A segurança no armazenamento de recipientes de gás liquefeito de petróleo (GLP)

Saiba quais são os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. 

A NBR 15514 de 08/2020 – Recipientes transportáveis de gás liquefeito de petróleo (GLP) — Área de armazenamento — Requisitos de segurança estabelece os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. Não se aplica às bases de armazenamento, envasamento e distribuição de GLP, para as quais é aplicável a NBR 15186, e aos recipientes transportáveis de GLP quando em uso. A não ser que seja especificado de outra forma por regulamentação legal, os requisitos desta norma não são obrigatórios para as instalações que já existiam ou tiveram sua construção, instalação e ampliação aprovadas e executadas anteriormente à data de publicação desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o empilhamento de recipientes transportáveis de GLP?

Como deve ser feito o empilhamento de recipientes em paletes estruturados?

Que medidas devem ser tomadas em relação à máquina de vendas de recipientes transportáveis de GLP?

Quais são as características da área de armazenamento de apoio?

Os locais que armazenam, para consumo próprio, cinco ou menos recipientes transportáveis, com massa líquida de até 13 kg de GLP (cheios, parcialmente cheios ou vazios), ou carga equivalente em outro tipo de recipiente, devem atender aos seguintes requisitos: estar em local aberto com ventilação natural; estar afastado no mínimo 1,5 m de outros produtos inflamáveis, de fontes de calor, de faíscas, ralos, caixas de gordura e de esgotos, bem como de galerias subterrâneas e similares; não podem estar expostos ao público. As áreas de armazenamento de recipientes transportáveis de GLP devem ser classificadas pela capacidade de armazenamento, em quilogramas de GLP, conforme tabela abaixo.

A capacidade de armazenamento, em quilogramas de GLP, de uma área deve ser limitada pela soma da massa líquida total preestabelecida nos recipientes transportáveis. Quando a área de armazenamento estiver instalada em postos revendedores de combustíveis líquidos-PR, ela deve ser limitada a uma única área, classe I ou II. O lote de recipientes transportáveis de GLP pode armazenar até 6.240 kg, em botijões ou cilindros, (novos, cheios, parcialmente cheios e vazios).

O local de assento dos recipientes transportáveis de GLP deve ter ventilação natural, piso plano pavimentado com superfície que suporte carga e descarga, podendo ter inclinação desde que não comprometa a estabilidade do empilhamento máximo estabelecido na Tabela 3, disponível na norma. O local de assento dos lotes pode ser localizado ao nível do solo ou plataforma elevada. As áreas de armazenamento de classe III ou superiores devem possuir corredores de circulação com no mínimo 1,0 m de largura, entre os lotes de recipientes e ao redor destes.

A plataforma elevada destinada a áreas de armazenamento de recipientes transportáveis de GLP, quando existente, deve ser construída com materiais incombustíveis e possuir ventilação natural de forma a evitar o acúmulo de gás. O corredor de circulação pode ter inclinação, podendo estar em nível diferente do local de assentamento dos lotes desde que não ultrapasse a diferença máxima de 0,2 m, conforme Figura A.1, disponível na norma. A área ou corredor de circulação pode estar situado em outro nível diferente do assentamento dos recipientes, desde que a diferença de altura não ultrapasse 0,2 m, conforme Figura A.2, disponível na norma.

Uma mesma área de armazenamento pode possuir lotes em diferentes níveis de altura. Caso uma área esteja 0,2 m acima das demais ou do solo, essa deve possuir corredor de circulação, conforme Figura A.3, disponível na norma. A delimitação da área de armazenamento deve ser através de pintura ou demarcação de material incombustível no piso ou por meio de cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível, para assegurar ampla ventilação.

Para as áreas de armazenamento de classe III e superiores, também deve ser demarcado o piso para o local do (s) lote (s) de recipientes. A área de armazenamento, quando coberta, deve ter no mínimo 2,6 m de altura não sendo permitido o cercamento total do limite da área de armazenamento por paredes, permitindo-se, entretanto, sua delimitação por no máximo duas paredes. A estrutura e a cobertura devem ser construídas com produto incombustível e fora da projeção da edificação, tendo a cobertura menor resistência mecânica do que a estrutura que a suporta.

Quando a delimitação da área de armazenamento é feita por paredes, estas devem estar posicionadas a no mínimo 1,0 m do limite do lote, não podendo ter cobertura e atendendo aos distanciamentos de segurança da respectiva classe. Quando a área de armazenamento for delimitada por paredes ou cercas deve possuir acesso através de uma ou mais aberturas (portões) de no mínimo 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos.

Quando o imóvel não for delimitado por muros, cercas ou outros materiais, as áreas de armazenamento de qualquer classe devem ser delimitadas por cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível. O imóvel que contenha qualquer classe de área de armazenamento deve possuir no mínimo uma abertura (portão), com dimensões mínimas de 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos, para permitir a evasão de pessoas em caso de emergência. Adicionalmente, o imóvel pode possuir outros acessos com dimensões quaisquer e com qualquer tipo de abertura.

Não é permitida a armazenagem de outros materiais e equipamentos na área de armazenamento dos recipientes transportáveis de GLP, excetuando-se aqueles exigidos pela legislação vigente, como: balança, material para teste de vazamento, extintor(es) e placa(s), e outros destinados à operação de carga e descarga, como: carrinho de transporte, rampa metálica, incluindo as disposições de 4.9 e 4.10. Os recipientes transportáveis de GLP devem estar dentro da área de armazenamento, com exceção do estabelecido em 7.2 e dos recipientes carregados em veículos previsto na Seção 8.

Os recipientes transportáveis de GLP que apresentem defeitos ou vazamentos devem ser identificados e organizados separadamente dentro da área de armazenamento. As operações de carga e descarga de recipientes transportáveis de GLP devem ser realizadas com cuidado, evitando-se impacto no solo ou na plataforma elevada, para que não sejam danificados. Não é permitida a circulação de pessoas não autorizadas na área de armazenamento.

O muro do limite do imóvel deve ser construído com material resistente ao fogo (TRRF 60 minutos), com altura mínima 1,8 m, sem aberturas, com comprimento mínimo de 1,0 m excedente da (s) extremidade (s) do lote. Os muros internos ao imóvel não podem ser considerados como limite de propriedade. A área de armazenamento deve ser mantida limpa, livre, e os lotes afastados 1,5 m de acumulações de materiais de fácil combustão.

Deve ser observada a distância mínima de 3,0 m contados a partir dos limites do lote até onde existam reservatórios de líquidos inflamáveis cujo volume seja superior a 50 L, exceto tanque de combustível de veículos. As tolerâncias dimensionais desta norma admitem um desvio de até 0,1 m para menos. O (s) lote (s) de recipientes devem estar a 1,0 m no mínimo de qualquer parede, exceto na condição prevista em 7.2.

As distâncias mínimas de segurança definidas na Tabela 4 (disponível na norma) podem ser reduzidas pela metade com a construção de paredes resistentes ao fogo, desde que observado o estabelecido na Seção 9. Na entrada do imóvel deve ser exibida placa que indique no mínimo a (s) classe (s) de armazenamento existente (s) e a capacidade de armazenamento de GLP, em quilogramas, de cada classe. Exibir as placa (s) em locais visíveis, a uma altura de mínimo 1,8 m, medida do piso acabado à base da placa, distribuída (s) ao longo do perímetro da(s) área(s) de armazenamento, com os seguintes dizeres: PERIGO – INFLAMÁVEL; PROIBIDO O USO DE FOGO OU DE QUALQUER INSTRUMENTO QUE PRODUZA FAÍSCA.

As quantidades mínimas de placas a serem exibidas são as seguintes: classes I e II – uma placa; classes III e superiores – duas placas. As dimensões das placas devem permitir a visualização e a identificação da sinalização a uma distância mínima de 3,0 m. Os afastamentos entre placas de mesmo dizeres devem ter entre si no máximo 15,0 m. A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura.

O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.4.8.1 A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura. O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.

A conformidade da proteção catódica de estruturas complexas

Saiba quais são os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares.

A NBR 16896 de 08/2020 – Proteção catódica de estruturas complexas — Requisitos estabelece os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares. As estruturas compostas por outros metais, como aço inoxidável ou alumínio, podem ser protegidas aplicando-se os conceitos e requisitos descritos nesta norma, com exceção dos critérios de proteção, que são exclusivos para o aço-carbono. Esta norma visa eliminar a corrosão acelerada causada pelo acoplamento galvânico.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as técnicas de proteção catódica para estruturas complexas?

O que são os leitos de anodos?

Como deve ser executada a instalação de sistemas de proteção catódica?

Como deve ser feita a verificação da eficácia da proteção catódica?

Pode-se dizer que a proteção catódica é um método de prevenção da corrosão em estruturas metálicas submersas e subterrâneas. É um dos métodos mais eficazes para prevenir a corrosão em uma superfície metálica, sendo usada para proteger várias estruturas contra a corrosão, como navios, flutuadores offshore, equipamentos submarinos, portos, dutos, tanques. Ou seja, basicamente todas as estruturas metálicas submersas ou enterradas.

A técnica se baseia na conversão de áreas ativas de uma superfície metálica em passivas, ou seja, torná-las o cátodo de uma célula eletroquímica. Com o fornecimento de corrente, o potencial do metal é reduzido, o ataque de corrosão cessará e a proteção catódica será alcançada. A proteção catódica pode ser alcançada por: proteção anódica catódica sacrificial e proteção catódica de corrente impressa, muitas vezes referida como ICCP.

No caso dos anodos para a proteção catódica, ao processo de fundição dos anodos deve resultar uma liga com perfeita homogeneização dos componentes em toda a extensão de seu corpo, sem defeitos internos ou externos. O forno para fundição da liga deve ter capacidade igual ou superior à massa do anodo a ser fabricado. O vazamento da liga deve ser contínuo, não sendo admitidas interrupções na alimentação.

O material da alma do anodo deve ser o aço. O aço deve ter teor de carbono ≤ 0,28%. Antes do processo de fundição, o aço deve ser revestido com zinco aderente, aplicado por qualquer meio comercial adequado, ou ter superfície limpa através de um jateamento até atingir o grau Sa 2½, conforme NBR 7348. A alma deve ter boa aderência ao corpo do anodo, não apresentando vazios entre as superfícies de contato.

Os profissionais envolvidos com o projeto, a supervisão da instalação e do comissionamento, e a supervisão da operação e da manutenção do sistema de proteção catódica devem ter o nível adequado de competência para a realização de suas atribuições. Recomenda-se que a competência do pessoal de proteção catódica seja demonstrada de acordo com a NBR 15653 ou por outro procedimento equivalente. Convém que sejam usados os critérios de proteção catódica estabelecidos na NBR ISO 15589-1, mesmo para estruturas classificadas como complexas. No entanto, as características das estruturas complexas e os fatores que as influenciam (ver Seção 6) significam que nem sempre é possível determinar ou alcançar os critérios de proteção catódica tradicionais.

Nesse caso, os métodos de verificação alternativos podem ser utilizados para garantir uma redução adequada da taxa de corrosão. Estes critérios são derivados daqueles contidos na EN 14505. Todos os potenciais devem ser medidos em relação a um eletrodo de referência de cobre/sulfato de cobre saturado. Recomenda-se que os pontos de posicionamento de eletrodos de referência sejam marcados em campo, assim como que o mapa de localização do sistema de aterramento seja avaliado para determinação dos pontos de medição.

Pode-se definir o potencial ON como o de um tubo-eletrólito medido durante a operação contínua do sistema de proteção catódica. Ele é igual ou mais negativo que –0,85 V, se o ponto de medição se situar na área de influência do eletrodo externo. O critério da aplicação de corrente tem o objetivo de demonstrar que a corrente é capaz de entrar na estrutura nos locais inspecionados. Consiste em ligar a fonte de corrente de proteção catódica e avaliar a alteração do potencial natural ou de corrosão, que deve instantaneamente ficar pelo menos 0,3 V mais negativo.

Isso indica que uma quantidade suficiente de corrente está entrando na estrutura. Uma despolarização em cupom de proteção catódica de, no mínimo, 0,1 V, medindo o potencial OFF do cupom imediatamente e após até 1 h de desconexão. Recomenda-se atender a mais de um desses critérios para comprovar que toda a estrutura complexa está protegida adequadamente.

Podem ser usados métodos alternativos, caso se possa demonstrar que o controle da corrosão é atingido. Técnicas de inspeção do revestimento, associadas a escavações para correlação ou inspeção com pipeline inspection gauges (pig) instrumentado, podem ser utilizados, quando disponíveis. O sistema de proteção catódica depende do tamanho e do formato da estrutura complexa, do tipo de revestimento, da ação agressiva do solo e de sua resistividade, das interferências de corrente contínua (cc) e corrente alternada (ca), de regulamentos nacionais, bem como de critérios técnicos e econômicos.

Para uma proteção catódica eficiente, recomenda-se que as condições estabelecidas a seguir sejam atendidas. Para a continuidade elétrica, convém que todas as partes metálicas de uma estrutura complexa a ser protegida sejam eletricamente contínuas. Recomenda-se que eletrodos externos também sejam eletricamente contínuos.

O cálculo da corrente drenada e vida útil: Para que o sistema de proteção catódica seja devidamente projetado, recomenda-se que a forma e a extensão da estrutura sejam claramente definidas em termos de sua localização e isolamento elétrico de estruturas externas. Se o isolamento elétrico for ineficaz e não puder ser restaurado a suas condições originais, convém que a extensão da estrutura complexa seja revisada para levar isso em conta.

Para os revestimentos externos, ou seja, os revestimentos protetores nem sempre são aplicados nos componentes em uma estrutura complexa (por exemplo, sistemas de aterramento). Os componentes não revestidos elevam significativamente as demandas de corrente de proteção, aumentando, por conseguinte, as dificuldades associadas à aplicação da proteção catódica assim como os riscos de interferência. Sempre que possível, convém que componentes metálicos enterrados sejam devidamente revestidos.

Devem ser levantadas as características dos componentes metálicos relevantes que compõem a estrutura complexa, incluindo os tipos de material e suas áreas superficiais enterradas. Os eletrodos externos relevantes devem ser levantados. Embora não haja um compromisso do projeto em proteger essas estruturas, elas consomem parte da corrente injetada pelo sistema de proteção catódica e devem ser consideradas no dimensionamento.

Devem ser consideradas no projeto as especificidades dos revestimentos aplicados em todos os componentes de uma estrutura complexa, incluindo a sua compatibilidade com o uso de proteção catódica. Convém que sejam consideradas no projeto as condições ambientais específicas, como, por exemplo, o teor de cloretos (caso partes da estrutura seja em aço inoxidável), a presença de bactérias ou contaminantes, etc.

Para a blindagem elétrica, convém que sejam levantadas as estruturas físicas ou os materiais específicos, situados no entorno da estrutura complexa, que possam atuar como blindagem elétrica ou restringir a distribuição da corrente destinada à proteção catódica. As blindagens elétricas podem ser condutoras ou não condutoras, conforme exemplos descritos a seguir. As condutoras são as estruturas em concreto armado, estacas metálicas, poços metálicos, tubulações metálicas, aterramento elétrico, tubos-camisa, etc. As não condutoras incluem as mantas geotêxteis ou poliméricas, materiais de proteção mecânica, concreto impermeabilizado, etc.

No estabelecimento dos locais para instalação de anodos e de eletrodos de referência estacionários deve ser considerada a localização das blindagens elétricas. Devem ser considerados no projeto todos os componentes e acessórios destinados a promover o isolamento elétrico entre estruturas metálicas. Eventuais caminhos elétricos paralelos que possam comprometer o isolamento elétrico devem ser levantados.

As fontes de caminhos elétricos paralelos típicos são: aterramentos elétricos, cabos de instrumentação e telemetria, suportes metálicos de tubulações, ferragens de estruturas de concreto armado, etc. Os curtos-circuitos eletrolíticos podem ocorrer em regiões com eletrólitos de baixa resistividade, onde há circulação de corrente iônica entre as estruturas metálicas que, a princípio, estariam isoladas eletricamente.

As situações típicas de curtos-circuitos eletrolíticos que devem ser mapeadas são o curto-circuito devido ao transporte de fluido de baixa resistividade entre as extremidades de uma junta isolante; o curto-circuito em solos contaminados com vazamentos de fluidos de baixa resistividade. Os detalhes referentes às juntas de isolamento elétrico são apresentados na NBR ISO 15589-1. Devem ser levantadas todas as possíveis fontes de interferência elétrica cc ou ca existentes nas proximidades da estrutura complexa.

As fontes de interferência cc mais comuns são os sistemas de tração eletrificados e os sistemas de proteção catódica existentes. As fontes de interferência ca mais usuais são as linhas de transmissão em alta-tensão e as subestações elétricas. Convém que sejam levantadas todas as estruturas metálicas existentes nas proximidades da estrutura complexa e que possam sofrer interferência cc do sistema de proteção catódica da estrutura complexa. No projeto devem ser adotadas medidas para mitigar ou reduzir seus efeitos.

A conformidade do sistema de tubulação para a condução de gases combustíveis

Deve-se conhecer os requisitos gerais para o sistema de tubulação multicamada composto por tubos, conexões e ferramental para condução de gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20°C até 60°C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar).

A NBR 16821-1 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 1: Requisitos gerais especifica os requisitos gerais para o sistema de tubulação multicamada composto por tubos, conexões e ferramental para condução de gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20°C até 60°C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar). A NBR 16821-2 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 2: Requisitos e métodos de ensaio para tubos especifica os requisitos gerais, dimensionais e de desempenho para os tubos multicamada, que tenham ao menos 60% da espessura de parede composta de material polimérico, destinados aos sistemas multicamada para uso com gases combustíveis. Esta parte é aplicável aos sistemas de tubulação multicamada com temperatura de operação entre – 20 °C e 60 °C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar).

A NBR 16821-3 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 3: Requisitos e métodos de ensaio das uniões especifica os requisitos gerais e de desempenho das uniões do sistema de tubulação multicamada destinados ao uso com gases combustíveis. É aplicável aos sistemas de tubulação multicamada com temperatura de operação entre –20 °C e 60 °C, diâmetro nominal até 63 mm e pressão de operação de no máximo 500 kPa (5 bar). A NBR 16821-4 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 4: Conexão mecânica de compressão radial por crimpagem estabelece os requisitos específicos para as conexões mecânicas de compressão radial por crimpagem do sistema de tubulação multicamada. A NBR 16821-5 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 5: Conexão mecânica de compressão radial por anel deslizante especifica os requisitos específicos para as conexões mecânicas de compressão radial por anel deslizante do sistema de tubulação multicamada. A NBR 16821-6 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 6: Conexão mecânica de compressão radial por rosca bicônica especifica os requisitos específicos para as conexões de compressão radial por rosca bicônica do sistema de tubulação multicamada. A NBR 16821-8 de 08/2020 – Sistema de tubulação multicamada para a condução de gases combustíveis – Parte 8: Código de prática de manuseio e montagem especifica os requisitos específicos de manuseio e montagem do sistema de tubulação multicamada e respectivas tecnologias de união.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido um sistema de tubulação multicamada?

Quais são as dimensões dos tubos e das camadas dos tubos?

Qual é a resistência à pressão hidrostática de longa duração?

Quais são as propriedades físicas dos tubos?

A série NBR 16821 (todas as partes) é o documento de referência para o sistema de tubulação multicamada, aplicável aos tubos multicamada, conexões, ferramental, uniões, manuseio e instalação, com o propósito de sistema para aplicação em redes de distribuição de gases combustíveis com máxima pressão de operação até 500 kPa (5 bar). Para garantir a conformidade com os requisitos essenciais e de segurança do sistema de tubulação multicamada, a parte 1 da NBR 16821 deve ser aplicada em conjunto com uma ou mais partes da NBR 16821, conforme aplicável.

A temperatura de projeto para o sistema de tubulação multicamada deve ser de –20 °C a 60 °C. A pressão de projeto do sistema de tubulação multicamada deve ser de no mínimo 500 kPa (5 bar). Os tipos de sistemas de tubulação multicamada contemplados nesta parte 1 da NBR 16821 são apresentados na tabela abaixo.

Por questões de segurança, os tubos, as conexões e os ferramentais utilizados para realização da união são específicos para cada sistema, devendo ser seguida a orientação do fabricante. Os requisitos da NBR 16821-3 devem ser atendidos. A montagem de um dos componentes de um sistema de tubulação multicamada, que esteja de acordo com esta norma, com um componente de outro sistema de tubulação multicamada, que também esteja de acordo com esta norma, deve ser considerado como um novo sistema de tubulação multicamada.

A conformidade do sistema de tubulação multicamada com os requisitos das partes aplicáveis da NBR 16821, deve ser verificada por meio de ensaio em laboratórios de competência técnica reconhecida. Recomenda-se que o fabricante possua sistema de controle de qualidade que comprove o cumprimento dos requisitos desta norma ao longo do processo de fabricação.

Recomenda-se que o usuário requeira do fabricante as evidências de conformidade com os requisitos da parte 1 da NBR 16821. A transição entre os sistemas de tubulação multicamada e os sistemas de outros materiais deve ser realizada por meio de conexões roscadas conforme a ABNT NBR NM ISO 7-1. A identificação de um sistema de tubulação multicamada, a elaboração do projeto e execução da instalação e do ensaio de estanqueidade devem atender aos requisitos das normas de instalação (ver NBR 15526 e NBR 15358).

Devem ser disponibilizadas as seguintes informações pelo fabricante: sobre o tubo multicamada: identificação do sistema de tubulação multicamada ao qual o tubo pertence, características e dimensões pertinentes; os requisitos para manuseio, transporte e armazenamento; as condições e restrições para exposição dos tubos contra intempéries e raios ultravioleta (UV); raio de dobra (curvatura) mínimo do tubo. Sobre as conexões: a identificação do sistema de tubulação multicamada ao qual a conexão pertence, características e dimensões pertinentes; os requisitos para manuseio, transporte e armazenamento; as condições e restrições das conexões contra intempéries e raios ultravioleta (U.V); a informação sobre a possibilidade de reuso, reaproveitamento ou remontagem de conexões já acopladas a um tubo multicamada.

Sobre o ferramental deve ser feita a identificação do sistema de tubulação multicamada ao qual o ferramental é aplicado; ferramental a ser utilizado para a montagem do sistema de tubulação multicamada, bem como o procedimento para realizá-la; a indicação sobre caso seja necessária a utilização de ferramental para realizar a dobra (curvatura) do tubo multicamada, em função do dimensional do tubo; os procedimentos de manutenção, calibração, controle ou regulagem; os requisitos para manuseio, armazenamento e transporte. Sobre o sistema de tubulação multicamada, devem estar disponíveis as informações do procedimento de cálculo (fórmulas, ábacos, tabelas, planilhas ou software) para o dimensionamento dos diâmetros; a perda de carga nos tubos retos, tubos curvados e nas conexões; e a instrução que os tubos e as conexões pertençam a um sistema único.

A pressão de projeto do tubo multicamada deve ser de no mínimo 500 kPa (5 bar). A temperatura de projeto para o tubo multicamada deve ser – 20 °C a 60 °C. Para garantir a conformidade com os requisitos essenciais e de segurança do sistema de tubulação multicamada, esta Parte do Texto-Base 009:301.004-001 deve ser aplicada em conjunto com uma ou mais partes do Texto-Base 009:301.004-001, conforme aplicável. A composição das camadas dos tubos deve ser conforme a figura abaixo.

As camadas interna e externa devem ser projetadas para suportar as condições a que forem submetidas e devem ser produzidas a partir de compostos em conformidade com as normas especificadas na Tabela A.1, disponível na norma. No caso de tubos para o sistema de anel deslizante, a camada interna deve ser de PEX, conforme Anexo A. Não são permitidos materiais reprocessados e ou reciclados.

A camada de alumínio deve ser fabricada em conformidade com a norma especificada na Tabela A.2, disponível na norma. As camadas de adesivo não são consideradas como camadas projetadas para suportar esforços.

O conjunto de camadas do tubo deve ser projetado para resistir às condições de pressão e de temperatura de projeto do tubo. O coeficiente de projeto dos tubos multicamada (fator C) deve ser no mínimo igual a 2, quando usado para calcular a pressão de projeto prevista (pCD) de acordo com a máxima temperatura de operação. A cor da camada externa dos tubos multicamada deve ser amarela, preta ou branca. Os tubos nas cores preta ou branca devem possuir listras amarelas conforme seção 5.

No caso dos tubos de cor preta, o composto de negro de fumo (carbon black) utilizado deve ter um tamanho médio de partícula de 10 nm a 25 nm. A cor do tubo não está relacionada à proteção contra a radiação ultravioleta (UV). No caso de pintura para harmonia arquitetônica, o fabricante deve ser consultado quanto ao procedimento a ser adotado.

O resgate técnico industrial em altura e/ou em espaço confinado

Conheça como deve ser feita a qualificação para o profissional de resgate técnico industrial em altura e/ou em espaço confinado, especificando o treinamento, conteúdo programático e os níveis de qualificação para profissional de resgate técnico industrial em altura e/ou em espaço confinado por ela estabelecidos.

A NBR 16710-1 de 07/2020 – Resgate técnico industrial em altura e/ou em espaço confinado – Parte 1: Requisitos para a qualificação do profissional estabelece os requisitos para a qualificação para profissional de resgate técnico industrial em altura e/ou em espaço confinado, especificando o treinamento, conteúdo programático e os níveis de qualificação para profissional de resgate técnico industrial em altura e/ou em espaço confinado por ela estabelecidos. Não se aplica à prática de esporte, turismo e atividades de acesso por corda. As atividades de acesso por corda são apresentadas nas NBR 15475 e NBR 15595. Não se aplica e nem substitui as ações de competência definidas em lei das instituições públicas que atuam nos segmentos de salvamento e resgate. Os requisitos para provedores de treinamento e instrutores de treinamento para os profissionais de resgate técnico em altura e/ou em espaço confinado, estão definidos na NBR 16710-2. Aplica-se a todos os ramos da indústria, como, por exemplo, petrolífera, petroquímica, química, construção civil, construção naval, eólica, automotiva, siderurgia, mineração, elétrica, telecomunicação, agrícola, empresas públicas e privadas, órgãos públicos, entre outras.

A NBR 16710-2 de 07/2020 – Resgate técnico industrial em altura e/ou em espaço confinado – Parte 2: Requisitos para provedores de treinamento e instrutores para a qualificação do profissional estabelece os requisitos para os provedores de treinamento e instrutores responsáveis por ministrarem os treinamentos para a qualificação do profissional de resgate técnico industrial em altura e/ou em espaço confinado. Não se aplica às atividades de esporte de montanha, turismo de aventura e atividades de acesso por corda. Não se aplica aos veículos adaptados, motorizados ou não, ou qualquer outro meio de transporte, como estação de treinamento.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as características do coordenador de equipe?

Qual deve ser o conteúdo de treinamento para ser qualificado no nível industrial?

Qual deve ser o treinamento para ser qualificado no nível de líder?

Qual a carga horária e a validade dos treinamentos?

Como os provedores devem fazer os registros de treinamento?

Qual deve ser a documentação dos certificados de treinamentos?

É reconhecido que a aplicação dos métodos de resgate, em altura e/ou em espaço confinado, é uma atividade inerentemente crítica e perigosa que envolve sérios riscos à vida dos resgatistas, dependem de uma análise antecipada essencial para a organização, preparação, coordenação, seleção de equipamentos, instalação de sistemas e execução de técnicas de resgate específicas necessárias para a qualificação adequada do profissional que estará responsável pela sua execução da maneira mais segura possível. Esse documento foi elaborado com o objetivo de estabelecer os requisitos necessários para a qualificação do profissional para resgate em altura e/ou em espaço confinado, designando as condições para os provedores de treinamento e seus instrutores responsáveis por ministrarem os treinamentos, o conteúdo programático e o perfil desejado de competência para o profissional para resgate técnico industrial em altura e/ou em espaço confinado, como parte de sua formação, dentro de um processo permanente de desenvolvimento de sua qualificação, para atuação nas operações de resgate existentes nos setores industriais.

O estabelecimento do perfil de qualificação é fundamental para orientar as empresas na escolha da qualificação adequada para pessoas por elas indicadas, para execução das medidas de resgate, bem como para orientar os provedores de treinamento e seus instrutores responsáveis por ministrarem os treinamentos de qualificação do profissional de resgate técnico industrial em altura e/ou em espaço confinado. Esse documento é de qualificação profissional e não tem como objetivo estabelecer todas as medidas de segurança necessárias para o desempenho das operações de resgate em altura e em espaços confinados.

É responsabilidade das empresas estabelecer as medidas de segurança obrigatórias e apropriadas aos locais de operações, com análise de risco prévia ou pela implementação das medidas previstas em normas regulamentadoras. É importante ressaltar que este documento foi elaborado com as melhores práticas adotadas no mercado brasileiro e referências técnicas nacionais, estrangeiras e internacionais, bem como com a aplicação dos conceitos de gestão e de melhoria contínua.

Este documento divide-se em duas partes, uma destinada aos requisitos gerais para a qualificação do profissional de resgate técnico industrial em altura e/ou em espaço confinado, e outra destinada aos requisitos para os provedores de treinamento e instrutores que irão ministrar os treinamentos para qualificação profissional de resgate técnico industrial em altura e/ou em espaço confinado. A escolha e organização dos níveis de qualificação e forma hierárquica em uma equipe de resgate, são especificados pelos empregadores e contratantes, os quais estabelecem seus próprios critérios para designação das funções e responsabilidades dos profissionais a serem indicados para compor as equipes de resgate. Quanto à classificação dos níveis de qualificação, a tabela abaixo apresenta os níveis do profissional de resgate em altura e/ou em espaço confinado, definindo a atuação de cada nível.

A qualificação concede ao profissional um atestado de competência em resgate industrial em altura e/ou em espaço confinado, específico para o nível requerido. A qualificação não representa uma autorização para realizar a atividade, uma vez que a responsabilidade continua sendo do empregador ou empresa solicitante do serviço. O resgatista qualificado no nível industrial é uma pessoa capacitada e treinada para utilizar sistemas de pré-engenharia ou pré-montados manuais, para atuar conforme o plano de resgate da empresa.

Este nível de qualificação é destinado às equipes de emergência e resgate compostas por pessoas que sejam trabalhadores da indústria em geral, contratadas ou subcontratadas, que executem trabalhos em altura e em espaços confinados, e/ou pessoas que façam parte do quadro da brigada de emergência das empresas, de nível básico conforme a NBR 14276. Uma pessoa qualificada como resgatista no nível industrial deve ser capacitada para apresentar um conjunto de conhecimentos e habilidades determinados para realizar resgates em altura e/ou em espaço confinado, conforme descrito a seguir.

Deve conhecer as principais normas brasileiras ou procedimentos aplicados à avaliação, organização e execução de medidas de resgates em altura e/ou em espaços confinados. Atuar em equipes de resgate em altura e/ou em espaços confinados, podendo ser de dedicação exclusiva, se estabelecido pela análise de risco, formadas para respostas de emergências nas indústrias, por meio de procedimentos operacionais padronizados, estabelecidos em um plano de resposta de emergência documentado.

Deve realizar uma variedade limitada de resgate em altura e/ou em espaços confinados, e posicionados a partir de uma superfície segura que requeira deslocamentos com uso de seu EPI e movimentação básica de vítimas, utilizando, exclusivamente, sistemas de pré-engenharia, pré-montados ou automáticos. Deve estar capacitado para a instalação e operação de sistemas de pré-engenharia, conforme treinamento, seguindo as orientações dos fabricantes dos equipamentos. Saber inspecionar seus equipamentos de uso pessoal e equipamentos de uso coletivo disponibilizados para a equipe da qual faz parte.

O profissional deve atuar sob um plano de resgate previamente estabelecido, conforme o plano de atendimento de emergência de cada empresa, atuar em um ambiente de trabalho de exposição limitada a riscos inerentes ao resgate, a partir de uma superfície que requeira a utilização de sistemas de proteção contra quedas já predefinidos e saber avaliar os riscos existentes durante os resgates e propor medidas de controle necessárias. Uma pessoa qualificada como resgatista no nível industrial, além da formação neste nível de qualificação, deve atender aos alguns pré-requisitos para o exercício da função de resgatista.

Ter escolaridade mínima do 5º ano do ensino fundamental, ter treinamento de primeiros socorros com conteúdo e carga horária compatíveis com os cenários de riscos e acidentes típicos identificados. Já o resgatista qualificado no nível operacional é uma pessoa capacitada e treinada que atua sob a coordenação de um responsável pela operação de resgate, cuja atuação primária seja executada em uma equipe de resgate com dedicação exclusiva ou por pessoas que pertençam aos quadros da própria empresa, que integrem os grupos de resposta de emergência formados nas indústrias.

Este nível de qualificação se destina às equipes próprias ou externas de emergência e resgate, compostas por pessoas que atuam sob forma de dedicação exclusiva em resgate industrial em altura e em espaços confinados com a capacitação e o treinamento em conformidade com estas normas. Uma pessoa qualificada como resgatista no nível operacional deve estar capacitada a apresentar um conjunto de conhecimentos e habilidades determinados para realizar resgates em altura e/ou em espaço confinado, conforme descrito a seguir. Deve conhecer as normas brasileiras ou procedimentos aplicados para avaliação, organização e execução de medidas de resgate em altura e/ou em espaços confinados.

Deve saber atuar em equipes de resgate em altura e/ou em espaços confinados, de dedicação exclusiva, formadas para respostas de emergências nas indústrias, por meio de procedimentos operacionais padronizados e estabelecidos em um plano de resposta de emergência documentado, executar uma variedade limitada de resgate em altura e/ou em espaços confinados , posicionados a partir de uma superfície segura que requeira deslocamentos com uso de seu EPI e movimentação básica de vítimas, com ou sem macas, utilizando sistemas de vantagem mecânica básicos.

Entender de montagem, instalação e operação de sistemas de vantagem mecânica simples, possuir conhecimento sobre corda e nós de encordoamento para aplicação em ancoragens simples e sistemas de resgates de vantagem mecânica simples e executar acessos até a vítima com a utilização de técnicas de progressão por corda por ascensão ou descensão. Saber executar movimentações básicas de vítimas com o emprego de macas de resgate vertical e instalar e operar sistemas de pré-engenharia conforme treinamento recebido e orientações dos fabricantes dos equipamentos, quando aplicável.

Deve estar capacitado para inspecionar seus equipamentos de uso pessoal e os equipamentos de uso coletivo disponibilizados para a equipe a qual pertence, bem como assegurar o registro de suas inspeções. Saber utilizar corretamente os meios de comunicação disponíveis, bem como a utilização de uma terminologia empregada como linguagem-padrão para emergências e atuar sob a coordenação de uma pessoa qualificada no nível operacional, líder ou coordenador de equipe.

Deve atuar em um ambiente de trabalho de exposição limitada a riscos inerentes ao resgate, a partir de uma superfície que requeira a utilização de sistemas de proteção contra quedas já predefinidos, saber avaliar os riscos existentes durante os resgates e propor medidas de controle necessárias. Assim, uma pessoa qualificada como resgatista no nível operacional, além da formação neste nível de qualificação, deve atender aos seguintes pré-requisitos para o exercício da função de resgatista: escolaridade mínima do ensino fundamental completo, possuir treinamento de primeiros socorros com conteúdo e carga horária compatíveis com os cenários de riscos e acidentes típicos identificados.

O resgatista qualificado no nível de líder deve ser uma pessoa capacitada e treinada que atue sob a coordenação de um responsável pela operação de resgate, cuja atuação seja executada em uma equipe de resgate com dedicação exclusiva, como parte dos grupos de resposta de emergência formados nas indústrias. Esse nível de qualificação é destinado às pessoas que atuam em resgate industrial em altura e em espaços confinados qualificados no nível operacional.

Uma pessoa qualificada como resgatista no nível de líder deve estar capacitada a apresentar um conjunto de conhecimentos e habilidades determinados para realizar resgates em altura e/ou em espaço confinado, conforme descrito a seguir. Conhecer as normas brasileiras ou procedimentos aplicados para avaliação, organização e execução de medidas de resgate em altura e/ou em espaços confinados. Saber atuar em equipes de resgate em altura e/ou em espaços confinados de dedicação exclusiva, formadas para respostas de emergências nas indústrias, por meio de procedimentos operacionais padronizados, estabelecidos em um plano de resposta de emergência documentado.

A pessoa deve saber executar uma variedade de resgate em altura e/ou em espaços confinados , posicionados a partir de uma superfície segura que requeira deslocamentos com uso de seu EPI e uma movimentação de vítimas, com ou sem macas, utilizando sistemas de vantagem mecânica básicos, sistemas de pré-engenharia, pré-montados ou automáticos. Saber montar, instalar e operar sistemas de vantagem mecânica simples e possuir conhecimento sobre corda e nós de encordoamento para aplicação em sistemas de resgates diversos, ancoragem simples, semiequalizadas, fracionamentos e desvios. Deve conhecer uma quantidade limitada de meios de fortuna aplicados às técnicas de resgates por corda e saber executar uma variedade de acessos até a vítima, de forma autônoma, com a utilização de técnicas de progressão por corda para ascensão e descensão, com passagem de fracionamentos, desvios e nós, aplicáveis ao resgate técnico.

O profissional deve saber executar uma variedade de técnicas de resgate com progressão em cordas para o desbloqueio de vítimas suspensas, executar uma variedade de resgates em altura com a utilização de técnicas de progressão por corda para descensão com vítimas com passagem de fracionamentos, desvios e nós. Deve saber executar movimentações de vítimas por meio de sistemas de tirolesas horizontais e diagonais com o emprego de macas de resgate vertical, instalar e operar sistemas de pré-engenharia conforme treinamento recebido e orientações dos fabricantes dos equipamentos e inspecionar seus equipamentos de uso pessoal, os equipamentos de uso coletivo de sua equipe e os dispositivos de ancoragem disponibilizados, e saber identificar danos, defeitos, desgastes, bem como assegurar os registros das inspeções, a prontidão operacional ou a recusa dos equipamentos que tenham sido reprovados.

Ele também deve conhecer os procedimentos de limpeza, acondicionamento e transporte dos equipamentos de resgate. utilizar corretamente os meios de comunicação disponíveis, bem como utilizar a terminologia empregada como linguagem-padrão para emergências. Saber atuar e dar suporte a uma equipe de resgate sob a responsabilidade de uma pessoa qualificada como coordenador de equipe de resgate, atuar em um ambiente de trabalho de exposição limitada a riscos inerentes ao resgate, a partir de uma superfície ou em suspensão que requeira a utilização de sistemas de proteção contra quedas já predefinidos. Deve saber avaliar os riscos existentes durante os resgates e propor medidas de controle necessárias.

Deve ser ressaltado que os provedores dos treinamentos previstos na parte 2 da NBR 16710 devem no mínimo possuir condições para implementar procedimentos para gestão, organização, preparação, desenvolvimento, aplicação, manutenção e avaliação dos treinamentos, incluindo o seguinte: controle para emissão de certificados e documentos; supervisão dos métodos de treinamentos; atualização dos conteúdos dos programas de acordo com a legislação nacional; inspeção, preservação e manutenção das estruturas, instalações e facilidades de treinamento; inspeção, manutenção, acondicionamento e controle dos equipamentos individuais e coletivos utilizados; avaliação e controle dos riscos existentes durante os treinamentos; situações de emergência; manutenção e segurança dos registros e documentos necessários e certificados emitidos para fins de rastreabilidade.

A supervisão dos treinamentos deve estabelecer meios para o acompanhamento efetivo do treinamento, no mínimo quanto aos seguintes aspectos: material didático que está sendo utilizado; adequação, condições de higiene, acessibilidade e segurança das instalações para as aulas teóricas e práticas; controle dos equipamentos, equipamentos auxiliares e sistemas disponibilizados na quantidade necessária e em perfeitas condições de uso; avaliação geral do treinamento e desempenho do (s) instrutor (es) envolvido (s) para sugerir melhorias aos próximos treinamentos; cumprimento das cargas horárias estabelecidas para os conteúdos programáticos estabelecidos para cada nível de qualificação; elaboração de avaliações teóricas e práticas; se a quantidade de alunos está adequada.

Os provedores de treinamento devem assegurar que suas instalações físicas tenham um ambiente controlado para as áreas específicas, para as aulas de conteúdo teórico e para as áreas para realização de exercícios práticos, incluindo banheiros e vestiários masculino e feminino, área de descanso e água potável. Os provedores de treinamento devem possuir local adequado para aplicação das aulas teóricas, com mobiliário, ambiente climatizado e iluminado, recursos audiovisuais e demais meios pedagógicos necessários ao desenvolvimento da aprendizagem dos alunos.

Os provedores de treinamento devem assegurar que suas instalações físicas, estruturas e simuladores estejam adequados aos objetivos de cada treinamento a ser ministrado e sejam preparados para oferecer situações de treinamento com os cenários mais realistas possíveis e compatíveis com os ambientes operacionais normalmente encontrados nos locais de trabalho. As facilidades de treinamento devem apresentar cenários representativos com os ambientes operacionais em que os alunos estão exercendo suas competências em resgates, considerando a altura, exposição ao risco de queda, equipamentos, sistemas de proteção contra quedas, superfícies, ângulos, meios de acesso e espaços confinados característicos, que permitam a realização de exercícios práticos aplicáveis às situações similares encontradas no ambiente operacional dos alunos. As instalações físicas para os exercícios e avaliações práticas de resgate por corda devem ter uma altura mínima de 6 m para execução das manobras correspondentes ao nível de treinamento.

O planejamento do cabeamento estruturado

Saiba quais são os requisitos para o planejamento do cabeamento e infraestruturas de cabeamento (incluindo o cabeamento, caminhos, espaços, aterramento e equipotencialização) em suporte às normas de cabeamento estruturado e outros documentos.

A NBR 16869-1 de 07/2020 – Cabeamento estruturado – Parte 1: Requisitos para planejamento especifica os requisitos para o planejamento do cabeamento e infraestruturas de cabeamento (incluindo o cabeamento, caminhos, espaços, aterramento e equipotencialização) em suporte às normas de cabeamento estruturado e outros documentos. Os seguintes aspectos são abordados: as práticas de instalação; o planejamento da instalação; a documentação; a administração; os ensaios; e a inspeção. Os requisitos de segurança elétrica, incêndio e compatibilidade eletromagnética (EMC) estão fora do escopo desta norma. Esta parte é aplicável ao planejamento de projeto e instalação de sistemas de cabeamento estruturado.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as abreviaturas usadas nessa norma?

Como deve ser executado o ensaio de enlace permanente?

Como deve ser feita a medição dos parâmetros de alien crosstalk?

Quais são os requisitos do plano de qualidade?

Uma especificação de instalação deve ser feita pelo contratante e deve ser entregue ao instalador previamente, compreendendo: as especificações técnicas (ver 5.3); o escopo do trabalho (ver 5.5); um plano de qualidade (ver 6.1). Diferentes tipos de infraestruturas podem compartilhar os mesmos espaços destinados ao cabeamento e causar interferências mecânicas. Portanto, o instalador deve ter acesso ao detalhamento de: outros serviços do edifício como distribuição elétrica e aterramento; sistemas de gestão do edifício, incluindo segurança, controle de acesso, etc.; sistemas para detecção de fogo e fumaça e controles associados a eles; aquecimento, ventilação e ar-condicionado (HVAC); maquinário industrial, ilhas de automação, etc. e cuidados relacionados a eles; sistemas de água, esgoto, combate a incêndio, ar comprimido, óleo lubrificante, fluido hidráulico, material seco e saídas de troca de calor; especificações de ambientes e equipamentos hospitalares.

A especificação da instalação deve assegurar que o instalador tenha acesso às legislações, regulamentações, padrões e políticas internas referentes a: edificação; ambiente; segurança do trabalho; segurança patrimonial; autorização do contratante; credenciamento (certificações e qualificações) profissional. É de responsabilidade do instalador demonstrar o cumprimento do acima estabelecido. A especificação da instalação deve detalhar os contatos no local de instalação responsáveis por: requisitos operacionais; restrições, permissões e acessos aplicáveis; conhecimento de áreas perigosas; requisitos técnicos; documentação do cabeamento existente; compatibilidade com os componentes de cabeamento existente; materiais e equipamentos a serem disponibilizados para o instalador de cabeamento pelo contratante; armazenamento dos materiais; remoção, descarte e reciclagem do excesso e entulho; saúde ocupacional e segurança do trabalho; instalação de cabeamento por terceiros; contratante principal e/ou subcontratantes; transferência de responsabilidade e/ou propriedade.

Convém que a especificação de instalação assegure a execução adequada do projeto, de modo garantir a expansão no cabeamento para acomodar usuários, aplicações e serviços adicionais no que diz respeito a: caminhos e sistemas de distribuição de cabos; gabinetes e racks; pontos de terminação; demanda de energia elétrica. As especificações técnicas devem conter os requisitos de desempenho e detalhes do cabeamento e componentes associados, a base da avaliação de desempenho do cabeamento e as práticas de instalação utilizadas.

As especificações técnicas devem abranger tanto as novas instalações quanto as ampliações das instalações existentes. Devem detalhar a localidade e os requisitos de qualquer interface de rede externa (ver NBR 16415). As especificações técnicas devem estabelecer: o nível de administração a ser aplicado à infraestrutura de cabeamento (ver Seção 8); o escopo da documentação a ser fornecida pelo instalador, incluindo quaisquer requisitos necessários para relacionar registros entre si e de outros serviços do edifício; o formato (impresso, eletrônico, etc.) da documentação (ver Seção 8); identificadores a serem adotados pelo instalador (ver Seção 8); a especificação dos elementos de identificação ou etiquetas; os requisitos para ensaios de aceitação (ver Seção 9); os requisitos para inspeção (ver Seção 10); o padrão de tratamento dos canais e enlaces que não atendam aos requisitos de inspeção e ensaios de aceitação; o formato do resultado dos ensaios e documentação da inspeção (ver Seções 9 e 10), que contêm os resultados de passa/falha, e as ações tomadas para reparar ou corrigir falhas de instalação.

A especificação técnica deve: identificar e classificar quaisquer potenciais perigos dentro dos caminhos e espaços e pontos determinação. A classificação de perigo de áreas contendo (ou com a intenção de conter) equipamento e cabeamento de fibra óptica é descrita na IEC 60825-2 e é usada para orientar as práticas adequadas de instalação e identificação. Também deve-se detalhar os limites das áreas contendo perigo ou áreas potencialmente perigosas; incluir todas as normas regulamentadoras aplicáveis ao local da instalação.

As especificações técnicas devem detalhar as medidas necessárias para prevenir o acesso não autorizado aos caminhos, espaços, gabinetes e racks. As especificações técnicas devem detalhar as condições ambientais previstas de instalação e operação. A classificação MICE descrita na NBR 16521 deve ser usada onde as condições ambientais e a instalação prevista estejam dentro dos limites definidos por M3I3C3E3. Adicionalmente, as seguintes condições ambientais devem ser observadas: ataque biológico (bolor ou outros fungos); dano físico (acidental ou intencional), incluindo dano causado por animais; presença ou potencial presença de perigos, como contaminações por líquidos, gases ou materiais explosivos; fluxo de ar (causado por sistemas de aquecimento e ventilação); efeitos meteorológicos (vento, chuva e inundação); impactos naturais (raios, terremotos etc.). Ver IEC 60721 para classificações ambientais.

Convém que as especificações técnicas prevejam uma análise de riscos, incluindo condições ambientais anômalas (mudanças de temperatura, inundações, etc.), que podem afetar a determinação dos requisitos dos componentes ou o método de mitigação possível. A especificação da instalação deve: conter uma lista de itens tratados no plano de qualidade aplicável à instalação definido pelo contratante; identificar as responsabilidades por quaisquer tarefas adicionais necessárias para permitir o cumprimento do plano de qualidade (ver Seção 6).

Um plano de qualidade que aborda os requisitos de instalação deve ser produzido pelo instalador de acordo com os requisitos desta norma. O plano de qualidade deve ser acordado com o contratante antes do início da instalação. O plano de qualidade deve claramente apresentar as medidas e procedimentos a serem adotados para demonstrar conformidade com: os requisitos desta norma; os requisitos do projeto de cabeamento; a especificação da instalação.

O plano de qualidade deve detalhar os procedimentos: para a transferência de responsabilidades entre o instalador e o contratante; para a aceitação dos componentes de cabeamento (incluindo a verificação das especificações físicas, mecânicas, ópticas ou elétricas, baseadas nas especificações dos fabricantes ou fornecedores e normas aplicáveis). Os componentes do cabeamento a serem instalados podem ser fornecidos pelo instalador, desde que em comum acordo com o contratante.

Devem ser detalhados os procedimentos a serem adotados para verificar a compatibilidade entre os componentes do cabeamento a serem usados durante a instalação; a serem adotados para verificar a compatibilidade com algum cabeamento existente; para abordar o impacto de potenciais incompatibilidades; para garantir a seleção de patch cords adequados para uso nos canais de cabeamento.

Onde, em qualquer ponto durante o processo de instalação, a inspeção ou ensaio do cabeamento ou seus componentes for especificado na especificação da instalação ou por outras normas, o plano de qualidade deve detalhar: o equipamento de inspeção e ensaio; o estado de calibração do equipamento de inspeção e ensaio; os planos de amostragem (ver 6.2); os procedimentos de ensaios (ver 9.5.1); o tratamento dos resultados que não estejam em conformidade com as especificações de ensaio ou que apresentem valores marginais, ou seja, dentro do limite de precisão especificado do equipamento de medição (ver 6.3 e 6.4).

A tabela abaixo mostra dois grupos de ensaios para cabeamento balanceado (verificação básica e parâmetros de transmissão), usando os parâmetros que estabelecem as classes de enlaces e canais em relação ao cabeamento projetado. Esta subseção especifica os requisitos e recomendações para ensaios desses grupos de parâmetros. Os procedimentos de ensaio e equipamentos para enlaces e canais do cabeamento balanceado estão especificados na Seção 9. Os requisitos são estabelecidos para outros parâmetros de transmissão que não são considerados atingidos pelo projeto.

Recomenda-se que o modelo de ensaio de enlace permanente seja especificado como requisito de projeto, pois este traz margem adequada para suportar a variedade de patch cords utilizados para conformar canais. Independentemente dos requisitos da especificação da instalação, os parâmetros de verificação básica da tabela acima devem ser medidos para toda a instalação. Os parâmetros de transmissão da tabela acima, com exceção dos parâmetros de alien crosstalk, devem ser medidos para todos os enlaces permanentes da instalação de cabeamento balanceado de classes D, E, F ou FA. Caso a especificação da instalação exija a medição dos parâmetros de alien crosstalk para essas classes de desempenho, o instalador deve incluir esses parâmetros nos ensaios.

IEC TR 63099-2: as tecnologias de rádio sobre fibra para detecção de campo elétrico

Esse relatório técnico (Technical Report – TR), editado em 2020 pela International Electrotechnical Commission (IEC), fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos.

A IEC TR 63099-2:2020 – Transmitting equipment for radiocommunication – Radio-over-fibre technologies for electromagnetic-field measurement – Part 2: Radio-over-fibre technologies for electric-field sensing fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos. Os fundamentos teóricos de medição de campo elétrico e método de calibração de sensores de campo elétrico estão além do escopo deste documento.

Conteúdo da norma

PREFÁCIO……………………. 3

INTRODUÇÃO…………….. 5

1 Escopo……………………… 6

2 Referências normativas……. ….. 6

3 Termos, definições e termos abreviados………………… 6

3.1 Termos e definições……………………………. 6

3.2 Termos abreviados………………………. .. 7

4 Exemplos práticos de sistema de detecção de campo elétrico usando tecnologias RoF…………… 7

4.1 Visão geral………… …………… 7

4.2 Características do sistema de detecção de campo elétrico usando tecnologias RoF……………… 7

4.3 Lista de exemplos de implementação………………….. 7

4.4 Sensor de campo elétrico de 3 eixos usando moduladores ópticos LN …… 7

4.4.1 Configuração do sistema…………….. 7

4.4.2 Especificações………………………….. 9

4.4.3 Exemplo de resultados de medição……………. 10

4.5 Sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe………….. 13

4.6 Sondas de campo elétrico usando VCSEL………………….. 14

Bibliografia……………. ………………….. 16

Figura 1 – Diagrama do sistema do sensor óptico de campo E……………… 8

Figura 2 – Estrutura da unidade principal do sensor……………….. 9

Figura 3 – Sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 10

Figura 4 – Resultados da avaliação de sensibilidade e faixa dinâmica de medição……………. 11

Figura 5 – Avaliação da isotropia do sensor na célula TEM até 1 GHz……………… 11

Figura 6 – Configuração de medição para isotropia do campo elétrico tipo diodo convencional com sensor de campo elétrico usando modulador LN…….. ……………….. 12

Figura 7 – Resultados da medição do padrão de sensibilidade do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador LN de acordo com norma IEEE 1309…. ……………… 13

Figura 8 – Características de frequência de isotropia do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador óptico LN………………….. 13

Figura 9 – Representação esquemática do sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe…………… 14

Figura 10 – Representação esquemática do sensor de campo elétrico usando VCSEL, consistindo em uma cabeça de sensor em miniatura que está exclusivamente ligada por meio de fibra óptica a uma unidade remota……………………. 15

Tabela 1 – Especificação do sistema de detecção de campo elétrico de três eixos usando modulador óptico LN……………………… 9

Tabela 2 – Especificação do sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 12

Este documento fornece informações sobre as aplicações atuais e mais recentes para detecção do campo elétrico usando a tecnologia de rádio sobre fibra. Os sistemas de medição de campo elétrico são cobertos e eles estão praticamente em uso ou serão usados em breve. Seria benéfico para desenvolvedores de sistema e usuários de sistema nas áreas de medição de campo elétrico. Por ser um Relatório Técnico, este documento não contém requisitos e é apenas informativo.

BS EN 10217-1: os tubos de aço soldados para pressão

Essa norma europeia, editada em 2019 pelo BSI, abrange os tubos e tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais.

A BS EN 10217-1:2019 – Welded steel tubes for pressure purposes – Technical delivery conditions. Part 1: Electric welded and submerged arc welded non-alloy steel tubes with specified room temperature properties abrange os tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais. Os usuários dessa norma podem ser os projetistas e produtores de tiras de aço, chapas, tubos e tubulações; especificadores, acionistas e distribuidores de tubos de aço; fornecedores de instalações de ensaio e avaliação; e organismos notificados no âmbito do Pressure Equipment Directive (PED).

Conteúdo da norma

Prefácio europeu……………………. 5

1 Escopo……… ……………………. 6

2 Referências normativas…………… 6

3 Termos e definições……………….. 7

4 Símbolos…………. ……………….. 8

5 Classificação e designação……….. 8

5.1 Classificação…………….. ………. 8

5.2 Designação…………….. …………. 8

6 Informações a serem fornecidas pelo comprador……………. …. 9

6.1 Informação obrigatória………………………………… 9

6.2 Opções…………………………….. ………………… 9

6.3 Exemplo de um pedido……………………………….. 10

7 Processo de fabricação………………………………… 10

7.1 Processo siderúrgico………………………………. 10

7.2 Condições de fabricação e entrega do tubo……………. 10

7.3 Requisitos do pessoal de ensaio não destrutivo………….. 12

8 Requisitos………………………….. 12

8.1 Geral……………… 12

8.2 Composição química……………… 12

8.2.1 Análise do fundido…………… 12

8.2.2 Análise do produto……………. 14

8.3 Propriedades mecânicas……………. 14

8.4 Aparência e solidez interna …………… 15

8.4.1 Junção da solda……… …………… 15

8.4.2 Superfície do tubo……….. ……….. 16

8.4.3 Solidez interna…………………….. 16

8.5 Confiabilidade……………. ……… 16

8.6 Preparação dos fins……………………… 16

8.7 Dimensões, massas e tolerâncias… …………….. 17

8.7.1 Diâmetro e espessura da parede………………….. 17

8.7.2 Massa……………………….. …………………….. 17

8.7.3 Comprimentos………………….. ……………….. 17

8.7.4 Tolerâncias………………………. …………. 22

9 Inspeção………………………….. …………. 24

9.1 Tipos e documentos de inspeção …………….. 24

9.2 Conteúdo dos documentos de inspeção…………. 25

9.3 Resumo da inspeção e ensaios. ……………… 26

10 Amostragem…………………. …………… 28

10.1 Frequência dos ensaios…………………. 28

10.1.1 Unidade de ensaio…… ………………. 28

10.1.2 Número de tubos de amostra por unidade de ensaio…………….. 28

10.2 Preparação de amostras e provetes……………. ……….. 28

10.2.1 Seleção e preparação de amostras para análise do produto…………. 28

10.2.2 Localização, orientação e preparação de amostras e provetes para ensaios mecânicos…………………… ………………….. 28

11 Verificação dos métodos de ensaio…………………….. 30

11.1 Análise química……………………………………. 30

11.2 Ensaio de tração no corpo do tubo…………………. 30

11.3 Ensaio de tração transversal na solda…………… 30

11.4 Ensaio de nivelamento………………………… …… 30

11.5 Ensaio de expansão da derivação…………………. 31

11.6 Ensaio de dobra de solda……………………. …… 31

11.7 Ensaio de impacto…………………. ……….. 31

11.8 Ensaio de estanqueidade………………………. 32

11.8.1 Ensaio hidrostático………………………. ….. 32

11.8.2 Ensaio eletromagnético……………………….. 33

11.9 Inspeção dimensional……………………………. 33

11.10 Exame visual…………………………………… 33

11.11 Ensaios não destrutivos……………………. 33

11.11.1 Geral………………………… ………… 33

11.11.2 Tubos EW e HFW…………………………. 33

11.11.3 Tubos SERRA……………………….. ……. 33

11.11.4 Soldas de extremidade de tira em tubos SAWH………………… 34

11.12 Ensaio, classificação e reprocessamento………………….. 34

12 Marcação………………………………………. …………….. 34

12.1 Marcação a ser aplicada……………………………. 34

12.2 Marcação adicional………………………………….. 35

13 Proteção………………………………….. …………. 35

Anexo A (normativo) Qualificação do procedimento de soldagem para tubo de serra TR2 para produção com qualidade………….. 36

A.1 Geral…………………………. ……………….. 36

A.2 Especificação do procedimento de soldagem…………….. 36

A.2.1 Geral………………………….. ……………….. 36

A.2.2 Metal principal…………………… ……….. 36

A.2.3 Preparação da solda…………………………. 36

A.2.4 Fios e fluxos de enchimento…………………. 36

A.2.5 Parâmetros elétricos………………………………….. 37

A.2.6 Parâmetros mecânicos……………………………….. 37

A.2.7 Entrada de calor (kJ/mm) ……………………………. 37

A.2.8 Temperatura de pré-aquecimento …………………..37

A.2.9 Temperatura de interpasse……………………………… 37

A.2.10 Tratamento térmico pós-soldagem………………………. 37

A.2.11 Exemplo de formulário de especificação do procedimento de soldagem………………………. 37

A.3 Preparação do tubo de amostra e avaliação da amostra……….. 38

A.3.1 Tubo para amostra……………………………… ………… 38

A.3.2 Avaliação da amostra………………………………………. 38

A.4 Inspeção e ensaio da solda………. ………………….. 38

A.5 Provas de solda…………………………………… …… 39

A.5.1 Provas de dobra de solda………………….. 39

A.5.2 Macroexame……………………………………….. 39

A.5.3 Ensaio de tração de solda transversal……………. 39

A.5.4 Ensaio de impacto da solda………………….. …. 39

A.6 Métodos de ensaio……………………… ………. 39

A.6.1 Exame visual………………………………….. 39

A.6.2 Ensaio não destrutivo (END)…. ………………. 39

A.6.3 Ensaio de dobra de solda……………… …….. 39

A.6.4 Macroexame………………………………….. 39

A.6.5 Ensaio de tração de solda transversal………… 40

A.6.6 Ensaio de impacto da solda…………………….. 40

A.7 Níveis de aceitação do ensaio…………………….. 40

A.7.1 Exame visual……………………………………. 40

A.7.2 END……………………… ………………. 40

A.7.3 Ensaio de dobra de solda………. …….. 40

A.7.4 Macroexame………………………………… 40

A.7.5 Ensaio de tração de solda transversal………………… 40

A.7.6 Ensaio de impacto da solda………………………. …. 40

A.7.7 Exemplo de documento de resultado do ensaio…………….. 40

A.8 Gama de uso de procedimentos qualificados………… 42

A.8.1 Grupos de materiais…………………………….. … 42

A.8.2 Espessura dos materiais………………………. 42

A.8.3 Classificação do fio de enchimento……………… 42

A.8.4 Fluxo de soldagem………………….. ……….. 42

A.8.5 Outros parâmetros…………………………. 42

A.9 Registro de qualificação………………………..42

Anexo B (informativo) Alterações técnicas da edição anterior……. 43

B.1 Introdução………………………………………. 43

B.2 Alterações técnicas……………………………….. 43

Anexo ZA (informativo) Relação entre esta norma europeia e os requisitos das normas essenciais de 2014/68/UE………………….. 45

Bibliografia………………………… ………………… 46

Essa ajudará os especificadores, designers e outros, definindo as notas para uso nas condições especificadas. Foi preparada sob um mandato conferido ao CEN pela Comissão Europeia e pela Associação Europeia de Comércio Livre para alinhar-se com os requisitos essenciais da Diretiva Equipamentos de Pressão (PED) (2014/68 / UE). As classes de aço e as propriedades das classes de aço carbono e de baixa liga estão alinhadas com as dos tubos sem costura da série BS EN 10216, permitindo que tubos sem costura ou soldados sejam usados em muitos casos.

Os tubos de aço soldados de alta frequência (HFW), às vezes chamados de tubos de aço soldados por resistência elétrica (ERW), e soldados por arco submerso (SAW), estão são cobertos por essa norma. Os tubos HFW são produzidos a partir de tiras de aço e são soldados eletricamente sem o uso de metal de adição. Os tubos SAW são produzidos a partir de chapa de aço e são soldados por fusão usando consumíveis de soldagem apropriados. Em geral, os tubos HFW são produzidos com até 610 mm de diâmetro externo, enquanto os tubos SAW normalmente não são produzidos em diâmetros abaixo de 406,4 mm.

Os tubos e canos de aço BS EN 10217 podem ser usados para uma ampla gama de aplicações, desde serviços de construção a requisitos industriais críticos que envolvam gás ou produtos químicos ou produção de válvulas ou conexões. Portanto, é muito importante que o especificador, projetista ou usuário selecione o tipo e a classe de tubo mais adequados para atender aos seus requisitos das sete partes dessa série dessa norma. A atualização de 2019 buscou refletir as práticas atuais do setor, buscou atualizar as referências, em particular no que diz respeito aos requisitos de ensaio e avaliação. Além das classes TR1, está alinhado com os requisitos essenciais do PED (2014/68/EU).

A execução de obras com tubos pré-moldados de concreto

Saiba quais são os os requisitos para a execução de obras com tubos pré-moldados de concreto conforme a NBR 8890, aduelas (galerias celulares) pré-moldadas de concreto conforme a NBR 15396, galerias técnicas conforme a NBR 16584 e poços de visita para inspeção conforme a NBR 16085.

A NBR 15645 de 07/2020 – Execução de obras utilizando tubos e aduelas pré-moldados em concreto estabelece os requisitos para a execução de obras com tubos pré-moldados de concreto conforme a NBR 8890, aduelas (galerias celulares) pré-moldadas de concreto conforme a NBR 15396, galerias técnicas conforme a NBR 16584 e poços de visita para inspeção conforme a NBR 16085. Esta norma é aplicável à execução de redes de drenagem pluvial, coletores, interceptores e emissários de esgoto sanitário, que trabalhem sem pressão interna e cujo líquido conduzido seja água de chuva, esgotos domésticos ou efluentes industriais. Adicionalmente, esta norma se aplica à execução de redes de galerias técnicas para passagem de redes de telecomunicação, telefonia, fibra ótica, água fria, gás, eletricidade e demais serviços correlatos, realizadas com tubos, aduelas ou galerias técnicas pré-moldados em concreto. Esta norma não se aplica a execução de obras por métodos não destrutivos com tubos cravados mecanicamente (pipe jacking).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executada a descarga dos produtos?

Qual a altura máxima de empilhamento?

O que deve ser observado no levantamento ou rompimento do pavimento?

Qual deve ser a largura de vala para os tubos de concreto?

As obras devem obedecer rigorosamente às plantas, desenhos e detalhes de projeto, às recomendações específicas dos fabricantes dos materiais a serem empregados e aos demais elementos que a fiscalização venha a fornecer. Em caso de divergência de informações de projeto, o projetista deve ser consultado. Todos os aspectos particulares encontrados na execução da obra e possíveis interferências devem ser comunicados à fiscalização ou contratante para as devidas providências.

A construção deve ser acompanhada pela fiscalização ou contratante. O material a ser fornecido e aplicado deve obedecer às normas brasileiras pertinentes. Deve ser respeitada a legislação ambiental vigente. A demarcação e o acompanhamento dos serviços a serem executados devem ser efetuados por equipe de topografia. Qualquer serviço que não seja projetado e especificado não pode ser executado sem autorização da fiscalização ou contratante da obra, exceto os eventuais de emergência, necessários à estabilidade e segurança da obra e do pessoal envolvido.

O construtor deve manter no escritório da obra as plantas, perfis e especificações de projeto para consulta de seu preposto e da fiscalização ou contratante. As frentes de trabalho devem ser programadas em comum acordo com a entidade a quem cabe a autorização para a abertura de valas e remanejamento do tráfego. O construtor deve providenciar a sinalização da obra, segundo as legislações vigentes e órgãos competentes.

Não é permitido o bloqueio, obstrução ou eliminação de canalizações existentes, salvo nos casos em que o interessado apresentar projeto para análise do responsável pela interferência, que forneça a aprovação, mediante termo circunstanciado. O construtor deve observar a legislação do Ministério do Trabalho que determina obrigações no campo da segurança, higiene e medicina do trabalho.

O construtor é responsável quanto ao uso obrigatório e correto pelos operários dos equipamentos de proteção individual de acordo com as normas de serviço de segurança, higiene e medicina do trabalho. O construtor deve promover, por sua conta, o seguro de prevenção de acidentes de trabalho, dano de propriedade, fogo, acidente de veículos, transporte de materiais e outro tipo de seguro que achar conveniente. Caso seja necessário o uso de explosivos, o construtor deve obedecer às normas específicas de segurança e controle para armazenamento de explosivos e inflamáveis, estabelecidas pelos órgãos responsáveis.

O uso de explosivos deve ser executado por profissional devidamente habilitado e autorizado previamente pelos órgãos responsáveis, cabendo ao construtor tomar as providências para eliminar a possibilidade de danos físicos e materiais. O encargo pela contratação da obra é do proprietário da obra, no caso de obra privada, ou do administrador contratante, no caso de obra pública. A contratação da obra deve cumprir as especificações desta norma. A documentação comprobatória do cumprimento desta norma (projeto, relatórios de ensaio, laudos e outros) deve estar disponível no canteiro de obra, durante toda a construção, e deve ser arquivada e preservada pelo prazo previsto na legislação vigente.

Cabe ao encarregado pela execução as seguintes responsabilidades, a serem explicitadas nos contratos: atendimento a todos os requisitos de projeto, inclusive quanto à escolha dos materiais a serem empregados, devendo qualquer alteração ser submetida previamente à aprovação da fiscalização; aceitação dos tubos, aduelas e poços de visita de concreto, com base em inspeção visual e recebimento de laudos de inspeção dos lotes fornecidos, conforme as NBR 8890, NBR 15396 e NBR 16085, e apresentação de projeto estrutural específico, elaborado por responsável técnico e acompanhado da respectiva ART; cuidados requeridos pelo processo construtivo de todas as etapas da obra; cumprimento das especificações das normas de segurança, com fornecimento e fiscalização da utilização de equipamentos de proteção individual (EPI) por parte de todos os envolvidos na execução da obra; sinalização das obras conforme projeto e autorização específica do poder público competente; apresentação de projeto executivo final da obra (as-built).

A documentação relativa ao cumprimento das especificações de projeto e das normas brasileiras deve ser disponibilizada no canteiro de obras durante o prazo de execução da obra. Cabem à fiscalização as seguintes responsabilidades, a serem explicitadas nos contratos: acompanhar a execução da obra com base no projeto; verificar se o recebimento dos tubos, aduelas e poços de visita de concreto está de acordo com as especificações das NBR 8890, NBR 15396 e NBR 16085, respectivamente; interromper a execução da obra quando do não cumprimento das especificações de projeto, normas técnicas ou outras situações que comprometam a qualidade e segurança da obra; verificar a necessidade de ensaios para avaliação das etapas da obra antes da liberação dos trechos para operação; emitir parecer referente ao recebimento definitivo da obra.

Cabem ao projetista as seguintes responsabilidades, a serem explicitadas nos contratos e em todos os desenhos e memoriais descritivos: cumprir as especificações das normas brasileiras na execução de projetos de redes coletoras de esgoto sanitário, interceptores, galerias de águas pluviais, canalizações de córregos e afins. No caso de uso de especificações do órgão contratante, estas devem atender no mínimo aos requisitos desta norma.

Deve especificar o tipo de utilização, o grau de agressividade do meio externo, o diâmetro nominal ou seção do conduto, a classe de resistência (no caso dos tubos de concreto) e a carga total existente (no caso das aduelas), a altura de aterro, o tipo de junta, o tipo de encaixe e qualquer outro parâmetro que possa afetar a composição ou a utilização a rede de modo satisfatório, visando a durabilidade e a funcionalidade. Também deve especificar o tipo de envolvimento a ser dado à tubulação, com indicação das características do solo de base e reaterro, assim como detalhes executivos de passagens notáveis e base de apoio das tubulações e especificar a declividade e o posicionamento da tubulação, profundidades, cobrimentos mínimos, pontos de passagem obrigatórios, interferências de qualquer natureza, tipo de pavimento, tipo da base de apoio da tubulação e tipo de rebaixamento do lençol freático. Deve desenvolver o projeto executivo de escoramento de vala.

O fabricante de tubos, aduelas e/ou poços de visita de concreto são responsáveis pela qualidade dos produtos por ele fornecidos à obra. Estes produtos devem cumprir as especificações das NBR 8890, NBR 15396 e NBR 16085, conforme o caso. A documentação relativa ao cumprimento das especificações das normas brasileiras deve ser disponibilizada para o responsável pela obra e também arquivada na empresa fabricante de tubos, aduelas e/ou poços de visita de concreto durante o prazo previsto na legislação vigente.

A contratada, antes de iniciar qualquer trabalho, deve providenciar, para aprovação da fiscalização, a planta geral do canteiro, indicando localização do terreno; acessos; redes de água, esgoto, energia elétrica, telefone e outros; localização e dimensão de todas as edificações. A segurança, a guarda e a conservação de todo o material, equipamentos, ferramentas, utensílios e instalações das obras são de responsabilidade da contratada. A contratada deve manter livre o acesso aos extintores, mangueiras e demais equipamentos situados no canteiro, a fim de combater eficientemente o fogo no caso de incêndio, ficando proibida a queima de qualquer espécie de material no local da obra.

Os EPI e os equipamentos de proteção coletiva (EPC) devem ser armazenados de forma adequada e ser de uso obrigatório na obra, conforme norma regulamentadora NR 6 do Ministério do Trabalho. Por ocasião da entrega dos tubos, aduelas e poços de visita de concreto, a fiscalização deve estar presente na obra para verificar o material e supervisionar a sua descarga e estocagem. Os tubos, aduelas e poços de visita de concreto e seus acessórios devem ser entregues na obra, acompanhados dos relatórios de inspeção.

O comprador deve ter livre acesso aos locais em que as peças encomendadas estejam estocadas, podendo, a seu critério, acompanhar o processo produtivo e os ensaios para recebimento dos produtos previstos nas normas NBR 8890, NBR 15396 e NBR 16085. A inspeção pode ser feita diretamente pelo comprador ou por inspetor credenciado. O fornecedor deve proporcionar todas as facilidades para que o inspetor possa certificar-se de que as peças estão em conformidade com as normas pertinentes.

Os tubos, aduelas e poços de visita de concreto que, por meio de verificação visual, apresentarem danos além dos limites estabelecidos nas NBR 8890, NBR 15396 ou NBR 16085, conforme o caso, no momento de sua utilização, devem ser rejeitados. Caso o construtor receba e aplique tubos, aduelas, poços de visita e seus acessórios recebidos danificados ou sem exigência de inspeção (ver NBR 8890, NBR 15396 ou NBR 16085, conforme o caso), a responsabilidade por qualquer problema executivo decorrente do material aplicado ou sinistro na obra é de seu inteiro encargo.

As orientações sobre a classificação de gases e vapores

Conheça as orientações sobre a classificação de gases e vapores e um método de ensaio destinado à medição do interstício máximo experimental seguro (Maximum Experimental Safe Gap – MESG) para misturas de gases ou vapores com o ar sob condições normais de temperatura e pressão (20 °C, 101,3 kPa), de forma a permitir a seleção de um grupo de equipamento apropriado.

A NBR ISO/IEC 80079-20-1 de 07/2020 – Atmosferas explosivas – Parte 20-1: Características de substâncias para classificação de gases e vapores — Métodos de ensaios e dados apresenta orientações sobre a classificação de gases e vapores. Descreve um método de ensaio destinado à medição do interstício máximo experimental seguro (Maximum Experimental Safe Gap – MESG) para misturas de gases ou vapores com o ar sob condições normais de temperatura e pressão (20 °C, 101,3 kPa), de forma a permitir a seleção de um grupo de equipamento apropriado. Esta norma descreve também um método de ensaio para a determinação da temperatura de autoignição (Auto-Ignition Temperature – AIT) de misturas vapor-ar ou misturas gás-ar, à pressão atmosférica, de forma a permitir a seleção de uma classe de temperatura de equipamentos apropriada.

Os valores das propriedades químicas dos materiais são apresentados para auxiliar na seleção dos equipamentos a serem utilizados em atmosferas explosivas. Dados adicionais podem ser incluídos à medida que resultados de ensaios validados se tornarem disponíveis. Os materiais e as características indicadas na Tabela B.1, disponível na norma (ver Anexo B), foram selecionados com particular referência à utilização de equipamentos em atmosferas explosivas. Os dados indicados nesta norma foram coletados a partir de diversas referências, as quais são indicadas na Bibliografia. Estes métodos para a determinação do MESG e da AIT podem também ser utilizados para misturas gás-ar inerte ou vapor ar inerte. No entanto, os dados de misturas inertes não são indicados na tabela.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feita a verificação do método de determinação do MESG?

O que é um vaso de ensaio e suporte para o ensaio de temperatura de autoignição (AIT)?

Quais os dispositivos de medição a ser usados no ensaio de temperatura de autoignição?

Quais os requisitos que os componentes necessários para o ensaio devem atender?

Os equipamentos de Grupo I são para utilização em minas suscetíveis de ocorrência de grisu. Grisu consiste principalmente em metano de mineração, mas sempre contém pequenas quantidades de outros gases, como nitrogênio, dióxido de carbono e hidrogênio, e algumas vezes etano e monóxido de carbono. Os termos grisu e metano são frequentemente utilizados como sinônimos na indústria de mineração.

Os equipamentos de Grupo II são para utilização em gases e vapores inflamáveis, excluindo as minas suscetíveis de ocorrência de grisu. Os equipamentos de Grupo II para gases e vapores são definidos em subgrupos de acordo com o seus MESG ou MIC, em equipamentos dos subgrupos IIA, IIB e IIC. Todos os materiais inflamáveis são definidos em classes de temperatura de acordo com as suas temperaturas de autoignição.

Os gases e os vapores podem ser definidos de acordo com os seus MESG em subgrupos IIA, IIB e IIC, com base no método de determinação descrito nesta norma. De modo a assegurar resultados padronizados, o equipamento do MESG é dimensionado para evitar possíveis efeitos externos por obstrução aos interstícios seguros. O método padronizado para a determinação do MESG é o descrito em 6.2, porém, quando as determinações tiverem sido realizadas somente em um vaso esférico de 8 L, com ignição próxima do interstício do flange, estas determinações podem ser inicialmente aceitas.

O projeto de um equipamento de ensaio para a determinação do interstício seguro, que não utilize a caixa de ensaio padrão para a determinação do subgrupo de um gás específico, pode necessitar ser diferente daquele descrito nesta norma. Por exemplo, o volume da caixa de ensaio, dimensões dos discos, concentração do gás, e pode ser necessário que a distância entre os discos e qualquer parede externa ou barreiras sólidas seja ajustável. Como o projeto depende da pesquisa a ser desenvolvida, é impraticável recomendar requisitos específicos de projeto, mas para as principais aplicações ainda são válidos os princípios gerais e precauções indicados nesta norma.

São indicadas na NBR IEC 60079-14 as distâncias mínimas entre uma junta flangeada à prova de explosão e barreiras sólidas, de acordo com o grupo de equipamento a ser aplicado em uma área classificada. Para definição dos subgrupos, os limites do MESG são: Grupo do equipamento IIA: MESG ≥ 0,90 mm; Grupo do equipamento IIB: 0,50 < MESG < 0,90 mm; Grupo do equipamento IIC: MESG ≤ 0,50 mm. A determinação de ambos os parâmetros, MESG e relação MIC, é necessária quando 0,50 < MESG < 0,55. Então o grupo do equipamento é determinado pela relação MIC.

Para gases e líquidos altamente voláteis, o MESG é determinado a 20°C. Se for necessário realizar a determinação do MESG a temperaturas mais elevadas do que a temperatura ambiente, é utilizada uma temperatura 5 K acima da necessária para fornecer a pressão de vapor ou 50 K acima do ponto de fulgor; este valor do MESG é indicado na tabela e a definição do grupo de equipamento é com base neste resultado. Subgrupos dos gases e vapores IIA, IIB e IIC podem ser definidos de acordo com a relação entre a corrente mínima de ignição (MIC) e a corrente de ignição do metano de laboratório.

A pureza do metano de laboratório não pode ser menor do que 99,9% por volume. O método normalizado para a determinação da relação entre MIC é com base no equipamento de ensaio descrito na NBR IEC 60079-11, porém, quando as determinações tiverem sido obtidas em outros equipamentos de ensaio, os resultados podem ser inicialmente aceitos. Para definição dos subgrupos, as relações entre MIC são: Grupo do equipamento IIA: MIC > 0,80; Grupo do equipamento IIB: 0,45 ≤ MIC ≤ 0,80; Grupo do equipamento IIC: MIC < 0,45.

A determinação de ambos os parâmetros, MESG e relação MIC, é necessária quando 0,70 < MIC < 0,90 ou 0,40 < MIC < 0,50. Então o grupo do equipamento é determinado pelo MESG. Quando um gás ou vapor é um membro de uma série de componentes equivalentes, a determinação do subgrupo do gás ou vapor pode ser inicialmente inferida a partir dos dados de outros membros vizinhos da série.

A definição do subgrupo de acordo com a similaridade de sua estrutura química não é permitida, se a definição de subgrupo do membro vizinho for com base no MESG e a outra com base na relação MIC.

O gás de coqueria é uma mistura de hidrogênio, monóxido de carbono e metano. Se a soma das concentrações (em % volume) de hidrogênio e monóxido de carbono for menor que 75 % do volume total, é recomendada a utilização de equipamentos com o tipo de proteção “Ex” adequado para o Grupo IIB. Caso contrário, é recomendada a utilização de equipamentos “Ex” do Grupo de equipamentos IIC.

A temperatura de autoignição do nitrito de etila é 95 °C, acima da qual o gás sofre uma decomposição explosiva. Não confundir nitrito de etila com o seu isômero, o nitroetano. O MESG do monóxido de carbono está relacionado a uma mistura de ar saturado com umidade na temperatura ambiente normal. Esta determinação indica a utilização de equipamento “Ex” do Grupo de equipamento IIB na presença de monóxido de carbono. Um MESG maior pode ser observado com níveis de umidade mais baixos.

O MESG mais baixo (0,65 mm) é observado para uma mistura de CO/H2O próxima de 7:1 (razão molar). Pequenas quantidades de hidrocarboneto na mistura monóxido de carbono/ar têm um efeito similar na redução do MESG, de forma a serem requeridos equipamentos “Ex” do Grupo de equipamento IIB. O metano industrial, como o gás natural, é classificado como Grupo de equipamento IIA, desde que este não contenha mais que 25 % de volume de hidrogênio. Uma mistura de metano com outras substâncias do Grupo de equipamento IIA, em qualquer proporção, é classificada como Grupo de equipamento IIA.

IEC 60079-25: os sistemas elétricos intrinsecamente seguros em atmosferas explosivas

Essa norma, editada em 2020 pela International Electrotechnical Commission (IEC), estabelece os requisitos específicos para a construção e a avaliação de sistemas elétricos intrinsecamente seguros, tipo de proteção “i”, destinados a serem utilizados, integralmente ou em parte, em locais onde a utilização de equipamento dos Grupos I, II ou III é requerida.

A IEC 60079-25:2020 – Explosive atmospheres – Part 25: Intrinsically safe electrical systems estabelece os requisitos específicos para a construção e a avaliação de sistemas elétricos intrinsecamente seguros, tipo de proteção “i”, destinados a serem utilizados, integralmente ou em parte, em locais onde a utilização de equipamento dos Grupos I, II ou III é requerida. Complementa e modifica os requisitos gerais da IEC 60079-0 e a norma de segurança intrínseca IEC 60079-11.

Quando um requisito desta norma entra em conflito com um requisito da IEC 60079-0 ou IEC 60079-11, o requisito desta norma tem precedência. Os requisitos de instalação dos sistemas do grupo II ou do grupo III projetados de acordo com esta norma estão especificados na IEC 60079-14. Esta terceira edição cancela e substitui a segunda edição publicada em 2010 e constitui uma revisão técnica.

Conteúdo da norma

PREFÁCIO……………………….. 4

1 Escopo.. ………………………. 9

2 Referências normativas…….. 9

3 Termos e definições…………. 9

4 Documento descritivo do sistema……………… 11

5 Classificação de agrupamento e temperatura…………… 11

6 Níveis de proteção……………….. 11

6.1 Geral………………………………. 11

6.2 Nível de proteção “ia”………………… 12

6.3 Nível de proteção “ib”……………… 12

6.4 Nível de proteção “ic”……………. 12

7 Circuitos não intrinsecamente seguros……….. 12

8 Fiação/cabos de interconexão usados em um sistema intrinsecamente seguro……………………. 12

8.1 Geral……………………………….. 12

8.2 Cabos que contêm um único circuito intrinsecamente seguro…………… 12

8.3 Cabos contendo mais de um circuito intrinsecamente seguro……………. 12

9 Requisitos para cabos simples e multicircuitos………….. 13

9.1 Geral……………………………… 13

9.2 Resistência dielétrica……………………. 13

9.2.1 Cabos que contêm um único circuito intrinsecamente seguro……………….. .13

9.2.2 Cabos que contêm mais de um circuito intrinsecamente seguro …………………… 13

9.3 Parâmetros de segurança intrínseca dos cabos……….. 13

9.4 Realização de telas………………….. 14

9.5 Tipos de cabos de múltiplos circuitos………………. 14

9.5.1 Geral………………………………….. 14

9.5.2 Cabo tipo A…………………….. 14

9.5.3 Cabo tipo B……………………… 14

9.5.4 Cabo tipo C……………………… 14

10 Armários………………………….. 14

11 Aterramento e ligação de sistemas intrinsecamente seguros…………… 14

12 Avaliação de um sistema intrinsecamente seguro…………….. 15

12.1 Geral………… 15

12.2 Sistemas contendo apenas aparelhos certificados pela IEC 60079-11………………. 15

12.3 Sistemas que contêm aparelhos não avaliados separadamente conforme IEC 60079-11………… 15

12.4 Sistemas contendo uma única fonte de energia………. 15

12.5 Sistemas contendo mais de uma fonte de energia……. 16

12.5.1 Geral……………….. 16

12.5.2 Sistemas contendo fontes de energia lineares e não lineares……………….. 16

12.6 Aparelho simples……………………. 18

12.7 Avaliação da capacitância, indutância e L/R do cabo………………18

12.7.1 Geral….. ……… 18

12.7.2 Parâmetros não especificados…………………. 18

12.7.3 Ajustes dos parâmetros de saída para o nível de proteção……………… 18

12.7.4 Efeito da capacitância e da indutância combinadas.. 18

12.7.5 Determinação de L/R…………………. 18

12.8 Falhas nos cabos de múltiplos circuitos…………. 19

12.9 Verificações e ensaios de tipo…………………. 19

13 Sistemas predefinidos………………….. 19

Anexo A (informativo) Avaliação de um sistema intrinsecamente seguro simples……………. 20

Anexo B (informativo) Avaliação de circuitos com mais de uma fonte de energia…………. 22

Anexo C (informativo) Interconexão de circuitos intrinsecamente seguros não lineares e lineares…… 25

C.1 Geral…………………. 25

C.2 Avaliação das características de saída das fontes de energia ………………………. 25

C.3 Avaliação das características das possibilidades de interconexão e saída………… 28

C.4 Determinação da segurança intrínseca e uso de gráficos…………….. 31

C.5 Verificação em oposição à IEC 60079-11…………… 33

C.6 Ilustração do procedimento………………………… 33

C.7 Curvas de limite para característica de fonte universal……………….. 37

Anexo D (informativo) Verificação de parâmetros indutivos…………………….. 48

Anexo E (informativo) Exemplo de formato para um documento descritivo do sistema………….. 50

Anexo F (informativo) Uso de aparelhos simples em sistemas……………………. 52

F.1 Geral……….. …………….. 52

F.2 Uso de aparelhos com ‘aparelhos simples’…………. 53

Anexo G Sistemas FISCO (normativos)…………… 54

G.1 Geral………………………………… 54

G.2 Requisitos do sistema…………….. 54

G.2.1 Geral…………………………. 54

G.3 Requisitos adicionais dos sistemas FISCO “ic”………..55

Bibliografia………………….. 57

Uma lista de todas as partes da série IEC 60079, publicada sob o título geral Atmosferas explosivas, pode ser encontrada no site da IEC. O comitê decidiu que o conteúdo desta publicação permanecerá inalterado até a data de estabilidade indicada no site da IEC em “http://webstore.iec.ch&#8221; nos dados relacionados à publicação específica. Nesta data, a publicação será reconfirmada, retirada, substituída por uma edição revisada ou alterada.