A recuperação de equipamentos “Ex” para atmosferas explosivas

Entenda as instruções, principalmente de natureza técnica, sobre os serviços de reparo, revisão, recuperação e modificação de equipamentos “Ex” projetados para utilização em atmosferas explosivas; é aplicável à revisão e recuperação, as quais mitigam deficiências identificadas durante a operação, inspeção e manutenção; não apresenta orientações sobre cabos e sistemas de fiação que possam requerer revisão quando o equipamento for reinstalado; e não é aplicável ao tipo de proteção “m”.

A NBR IEC 60079-19 de 09/2020 – Atmosferas explosivas – Parte 19: Reparo, revisão e recuperação de equipamentos fornece instruções, principalmente de natureza técnica, sobre os serviços de reparo, revisão, recuperação e modificação de equipamentos “Ex” projetados para utilização em atmosferas explosivas; é aplicável à revisão e recuperação, as quais mitigam deficiências identificadas durante a operação, inspeção e manutenção; não apresenta orientações sobre cabos e sistemas de fiação que possam requerer revisão quando o equipamento for reinstalado; e não é aplicável ao tipo de proteção “m”.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

O que deve conter o relatório de serviço para o usuário?

O que deve ser feito em relação aos dispositivos de fixação dos equipamentos?

Como se deve proceder em relação às exclusões de algumas peças componentes?

Como deve ser executada a brasagem ou soldagem?

Quando um equipamento é instalado em áreas onde concentrações perigosas e quantidades de gases, inflamáveis vapores ou poeiras podem estar presentes na atmosfera, medidas de proteção são aplicadas para reduzir a possibilidade de explosão devido à ignição por arcos, centelhamento ou superfícies quentes produzidas em operação normal ou sob condições de falhas especificadas. Essa parte é complementada por outras normas aplicáveis da IEC, por exemplo, a série IEC 60034, em particular pela IEC 60034-23, e também se refere à série IEC 60079, e suas respectivas partes apropriadas para os requisitos adequados de projeto de equipamentos elétricos.

O método de proteção contra o risco de ignição de uma atmosfera explosiva fornecida por cada tipo de proteção varia de acordo com as suas respectivas características. Este documento apresenta orientações práticas para a manutenção dos tipos de proteção dos equipamentos reparados. Este documento também indica os procedimentos para reparo, revisão ou recuperação, e verificação do cumprimento contínuo do equipamento com os requisitos do certificado de conformidade ou com as normas dos tipos de proteção aplicáveis, quando um certificado de conformidade “Ex” não estiver disponível.

Pretende-se que os usuários utilizem as instalações de serviço mais adequadas para qualquer tipo de equipamento, quer sejam as instalações do fabricante ou de um reparador competente e adequadamente equipado. Este documento reconhece a necessidade de um nível de competência para reparo, revisão e recuperação de equipamentos. Alguns fabricantes podem recomendar que os equipamentos sejam reparados somente por eles.

Grande parte do conteúdo deste documento refere-se ao reparo e à revisão de máquinas elétricas. Isto é, porque eles são itens de equipamentos “Ex” reparáveis nos quais, independentemente dos tipos de proteção envolvidos, existem similaridades suficientes de construção, tornando possível a indicação de instruções mais detalhadas para seu reparo, revisão, recuperação ou modificação. As seções pertinentes desta norma são aplicáveis sobre o reparo ou recuperação destes outros tipos de proteção, mas se um componente “m” apresentar falha, ele pode somente ser substituído. Os requisitos adicionais para reparo para o tipo de proteção “m” a inda.

Os serviços de reparo ou revisão que afetem o tipo de proteção devem ser assumidos como estando em conformidade com os documentos de certificação, quando: as  peças do fabricante ou peças especificadas de acordo com a documentação indicada forem utilizadas; o reparo ou modificação forem realizados especificamente como detalhado nesta norma e nos documentos de certificação; e quando forem realizados por pessoas competentes.

Em certas circunstâncias, quando a documentação aplicável indicada não estiver disponível, então os serviços de reparos e revisões devem ser realizados nos equipamentos de acordo com esta norma e com outras normas aplicáveis para as quais os equipamentos tenham sido originalmente verificados. As etapas realizadas para obter a documentação aplicável devem ser registradas nos relatórios da empresa de serviço de reparo.

Se o equipamento tiver sido modificado, este deve estar de acordo com os requisitos de 4.3.2.6, quando um novo certificado é requerido para ser emitido, ou então o equipamento não é mais considerado adequado para utilização em áreas classificadas. Em alguns casos, de acordo com os requisitos legais, a recuperação não pode ser realizada sem documentação relevante para o equipamento do Grupo I, a menos que seja submetida a reensaios completos e que um novo certificado de equipamento “Ex” seja emitido.

Se outras técnicas de reparos ou de alterações forem realizadas e não estiverem de acordo com esta norma, então é necessário confirmar com o fabricante ou com o organismo de certificação que emitiu o certificado que o equipamento continua adequado para utilização em atmosferas explosivas. Existem evidências sobre ocorrências de equipamentos Ex “d” que passaram em ensaios de propagação com o interstício ajustado no valor máximo especificado pelo fabricante, mas que falharam no ensaio, quando ajustados para os valores máximos de interstício permitidos pela norma Ex “d”.

Como tais equipamentos não são necessariamente marcados com um sufixo “X” no número do certificado do equipamento “Ex”, não existe uma forma de conhecer se o equipamento pode ser reparado com segurança para os valores permitidos pela norma ou se o equipamento necessita ser reparado para o menor interstício especificado nos documentos de certificação. Desta forma, na ausência de documentos de certificação que mostrem os interstícios utilizados pelo fabricante, as empresas de serviços de reparo devem utilizar as orientações fornecidas pela tabela abaixo.

Convém que o usuário do equipamento “Ex” esteja ciente de qualquer legislação aplicável no que diz respeito à inspeção periódica e verificação, para assegurar que o equipamento elétrico instalado em atmosferas explosivas seja adequado para a finalidade. Convém que o usuário considere se existem equipamentos e instalações suficientes e que competências pessoais estejam disponíveis para a execução dos serviços de reparo e revisão de tais equipamentos pelo usuário, ou se é recomendada a contratação de empresa de prestação de serviços de reparo e revisão especializada.

Adicionalmente, é recomendado que as informações apresentadas ao usuário por empresas de serviços e de montagem de terceira parte sejam suficientes e que atendam aos requisitos de segurança e saúde ocupacional. O usuário é responsável pela obtenção dos certificados dos equipamentos “Ex” e de outros documentos

relacionados como parte original do acordo de compra dos equipamentos “Ex”. Convém que toda a documentação pertinente (ver 4.3.2.4.1) obtida como parte do contrato original de compra, em conjunto com os registros de quaisquer reparos, revisões ou modificações anteriores, seja mantida em prontuário de verificação e disponibilizada para as empresas de serviços.

A documentação e os registros são normalmente arquivados no prontuário das instalações do usuário durante toda a vida útil do equipamento. É do interesse do usuário que o reparador seja notificado, sempre que possível, da falha e da natureza do trabalho a ser realizado e de qualquer informação importante da aplicação, por exemplo, uma máquina elétrica alimentada por um conversor de frequência.

Convém que o usuário alerte o reparador quanto aos requisitos específicos das especificações técnicas, caso sejam suplementares às diversas normas, como, por exemplo, um grau de proteção mais elevado devido às condições ambientais da aplicação. O reparador deve ser informado de qualquer requisito legal adicional para a conformidade com o certificado do equipamento “Ex”.

A reinstalação de um equipamento reparado deve ser realizada de acordo com a NBR IEC 60079-14. É um requisito da NBR IEC 60079-14 que, antes que os equipamentos reparados ou recuperados serem recomissionados, que os cabos e os sistemas de fiação sejam verificados para assegurar que não estejam danificados e que estejam apropriados para o tipo de proteção. Requisitos específicos legais nacionais ou regionais podem ser aplicáveis às atividades de reparo ou revisão.

Convém que o usuário verifique se a empresa de serviço de reparo escolhida pode demonstrar conformidade com os requisitos desta norma e requisitos regulatórios. A entidade de serviços, que pode ser o fabricante, o usuário ou uma empresa de serviço de reparo de terceira parte, deve estar ciente sobre os requisitos legais específicos indicados na legislação nacional ou regional aplicável, que pode estabelecer critérios para atividades de reparo e revisão. As empresas de serviço de reparo devem possuir um sistema de gestão da qualidade implementado que inclua os requisitos descritos a seguir. As NBR ISO 9001 e NBR ISO/IEC 80079-34 apresentam orientações adicionais.

Cada empresa de serviço de reparo deve indicar uma “pessoa responsável” com a competência requerida (ver Anexo B) dentro da estrutura organizacional, para assumir a responsabilidade e possuir autoridade para assegurar que o equipamento “Ex” revisado ou reparado esteja de acordo com o certificado de conformidade do equipamento “Ex” e com os requisitos do usuário. A pessoa responsável indicada deve possuir conhecimentos de trabalho dos requisitos das normas dos tipos de proteção “Ex” e compreensão desta norma.

Um planejamento de processo da qualidade deve ser estabelecido, incorporando as atividades apropriadas de inspeção, diagnósticos, ensaios e procedimentos de verificação, de forma a assegurar que os serviços de reparo e revisão atendam aos requisitos funcionais e de conformidade desta norma, de outras normas aplicáveis, ou aos requisitos do certificado do equipamento “Ex”e dos documentos de certificação, de forma a serem capazes de assegurar ao usuário a adequabilidade de reinstalação do equipamento “Ex” em área classificada.

A empresa de serviço de reparo deve estabelecer procedimentos ou instruções de trabalho para os serviços de reparo e revisão de equipamentos “Ex”. A empresa de serviço de reparo deve identificar e registrar a faixa de ensaios e de precisão de medições e suas limitações para utilização nos serviços de reparo e revisão de equipamentos “Ex”. A empresa de serviço de reparo deve manter um sistema de calibração de instrumentos e equipamentos de medição de acordo com normas nacionais ou internacionais.

A empresa de serviço de reparo deve manter registros, os quais devem ser legíveis, que proporcionem a rastreabilidade dos resultados medidos com instrumentos de medição calibrados para registro de medições específicas, sendo que os registros devem ser acessíveis durante o período de manutenção especificado. Quando da condução dos serviços de medições dimensionais e elétricas, a empresa de serviço de reparo deve registrar os valores de como “recebido” e “após o reparo” nos relatórios, para referência futura.

A empresa de serviço de reparo deve estabelecer um programa interno de auditoria para avaliar a efetividade da empresa de serviço de reparo, no atendimento dos requisitos desta norma. Quando um processo de reparo pode afetar a integridade de um tipo de proteção e quando a integridade resultante pode não ser verificada após o reparo, aquele processo específico deve ser medido e monitorado para demonstrar a conformidade com os parâmetros requeridos. Quando os ensaios forem requeridos, estes devem ser executados como especificados nesta norma, ou em outras normas aplicáveis, não sendo permitidas técnicas de amostragem.

Quando equipamentos não conforme forem identificados, a empresa de serviço de reparo deve avaliar o risco, para determinar as ações corretivas necessárias e manter os registros para identificar o usuário e os detalhes completos das ações corretivas tomadas. A empresa de serviço de reparo deve possuir instalações adequadas para as atividades de reparo e revisão, bem como os equipamentos apropriados necessários, além de pessoal treinado com a competência requerida (ver Anexo B), com autoridade para executar atividades, levando em consideração os tipos de proteção “Ex” específicos envolvidos.

A empresa de serviço de reparo deve conduzir uma avaliação da situação do equipamento a ser reparado, bem como concordar com a situação esperada pelo usuário do equipamento após os serviços de reparo, e também com o escopo dos serviços a serem executados. Os serviços de reparo e revisão requerem que a empresa de serviço de reparo confirme os requisitos “Ex” relacionados com o tipo de proteção, de forma a tornar possível verificar a conformidade com os documentos da certificação ou outras normas aplicáveis, incluindo as condições específicas de utilização.

É recomendado que isto inclua a justificativa para a não execução de qualquer ensaio indicado nesta norma, que o usuário pode entender como incluso no serviço. A avaliação deve ser documentada e abordar as seções aplicáveis desta norma ao tipo de proteção “Ex” apropriado e ser incluída no relatório de serviço a ser entregue para o usuário. Tais avaliações devem ser executadas pela pessoa responsável, apoiada pelos executantes apropriados.

A pessoa responsável deve somente executar avaliações para os tipos de proteção “Ex” para as quais ela tenha demonstrado a devida competência. As atividades de reparo e revisão podem ser executadas fora da empresa de serviço de reparo, quando o sistema de gestão da qualidade permitir que trabalhos sejam executados em outros lugares, por exemplo, pela existência de procedimentos adicionais específicos para documentar os serviços externos de reparo e revisão.

Todo o pessoal diretamente envolvido com reparo ou revisão de equipamentos “Ex” deve ser competente ou supervisionado por uma pessoa responsável ou por um executante competente. As competências podem ser específicas para os tipos de trabalho. Os treinamentos e as avaliações são especificados no Anexo B. Quando um componente de um equipamento completo for retirado do local da instalação para reparo, como o rotor de uma máquina elétrica ou a tampa de um invólucro, e não for prática a realização de determinados ensaios, como requerido nesta norma ou pela norma do tipo de proteção “Ex” aplicável, o reparador deve documentar os detalhes dos ensaios que podem não ser executados e informá-los ao usuário por escrito, antes da continuidade do reparo. A empresa de serviço de reparo deve procurar obter todas as informações e dados do usuário ou fabricante para os serviços de reparo ou revisão do equipamento. Isto deve incluir informações referentes ao tipo de proteção aplicável, documentos da certificação e informações relacionadas com serviços anteriores de reparos, revisões ou modificações.

API STD 6AV2: a instalação e a manutenção de válvulas de segurança

Essa norma, editada em 2020 pelo American Petroleum Institute (API), fornece os requisitos para a instalação e a manutenção de válvulas de segurança. Estão incluídos os requisitos para receber a inspeção, a instalação, a manutenção, os reparos em campo e fora do local, procedimentos de ensaios com critérios de aceitação e relatório de falha e documentação. Os sistemas de energia e controle para válvulas de segurança não estão incluídos.

A API STD 6AV2:2020 – Installation, Maintenance, and Repair of Safety Valves (SSV, USV, and BSDV) fornece os requisitos para a instalação e a manutenção de válvulas de segurança. Estão incluídos os requisitos para receber a inspeção, a instalação, a manutenção, os reparos em campo e fora do local, procedimentos de ensaios com critérios de aceitação e relatório de falha e documentação. Os sistemas de energia e controle para válvulas de segurança não estão incluídos. A válvula de segurança, conforme usada nesta norma, denota uma válvula de superfície (surface safety valve – SSV), uma válvula de segurança subaquática (underwater safety valve – USV) ou uma válvula de desligamento de embarque (boarding shutdown valve – BSDV). O ensaio do sistema de desligamento de segurança e a sua frequência estão fora do escopo desta norma.

Conteúdo da norma

1 Escopo…………………….. ……….. 1

2 Referências normativas…………….. 1

3 Termos, definições, acrônimos e abreviações………….. 1

3.1 Termos e definições ………………………………… 1

3.2 Siglas e abreviações………………………. 2

4 Inspeção de recebimento……………………….. 3

5 Instalação, manutenção e ensaio. ……………. 3

5.1 Geral…………………………….. ……… 3

5.2 Procedimentos de trabalho………………… 3

5.3 Instalação…………………………….. …. 4

5.4 Ensaio………………………………………. 4

5.5 Manutenção…………………………… 4

6 Reparo e remanufatura…………………. 5

6.1 Reparo no campo de válvulas de segurança……… 5

6.2 Reparo/remanufatura fora do local da válvula de segurança…………. 6

7 Procedimentos de ensaio…………………………. 8

7.1 Geral……………………………….. ……… 8

7.2 Ensaio periódico de operação/pressão…… ……….. 8

7.3 Ensaio após a instalação/reparos de campo………….. 10

8 Relatório de falha…………………………… 12

8.1 Geral…………………………………. ……. 12

8.2 Relatório de falha…………………….. 12

8.3 Responsabilidades do relatório………………… 13

9 Requisitos de documentação………………………. 13

Anexo A (informativo) Cálculo de acúmulo de pressão…….. 16

Bibliografia…….. 26

Figuras

1 Folha de registro de reparo no campo de válvula de segurança……….. 6

2 Folha de dados de ensaio funcional da válvula de segurança para reparos de instalação/campo… …………………. 7

3 Folha de dados de ensaio funcional da válvula de segurança para ensaios periódicos…………………… 10

4 Lista de verificação de falha para válvulas de segurança de superfície e válvulas de segurança subaquáticas………. 15

A.1 Diagrama de fluxo de cálculo………………….. 18

Tabelas

A.1 Nomenclatura…………………… 17

A válvula de segurança é um conjunto de válvulas que fecha em caso de perda de alimentação. A arquitetura do sistema e os sistemas de energia/controle para válvulas de segurança são abordados nos documentos do sistema de segurança, como a API 14C. A válvula de segurança de superfície (SSV) ou válvula de segurança subaquática (USV) é normalmente a segunda válvula na corrente de fluxo da cabeça do poço e da árvore. Para uma instalação de superfície offshore, a válvula de desligamento de embarque (BSDV) é normalmente a segunda válvula no fluxo de fluxo, entre um sistema de produção subaquático e a instalação de superfície.

Esta edição da API 6AV2 contém algumas alterações principais em relação às edições anteriores. Foi alterado o título da norma para incluir válvulas de desligamento de embarque, que é um novo tipo de válvula de segurança no API 6A, 21ª Edição. O termo válvula de segurança substituiu SSV e USV em todo o documento. Este termo agora inclui SSV, USV e BSDV.

Os requisitos para reparos externos de válvulas de segurança agora se referem ao API 6AR. O ensaio e a possível reparação da válvula de segurança são tratados na norma. A operação completa do sistema para atender o operador e os possíveis requisitos regulamentares não são especificados. Foram adicionados os requisitos para o estabelecimento da definição do produto pelo provedor de serviços. O termo definição original do produto e os requisitos associados foram removidos.

A conformidade do sistema de tubulação para a condução de gases combustíveis

Deve-se conhecer os requisitos gerais para o sistema de tubulação multicamada composto por tubos, conexões e ferramental para condução de gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20°C até 60°C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar).

A NBR 16821-1 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 1: Requisitos gerais especifica os requisitos gerais para o sistema de tubulação multicamada composto por tubos, conexões e ferramental para condução de gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20°C até 60°C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar). A NBR 16821-2 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 2: Requisitos e métodos de ensaio para tubos especifica os requisitos gerais, dimensionais e de desempenho para os tubos multicamada, que tenham ao menos 60% da espessura de parede composta de material polimérico, destinados aos sistemas multicamada para uso com gases combustíveis. Esta parte é aplicável aos sistemas de tubulação multicamada com temperatura de operação entre – 20 °C e 60 °C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar).

A NBR 16821-3 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 3: Requisitos e métodos de ensaio das uniões especifica os requisitos gerais e de desempenho das uniões do sistema de tubulação multicamada destinados ao uso com gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20 °C e 60 °C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar). A NBR 16821-4 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 4: Conexão mecânica de compressão radial por crimpagem estabelece os requisitos específicos para as conexões mecânicas de compressão radial por crimpagem do sistema de tubulação multicamada. A NBR 16821-5 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 5: Conexão mecânica de compressão radial por anel deslizante especifica os requisitos específicos para as conexões mecânicas de compressão radial por anel deslizante do sistema de tubulação multicamada. A NBR 16821-6 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 6: Conexão mecânica de compressão radial por rosca bicônica especifica os requisitos específicos para as conexões de compressão radial por rosca bicônica do sistema de tubulação multicamada. A NBR 16821-8 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 8: Código de prática de manuseio e montagem especifica os requisitos específicos de manuseio e montagem do sistema de tubulação multicamada e respectivas tecnologias de união.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido um sistema de tubulação multicamada?

Quais são as dimensões dos tubos e das camadas dos tubos?

Qual é a resistência à pressão hidrostática de longa duração?

Quais são as propriedades físicas dos tubos?

A série NBR 16821 (todas as partes) é o documento de referência para o sistema de tubulação multicamada, aplicável aos tubos multicamada, conexões, ferramental, uniões, manuseio e instalação, com o propósito de sistema para aplicação em redes de distribuição de gases combustíveis com máxima pressão de operação até 500 kPa (5 bar). Para garantir a conformidade com os requisitos essenciais e de segurança do sistema de tubulação multicamada, a parte 1 da NBR 16821 deve ser aplicada em conjunto com uma ou mais partes da NBR 16821, conforme aplicável.

A temperatura de projeto para o sistema de tubulação multicamada deve ser de –20 °C a 60 °C. A pressão de projeto do sistema de tubulação multicamada deve ser de no mínimo 500 kPa (5 bar). Os tipos de sistemas de tubulação multicamada contemplados nesta parte 1 da NBR 16821 são apresentados na tabela abaixo.

Por questões de segurança, os tubos, as conexões e os ferramentais utilizados para realização da união são específicos para cada sistema, devendo ser seguida a orientação do fabricante. Os requisitos da NBR 16821-3 devem ser atendidos. A montagem de um dos componentes de um sistema de tubulação multicamada, que esteja de acordo com esta norma, com um componente de outro sistema de tubulação multicamada, que também esteja de acordo com esta norma, deve ser considerado como um novo sistema de tubulação multicamada.

A conformidade do sistema de tubulação multicamada com os requisitos das partes aplicáveis da NBR 16821, deve ser verificada por meio de ensaio em laboratórios de competência técnica reconhecida. Recomenda-se que o fabricante possua sistema de controle de qualidade que comprove o cumprimento dos requisitos desta norma ao longo do processo de fabricação.

Recomenda-se que o usuário requeira do fabricante as evidências de conformidade com os requisitos da parte 1 da NBR 16821. A transição entre os sistemas de tubulação multicamada e os sistemas de outros materiais deve ser realizada por meio de conexões roscadas conforme a ABNT NBR NM ISO 7-1. A identificação de um sistema de tubulação multicamada, a elaboração do projeto e execução da instalação e do ensaio de estanqueidade devem atender aos requisitos das normas de instalação (ver NBR 15526 e NBR 15358).

Devem ser disponibilizadas as seguintes informações pelo fabricante: sobre o tubo multicamada: identificação do sistema de tubulação multicamada ao qual o tubo pertence, características e dimensões pertinentes; os requisitos para manuseio, transporte e armazenamento; as condições e restrições para exposição dos tubos contra intempéries e raios ultravioleta (UV); raio de dobra (curvatura) mínimo do tubo. Sobre as conexões: a identificação do sistema de tubulação multicamada ao qual a conexão pertence, características e dimensões pertinentes; os requisitos para manuseio, transporte e armazenamento; as condições e restrições das conexões contra intempéries e raios ultravioleta (U.V); a informação sobre a possibilidade de reuso, reaproveitamento ou remontagem de conexões já acopladas a um tubo multicamada.

Sobre o ferramental deve ser feita a identificação do sistema de tubulação multicamada ao qual o ferramental é aplicado; ferramental a ser utilizado para a montagem do sistema de tubulação multicamada, bem como o procedimento para realizá-la; a indicação sobre caso seja necessária a utilização de ferramental para realizar a dobra (curvatura) do tubo multicamada, em função do dimensional do tubo; os procedimentos de manutenção, calibração, controle ou regulagem; os requisitos para manuseio, armazenamento e transporte. Sobre o sistema de tubulação multicamada, devem estar disponíveis as informações do procedimento de cálculo (fórmulas, ábacos, tabelas, planilhas ou software) para o dimensionamento dos diâmetros; a perda de carga nos tubos retos, tubos curvados e nas conexões; e a instrução que os tubos e as conexões pertençam a um sistema único.

A pressão de projeto do tubo multicamada deve ser de no mínimo 500 kPa (5 bar). A temperatura de projeto para o tubo multicamada deve ser – 20 °C a 60 °C. Para garantir a conformidade com os requisitos essenciais e de segurança do sistema de tubulação multicamada, esta Parte do Texto-Base 009:301.004-001 deve ser aplicada em conjunto com uma ou mais partes do Texto-Base 009:301.004-001, conforme aplicável. A composição das camadas dos tubos deve ser conforme a figura abaixo.

As camadas interna e externa devem ser projetadas para suportar as condições a que forem submetidas e devem ser produzidas a partir de compostos em conformidade com as normas especificadas na Tabela A.1, disponível na norma. No caso de tubos para o sistema de anel deslizante, a camada interna deve ser de PEX, conforme Anexo A. Não são permitidos materiais reprocessados e ou reciclados.

A camada de alumínio deve ser fabricada em conformidade com a norma especificada na Tabela A.2, disponível na norma. As camadas de adesivo não são consideradas como camadas projetadas para suportar esforços.

O conjunto de camadas do tubo deve ser projetado para resistir às condições de pressão e de temperatura de projeto do tubo. O coeficiente de projeto dos tubos multicamada (fator C) deve ser no mínimo igual a 2, quando usado para calcular a pressão de projeto prevista (pCD) de acordo com a máxima temperatura de operação. A cor da camada externa dos tubos multicamada deve ser amarela, preta ou branca. Os tubos nas cores preta ou branca devem possuir listras amarelas conforme seção 5.

No caso dos tubos de cor preta, o composto de negro de fumo (carbon black) utilizado deve ter um tamanho médio de partícula de 10 nm a 25 nm. A cor do tubo não está relacionada à proteção contra a radiação ultravioleta (UV). No caso de pintura para harmonia arquitetônica, o fabricante deve ser consultado quanto ao procedimento a ser adotado.

IEC TR 63099-2: as tecnologias de rádio sobre fibra para detecção de campo elétrico

Esse relatório técnico (Technical Report – TR), editado em 2020 pela International Electrotechnical Commission (IEC), fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos.

A IEC TR 63099-2:2020 – Transmitting equipment for radiocommunication – Radio-over-fibre technologies for electromagnetic-field measurement – Part 2: Radio-over-fibre technologies for electric-field sensing fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos. Os fundamentos teóricos de medição de campo elétrico e método de calibração de sensores de campo elétrico estão além do escopo deste documento.

Conteúdo da norma

PREFÁCIO……………………. 3

INTRODUÇÃO…………….. 5

1 Escopo……………………… 6

2 Referências normativas……. ….. 6

3 Termos, definições e termos abreviados………………… 6

3.1 Termos e definições……………………………. 6

3.2 Termos abreviados………………………. .. 7

4 Exemplos práticos de sistema de detecção de campo elétrico usando tecnologias RoF…………… 7

4.1 Visão geral………… …………… 7

4.2 Características do sistema de detecção de campo elétrico usando tecnologias RoF……………… 7

4.3 Lista de exemplos de implementação………………….. 7

4.4 Sensor de campo elétrico de 3 eixos usando moduladores ópticos LN …… 7

4.4.1 Configuração do sistema…………….. 7

4.4.2 Especificações………………………….. 9

4.4.3 Exemplo de resultados de medição……………. 10

4.5 Sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe………….. 13

4.6 Sondas de campo elétrico usando VCSEL………………….. 14

Bibliografia……………. ………………….. 16

Figura 1 – Diagrama do sistema do sensor óptico de campo E……………… 8

Figura 2 – Estrutura da unidade principal do sensor……………….. 9

Figura 3 – Sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 10

Figura 4 – Resultados da avaliação de sensibilidade e faixa dinâmica de medição……………. 11

Figura 5 – Avaliação da isotropia do sensor na célula TEM até 1 GHz……………… 11

Figura 6 – Configuração de medição para isotropia do campo elétrico tipo diodo convencional com sensor de campo elétrico usando modulador LN…….. ……………….. 12

Figura 7 – Resultados da medição do padrão de sensibilidade do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador LN de acordo com norma IEEE 1309…. ……………… 13

Figura 8 – Características de frequência de isotropia do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador óptico LN………………….. 13

Figura 9 – Representação esquemática do sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe…………… 14

Figura 10 – Representação esquemática do sensor de campo elétrico usando VCSEL, consistindo em uma cabeça de sensor em miniatura que está exclusivamente ligada por meio de fibra óptica a uma unidade remota……………………. 15

Tabela 1 – Especificação do sistema de detecção de campo elétrico de três eixos usando modulador óptico LN……………………… 9

Tabela 2 – Especificação do sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 12

Este documento fornece informações sobre as aplicações atuais e mais recentes para detecção do campo elétrico usando a tecnologia de rádio sobre fibra. Os sistemas de medição de campo elétrico são cobertos e eles estão praticamente em uso ou serão usados em breve. Seria benéfico para desenvolvedores de sistema e usuários de sistema nas áreas de medição de campo elétrico. Por ser um Relatório Técnico, este documento não contém requisitos e é apenas informativo.

BS EN 10217-1: os tubos de aço soldados para pressão

Essa norma europeia, editada em 2019 pelo BSI, abrange os tubos e tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais.

A BS EN 10217-1:2019 – Welded steel tubes for pressure purposes – Technical delivery conditions. Part 1: Electric welded and submerged arc welded non-alloy steel tubes with specified room temperature properties abrange os tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais. Os usuários dessa norma podem ser os projetistas e produtores de tiras de aço, chapas, tubos e tubulações; especificadores, acionistas e distribuidores de tubos de aço; fornecedores de instalações de ensaio e avaliação; e organismos notificados no âmbito do Pressure Equipment Directive (PED).

Conteúdo da norma

Prefácio europeu……………………. 5

1 Escopo……… ……………………. 6

2 Referências normativas…………… 6

3 Termos e definições……………….. 7

4 Símbolos…………. ……………….. 8

5 Classificação e designação……….. 8

5.1 Classificação…………….. ………. 8

5.2 Designação…………….. …………. 8

6 Informações a serem fornecidas pelo comprador……………. …. 9

6.1 Informação obrigatória………………………………… 9

6.2 Opções…………………………….. ………………… 9

6.3 Exemplo de um pedido……………………………….. 10

7 Processo de fabricação………………………………… 10

7.1 Processo siderúrgico………………………………. 10

7.2 Condições de fabricação e entrega do tubo……………. 10

7.3 Requisitos do pessoal de ensaio não destrutivo………….. 12

8 Requisitos………………………….. 12

8.1 Geral……………… 12

8.2 Composição química……………… 12

8.2.1 Análise do fundido…………… 12

8.2.2 Análise do produto……………. 14

8.3 Propriedades mecânicas……………. 14

8.4 Aparência e solidez interna …………… 15

8.4.1 Junção da solda……… …………… 15

8.4.2 Superfície do tubo……….. ……….. 16

8.4.3 Solidez interna…………………….. 16

8.5 Confiabilidade……………. ……… 16

8.6 Preparação dos fins……………………… 16

8.7 Dimensões, massas e tolerâncias… …………….. 17

8.7.1 Diâmetro e espessura da parede………………….. 17

8.7.2 Massa……………………….. …………………….. 17

8.7.3 Comprimentos………………….. ……………….. 17

8.7.4 Tolerâncias………………………. …………. 22

9 Inspeção………………………….. …………. 24

9.1 Tipos e documentos de inspeção …………….. 24

9.2 Conteúdo dos documentos de inspeção…………. 25

9.3 Resumo da inspeção e ensaios. ……………… 26

10 Amostragem…………………. …………… 28

10.1 Frequência dos ensaios…………………. 28

10.1.1 Unidade de ensaio…… ………………. 28

10.1.2 Número de tubos de amostra por unidade de ensaio…………….. 28

10.2 Preparação de amostras e provetes……………. ……….. 28

10.2.1 Seleção e preparação de amostras para análise do produto…………. 28

10.2.2 Localização, orientação e preparação de amostras e provetes para ensaios mecânicos…………………… ………………….. 28

11 Verificação dos métodos de ensaio…………………….. 30

11.1 Análise química……………………………………. 30

11.2 Ensaio de tração no corpo do tubo…………………. 30

11.3 Ensaio de tração transversal na solda…………… 30

11.4 Ensaio de nivelamento………………………… …… 30

11.5 Ensaio de expansão da derivação…………………. 31

11.6 Ensaio de dobra de solda……………………. …… 31

11.7 Ensaio de impacto…………………. ……….. 31

11.8 Ensaio de estanqueidade………………………. 32

11.8.1 Ensaio hidrostático………………………. ….. 32

11.8.2 Ensaio eletromagnético……………………….. 33

11.9 Inspeção dimensional……………………………. 33

11.10 Exame visual…………………………………… 33

11.11 Ensaios não destrutivos……………………. 33

11.11.1 Geral………………………… ………… 33

11.11.2 Tubos EW e HFW…………………………. 33

11.11.3 Tubos SERRA……………………….. ……. 33

11.11.4 Soldas de extremidade de tira em tubos SAWH………………… 34

11.12 Ensaio, classificação e reprocessamento………………….. 34

12 Marcação………………………………………. …………….. 34

12.1 Marcação a ser aplicada……………………………. 34

12.2 Marcação adicional………………………………….. 35

13 Proteção………………………………….. …………. 35

Anexo A (normativo) Qualificação do procedimento de soldagem para tubo de serra TR2 para produção com qualidade………….. 36

A.1 Geral…………………………. ……………….. 36

A.2 Especificação do procedimento de soldagem…………….. 36

A.2.1 Geral………………………….. ……………….. 36

A.2.2 Metal principal…………………… ……….. 36

A.2.3 Preparação da solda…………………………. 36

A.2.4 Fios e fluxos de enchimento…………………. 36

A.2.5 Parâmetros elétricos………………………………….. 37

A.2.6 Parâmetros mecânicos……………………………….. 37

A.2.7 Entrada de calor (kJ/mm) ……………………………. 37

A.2.8 Temperatura de pré-aquecimento …………………..37

A.2.9 Temperatura de interpasse……………………………… 37

A.2.10 Tratamento térmico pós-soldagem………………………. 37

A.2.11 Exemplo de formulário de especificação do procedimento de soldagem………………………. 37

A.3 Preparação do tubo de amostra e avaliação da amostra……….. 38

A.3.1 Tubo para amostra……………………………… ………… 38

A.3.2 Avaliação da amostra………………………………………. 38

A.4 Inspeção e ensaio da solda………. ………………….. 38

A.5 Provas de solda…………………………………… …… 39

A.5.1 Provas de dobra de solda………………….. 39

A.5.2 Macroexame……………………………………….. 39

A.5.3 Ensaio de tração de solda transversal……………. 39

A.5.4 Ensaio de impacto da solda………………….. …. 39

A.6 Métodos de ensaio……………………… ………. 39

A.6.1 Exame visual………………………………….. 39

A.6.2 Ensaio não destrutivo (END)…. ………………. 39

A.6.3 Ensaio de dobra de solda……………… …….. 39

A.6.4 Macroexame………………………………….. 39

A.6.5 Ensaio de tração de solda transversal………… 40

A.6.6 Ensaio de impacto da solda…………………….. 40

A.7 Níveis de aceitação do ensaio…………………….. 40

A.7.1 Exame visual……………………………………. 40

A.7.2 END……………………… ………………. 40

A.7.3 Ensaio de dobra de solda………. …….. 40

A.7.4 Macroexame………………………………… 40

A.7.5 Ensaio de tração de solda transversal………………… 40

A.7.6 Ensaio de impacto da solda………………………. …. 40

A.7.7 Exemplo de documento de resultado do ensaio…………….. 40

A.8 Gama de uso de procedimentos qualificados………… 42

A.8.1 Grupos de materiais…………………………….. … 42

A.8.2 Espessura dos materiais………………………. 42

A.8.3 Classificação do fio de enchimento……………… 42

A.8.4 Fluxo de soldagem………………….. ……….. 42

A.8.5 Outros parâmetros…………………………. 42

A.9 Registro de qualificação………………………..42

Anexo B (informativo) Alterações técnicas da edição anterior……. 43

B.1 Introdução………………………………………. 43

B.2 Alterações técnicas……………………………….. 43

Anexo ZA (informativo) Relação entre esta norma europeia e os requisitos das normas essenciais de 2014/68/UE………………….. 45

Bibliografia………………………… ………………… 46

Essa ajudará os especificadores, designers e outros, definindo as notas para uso nas condições especificadas. Foi preparada sob um mandato conferido ao CEN pela Comissão Europeia e pela Associação Europeia de Comércio Livre para alinhar-se com os requisitos essenciais da Diretiva Equipamentos de Pressão (PED) (2014/68 / UE). As classes de aço e as propriedades das classes de aço carbono e de baixa liga estão alinhadas com as dos tubos sem costura da série BS EN 10216, permitindo que tubos sem costura ou soldados sejam usados em muitos casos.

Os tubos de aço soldados de alta frequência (HFW), às vezes chamados de tubos de aço soldados por resistência elétrica (ERW), e soldados por arco submerso (SAW), estão são cobertos por essa norma. Os tubos HFW são produzidos a partir de tiras de aço e são soldados eletricamente sem o uso de metal de adição. Os tubos SAW são produzidos a partir de chapa de aço e são soldados por fusão usando consumíveis de soldagem apropriados. Em geral, os tubos HFW são produzidos com até 610 mm de diâmetro externo, enquanto os tubos SAW normalmente não são produzidos em diâmetros abaixo de 406,4 mm.

Os tubos e canos de aço BS EN 10217 podem ser usados para uma ampla gama de aplicações, desde serviços de construção a requisitos industriais críticos que envolvam gás ou produtos químicos ou produção de válvulas ou conexões. Portanto, é muito importante que o especificador, projetista ou usuário selecione o tipo e a classe de tubo mais adequados para atender aos seus requisitos das sete partes dessa série dessa norma. A atualização de 2019 buscou refletir as práticas atuais do setor, buscou atualizar as referências, em particular no que diz respeito aos requisitos de ensaio e avaliação. Além das classes TR1, está alinhado com os requisitos essenciais do PED (2014/68/EU).

A conformidade das chapas e bobinas de aço laminadas

Saiba quais são os requisitos para os produtos planos de aço-carbono de baixa liga com espessura mínima nominal de 0,50 mm, laminado, revestido por uma liga metálica protetiva contra corrosão ou sem revestimento, para peças e blanks submetidos a tratamento térmico de austenitização e estampagem a quente seguida de resfriamento rápido para endurecimento (têmpera).

A NBR 16875 de 07/2020 – Chapas e bobinas de aço laminadas, revestidas ou não, para peças estampadas a quente — Requisitos estabelece os requisitos para os produtos planos de aço-carbono de baixa liga com espessura mínima nominal de 0,50 mm, laminado, revestido por uma liga metálica protetiva contra corrosão ou sem revestimento, para peças e blanks submetidos a tratamento térmico de austenitização e estampagem a quente seguida de resfriamento rápido para endurecimento (têmpera).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os valores de dureza superficial e de microdureza pós-tratamento?

Por que deve ser feita a análise química da corrida?

O que deve constar da declaração de qualidade?

Como devem ser feitos os ensaios mecânicos?

Esta norma estabelece os requisitos mínimos para o fornecimento de chapas e bobinas de aço destinadas ao processo de estampagem a quente seguidas de têmpera. As chapas e bobinas de aço-carbono especificados por esta norma são uma indicação do valor de limite de resistência à tração após todo o processo térmico e mecânico de estampagem ocorrido. Os graus dos aços, suas respectivas composições químicas bem como as propriedades mecânicas antes (pré) e após (pós) o processo térmico e mecânico de estampagem estão indicadas nas tabelas abaixo. Os graus dos aços devem atender à especificação de composição química estabelecida na tabela abaixo.

Os graus dos aços e seus requisitos de propriedade mecânica de tração são dados na tabela abaixo, onde “pré”, significa os valores de referência antes do processo de tratamento térmico e estampagem a quente e “pós”, significa os valores finais de garantia. Os requisitos de pós-estampagem se referem antes da cura da pintura e devem ser acordados entre os responsáveis pela estampagem a quente e os clientes finais. O ensaio de tração e seus procedimentos devem estar em conformidade com as normas respectivas de seus produtos, sendo para o não revestido a NBR 11888, para os produtos revestidos por zinco e liga zinco-ferro a ABNT NBR 7008-1, liga zinco-níquel conforme a NBR 14964 e liga alumínio-silício conforme a NBR 16539.

A direção de ensaio é longitudinal à direção de laminação na pré-estampagem. As faixas de especificações mecânicas podem ser negociadas com os fornecedores. O valor de alongamento ao ensaio de tração pode ser realizado em outra base de medida, desde que informado e em conformidade com a norma ISO 2566-1. Caso não seja possível a retirada de corpos de prova para realização de ensaio de tração, ensaios de dureza (superficial ou microdureza) podem ser realizados em regiões acordadas entre o cliente final e o responsável pela estampagem a quente.

A superfície da peça deve ser preparada eliminando o revestimento ou o óxido existente, para a medição da dureza no substrato. As propriedades mecânicas são de responsabilidade da empresa de estampagem a quente, dado que as características químicas apresentadas na tabela acima sejam consideradas.

Quando aplicável, o revestimento do substrato pode ser de zinco ou liga zinco-ferro conforme a NBR 7008-1, liga zinco-níquel conforme a NBR 14964 ou liga alumínio-silício de acordo com a NBR 16539. A qualidade superficial das chapas e bobinas de aço-carbono fornecidas para o processo de estampagem a quente admite imperfeições leves a moderadas compatíveis ao tipo de aplicação. O grau de superfície deve seguir os requerimentos estabelecidos nas respectivas normas de seus produtos, não podendo ser um iniciador de dano a estrutura do aço-base durante o processo de estampagem a quente, nem em processos posteriores.

As chapas e bobinas de aço-carbono podem ou não ser fornecidas revestidas e de acordo com as respectivas normas de seus produtos. O revestimento tem por objetivo não realizar processos posteriores de retirada de óxidos de superfície, dar maior eficiência no controle de descarbonetação bem como a proteção contra intempéries após o processo de estampagem a quente. A qualidade do revestimento pré-estampagem deve atender aos pré-requisitos estabelecidos nas respectivas normas de seus produtos.

Pequenas imperfeições no revestimento, como trincas causadas pelo processo de estampagem a quente são inerentes ao processo. As imperfeições possíveis, além dos níveis de aceitação, devem ser acordadas entre o responsável pelo processo de estampagem a quente e o cliente final. Após o processo de estampagem a quente os diferentes revestimentos passam por transformações metalúrgicas e suas espessuras podem ser alteradas. As características metalúrgicas e dimensionais do revestimento devem ser acordadas entre o responsável pela estampagem e o cliente.

O material de pré-estampagem deve estar de acordo com as normas vigentes e não pode apresentar desvios de qualidade que possam influenciar na sanidade do revestimento. O revestimento não pode iniciar irregularidades estruturais (microtrincas no aço-base) e de corrosão quando em aplicação. Os itens listados a seguir são as informações que, no mínimo, devem ser descritas na ordem de compra das chapas e bobinas de aço carbono por esta norma: grau do aço e número desta norma; dimensão nominal em milímetros: espessura × largura × comprimento (no caso de chapas); revestimento (quando aplicável); massa (toneladas); aplicação específica ou uso final; faixa de peso unitário da bobina ou do fardo de chapas. As tolerâncias dimensionais e de forma devem estar de acordo com as respectivas normas de seus produtos. Qualquer requisito diferente do estabelecido por esta norma fica condicionado ao acordo entre o cliente e o fornecedor.

IEC 60079-25: os sistemas elétricos intrinsecamente seguros em atmosferas explosivas

Essa norma, editada em 2020 pela International Electrotechnical Commission (IEC), estabelece os requisitos específicos para a construção e a avaliação de sistemas elétricos intrinsecamente seguros, tipo de proteção “i”, destinados a serem utilizados, integralmente ou em parte, em locais onde a utilização de equipamento dos Grupos I, II ou III é requerida.

A IEC 60079-25:2020 – Explosive atmospheres – Part 25: Intrinsically safe electrical systems estabelece os requisitos específicos para a construção e a avaliação de sistemas elétricos intrinsecamente seguros, tipo de proteção “i”, destinados a serem utilizados, integralmente ou em parte, em locais onde a utilização de equipamento dos Grupos I, II ou III é requerida. Complementa e modifica os requisitos gerais da IEC 60079-0 e a norma de segurança intrínseca IEC 60079-11.

Quando um requisito desta norma entra em conflito com um requisito da IEC 60079-0 ou IEC 60079-11, o requisito desta norma tem precedência. Os requisitos de instalação dos sistemas do grupo II ou do grupo III projetados de acordo com esta norma estão especificados na IEC 60079-14. Esta terceira edição cancela e substitui a segunda edição publicada em 2010 e constitui uma revisão técnica.

Conteúdo da norma

PREFÁCIO……………………….. 4

1 Escopo.. ………………………. 9

2 Referências normativas…….. 9

3 Termos e definições…………. 9

4 Documento descritivo do sistema……………… 11

5 Classificação de agrupamento e temperatura…………… 11

6 Níveis de proteção……………….. 11

6.1 Geral………………………………. 11

6.2 Nível de proteção “ia”………………… 12

6.3 Nível de proteção “ib”……………… 12

6.4 Nível de proteção “ic”……………. 12

7 Circuitos não intrinsecamente seguros……….. 12

8 Fiação/cabos de interconexão usados em um sistema intrinsecamente seguro……………………. 12

8.1 Geral……………………………….. 12

8.2 Cabos que contêm um único circuito intrinsecamente seguro…………… 12

8.3 Cabos contendo mais de um circuito intrinsecamente seguro……………. 12

9 Requisitos para cabos simples e multicircuitos………….. 13

9.1 Geral……………………………… 13

9.2 Resistência dielétrica……………………. 13

9.2.1 Cabos que contêm um único circuito intrinsecamente seguro……………….. .13

9.2.2 Cabos que contêm mais de um circuito intrinsecamente seguro …………………… 13

9.3 Parâmetros de segurança intrínseca dos cabos……….. 13

9.4 Realização de telas………………….. 14

9.5 Tipos de cabos de múltiplos circuitos………………. 14

9.5.1 Geral………………………………….. 14

9.5.2 Cabo tipo A…………………….. 14

9.5.3 Cabo tipo B……………………… 14

9.5.4 Cabo tipo C……………………… 14

10 Armários………………………….. 14

11 Aterramento e ligação de sistemas intrinsecamente seguros…………… 14

12 Avaliação de um sistema intrinsecamente seguro…………….. 15

12.1 Geral………… 15

12.2 Sistemas contendo apenas aparelhos certificados pela IEC 60079-11………………. 15

12.3 Sistemas que contêm aparelhos não avaliados separadamente conforme IEC 60079-11………… 15

12.4 Sistemas contendo uma única fonte de energia………. 15

12.5 Sistemas contendo mais de uma fonte de energia……. 16

12.5.1 Geral……………….. 16

12.5.2 Sistemas contendo fontes de energia lineares e não lineares……………….. 16

12.6 Aparelho simples……………………. 18

12.7 Avaliação da capacitância, indutância e L/R do cabo………………18

12.7.1 Geral….. ……… 18

12.7.2 Parâmetros não especificados…………………. 18

12.7.3 Ajustes dos parâmetros de saída para o nível de proteção……………… 18

12.7.4 Efeito da capacitância e da indutância combinadas.. 18

12.7.5 Determinação de L/R…………………. 18

12.8 Falhas nos cabos de múltiplos circuitos…………. 19

12.9 Verificações e ensaios de tipo…………………. 19

13 Sistemas predefinidos………………….. 19

Anexo A (informativo) Avaliação de um sistema intrinsecamente seguro simples……………. 20

Anexo B (informativo) Avaliação de circuitos com mais de uma fonte de energia…………. 22

Anexo C (informativo) Interconexão de circuitos intrinsecamente seguros não lineares e lineares…… 25

C.1 Geral…………………. 25

C.2 Avaliação das características de saída das fontes de energia ………………………. 25

C.3 Avaliação das características das possibilidades de interconexão e saída………… 28

C.4 Determinação da segurança intrínseca e uso de gráficos…………….. 31

C.5 Verificação em oposição à IEC 60079-11…………… 33

C.6 Ilustração do procedimento………………………… 33

C.7 Curvas de limite para característica de fonte universal……………….. 37

Anexo D (informativo) Verificação de parâmetros indutivos…………………….. 48

Anexo E (informativo) Exemplo de formato para um documento descritivo do sistema………….. 50

Anexo F (informativo) Uso de aparelhos simples em sistemas……………………. 52

F.1 Geral……….. …………….. 52

F.2 Uso de aparelhos com ‘aparelhos simples’…………. 53

Anexo G Sistemas FISCO (normativos)…………… 54

G.1 Geral………………………………… 54

G.2 Requisitos do sistema…………….. 54

G.2.1 Geral…………………………. 54

G.3 Requisitos adicionais dos sistemas FISCO “ic”………..55

Bibliografia………………….. 57

Uma lista de todas as partes da série IEC 60079, publicada sob o título geral Atmosferas explosivas, pode ser encontrada no site da IEC. O comitê decidiu que o conteúdo desta publicação permanecerá inalterado até a data de estabilidade indicada no site da IEC em “http://webstore.iec.ch” nos dados relacionados à publicação específica. Nesta data, a publicação será reconfirmada, retirada, substituída por uma edição revisada ou alterada.

ASME B46.1: a textura das superfícies

Essa norma, editada em 2019 pela American Society of Mechanical Engineers (ASME), refere-se às irregularidades geométricas das superfícies. Ela define a textura da superfície e seus constituintes: rugosidade, ondulação e postura. Também estabelece os parâmetros para especificar a textura de uma superfície. Os termos e as classificações desta norma referem-se a superfícies produzidas por meios como abrasão, fundição, revestimento, corte, gravação, deformação plástica, sinterização, desgaste, erosão, etc.

A ASME B46.1:2019 – Surface Texture (Surface Roughness, Waviness, and Lay) refere-se às irregularidades geométricas das superfícies. Ela define a textura da superfície e seus constituintes: rugosidade, ondulação e postura. Também estabelece os parâmetros para especificar a textura de uma superfície. Os termos e as classificações desta norma referem-se a superfícies produzidas por meios como abrasão, fundição, revestimento, corte, gravação, deformação plástica, sinterização, desgaste, erosão, etc.

Destina-se a engenheiros de projeto, desenhistas, técnicos do setor mecânico, de manufatura, produção, ferramentas/instrumentos, qualidade, processos e projetos, especialistas em CAD/CAM/CAE, inspetores e educadores em uma ampla gama de manufatura global. Dá ênfase especial às indústrias aeroespacial, automotiva, médica, instrumentação de precisão e indústrias relacionadas.

Conteúdo da norma

Prefácio . . . . . . . . . . . . . . . . . . . . . ix

Lista do Comitê . . . . . . . . . . . . . … xi

Correspondência com o Comitê B46. . . . . . . . . . . xii

Sumário executivo. . . . . . . . . . . . . . . . . . . xiv

Sumário de mudanças . . . . . . . . . . . . . . . . . . xv

Seção 1 Termos relacionados à textura da superfície. . . . . . . 1

1-1 Geral . . . . . . . . . . . . . . . . . . . . . . . 1

1-2 Definições relacionadas às superfícies. . . . . . . . . . . 1

1-3 Definições relacionadas à medição da textura da superfície por métodos de perfil. . . . 3

1-4 Definições dos parâmetros de superfície para métodos de criação de perfil.. . . . . . . . . . 6

1-5 Definições relacionadas à medição da textura da superfície por perfil de área e métodos. . . . . . . . . . . . . . . . 15

1-6 Definições dos parâmetros de superfície para os perfis de área e métodos……… 16

Seção 2 Classificação de instrumentos para medição de textura de superfície. . . . . . . . . . 21

2-1 Escopo.. . . . . . . . . . . . . . . . . . 21

2-2 Recomendação. . . . . . . . . . . . . . . . 21

2-3 Esquema de classificação. . . . . . . . . . . . . . 22

Seção 3 Terminologia e procedimentos de medição para criação de perfil, contato e instrumentos sem skid . . . . . . . . 24

3-1 Escopo. . . . . . . . . . . . . . . . . . 24

3-2 Referências.  . . . . . . . . . . . . . . 24

3-3 Terminologia. . . . . . . . . . . . . . . . . 24

3-4 Procedimento de medição. . . . . . . . 29

Seção 4 Procedimentos de medição para contato, instrumentos com skid . . . . . . . . . . . . . 31

4-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . . . 31

4-2 Referências. . . . . . . . . . . . . . . . . . . . 31

4-3 Finalidade. . . . . . . . . . . . . . . . . . . . . . 31

4-4 Instrumentação. . . . . . . . . . . . . . . . . . . . 31

Seção 5 Técnicas de medição para o perfil de área. . . . . . 36

5-1 Escopo. .. . . . . . . . . . . . . . . . . . . . . . . . . 36

5-2 Referências. .. . . . . . . . . . . . . . . . . . . . 36

5-3 Recomendações . . . . . . . . . . . . . . . . . . . 36

5-4 Métodos de imagem. . . . . . . . . . . . . . . . . 36

5-5 Métodos de digitalização.  . . . . . . . . . . . . . 36

Seção 6 Técnicas de medição para a média da área. . . . . . . 37

6-1 Escopo..  . . . . . . . . . . . . . . . . . . . . . . . 37

6-2 Exemplos de métodos de média de área. . . . . . . 37

Seção 7 Textura da superfície do nanômetro e medidas da altura do degrau por perfil de instrumentos com caneta . .  . 38

7-1 Escopo . . . . . . . . . . . . . . . . . 38

7-2 Documentos aplicáveis . . . . . . . . . . . . . . . 38

7-3 Definições. . . . . . . . . . . . . . . . . . . . . . . 38

7-4 Recomendações.. . . . . . . . . . . . . . . . . . . 39

7-5 Preparação para medição. . . . . . . . . . . . 40

7-6 Artefatos de calibração.. . . . . . . . . . . . . . . . 41

7-7 Relatórios. . . . . . . . . . . . . . . . . . . . . . . 42

Seção 8 Rugosidade da superfície do nanômetro da medida com a interferometria de medição de fase de microscopia….43

8-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . 43

8-2 Descrição e definições: Interferômetro de medição de fase sem contato. .  . . . . . 43

8-3 Principais fontes de incerteza. . . . . . . . . . . . . . 43

8-4 Requisitos do instrumento para interferômetro de medição de fase sem contato.  . . . . . . . 45

8-5 Métodos de ensaio. . . . . . . . . . . . . 45

8-6 Procedimentos de medição. .  . . . . . . . . . . . 45

8-7 Análise de dados e relatórios. . . . . . . . . . . . . 46

8-8 Referências. .. . . . . . . . . . . . . . . . . . . . . 46

Seção 9 Filtragem de perfis de superfície.. . . . . . 47

9-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . . . . 47

9-2 Referências. . . . . . . . . . . . . . . . . . . . 47

9-3 Definições e especificações gerais.. . . . . . . . 47

9-4 Especificação do filtro 2RC para aspereza.  . . . . . . 48

9-5 Filtro gaussiano correto de fases para rugosidade. . . . . 50

9-6 Filtragem de ondulação. . . . . . . . . . . . . . . . . 53

9-7 Filtragem de superfícies com propriedades funcionais estratificadas. . .  . . . . . . . . . 55

Seção 10 Terminologia e procedimentos para avaliação de texturas de superfície usando a geometria fractal  . . . . . . 56

10-1 Geral. . . . . . . . . . . . . . . . . . . . . 56

10-2 Definições relativas à análise de superfícies com base em fractal.  . . . . . . . . . . 56

10-3 Relatando os resultados das análises fractais . . . . . . 59

10-4 Referências. . . . . . . . . . . . . . . . . 61

Seção 11 Especificações e procedimentos para amostras de referência de precisão… . . . . . . . 63

11-1 Escopo.  . . . . . . . . . . . . . . . . . . . . . 63

11-2 Referências. . . . . . . . . . . . . . . . . . .  63

11-3 Definições. . . . . . . . . . . . . . . . . . . . . 63

11-4 Amostras de referência: forma e aplicação do perfil.. . . 63

11-5 Requisitos físicos. . . . . . . . . . . . . . . . . 64

11-6 Cálculo do valor atribuído.. . . . . . . . . . . . . 64

11-7 Requisitos mecânicos.  . . . . . . . . . . . . . . . . 65

11-8 Marcação. . . . . . . . . . . . . . . . . . . . . . . . 66

11-9 Intervalo de calibração.  . . . . . . . . . . . . . . 66

Seção 12 Especificações e procedimentos para amostras de comparação de rugosidade. . . . . . . . . . 75

12-1 Escopo. . . . . . . . . . . . . . . . . 75

12-2 Referências. .. . . . . . . . . . . . . . . . . . 75

12-3 Definições. .  . . . . . . . . . . . . . . . . . 75

12-4 Amostras de comparação de rugosidade. . . . . . . 75

12-5 Características da superfície. .. . . . . . . . . . . . . 75

12-6 Graus de rugosidade nominal.. . . . . . . . . . . 75

12-7 Tamanho, forma e configuração da amostra.  . . . . . 75

12-8 Calibração de amostras de comparação . . . . . . . . 76

12-9 Marcação. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Em casos de discordância quanto à interpretação das medições de textura da superfície, recomenda-se que as medições com instrumentos baseados em caneta sem skid e com filtro gaussiano sejam usadas como base para a interpretação. Alguns parâmetros-chave de medição devem ser estabelecidos para especificação e medição adequadas da textura da superfície.

Muitos parâmetros de altura do acabamento da superfície estão em uso em todo o mundo. Desde a especificação mais simples de um único parâmetro de rugosidade até várias especificações de parâmetro de rugosidade e ondulação de uma determinada superfície, os projetistas de produtos têm muitas opções para especificar a textura da superfície para controlar a função da superfície. Entre esses extremos, os projetistas devem considerar a necessidade de controlar a altura da rugosidade (por exemplo, Ra ou Rz), consistência da altura da rugosidade (por exemplo, Rmax) e altura da ondulação (por exemplo, Wt).

A ondulação é um recurso secundário de comprimento de onda mais longo, que apenas preocupa funções específicas da superfície e processos de acabamento. Uma descrição completa dos vários parâmetros de textura pode ser encontrada na Seção 1. Para os símbolos de textura de superfície, uma vez estabelecidos os vários parâmetros principais de medição, a ISO 1302: 2002 pode ser usada para estabelecer a indicação apropriada nos desenhos de engenharia relevantes.

API STD 6FA: o ensaio de válvulas em incêndio

Essa norma, publicada em 2020 pela American Petroleum Institute (API), estabelece os requisitos para ensaiar e avaliar o desempenho contendo pressão das válvulas API 6A e API 6D quando expostas ao fogo. Os requisitos de desempenho desta norma estabelecem critérios de qualificação para todos os tamanhos e classificações de pressão.

A API STD 6FA:2020 – Standard for Fire Test for Valves estabelece os requisitos para ensaiar e avaliar o desempenho contendo pressão das válvulas API 6A e API 6D quando expostas ao fogo. Os requisitos de desempenho desta norma estabelecem critérios de qualificação para todos os tamanhos e classificações de pressão. Esta norma pode ser aplicada a válvulas que não atendem aos requisitos da API 6A ou API 6D, a critério do usuário.

Esta norma se aplica a válvulas com um ou mais membros de fechamento. Estabelece níveis aceitáveis de vazamento através da válvula de ensaio e vazamento externo após exposição a um incêndio por um período de 30 minutos. O período de ensaio de exposição ao fogo foi estabelecido com base no tempo máximo necessário para extinguir a maioria dos incêndios.

Os incêndios de maior duração são considerados de grande magnitude, com consequências maiores do que as previstas neste ensaio. Esta norma não se destina a atender à qualificação de atuadores de válvulas (incluindo caixas de engrenagens operadas manualmente). Não cobre a penetração nos limites de pressão, conexões externas ou conexões finais.

Conteúdo da norma

1 Escopo…………………………… 1

2 Referências normativas………………………. 1

3 Termos, definições, acrônimos, abreviações, símbolos e unidades…………………. 1

3.1 Termos e definições………………………………… 1

3.2 Acrônimos, abreviações, símbolos e unidades……….. ……. 2

4 Ensaio de incêndio………………….. 3

4.1 Geral…………………………….. 3

4.2 Válvula de ensaio………………. ……. 4

4.3 Instalação do ensaio…………………… 4

4.4 Procedimento de ensaio………………………. 9

4.5 Marcação de produtos ensaiados…………………. 13

5 Dimensionamento…………………….. ……… 13

5.1 Ensaio de validação com base em outros projetos……….. 13

5.2 Permissões de escala por tamanho……………………. 14

5.3 Permissões de escala por classificação de pressão……… 15

5.4 Permissões de escala para materiais não metálicos………………. 15

5.5 Permissões de escala para materiais metálicos…………………….. 16

6 Certificado de conformidade…… ………………………… 17

Anexo A (informativo) Qualificação estendida de material não metálico…………………. 18

Figuras

1 Esquema dos sistemas sugeridos para ensaio de incêndio para válvulas……………….. 6

2 Localização dos calorímetros…………………………… 7

3 Localização das válvulas de retenção flangeadas com calorímetros…………….. 8

4 Localização das válvulas de retenção tipo calorímetro – wafer……………………………….. 8

5 Projeto dos calorímetros em cubos…………………… 9

A.1 Etapas para a qualificação de elastômeros, incluindo exemplos…………………….. 19

A.2 Etapas para a qualificação de plásticos, incluindo exemplos……………………….. 20

Tabelas

1 Pressão de ensaio da válvula API 6A durante o ensaio de incêndio……..11

2 Pressão de ensaio da válvula API 6D durante o ensaio de incêndio……. 11

3 Qualificação pelo tamanho da válvula no ensaio da válvula 6A….. 14

4 Qualificação pelo tamanho da válvula no ensaio da válvula 6D……. 14

5 Qualificação por classificação de pressão do ensaio da válvula 6A. 15

6 Qualificação por pressão nominal no ensaio da válvula 6D ……. 15

A.1 Etapas para a qualificação de elastômeros, incluindo exemplos……..19

A.2 Etapas para a qualificação de plásticos, incluindo exemplos…………..20

Tabelas

1 Pressão de ensaio da válvula API 6A durante o ensaio de incêndio……..11

2 Pressão de ensaio da válvula API 6D durante o ensaio de incêndio……… 11

3 Qualificação pelo tamanho da válvula no ensaio da válvula 6A…………. 14

4 Qualificação pelo tamanho da válvula no ensaio da válvula 6D………….. 14

5 Qualificação por classificação de pressão do ensaio da válvula 6A………. 15

6 Qualificação por pressão nominal no ensaio da válvula 6D………………..15

A.1 Qualificação pelo tamanho da válvula no ensaio da válvula 6A………. 20

A.2 Qualificação pelo tamanho da válvula no ensaio da válvula 6D………..21

A.4 Qualificação por pressão nominal no ensaio da válvula 6D……………..22

A.5 Exemplo de tabela DMA para material plástico na válvula de ensaio original…….24

A.6 Exemplo de tabela DMA para material plástico na segunda válvula de ensaio……. 24

Esta norma não se destina a impedir que um fabricante ofereça ou que o comprador aceite equipamentos alternativos ou soluções de engenharia para a aplicação individual. Isso pode ser particularmente aplicável quando houver tecnologia inovadora ou em desenvolvimento. Quando uma alternativa é oferecida, o fabricante deve identificar qualquer variação deste padrão e fornecer detalhes. Os Anexos informativos são apenas para fins informativos e não são requisitos obrigatórios. Os Anexos normativos são indispensáveis e obrigatórios para a aplicação deste documento.

Alterações da 4ª para a 5ª Edição

Essa norma é o resultado da atualização dos requisitos do API Standard 6FA, quarta edição, para incluir os requisitos da API 6FD – Fire Test for Check Valves, em sua totalidade. Com a publicação deste documento, o documento API 6FD foi cancelado.

Unidades de medida

Nessa norma, os dados são expressos em unidades usuais dos EUA (USC) e métricas (SI).

AWS D1.1: a fabricação de estruturas de aço soldadas

Esse código de soldagem, editado em 2020 pela American Welding Society (AWS), contém os requisitos para fabricar e montar estruturas de aço soldadas. Ao atender a esses requisitos, este código adota uma abordagem abrangente ao delinear conexões e soldas específicas, como sulcos, filetes e soldas de encaixe e ranhura.

A AWS D1.1:2020 – Structural Welding Code—Steel contém os requisitos para fabricar e montar estruturas de aço soldadas. Ao atender a esses requisitos, este código adota uma abordagem abrangente ao delinear conexões e soldas específicas, como sulcos, filetes e soldas de encaixe e ranhura, e também aborda inúmeras outras considerações, como parâmetros de projeto de tensão de fadiga e soldagem pré-qualificada especificações de procedimento (welding procedure specification – WPS).

O código da AWS D1.1: 2020 também inclui informações pertinentes à sua estipulação nos documentos do contrato e detalha disposições específicas às responsabilidades do engenheiro, contratado e inspetor. Para as estruturas de aço soldadas, quando este código é estipulado nos documentos do contrato, é exigida a conformidade com todas as disposições do código, exceto aquelas que o engenheiro (consulte 1.5.1) ou os documentos do contrato modificam ou isentam especificamente.

A seguir, é apresentado um resumo das cláusulas do código.

  1. Requisitos Gerais – Esta cláusula contém informações básicas sobre o escopo e as limitações do código, as principais definições e as principais responsabilidades das partes envolvidas na fabricação de aço.

  2. Referências normativas – Esta cláusula contém uma lista de documentos de referência que ajudam o usuário na implementação deste código ou são necessários para a implementação.

  3. Termos e definições – Esta cláusula contém termos e definições relacionados a este código.

  4. Projeto de conexões soldadas – Esta cláusula contém requisitos para o projeto de conexões soldadas compostas por membros tubulares ou não tubulares do produto.

  5. Pré-qualificação de WPS – Esta cláusula contém os requisitos para isentar uma WPS (Welding Procedure Specification) dos requisitos de qualificação WPS deste código.

  6. Qualificação – Esta cláusula contém os requisitos para a qualificação WPS e os ensaios de qualificação de desempenho que devem ser passados por todo o pessoal de soldagem (soldadores, operadores de soldagem e soldadores de aderência) para realizar a soldagem de acordo com este código.

  7. Fabricação – Esta cláusula contém os requisitos gerais de fabricação e montagem aplicáveis às estruturas de aço soldadas regidas por este código, incluindo os requisitos para metais comuns, consumíveis de soldagem, técnica de soldagem, detalhes de soldagem, detalhes de soldagem, preparação e montagem de materiais, fabricação, reparo de solda e outros requisitos.

  8. Inspeção – Esta cláusula contém critérios para as qualificações e responsabilidades dos inspetores, critérios de aceitação para soldas de produção e procedimentos padrão para a realização de inspeção visual e ensaio não destrutivo (END).

  9. Soldagem de rebites – Esta cláusula contém os requisitos para a soldagem de rebites em aço estrutural.

  10. Estruturas tubulares – Esta cláusula contém os requisitos tubulares exclusivos. Além disso, os requisitos de todas as outras cláusulas se aplicam aos tubulares, a menos que especificamente indicado de outra forma.

  11. Fortalecimento e reparo de estruturas existentes – Esta cláusula contém informações básicas pertinentes à modificação ou reparo soldado de estruturas de aço existentes.

  12. Unidades de medida padrão – Esta norma faz uso das unidades habituais dos EUA e do Sistema Internacional de Unidades (SI). Os últimos são mostrados entre colchetes ([]) ou em colunas apropriadas em tabelas e figuras. As medidas podem não ser equivalentes exatas e, portanto, cada sistema deve ser usado independentemente.