minimizar as alterações de cor e das propriedades dos tubos durante a sua exposição às intempéries, no manuseio e na estocagem em obra.

Não é permitido o uso de material reprocessado e/ou reciclado. Não é permitida a utilização de compostos de chumbo como estabilizantes térmicos na fabricação de tubos de PVC. O composto de PVC-M empregado na fabricação dos tubos deve ser de cor azul para transporte de água, e de cor ocre para transporte de esgoto pressurizado, permitindo-se nuances devido às diferenças naturais de cor das matérias primas.

O composto utilizado na fabricação dos tubos deve estar de acordo com os requisitos especificados na norma. Estes requisitos devem ser reavaliados sempre que houver uma alteração do produto (projeto, matérias-primas e/ou escopo de aplicação). A substituição de um fornecedor de matéria prima ou do tipo de estabilizante não constitui uma alteração do produto.

Uma alteração na natureza química do estabilizante constitui uma alteração do produto. As seguintes características são relevantes na alteração do projeto do produto: dimensões, geometria e sistema de junta. Para definir a condição de reavaliação destes requisitos, é especificada na tabela abaixo uma tolerância quanto ao valor K da resina e em relação ao teor de estabilizante térmico e de cinzas do composto. Os valores “X” devem ser definidos pelo fabricante em seu controle de qualidade. Se qualquer um destes níveis exceder a tolerância, os requisitos especificados na norma devem ser reavaliados.

O composto de PVC-M empregado na fabricação dos tubos deve preservar o padrão de potabilidade da água no interior da tubulação, sem transmitir sabor, odor e não provocar turvamento ou coloração à água. O composto, bem como as concentrações máximas dos seus aditivos, devem estar em conformidade com a legislação em vigor, de maneira a não transmitir para a água potável qualquer elemento que possa alterar suas características, tornando-a imprópria para consumo humano.

Os tubos e conexões de PVC-M, para adução e distribuição de água, devem ter sua inocuidade avaliada conforme a NBR 8219 e os limites aplicados a todas as extrações devem estar em conformidade com a legislação vigente. Caso ocorra uma alteração de natureza química de um dos componentes do composto, deve ser realizado um novo ensaio de efeito sobre a água. Este ensaio não tem como objetivo avaliar a potabilidade da água para consumo humano, sendo utilizado para atender a regulamentações específicas.

Eventual teor de chumbo encontrado nos tubos de PVC-M não pode ser superior a 0,1%. O ensaio deve ser realizado por espectrometria de fluorescência de raios X, conforme EN 62321, ou por outra metodologia validada. O composto empregado na fabricação dos tubos de PVC-M deve ter ponto de amolecimento Vicat maior ou igual a 80 °C. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 82.

O composto empregado na fabricação dos tubos de PVC-M deve ter densidade na faixa de 1,35 g/cm³ a 1,50 g/cm³, medida à temperatura de 20 -2+3 °C. O valor especificado pelo fabricante do composto, em relação ao resultado do ensaio, pode ter variação máxima de 0,05 g/cm³. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 83.

O teor de cinzas dos tubos de PVC-M não pode ser superior a 5%. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 84, Método A, à temperatura de (1 050 ± 50) °C. O composto do tubo deve ter σLPL (lower prediction limit of the predicted hydrostatic strenght) de no mínimo 24 MPa. O composto do tubo deve ser analisado conforme o método II da ISO 9080, com o LPL (lower prediction limit) obtido no ensaio de pressão hidrostática interna conforme as ISO 1167-1 e ISO 1167-2, utilizando caps do tipo B. O valor de σLPL deve ser obtido a partir do LPL de 97,5% e o composto deve ser classificado conforme a ISO 12162.

No caso de alterações de uma determinada formulação já classificada para além dos limites especificados na tabela acima, o fabricante deve apresentar comprovação da realização do ensaio de pressão hidrostática interna de cinco corpos de prova a 20 °C durante 1.000 h a 5.000 h e cinco corpos de prova a 60 °C durante 1.000 h a 5.000 h. Os tubos devem ser fabricados com composto de poli (cloreto de vinila) PVC-M, que assegure a obtenção de um produto que satisfaça os requisitos desta norma, avaliado por meio de ensaios permanentes durante a fabricação e ensaios de desempenho.

Cada tubo deve ter cor uniforme e ser livre de corpos estranhos, bolhas, rachaduras ou outros defeitos visuais que indiquem descontinuidade do material e/ou do processo de extrusão. As conexões para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água ou esgotamento pressurizado de esgoto devem ser de ferro fundido dúctil, do tipo “bolsa – bolsa”, fabricadas de acordo com as NBR 7675 e NBR 15420.

Para avaliação de lotes de tubos coletados fora das dependências dos fabricantes, desde que as condições de estocagem estejam de acordo com a NBR 9822, devem ser realizados todos os ensaios de desempenho e de fabricação prescritos nesta norma, com exceção do ensaio de verificação da resistência ao impacto, que deve ser realizado obrigatoriamente no controle do processo de fabricação e na inspeção de recebimento em fábrica. Se não for comprovada a realização do ensaio de verificação da resistência ao impacto no controle do processo de fabricação e na inspeção de recebimento em fábrica, o lote deve ser rejeitado.

A inspeção de recebimento do produto acabado deve ser feita em fábrica ou por acordo prévio entre comprador e fabricante, em laboratórios acreditados. O comprador deve ser avisado com antecedência mínima acordada com o fabricante da data na qual deve ter início a inspeção de recebimento. Caso o comprador não compareça na data estipulada para acompanhar os ensaios de recebimento e não apresente justificativa para este fato, o fabricante deve proceder à realização dos ensaios previstos nesta norma e tomar as providências para a entrega do produto com o correspondente laudo de inspeção emitido pelo controle da qualidade da fábrica.

Nas inspeções realizadas em fábrica, o fabricante deve colocar à disposição do comprador os equipamentos e pessoal especializado para a execução dos ensaios de recebimento. Todo fornecimento deve ser dividido pelo fabricante em lotes de mesmo diâmetro nominal (DN) e cujas quantidades estejam de acordo com as tabelas 14 e 15, disponíveis na norma. De cada lote formado devem ser retiradas as amostras, de forma representativa, sendo a escolha aleatória e não intencional.

A inspeção de recebimento de lotes com tamanho inferior a 16 unidades deve ser objeto de acordo prévio entre fornecedor e comprador. Os ensaios de recebimento devem ser feitos conforme estabelece esta norma e limitam-se aos lotes de produto acabado apresentados pelo fabricante. Os tubos constituintes das amostras devem ser submetidos aos seguintes ensaios não destrutivos: visual (4.3.3.2 e Seção 7) e dimensional (4.4.1.1, 4.4.1.3, 4.4.1.4 e 4.6.1); e aos seguintes ensaios destrutivos: estabilidade dimensional (4.6.2), resistência ao impacto (4.6.3), compressão diametral (4.6.4), resistência à pressão hidrostática interna de curta duração (4.6.5), resistência ao cloreto de metileno (4.6.6), resistência à pressão hidrostática interna de tubo com entalhe longitudinal (4.9.1), estanqueidade da junta elástica (4.7.2) e resistência do anel C (4.8.1).

O comprador ou seu representante pode solicitar ao fabricante a execução do ensaio para verificação do índice de refração do cloreto de metileno em sua presença, antes da realização do ensaio de resistência ao cloreto de metileno. Para cada lote entregue, o relatório de inspeção deve conter no mínimo o seguinte: identificação do produto; código de rastreabilidade do produto; tamanho do lote inspecionado; resultados dos ensaios de recebimento; resultados dos ensaios de caracterização e de desempenho apresentados pelo fabricante; declaração de que o lote atende ou não às especificações desta norma.

A gestão em organizações educacionais

Há uma necessidade crítica e contínua de as organizações educacionais avaliarem até que ponto elas atendem aos requisitos de alunos e de outros beneficiários, bem como de outras partes interessadas pertinentes e melhorar sua capacidade de continuar a fazê-lo.

A NBR ISO 21001 de 03/2020 – Organizações educacionais — Sistema de gestão para organizações educacionais — Requisitos com orientação para uso especifica os requisitos para um sistema de gestão para organizações educacionais (SGOE), quando essa organização: necessitar demonstrar a sua capacidade de apoiar a aquisição e o desenvolvimento de competências por meio de ensino, aprendizagem ou pesquisa; visar aumentar a satisfação dos alunos, outros beneficiários e empregados por meio de aplicação eficaz do seu SGOE, incluindo processos de melhoria do sistema e garantia de conformidade com os requisitos dos alunos e outros beneficiários. Todos os requisitos deste documento são genéricos e se destinam a ser aplicáveis a qualquer organização que use um currículo para apoiar o desenvolvimento de competências por meio de ensino, aprendizagem ou pesquisa, independentemente do tipo, tamanho ou método de entrega. Este documento pode ser aplicado a organizações educacionais dentro de organizações maiores cujo negócio principal não seja educação, como departamentos de treinamento profissional. Este documento não se aplica às organizações que apenas produzam ou fabriquem produtos educacionais.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os papéis, responsabilidades e autoridades organizacionais?

Quais são os objetivos da organização educacional e planejamento para alcançá-los?

O que se deve fazer em relação aos recursos humanos?

Como prover os recursos de monitoramento e medição?

Este documento provê uma ferramenta de gestão comum para organizações provedoras de produtos e serviços educacionais capazes de atender aos requisitos de alunos e de outros beneficiários. Há uma necessidade crítica e contínua de as organizações educacionais avaliarem até que ponto elas atendem aos requisitos de alunos e de outros beneficiários, bem como de outras partes interessadas pertinentes e melhorar sua capacidade de continuar a fazê-lo.

Uma classificação das partes interessadas em organizações educacionais é apresentada no Anexo C. Embora as organizações educacionais e os estudantes em todo o mundo sejam os principais beneficiários deste documento, todas as partes interessadas se beneficiarão de sistemas de gestão normalizados em organizações educacionais. Os empregadores que patrocinam e incentivam seus empregados a participar de serviços educacionais também podem se beneficiar deste documento.

Os benefícios potenciais para uma organização pela implementação de um sistema de gestão para organizações educacionais (SGOE) baseado neste documento são: melhor alinhamento dos objetivos e atividades com a política (incluindo missão e visão); maior responsabilidade social, proporcionando educação de qualidade inclusiva e equitativa para todos; aprendizagem mais personalizada e resposta eficaz a todos os alunos e, em particular, aos alunos com necessidades educativas especiais, alunos à distância e oportunidades de aprendizagem ao longo da vida; processos coerentes e ferramentas de avaliação para demonstrar e aumentar a eficácia e a eficiência; maior credibilidade da organização; um meio que permita que as organizações educacionais demonstrem seu compromisso com práticas eficazes de gestão educacional; uma cultura para melhoria organizacional; harmonização de normas regionais, nacionais, abertas, proprietárias e outras normas dentro de uma estrutura internacional; participação ampliada das partes interessadas; estímulo à excelência e inovação.

Este documento é uma norma de sistema de gestão independente, alinhado com a NBR ISO 9001. Ele se concentra nos sistemas de gestão das organizações educacionais, bem como no impacto destes sobre os alunos e outras partes interessadas pertinentes. Este documento está em conformidade com os requisitos da ISO para normas do sistema de gestão. Estes requisitos incluem uma estrutura de alto nível, texto principal idêntico e termos comuns com definições básicas, projetados para beneficiar os usuários que implementam múltiplas normas de sistema de gestão da ISO.

Este documento pode ser implementado junto com normas regionais, nacionais, abertas, proprietárias e outras normas ou documentos relacionados. O Anexo F provê um exemplo de como implementar este documento juntamente com a European Quality Assurance Framework for Vocational Education and Training (EQAVET). Este SGOE envolve os seguintes princípios de gestão: foco nos alunos e outros beneficiários; liderança visionária; engajamento das pessoas; abordagem de processo; melhoria; decisões baseadas em evidências; gestão de relacionamento; responsabilidade social; acessibilidade e equidade; conduta ética na educação; segurança e proteção de dados.

Os detalhes destes princípios são analisados no Anexo B. Este documento promove a adoção de uma abordagem de processo no desenvolvimento, implementação e melhoria da eficácia de um SGOE, para aumentar a satisfação do aluno e de outros beneficiários, pelo atendimento aos requisitos do aluno e de outros beneficiários. Entender e gerenciar processos inter-relacionados como um sistema que contribui para a eficácia e a eficiência da organização em alcançar seus resultados pretendidos. Essa abordagem habilita a organização a controlar as inter-relações e interdependências entre processos do sistema, de modo que o desempenho global da organização possa ser elevado.

A abordagem de processo envolve a definição e a gestão sistemática e a gestão de processos e suas interações para alcançar os resultados pretendidos de acordo com a política, objetivos e plano estratégico da organização. A gestão dos processos e do sistema como um todo pode ser alcançada usando o ciclo PDCA com um foco geral na mentalidade de risco, visando tirar proveito das oportunidades e prevenir resultados indesejáveis.

A aplicação da abordagem de processo em um SGOE proporciona: entendimento e consistência no atendimento a requisitos; consideração de processos em termos de valor agregado; atingimento de desempenho eficaz do processo; melhoria de processos baseada na avaliação de dados e informações. A figura abaixo mostra uma representação esquemática de qualquer processo e das interação de seus elementos. Os pontos de monitoramento e medição necessários para controle são específicos de cada processo e variam dependendo dos riscos relacionados.

O ciclo Plan-Do-Check-Act (PDCA) pode ser aplicado para todos os processos e para o SGOE como um todo. A figura abaixo ilustra como as Seções 4 a 10 podem ser agrupadas em relação ao ciclo PDCA.

O ciclo PDCA pode ser resumidamente descrito como Plan (Planejar): estabelecer os objetivos do sistema e seus processos e os recursos necessários para entregar resultados de acordo com os requisitos dos alunos e de outros beneficiários e com as políticas da organização, e identificar e abordar riscos e oportunidades; Do (Fazer): implementar o que foi planejado; Check (Checar): monitorar e (onde aplicável) medir os processos e os produtos e serviços resultantes em relação a políticas, objetivos, requisitos e atividades planejadas, e reportar os resultados; Act (Agir): executar ações para melhorar o desempenho, conforme necessário.

A mentalidade de risco é essencial para conseguir um SGOE eficaz. Para estar conforme com os requisitos deste documento, uma organização precisa planejar e implementar ações para abordar riscos e oportunidades. A abordagem dos riscos e oportunidades estabelece uma base para o aumentar a eficácia do sistema de gestão da qualidade, conseguir resultados melhorados e prevenir efeitos negativos.

Oportunidades podem surgir como resultado de uma situação favorável ao atingimento de um resultado pretendido, por exemplo, um conjunto de circunstâncias que possibilite que a organização atraia alunos e outros beneficiários, desenvolva novos produtos e serviços, reduza o desperdício ou melhore a produtividade. Ações para abordar oportunidades podem também incluir a consideração de riscos associados.

O risco é o efeito da incerteza, e qualquer incerteza pode ter um efeito positivo ou negativo. Um desvio positivo proveniente de um risco pode oferecer uma oportunidade, mas nem todos os efeitos positivos de risco resultam em oportunidades. A figura abaixo ilustra a estratégia do SGOE relacionada à missão e à visão.

As declarações da política do SGOE são moldadas pela cultura da organização (o conjunto completo de crenças e valores que condicionam seu comportamento) e pelos princípios do SGOE. Por sua vez, as declarações de política do SGOE proveem a estrutura para o estabelecimento dos objetivos do SGOE, que são revisados periodicamente para assegurar que a missão da organização seja cumprida de forma efetiva e eficiente enquanto percorre um caminho contínuo para alcançar a visão da organização. A articulação desses elementos é geralmente chamada de estratégia.

O Anexo A especifica requisitos adicionais para a educação infantil nas organizações que prestam este serviço. O Anexo B descreve os princípios para um SGOE. O Anexo C provê uma classificação das partes interessadas. O Anexo D provê diretrizes para comunicação com partes interessadas. O Anexo E provê orientação sobre processos, medidas e ferramentas em organizações educacionais. O Anexo F provê um exemplo de mapeamento para normas regionais. O Anexo G descreve considerações sobre saúde e segurança para organizações educacionais.

A organização deve determinar questões externas e internas que sejam pertinentes para o seu propósito, para a sua responsabilidade social e para seu direcionamento estratégico, e que afetem sua capacidade de alcançar os resultados pretendidos de seu SGOE. A organização deve monitorar e analisar criticamente informações sobre estas questões externas e internas. Questões podem incluir fatores ou condições positivos e negativos para consideração.

O entendimento do contexto externo pode ser facilitado pela consideração de questões provenientes dos ambientes tecnológico, competitivo, de mercado, cultural, social, político e econômico, tanto internacionais, quanto nacionais, regionais ou locais. O entendimento do contexto interno pode ser facilitado pela consideração de questões relativas a valores, cultura, conhecimento e desempenho da organização. A direção estratégica pode ser expressa por meio de informação documentada, como a missão organizacional ou a declaração de visão.

Devido ao seu efeito ou potencial efeito sobre a capacidade da organização para prover produtos e serviços educacionais de forma coerente e sustentável, a organização deve determinar: as partes interessadas que sejam pertinentes para a SGOE; os requisitos pertinentes dessas partes interessadas. Essas partes interessadas devem incluir: alunos; outros beneficiários; empregados da organização. A organização deve monitorar e analisar criticamente informações sobre essas partes interessadas e seus requisitos pertinentes. O Anexo C fornece uma classificação das partes interessadas em organizações educacionais.

A organização deve determinar os limites e a aplicabilidade do SGOE para estabelecer o seu escopo. Ao determinar esse escopo, a organização deve considerar: as questões externas e internas referidas em 4.1; os requisitos das partes interessadas pertinentes referidas em 4.2; os produtos e serviços da organização. A organização deve aplicar todos os requisitos deste documento, se eles forem aplicáveis no escopo determinado de seu SGOE. O escopo do SGOE deve estar disponível e ser mantido como informação documentada.

O escopo deve declarar os tipos de produtos e serviços cobertos e prover justificativa para qualquer requisito deste documento que a organização determinar que não seja aplicável ao seu SGOE. A conformidade com este documento só pode ser alegada se os requisitos determinados como não aplicáveis não afetarem a capacidade ou a responsabilidade da organização de assegurar a conformidade de seus produtos e serviços e o aumento da satisfação de alunos e de outros beneficiários. Todos os produtos e serviços providos aos alunos por uma organização educacional devem ser incluídos no escopo deste SGOE.

A organização deve estabelecer, implementar, manter e melhorar continuamente um SGOE, incluindo os processos necessários e suas interações, de acordo com os requisitos deste documento. A organização deve determinar os processos para o SGOE e sua aplicação em toda a organização, e deve: determinar as entradas requeridas e as saídas esperadas desses processos; determinar a sequência e a interação desses processos; determinar e aplicar os critérios e métodos (incluindo monitoramento, medição e indicadores de desempenho relacionados) necessários para assegurar a operação e o controle eficazes desses processos; determinar os recursos necessários para esses processos e assegurar a sua disponibilidade; atribuir as responsabilidades e autoridades para esses processos; abordar os riscos e oportunidades conforme determinado de acordo com os requisitos de 6.1; avaliar esses processos e implementar quaisquer mudanças necessárias para assegurar que esses processos alcancem seus resultados pretendidos; melhorar os processos e o SGOE.

Na extensão necessária, a organização deve: manter informação documentada para apoiar a operação de seus processos; reter informação documentada para ter confiança em que os processos sejam realizados conforme planejado. A Alta Direção deve demonstrar liderança e comprometimento em relação ao SGOE: sendo responsabilizada pela eficácia do SGOE; assegurando que a política da organização educacional e os objetivos da organização educacional sejam estabelecidos e que sejam compatíveis com o contexto e a direção estratégica da organização; assegurando a integração dos requisitos do SGOE nos processos de negócios da organização; promovendo o uso da abordagem de processo e da mentalidade de risco; assegurando que os recursos necessários para o SGOE estejam disponíveis; comunicando a importância de uma gestão da organização educacional eficaz e de estar conforme com os requisitos do SGOE; assegurando que o SGOE alcance seus resultados pretendidos; engajando, dirigindo e apoiando pessoas a contribuir para a eficácia do SGOE; promovendo a melhoria contínua; apoiando outros papéis pertinentes da gestão a demonstrar como sua liderança se aplica às suas áreas sob sua responsabilidade; apoiando a implementação sustentável da visão educacional e os conceitos educacionais relacionados; estabelecendo, desenvolvendo e mantendo um plano estratégico para a organização; assegurando que os requisitos educacionais dos alunos, incluindo as necessidades especiais, sejam identificados e abordados; considerando os princípios de responsabilidade social.

A referência a negócio neste documento pode ser interpretada, de modo amplo, como aquelas atividades centrais para os propósitos da existência da organização, seja ela pública, privada, voluntária, voltada para o lucro ou sem finalidade lucrativa. A Alta Direção deve ser diretamente responsável por assegurar que: as necessidades e expectativas dos alunos e de outros beneficiários sejam determinadas, compreendidas e coerentemente atendidas, conforme evidenciado pelo monitoramento de sua satisfação e progresso educacional; os riscos e oportunidades que podem afetar a conformidade de produtos e serviços e a capacidade de aumentar a satisfação do aluno e de outros beneficiários sejam determinados e abordados.

Um aluno com necessidades especiais é alguém que pode ter necessidades educacionais que podem não ser atendidas por meio de práticas regulares de instrução e avaliação (por exemplo, excepcionalidades como comportamentais, comunicacionais, intelectuais, físicas, superdotadas ou outras necessidades de educação especial; os alunos podem ter mais de uma excepcionalidade). Isso implica a necessidade de assegurar a existência de canais de comunicação para que as partes interessadas possam receber as informações necessárias para a sua atividade. A Alta Direção deve assegurar que: os recursos e treinamento estejam disponíveis para apoiar a acessibilidade em ambientes de aprendizado; seja oferecida acomodação adequada para os alunos com necessidades especiais para promover um acesso equitativo às instalações e aos ambientes educacionais, como outros alunos.

Os requisitos para os módulos de concreto armado pré-moldados

É fundamental conhecer as características dos materiais, parâmetros de dosagem, características do acabamento, método de cura, dimensões e tolerâncias, bem como os critérios para inspeção e ensaios e os parâmetros para aceitação de módulos de concreto armado pré-moldados, destinados à execução de poços de visita e poços de inspeção.

A NBR 16085 de 03/2020 – Poços de visita e inspeção pré-moldados em concreto armado para sistemas enterrados — Requisitos e métodos de ensaio especifica os requisitos mínimos para fabricação, controle da qualidade e recebimento de módulos de concreto armado pré-moldados, para execução de poços de visita ou inspeção de sistemas enterrados, como, por exemplo, redes de distribuição de água, drenagem, eletricidade, telefonia, gás, coleta de esgoto sanitário ou demais serviços correlatos. Especifica as características dos materiais, parâmetros de dosagem, características do acabamento, método de cura, dimensões e tolerâncias, bem como os critérios para inspeção e ensaios e os parâmetros para aceitação de módulos de concreto armado pré-moldados, destinados à execução de poços de visita e poços de inspeção. Para os efeitos desta norma, aplicam-se os mesmos requisitos aos elementos de concreto armado pré-moldados e pré-fabricados, sendo ambos referenciados por esta norma apenas como pré-moldados.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido um poço de inspeção?

Como devem ser produzidas as fôrmas para o concreto?

Quais devem ser os diâmetros e as alturas úteis dos módulos de seção circular?

Quais são as dimensões em planta dos módulos de seção retangular?

As soluções estruturais adotadas devem ser determinadas por profissional habilitado, responsável técnico pelo projeto, com apresentação de memória de cálculo do dimensionamento estrutural e respectivo desenho de fôrma e armação, acompanhados da respectiva Anotação de Responsabilidade Técnica. As soluções estruturais devem atender aos requisitos de qualidade estabelecidos pelas normas brasileira pertinentes, relativos à capacidade resistente, ao desempenho em serviços e à durabilidade da estrutura, conforme especificado na NBR 6118.

Quando os poços de visita (PV) ou de inspeção (PI) forem utilizados em locais onde ocorrem a passagem de esgoto sanitário ou efluente industrial, o responsável técnico pelo projeto deve apresentar solução que assegure a estanqueidade do sistema de encaixe e atenda aos requisitos específicos desta norma. Os PV e PI de concreto armado pré-moldados são enquadrados na categoria de condutos rígidos, ou seja, devem suportar as cargas por sua própria resistência.

Como as cargas devem ser consideradas as cargas de terra, as sobrecargas móveis e demais cargas eventuais, caso existam, que cada situação de aplicação requer. Podem ser produzidos PV ou PI de características especiais, específicos para aplicação em um determinado empreendimento, desde que o projeto seja elaborado por profissional habilitado e a memória de cálculo seja disponibilizada para verificação do comprador ou seu preposto.

Igualmente aos PV e PI padronizados nesta norma, os PV e PI de características especiais estão sujeitos à inspeção, conforme a Seção 8. Os requisitos relacionados à capacidade resistente e ao desempenho em serviço são estabelecidos pelos critérios adotados no dimensionamento estrutural das peças. Os requisitos relacionados à durabilidade, que indicam a capacidade da estrutura de resistir às influências ambientais, devem ser determinados em comum acordo entre o consumidor ou seu preposto e o autor do projeto estrutural.

Em qualquer situação de utilização dos PV e PI, devem ser seguidos os parâmetros relacionados à relação água/cimento em massa, à classe do concreto, ao consumo de cimento Portland por metro cúbico de concreto e ao cobrimento nominal das armaduras, conforme a classe de agressividade ambiental externa ao PV ou PI, estabelecida pelas NBR 6118 e NBR 12655. Em caso de sobreposição, prevalecem os requisitos específicos estabelecidos nesta norma.

Todos os módulos previstos por esta norma devem ter suas aberturas executadas durante o processo de fabricação. Quando necessária a execução de intervenção na obra, esta deve ser realizada com o auxílio de máquina extratora, de modo a evitar danos à peça. Não podem ser realizadas intervenções com equipamentos manuais.

Quando os PV ou PI forem utilizados para passagem de esgoto sanitário, efluente industrial ou drenagem pluvial com comprovada contaminação por esgoto, é obrigatório o uso de cimento resistente aos sulfatos, conforme a NBR 16697. Nos demais casos, pode ser utilizado qualquer tipo de cimento Portland, de acordo com a NBR 16697. Deve ser rejeitado, independentemente de ensaios de laboratório, todo e qualquer cimento que indique sinais de hidratação ou que esteja acondicionado em sacos que se apresentem manchados, úmidos ou avariados.

Os agregados devem atender aos requisitos da NBR 7211, sendo sua dimensão máxima característica limitada ao menor valor entre um terço da espessura da parede do módulo de concreto e o cobrimento mínimo da armadura ou, no caso de peças reforçadas exclusivamente com fibras de aço, um terço da espessura da parede do módulo. Os agregados devem ser estocados de forma a evitar a contaminação e mistura de materiais diferentes e devem atender aos requisitos especificados na NBR 15577-1 em relação ao seu potencial de reatividade com álcalis do concreto. Devem proceder às medidas preventivas específicas para cada caso.

A água deve ser límpida, isenta de teores prejudiciais de sais, óleos, ácidos, álcalis e substâncias orgânicas, e não alterar a reologia do concreto, atendendo aos requisitos da NBR 15900-1. Os aditivos utilizados no concreto devem atender ao disposto na NBR 11768 e o teor de íon cloro no concreto não pode ser maior que 0,15%, determinado conforme a NBR 10908. Os aditivos devem ser armazenados em local abrigado de intempéries, umidade e calor, respeitando-se seu prazo de validade.

As adições, quando utilizadas, não podem conter elementos nocivos que influenciem negativamente na resistência, endurecimento, estanqueidade e durabilidade do concreto ou que provoquem corrosão da armadura, devendo ser seguidas as NBR 12653, NBR 13956-1 e NBR 15894. O aço deve atender às NBR 7480 e/ou NBR 7481, conforme o processo de montagem da armadura. Os lotes devem ter homogeneidade quanto às suas características geométricas e devem se apresentar sem defeitos.

São rejeitados os aços que se apresentarem em processo de corrosão e oxidação, com redução de seção. Ao ser armazenado, o aço deve ser protegido do contato direto com o solo, sendo apoiado sobre uma camada de brita ou sobre vigas de madeira transversais aos feixes. Recomenda-se cobrir o aço com plástico ou lona, protegendo-o da umidade e de ataque de agentes agressivos.

Quando os PV ou PI forem utilizados em locais onde a agressividade do meio for classe IV, conforme a NBR 12655, ou para passagem de esgoto sanitário, efluente industrial ou drenagem pluvial com comprovada contaminação por esgoto, a relação água/cimento deve ser de no máximo 0,45, expressa em litros de água por quilograma de cimento. Nos demais casos, a relação água/cimento deve ser de no máximo 0,50, expressa em litros de água por quilograma de cimento.

Para assegurar a qualidade do concreto endurecido, as operações de mistura, transporte, lançamento, adensamento e cura do concreto fresco devem ser realizadas de acordo com o disposto na NBR 12655. As juntas entre os módulos do PV ou do PI, e as juntas entre a rede e a base do PV ou PI, no caso de redes de esgoto sanitário, efluente industrial ou drenagem pluvial com comprovada contaminação por esgoto, devem ser estanques e do tipo elástica, com a utilização de anel de borracha ou de elemento elastomérico projetado especificamente para este fim. As juntas entre os módulos do PV ou do PI, e as juntas entre a rede e a base do PV ou PI, nos demais casos, podem ser do tipo rígida, elástica ou projeto especial.

Juntas de borracha, quando utilizadas, devem atender aos requisitos da ABNT NBR 16687. A disposição das armaduras dentro da fôrma deve ser tal que impeça sua movimentação durante o processo de lançamento e adensamento do concreto. As emendas são permitidas somente se estiverem conforme as NBR 8548 e NBR 6118.

O detalhamento das armaduras deve estar de acordo com o especificado nas NBR 8890, NBR 15396 e NBR 16584. Os módulos de PV e PI devem ter suas configurações conforme descritas nessa norma. Os PV e PI de seção circular são os PV e PI formados por módulos de seção circular, conforme a figura abaixo.

A classe de resistência mecânica do módulo de anel deve ser calculada para cada situação de utilização, não podendo ser inferior à NBR 8890:2018, classe EA2. A resistência de cálculo do concreto declarada pelo fabricante deve ser igual ou superior a 30 MPa para classe III de agressividade do meio e igual ou superior a 40 MPa para classe IV de agressividade do meio. Para determinação da resistência devem ser moldados corpos de prova conforme a NBR 5738.

O ensaio de compressão axial para determinação da resistência deve ser realizado conforme a NBR 5739. O comprador pode fazer o acompanhamento da moldagem dos corpos de prova durante o processo de produção das peças, não sendo permitida a extração de ensaio testemunhos de peças já moldadas e/ou aplicadas, como programa regular de controle da resistência para fins de aceitação da peça.

Os módulos dos PV e PI devem ter sua absorção de água determinada conforme ensaio descrito na NBR 9778, sendo a absorção máxima de água em relação à sua massa seca limitada a 6% nos casos de utilização para passagem de esgoto sanitário, efluente industrial ou drenagem pluvial com comprovada contaminação por esgoto, ou 8% para os demais casos.

Preço não tem nada a ver com custo

NBR 16537 de 6/2016: as diretrizes para a sinalização tátil no piso

Qual o dimensionamento dos relevos do piso tátil de alerta? Qual o dimensionamento dos relevos táteis de…

Leia mais…

custoEduardo Moura

A afirmação do título pode parecer absurda ou até mesmo chocante, porque o paradigma vigente ensina que, para uma dada unidade de produto, “Custo + Margem = Preço”. Dentro do “Mundo do Custo” tal equação faz perfeito sentido.

“Custo” é o consagrado “custo unitário total do produto”‘, e resulta da soma de duas parcelas: CTV: Custo Totalmente Variável (a palavra “totalmente” significa que nesta parcela entram somente os custos que realmente variam com cada unidade vendida – não incluindo, portanto, a “mão de obra direta”) e GO(un): a parcela de gasto alocada a cada unidade do produto em questão (isto é, o rateio do Gasto Operacional total distribuído sob algum critério arbitrário, às unidades do produto).

Sobre este Custo Unitário do Produto acrescentamos uma “margem compensadora” para chegar a um “preço justo”, o qual em seguida tratamos de impor ao mercado. O problema aqui é que tal prática, verdadeira vaca sagrada da administração, é contra-producente porque pode disparar duas formas de perder rentabilidade: por um lado, perder vendas de clientes que não estão dispostos a pagar o tal “preço justo”, e por outro, perder dinheiro de clientes que, por darem muito valor ao produto, estariam dispostos a pagar além do “preço justo”.

A esta altura alguém pode questionar: “mas se vendermos por menos sacrificamos a margem”. Para respondermos a isto e termos uma percepção mais exata da realidade, temos que “pensar fora da caixa”, isto é, adotar um novo paradigma: o “Mundo do Throughput”.

Voltando à reserva levantada no início do parágrafo anterior: a primeira reflexão a fazer é se a razão pela qual estamos no negócio é “assegurar a margem unitária” ou “gerar dinheiro”. No Mundo do Custo essas duas coisas parecem sinônimas. Mas no Mundo do Throughput podemos ver claramente que não.

Explico: a ideia de que se vendermos com margem unitária baixa ou zero não seremos rentáveis é falsa, porque se apóia numa premissa igualmente falsa: a de que a venda de uma unidade de produto só gera lucro se o preço de venda superar seu custo unitário total. Na verdade, basta que uma unidade de produto seja vendida por um preço acima do seu CTV, que ela já começa a contribuir com uma entrada real de dinheiro no sistema de negócio.

Esta contribuição é o que chamamos de “throughput unitário” gerado pela venda (Throughput unitário = Preço de Venda – CTV). Se houver mercado para gerar Throughput Total suficiente para cobrir o Gasto Operacional Total, seremos rentáveis, mesmo vendendo produto com “margem unitária” baixa, zero, ou até mesmo negativa.

Para ilustrar este ponto, usemos um exemplo didático (se quiser, confira com seu próprio cálculo): suponha que uma unidade de negócios fabrica e vende um único produto, cujo custo totalmente variável CTV (un)=12,00 com preço de venda PV (atual)=25,00 e demanda mensal D (atual)=10.000. Seu gasto operacional mensal atualmente é de 100.000,00.

Portanto, pela análise tradicional de custos, distribuindo o GO total às 10.000 unidades, temos um rateio unitário GO (un)= 10,00, que somado ao CTV resulta num custo unitário total C(un)=22,00. A margem de lucro do produto é ML= 25,00 – 22,00 = 3,00. Assim, esta empresa está gerando 30.000,00 de lucro líquido cada mês.

Agora, suponha que aparece um distribuidor que quer fazer negócio com o produto, comprando-o por atacado. Ele oferece comprar 8.000 unidades por mês, mas exige um desconto importante que lhe assegure rentabilidade: ele propõe PV= 17,00 (32% de desconto).

Porém, para aumentar a produção mensal de 10.000 para 18.000 (quase o dobro) será necessário aumentar o GO mensal em 25.000,00. O GO total passaria para 125.000,00. O cálculo tradicional, baseado na Contabilidade de Custos, decidiria sobre a viabilidade da proposta calculando o custo unitário do produto na nova condição de negócio, para em seguida verificar qual seria a margem o produto com desconto.

O rateio do custo fixo total agora seria GO(un)= 125.000/18.000= 6,94. Acrescentando o CTV de 12,00 o custo unitário total ficaria C(un)= 18,94. De onde se conclui, pela análise tradicional, que a margem do produto com desconto seria negativa: ML(un)= 17,00 – 18,94= -1,94.

O negócio com o distribuidor geraria uma perda de 8.000 x (-1,94) = -15.520,00. A resposta, evidentemente, seria dizer “não” e pedir a esse “mercenário” que vá oferecer maus negócios a fabricantes que não sabem calcular seus custos.

Vejamos agora a que conclusão chegaríamos analisando a mesma situação com a Contabilidade de Throughput. Se o CTV=12,00 então cada unidade vendida geraria throughput unitário T(un)= 17,00 – 12,00= 5,00. Portanto o throughput mensal seria de T(total)= 8.000 x 5,00= 40.000. Isto mais do que compensa o aumento de 25.000 no GO total.

Portanto, o negócio com o distribuidor acrescentaria 15.000 sobre o lucro líquido mensal, que passaria a ser de 45.000,00 (um aumento de 50% na lucratividade). Excelente negócio.

Em vez de “despachar” o distribuidor pela porta dos fundos, o convidaríamos para um almoço em restaurante de luxo, para celebrar o contrato. Chegamos assim a uma decisão diametralmente oposta à indicada pela Contabilidade de Custos.

Qual foi o problema com o cálculo tradicional? Por que a Contabilidade de Custo nos levou a perder uma boa oportunidade de aumentar o lucro? Por causa do rateio do custo fixo, necessário para chegar ao “custo unitário do produto”. Foi aí que nossa visão de negócio foi distorcida.

Além disso, e para concluir: o preço e o custo são parâmetros financeiros cujas origens são, de fato, completamente independentes. Custo tem a ver com a criatividade e capacidade técnica de produção (algo interno à empresa), enquanto que preço tem a ver com a atratividade ou percepção de valor aos olhos do cliente (algo externo à empresa).

A questão central é o quanto podemos ser rentáveis praticando certo tipo de preço no mercado, e para responder corretamente a isto não temos que, e nem devemos, calcular o “custo unitário do produto” usando a tradicional alocação de custos fixos, a qual é extremamente complicada, desnecessária e distorce nossa percepção da realidade. Recomendo, portanto, que você adote o paradigma do Throughput e deixe de usar o conceito de “custo unitário do produto”, fazendo com essa vaca sagrada da Contabilidade de Custos um delicioso churrasco.

Eduardo Moura é diretor da Qualiplus Excelência Empresarial –emoura@qualiplus.com.br

Aprendendo a medir o desempenho energético com a norma técnica

energia

A implantação de um sistema de gestão da energia requer o comprometimento da alta direção da organização, mas, também, dos diversos níveis hierárquicos da empresa. Ao primeiro grupo caberá definir os objetivos e metas a serem alcançados em termos de desempenho energético e fornecer uma visão corporativa que permita a implantação bem-sucedida do sistema de gestão.

Os demais níveis participam da operacionalização da política energética, da identificação das necessidades diárias e da proposição de melhorias nos processos, atuando como mola mestra do funcionamento de todo o programa A principal questão quanto ao sucesso da implantação do sistema está na compreensão, por todos, de que esta iniciativa resultará, em última análise, em ganhos financeiros para a empresa, pois aumenta a sua competitividade ao reduzir custos produtivos desnecessários. Outros ganhos, relacionados à sustentabilidade econômica e ambiental do negócio, também serão obtidos, sem falar na redução de investimentos na ampliação incessante da infraestrutura necessária à distribuição de determinados insumos energéticos, tais como eletricidade e gás natural, entre vários outros.

A NBR ISO 50001 especifica os requisitos de um sistema de gestão da energia (SGE) para uma organização desenvolver e implementar uma política energética, estabelecer objetivos, metas e planos de ação que considerem requisitos legais e informações relativas ao uso significativo de energia. Um SGE habilita uma organização a atender sua política energética, tomar as devidas ações de melhoria de seu desempenho energético e demonstrar conformidade aos requisitos desta norma.

Pode-se ajustar a aplicação desta norma a requisitos específicos de uma organização – incluindo complexidade do sistema, grau de documentação e recursos – e abrange as atividades sob o controle da organização. Ela se baseia na estrutura de melhoria contínua do Plan-Do-Check-Act e incorpora a gestão da energia nas práticas organizacionais diárias, melhoria da competitividade e redução de emissões de gases de efeito estufa e outros impactos ambientais relacionados.

É aplicável independentemente dos tipos de energia utilizados. Pode ser utilizada para certificação, registro ou autodeclaração do SGE de uma organização. Ela não estabelece requisitos absolutos para o desempenho energético além daqueles estabelecidos na política energética da organização e de sua obrigação de conformidade a requisitos legais aplicáveis ou outros requisitos. Assim, duas organizações realizando operações semelhantes, mas com desempenhos energéticos distintos, podem ambas estar em conformidade com seus requisitos.

Especificamente em seu item 4.3 Política energética: deve declarar o comprometimento da organização para atingir a melhoria do desempenho energético. A alta direção deve definir a política energética e garantir que esta: seja apropriada à natureza e escala do uso e consumo de energia da organização; inclua um comprometimento para melhoria contínua de desempenho energético; inclua um comprometimento para garantir a disponibilidade de informações e de recursos necessários para atingir objetivos e metas; inclua um comprometimento para cumprir com os requisitos legais aplicáveis e outros requisitos aos quais a organização subscreve em relação à eficiência, uso e consumo de energia; forneça uma estrutura para estabelecer e revisar objetivos e metas energéticas; apoie a aquisição de produtos energeticamente eficientes, assim como de serviços e projetos para melhoria do desempenho energético; seja documentada e comunicada em todos os níveis da organização; e seja regularmente revisada e atualizada se necessário.

Já a NBR ISO 50006 de 03/2016 – Sistemas de gestão de energia — Medição do desempenho energético utilizando linhas de base energética (LBE) e indicadores de desempenho energético (IDE) — Princípios gerais e orientações fornece orientações para organizações de como estabelecer, utilizar e manter indicadores de desempenho energéticos (IDE) e linhas de base energética (LBE) como parte do processo de medição de desempenho energético. As orientações nesta norma são aplicáveis a qualquer organização, independentemente do seu tamanho, tipo, localização ou nível de maturidade na área de gestão de energia.

Fornece às organizações orientações práticas sobre como atender aos requisitos da NBR ISO 50001 relacionados ao estabelecimento, uso e manutenção dos indicadores de desempenho energético (IDE) e linhas de base energética (LBE) para a medição e alterações no desempenho energético. O IDE e a LBE são dois elementos-chave inter-relacionados da NBR ISO 50001 que permitem a medição, e, logo, a gestão do desempenho energético em uma organização.

O desempenho energético é um conceito amplo relacionado ao uso e consumo de energia e eficiência energética. Para gerenciar efetivamente o desempenho energético de suas instalações, sistemas, processos e equipamentos, as organizações precisam saber como a energia é utilizada e quanto é consumida ao longo do tempo.

Um IDE é um valor ou medida que quantifica resultados relacionados à eficiência energética, uso e consumo de energia em instalações, sistemas, processos e equipamentos. As organizações utilizam IDE como medida de seus desempenhos energéticos.

A LBE é uma referência que caracteriza e quantifica o desempenho energético de uma organização durante um período de tempo específico. A LBE permite que uma organização avalie alterações do desempenho energético entre dois períodos selecionados. A LBE também é utilizada para cálculos de economia de energia, como uma referência antes e depois da implementação de ações de melhoria do desempenho energético.

As organizações definem metas para o desempenho energético como parte do processo de planejamento energético em seus sistemas de gestão de energia (SGE). A organização precisa considerar as metas específicas de desempenho energético, enquanto identifica e estabelece o IDE e a LBE. A relação entre o desempenho energético, IDE, LBE e metas energéticas é ilustrada na Figura 1.

Clique nas figuras para uma melhor visualização

energia1

Esta norma inclui quadros de ajuda desenvolvidos para fornecer ao usuário ideias, exemplos e estratégias para medição do desempenho energético utilizando o IDE e a LBE. Os conceitos e métodos nessa norma podem também ser utilizados por organizações que não possuem um SGE.

Por exemplo, o IDE e a LBE podem também ser utilizados em nível de instalação, sistema, processo ou equipamento, ou para a avaliação de ações individuais de melhoria de desempenho energético. O contínuo comprometimento e o engajamento da alta direção são essenciais para a efetiva implementação, manutenção e melhoria do SGE, de forma a alcançar os benefícios da melhoria do desempenho energético. A alta direção demonstra seu comprometimento por meio de ações de liderança e um envolvimento ativo no SGE, garantindo contínua alocação de recursos, incluindo pessoal, para implementar e manter o SGE ao longo do tempo.

Para medir e quantificar efetivamente seu desempenho energético, uma organização estabelece o IDE e a LBE. Os IDE são utilizados para quantificar o desempenho energético de toda a organização ou de suas diferentes partes. As LBE são referências quantitativas utilizadas para comparar valores do IDE ao longo do tempo e para quantificar alterações no desempenho energético.

Os resultados do desempenho energético podem ser expressos em unidades de consumo (por exemplo, GJ, kWh), consumo específico de energia (CEE) (por exemplo, kWh/unidade), potência de pico (por exemplo, kW), alteração percentual em eficiência ou proporções adimensionais etc. A relação geral entre o desempenho energético, o IDE, a LBE e metas energéticas é apresentada na Figura 1.

O desempenho energético pode ser afetado por uma série de variáveis relevantes e fatores estáticos. Eles podem estar relacionados às condições variáveis de negócio, como demanda de mercado, vendas e rentabilidade.

Uma visão geral sobre o processo de desenvolvimento, utilização e atualização dos IDE e LBE é ilustrada na Figura 2 e descrita em detalhes nas Seções 4.2 a 4.6. Este processo auxilia a organização a melhorar continuamente a medição do seu desempenho energético.

A quantificação do consumo de energia é essencial para a medição do desempenho energético e das melhorias do desempenho energético. Quando múltiplas formas de energia forem utilizadas, é útil converter todas as formas para uma unidade de medição de energia comum. Convém tomar cuidado para que a conversão seja feita de forma que represente a energia total consumida em uma organização apropriadamente, incluindo perdas em processos de conversão de energia.

A identificação dos usos da energia, como sistemas energéticos (por exemplo, ar comprimido, vapor, água fria etc.), processos e equipamentos, auxilia a categorização do consumo de energia e a focar o desempenho energético nos usos que são importantes para uma organização.  A eficiência energética é uma métrica frequentemente utilizada para se medir desempenho energético e pode ser utilizada como um IDE.

A eficiência energética pode ser expressa de diferentes maneiras, como saída de energia/entrada deenergia (eficiência de conversão); energia requerida/energia consumida (onde a energia requerida pode ser obtida a partir de um modelo teórico ou alguma outra relação); saída de produção/entradade energia (por exemplo, as toneladas de produção por unidade de energia consumida).

energia2

Convém que os IDE forneçam informações relevantes sobre o desempenho energético para permitir que vários usuários dentro de uma organização compreendam o seu desempenho energético e adotem medidas para melhorá-lo. Os IDE podem ser aplicados em nível de instalação, sistema, processo ou equipamento para proporcionar vários níveis de foco. Convém que uma organização estabeleça uma meta energética e uma linha de base energética paracada IDE.

Dessa forma, convém que uma organização compare as alterações no desempenho energético entre o período de base e o período de reporte. A LBE é apenas utilizada para determinar os valores de IDE para o período de linha de base. O tipo de informação necessária para estabelecer uma linha de base energética é determinado pelo propósito específico do IDE.

As alterações no desempenho energético podem ser calculadas utilizando-se IDE e LBE para instalações, sistemas, processos ou equipamentos. A comparação do desempenho energético entre o período de base e o período de reporte envolve o cálculo da diferença entre o valor do IDE nos dois períodos.

A Figura 3 ilustra um caso simples em que a medição direta do consumo de energia é utilizada como IDE e o desempenho energético é comparado entre o período de base e o período de reporte. Nos casos em que a organização determinar que variáveis relevantes como clima, produção, horas de operação do edifício etc. afetam o desempenho energético, convém que o IDE e sua LBE correspondente sejam normalizados para que o desempenho energético seja comparado sob condições equivalentes.

energia3

Revisão energética

A revisão energética fornece informações sobre desempenho energético úteis para o desenvolvimento dos IDE e LBE. O Anexo A ilustra a relação entre a revisão energética e as informações necessárias para se identificar o IDE e estabelecer a LBE. O estabelecimento de IDE apropriados e LBE correspondentes requer o acesso a dados organizacionais de energia disponíveis, análise dos dados e processamento da informação de energia.

O escopo e fronteira do SGE compreendem a área ou as atividades dentro das quais uma organização gerencia o desempenho energético. Para medir o desempenho energético, convém que sejam definidas as fronteiras de medição adequadas para cada IDE. Estas são chamadas de fronteiras do IDE e podem se sobrepor. Os usuários do IDE e suas necessidades precisam ser identificadas antes (ver 4.3.2), e então a fronteira do IDE correspondente é definida.

Ao se definir uma fronteira do IDE, convém considerar:  responsabilidades organizacionais relacionadas à gestão de energia; a facilidade de isolamento da fronteira do IDE medindo-se energia e variáveis relevantes; a fronteira do SGE; o uso significativo de energia (USE) ou grupos de USE que a organização designar como prioridade para controle e melhoria; e os equipamentos, processos e subprocessos específicos que a organização quiser isolar e gerenciar. Os três níveis primários da fronteira do IDE são: individual, sistema e organizacional, conforme descrito na Tabela 1.

energia4

Uma vez que uma fronteira do IDE for definida, convém que a organização identifique o fluxo de energia através da fronteira. A organização pode utilizar um diagrama como aquele apresentado na Figura 4 para determinar a informação sobre energia necessária para estabelecer o IDE. Estes diagramas fence ou mapas de energia mostram visualmente o fluxo de energia dentro e através da fronteira do IDE.

Eles podem também incluir informações adicionais, como pontos de medição e fluxos de produtos, os quais são importantes para a análise energética e o estabelecimento de IDE. Convém que a organização meça o fluxo de energia dentro da fronteira do IDE, as alterações nos níveis do estoque de combustíveis e a quantidade de qualquer energia armazenada.

O IDE e a LBE para USE requerem fronteiras bem definidas para a quantificação dos fluxos de energia. Uma importante consideração para cada USE é a medição apropriada para medir o consumo de energia que atravessa a fronteira do USE, assim como a disponibilidade de dados sobre variáveis relevantes.

energia5

De acordo com a necessidade da organização e seu SGE, convém que as variáveis relevantes que podem impactar o desempenho energético sejam definidas e quantificadas em cada fronteira de IDE. É importante isolar aquelas variáveis que são significantes em termos de desempenho energético daquelas variáveis que possuem pequena ou nenhuma influência.

A análise de dados é normalmente necessária para determinar a significância de variáveis relevantes. Algumas variáveis são mais relevantes para o consumo de energia que outras.

Por exemplo, quando o uso de energia por unidade de produção estiver sendo medido, a contagem do número de produtos finais pode fornecer um resultado errôneo se houver produção de saídas intermediárias e se estas saídas intermediárias forem desperdícios, valor agregado ou reciclados. Uma vez que variáveis relevantes tenham sido isoladas, técnicas de modelagem adicionais podem ser usadas para determinar a natureza precisa da relação.

Enfim, um sistema de gestão de energia auxilia as indústrias a otimizar o uso de energia sistematicamente, economicamente e ecologicamente. A gestão de energia ajuda a melhorar a eficiência energética de processos, equipamentos e dispositivos, além de reduzir os custos, o consumo de energia e as emissões de CO2, entre outras vantagens.

Além disso, permite a redução custos com energia e vida útil de equipamentos; a redução da emissão de gases de efeito estufa; uma política para o uso mais eficiente de energia envolvendo até a alta administração; a integração com sistemas de gestão existentes; metas para redução; rateio de custos setorizados e transparência dos consumos de energia por departamentos; e a melhoria contínua do perfil de uso da energia.