A conformidade dos recipientes transportáveis de aço para gás liquefeito de petróleo (GLP)

O aço utilizado para fabricação do corpo do recipiente deve atender às seguintes condições: conforme a NBR 7460; aços com outra classificação devem ter sua equivalência comprovada com os aços requeridos conforme a NBR 7460.

A NBR 8460 de 03/2020 – Recipientes transportáveis de aço para gás liquefeito de petróleo (GLP) — Requisitos e métodos de ensaios especifica os requisitos mínimos exigíveis para peças acessórias e segurança, e os métodos de ensaios, projeto, fabricação, alteração e utilização dos recipientes transportáveis destinados ao acondicionamento de gás liquefeito de petróleo (GLP), construídos de chapas de aço soldadas por fusão. Aplica-se a todos os recipientes para GLP com capacidade volumétrica de 5,5 L até 500 L.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser calculada a espessura da parede dos recipientes?

Por que realizar o ensaio de expansão volumétrica?

Como realizar o ensaio de dobramento guiado?

Como deve ser feito o ensaio de resistência ao choque por impacto na pintura?

O aço utilizado para fabricação do corpo do recipiente deve atender às seguintes condições: conforme a NBR 7460; aços com outra classificação devem ter sua equivalência comprovada com os aços requeridos conforme a NBR 7460. O material dos flanges deve ser de aço, com soldabilidade compatível com o material do corpo do recipiente, devendo ser proveniente de processos de conformação e não de fundição.

As peças acessórias devem ser construídas com materiais que garantam o atendimento às finalidades definidas nas partes fixadas direta ou indiretamente ao corpo do recipiente e destinadas à sua estabilização sobre o solo, à facilidade de manuseio e transporte ou à proteção das válvulas e dispositivos de segurança e, quando fixadas por solda ao corpo do recipiente, devem ser de material com soldabilidade compatível com esse. O corpo do recipiente deve ser construído de preferência com duas peças estampadas em forma de calotas, ligadas entre si por soldagem por fusão, situada em um plano perpendicular ao eixo da parte cilíndrica (solda circunferencial).

É admitida a construção do corpo do recipiente com três peças, sendo uma a parte cilíndrica e as outras, duas calotas. A parte cilíndrica pode ser construída de chapa calandrada, fechada longitudinalmente por soldagem por fusão (solda longitudinal). As calotas devem ser ligadas ao cilindro por soldagem por fusão. As calotas devem ter a forma de um semielipsoide de revolução, sendo que seu maior raio de curvatura não pode ser superior ao diâmetro da parte cilíndrica.

Deve ser aplicado na parte superior do corpo, em contato com o espaço de vapor do recipiente quando em posição vertical, no mínimo um flange/luva/conexão com orifício (s), destinado (s) à fixação do (s) componente (s) roscado (s). Os flanges, as luvas ou as conexões aplicadas devem ser fixados ao corpo do recipiente mediante soldagem por fusão, conforme o dimensionamento dos flanges e luvas de conexões.

Para construção dos recipientes desta norma, são permitidos somente processos de solda por fusão, devendo os cordões ter penetração total, com exceção das peças acessórias. As soldas do corpo dos recipientes devem ser de topo, executadas com qualquer das seguintes técnicas: cordão de reforço do lado interno; cobre-junta permanente do mesmo material do corpo, podendo ser uma tira ou anel, aplicado pelo lado interno ou construído pelo rebaixamento de uma das chapas; cobre-junta temporário. As soldas devem ser limpas e isentas de falhas, poros, trincas, bolhas, inclusões, mordedura ou outros defeitos visíveis.

Nenhum recipiente pode ter mais que um reparo de solda por cordão, sendo permitida a recuperação total do cordão defeituoso e subsequentes ressoldagens, desde que: seja efetuada previamente a remoção total do trecho de cordão defeituoso, por processos que não afetem a espessura da chapa do recipiente; cada extremidade do cordão de solda de reparo seja sobreposta ao cordão original de 20 mm. Após reparos de solda não é necessário novo tratamento térmico, exceto para recipientes fabricados com aço microligado, em que os recipientes ou calotas, após as operações de repuxo, devem ser tratados termicamente. Quando o recipiente for fabricado com aço microligado, cuja dureza do metal de solda depositado ou da zona afetada termicamente apresente valor igual ou superior a 250 HV, medido conforme a NBR NM ISO 6507-1, o tratamento térmico deve ser feito após todas as operações de soldagem.

Toda soldagem deve ser efetuada com operadores e/ou soldadores qualificados e com procedimentos de soldagem qualificados, ambos de acordo com a ASME Seção IX ou CGA Pamphlet C3. Os recipientes ou calotas, após as operações de repuxo, devem ser tratados termicamente. Quando o recipiente for fabricado com aço microligado, cuja dureza do metal de solda depositado ou da zona afetada termicamente apresente valor igual ou superior a 250 HV, medido conforme a NBR NM ISO 6507-1, o tratamento térmico deve ser feito após todas as operações de soldagem.

Antes do ensaio de estanqueidade, os recipientes devem ser normalizados a uma temperatura entre 890 °C e 920 °C, ou sofrer alívio de tensões a uma temperatura entre 600 °C e 650 °C. O recipiente ou calota deve ser aquecido por um tempo suficiente até que todos os pontos da chapa atinjam a temperatura estabelecida e nela permaneçam o tempo suficiente para que se promova o tratamento térmico, sendo resfriado ao ar, até atingir 200 °C. A partir de 200 °C, o resfriamento pode ser completado ao ar ou por outros meios, desde que se assegure o cumprimento integral das especificações contidas nesta Seção.

O fabricante deve ter um sistema de controle que assegure que a temperatura do recipiente ou calota, imediatamente antes do resfriamento alternativo, seja de no máximo 200 °C. O fabricante deve ter um sistema de controle que assegure que a temperatura do recipiente ou da calota no tratamento térmico não ultrapasse o estabelecido em 4.2.4.2, não podendo ser considerados como sistema de controle os ensaios mecânicos ou hidrostáticos.

O processo utilizado no tratamento térmico deve garantir que qualquer recipiente de um mesmo lote esteja sujeito às mesmas condições de tratamento, devendo isto ser comprovado graficamente. As roscas devem apresentar-se limpas, com os filetes regulares, sem falhas ou rebarbas, e devem ser verificadas com os calibradores correspondentes ao seu padrão.

A montagem dos componentes roscados deve atender ao torque de aperto e à quantidade de filetes expostos conforme a tabela abaixo. É admitido o uso de vedante para efeito complementar de estanqueidade. Este vedante deve possuir as seguintes características: não pode ser solúvel em água após aplicação; deve ser compatível a componentes de petróleo; não pode ser corrosivo. O torque deve ser aplicado ou verificado conforme a tabela abaixo.

As aberturas roscadas, destinadas a válvula, dispositivos de segurança, registros e indicadores de nível, devem estar de acordo com a NBR 8469, exceto as roscas de fixação do medidor de nível flangeado. Antes da montagem dos componentes roscados, o interior dos recipientes deve estar seco e limpo. Os recipientes, após o tratamento térmico, devem ser decapados mecanicamente, de forma que todos os pontos da superfície do metal fiquem isentos de oxidação, cascas de laminação, carepas ou outras impurezas quaisquer.

Os recipientes devem apresentar suas superfícies externas isentas de ondulações, riscos de ferramentas ou outras imperfeições que prejudiquem a segurança e/ou a aparência. Os recipientes na operação que segue a decapagem, devem receber um tratamento superficial que propicie proteção catódica ou outro revestimento contra corrosão cuja camada total seja de no mínimo 30 μm. Os recipientes assim tratados devem ser submetidos aos ensaios previstos nessa norma.

A válvula e o dispositivo de segurança devem estar livres internamente de tintas, graxas, detritos ou corpos estranhos, e corretamente instalados. As peças acessórias dos recipientes não podem ter ângulos vivos ou partes contundentes que possam acarretar danos físicos durante o manuseio.

Deve ser entregue pelo fabricante ao comprador no mínimo a seguinte documentação, referente a cada fornecimento de recipiente: certificado de qualidade das chapas utilizadas; registro de execução, pelo fabricante, dos ensaios físicos, hidrostáticos, radiográficos e de tinta, com os resultados obtidos; cópia do gráfico de temperatura do forno, por lote de produção; certificado de qualidade dos componentes roscados e flangeados. O fabricante deve guardar em seu poder uma cópia dos documentos por um período mínimo de 15 anos. No caso de ensaios radiográficos, as radiografias ou filmes devem ser arquivados por no mínimo cinco anos.

IEC 62003: os ensaios de compatibilidade eletromagnética em equipamentos em usinas nucleares

Essa norma internacional, publicada em 2020 pela International Electrotechnical Commission (IEC), estabelece os requisitos para os ensaios de compatibilidade eletromagnética de instrumentação, controle e equipamentos elétricos fornecidos para uso em sistemas importantes para a segurança em usinas nucleares e outras instalações nucleares.

A IEC 62003:2020 – Nuclear power plants – Instrumentation, control and electrical power systems – Requirements for electromagnetic compatibility testing estabelece os requisitos para os ensaios de compatibilidade eletromagnética de instrumentação, controle e equipamentos elétricos fornecidos para uso em sistemas importantes para a segurança em usinas nucleares e outras instalações nucleares. O documento lista as normas IEC aplicáveis, principalmente a série IEC 61000, que definem os métodos gerais de ensaio e fornece os parâmetros e critérios específicos da aplicação necessários para garantir que os requisitos de segurança nuclear sejam atendidos.

Esta segunda edição cancela e substitui a primeira edição publicada em 2009. Esta edição inclui várias alterações técnicas significativas em relação à edição anterior. Por exemplo, o título foi modificado, o escopo foi expandido para abranger as considerações de compatibilidade eletromagnética magnética (electromagnetic magnetic compatibility – EMC) para equipamentos elétricos e passou a fornecer orientação para abordar o uso da tecnologia sem fio.

O texto buscou aprimorar a descrição do ambiente eletromagnético para fornecer esclarecimentos ao selecionar níveis de ensaios personalizados ou para isenções de ensaio, incluiu as informações de exemplo a serem contidas em um plano de ensaio de EMC e passou a fornecer as orientações para a caracterização do ambiente eletromagnético no ponto de instalação dentro de uma instalação nuclear.

Conteúdo da norma

PREFÁCIO…………………… 4

INTRODUÇÃO ……………… 6

1 Escopo……………………… 8

2 Referências normativas…………. 8

3 Termos e definições…………….. 10

4 Termos abreviados………. …….. 11

5 Requisitos do ensaio de EMC……… 12

6 Ambiente eletromagnético………… 13

7 Ensaio de imunidade…….. ……….. 15

7.1 Geral…………………. …………… 15

7.2 Aplicabilidade……………… …….. 15

7.3 Incerteza da medição…………….. 15

7.4 Requisitos do ensaio………………. 16

7.5 Considerações sobre ensaios de imunidade para tecnologia sem fio……………. 19

8 Ensaio de emissões……………….. ……… 20

9 Considerações sobre o ensaio………. …… 21

10 Documentação do relatório de ensaio……………. 22

Anexo A (normativo) Critérios de qualidade funcional de I&C nuclear e ESE elétrica para imunidade…………….. 23

Anexo B (informativo) Características de qualidade que definem a classificação de severidade do ambiente eletromagnético nos locais onde I&C nuclear e energia elétrica do equipamento de força deve ser instalado……………. 24

Anexo C (informativo) Explicação dos graus de severidade dos ensaios para EMC…………………. 27

C.1 Geral…………….. …………….. 27

C.2 Imunidade a descargas eletrostáticas de acordo com a IEC 61000-4-2…………….. 27

C.3 Imunidade ao campo eletromagnético de radiofrequência de acordo com a IEC 61000-4-3 (ou IEC 61000-4-20) …….27

C.4 Imunidade a transientes elétricos rápido/rajadas de acordo com a IEC 61000-4-4……………. 28

C.5 Imunidade a surtos de distúrbios de grande energia, de acordo com a IEC 61000-4-5 ……… 28

C.6 Imunidade a distúrbios induzidos por campos de radiofrequência de acordo com a IEC 61000-4-6……………… 28

C.7 Imunidade ao campo magnético da frequência de potência de acordo com a IEC 61000-4-8…………. 28

C.8 Imunidade ao pulso do campo magnético de acordo com a IEC 61000-4-9…………………… 29

C.9 Imunidade a um campo magnético oscilatório amortecido de acordo com a IEC 61000-4-10………………… …… 29

C.10 Imunidade a quedas de tensão e interrupções curtas de tensão de acordo com a IEC 61000-4-11, IEC 61000-4-29 e IEC 61000-4-34………… 29

C.11 Imunidade a um pico de onda de anel de acordo com a IEC 61000-4-12………………. 29

C.12 Imunidade à distorção de harmônicos e inter-harmônicos, incluindo a sinalização da rede elétrica na porta de alimentação CA de acordo com a IEC 61000-4-13…….. 30

C.13 Imunidade a flutuações da tensão da fonte de alimentação de acordo com a IEC 61000-4-14…………………. 30

C.14 Imunidade a distúrbios conduzidos no modo comum na faixa de frequências de 0 Hz a 150 kHz, de acordo com a IEC 61000-4-16…………… 30

C.15 Imunidade a ondulações nas portas de energia de entrada CC de acordo com a IEC 61000-4-17……….. 30

C.16 Imunidade a distúrbios oscilatórios amortecidos de acordo com a IEC 61000-4-18……….. 31

C.17 Imunidade à variação da frequência de potência de acordo com a IEC 61000-4-28……….. 31

Anexo D (informativo) Diretrizes para os ensaios e avaliação do ambiente do sistema eletromagnético em uma usina nuclear…………………….. 32

Anexo E (informativo) Diretrizes para ensaios e avaliação de conformidade com os requisitos para emissões e imunidade da operação de I&C nuclear e eletricidade do equipamento………………. 33

Anexo F (informativo) Exemplo de forma de plano de ensaio para I&C nuclear e elétrica e para os ensaios de equipamentos para emissões e imunidade…………………… 34

Anexo G (informativo) Exemplo de forma de relatório de ensaio para I&C nuclear e elétrica dos ensaios de equipamentos para emissões e imunidade……………….. 35

Anexo H (informativo) Ensaio EMC da eletrônica de potência e dos acionamentos de velocidade ajustável……… 36

Bibliografia…………. ………………….. 38

Figura 1 – Exemplos de portas………………. 11

Figura 2 – Exemplo da situação de uma central elétrica…. 14

Tabela 1 – Descrição dos ensaios de imunidade e emissões CEM aplicáveis para I&C nuclear e dos equipamentos elétricos importantes para a segurança……………….. 13

Tabela 2 – Especificações de imunidade – Porta do gabinete………………… 16

Tabela 3 – Especificações de imunidade – Portas de sinal e controle………… ……… 17

Tabela 4 – Especificações da imunidade – Portas de entrada e saída ca de baixa tensão……………. 18

Tabela 5 – Especificações de imunidade – Portas de entrada e saída de baixa tensão CC……………. 19

Tabela 6 – Limites para emissões irradiadas de I&C nuclear e equipamento elétrico ………… 20

Tabela 7 – Limites para emissões conduzidas de I&C nuclear e equipamento elétrico……….. 21

Tabela A.1 – Critérios de qualidade funcional de I&C nuclear e ESE elétrico para imunidade……… 23

Tabela B.1 – Características de qualidade que definem a classificação eletromagnética e severidade do meio ambiente nos locais onde I&C nuclear e equipamentos elétricos devem ser instalados………………….. 24

Tabela H.1 – IEC 61800-3, limites de emissões conduzidos para a categoria C3 e sistema de distribuição no segundo ambiente (industrial típico) …………………………….. 36

Tabela H.2 – Limites de emissões irradiadas pela IEC 61800-3 para distribuição de energia da categoria C3 no sistema no segundo ambiente (industrial típico) ………………. 37

Esta norma internacional foi preparada e baseada, em grande medida, na aplicação atual da série IEC 61000 para qualificação de equipamentos comerciais para compatibilidade eletromagnética (EMC). Pretende-se que esta norma seja usada por operadores de usinas nucleares (concessionárias), avaliadores de sistemas e licenciadores.

A situação da norma atual na estrutura da série padrão SC 45A IEC 62003 é o documento SC 45A de terceiro nível que trata da questão da qualificação para compatibilidade eletromagnética (EMC) aplicável a Instrumentação e Controle (I&C) e sistemas elétricos importantes para segurança em instalações nucleares. Para mais detalhes sobre a estrutura da série padrão SC 45A, veja o texto abaixo desta introdução.

A recomendação e a limitação em relação à aplicação desta norma: é importante observar que esta norma não estabelece requisitos funcionais adicionais para sistemas de segurança, mas esclarece os critérios a serem aplicados para a qualificação de interferência eletromagnética e de radiofrequência (EMI/RFI) do mercado comercial. Os aspectos para os quais requisitos e recomendações especiais foram produzidos são: série IEC 61000 com qualificações específicas para aplicações nucleares em todo o mundo; interpretações regulatórias para requisitos no nível de qualificação necessário e tipos de ensaios recomendados para lidar com todos os estressores ambientais em potencial, relacionados a esse tipo de qualificação; IEC 61000-6-2, Compatibilidade eletromagnética (EMC) – Parte 6-2: Padrões genéricos – Imunidade para ambientes industriais, atende aos requisitos para todos os ambientes industriais, enquanto esse padrão trata especificamente de ambientes em instalações nucleares.

Esta norma visa se alinhar com as orientações contidas nas normas IEC 61000-6-5 e IEC 61000-6-7, sempre que possível. As considerações adicionais dessas normas podem ser usadas em conjunto com esta norma ao abordar a EMC de eletricidade e I&C equipamentos em instalações nucleares. A descrição da estrutura da série padrão IEC SC45A e relações com outros documentos IEC e outros documentos de organismos (IAEA, ISO) Os documentos de nível superior da série padrão IEC SC45A são IEC 61513 e IEC 63046.

A IEC 61513 fornece requisitos gerais para sistemas e equipamentos de I&C que são usados para executar funções importantes para a segurança nas plantas nucleares. A IEC 63046 fornece requisitos gerais para sistemas de energia elétrica de centrais nucleares; abrange sistemas de fornecimento de energia, incluindo os sistemas de fornecimento dos sistemas de I&C. As normas IEC 61513 e IEC 63046 devem ser consideradas em conjunto e no mesmo nível. As normas IEC 61513 e IEC 63046 estruturam a série padrão IEC SC45A e formam uma estrutura completa, estabelecendo requisitos gerais para instrumentação, controle e sistemas elétricos para usinas nucleares.

A IEC 61513 e a IEC 63046 se referem diretamente a outros padrões da IEC SC45A para tópicos gerais relacionados à categorização de funções e classificação de sistemas, qualificação, separação, defesa contra falha de causa comum, design da sala de controle, compatibilidade eletromagnética, segurança cibernética, aspectos de software e hardware para programação. sistemas digitais, coordenação de requisitos de segurança e gestão do envelhecimento. As normas referenciadas diretamente neste segundo nível devem ser consideradas em conjunto com a IEC 61513 e a IEC 63046 como um conjunto consistente de documentos.

Em um terceiro nível, as normas IEC SC45A não referenciadas diretamente pela IEC 61513 ou IEC 63046 são as normas relacionadas a equipamentos, métodos técnicos ou atividades específicas. Geralmente esses documentos, que fazem referência a documentos de segundo nível para tópicos gerais, podem ser usados por si próprios. Um quarto nível, estendendo a série IEC SC45, corresponde aos relatórios técnicos que não são normativos.

A série de normas IEC SC45A implementa e detalha consistentemente os princípios de segurança e proteção e os aspectos básicos fornecidos nas normas de segurança da IAEA relevantes e nos documentos relevantes da série de segurança nuclear da IAEA (NSS). Em particular, isso inclui os requisitos da AIEA SSR-2/1, estabelecendo requisitos de segurança relacionados ao

projeto de usinas nucleares, o guia de segurança da IAEA SSG-30, que trata da classificação de segurança de estruturas, sistemas e componentes em centrais nucleares, o guia de segurança da AIEA SSG-39, que trata do projeto de sistemas de instrumentação e controle para centrais nucleares, o Guia de segurança da IAEA SSG-34, que trata do projeto de sistemas de energia elétrica para centrais nucleares e o guia de implementação NSS17 para segurança de computadores em instalações nucleares. A terminologia e definições de segurança usadas pelas normas SC45A são consistentes com as usadas pela IAEA.

A IEC 61513 e a IEC 63046 adotaram um formato de apresentação semelhante à publicação básica de segurança IEC 61508, com uma estrutura de ciclo de vida geral e uma estrutura de ciclo de vida do sistema. Em relação à segurança nuclear, as normas IEC 61513 e IEC 63046 fornecem a interpretação dos requisitos gerais das normas IEC 61508-1, IEC 61508-2 e IEC 61508-4, para o setor de aplicações nucleares.

Nesta estrutura, as IEC 60880, IEC 62138 e IEC 62566 correspondem à IEC 61508-3 para o setor de aplicações nucleares. As normas IEC 61513 e IEC 63046 referem-se à ISO, bem como à IAEA GS-R parte 2 e IAEA GS-G-3.1 e IAEA GS-G-3.5 para tópicos relacionados à garantia de qualidade (QA). No nível 2, em relação à segurança nuclear, a IEC 62645 é o documento de entrada para os padrões de segurança IEC/SC45A. Baseia-se nos princípios válidos de alto nível e nos principais conceitos das normas genéricas de segurança, em particular ISO/IEC 27001 e ISO/IEC 27002; adapta-os e os completa para se ajustarem ao contexto nuclear e coordenar com a série IEC 62443. No nível 2, a IEC 60964 é o documento de entrada para os padrões das salas de controle IEC/SC45A e a IEC 62342 é o documento de entrada para as normas de gestão de envelhecimento.

Os equipamentos para emergências no transporte terrestre de produtos perigosos

Deve-se dispor de um conjunto mínimo de equipamentos para situações de emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual (EPI), a ser utilizado pelo condutor e pelos auxiliares envolvidos (se houver) no transporte nas ações iniciais, equipamentos para sinalização da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para carga.

A NBR 9735 de 03/2020 – Conjunto de equipamentos para emergências no transporte terrestre de produtos perigosos estabelece o conjunto mínimo de equipamentos para situações de emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual (EPI), a ser utilizado pelo condutor e pelos auxiliares envolvidos (se houver) no transporte nas ações iniciais, equipamentos para sinalização da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para carga. Não é aplicável aos equipamentos de proteção individual exigidos para as operações de manuseio, carga, descarga e transbordo, bem como aos equipamentos de proteção para o atendimento emergencial a serem utilizados pelas equipes de emergência pública ou privada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as exigências para os extintores de incêndio no transporte rodoviário?

Qual é o agente extintor e capacidade extintora?

Qual deve ser o conjunto de equipamentos para situações de emergência para o transporte ferroviário?

Para o transporte ferroviário, quais os tipos de extintores e capacidade extintora mínima?

Essa norma teve como base os conhecimentos e a consulta realizada no mercado, porém se sugere que os fabricantes ou importadores do produto perigoso para o transporte terrestre verifiquem se o conjunto de equipamento de proteção individual (EPI) mínimo necessário à proteção do condutor e auxiliares, para avaliar a emergência (avarias no equipamento de transporte, veículo e embalagens) e as ações iniciais, bem como o extintor de incêndio são os indicados nesta norma. Caso estes equipamentos sejam inadequados ou insuficientes para o fim a que destina esta norma, qualquer parte interessada pode solicitar uma revisão para reavaliação, inclusive do grupo do EPI e/ou do extintor.

O transportador deve fornecer o conjunto de equipamentos de proteção individual e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em condições de uso e funcionamento, além de propiciar o treinamento adequado ao condutor e aos auxiliares (se houver) envolvidos no transporte, sobre o uso, guarda e conservação destes equipamentos. Cabe ao expedidor fornecer o conjunto de equipamentos de proteção individual e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em condições de uso e funcionamento, juntamente com as devidas instruções para sua utilização, caso o transportador não os possua.

As condições de uso não implicam necessariamente em equipamentos novos e sem uso. Para a realização do treinamento, o transportador deve atender às orientações dos fabricantes do produto perigoso e do EPI. Para efetuar a avaliação da emergência e ações iniciais, o condutor e os auxiliares (se houver) devem utilizar o EPI indicado nesta norma, além do traje mínimo obrigatório, que é composto por calça comprida, camisa ou camiseta, com mangas curtas ou compridas, e calçados fechados.

As ações inicias do condutor estão discriminadas na NBR 14064, A.1. O traje mínimo obrigatório não é considerado EPI, portanto não necessita atender ao descrito abaixo. Durante o transporte, o condutor e os auxiliares (se houver) devem utilizar o traje mínimo obrigatório. Recomenda-se o uso de vestimenta com material refletivo para o condutor e auxiliares (se houver) envolvidos no transporte realizado no período noturno (do pôr do sol ao amanhecer).

Todo o EPI deve atender à legislação vigente. Para fins de utilização do EPI, desde que adquirido dentro do prazo de validade do CA, devem ser observados a vida útil indicada pelo fabricante, de acordo com as características dos materiais usados na sua composição, o uso ao qual se destina, as limitações de utilização, as condições de armazenamento e a própria utilização. A observação desta validade de uso é do empregador que fornece o EPI aos seus trabalhadores.

Os EPI devem estar em condições de uso, não comprometendo a função do EPI, e acondicionados na cabine do veículo ou do caminhão-trator. No veículo (simples ou combinado), deve haver conjuntos de EPI para todas as pessoas envolvidas (condutor e auxiliares) no transporte. O filtro do equipamento de proteção respiratória deve ser substituído conforme especificação do fabricante (saturação pelo uso ou esgotamento da vida útil) ou em caso de danos que comprometam a eficácia do equipamento.

Os filtros podem estar lacrados e não acoplados às peças faciais inteiras ou às peças semifaciais durante o transporte, devendo o condutor e os auxiliares ter sido treinados para realizarem o devido acoplamento destes filtros. Os tipos de filtros químicos citados nesta norma são: amônia – indicada por NH3; dióxido de enxofre – indicado por SO2; gases ácidos – indicados por GA; monóxido de carbono – indicado por CO; vapores orgânicos – indicados por VO; polivalente ou multigases (destinado à retenção simultânea das substâncias citadas.

Podem ser utilizados equipamentos de proteção respiratória com filtros polivalentes (PV) em substituição ao filtro especificado para cada grupo, exceto no caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono e chumbo tetraetila. Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes onde é exigido o filtro, podem ser utilizados filtros polivalentes (PV) em substituição aos filtros especificados para os grupos, exceto para o caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono (nº ONU 1016) e chumbo tetraetila (nº ONU 1649).

Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes, prevalece o grupo do EPI de maior proteção, por exemplo, a peça facial inteira prevalece sobre a peça semifacial e/ou óculos de segurança tipo ampla visão. Para o transporte de produtos da classe de risco 7 (material radioativo), deve ser adotado o EPI previsto no grupo 11, conforme 4.2.12-k), além do previsto pela legislação vigente. Para os produtos de nºs ONU 2908, 2909, 2910 e 2911 (volumes exceptivos), não é exigido portar EPI.

Para o transporte de produtos da classe de risco 1 (explosivos), deve ser adotado o EPI previsto no grupo 10, além do previsto pelo órgão governamental. O Ministério da Defesa também regulamenta o EPI para transporte de produtos da classe de risco 1.

Os produtos perigosos relacionados pelos nºs ONU e os grupos de EPI correspondentes estão listados no Anexo A. A composição dos conjuntos de equipamento de proteção deve ser a descrita a seguir. O grupo 1: capacete de segurança; luvas de segurança de material compatível com o(s) produto(s) transportado(s); óculos de segurança tipo ampla visão. O grupo 2: capacete de segurança; luvas de segurança de material compatível com o(s) produto(s) transportado(s); peça facial inteira com filtro VO/GA combinado com filtro mecânico.

O grupo 3: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro NH3. O grupo 4: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro CO combinado com filtro mecânico.

O grupo 5: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro SO2 combinado com filtro mecânico. O grupo 6: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão; peça semifacial com filtro VO/GA combinado com filtro mecânico.

O grupo 7: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão; peça semifacial com filtro NH3 combinado com filtro mecânico. O grupo 8 no transporte a granel: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão. No transporte fracionado em botijões e cilindros envasados: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s).

O grupo 9: capacete de segurança com protetor facial; luvas de segurança de material compatível com o (s) produto (s) transportado (s). O grupo 10 para os produtos da classe 1 (explosivos): capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro polivalente ou multigases combinado com filtro mecânico (P2). O grupo 11 para os produtos da classe 7 (material radioativo): capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s).

Os materiais de fabricação dos componentes dos equipamentos do conjunto para situações de emergência devem ser compatíveis e apropriados aos produtos perigosos transportados. Os equipamentos do conjunto para situações de emergência devem estar em qualquer local no veículo fora do compartimento de carga, podendo estar lacrados e/ou acondicionados em locais com chave, cadeado ou outro dispositivo de trava, a fim de evitar roubo ou furto dos equipamentos de emergência, exceto o (s) extintor (es) de incêndio.

Somente em veículos com peso bruto total até 3,5 t, os equipamentos do conjunto para situações de emergência podem ser colocados no compartimento de carga, desde que estejam localizados próximos a uma das portas ou tampa, não podendo ser obstruídos pela carga. As regras de localização e acondicionamento dos extintores estão previstas nas exigências para os extintores de incêndio no transporte rodoviário.

Para o transporte de produtos da classe de risco 7 (material radioativo) de nºs ONU 2908, 2909, 2910 e 2911 (volumes exceptivos), não é exigido portar o conjunto para situação de emergência. Os veículos e combinações de veículos utilizados no transporte rodoviário de produtos perigosos, exceto os que transportam produtos perigosos na quantidade limitada por veículo conforme legislação em vigor, devem portar no mínimo os equipamentos relacionados a seguir.

A quantidade limitada de produtos perigosos por veículo é citada na coluna 8 do Anexo da Resolução ANTT nº 5232/2016 e suas atualizações. Devem portar os calços, na quantidade descrita na tabela abaixo, com dimensões mínimas de 150 mm × 200 mm × 150 mm (conforme a figura abaixo). No caso de produtos cujo risco principal ou subsidiário seja inflamável, os calços devem ser de material antifaiscante.

Devem possuir um jogo de ferramentas adequado para reparos em situações de emergência durante a viagem, contendo no mínimo: um alicate universal; uma chave de fenda ou chave Philips (conforme a necessidade); e uma chave apropriada para a desconexão do cabo da bateria. Devem portar quatro cones para sinalização da via, que atendam à NBR 15071; extintor (es) de incêndio para a carga; para os materiais radioativos (classe 7), além dos equipamentos citados nas alíneas anteriores, o supervisor de proteção radiológica (SPR) deve determinar, com base nas características do material radioativo a ser transportado, os eventuais itens a serem adicionados ao conjunto de equipamento para situação de emergência.

Quando um reboque ou semirreboque for desatrelado e, desta forma, forem usados os equipamentos de emergência no veículo imobilizado, devem ser providenciados novos equipamentos de emergência, antes de prosseguir a viagem. Os extintores devem atender à legislação vigente e estar com identificação legível. Os extintores devem ter a certificação do Inmetro e as empresas responsáveis pela manutenção e recarga dos extintores são acreditadas pelo Inmetro.

Os dispositivos de fixação do extintor devem possuir mecanismos de liberação, de forma a simplificar esta operação, que exijam movimentos manuais mínimos. Os dispositivos de fixação do extintor não podem possuir mecanismos que impeçam a sua liberação imediata, como chaves, cadeados ou ferramentas. A cada viagem devem ser verificados o estado de conservação do extintor, a pressão de operação e a sua carga, considerando que o indicador de pressão não pode estar na faixa vermelha, bem como os seus dispositivos de fixação.

No transporte a granel, os extintores não podem estar junto às válvulas de carregamento e/ou descarregamento. Para produtos perigosos inflamáveis ou produtos com risco subsidiário de inflamabilidade, os extintores devem estar localizados um do lado esquerdo e outro do lado direito do veículo e, no caso de combinação de veículos, cada semirreboque ou reboque deve ter os extintores localizados um do lado esquerdo e o outro do lado direito. No caso de reboque ou semirreboque, carregado ou contaminado com produto perigoso e desatrelado do caminhão-trator, pelo menos um extintor de incêndio deve estar no reboque ou semirreboque.

O trabalho seguro em serviços com eletricidade

Esses requisitos podem ser aplicáveis aos seguintes serviços: operação do sistema e instalações elétricas; realização de quaisquer serviços nas instalações elétricas, incluindo construção e montagem, manutenção e ensaios elétrico; serviços em instalações elétricas que operam em níveis de tensão, desde extrabaixa tensão até a alta-tensão. Este último termo inclui os níveis que podem ser conhecidos como média tensão até extra-alta-tensão.

A NBR 16384 de 03/2020 – Segurança em eletricidade — Recomendações e orientações para trabalho seguro em serviços com eletricidade fornece recomendações e orientações para a operação segura e atividades em instalações e equipamentos elétricos, de forma a estabelecer um programa de segurança em eletricidade. É aplicável aos seguintes serviços: operação do sistema e instalações elétricas; realização de quaisquer serviços nas instalações elétricas, incluindo construção e montagem, manutenção e ensaios elétrico; serviços em instalações elétricas que operam em níveis de tensão, desde extrabaixa tensão até a alta-tensão. Este último termo inclui os níveis que podem ser conhecidos como média tensão até extra-alta-tensão. Inclui, ainda as instalações elétricas que são necessárias para geração, transmissão, transformação, distribuição e utilização de energia elétrica; as instalações fixas e permanentes, como industriais e linhas de transmissão; as instalações temporárias como canteiros de obras, feiras e exposições; as instalações móveis como subestações transportáveis; os equipamentos capazes de serem transladados, como escavadeiras elétricas.

Esta norma também pode ser aplicável aos serviços em instalações elétricas de outras naturezas, complementando a legislação e normas técnicas específicas: as instalações elétricas de aeronaves (sujeitas às legislações da Aviação Civil Internacional); as instalações elétricas de embarcações marítimas (sujeitas às legislações das Classificadoras Navais); os sistemas eletrônicos de telecomunicação e de informação; as minas de qualquer natureza; as instalações terrestres e marítimas, pois tratam de instalações elétricas comuns a todas as atividades industriais. As informações contidas nestas recomendações e orientações não substituem as normas técnicas ou regulamentos específicos, porém podem ser aplicados de forma complementar.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser os requisitos para as ferramentas, equipamentos e dispositivos?

Quais devem ser os documentos do sistema elétrico?

Qual deve ser a sinalização e a advertência para os serviços com eletricidade?

Quais são os riscos com eletricidade a serem considerados?

O objetivo desta norma é fornecer orientações adicionais para a operação e realização de serviços em eletricidade, visando à segurança das pessoas, trabalhadores e instalações , além de fornecer as informações adicionais para a elaboração de um programa eficiente de segurança em eletricidade para a execução dos serviços, bem como organizar os aspectos humanos na intervenção destas instalações por meio de um sistema de gerenciamento. Não tem como objetivo especificar os requisitos técnicos para a execução da instalação elétrica, ou para a fabricação de equipamentos e componentes. Para estes casos é necessário consultar as normas técnicas específicas.

Esta norma tem como foco principal os trabalhadores e profissionais autônomos que podem realizar intervenções em instalações elétricas, como operar, realizar manutenção e ensaios. Inclui as informações para administrar a segurança dos trabalhadores e profissionais autônomos que podem realizar serviços não elétricos na zona livre, ou instalações totalmente desenergizadas, com a certeza de que estas estão e continuarão seguras, como, por exemplo, limpezas, reparos nas infraestruturas não relacionadas com a instalação elétrica, e para aqueles que podem operar dispositivos de comando encontrados nas instalações e equipamentos elétricos, como interruptores e botões de comando, com a finalidade de acionar equipamentos de utilização para outros fins não elétricos.

A proteção das pessoas e trabalhadores deve ser assegurada por meio de instalações seguras, seguindo as normas técnicas e regulamentos devidamente executados por profissionais habilitados e, quando aplicável, complementado com as informações adicionais desta norma, que cobrem o sistema de gerenciamento para evitar a exposição das pessoas e dos trabalhadores aos riscos térmicos e físicos gerados pela eletricidade. Os equipamentos e instalações elétricas, quando projetados e instalados de acordo com as normas técnicas, em princípio, se tornam seguros para utilização, operação e intervenção.

Dessa forma, é de extrema importância que estas intervenções respeitem e mantenham a integridade dos equipamentos e instalações, conforme projetados. Esta norma de segurança em serviços com eletricidade fornece as informações para a elaboração de: um memorial descritivo do projeto e das intervenções; de procedimentos de serviço de operação ou manutenção, reparo e substituições; de requisitos de qualificação e experiência na aprovação dos serviços com riscos e técnicas de análise de riscos nas operações; e de procedimentos para intervenções nas instalações elétricas.

As investigações de incidentes e acidentes de trabalho envolvendo eletricidade têm demonstrado que a maioria dos acidentes ocorre durante as intervenções nos equipamentos ou instalações, quando é necessário remover ou alterar temporariamente as proteções dos equipamentos ou instalações concebidas para prover a segurança durante o seu funcionamento normal. As técnicas de investigações de acidentes utilizadas pelos profissionais de segurança do trabalho sugerem basicamente a identificação dos seguintes fatores: fatores físicos – falha nos equipamentos, componentes ou instalação; fatores humanos – falha nas ações ou intervenções humanas por falta de conhecimento ou despreparo dos profissionais envolvidos no acidente; fatores sistêmicos ou gerenciais – falha da gestão dos fatores físicos e humanos; e fatores ambientais que são os que podem influenciar nos fatores físicos caso não seja objeto de planejamento, como iluminação, sol chuva e animais, peçonhentos ou não.

Estes fatores necessitam ser analisados e as ações corretivas implementadas para evitar recorrências. Esta norma visa orientar as ações para proteção em relação aos fatores humanos, sistêmicos, gerenciais e ambientais, enquanto que outras normas técnicas visam atender tanto aos aspectos técnicos quanto aos fatores físicos. Antes de realizar qualquer atividade relacionada à operação de um sistema elétrico ou serviço, com ou na proximidade de uma instalação elétrica, é necessário avaliar os riscos que podem ser gera- dos pela instalação elétrica.

Convém que as operações sejam avaliadas por ferramentas de análise de risco, considerando a complexidade da instalação. Convém que esta avaliação seja registrada no procedimento que descreve a forma de realizar a operação ou os serviços, para assegurar a segurança dos trabalhados e das pessoas. A zona de risco de arco elétrico é estabelecida de acordo com o cálculo da energia incidente, acima da energia incidente de 1,2 cal/cm2 (4 J/cm²). Convém que seja indicado no local o nível de energia que pode ser gerado pelo equipamento, quando abertas as suas proteções, conforme tabela abaixo.

Recomenda-se que as responsabilidades sobre a segurança das pessoas que participam das atividades de execução dos serviços e daqueles que estão ou possam estar envolvidos nos serviços estejam de acordo com a autorização dada aos profissionais, conforme a legislação brasileira. Recomenda-se que todos que realizem intervenções ou serviços em, com ou na proximidade de uma instalação elétrica estejam formalmente autorizados e tenham recebido as instruções referentes aos requisitos de segurança e as instruções da empresa aplicáveis ao seu serviço.

Convém que estas instruções sejam repetidas durante o transcurso dos serviços, quando estes tiverem uma longa duração (mais de um dia de duração) ou forem de natureza complexa (envolvendo diversos grupos ou intervenções simultâneas em diferentes sistemas). Convém que sejam utilizados os equipamentos de proteção individual (EPI) adequados aos locais, riscos e condições em que os trabalhadores necessitem, com vestimentas de proteção adequadas ao tamanho do corpo e equipamento de proteção adicional conforme registrado no procedimento de execução do serviço. Antes de começar qualquer serviço e durante a execução deste, convém que o responsável pelo serviço zele para que todos compreendam e respeitem as instruções, regras e requisitos estabelecidos no procedimento.

Convém que o profissional não seja autorizado a executar uma atividade elétrica sem que estejam registrados em sua ficha funcional a sua qualificação profissional, os treinamentos e a demonstração de conhecimentos técnicos que embasem as experiências comprovadas de prevenção contra os riscos elétricos. Recomenda-se que a supervisão considere o nível de conhecimento e a experiência dos trabalhadores para determinar os serviços que podem ser realizados.

Convém que sejam utilizados os seguintes critérios de avaliação do trabalhador: comprovante de conclusão de curso específico na área elétrica reconhecido pelo Sistema Oficial de Ensino; comprovante da realização e demonstração da compreensão do treinamento de segurança básica em eletricidade, com conteúdo e duração mínima conforme estabelecido na legislação brasileira; caso julgado necessário, comprovação da experiência em serviços elétricos similares ao que será designado com demonstração sobre a percepção dos perigos e riscos que possam aparecer durante o serviço e a respectiva medida de proteção a ser adotada; compreensão dos procedimentos a serem seguidos para a execução do serviço.

Convém que a complexidade dos serviços seja avaliada durante a fase de planejamento, a fim de definir a composição da equipe executora, considerando quantos trabalhadores necessitam ser capacitados, qualificados e habilitados, todos devidamente autorizados. Recomenda-se que a instalação elétrica de um sistema elétrico esteja sob a responsabilidade de um profissional habilitado, conforme determina a legislação brasileira.

Quando duas ou mais instalações ou equipamentos forem compartilhados, por exemplo, conjunto de manobra de distribuição que alimenta diferentes instalações em uma mesma sala, convém que sejam elaborados acordos ou protocolos formais e haja cooperação entre os responsáveis de cada instalação para determinar as medidas necessárias, de modo a assegurar a segurança e o controle das atividades que venham a se desenvolver em cada uma dessas instalações. Neste caso podem ser necessários sistemas de intertravamento com sequência lógica, para garantir a operação de forma segura.

Convém que o controle de acesso das pessoas não autorizadas aos locais em que estejam expostas aos riscos elétricos esteja definido em procedimento específico. A elaboração de padrões, normas ou procedimentos relacionados com a eletricidade, específicos ou não, pode ser realizado pelo responsável, ou não, da instalação elétrica, porém a responsabilidade pela sua aprovação é do responsável pela instalação elétrica, conforme a legislação brasileira e necessitam atender no mínimo as normas técnicas nacionais e, na ausência destas, normas estrangeiras ou internacionais.

Recomenda-se que seja designado um responsável para cada serviço. Quando o serviço for subdividido, convém nomear supervisores para assegurar a segurança em cada uma das subdivisões, estando todos eles sob a responsabilidade de uma só pessoa de coordenação, responsável por todo o serviço. Convém que o responsável pelo serviço e o responsável pela instalação atendam aos requisitos estabelecidos nos padrões, normas ou procedimentos de segurança, para permitir a execução segura do serviço, além de detalhar atividades a serem realizadas na instalação elétrica e suas proximidades, antes do início das atividades ou modificação da instalação elétrica. O responsável pelo serviço e o responsável pela instalação elétrica podem ser a mesma pessoa.

Convém que todos os serviços, sejam simples ou complexos (que envolvem diversos grupos ou intervenções simultâneas em diferentes sistemas) e de longa duração (mais de um dia de duração), atendam a procedimento escrito contendo o planejamento das atividades, com a descrição das etapas, análise de risco, medidas de controle e um plano de ação para contingência conforme orientações contidas na Seção 8 (medidas a serem adotadas em caso de acidente), com ciência e aprovação de todos os envolvidos, em especial, os trabalhadores.

Uma pessoa qualificada, habilitada e autorizada pode estabelecer a forma de executar o serviço com segurança nas seguintes situações: nas instalações não complexas (quando envolvem um único sistema ou circuito elétrico segregado) ou nas suas subpartes, em circunstâncias claramente compreendidas e previamente estabelecidas em procedimentos aprovados; quando os serviços forem repetitivos, de rotina e estabelecidos em procedimentos específicos efetivamente implantados; para serviços de manutenção, realizados segundo procedimentos específicos efetivamente implantados. Recomenda-se que no local de realização de serviços, elétricos ou não elétricos, em, ou nas proximidades de uma instalação elétrica energizada, os trabalhadores sejam treinados, informados das atividades e capazes de solicitar socorro e prestar os primeiros socorros para acidentes de origem elétrica, como choque elétrico ou queimaduras por arco elétrico.

Convém que as informações de como solicitar socorro e as orientações de primeiros socorros estejam disponíveis em placas ou pôsteres afixados no local de serviço e em folhetos ou documentos de segurança entregues aos trabalhadores, conforme definido em avaliação prévia e apropriado à complexidade do serviço ou ambiente de trabalho. Quanto à comunicação (transmissão da informação), pode-se dizer que, nessa norma, o termo comunicação significa toda e qualquer forma de transmitir ou receber informação entre as pessoas e trabalhadores: verbal, escrita, sonora e visual, por exemplo, display de visualização, painéis anunciadores e luzes.

Antes do início de qualquer atividade, recomenda-se que o responsável pelo serviço notifique o responsável pela instalação sobre a natureza, o local e os potenciais riscos devido à realização do serviço, e o procedimento do trabalho planejado. Esta notificação necessita ser documentada. O responsável pela instalação e o responsável pelo serviço a ser realizado necessitam assegurar que as instruções específicas foram transmitidas e detalhadas a todos os trabalhadores sob sua supervisão e pessoas envolvidas para permitir a realização dos serviços em segurança antes do início das atividades. Recomenda-se que todas as informações necessárias para a segurança durante a operação de uma instalação elétrica, como a configuração da rede, o estado das chaves seccionadoras (fechada, aberta ou aterrada) e a posição dos dispositivos de segurança para operação segura da instalação elétrica, estejam registradas em um documento específico e que sejam formalmente transmitidas.

Convém que os meios de transmissão da informação somente sejam utilizados após serem adotadas as medidas de precauções adequadas para assegurar que a informação seja confiável, verdadeiras, não cause mal-entendidos ou sinais falsos. Convém que nas transmissões das informações sejam incluídos o nome e os meios de contato para dirimir dúvidas ou obter maiores esclarecimentos.

É recomendado que não seja permitido o funcionamento ou reenergização de uma instalação elétrica, após a conclusão de serviço, cujo sistema de controle seja unicamente por sinais, como etiquetas, ou determinação do intervalo de tempo necessário para a realização do serviço. Convém que o funcionamento ou reenergização somente seja realizado após a verificação física e inspeção final, assegurando que a instalação esteja adequada e segura para operar.

Durante a realização dos serviços em que as informações sejam transmitidas verbalmente, incluindo comunicação por rádio, para evitar enganos, é recomendado que o receptor repita as informações ao transmissor, que confirmará que foram recebidas e compreendidas corretamente. Caso seja utilizado rádio, convém assegurar que interferências externas não interfiram na clareza e entendimento das mensagens.

Após o término do trabalho, convém que o responsável pelo serviço realize as verificações, inspeções e limpeza da área, e comunique ao responsável pela instalação sobre o resultado da verificação e conclusão do serviço. Convém que o local de trabalho esteja totalmente livre e desimpedido para movimentação das cargas e dos trabalhadores, definido, delimitado e identificado. Convém que sejam providenciados os espaços para movimentação adequada, meios de acesso e iluminação em todas as partes do serviço ou da instalação elétrica. Recomenda-se que o acesso ao local de trabalho e as rotas de fuga estejam definidas, sinalizadas, livres, desimpedidas e identificadas.

ANSI B11.19: as medidas para a redução de risco

Essa norma internacional, editada em 2019 pela American National Standards Institute (ANSI), fornece os requisitos de desempenho para o projeto, a construção, a instalação, a operação e a manutenção das medidas de redução de risco listadas abaixo quando aplicadas a máquinas – inerentemente seguras pelo projeto (consulte a seção 7); controles de engenharia – guardas (ver seção 8); controles de engenharia – funções de controle (ver seção 9); controles de engenharia – dispositivos (ver seção 10); e controles administrativos (ver seção 11).

A ANSI B11.19:2019 – Performance Requirements for Risk Reduction Measures: Safeguarding and other Means of Reducing Risk fornece os requisitos de desempenho para o projeto, a construção, a instalação, a operação e a manutenção das medidas de redução de risco listadas abaixo quando aplicadas a máquinas – inerentemente seguras pelo projeto (consulte a seção 7); controles de engenharia – guardas (ver seção 8); controles de engenharia – funções de controle (ver seção 9); controles de engenharia – dispositivos (ver seção 10); e controles administrativos (ver seção 11).

De uma forma geral, o objetivo principal desta norma é estabelecer os requisitos para o projeto, construção, instalação, operação e manutenção das medidas de redução de risco usadas para eliminar ou controlar os perigos para os indivíduos associados às máquinas. Esta norma se baseia em outras normas para determinar quais medidas de redução de risco são necessárias ou permitidas para controlar perigos/situações perigosas identificadas e devem ser usadas em conjunto com a norma ANSI B11.0 sobre requisitos gerais de segurança e avaliações de risco de máquinas e qualquer padrão base ANSI B11 relevante para uma determinada máquina.

Para atingir esse objetivo, essa norma estabeleceu responsabilidades para o fornecedor (por exemplo, fabricante, reconstrutor, instalador, integrador e modificador), usuário e indivíduos no ambiente de trabalho. O objetivo geral é alcançar riscos aceitáveis nas práticas e no ambiente de trabalho. Outros setores da indústria podem se beneficiar com a aplicação desta norma. Nos casos em que exista uma norma de segurança específica da máquina (tipo C), a ANSI B11.19 pode ser usada de forma construtiva para suplementar esse padrão.

As palavras seguro e segurança não são absolutas. A segurança começa com um bom projeto. Embora o objetivo desta norma seja eliminar lesões, ela reconhece que os fatores de risco não podem ser praticamente reduzidos a zero em nenhuma atividade humana. Esta norma não se destina a substituir o bom senso e a responsabilidade pessoal. A habilidade, atitude, treinamento, monotonia do trabalho, fadiga e experiência do operador são fatores que afetam a segurança e devem ser considerados pelo usuário.

Ao longo de sua história, a ANSI B11.19 não forneceu os requisitos para a seleção das medidas de redução de risco, mas apenas a implementação da medida de redução de risco uma vez escolhida. Nenhuma ordem hierárquica, nenhum nível de redução de risco ou qualquer relação entre as opções de medida de redução de risco estão implícitos dentro desta norma.

As informações a seguir são dados efetivos e são apenas orientações informativas e não fazem parte normativa deste padrão. Este Subcomitê reconhece que, após a data de aprovação na página de título deste documento, é necessário que os fornecedores e os usuários desenvolvam novos projetos ou modifiquem projetos ou processos de fabricação existentes para incorporar os requisitos novos ou revisados desta norma em seus desenvolvimentos de produtos ou sistema de produção.

Este Subcomitê recomenda que os fornecedores concluam e implementem alterações no projeto de novas máquinas e sistemas de máquinas dentro de 30 meses a partir da data de aprovação deste padrão. O Subcomitê recomenda que os usuários avaliem se as máquinas e sistemas de máquinas existentes têm risco aceitável dentro de 30 meses a partir da data de aprovação desta norma, usando métodos de avaliação de risco geralmente reconhecidos. Se a avaliação de risco mostrar que modificações são necessárias, consulte os requisitos desta norma ou da norma de segurança base específica da máquina para implementar medidas de redução de risco (medidas de proteção) para uma redução de risco apropriada.

Enfim, os requisitos desta norma foram harmonizados com os semelhantes em várias normas internacionais (ISO e IEC) e europeias (EN). Harmonização significa que os requisitos foram alinhados em essência para alcançar um nível semelhante de redução de risco. Harmonização não significa duplicação de requisitos exatos.

A ANSI B11.19 implementa uma filosofia de padronização que difere significativamente da encontrada em algumas normas ISO, IEC e EN. As normas ISO, IEC e EN tendem a ser documentos individuais para cada tipo de medida de redução de risco (por exemplo, cortinas de luz, controles de parada de emergência, prevenção de inicialização inesperada etc.). A ANSI B11.19 historicamente combinou os vários requisitos em uma única norma, permitindo assim que os leitores entendam e comparem os requisitos de diferentes abordagens para reduzir o risco.

As ações de emergências no transporte rodoviário de produtos perigosos

As ações de resposta às emergências contidas nesta norma não limitam ou excluem a adoção de procedimentos e diretrizes mais rigorosos. As diretrizes contidas nesta norma se aplicam às instituições públicas e/ou privadas que respondem às emergências envolvendo o Transporte Rodoviário de Produtos Perigosos (TRPP).

Confirmada em dezembro de 2019, a NBR 14064 de 07/2015 – Transporte rodoviário de produtos perigosos — Diretrizes do atendimento à emergência estabelece os requisitos e procedimentos operacionais mínimos a serem considerados nas ações de preparação e de resposta rápida aos acidentes envolvendo o Transporte Rodoviário de Produtos Perigosos (TRPP). As ações de resposta às emergências contidas nesta norma não limitam ou excluem a adoção de procedimentos e diretrizes mais rigorosos. As diretrizes contidas nesta norma se aplicam às instituições públicas e/ou privadas que respondem às emergências envolvendo o TRPP. Os tipos de acidentes tratados nesta norma incluem qualquer evento indesejado envolvendo o TRPP, que representem, ou possam representar algum tipo de perigo, efetivo ou potencial, à saúde e à segurança da população e ao meio ambiente, e também que coloquem sob ameaça o patrimônio público e/ou privado.

Esta Norma tem como foco principal os aspectos de preparação, resposta e mitigação dos acidentes. Os aspectos de prevenção relacionados ao TRPP não são objeto desta norma. Ela pode ser aplicada ao atendimento a emergências com produtos ou substâncias que, embora não classificados como perigosos para o transporte, quando fora de sua contenção original (vazamento/derramamento), tenham potencial de oferecer riscos ao meio ambiente. Não se aplica aos produtos perigosos das classes de risco 1 (explosivos) e 7 (radioativos). Produtos perigosos das classes de risco 1 e 7 são de competência do Exército Brasileiro e da Comissão Nacional de Energia Nuclear (CNEN), respectivamente.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as atividades de resposta a emergências envolvendo o transporte terrestre de produtos perigosos (TRPP)?

Quais as atribuições e procedimentos no atendimento de emergência no caso de acidentes no TRPP?

Quais são os métodos formais de identificação do produto transportado?

Como deve de ser o padrão resposta emergencial aos acidentes?

Pode-se definir a emergência química como o evento repentino, indesejável e inesperado envolvendo produtos químicos, que pode causar danos às pessoas, ao meio ambiente e ao patrimônio. Este evento pode ser caracterizado por um ou mais dos seguintes fatos: vazamentos, como, por exemplo, através de válvulas, flanges, tubulações, acessórios, fissuras ou rupturas do vaso de transporte ou rupturas de embalagens ou proteção; incêndio e princípios de incêndio; explosões; colisões, abalroamentos, capotagem, quedas que causem ou tornem iminentes as ocorrências das alíneas anteriores; eventos que venham a provocar as ocorrências citadas acima ou causem, de qualquer modo, a perda de confinamento do(s) produto(s) transportado(s).

As atividades de resposta a emergências envolvendo o TRPP envolvem a aproximação segura, a identificação dos perigos e riscos, a análise do acidente, o planejamento tático, a implementação da resposta, a avaliação das ações colocadas em prática, o restabelecimento da segurança local e o encerramento da fase emergencial. Sem prejuízo das responsabilidades legais atribuídas às instituições públicas e as empresas privadas, envolvidas direta ou indiretamente nas situações de emergência no TRPP, as atividades e práticas previstas nesta norma visam o exercício satisfatório da pronta resposta às emergências.

Assim sendo, no Anexo A foram descritos os procedimentos no atendimento à emergência que envolvem as principais instituições públicas e privadas. A utilização de procedimentos operacionais padronizados nas diversas fases do atendimento emergencial tem por objetivo promover um tratamento organizado e estruturado nas ações de resposta.

O uso de um padrão de resposta emergencial não pode criar um desafio adicional para as equipes de resposta a emergência. A finalidade do padrão de resposta é diminuir as dificuldades normalmente encontradas no cenário acidental, em particular quando diferentes instituições, públicas e privadas, atuam em conjunto. As atividades necessárias ao padrão de resposta emergencial no TRPP podem ser divididas em dez fases que interagem entre si, contudo não se limitam à relação proposta na figura abaixo, podendo ser adaptadas e adequadas às realidades e necessidades locais.

Para os efeitos desta norma, o primeiro no local é aquele que foi designado para se dirigir ao local do acidente, constatar os fatos e adotar as primeiras ações protetivas. Portanto, não se confunde com aquele que não possui essa atribuição funcional e por acaso é o primeiro a se deparar com o acidente. Este configura o informante do acidente e não o primeiro no local.

O primeiro no local é aquele que realiza a abordagem inicial no cenário acidental, independentemente da instituição ou empresa que represente e cuja atribuição consiste em: constatar os fatos; identificar o (s) produto (s) envolvido (s); identificar a contaminação efetiva ou potencial do meio ambiente local; identificar a exposição efetiva ou potencial de pessoas; sinalizar e isolar o local; identificar e afastar possíveis fontes de ignição; afastar curiosos; acionar as equipes de intervenção e de apoio emergencial; contribuir no sentido de facilitar o acesso das equipes de intervenção e apoio ao local da ocorrência.

Os acidentes rodoviários em que haja a confirmação ou a suspeita da presença de produtos perigosos devem ser tratados com o devido cuidado por aqueles que primeiro abordarem a ocorrência. Além dos perigos intrínsecos de cada produto, outros fatores contribuintes podem agravar uma situação onde haja perda efetiva ou potencial de contenção do produto transportado, razão pela qual a situação não pode ser tratada pelo primeiro no local como um acidente comum de trânsito.

Produtos perigosos requerem procedimentos, materiais e equipamentos específicos para cada uma das diferentes classes de risco. Nos casos em que, pelas consequências do acidente, se torne impossível obter as primeiras informações do condutor do veículo sinistrado ou ter acesso à documentação de transporte, a atenção do primeiro no local deve ser redobrada, considerando as variáveis de riscos que podem estar presentes no veículo acidentado, como por exemplo: o transporte de produtos de classes/subclasses de riscos diferentes, ausência de identificação da unidade de transporte, a não correspondência da simbologia com o produto transportado ou a ocorrência de reações adversas por incompatibilidade química.

O primeiro no local deve possuir habilidades, experiência e conhecimento suficientes para entender que muitos produtos classificados como perigosos para o transporte podem acarretar danos severos ao homem, mesmo em baixas concentrações. O primeiro no local deve ainda possuir o discernimento que as tentativas de socorro às vítimas do acidente envolvendo o TRPP, sem o preparo e os recursos necessários que os produtos requerem, em regra, tendem a agravar a situação e gerar mais vítimas a serem socorridas.

O primeiro no local deve possuir os conhecimentos básicos sobre os perigos intrínsecos dos produtos perigosos, principalmente no que se refere às propriedades de alerta dos produtos, ou seja, características que podem indicar ou mascarar sua presença no ambiente. Para as ações do primeiro no local, deve estar implícita a concepção de que respostas rápidas nem sempre representam a melhor resposta.

O primeiro no local deve obter, o mais breve possível, as informações sobre o produto envolvido no acidente, seja pela sinalização do veículo, do equipamento de transporte ou das embalagens ou pela documentação fornecida pelo condutor do veículo. A aproximação ao cenário acidental deve ser realizada de forma cautelosa. A observação inicial deve ser realizada à distância, de preferência com o auxílio de binóculo ou outro dispositivo que permita aproximar as imagens do acidente e do entorno.

Os procedimentos de observação à distância devem ser rigorosamente seguidos, ainda que outros veículos estejam envolvidos no acidente e aparentemente existam vítimas a serem socorridas. A avaliação preliminar acerca da presença do produto no ambiente não pode ser totalmente confiada aos órgãos dos sentidos, tendo em vista que muitos dos produtos classificados como perigosos para o transporte não possuem cor ou odor que possam ser percebidos pelos sentidos, como, por exemplo, o monóxido de carbono (ONU 1016), e outros produtos que, em determinadas concentrações, inibem ou mesmo paralisam a capacidade olfativa, como, por exemplo, o gás sulfídrico (ONU 1053), de forma que se torna impossível determinar sua presença somente pelo odor.

O primeiro no local, bem como as equipes de intervenção e apoio devem ter em mente que o produto vazado ou derramado pode estar presente em concentrações perigosas em locais muito além do que é possível enxergar, dada sua alta mobilidade no meio. Por isto, o primeiro no local não pode basear as ações de sinalização e isolamento somente naquilo que é visível (névoas esbranquiçadas).

As névoas esbranquiçadas provenientes de vazamentos de gases, por exemplo, nem sempre representam a extensão fiel do perigo, normalmente as névoas são visíveis em razão da condensação da umidade atmosférica gerada pela diferença de pressão ou temperatura entre o produto e o ambiente. Dessa forma, concentrações perigosas podem estar presentes além das nuvens esbranquiçadas, normalmente observadas no entorno dos vazamentos, conforme ilustrado abaixo.

Efeito semelhante pode ser observado nos vazamentos de líquidos criogênicos, os quais se encontram a temperaturas inferiores a – 160 ºC e, por tal razão, quando fora da sua contenção, provocam a condensação da umidade atmosférica. Além disso, devido à sua natureza fria, os líquidos criogênicos apresentam três riscos principais: alta taxa de expansão na evaporação: metano liquefeito, por exemplo, expande aproximadamente 630 vezes o seu volume inicial, ou seja, seu volume no estado líquido; capacidade de condensar ou solidificar outros gases: em um vazamento de um líquido criogênico, a possibilidade de solidificação da umidade presente na atmosfera é bastante elevada quando comparada com os demais gases.

Essa solidificação geralmente ocorre nas proximidades do local do vazamento. Quando tal fato ocorre próximo às válvulas, por exemplo, pode haver dificuldade para a realização de manobras com tais equipamentos. Provocam um potencial de danos aos tecidos vivos: queimaduras podem ser provocadas quando ocorre contato do produto com a pele, devido à natureza extremamente fria dos líquidos criogênicos.

Tais queimaduras são conhecidas por enregelamento. O primeiro no local deve sempre procurar se posicionar em local mais elevado e com vento pelas costas em relação ao acidente. Caso venha a sentir algum odor, irritação nos olhos ou nas vias respiratórias, deve imediatamente se afastar. O vento pode mudar repentinamente de direção, em razão de fatores atmosféricos, razão pela qual a observação da direção do vento deve ser uma constante durante todo o atendimento emergencial.

A fim de se posicionar com o vento pelas costas em relação ao local do acidente, é possível buscar referências da direção do vento com o auxílio de indicativos presentes no ambiente, como: movimentação de folhagens, de nuvens, de roupas no varal, de bandeiras, entre outras. Outros indicativos visíveis podem sugerir a presença e o grau de severidade do produto vazado/derramado, como insetos, aves e outros animais mortos ou moribundos, assim como o amarelecimento e o murchecimento das folhagens próximo ao local do acidente.

Sinais audíveis, como estalos, explosões e ruído sibilar, característicos de perda de pressão, podem ser percebidos à distância e merecem a devida atenção. O local de parada e estacionamento do veículo do primeiro no local deve ser planejado, considerando a necessidade de uma saída rápida em razão de diversos fatores, como deslocamento da nuvem de produto, incêndio, explosão e odor intenso.

O primeiro no local deve procurar parar ou estacionar em local distante do cenário acidental, tendo em vista que as partes aquecidas do veículo podem se constituir em fontes de ignição frente ao perigo da exposição a atmosferas inflamáveis. O primeiro no local deve estacionar o veículo em posição de fuga, ou seja, se o espaço permitir, estacionar o (s) veículo (s) em ângulo de 45º em relação à via (de frente para rota de fuga), de forma que, na necessidade de uma saída rápida, não demande manobras. O primeiro no local deve estar atento para que todas as viaturas de intervenção e apoio que posteriormente chegarem ao local da ocorrência estacionem em posição de fuga.

O cálculo de estruturas-suporte para equipamentos de movimentação

As estruturas-suporte para equipamentos de elevação e movimentação de cargas são classificadas da mesma forma que a estrutura dos equipamentos que operam sobre estas estruturas, conforme estabelecido na NBR 8400-1.

A NBR 10084 de 03/2020 – Cálculo de estruturas-suporte para equipamentos de elevação e movimentação de cargas — Procedimento estabelece os requisitos para o cálculo de estruturas-suporte para equipamentos de elevação e movimentação de cargas. Não é aplicável a estruturas-suporte para guindastes sobre pneus ou lagartas.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os símbolos e abreviaturas usados nessa norma?

Qual é a distribuição da pressão para outros níveis da alma?

Quais são os pontos para determinação da tensão devido às cargas nas rodas?

Como deve ser o reforço na aba inferior na extremidade da viga de rolamento?

As estruturas-suporte para equipamentos de elevação e movimentação de cargas são classificadas da mesma forma que a estrutura dos equipamentos que operam sobre estas estruturas, conforme estabelecido na NBR 8400-1, levando-se em conta a composição mais desfavorável de cargas e a frequência de utilização dos equipamentos para cada setor da estrutura. Nas estruturas-suporte podem atuar as seguintes ações: principais; movimentos horizontais do equipamento; efeitos climáticos; diversas.

No dimensionamento de cada elemento das estruturas-suporte, devem ser consideradas as combinações de ações que possam acarretar os efeitos mais desfavoráveis no elemento considerado. Para o caso de dois ou mais equipamentos operando sobre a mesma estrutura-suporte, devem ser consideradas as condições mais desfavoráveis de carregamento e simultaneidade de utilização dos equipamentos para cada setor da estrutura.

Supõe-se que os elementos móveis do equipamento estejam na posição mais desfavorável. Devem também ser considerados os efeitos locais devidos à carga nas rodas do equipamento. As ações principais são: peso próprio da estrutura-suporte Fg1; peso próprio do equipamento que suporta a carga de serviço Fg2; carga de serviço Fq. Os esforços dinâmicos atuantes na estrutura-suporte, provenientes do içamento relativamente brusco da carga de serviço, são levados em conta multiplicando a carga de serviço (Fq) por um coeficiente dinâmico Ψ dado na NBR 8400-1.

As ações devidas aos movimentos horizontais do equipamento devem ser determinadas de acordo com a NBR 8400-1. As ações devidas aos efeitos climáticos devem ser determinadas de acordo com a NBR 8400-1. As ações diversas são as acidentais secundárias devidas aos carregamentos em passadiços, acessos, plataformas, corrimão e guarda-corpos são determinadas de acordo com a NBR 8400-1.

As diversas solicitações determinadas, como indicado na Seção 6, podem, em certos casos, ser ultrapassadas devido às imperfeições de cálculo ou aos imprevistos. Por este motivo, leva-se em conta um fator denominado coeficiente de majoração Mx no cálculo da estrutura-suporte. Os valores deste coeficiente são aqueles estabelecidos na NBR 8400-1 para cada equipamento, considerando o grupo da estrutura-suporte conforme Seção 5.

São previstos nos cálculos três casos de carregamento para as estruturas-suporte: caso I: serviço normal sem vento; caso II: serviço normal com vento-limite de serviço; caso III: ações especiais. Para o caso I — serviço normal sem vento, deve-se considerar a ação estática devida ao peso próprio da estrutura suporte Fg1, a ação devida ao peso do equipamento Fg2, da carga de serviço Fq multiplicada pelo coeficiente dinâmico Ψ e duas ações horizontais mais desfavoráveis Fh entre as indicadas em 6.2, com exclusão das ações devidas a choques. O conjunto destas ações deve ser multiplicado pelo coeficiente de majoração Mx.

Para o caso II —serviço normal com vento-limite de serviço, considerar as ações do caso I, adicionando os efeitos do vento-limite de serviço Fw, indicados em 6.3 e, se for o caso, o esforço devido à variação de temperatura. Para o caso III, as ações especiais sobre a estrutura-suporte referem-se às seguintes combinações: equipamentos fora de serviço com vento máximo: considerar os pesos próprios Fg1 e Fg2 e também o vento máximo Fw máx, incluindo as reações de ancoragens; equipamento em serviço sob efeito de um choque com amortecimento: considerar peso próprio Fg1 e também o peso do equipamento Fg2, a carga de serviço Fq e as ações mais desfavoráveis devidas ao choque; equipamentos submetidos aos ensaios previstos na NBR 8400-5: considerar o peso próprio Fg1 e também o peso do equipamento Fg2 e a sobrecarga (ensaio dinâmico).

No projeto, levar em consideração as solicitações mais desfavoráveis resultantes destas combinações. Para as vigas de rolamento e estruturas-suporte auxiliares metálicas o projeto deve ser elaborado em conformidade com os requisitos para componentes estruturais estabelecidos na NBR 8400-2, em casos específicos, não cobertos por esta norma, seguir o descrito na NBR 8800.

As verificações devem ser realizadas para assegurar que haja margem de segurança suficiente em relação às tensões críticas, considerando as três possíveis causas de falha descritas a seguir: exceder o limite elástico; exceder a tensão crítica de flambagem global ou localizada; exceder o limite de resistência à fadiga. As seguintes forças internas e momentos devidos às cargas no equipamento devem ser considerados no dimensionamento das vigas de rolamento e estrutura-suporte: flexão biaxial devido às ações verticais e laterais; compressão ou tração devido às ações horizontais longitudinais; torção devido á excentricidade das ações horizontais laterais, com relação ao centro de torção da seção da viga; forças cortantes devido às ações verticais e horizontais laterais.

A tensão de compressão local vertical σ0z gerada na alma pela carga vertical na roda (ver figura abaixo) deve ser determinada pela seguinte equação: q0z=Fz/lef.tw, onde Fz é o valor de projeto da carga na roda para o caso de solicitação considerado; lef é o comprimento efetivo suportando a carga; tw é a espessura da alma. O comprimento efetivo lef, sobre o qual a pressão devido à carga na roda é assumida como sendo uniforme, pode ser determinado usando a tabela abaixo. Quando a distância entre as rodas adjacentes for menor do que lef, deve ser considerada a pressão devido à superposição do efeito das duas rodas.

A pressão σ0z, para outros níveis da alma, pode ser calculada assumindo uma distribuição a um ângulo de 45o, a partir do comprimento lef (ver Figura 2 – disponível na norma) para cada roda. Quando o comprimento da área de dispersão for maior que a distância entre as rodas adjacentes, deve ser considerada a superposição do efeito da carga nas duas rodas.

Para regiões afastadas dos apoios da viga, a tensão devido à carga vertical σ0z deve ser multiplicada pelo fator de redução (1 –z/hw)2, onde hw é a altura total da alma e z é a distância desde a face inferior da aba da viga. Próximo aos apoios da viga, uma distribuição similar, assumindo um ângulo de 45° a partir da reação no apoio, pode ser considerada, devendo o caso mais crítico ser verificado.