As características normativas obrigatórias dos cabos de fibra

Nos cabos de fibra, a sobreposição de pernas é a continuação sobreposta, em um cabo trançado, de apenas uma perna interrompida (ou de múltiplas pernas) com outra perna idêntica que segue um caminho idêntico na trança. A resistência à ruptura mínima (minimum breaking strength – MBS) é a força que o cabo de fibra deve atingir no mínimo ao ser ensaiado conforme um procedimento ou método de ensaio reconhecido. O MBS é estabelecido por cada fabricante, pelos seus próprios métodos estatísticos baseados em ensaios de ruptura.

Os fabricantes devem fornecer as informações detalhadas sobre o uso e manutenção de cabos. Recomenda-se que eles forneçam uma etiqueta de advertência, sempre que razoável, para alertar os usuários sobre práticas perigosas. Por exemplo, Ao se remover um cabo de uma bobina, recomenda-se que se inicie com a ponta a partir da parte interna.

O cabo deve ser seja desenrolado no sentido anti-horário. Se o cabo for puxado no sentido horário, ocorrerão dobras. Se isso acontecer, colocar o trecho do cabo de volta na bobina, virá-la para o outro lado e puxar o trecho do cabo a partir do centro novamente. O cabo deve ser desenrolado no sentido anti-horário a fim de ficar livre de dobras.

Uma maneira melhor ainda de desenrolar o cabo é o uso de uma mesa rotativa. O cabo pode ser então desenrolado a partir da ponta externa. Um pequeno comprimento do cabo também pode ser desenrolado no piso.

Recomenda-se que a relação D/d, onde D é o diâmetro das polias e d é o diâmetro do cabo, exceda 5 em todos os casos, mas possa chegar a 20 para certas fibras de alta performance. Muitas aplicações ou tipos de cabos exigem uma alta relação D/d, especialmente para operações de içamento, sendo que fatores de segurança maiores são apropriados. Independentemente do diâmetro da polia, a vida útil do cabo também depende do projeto e das dimensões do canal.

Se o canal da polia for demasiadamente estreito, o cabo pode travar e as pernas e as fibras podem não flexionar adequadamente, prejudicando a vida útil do cabo. Por outro lado, o canal da polia largo demais também é prejudicial à vida útil do cabo devido ao achatamento das pernas e dos fios.

Para cabos sintéticos, recomenda-se que o diâmetro do canal seja de 10% a 15% superior ao diâmetro nominal do cabo. O cabo será apoiado da melhor forma possível se o arco de contato com o contorno do canal for de 150°. A altura dos canais deve ser no mínimo 1,5 vez o diâmetro do cabo, a fim de impedir que o cabo saia da polia. As voltas excessivas podem causar dobras8 em qualquer cabo, mas os encabritamentos só ocorrem em cabos torcidos básicos.

Os cabos trançados podem não se encabritar, pois sua construção de pernas intertravadas impede que sejam destorcidos. As pernas são dispostas em ambos os sentidos criando um equilíbrio livre de torque, eliminando, assim, qualquer tendência inerente de torção ou rotação. Deve-se remover as voltas excessivas (dobras) em um cabo por meio da rotação em seu sentido contrário em uma condição de relaxamento assim que possível.

Uma vez formados os encabritamentos, o cabo terá perdido a resistência à ruptura, até mesmo quando o encabritamento for desfeito. O dano é irreversível e a perda da resistência pode chegar a 30%. Não se deve permitir a formação de dobras no cabo. Caso isso ocorra, é sinal de que a torção foi adquirida ou perdida no cabo e se recomenda que as dobras sejam retiradas do cabo a partir de uma ponta.

Essa recomendação se aplica tanto a cabos torcidos quanto aos trançados. As dobras são especialmente graves no caso de cabos torcidos, pois podem ocorrer danos graves caso não se preste atenção a este problema. Recomenda-se que as tentativas de eliminar as dobras jamais envolvam o puxamento do cabo em uma tentativa de forçar o desdobramento. Isso pode provocar a destorção das pernas,

Ocorrerá uma situação de perigo se o pessoal estiver próximo a um cabo sob tensão excessiva. Caso ocorra a falha do cabo, ele provavelmente se enrolará novamente com uma força considerável (efeito chicote), podendo ser fatal. As pessoas devem ser advertidas a não se posicionarem próximas ao eixo do cabo ou em sua parte do meio.

Os requisitos de utilização precisam ser considerados durante o projeto, a fabricação e o uso dos cabos de fibra. Os aspectos a serem observados são aspectos como a resistência a produtos químicos; as restrições devidas à temperatura; a suscetibilidade ao corte e à abrasão; a degradação devida à radiação ultravioleta; o dobramento estático sobre, por exemplo, uma ferragem disponível; os dobramentos repetidos sobre polias; a compressão axial; fatiga à tração; e o alongamento irreversível durante o tempo induzido por carregamento constante (fluência).

Os seguintes aspectos são para serem considerados em relação a inspeção e manutenção: critérios para descarte, incluindo ausência/danos de etiqueta e marcação ilegível; e os registros de inspeção. Assim, antes do trecho de um cabo ser colocado em uso, todo o comprimento, incluindo os olhais trançados e a emenda de topo, deve ser inspecionado por uma pessoa qualificada. Recomenda-se que essa inspeção seja realizada para a detecção dos tipos de danos descritos na norma. Recomenda-se que os detalhes de toda inspeção sejam registrados incluindo a data, o dano, o local e as conclusões.

Alguns tipos de cabos desenvolverão uma aparência felpuda ou aveludada como resultado do atrito sobre uma superfície rugosa. Isso é perfeitamente normal e não causará uma perda de resistência significativa no cabo. O desgaste excessivo é indicado pela remoção de uma grande parte das seções transversais dos fios na parte externa do cabo. Tal desgaste é geralmente visto mais claramente nas cristas das pernas e na parte interna das costuras dos olhais, particularmente sob o sapatilho de um cabo.

Quando os cabos tiverem sido usados em um ambiente abrasivo, as partículas abrasivas podem penetrar em seu centro. É importante abrir o cabo e inspecioná-lo entre as pernas para se definir se tal dano está ocorrendo e deve-se fazer esse exame com muito cuidado para evitar o empenamento e a distorção das pernas que, por sua vez, podem causar problemas posteriormente.

A presença de grandes quantidades de materiais particulados nas fibras do centro do cabo indica que a substituição pode ser necessária. Os cabos podem estar sujeitos à compressão axial, especialmente os que tenham uma capa trançada ou extrudada sobre uma alma interna que carregue uma carga sujeita a compressão axial, conforme manifestado pelos vincos de filamentos (fibrilas). Isto ocorre principalmente em cabos com almas com passo longo (trançadas) em uma capa muito apertada quando estão sujeitas ao curvamento enquanto estão sob tração (como ocorre em cabeços e guias de cabos – fairleads).

Em casos graves, o cabo terá protuberâncias em áreas nas quais os vincos estiverem concentrados (protuberâncias frequentemente se repetem em um comprimento de ciclo uniforme). Se a alma interna puder ser inspecionada, vincos de filamentos de fibras dobradas ou fios que tiverem uma aparência de um Z podem ser vistos. Se o dano for grave, os filamentos nos pontos Z podem ser cortados com uma faca.

Se a capa não puder ser aberta para inspeção interna, ou ensaios destrutivos podem ser as únicas formas de avaliação. Os danos mecânicos sempre reduzem a resistência de um cabo. A perda de resistência dependerá da gravidade do dano. Deve-se lembrar que os danos mecânicos, especialmente o desgaste por atrito, sempre terão um efeito mais pronunciado em um cabo de menor diâmetro do que em um cabo de maior diâmetro.

Os cortes requerem um exame cuidadoso para verificar a sua profundidade, e, dessa forma, a extensão da seção transversal danificada. Para cabos com capa, em que esta não suporte a carga, um corte que não danifica a alma provavelmente não afetará a resistência. Porém, uma deformação na alma ou alma saltada poderia ocorrer com o uso subsequente se a capa não for reparada.

As almas podem se deslocar para a capa e se recomenda que uma maior inspeção quanto à proximidade dos danos seja realizada a fim de assegurar a integridade da alma. Os cortes para almas podem causar outros efeitos adversos como dificuldades em manusear, inabilidade em deslizar pelos acessórios suavemente, expondo a alma a partículas abrasivas.

Sugere-se que sejam adotadas as diretrizes descritas a seguir para a estimativa de danos e da degradação da resistência ocasionada pelo desgaste normal. É importante entender que um cabo perderá a sua resistência durante o uso em qualquer aplicação. Os cabos são ferramentas de trabalho importantes e, se usados devidamente, prestarão serviço consistentes e confiáveis.

O custo da reposição de um cabo é extremamente limitado quando comparado aos danos físicos ou lesões pessoais que podem ser provocados por um cabo desgastado. Antes da inspeção, identificar o cabo por sua etiqueta ou marcação permanente, consultando

quaisquer registros de inspeção anteriores. Inspecionar visualmente o cabo em toda a sua extensão, identificando quaisquer áreas que exijam uma investigação mais aprofundada.

Deve-se inspecionar também as terminações trançadas para assegurar que estejam na condição conforme fabricada. Em cabos de fibra sintética, o grau da perda de resistência devida à abrasão e/ou ao dobramento está diretamente relacionado com a quantidade de fibra rompida na seção transversal do cabo. Após cada uso, observar e apalpar todo o comprimento do cabo à procura de áreas de abrasão, brilhantes ou vitrificadas, diâmetros inconsistentes, descoloração, inconsistências na textura e rigidez.

É importante compreender as características construtivas do cabo em uso. A maioria dos cabos é projetada para ter características especificamente destinadas à sua aplicação. Estas características podem gerar equívocos durante as inspeções visuais. Quando um cabo tem uma capa trançada, é possível apenas inspecionar visualmente a capa.

Em construções de cabos trançados e de oito pernas, as partes de superfícies proeminentes de cada perna são expostas de maneira intermitente. Assim, essas zonas, que normalmente são conhecidas como as cristas, estão sujeitas a danos. Os cabos trançados de 12 pernas são semelhantes ao cabo de oito pernas mencionado anteriormente.

Contudo, as cristas das pernas são menos proeminentes e, portanto, menos suscetíveis a danos superficiais. A construção de cabos de dupla trança possui uma alma interna independente, apresentando aproximadamente 50% da resistência total do cabo. Como essa alma não está sujeita à abrasão da superfície e ao desgaste, tende a reter um grande percentual de sua resistência original durante um período de tempo mais longo. Assim, o desgaste nas pernas da superfície não constitui um percentual de perda de resistência tão grande quanto em outras construções.

A NBR ISO 9554 de 08/2022 – Cabos de fibra – Especificações gerais especifica as características gerais de cabos de fibra e seus materiais constituintes. Pretende-se que seja usada em conjunto com as normas dos tipos individuais de cabo de fibra, que tratam das propriedades físicas e dos requisitos específicos desses tipos de produtos. Este documento também fornece algumas informações sobre o uso de cabos de fibra, bem como sobre sua inspeção e critérios de descarte. Este documento não pretende abordar todas as questões de segurança associadas à sua utilização.

Os seguintes materiais são considerados neste documento: fibras naturais: sisal; manilha; cânhamo; algodão. Fibras sintéticas: poliamida, PA; poliéster, PES; polipropileno, PP; polietileno, PE; poliolefina mista, PP/PE; fibras combinadas de poliéster e poliolefina; polietileno de alto módulo, HMPE; para-aramida, AR; poliarilato, LCP; e polioxazol, PBO. As características típicas destes materiais são apresentadas no Anexo A. Recomenda-se, para as aplicações específicas, que sejam realizadas discussões técnicas com os fabricantes do cabo.

A menos que especificado em contrário, os cabos torcidos de três, quatro e seis pernas devem ter torção Z (torção à direita), sendo suas pernas construídas com torção S e seus fios com torção Z. Os cabos trançados de oito pernas devem ser constituídos de quatro pernas com torção S e quatro pernas com torção Z, dispostas de modo que as pernas com torção S alternem (individualmente ou em pares) com as pernas com torção Z (individualmente ou em pares).

Os cabos trançados de 12 pernas devem ser constituídos de seis pernas com torção S e seis pernas com torção Z, dispostas de modo que as pernas com torção S alternem (individualmente ou em pares) com as pernas com torção Z (individualmente ou em pares). Um cabo de dupla trança deve ser constituído de várias pernas que são trançadas para formar uma alma, em torno da qual pernas adicionais são trançadas para formar uma capa.

A alma se situa coaxialmente dentro da capa. O número de pernas varia em função do tamanho do cabo. Um cabo com capa consiste em uma alma protegida por uma cobertura sem contribuição para suportar cargas. Uma construção de cabos paralelos é um cabo com capa cuja alma consiste em um número de subcabos.

Cada perna deve ser composta do mesmo número de fios de cabo suficientes para assegurar as características especificadas na norma internacional para o produto em questão. Para cabos com número de referência igual ou superior a 36, o número de fios em cada perna pode variar em um fio ou ± 2,5% em relação ao número previsto de fios na perna.

Os cabos e suas pernas devem ser contínuos, sem emendas para comprimentos fornecidos padronizados ou comprimentos menores. Porém, alguns comprimentos ou métodos de fabricação impõem limitações. A fim de superar essas limitações, sobreposições de pernas podem ser utilizadas, sendo que estas devem estar de acordo com essa norma. Os fios podem ser emendados conforme necessário. As pernas podem ser formadas por fios emendados.

O fabricante deve determinar o passo do cordão ou o paço de trança do cabo de acordo com a aplicação à qual se destina ou conforme o especificado pelo comprador. Para um determinado número de referência do cabo, quanto menor for o passo de torção ou o passo de trança, maior a dureza do cabo. A dureza pode afetar a resistência à ruptura estimada do cabo.

Os cabos torcidos de poliamida e poliéster que necessitam de termofixação para assegurar a estabilidade do passo e das dimensões são designados como cabos do tipo 1 na norma do produto pertinente. Em outros casos, os cabos torcidos em poliamida e poliéster para os quais a termofixação não é requerida são designados como cabos do tipo 2 na norma do produto pertinente.

Se o tipo 1 ou 2 não for especificado em uma norma de um produto em particular, deve ser entendido que a termofixação não foi considerada para o respectivo produto. O produtor da fibra ou o fabricante do cabo pode aplicar um acabamento à fibra a fim de controlar a fricção e a tração da fibra, além de reduzir o dano à fibra durante a fabricação.

A quantidade total de aditivos ou materiais extraíveis não pode ultrapassar 2,5% em massa. Um cabo com torção à direita seja sempre enrolado no sentido horário e que um cabo com torção à esquerda seja sempre enrolado no sentido anti-horário, ou seja, com a torção do cabo. ((ver a figura abaixo)

Em vez de colocar todas as camadas umas sobre as outras, recomenda-se colocar o cabo em formato espiral, movendo cada camada em alguns centímetros. Mediante a solicitação do comprador, o fabricante pode utilizar um revestimento ou a impregnação do produto para aplicações especiais.

Os cabos de polipropileno e polietileno devem ser protegidos contra a deterioração devida à luz solar (UV). Recomenda-se que o sistema de inibição usado assegure, durante o uso, o desempenho correspondente às zonas geográficas previstas para as aplicações, desde que o fabricante seja mantido informado pelo usuário.

Os cabos de polietileno de alto módulo são tipicamente impregnados. Os cabos de polietileno de alto módulo podem estar sujeitos ao processo de termofixação. A termofixação de cabos de HMPE são designados cabos de tipo 1 na norma do produto pertinente.

Os cabos de polietileno de alto módulo que não tiverem passado por termofixação são designados como cabos de tipo 2 na norma do produto pertinente. A termofixação geralmente melhora a resistência à ruptura de um cabo de polietileno de alto módulo. Porém, a vida útil geral do cabo pode ser reduzida.

Todos os cabos de manilha e de sisal devem ser feitos exclusivamente de fibras novas. Na manilha, deve-se aplicar um óleo lubrificante para cabos de qualidade adequada. O lubrificante não pode conferir ao cabo acabado um odor ofensivo. O percentual de material extraível baseado no peso seco do cabo não pode ser inferior a 11,5% nem superior a 16,5%.

Quando especificado, o cabo deve ser submetido a um tratamento resistente a mofo. Sempre que solicitado pelo comprador, podem ser acrescentados aditivos bactericidas para manilha para ampliar o desempenho da fibra natural. No sisal, deve-se aplicar um óleo lubrificante para cabos de qualidade adequada. Este lubrificante não pode conferir ao cabo acabado um odor ofensivo.

O percentual de material extraível baseado no peso seco do cabo não pode ser superior a 11,5% para um produto não lubrificado nem superior a 16,5% para um produto lubrificado. Quando especificado, o cabo deve estar livre de quaisquer óleos e ser vendido como um cabo não lubrificado. Quando solicitado pelo comprador, podem ser adicionados aditivos bactericidas para sisal para ampliar o desempenho da fibra natural.

O cabo acabado não pode conter cortes, dobras ou pontos com amolecimento causados por passos irregulares, deformações, trechos desgastados por atrito ou danificados, ou pontas rompidas, soltas ou salientes no cabo ou nas pernas. As extremidades não emendadas de todos os cabos devem ser cortadas em ângulo reto e firmemente amarradas, fixadas com fita ou vedadas termicamente.

As sobreposições de pernas, quando presentes em cabos ou subcabos de 12 pernas, devem ser distribuídas ao longo do comprimento do cabo e a uma distância suficiente. As pernas interrompidas e recolocadas são organizadas paralelamente a uma distância e são embutidas ou enfiadas na trança a fim de fixá-las na trança.

A fim de manter a resistência, as pernas devem se sobrepor uma à outra a uma distância suficiente. Uma amostra de ensaio incluindo uma sobreposição de pernas em uma perna deve atingir 100% da carga de ruptura mínima (MBS) especificada quando ensaiada conforme a NBR ISO 2307.

Para sobreposições de pernas em cabos de dupla trança, ver a noma do produto pertinente. O processo de intercâmbio de pernas deve ser completamente documentado. A documentação deve conter pelo menos as informações seguintes e devem ser disponibilizadas a um inspetor caso solicitado: o comprimento de uma sobreposição de pernas; a distância mínima entre duas sobreposições de pernas; o comprimento total da sobreposição de pernas; e as posições das sobreposições de pernas do início ao fim do cabo.

Se necessário, toda a emenda de perna ou parte deve ser permanentemente marcada (por exemplo, com tinta) no cabo a fim de possibilitar uma detecção preventiva de uma sobreposição de perna que esteja deslizando para fora e a fim de distinguir uma sobreposição de pernas de um defeito. As sobreposições de perna são permitidas apenas em cabos trançados de 12 pernas.

Os cabos de diferentes tamanhos podem ser considerados do mesmo projeto, quando os seguintes parâmetros permanecerem inalterados independentemente da escala: fio do cabo; relação entre passo de torção da perna com o diâmetro é fixo (= passo da perna dividido pelo diâmetro da perna); relação entre passo de torção ou passo de trança do cabo com o diâmetro é fixo (= passo do cabo dividido pelo diâmetro do cabo); tipo de equipamento utilizado; tipo de acabamento, percentual de impregnação, e penetração (quando aplicável); controle de qualidade e emenda. Recomenda-se que o projeto seja reportado em uma folha de especificação de projeto contendo as informações gerais quanto à empresa, ao inspetor independente, ao projeto do cabo e a ensaios de protótipos realizados a fim de validar o projeto.

Essa especificação deve ser seja disponibilizada para as partes quando requerido. Convém que os detalhes do projeto do cabo e de ensaios de protótipos sejam apresentados em uma segunda folha. Detalhes da fibra utilizada no projeto devem ser especificados e convém que estas duas últimas folhas sejam disponibilizadas para inspeção por inspetores independentes quando solicitado pelas partes interessadas.

Os principais requisitos devem ser aqueles especificados na norma do produto pertinente e devem incluir o seguinte: número de referência; densidade linear; e carga de ruptura mínima. Os métodos de ensaios estão especificados na NBR ISO 2307. Outros requisitos, por exemplo, o comprimento do passo, o passo de trança, o diâmetro do círculo circunscrito e o alongamento do cabo sob condições de tração específicas podem ser especificados, sujeitos a acordos entre o fabricante e o comprador.

A identificação do material, da qualidade e da origem de um cabo de fibra de acordo com este documento deve ser marcada usando-se uma fita colocada dentro do produto de maneira a permanecer reconhecível apesar da sujeira, imersão ou descoloração durante o uso. A fita deve ter uma largura de no mínimo 3 mm, e deve conter o número da norma pertinente devidamente impresso e uma referência identificando o fabricante. A distância máxima entre duas marcações consecutivas deve ser de 0,5 m. Os cabos com número de referência inferior a 14 não precisam ser marcados, a menos que especificado na norma do produto.

Advertisement

Os contentores intermediários para granel devem ser cumprir a norma técnica

Os intermediates bulks containers (IBC) compostos são equipamentos estruturais, em forma de armação externa rígida, envolvendo um recipiente interno de plástico, juntamente com qualquer equipamento estrutural ou de serviço, construído de modo que a armação externa e o recipiente interno, uma vez montados, passam a ser uma unidade integrada, envasada, armazenada, transportada e esvaziada como tal. Os contentores intermediários para granel podem ser usados para líquidos inflamáveis, tanto os IBC metálicos (31A) quanto os IBC compostos EX com recipiente interno plástico rígido e estrutura metálica (31HZ1) com proteção antiestática e dispositivo metálico interno para escoamento das cargas eletrostáticas que podem se acumular no líquido durante as operações de enchimento e esvaziamento. A escolha do IBC adequado e compatibilidade do material construtivo do IBC com produtos nele acondicionados é de responsabilidade do envasador e a análise deve ser realizada antes do início do processo.

Pode-se ressaltar que muitas operações com líquidos inflamáveis produzem atmosferas inflamáveis pela evaporação do líquido manuseado. O ponto de fulgor fornece uma indicação aproximada da temperatura mínima de superfície do líquido necessária para produzir uma atmosfera inflamável. No entanto, por causa das incertezas envolvidas na medição do ponto de fulgor, das diferenças entre as condições de ensaio para determinação do ponto de fulgor comparados a situação real na indústria e da dificuldade de estabelecer a temperatura de superfície do líquido (em grandes volumes), deve-se assumir que uma atmosfera inflamável pode existir, mesmo quando a temperatura do líquido é inferior ao ponto de fulgor considerando uma margem de segurança que depende do nível de incerteza sobre a temperatura, composição líquida, etc.

Para condições bem controladas, uma margem de 5 °C para líquidos puros e pelo menos 11 °C para as misturas é normalmente necessária. Quando os IBC são expostos à luz solar direta e as temperaturas dos líquidos não são monitoradas, recomenda-se assumir que exista uma atmosfera inflamável ao manusear líquidos com ponto de fulgor de até 60 °C.

Deve-se ser considerado que em áreas com temperatura ambiente elevada e exposta ao sol, as atmosferas inflamáveis podem ocorrer mesmo com os líquidos que possuam pontos de fulgor acima de 60 °C. Quando um líquido é manuseado a uma temperatura bem acima do seu ponto de fulgor, o vapor saturado pode resultar em uma atmosfera mais rica (isto é, não inflamável). No entanto, a atmosfera logo acima do líquido pode não estar saturada (por exemplo, devido a ventilação), e assim pode ser inflamável.

Por isso, é necessário assumir que a atmosfera pode ser inflamável, a menos que possa ser demonstrado o contrário. Consequentemente, para líquidos de baixo ponto de fulgor, não convém que a presença de uma atmosfera mais rica geralmente seja considerada a única medida de controle. Em algumas circunstâncias, a atmosfera inflamável não ocorre devido ao líquido manuseado, mas devido aos resíduos de líquidos voláteis ou vapores de operações anteriores, no mesmo equipamento ou de outras operações em locais próximos.

Os vapores residuais podem ocorrer durante o carregamento, no qual um líquido com alto ponto de fulgor (por exemplo, diesel) é carregado em um IBC que anteriormente continha um líquido com ponto de fulgor baixo (por exemplo, gasolina). A sensibilidade de uma atmosfera inflamável para ignição eletrostática depende da concentração e da energia de ignição mínima (minimum ignition energy – MIE) do material inflamável. Deve-se considerar que a concentração mais facilmente inflamável de vapor é aproximadamente o dobro da concentração no limite inferior de explosividade.

Devido ao efeito de concentração, uma mistura feita com um material de alta MIE na sua concentração mais facilmente inflamável pode ser mais sensível à ignição do que uma mistura feita com um material de baixa MIE em uma concentração de vapor que se encontre apenas na faixa de explosividade. Para as misturas equilibradas de vapor/ar criadas por líquidos inflamáveis, a concentração mais facilmente inflamável de vapor é normalmente alcançada a uma temperatura de aproximadamente 10 °C a 20 °C acima do ponto de fulgor. Deve-se considerar que os líquidos inflamáveis de volatilidade intermediária tendem a produzir suas misturas mais facilmente inflamáveis nas temperaturas ambientes normais.

Como exemplo destes líquidos, pode-se incluir o tolueno (ponto de fulgor 6 °C), acetato de propila (ponto de fulgor de 10 °C) e acetonitrila (ponto de fulgor 2 °C). As precauções gerais dadas nesta seção se destinam a impedir a explosividade de materiais com MIE de 0,20 mJ ou mais, quando presentes na concentração de vapor mais facilmente. Eles são, portanto, aplicáveis às misturas mais facilmente igníferas na mistura dos vapores de líquidos inflamáveis comuns, como solventes parafínicos e aromáticos, combustíveis de hidrocarbonetos e muitos solventes orgânicos.

Nas temperaturas típicas ambiente, as margens de segurança estão no mínimo quando são manuseados líquidos inflamáveis de volatilidade intermediária, como os descritos acima. Nestas operações, recomenda-se um cuidado especial para assegurar que todas as orientações sejam diligentemente seguidas. Embora os grupos de explosão não sejam atribuídos com base no MIE, as precauções requeridas na presença da maioria dos vapores do grupo IIA de explosão, são geralmente semelhantes às apresentadas para MIE de 0,20 mJ e acima.

As precauções adicionais são necessárias onde a atmosfera acima do líquido é mais sensível à ignição. Esta situação surgirá, por exemplo, com as misturas mais facilmente inflamáveis no ar de materiais voláteis que possuem MIE menor que 0,20 mJ (a maioria dos materiais dos grupos IIB e IIC) ou com misturas ricas de oxigênio. Apesar das orientações gerais não terem sido desenvolvidas para estes ambientes mais sensíveis, as recomendações são dadas por algumas atividades específicas.

Onde elas são dadas, as precauções adicionais para os materiais mais sensíveis são explicitamente identificadas como tal no texto. Os líquidos podem se tornar eletrostaticamente carregados quando eles se movem em contato com os sólidos ou se existirem duas ou mais fases de líquidos imiscíveis e existir movimento. A pulverização de líquidos também pode criar uma névoa ou vaporização altamente carregada.

A geração de cargas eletrostáticas ocorre onde os líquidos escoam através das tubulações e acessórios onde ocorre turbulência durante as operações de transferência. Quanto maiores forem as áreas de interface entre o líquido e a superfície, e quanto mais alta for a velocidade de fluxo, maiores são as taxas de geração de carga. As cargas se tornam misturadas com o líquido e são transportadas até os vasos de recepção, onde podem se acumular.

As características de acumulação de cargas eletrostáticas da maioria dos líquidos inflamáveis, particularmente hidrocarbonetos não polares, são o resultado de traços de contaminantes, às vezes em concentrações inferiores a 1 ppm. Assim, esses líquidos podem se tornar mais ou menos condutivos em várias magnitudes, dependendo das concentrações de contaminantes que se originam de processos, armazenamento, manuseio, manipulação e transporte. A dissipação da carga eletrostática em líquido inflamável deve ocorrer de modo rápido o suficiente para anular os riscos de ignição.

A carga eletrostática em um líquido contido em um recipiente aterrado dissipa a uma taxa que depende da sua condutividade elétrica. O líquido condutivo que, à primeira vista aparenta ser seguro pode representar um risco significativo se não estiver aterrado, por estar contido em um recipiente isolado eletricamente ou vaporizado (névoa). Quando isolado, as cargas no líquido condutivo podem ser liberadas na forma de uma faísca.

Quando suspenso como uma névoa, um campo elétrico significativo gerado pela eletricidade estática pode resultar em uma descarga. Os líquidos com alta viscosidade (viscosidade de cinemática cerca de 100 mm²/s) tendem a se tornar eletrostaticamente carregados mais facilmente do que os líquidos com baixa viscosidade, como os combustíveis ou solventes, como o hexano (viscosidade cinemática de cerca de 1 mm²/s) durante a vazão pelas tubulações e, especialmente pelos filtros. Estes líquidos de alta viscosidade podem também possuir uma condutividade elétrica tão baixa quanto 0,01 pS/m, permitindo a eles que retenham sua carga eletrostática por mais de 1 h.

Devido a isto, não se deve aplicar as restrições na velocidade do fluxo, recomendadas para líquidos de baixa viscosidade, se uma atmosfera explosiva estiver presente. A maioria dos líquidos de alta viscosidade é de alta condutividade (por exemplo, óleo cru) ou não é suficientemente volátil para produzir uma atmosfera explosiva (por exemplo, a maioria dos óleos lubrificantes). Como resultado, eles normalmente não geram um elevado risco de ignição.

Em alguns casos, entretanto, existe um risco de ignição, por exemplo, quando um óleo lubrificante de baixa condutividade é bombeado para um tanque rodoviário que continha um líquido inflamável volátil. Uma vez que os limites de vazão confiáveis para líquidos de alta viscosidade não são conhecidos, quando líquidos de baixa condutividade e alta viscosidade são manuseados, convém evitar a presença de uma atmosfera explosiva, por exemplo, por meio de inertização.

O nível de acúmulo de carga em um determinado líquido específico e, portanto, o risco eletrostático que pode ser criado, é fortemente dependente da sua condutividade elétrica e constante dielétrica (permissividade relativa), εr. Para descrever os possíveis riscos e os meios de prevenção, a condutividade de líquidos é classificada da seguinte forma: baixa condutividade < 25 × εr pS/m; média condutividade entre 25 × εr pS/m e 10.000 pS/m; e alta condutividade > 10 000 pS/m.

Para líquidos com constante dielétrica de cerca de 2 (por exemplo, hidrocarbonetos), resultam em: baixa condutividade < 50 pS/m; média condutividade entre 50 pS/m e 10.000 pS/m; e alta condutividade > 10.000 pS/m. Para líquidos com uma constante dielétrica substancialmente maior do que 2 ou para líquidos cuja constante dielétrica seja desconhecida, o valor-limite para baixa condutividade é geralmente definido como 100 pS/m. O valor-limite superior da condutividade média se mantém em 10.000 pS/m.

O valor de 100 pS/m é considerado suficiente mesmo para casos não conhecidos, uma vez que poucos líquidos, caso existam, possuem uma permissividade relativa significativamente maior que 4. Os níveis perigosos de acúmulo de carga são mais comumente associados aos líquidos de baixa condutividade. No entanto, estes riscos podem ocorrer com líquidos de média ou alta condutividade em processos que geram névoas ou sprays, durante transporte de líquidos de condutividade média pelos tubos isolantes ou durante as operações de transporte de mistura em duas fases.

Em geral, os solventes polares, como álcoois, cetonas e água, possuem elevada condutividade, enquanto que os líquidos de hidrocarbonetos saturados e aromáticos purificados possuem uma baixa condutividade. As condutividades e os tempos de relaxamento para alguns líquidos são apresentados na tabela abaixo.

Quando do carregamento de tanque com líquido de baixa condutividade eletrostaticamente carregado, a carga que se acumula no líquido dentro do tanque gera campos elétricos e potenciais, tanto no líquido como no vapor dentro do tanque. Com potenciais de superfícies do líquido elevados, as descargas ramificadas podem ocorrer entre a superfície do líquido carregado e as partes metálicas da estrutura do tanque. Estudos indicam que os hidrocarbonetos alifáticos, como o propano, podem ser inflamados por estas descargas ramificadas na sua passagem até um ponto aterrado, se o potencial de superfície do líquido for superior a 25 kV.

Um risco de ignição pode ser gerado por potenciais muito mais baixos (tipicamente entre 5 kV a 10 kV) se objetos condutores isolados, como partes metálicas flutuantes ou componentes inadequadamente equipotencializados, estiverem presentes no tanque, ou se o tanque possuir um revestimento isolante, sem pontos de contato para o aterramento do líquido, e o enchimento for do tipo turbilhonado, por um líquido que seja suficientemente condutivo para produzir centelhamento.

As descargas podem ocorrer se houver geração e acúmulo de cargas eletrostáticas nos líquidos. A geração de cargas ocorre onde líquidos escoam através de tubulações, de mangotes e de filtros, onde ocorrer turbulência durante as operações de transferência ou onde os líquidos são misturados ou agitados. Quanto maiores forem as áreas de interface entre o líquido e a superfície, e quanto mais alta for a velocidade do fluxo, maiores serão as taxas de geração de carga.

As cargas se tornam misturadas com o líquido e são transportadas até os vasos de recepção, onde elas podem se acumular. Ao se acumular, estas cargas podem ser descarregadas na forma de uma centelha dentro ou fora do IBC, e se a mistura de ar e vapor estiver dentro do limite de explosividade pode ocorrer um incêndio ou uma explosão. Dentro de um IBC, as descargas eletrostáticas são mais prováveis de ocorrer logo acima da superfície líquida, à medida que os vapores inflamáveis se acumulam.

A NBR 17056 de 09/2022 – Transporte de produtos perigosos – Contentor intermediário para granel (IBC) para líquidos inflamáveis – Requisitos e métodos e métodos de ensaio  estabelece os requisitos operacionais para o uso de IBC com líquidos inflamáveis e o método de ensaio eletrostático para IBC composto, a fim de evitar riscos de ignição e choque eletrostático decorrentes da eletricidade estática e para assegurar condições seguras de processos, armazenagem e transporte. Estabelece as orientações para uma avaliação de riscos relacionados a uso de líquidos inflamáveis em IBC. Esta norma não se destina a substituir as normas que cobrem produtos e aplicações industriais específicas.

Esta norma não se aplica aos IBC sem propriedades antiestática e dissipativa. Os contentores intermediários para granel (IBC) são as embalagens portáteis rígidas ou flexíveis, utilizadas para o transporte de produtos fracionados.

Quando se trata de armazenamento fracionado de líquidos inflamáveis, em recipientes que proporcionam a facilidade de movimentação e transporte, cuidados adicionais são necessários para evitar que a atmosfera criada por aquela substância não gere um perigo de acidente. Com base nesta premissa, existem determinados tipos de recipientes que são permitidos por normas para armazenar líquidos inflamáveis.

Um dos recipientes seguros é o contentor intermediário para granel (IBC) para líquidos inflamáveis, com ênfase em IBC composto EX e IBC metálico, desde que observados e aplicados os requisitos desta norma. Ela também especifica um método de ensaio de resistência eletrostática em IBC, de forma a assegurar o uso seguro de líquidos inflamáveis em IBC adequado, sempre de forma preventiva e em conformidade com as leis aplicáveis, incluindo a legislação de transporte de produtos perigosos.

Espera-se que se as recomendações fornecidas neste documento forem atendidas, o risco de descargas eletrostáticas perigosas em uma atmosfera explosiva esteja em um nível aceitavelmente baixo. O IBC rígido metálico pode ser encontrado em aço-carbono e aço inoxidável, para transporte de produtos perigosos conforme legislação vigente. Possui tampa com Ø nominal 450 mm com fecho tipo clamp de abertura rápida.

O IBC metálico é condutivo e por esta razão o risco de acúmulo de cargas eletrostáticas é baixo durante a operação com líquidos inflamáveis e combustíveis, desde que ele esteja aterrado. Possui boa resistência mecânica a choques e boa resistência ao calor. Exemplos de IBC metálicos e suas características construtivas são apresentados na norma. O IBC metálico pode ser cúbico, como exemplo na figura abaixo, ou cilíndrico, como exemplo na figura abaixo, e é construído com aço inoxidável podendo ser autoportante, com válvula de segurança.

Os tipos de válvulas do IBC metálico são as seguintes: as válvulas para alívio de pressão e quebra a vácuo, independentes, e a válvula para descarga inferior. O IBC composto EX possui sua composição estrutural idêntica ao IBC composto comum, acrescido de componentes e aditivos que proveem características de operação adequadas aos requisitos seguros para operar em zonas EX 1 e 2 para líquidos pertencentes ao grupo de explosão IIA e aos líquidos pertencentes aos grupos de explosão IIB com energia mínima de ignição de 0,2 mJ ou maior (de acordo com a NBR ISO/IEC 80079-20-1). Ele possui tampa rosqueável.

Para IBC composto destinado a líquidos inflamáveis, obrigatoriamente o palete deve conter partes metálicas a fim de atender aos requisitos de ensaios para o aterramento. O IBC composto EX deve apresentar as seguintes características: recipiente interno com cobertura integral e homogênea por aditivo antiestático (dissipativo); sistema permanente de aterramento entre o terra e o líquido com resistência máxima de 1MΩ); adesivo de advertência, com informações seguras sobre o grupo de produtos e áreas de risco permitidos o uso do IBC na cor amarela. O IBC de plástico composto sem as características citadas anteriormente, não podem ser usados com líquidos inflamáveis, pois não oferecem proteção para o escoamento das cargas eletrostáticas.

Desta forma, o IBC composto sem proteção EX só pode ser usado com líquidos que tiverem ponto de fulgor superior a 60 °C e não podem ser usados em locais onde possa haver a presença de vapores inflamáveis. O aditivo desenvolvido para esta aplicação deve possuir propriedades permanentes. O único cuidado que convém que o usuário tome é quanto a sua resistência mecânica, assim como o polietileno em si.

O uso de jatos de água e escovas abrasivas usados na limpeza externa do IBC podem comprometer a ação do aditivo antiestático. As partes do IBC que entram em contato direto com produtos perigosos, incluindo tampas, válvulas, guarnições, devem atender aos seguintes requisitos: não podem ser afetadas ou significativamente enfraquecidas por tais produtos; não podem provocar efeito perigoso, como, por exemplo, catalisar uma reação ou reagir com os produtos perigosos; e não podem permitir penetração dos produtos perigosos de forma que possa gerar risco em condições normais de transporte.

Para o volume máximo no enchimento do IBC, deve ser observada a legislação de transporte de produtos perigosos: no enchimento de embalagens (inclusive IBC e embalagens grandes) com líquidos, deve ser deixada uma folga suficiente para assegurar que não ocorra vazamento ou deformação permanente da embalagem, em decorrência de uma expansão do líquido devida a prováveis variações de temperatura durante o transporte. Exceto quando houver prescrição específica em contrário, os líquidos não podem encher completamente a embalagem à temperatura de 55 °C. No caso de IBC, deve ser deixada folga de enchimento suficiente para assegurar que, à temperatura média de 50 °C, o nível de enchimento não ultrapasse 98 % de sua capacidade em água. Quanto às características dos IBC e do processo a ser utilizado para enchimento e esvaziamento do IBC, devem ser fabricados a partir de um recipiente interno isolante cercado por uma estrutura ou revestimento condutor

Para os IBC fabricados a partir de um recipiente interno isolante cercado por uma estrutura ou revestimento condutor, essa forma de construção é geralmente utilizada para pequenos tanques ou IBC com capacidade de cerca de 1 m³. Eletrostaticamente a cobertura fornecida pela estrutura condutora pode ser incompleta, portanto, pode haver lacunas entre a estrutura e a parede do IBC. Exemplos incluem contentores de plástico, como os IBC compostos, rodeados por uma chapa, grade, malha ou revestimento condutivo (camada).

A orientação neste item é focada na aplicação de IBC, principalmente nos compostos. A utilização de IBC para produtos mais sensíveis à ignição necessita de requisitos específicos. Para IBC e tanques similares, um invólucro totalmente condutivo, revestimento ou uma grade com abertura não excedendo 10.000 mm² são capazes de evitar que a superfície externa do invólucro plástico se torne eletrostaticamente carregada em um nível de risco (sujeito aos requisitos indicados a seguir, sobre o contato entre o invólucro e o plástico) e contribuem para dissipar quaisquer cargas eletrostáticas presentes na superfície interna, reduzindo o risco de ocorrência de descargas ramificadas capazes de causar uma ignição no interior do IBC.

Deve-se ter alguns cuidados rigorosos para evitar a existência de ilhas condutivas que podem ser causadas por revestimentos condutivos não homogêneos sobre as superfícies isolantes do recipiente. O revestimento externo pode ser uma camada não carregável eletrostaticamente do tipo coextrusada com o recipiente interno do IBC. O recipiente pode ser composto de várias outras camadas.

Para assegurar que nenhuma das paredes internas ou externas do IBC, nem os líquidos do seu interior possam ser eletrostaticamente carregados a um nível de risco, alguns requisitos de devem ser atendidos de acordo com o grupo de explosão do líquido. Requisitos para IBC que serão usados somente para líquidos pertencentes ao grupo de explosão IIA. Existem também os requisitos que se aplicam a líquidos pertencentes ao grupo de explosão IIA, bem como os líquidos: etanol, propanol, butanol, hexanol, heptanol, 1,2-etanodiol, etilbenzeno e ácido etil éster 3-oxobutanoico.

Somente poucos grupos de líquidos não são classificados no grupo de explosão IIA. Ver a NBR ISO/IEC 80079-20-1, Anexo B, para mais detalhes. O IBC deve estar completamente cercado por uma chapa, grade, malha ou revestimento condutivo, exceto para pequenas áreas limitadas consideradas no projeto (isto é, para as quais as consequências de uma cobertura incompleta tiverem sido consideradas no projeto e não representarem risco). Se o invólucro for formado por uma tela, convém que a área da grade aberta (mesh) da tela não seja maior que 10.000 mm².

O espaçamento máximo de 10.000 mm² em áreas não protegidas se aplica quando as partes metálicas são as únicas propriedades de proteção eletrostática, conforme o caso dos IBC revestidos com chapas metálicas. No caso dos IBC antiestáticos que possuem o aditivo dissipativo presente na totalidade da superfície da camada externa do recipiente plástico, aplicado durante o sopro, este espaçamento não é considerado.

Quaisquer áreas limitadas não cercadas por uma chapa, grade, malha ou revestimento condutivo (por exemplo, o dispositivo de carregamento ou áreas ao seu redor sejam dissipativas e aterradas, ou protegidas de outras maneiras, de forma que não possam ocorrer riscos de ignição para o Grupo IIA em uma área classificada do tipo Zona 1 e ao redor de uma Zona 0 existente no interior do contêiner (por exemplo, limitando a área que possa ser eletrostaticamente carregável aos valores indicados na ABNT IEC/TS 60079-32-1:2020, 6.3.2 ou por tratamento superficial).

A efetividade e a durabilidade do tratamento superficial (por exemplo, por extrapolação, por revestimento homogêneo com camadas dissipativas etc.) devem ser demonstradas experimentalmente sob as condições mais desfavoráveis de carregamento eletrostático, umidade e contaminação (ver a ABNT IEC/TS 60079-32-1:2020, 6.3.9). A chapa, a grade, a malha ou o revestimento condutivo devem possuir um contato adequado com o recipiente interno em todas as faces do IBC, exceto para pequenas áreas com dimensões especiais consideradas no projeto.

Para uma tela com malhas abertas excedendo a 3.000 mm², não convém que uma distância máxima de 20 mm entre a tela e o receptáculo interno seja excedida nas áreas com dimensões especiais consideradas no projeto, por exemplo, a área do bocal da válvula de saída. Somente em bordas e cantos do IBC uma distância máxima de até 40 mm pode ser tolerada. Para uma chapa, malha, revestimento condutivo sólidos ou uma tela com malhas menor que 3.000 mm2, uma distância máxima de 40 mm é permitida em áreas, bordas ou cantos considerados no projeto.

Não é comum obter distâncias menores. As cargas eletrostáticas resultantes destas áreas são pequenas e geralmente apresentam um risco aceitavelmente baixo. Todas as partes condutivas e dissipativas devem ser equipotencializadas e aterradas. O IBC deve possuir um meio condutivo com resistência máxima de 1 megaohm entre o líquido e o aterramento, por exemplo, pela utilização de uma tubulação de carregamento condutiva aterrada que se estenda até um local próximo do fundo do IBC ou uma válvula de fundo condutiva aterrada ou uma placa condutiva com área suficientemente grande no fundo do tanque.

Convém que mesmo pequenas quantidades de líquido remanescente, por exemplo 1 L, estejam permanentemente em contato com o ponto de aterramento do fundo, de forma a evitar que o líquido se torne um material condutor isolado eletrostaticamente carregado. O IBC deve ser equipado com uma etiqueta de advertência na cor amarela, informando à sua utilização segura com letras de no mínimo 2 mm de altura, legível, escritas no idioma oficial do Brasil, podendo usar concomitantemente outro idioma.

A etiqueta deve ser confeccionada em material que resista às condições normais de uso, transporte e armazenagem. Antes do reabastecimento, o IBC deve ser verificado com relação ao atendimento às orientações dessa norma. O IBC não pode ser utilizado quando uma Zona 0 estiver presente no lado externo do IBC.

Convém que os líquidos isolantes (por exemplo, tolueno) sejam adicionados por meio de um tubo condutivo aterrado imerso no líquido. Convém que este tubo submerso esteja próximo do fundo do IBC, de forma a evitar a ocorrência de descargas ramificadas a partir do líquido isolante. A vazão de carregamento deve ser limitada a 200 L/min e a velocidade de carregamento não pode exceder 2 m/s.

Ambos os valores são normalmente atendidos quando o carregamento ocorre por gravidade. Os enchimentos rápidos e repetitivos, ou outros processos de alto carregamento eletrostático, devem ser evitados. Estes outros processos de alto carregamento eletrostático são abordados na ABNT IEC/TS 60079-32-1:2020, 7.5, 7.9 e 7.10). O IBC não pode ser abastecido imediatamente após a sua limpeza, fabricação, etc. quando ele pode estar eletrostaticamente carregado em um nível elevado. Em caso de dúvidas consultar o fabricante.

Quanto aos requisitos para os IBC que podem ser utilizados para todos os líquidos que geram vapores do grupo IIB, o IBC deve ser circundado por uma superfície de parede externa dissipativa ou condutiva, obtida, por exemplo, por revestimento ou coextrusão. Todas as partes condutivas e dissipativas devem ser equipotencializadas e aterradas. Quaisquer áreas limitadas não circundadas pela superfície de parede externa (por exemplo o bocal de carregamento ou áreas ao redor deste bocal) devem ser dissipativas e aterradas ou protegidas pela limitação da área carregável eletrostaticamente aos valores estabelecidos na ABNT IEC/TS 60079-32-1:2020, 6.3.2.

O IBC deve possuir um meio condutivo com resistência máxima de 1 megaohm entre o líquido e o aterramento. O IBC deve ser equipado com uma etiqueta de advertência na cor verde relativa à sua utilização segura, com letras de no mínimo 2 mm de altura, legível, escritas no idioma oficial do Brasil, podendo usar concomitantemente outro idioma. A etiqueta deve ser confeccionada em material que resista as condições normais de uso, transporte e armazenagem.

A conformidade dos cabos de aço em equipamentos de içamento

O cabo de aço para elevar carga é importante para as grandes cargas e deve ser fabricado por fios e arames que são enrolados em um torno de núcleo central. Existem os mais diversos tipos de cabo de aço para elevar carga para as mais diversas aplicações.

A instalação do cabo de aço para elevar carga tem que ser feita para trazer maior conforto, comodidade, segurança e suporte que a carga a precisa. Sabendo que cargas são elevadas diariamente é necessário a aplicação do cabo de aço correto para elevar carga.

Assim, antes de adquirir o cabo de aço para elevar carga deve-se verificar o diâmetro do cabo; conferir se o seu comprimento é o ideal; analisar se a sua aplicação é a indicada para a elevação que vai realizar; e analisar o acabamento que é necessário, pois ele pode ser galvanizado, polido ou inox. Outras características são necessárias ser analisadas para que se tenha o cabo de aço para elevar carga ideal para a necessidade, porém independente disso tudo o cabo de aço para elevar carga precisa ter qualidade para que se suporte a carga exigida e o ritmo de utilização que é solicitado.

A NBR ISO 4309 de 03/2022 – Equipamentos de movimentação de carga – Cabos de aço – Cuidados e manutenção, inspeção e descarte estabelece princípios gerais para cuidados, manutenção, inspeção e descarte de cabos de aço em serviço em dispositivos de içamento, como equipamentos de movimentação de carga e guinchos. Além das instruções sobre armazenamento, manuseio, instalação e manutenção, este documento relaciona os critérios de descarte para os cabos usados que estão sujeitos ao enrolamento com muitas camadas, onde a experiência de campo como também ensaios demonstram que a deterioração é significativamente maior nas zonas de cruzamento no tambor do que outras seções do cabo no sistema.

Ela fornece também critérios de descarte aplicáveis cobrindo corrosão e redução do diâmetro, e apresenta um método para avaliar o efeito combinado de deterioração em qualquer posição do cabo. A NBR ISO 4309 é aplicável aos seguintes tipos de equipamento de movimentação de carga, a maioria dos quais são definidos na ISO 4306-1: pórticos de cabo; equipamentos de movimentação de carga em balanço (equipamento de movimentação de carga de coluna, equipamento de movimentação de carga móvel de parede e equipamento de movimentação de carga velocípede); equipamentos de movimentação de carga de convés; equipamentos estacionários de movimentação de carga estacionárias; equipamentos estacionários de movimentação de carga estacionárias com suporte rígido; equipamentos de movimentação de carga flutuante; equipamentos de movimentação de carga móvel; pontes rolantes; pórticos e semipórticos rolantes; equipamentos de movimentação de cargas com pórtico ou com semipórtico; equipamentos de movimentação de carga locomotiva; gruas; equipamentos de movimentação de carga oceânicos, por exemplo, equipamento de movimentação de cargas montado em uma estrutura fixa apoiada no leito marinho ou em uma unidade flutuante sustentada por forças de empuxo.

É aplicável a cabos de equipamentos de movimentação de carga, guinchos e talhas que utilizam gancho, garra, eletroímã e caçamba, assim como para escavação ou empilhamento, podendo ser operados manual, mecânica, elétrica ou hidraulicamente. Também é aplicável em talhas e moitões que utilizam cabos de aço. O uso exclusivo de roldanas sintéticas ou roldanas metálicas com revestimentos sintéticos não é recomendado para cabos enrolados em camada única no tambor, devido à inevitabilidade de rupturas de arame ocorrendo internamente em grande número antes que haja qualquer evidência visível de qualquer ruptura de arame ou sinais de desgaste substancial na parte externa do cabo, nenhum critério de descarte é dado para esta combinação.

Um cabo de aço em um equipamento de movimentação de carga é considerado como um componente descartável, exigindo substituição quando os resultados da inspeção indicam que sua condição atingiu o ponto em que o uso posterior pode ser inseguro. Por isso, deve-se seguir alguns princípios bem estabelecidos, como os detalhados neste documento, juntamente com quaisquer instruções específicas adicionais fornecidas pelo fabricante do equipamento de movimentação de carga ou guincho e/ou pelo fabricante do cabo, convém que este ponto nunca seja excedido.

Quando corretamente aplicados, os critérios de descarte de cabos neste documento visam reter uma margem de segurança adequada. Não os reconhecer pode ser extremamente prejudicial, perigoso e causar danos. Para auxiliar aqueles que são responsáveis pelo cuidado e manutenção, distintos daqueles que são responsáveis pela inspeção e descarte, os procedimentos são convenientemente separados.

Para a manutenção e cuidados, na ausência de quaisquer instruções fornecidas pelo fabricante do equipamento de movimentação de carga em seu manual de operação ou pelo fabricante ou fornecedor do cabo, os princípios gerais descritos a seguir devem ser seguidos. Para a substituição do cabo, a menos que um cabo alternativo tenha sido aprovado pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, apenas um cabo com o comprimento, o diâmetro, a construção, a torção e a resistência (ou seja, carga de ruptura mínima), conforme especificado pelo fabricante do equipamento deve ser instalado no equipamento. Um registro da substituição do cabo deve ser arquivado.

No caso de cabos resistentes à rotação de grande diâmetro, pode ser necessário aplicar meios adicionais para fixar as extremidades do cabo, por exemplo, através da utilização de braçadeiras ou amarrilhos de arames, em especial quando se preparam as amostras de ensaio. Se o comprimento de cabo requerido para uso for removido de uma bobina com cabo de comprimento maior, amarrilhos devem ser aplicados em ambos os lados do ponto de corte com o objetivo de impedir o destorcimento do cabo após o corte.

A figura abaixo é um exemplo de recomendação de aplicação de amarrilho em um cabo de aço de uma camada de pernas, antes do corte. Para cabos resistentes à rotação e cabos de pernas paralelas, múltiplos amarrilhos podem ser necessários. Um método alternativo para cabos de grande diâmetro e cabos resistentes à rotação é apresentado na figura 3 da norma. Os cabos que são apenas ligeiramente pré-formados são mais propensos ao destorcimento após o corte, se o amarrilho for inadequado ou insuficiente.

Deve-se observar que a amarração é às vezes referida como amarrilho. A menos que uma terminação de cabo alternativa tenha sido aprovada pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, somente o mesmo tipo de terminal, conforme especificado pelo fabricante do equipamento no manual de operação, deve ser utilizado para prender um cabo a um tambor, moitão ou ponto de ancoragem na estrutura da máquina. É recomendável fazer um registro-base de inspeção eletromagnética (MRT) antes da instalação ou logo que possível após a instalação.

Para evitar acidentes, o cabo deve ser descarregado com cuidado. As bobinas ou rolos não podem sofrer quedas, nem os cabos podem ser atingidos por ganchos metálicos, garfos de empilhadeiras ou qualquer outro agente externo que possa deformar o cabo. Convém que os cabos sejam armazenados em local arejado, seco e não podem ficar em contato com o piso.

Não convém que os cabos sejam armazenados onde possam ser afetados por agentes químicos, vapor ou outros agentes corrosivos. Se o armazenamento ao ar livre não puder ser evitado, convém que os cabos sejam cobertos para que a umidade não provoque corrosão. Os cabos armazenados devem ser inspecionados periodicamente para detectar quaisquer sinais de deterioração, como corrosão e, se for considerado necessário pela pessoa qualificada, revestido com uma capa de preservação ou lubrificante adequado, compatível com o lubrificante utilizado pelo fabricante do cabo.

Em ambientes quentes, convém que a bobina seja periodicamente rotacionada em meia volta para prevenir a drenagem do lubrificante do cabo. Convém que antes da instalação do cabo, e de preferência no recebimento, o cabo e seu certificado sejam verificados para assegurar que este está de acordo com o especificado no pedido. A carga de ruptura mínima do cabo não pode ser menor do que a especificada pelo fabricante do equipamento de movimentação de carga.

O diâmetro do cabo novo deve ser medido com o cabo livre de tensões e este valor (dm) registrado. Quando um cabo de aço é armazenado por um período de tempo, durante o qual possa ter ocorrido corrosão, pode ser vantajoso realizar inspeção visual e inspeção eletromagnética. Verificar a condição de todos os canais das roldanas e do tambor para assegurar que eles são capazes de receber o diâmetro do cabo novo, que não contêm quaisquer irregularidades, como ondulações ou marcas de cabo, e tem espessura suficiente para suportar a carga com segurança.

Convém que o diâmetro dos canais da roldana esteja entre 5% e 10% maior que o diâmetro nominal do cabo. Para um desempenho ideal, convém que o diâmetro dos canais seja pelo menos 1% maior que o diâmetro real do novo cabo. Ao desenrolar e/ou instalar um cabo, toda a precaução deve ser tomada para evitar a torção ou destorção do cabo. Esta condição pode resultar na formação de laçadas, nós ou dobras, tornando-o impróprio para o uso.

Para evitar que algum destes se desenvolva, o cabo deve ser desenrolado em linha reta com um mínimo de folga permitido. O cabo acondicionado em bobina deve ser desenrolado utilizando uma mesa giratória, em linha reta. Entretanto, quando o comprimento da bobina é curto, a extremidade externa do cabo pode ficar livre e o restante do cabo desenrolado ao longo do solo.

Um cabo nunca pode ser desenrolado retirando as voltas com o rolo ou o flange da bobina posicionado sobre o piso ou pelo rolamento da bobina sobre o piso. Para os comprimentos de cabos fornecidos em bobinas, colocar a bobina de alimentação e sua base de apoio ou suporte, o mais longe possível do equipamento de movimentação de carga ou guincho, a fim de limitar os efeitos da variação do ângulo de enrolamento, evitando assim quaisquer efeitos de torção indesejáveis.

Deve-se proteger o cabo de potenciais fontes de contaminação manuseando-o em superfícies com revestimento adequado (por exemplo, esteira transportadora), em vez de permitir a movimentação direta no solo. Uma bobina girando pode ter uma grande inércia, que nesse caso deve ser controlada por um desenrolamento em uma velocidade baixa e uniforme.

Para bobinas menores isto é conseguido com um freio simples. Bobinas maiores têm inércias significativamente maiores e uma vez que comecem a girar pode ser necessário um dispositivo de frenagem maior. Tanto quanto possível, certificar-se de que o cabo sempre enrole na mesma direção durante a instalação, ou seja, remover o cabo da parte superior bobina de suprimento até a parte superior do tambor no equipamento de movimentação de carga ou guincho (conhecido como de cima para cima), ou desde a parte de baixo da bobina de suprimento até a parte de baixo do tambor no equipamento de movimentação de carga ou guincho (conhecido como de baixo para baixo).

Para a inspeção visual diária, pelo menos o trecho do cabo a ser utilizado para aquele dia específico deve ser observado com o objetivo de detectar sinais de deterioração ou dano mecânico. Isso deve incluir os pontos de fixação do cabo no equipamento de movimentação de carga. O cabo deve também ser verificado para assegurar que ele está corretamente enrolado no tambor e sobre a (s) roldana (s) e não foi deslocado de sua posição normal de trabalho.

Qualquer mudança perceptível na sua condição deve ser registrada e o cabo deve ser examinado por uma pessoa qualificada. Se, em qualquer instante, a condição de trabalho for alterada, tal quando o equipamento de movimentação de carga é deslocado para um novo local e reestabelecido, o cabo deve ser submetido a uma inspeção visual como descrito nesta subseção. O operador do equipamento de movimentação de carga pode ser designado para realizar verificações diárias na medida em que o operador seja suficientemente treinado e considerado competente para realizar essa ação.

Os princípios gerais para cuidados e manutenção dos cabos de fibras

A NBR 16957 de 07/2021 – Cabos de fibras — Cuidados e manutenção, inspeção e descarte estabelece os princípios gerais para cuidados e manutenção, inspeção e descarte de cabos de fibras, incluindo reparo e redução da capacidade (downgrade). Um cabo de fibra é uma estrutura tênsil composta por fibras naturais ou sintéticas. A carga de impacto é a taxa rápida de aplicação de carga, cujos efeitos dinâmicos excedam 50% da carga de ruptura mínima (CRM) que é a resistência à ruptura mínima (MBS), a força mínima que o cabo deve suportar imediatamente antes da ruptura. A carga máxima de trabalho (CMT) é aquela carga máxima de operação do cabo dentro dos limites de segurança estabelecidos. A CMT é calculada de acordo com o fator de segurança utilizado. Na ausência de uma definição de projeto ou procedimento, pode-se adotar um fator de segurança.

Confira algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feita a inspeção na vizinhança das terminações?

Quando deve ser feito o descarte do cabo?

Como devem ser feitos os reparos dos cabos com capa trançada?

Quais são as propriedades físicas, mecânicas e ambientais das fibras sintéticas?

As fibras sintéticas utilizadas em larga escala na fabricação de cabos estão dispostas no Anexo A. Para uma análise completa, os diferentes tipos construtivos devem estar associados à matéria-prima, bem como aos fatores do projeto construtivo do cabo. Na ausência de instruções fornecidas pelo fabricante, ou fornecedor do cabo, recomenda-se atender aos requisitos gerais dessa norma.

A menos que um cabo alternativo seja aprovado pelo projetista de uma instalação ou fabricante do cabo, somente o cabo feito do material, comprimento, diâmetro, construção e carga de ruptura mínima especificados pelo projetista deve ser utilizado. As trocas do cabo devem ser registradas. Se um trecho de cabo de tamanho menor precisar ser cortado de outro de tamanho maior, os novos olhais (mãos) devem ser confeccionados pelo fabricante ou pessoa por ele autorizada.

As trocas de cabos que estejam trabalhando em paralelo devem ocorrer simultaneamente, pois cabos novos possuem alongamento construtivo e acomodação da emenda, que ocorrem durante as primeiras utilizações. Recomenda-se que as linhas que trabalham em paralelo sejam corretamente tensionadas, a fim de garantir a correta distribuição de carga pelo conjunto. A falta de cuidado pode ocasionar a sobrecarga de um dos elementos e consequentemente a sua falha.

Antes da utilização de um cabo, recomenda-se verificar o certificado ou declaração de conformidade. O certificado (atestado de terceira parte) ou declaração (atestado de primeira parte) conforme a NBR ISO IEC 17000. A fim de evitar acidentes ou danos ao cabo, deve-se seguir as orientações do fabricante quanto ao manuseio destes produtos.

Durante as movimentações, deve-se ter cuidado com potenciais fontes de danos às fibras sintéticas (por exemplo, movimentar as bobinas posicionando o garfo da empilhadeira no cabo). Recomenda-se as inspeções periódicas em cabos armazenados por longos períodos, a fim de verificar sinais de degradação das fibras sintéticas. Deve-se realizar inspeção destes produtos antes de colocá-los em uso.

Recomenda-se o armazenamento dos cabos em área coberta, seca e protegida das ações das intempéries. Se a armazenagem em ambientes abertos não puder ser evitada, recomenda-se que estes sejam cobertos. Deve-se evitar a exposição a altas temperaturas e o contato com produtos químicos. Deve-se observar os cuidados no enrolamento dos cabos durante o armazenamento.

Um cabo com torção à direita deve ser enrolado (aduchado) no sentido horário e um cabo com torção à esquerda deve ser enrolado no sentido anti-horário, ou seja, de acordo com a torção do produto. Recomenda-se deixá-lo em formato espiralado, movendo cada camada em alguns centímetros, conforme a NBR ISO 9554. O armazenamento do cabo em formato de 8 é recomendado para cabos torcidos e trançados entre dois cabeços, pois este método evita o acúmulo de torção em ambos os sentidos.

O armazenamento do cabo em carretel é a forma mais indicada. Neste tipo de procedimento deve-se evitar torções durante o bobinamento ou desbobinamento, e sobreposição de camadas, aplicando uma tração mínima de 10% da CRM.

Antes da utilização de um cabo, recomenda-se verificar sua especificação e o certificado ou declaração de conformidade. A carga de ruptura mínima do cabo não pode ser inferior à especificada pelo projeto da instalação. Uma inspeção visual e dimensional deve ser realizada e um relatório deve ser emitido por pessoa qualificada.

Ao remover um cabo de uma bobina, recomenda-se iniciar a partir da ponta interna, ou utilizar uma mesa rotativa. Se possível, rolar a bobina sobre uma superfície limpa e adequada. Em cabos armazenados em carreteis, recomenda-se que a bobina seja posicionada em algum acessório que permita o giro livre. Para esses casos, recomenda-se a verificação da capacidade de armazenamento e a conservação da superfície que estará em contato com o cabo. (ver figuras abaixo)

As características descritas a seguir se aplicam para as mesmas matérias primas e variáveis construtivas. Mais detalhes para cada construção estão no Anexo B. Os cabos fabricados com poliamida são flexíveis e de fácil manuseio durante as primeiras operações. Porém apresentam elevada absorção de água que, dependendo do tipo de operação, pode tornar seu manuseio mais difícil. A absorção de água pode gerar uma redução de até 20 % na CRM

Os cabos torcidos de 3 e 4 pernas possuem as seguintes características: facilidade de confeccionar emendas de mão e olhais; distorcem facilmente quando desenrolado e enrolado (encabritamento). A fim de evitar o encabritamento, deve-se desenrolar e enrolar as bobinas no mesmo sentido de torção do cabo.

Esses cabos ainda distorcem quando submetidos a altas cargas (encabritamento). As distorções ocorrem devido ao desequilíbrio natural da construção do olhal. A fim de evitar o encabritamento, recomenda-se que a CMT não ultrapasse a 20% da CRM.

Os cabos torcidos são comumente mais difíceis de alcançarem o equilíbrio de tensão entre suas pernas, uma vez que uma ou mais pernas podem causar distorções quando submetidas a cargas elevadas. Esses cabos possuem baixa resistência à abrasão.

Devido às suas características construtivas, o cabo torcido possui vales entre suas pernas, o que gera um estímulo à abrasão ao longo do cabo. Recomenda-se, quando possível, evitar o contato com superfícies abrasivas.

O cabo trançado de 8 pernas possui as seguintes características: é de fácil manuseio, em virtude do equilíbrio entre as pernas, o manuseio do cabo trançado se torna mais simples quando comparado com os cabos torcidos, uma vez que pode ser bobinado e desbobinado em qualquer sentido. Possui média resistência à abrasão, por possuir formato quadrado, essa construção possui vales entre as tranças, o que a torna sensível à abrasão quando em contato com cantos vivos. Têm recuperação elástica, pois o cabo trançado de 8 pernas possui capacidade de recuperação elástica (resiliência) e mantém suas propriedades quando secos ou molhados.

O cabo trançado de 12 pernas possui as seguintes características: é de fácil manuseio, em virtude do equilíbrio entre as pernas, o manuseio do cabo trançado se torna mais simples quando comparado com os cabos torcidos, uma vez que podem ser bobinados e desbobinados em qualquer sentido; tem ótima resistência à abrasão: por possuir formato redondo, essa construção não possui vales entre as tranças, o que torna menos sensível à abrasão quando em contato com cantos vivos; possui recuperação elástica, pois os cabos trançados de 12 pernas possuem capacidade de recuperação elástica (resiliência) e mantêm suas propriedades quando secos ou molhados.

O cabo de dupla trança possui as seguintes características: é de fácil manuseio, em virtude do equilíbrio da construção, os cabos de dupla trança são flexíveis e de fácil manuseio no estado úmido ou seco; tem resistência à abrasão, já que o cabo de dupla trança é mais sensível à abrasão em função de seu formato construtivo. Entretanto, em operações marítimas, por exemplo, recomenda-se que esse tipo de cabo seja revestido com poliuretano ao longo do seu comprimento.

Sua estrutura ou a capa não apenas protege a alma como tem função estrutural na composição da CRM do cabo. Porém, uma vez que na maioria dos casos representa a menor participação de massa no cabo, e também pelo fato de ficar exposta, acaba por ter sua estrutura degradada mais rapidamente. Possuem absorção de impacto: o cabo de dupla trança, quando fabricado com fibras de alto alongamento, como no caso da poliamida, tem como característica principal a elevada capacidade de absorção de cargas de impacto. Esta característica, entretanto, não se aplica a cabos fabricados com fibras de baixo alongamento, por exemplo, poliéster e HMPE. Antes das operações do cabo, sempre que possível, deve-se realizar uma avaliação de todos os potenciais pontos de contato, a fim de identificar as superfícies inapropriadas que possam reduzir a vida útil dos cabos.

Deve-se evitar: a indução de torção ao longo do comprimento, durante o armazenamento ou a utilização do cabo, para evitar a redução da resistência à ruptura; cabo trabalhando fora do acessório; cargas aplicadas sem controle, que possam causar sobrecarga ou cargas de impacto no cabo sintético; movimento relativo entre superfícies e equipamentos, principalmente quando estes apresentam arestas ou rugosidade; utilizar os cabos sintéticos em áreas com sujeira excessiva ou contato com produtos químicos; exposição dos cabos sintéticos ao calor ou raios UV, principalmente quando os produtos estiverem expostos por longos períodos; amarração de cabo sintético em cabeço ou acessórios com relação D/d inferior ao especificado.

O usuário deve estabelecer um plano de inspeção, considerando as condições de utilização e grau de risco para cada aplicação. Em alguns casos, com o objetivo de avaliar a vida residual do cabo em determinada situação, pode-se adotar a prática de remover um trecho do cabo a fim de se realizar ensaios destrutivos. O Anexo F apresenta um modelo de registro de inspeção. Na ausência de qualquer instrução de inspeção durante a operação, fornecida pelo fabricante do cabo ou do equipamento, os princípios gerais para inspeção devem estar de acordo com a seção 6.

No Anexo C, encontram-se os principais tipos de danos que podem ser identificados visualmente. Em aplicações críticas, deve-se manter o histórico do cabo sempre atualizado. Em algumas inspeções, pode não ser possível a verificação de todas as fontes de falha, como, por exemplo, cargas de impacto, sobrecarga e degradação por UV. Por este motivo, estas informações devem ser registradas no histórico do cabo. O Anexo F apresenta um modelo de registro de inspeção.

Com o objetivo de ambientar o inspetor quanto aos danos já existentes no cabo, os registros de inspeções anteriores devem ser consultados. Em cabos cuja utilização não ofereça riscos à operação, o procedimento pode ser simplificado, desde que acordado entre o cliente e a pessoa qualificada.

O Anexo F apresenta um exemplo de histórico do cabo. É esperado que o histórico contenha pelo menos as seguintes informações: identificação do cabo; matéria prima; diâmetro nominal; CRM original; aplicação do cabo; número de operações; tempo do cabo em serviço; local da inspeção; data da inspeção; data da próxima inspeção; fabricante e conclusões.

O usuário deve realizar a inspeção diária antes ou durante o uso do cabo. Recomenda-se que ele possua treinamento básico para a execução dessa tarefa. Deve-se observar pelo menos os trechos de cabos sob trabalho com o objetivo de detecção de danos mecânicos ou deterioração geral, principalmente nos pontos onde o cabo entra em contato com partes metálicas.

O cabo deve ser verificado, também, para assegurar se está assentado corretamente no tambor e se não apresenta desvios da sua posição normal de operação. Qualquer mudança considerável nas condições de trabalho deve ser relatada e o cabo colocado para ser inspecionado por pessoa qualificada. A inspeção periódica deve ser feita por pessoa qualificada. Uma lista de danos mais comuns está no Anexo C.

A informação oriunda da inspeção periódica deve ser utilizada para decidir se o cabo pode permanecer em serviço até a próxima inspeção periódica; cabo necessita de reparo; o cabo deve ter redução da capacidade (downgrade) (ver o Anexo D); o cabo precisa ser retirado de serviço imediatamente ou após um prazo definido. A periodicidade deve considerar a aplicação, construção, matéria-prima, frequência de utilização do cabo, condições de uso, risco das operações e histórico do produto. A tabela abaixo sugere uma frequência de inspeção baseada na experiência da indústria cordoeira.

É importante destacar que há diversos agentes externos que podem interferir diretamente na determinação da frequência de inspeção. Para casos especiais, uma pessoa qualificada deve analisar todo o cenário da aplicação e definir uma periodicidade adequada. Neste caso, deve-se considerar: a existência de regulamento técnico; as condições ambientais; as condições físicas das aplicações; os resultados das inspeções anteriores; o tempo de operação do cabo.

Os requisitos normativos do biodiesel e/ou óleo diesel BX

Compreenda os procedimentos para o armazenamento, transporte, abastecimento e controle de qualidade de biodiesel e/ou óleo diesel BX.

A NBR 15512 de 11/2020 – Armazenamento, transporte, abastecimento e controle de qualidade de biodiesel e/ou óleo diesel BX estabelece os requisitos e procedimentos para o armazenamento, transporte, abastecimento e controle de qualidade de biodiesel e/ou óleo diesel BX. Os procedimentos aplicam-se aos sistemas de recebimento, armazenamento, expedição, transporte e abastecimento, na produção, distribuição e revenda de biodiesel e/ou óleo diesel BX, e abrangem modos de transporte, tanques de armazenamento ou quaisquer outras instalações apropriadas para armazenamento, incluindo ponto de abastecimento.

O uso desta norma pode envolver o emprego de materiais, operações e equipamentos perigosos, e essa norma não pretende tratar de todos os problemas de segurança associados com seu uso. É responsabilidade de o usuário estabelecer as práticas de segurança e saúde apropriadas, bem como determinar a aplicabilidade de limitações regulamentares, antes de seu uso.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser a conformidade do tanque de armazenamento no produtor, distribuidor e terminais?

Por que deve ser evitada a troca de produtos nos tanques de armazenamento?

Quais são os limites de misturas e/ou contaminações do biodiesel?

Como deve ser a guarda de amostra-testemunha?

O biodiesel é um combustível composto de alquil ésteres de ácidos carboxílicos de cadeia longa, produzido a partir da transesterificação e/ou esterificação de matérias graxas, de gorduras de origem vegetal ou animal, conforme especificação estabelecida na legislação vigente. O biocombustível somente pode ser considerado biodiesel se atender à especificação estabelecida pela legislação vigente. O óleo diesel BX é um combustível de uso rodoviário ou não rodoviário, destinado aos veículos e equipamentos dotados de motores do ciclo Diesel, produzido nas refinarias, nas centrais de matérias-primas petroquímicas e nos formuladores, misturado ao biodiesel em proporção definida (X%). Os equipamentos de medição para fins de ensaio exigível na legislação vigente devem ser verificados e calibrados, conforme estabelecido na NBR ISO 10012.

O produtor, distribuidor, transportador, revendedor e o ponto de abastecimento devem manter as instalações adequadas ao armazenamento, manuseio e movimentação do biodiesel e/ou diesel BX a serem comercializados, conforme os requisitos mínimos apresentados nesta Seção. Face às características dos produtos, alguns cuidados devem ser tomados, visando preservar a qualidade e evitar as alterações. A seguir, são apresentados alguns aspectos do biodiesel e/ou diesel BX que influenciam sua movimentação e armazenamento, bem como a qualidade do produto.

O biodiesel pode remover ou dissolver resíduos depositados nos tanques. Assim sendo, deve-se efetuar a limpeza do tanque antes de utilizá-lo para estocar este produto, conforme especificado na NBR 17505-5. O biodiesel e/ou diesel BX em temperaturas próximas ao ponto de congelamento têm um aumento de viscosidade, que pode comprometer as operações de bombeamento e descarga e a realização da mistura biodiesel com óleo diesel nas operações de carregamento.

O biodiesel e/ou diesel BX degradam certos tipos de borracha utilizados na fabricação de mangueiras, gaxetas e anéis de vedação. Deve-se evitar o seu contato com acessórios fabricados com borracha nitrílica ou borracha natural. As mangueiras devem ser fabricadas à base de politetrafluoretileno ou poliamidas, conforme a BS 5842.

As gaxetas e os anéis de vedação utilizados no sistema de movimentação, armazenamento e transferência também devem ser fabricados em politetrafluoretileno ou poliamidas. Deve-se evitar contato do produto com cobre, chumbo, cádmio, estanho, zinco e ligas metálicas que contenham esses metais e aços galvanizados, pois isso pode aumentar a concentração de sedimentos no produto, se houver contato por um longo período.

Os recipientes plásticos fabricados com polietilenos e polipropilenos podem ser permeáveis a biodiesel e/ou óleo BX, portanto, para armazenamento e/ou movimentação por tubulação não metálica, a taxa de permeação do biodiesel e óleo diesel BX não pode ser superior a 2,0 g/m²/dia, conforme especificado nas NBR 14722 e NBR 15931. Para assegurar a qualidade do biodiesel armazenado por mais de 30 dias, recomenda-se o monitoramento, avaliando-se primeiramente a água total, o índice de acidez e, em seguida, a estabilidade à oxidação, para verificar se o produto se mantém conforme a especificação vigente.

Recomenda-se que o produtor utilize aditivos antioxidantes. O biodiesel e/ou diesel BX também podem sofrer decomposição por hidrólise, ou seja, pela ação da água. A presença da água é capaz de alterar a sua composição, trazendo sérias implicações para os sistemas de movimentação e armazenamento, introduzindo a possibilidade de elevação da acidez.

Pode ocorrer o estabelecimento de processos corrosivos e formação de sedimentos de origem química (goma e óxidos de ferro) e a proliferação de micro-organismos e estabelecimento de processos de biocorrosão e de formação de biodepósitos (sedimentos de origem microbiana). Recomenda-se monitorar a estabilidade hidrolítica do biodiesel por meio da medição regular do teor de água total, do número de acidez e de sedimentos. Para o caso de tanques, a amostragem deve ser em conformidade com a NBR 14883.

Os tanques devem ser projetados e construídos conforme as NBR 15461, NBR 7821 e NBR 16161, ou outras normas internacionalmente aceitas. A disposição dos tanques deve seguir a NBR 17505 (todas as partes). O sistema de filtração deve ser adequado para assegurar a qualidade do produto, devendo estar convenientemente instalado em todas as etapas de movimentação, de modo a assegurar o descarregamento de produto aos tanques, assim como o seu carregamento para a remoção de impurezas antes da mistura ao óleo diesel.

Recomenda-se que os sistemas de filtração possuam identificação adequada, de forma a permitir a verificação dos registros de manutenção, bem como drenos, pontos para amostragem, manômetro de leitura direta de diferencial de pressão, válvulas de alívio de pressão e eliminadora de ar. Recomenda-se que todo o abastecimento de veículo disponha de sistema de filtração dotado de filtro coalescedor e elemento filtrante com grau de retenção de partículas de 10 μm no máximo, podendo, complementarmente, utilizar os parâmetros de filtração em todos os elos da cadeia de abastecimento.

A verificação do funcionamento dos filtros e drenagem da água separada no filtro coalescedor deve ser realizada antes do início da operação, com a manutenção do equipamento seguindo as recomendações do fabricante. Para fins de transporte terrestre, o biodiesel deve ser considerado produto não perigoso. O enquadramento adotado é devido à inexistência da classificação ONU para o biodiesel e dos estudos de ecotoxicidade existentes na literatura internacional.

Para fins de transporte terrestre, o diesel BX deve ser classificado de acordo com o número ONU 1202 (óleo diesel), classe de risco 3 (líquido inflamável). O carregamento dos compartimentos dos modos de transporte deve ser feito mediante a prévia verificação e garantia do total esgotamento do produto anteriormente transportado. O tanque para transporte rodoviário dos produtos abrangidos por esta norma deve seguir as especificações vigentes, observados os requisitos constantes na Seção 5, alíneas c) a e). O tanque para transporte ferroviário dos produtos abrangidos por esta norma deve ser projetado, construído, ensaiado e inspecionado periodicamente conforme as especificações vigentes, observados os requisitos constantes na Seção 5, alíneas c) e d).

O transporte por via terrestre dos produtos abrangidos por esta norma deve atender às NBR 7500, NBR 7501, NBR 7503, NBR 9735, NBR 13221, NBR 14064, NBR 14619 e NBR 15481. Para armazenamento, consumo e transporte de biocombustíveis em embarcações, devem ser seguidos os requisitos vigentes estabelecidos por órgão competente. Os requisitos de operação dos tanques de armazenamento devem atender à NBR 17505-5.

Nas várias etapas do sistema de produção, distribuição e revenda de biodiesel e/ou diesel BX, são necessárias coletas de amostras e realização de ensaios seguindo padrões internos, ou requisitos legais, para a garantia de qualidade. As coletas e os ensaios de amostras objetivam verificar a conformidade do produto, tanto por meio de suas respectivas especificações, quanto visando detectar possíveis contaminações ou degradações do biodiesel e/ou diesel BX no transporte e/ou armazenamento. Devem ser coletadas amostras representativas no recebimento e na expedição do produto, de acordo com a NBR 14883.

Devem-se utilizar recipientes fabricados com materiais distintos dos descritos na Seção 5, alíneas c) e d), para a amostragem de biodiesel e/ou diesel BX. Para o biodiesel, quando a amostragem for realizada em tanques sem movimentação há mais de 30 dias, é recomendado que os controles sejam precedidos da verificação da homogeneidade do biodiesel no tanque por meio da determinação da massa específica em amostras coletadas nos níveis superior, médio e inferior do tanque, quando aplicável.

Caso a diferença entre as massas específicas seja maior que 3 kg/m³, os ensaios de controle de qualidade do tanque devem ser realizados nas três amostras dos diferentes níveis. Caso comprove-se a homogeneidade do tanque, os ensaios podem ser realizados na amostra composta do tanque. Em todas as etapas dos procedimentos de controle de qualidade em que for previsto o ensaio de aparência, o biodiesel deve estar claro, límpido e visualmente isento de água livre e de material sólido (ver NBR 16048).

A avaliação deve ser realizada em amostra de 1 L, em recipiente de vidro transparente, sem qualquer tipo de imperfeição, de modo a possibilitar a agitação por rotação da amostra. Devido à característica higroscópica do biodiesel, o processo de amostragem deve evitar o contato da amostra com a umidade do ar, para não interferir nos resultados de análise de teor de umidade.

Os seguintes documentos da qualidade são partes integrantes desta norma, conforme a Seção 3: certificado da qualidade do biodiesel; boletim de conformidade do diesel BX. O controle de qualidade do biodiesel deve ser realizado nas etapas de recebimento, armazenamento e liberação do produto. Para a execução dos ensaios previstos para emissão do “certificado da qualidade”, recomenda-se coletar no mínimo 2 L de biodiesel. Para a emissão do “boletim de conformidade”, recomenda-se coletar no mínimo 1 L de diesel BX.

O biodiesel recebido em bases e terminais deve ser acompanhado do certificado da qualidade, e o diesel BX deve ser acompanhado do boletim de conformidade. Antes do recebimento do produto, devem ser verificados os resultados dos ensaios realizados na origem, constantes no documento da qualidade, os quais devem estar de acordo com as especificações vigentes. Os primeiros ensaios a serem realizados no recebimento do produto são os de aspecto e de massa específica.

Para a correção de massa específica à temperatura de 20 °C, consultar a tabela de conversão da Resolução CNP 6, 1970. A inspeção da inviolabilidade dos lacres na boca de visita, conexões de descarga e enchimento devem seguir as referências e cores informadas pelo fornecedor. A verificação da conformidade do produto deve ser realizada em cada tanque ou compartimento, coletando-se a amostra, de modo a investigar a presença de qualquer vestígio de partículas contaminantes. Recomenda-se a utilização de mangote adequado ao biodiesel e ao diesel BX, com material compatível.

O produto contido no tanque recebedor deve ser analisado, verificando-se a conformidade dos resultados obtidos, tomando-se por referência a regulamentação vigente. Os tanques devem estar isentos de impurezas, como água e partículas sólidas. Recomenda-se que a verificação da presença de impurezas seja realizada e registrada. As aberturas dos tanques para transporte ou armazenamento, aéreo ou enterrado, devem ser vedadas, para evitar a entrada de água.

Recomenda-se a drenagem de fundo dos tanques aéreos para avaliar a presença de água livre antes da liberação do produto para expedição. Para os tanques enterrados, verificar a presença de água livre pelo menos semanalmente. Para minimizar os riscos de geração de eletricidade estática, o recipiente metálico utilizado para a drenagem deve estar ligado com cabo antiestático ao equipamento e deve assegurar boas condições de aterramento do tanque.

A inspeção interna do tanque é feita de acordo com a API STD 653. Para execução da inspeção interna, o tanque deve ser previamente limpo. A inspeção interna de tanques pode envolver trabalho em ambiente confinado e/ou em atmosfera explosiva. Seguir as orientações de saúde e segurança para trabalho em ambiente confinado e para o uso de equipamento adequado.

A verificação a olho nu da presença de água livre, partículas sólidas, contaminação microbiana e impurezas deve ser realizada com periodicidade máxima de um mês. Uma vez verificada a presença de água livre, esta deve ser retirada, pela drenagem ou bombeamento da água presente no fundo do tanque, antes de qualquer operação. Independentemente dos resultados obtidos nas inspeções operacionais periódicas, recomenda-se que os tanques sejam limpos com periodicidade máxima de cinco anos.

Caso sejam identificados materiais em suspensão ou sujeiras, durante a drenagem ou bombeamento da água no fundo do tanque de biodiesel ou do diesel BX a ser comercializado, é necessário prosseguir com a drenagem até a retirada de toda a água ou contaminação, sendo recomendada a limpeza do tanque, independentemente do prazo de inspeção. A limpeza do tanque deve ser suficiente para que não restem vestígios de produtos químicos, evitando a contaminação de futuros produtos armazenados.

API SPEC 2C: guindastes montados em pedestal offshore

Essa norma, editada pela American Petroleum Institute (API) em 2020, fornece os requisitos para o projeto, a fabricação e os ensaios de novos guindastes montados em pedestal offshore. Para os fins desta norma, os guindastes offshore são definidos como dispositivos de elevação giratórios e elevatórios montados em pedestal para transferência de materiais e pessoal de/ou para embarcações, barcaças e estruturas ou para transferência de materiais de/ou para o mar ou fundo do mar.

A API SPEC 2C:2020 – Offshore Pedestal-mounted Cranes fornece os requisitos para o projeto, a fabricação e os ensaios de novos guindastes montados em pedestal offshore. Para os fins desta norma, os guindastes offshore são definidos como dispositivos de elevação giratórios e elevatórios montados em pedestal para transferência de materiais e pessoal de/ou para embarcações, barcaças e estruturas ou para transferência de materiais de/ou para o mar ou fundo do mar.

As aplicações típicas podem incluir: as aplicações de exploração e produção de petróleo offshore e esses guindastes são normalmente montados em uma estrutura fixa (com suporte inferior), estrutura flutuante ou embarcação usada em operações de perfuração e produção; as aplicações a bordo em que os guindastes são montados em embarcações de superfície e são usados para mover carga, contêineres e outros materiais enquanto o guindaste está dentro de um porto ou área protegida; e as aplicações de embarcações de guindaste em que os guindastes são normalmente montados em embarcações em forma de navio, semissubmersíveis, barcaças ou embarcações marítimas do tipo autoelevatória especializadas em levantamento de cargas pesadas e / ou exclusivas para construção, assentamento de tubos, energia renovável, salvamento e aplicações submarinas em ambos os portos e águas offshore.

A figura abaixo ilustra alguns (mas não todos) dos tipos de guindastes cobertos por esta norma (ver Introdução). Embora existam muitas configurações de guindastes montados em pedestal cobertas no escopo desta norma, não se destina a ser usado para o projeto, fabricação e teste de turcos ou dispositivos de escape de emergência. Esta norma não cobre o uso de guindastes para aplicações de salvamento de vidas ou para o lançamento e recuperação de unidades subaquáticas tripuladas, como sinos de mergulho ou submersíveis.

Conteúdo da norma

1 Escopo. . . . . . . . . . . . .  . 1

2 Referências normativas.  . . . . . . 1

3 Termos, definições, acrônimos, abreviações, unidades e símbolos.  . . . . . . . . . . . . 3

3.1 Termos e definições. . . . . . . . . . . 3

3.2 Acrônimos e abreviações. .. . . . . 16

3.3 Unidades e símbolos. . . . . . . . . 17

4 Documentação. . . . . . . . . . . 22

4.1 Documentação fornecida pelo fabricante no momento da compra. . . . . . . . . . . . . . . . . 22

4.2 Informações fornecidas pelo comprador antes da compra…….22

4.3 Retenção de registros. .. . . . . . . . . . . . 23

4.4 Referências aos Anexos. . . . . . . . 23

5 Cargas. . .. . . . . . . . 23

5.1 Limites de trabalho seguro (Safe Working Limits – SWL)……..23

5.2 Componentes críticos.. . . . . . . . 24

5.3 Forças e carregamentos.. . . . . . . . . . . . 24

5.4 Cargas em serviço. . .. . . . . . . . . 24

5.5 Cargas fora de serviço. .. . . . . . . . . . 36

5.6 Vento, gelo e cargas sísmicas. . . . . 36

6 Estrutura. . . . . . . . . . . . . . 38

6.1 Geral. . . . . . . . . . . 38

6.2 Métodos de projeto. . . . . . . . 38

6.3 Conexões críticas.. . . . . . . . . 39

6.4 Base de suporte de pedestal, Kingpost e Crane. . . . . . 39

6.5 Exceções ao uso de AISC. . . . . . . . . . . . . . 40

6.6 Fadiga estrutural. . .. . . . . . . 40

7 Mecânico. . . .. . . . . . . . . . . . 40

7.1 Ciclos de trabalho de máquinas e cabos de aço . . . 40

7.2 Componentes Críticos de Rigging. .. . . . . 45

7.3 Elevação, elevação da lança, telescopagem e dobragem…….. 53

7.4 Mecanismo de giro. . . . . . . . . 58

7.5 Central elétrica. . .. . . . . . . . 63

8 Avaliações. . . .. . . . . . . . . 64

8.1 Geral. . . . . . . . . . . . . . . 64

8.2 Classificação de carga e gráficos de informações. . . . . . 66

9 Condições de sobrecarga bruta.. . . . . 68

9.1 Geral. .. . . . . . . . . . . . . 68

9.2 Cálculos do modo de falha. . . . . . . . 68

9.3 Métodos de cálculo. .. . . . . . 69

9.4 Gráficos do modo de falha. . . . . . . 69

9.5 Sistema de proteção contra sobrecarga bruta (GOPS)………..69

10 Fatores humanos – saúde, segurança e meio ambiente………..70

10.1 Controles. .. . . . . . . . . 70

10.2 Cabines e gabinetes. . . . . . . . . 74

10.3 Requisitos e equipamentos diversos. …… . 76

11 Requisitos de fabricação. . . . . . . . . . . . . 80

11.1 Requisitos de material de componentes críticos. .. . . 80

11.2 Soldagem de componentes sob tensão crítica. ………. 84

11.3 Exame não destrutivo de componentes críticos. . . 85

12 Validação de projeto por meio de ensaios. . . . 87

12.1 Validação de projeto. . . . . . . . . . . 87

12.2 Certificação. .. . . . . . . . . . . . . 88

12.3 Ensaios operacionais. . . .. . . . . . . . . . 88

13 Guindastes de instalação temporária (TICs……. . . 88

14 Marcação. . .. . . . . . . . . . . . . 88

Anexo A (informativo) Informações adicionais fornecidas pelo comprador. . . . . . . . . . . . . . . . 90

Anexo B (informativo) Comentário. .. . . . 92

Anexo C (informativo) Exemplo de lista de componentes críticos. . . . . . . . . . . . . . . 112

Anexo D (normativo) Classificação Submarina. . . . 113

Anexo E (normativo) Métodos de cálculo do cilindro. . . 118

Anexo F (informativo) Exemplo de cálculos………….. 119

Bibliografia… . . . . . . . . . 133

A segurança no armazenamento de recipientes de gás liquefeito de petróleo (GLP)

Saiba quais são os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. 

A NBR 15514 de 08/2020 – Recipientes transportáveis de gás liquefeito de petróleo (GLP) — Área de armazenamento — Requisitos de segurança estabelece os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. Não se aplica às bases de armazenamento, envasamento e distribuição de GLP, para as quais é aplicável a NBR 15186, e aos recipientes transportáveis de GLP quando em uso. A não ser que seja especificado de outra forma por regulamentação legal, os requisitos desta norma não são obrigatórios para as instalações que já existiam ou tiveram sua construção, instalação e ampliação aprovadas e executadas anteriormente à data de publicação desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o empilhamento de recipientes transportáveis de GLP?

Como deve ser feito o empilhamento de recipientes em paletes estruturados?

Que medidas devem ser tomadas em relação à máquina de vendas de recipientes transportáveis de GLP?

Quais são as características da área de armazenamento de apoio?

Os locais que armazenam, para consumo próprio, cinco ou menos recipientes transportáveis, com massa líquida de até 13 kg de GLP (cheios, parcialmente cheios ou vazios), ou carga equivalente em outro tipo de recipiente, devem atender aos seguintes requisitos: estar em local aberto com ventilação natural; estar afastado no mínimo 1,5 m de outros produtos inflamáveis, de fontes de calor, de faíscas, ralos, caixas de gordura e de esgotos, bem como de galerias subterrâneas e similares; não podem estar expostos ao público. As áreas de armazenamento de recipientes transportáveis de GLP devem ser classificadas pela capacidade de armazenamento, em quilogramas de GLP, conforme tabela abaixo.

A capacidade de armazenamento, em quilogramas de GLP, de uma área deve ser limitada pela soma da massa líquida total preestabelecida nos recipientes transportáveis. Quando a área de armazenamento estiver instalada em postos revendedores de combustíveis líquidos-PR, ela deve ser limitada a uma única área, classe I ou II. O lote de recipientes transportáveis de GLP pode armazenar até 6.240 kg, em botijões ou cilindros, (novos, cheios, parcialmente cheios e vazios).

O local de assento dos recipientes transportáveis de GLP deve ter ventilação natural, piso plano pavimentado com superfície que suporte carga e descarga, podendo ter inclinação desde que não comprometa a estabilidade do empilhamento máximo estabelecido na Tabela 3, disponível na norma. O local de assento dos lotes pode ser localizado ao nível do solo ou plataforma elevada. As áreas de armazenamento de classe III ou superiores devem possuir corredores de circulação com no mínimo 1,0 m de largura, entre os lotes de recipientes e ao redor destes.

A plataforma elevada destinada a áreas de armazenamento de recipientes transportáveis de GLP, quando existente, deve ser construída com materiais incombustíveis e possuir ventilação natural de forma a evitar o acúmulo de gás. O corredor de circulação pode ter inclinação, podendo estar em nível diferente do local de assentamento dos lotes desde que não ultrapasse a diferença máxima de 0,2 m, conforme Figura A.1, disponível na norma. A área ou corredor de circulação pode estar situado em outro nível diferente do assentamento dos recipientes, desde que a diferença de altura não ultrapasse 0,2 m, conforme Figura A.2, disponível na norma.

Uma mesma área de armazenamento pode possuir lotes em diferentes níveis de altura. Caso uma área esteja 0,2 m acima das demais ou do solo, essa deve possuir corredor de circulação, conforme Figura A.3, disponível na norma. A delimitação da área de armazenamento deve ser através de pintura ou demarcação de material incombustível no piso ou por meio de cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível, para assegurar ampla ventilação.

Para as áreas de armazenamento de classe III e superiores, também deve ser demarcado o piso para o local do (s) lote (s) de recipientes. A área de armazenamento, quando coberta, deve ter no mínimo 2,6 m de altura não sendo permitido o cercamento total do limite da área de armazenamento por paredes, permitindo-se, entretanto, sua delimitação por no máximo duas paredes. A estrutura e a cobertura devem ser construídas com produto incombustível e fora da projeção da edificação, tendo a cobertura menor resistência mecânica do que a estrutura que a suporta.

Quando a delimitação da área de armazenamento é feita por paredes, estas devem estar posicionadas a no mínimo 1,0 m do limite do lote, não podendo ter cobertura e atendendo aos distanciamentos de segurança da respectiva classe. Quando a área de armazenamento for delimitada por paredes ou cercas deve possuir acesso através de uma ou mais aberturas (portões) de no mínimo 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos.

Quando o imóvel não for delimitado por muros, cercas ou outros materiais, as áreas de armazenamento de qualquer classe devem ser delimitadas por cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível. O imóvel que contenha qualquer classe de área de armazenamento deve possuir no mínimo uma abertura (portão), com dimensões mínimas de 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos, para permitir a evasão de pessoas em caso de emergência. Adicionalmente, o imóvel pode possuir outros acessos com dimensões quaisquer e com qualquer tipo de abertura.

Não é permitida a armazenagem de outros materiais e equipamentos na área de armazenamento dos recipientes transportáveis de GLP, excetuando-se aqueles exigidos pela legislação vigente, como: balança, material para teste de vazamento, extintor(es) e placa(s), e outros destinados à operação de carga e descarga, como: carrinho de transporte, rampa metálica, incluindo as disposições de 4.9 e 4.10. Os recipientes transportáveis de GLP devem estar dentro da área de armazenamento, com exceção do estabelecido em 7.2 e dos recipientes carregados em veículos previsto na Seção 8.

Os recipientes transportáveis de GLP que apresentem defeitos ou vazamentos devem ser identificados e organizados separadamente dentro da área de armazenamento. As operações de carga e descarga de recipientes transportáveis de GLP devem ser realizadas com cuidado, evitando-se impacto no solo ou na plataforma elevada, para que não sejam danificados. Não é permitida a circulação de pessoas não autorizadas na área de armazenamento.

O muro do limite do imóvel deve ser construído com material resistente ao fogo (TRRF 60 minutos), com altura mínima 1,8 m, sem aberturas, com comprimento mínimo de 1,0 m excedente da (s) extremidade (s) do lote. Os muros internos ao imóvel não podem ser considerados como limite de propriedade. A área de armazenamento deve ser mantida limpa, livre, e os lotes afastados 1,5 m de acumulações de materiais de fácil combustão.

Deve ser observada a distância mínima de 3,0 m contados a partir dos limites do lote até onde existam reservatórios de líquidos inflamáveis cujo volume seja superior a 50 L, exceto tanque de combustível de veículos. As tolerâncias dimensionais desta norma admitem um desvio de até 0,1 m para menos. O (s) lote (s) de recipientes devem estar a 1,0 m no mínimo de qualquer parede, exceto na condição prevista em 7.2.

As distâncias mínimas de segurança definidas na Tabela 4 (disponível na norma) podem ser reduzidas pela metade com a construção de paredes resistentes ao fogo, desde que observado o estabelecido na Seção 9. Na entrada do imóvel deve ser exibida placa que indique no mínimo a (s) classe (s) de armazenamento existente (s) e a capacidade de armazenamento de GLP, em quilogramas, de cada classe. Exibir as placa (s) em locais visíveis, a uma altura de mínimo 1,8 m, medida do piso acabado à base da placa, distribuída (s) ao longo do perímetro da(s) área(s) de armazenamento, com os seguintes dizeres: PERIGO – INFLAMÁVEL; PROIBIDO O USO DE FOGO OU DE QUALQUER INSTRUMENTO QUE PRODUZA FAÍSCA.

As quantidades mínimas de placas a serem exibidas são as seguintes: classes I e II – uma placa; classes III e superiores – duas placas. As dimensões das placas devem permitir a visualização e a identificação da sinalização a uma distância mínima de 3,0 m. Os afastamentos entre placas de mesmo dizeres devem ter entre si no máximo 15,0 m. A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura.

O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.4.8.1 A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura. O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.

API RP 652: os revestimentos de tanques de armazenamento de petróleo

Essa norma, editada em 2020 pela American Petroleum Institute (API), fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes.

A API RP 652:2020 – Linings of Aboveground Petroleum Storage Tank Bottoms fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes. Em muitos casos, os revestimentos do fundo do tanque provaram ser um método eficaz para evitar a corrosão interna do fundo do tanque de aço.

O objetivo desta prática recomendada (RP) é fornecer informações e orientações específicas para tanques de armazenamento de aço acima do solo em serviço de hidrocarbonetos. Certas práticas recomendadas também podem ser aplicáveis a tanques em outros serviços. Esta prática recomendada destina-se a servir apenas como um guia. As especificações detalhadas do revestimento do fundo do tanque não estão incluídas. Não designa os revestimentos específicos do fundo do tanque para todas as situações, devido à grande variedade de ambientes de serviço.

A NACE No.10/SSPC-PA 6 e a NACE No. 11/SSPC-PA 8 são normas da indústria para a instalação de revestimentos nos fundos dos tanques. Elas são escritas em linguagem obrigatória e contêm critérios específicos destinados ao uso por pessoas que fornecem especificações escritas para revestimentos de tanques e navios. Estes documentos devem ser considerados ao projetar e instalar um sistema de revestimento para tanques com fundo de aço.

Conteúdo da norma

1 Escopo……………………………. 1

2 Referências normativas…………….. 1

3 Termos e definições………………….. 2

4 Mecanismos de corrosão…………….. 6

4.1 Geral……………………… ………. 6

4.2 Corrosão química………………………… 6

4.3 Corrosão da célula de concentração………….. 6

4.4 Corrosão das células de oxigênio……………….. 7

4.5 Corrosão de células galvânicas………………… 7

4.6 Corrosão influenciada microbiologicamente (MIC)……… 7

4.7 Corrosão por erosão…………………………. 7

4.8 Corrosão relacionada ao atrito…………………. 8

4.9 Corrosão generalizada versus localizada…… …….. 8

4.10 Quebra por corrosão sob tensão………………… 8

4.11 Mecanismos de corrosão internos……………… 8

5 Determinação da necessidade de revestimento do fundo do tanque………………. 9

5.1 Geral……………………. ………. 9

5.2 Revestimentos para proteção contra corrosão…….. 9

5.3 Histórico de corrosão do tanque……………………… 9

5.4 Fundação do tanque……………………………… 10

6 Seleção do revestimento do fundo do tanque……………… 10

6.1 Geral………………………………………. 10

6.2 Zinco inorgânico/silicato de zinco (IOZ)…………….. 11

6.3 Revestimentos inferiores do tanque de filme fino…………….. 12

6.4 Revestimentos de fundo de tanque sem reforço de filme espesso……………… 13

6.5 Revestimentos inferiores reforçados do tanque de filme espesso………………….. 14

6.6 Circunstâncias que afetam a seleção de revestimento… 16

6.7 Seleção de revestimentos internos para tanques que armazenam combustíveis alternativos…………………. 18

7 Preparação da superfície………………………. 20

7.1 Geral…………………………….. …….. 20

7.2 Pré-limpeza…………………………… 21

7.3 Reparo inferior e preparação subsequente de solda e componente………………… 21

7.4 Limpeza da superfície……………………………….. 21

7.5 Perfil de superfície ou padrão de ancoragem………….. 22

7.6 Limpeza com ar e por abrasivo………………………….. 22

7.7 Remoção de sais………………………….. 22

7.8 Remoção de poeira…………………………. 22

8 Aplicação de revestimento…………………. 22

8.1 Geral…………………………….. …….. 22

8.2 Diretrizes para aplicação de revestimento……………… 23

8.3 Controle de temperatura e umidade………………. 23

8.4 Espessura do revestimento………………………. 23

8.5 Cura de revestimento…………………… 23

9 Inspeção…………………………… 24

9.1 Geral…………………….. …….. 24

9.2 Qualificação do pessoal de inspeção………………. 24

9.3 Parâmetros de inspeção recomendados……….. 24

10 Avaliação, reparo e substituição de revestimentos existentes……………….. 25

10.1 Geral………. …….. 25

10.2 Métodos de avaliação…………. 25

10.3 Critérios de avaliação para revestimentos………. 25

10.4 Avaliando a capacidade de manutenção de revestimentos existentes………………………….. 26

10.5 Determinando a causa da degradação/falha do revestimento…………………….. 26

10.6 Reparo e substituição do revestimento……. 26

11 Maximizando a vida útil do revestimento pela seleção e especificação adequadas de material……. 27

11.1 Geral……………………………… 27

11.2 Seleção de material de revestimento…………….. 28

11.3 Especificações escritas………………………. 28

12 Saúde, segurança e meio ambiente………………… 28

12.1 Geral………………………….. 28

12.2 Entrada do tanque……………………. …. 29

12.3 Preparação da superfície e aplicação de revestimento……29

12.4 Folhas de dados de segurança do fabricante…………….. 29

Bibliografia……… 30

As orientações para gestão do facility management (FM)

O facility management (FM) integra múltiplas disciplinas a fim de ter uma influência sobre a eficiência e produtividade dos recursos financeiros das sociedades, comunidades e organizações, bem como a maneira pela qual os indivíduos interagem com o ambiente construído. O FM afeta a saúde, o bem-estar e a qualidade de vida de grande parte das sociedades e da população em todo o mundo por meio dos serviços que o FM administra e entrega.

A NBR ISO 41001 de 04/2020 – facility management — Sistemas de gestão — Requisitos com orientações para uso especifica os requisitos para um sistema de facility management (FM) quando uma organização: precisa demonstrar a entrega efetiva e eficiente de FM que suporte os objetivos da organização demandante; tem por objetivo atender de forma consistente às necessidades das partes interessadas e requisitos aplicáveis; tem por objetivo ser sustentável em um ambiente globalmente competitivo. Os requisitos especificados neste documento não são específicos do setor e se destinam a ser aplicáveis em todas as organizações, ou partes delas, seja do setor público ou privado, e independentemente do tipo, tamanho e natureza da organização ou localização geográfica. O Anexo A provê orientações adicionais sobre o uso deste documento.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a necessidade de comunicação da FM?

Como executar o controle de informação documentada?

O que deve ser feito em termos de planejamento e controle operacional?

Como realizar a auditoria interna?

O facility management (FM) integra múltiplas disciplinas a fim de ter uma influência sobre a eficiência e produtividade dos recursos financeiros das sociedades, comunidades e organizações, bem como a maneira pela qual os indivíduos interagem com o ambiente construído. O FM afeta a saúde, o bem-estar e a qualidade de vida de grande parte das sociedades e da população em todo o mundo por meio dos serviços que o FM administra e entrega.

Embora o FM tenha um impacto muito amplo, o reconhecimento de seus princípios e práticas em nível global tem faltado. Este documento provê a base para uma interpretação e entendimento comum de FM e as maneiras pelas quais ele pode beneficiar organizações de todos os tipos. O desenvolvimento do mercado para serviços de FM seria melhorado pela presença de uma estrutura global comum e um padrão de suporte.

O setor se beneficia de uma base comum mediante a qual o FM pode ser avaliado e medido. Este é o principal motivador e propósito deste documento. Em um ambiente globalmente competitivo, as organizações e os prestadores de serviços de FM precisam se comunicar entre si e com as partes interessadas utilizando princípios, conceitos e termos comuns, incluindo a avaliação e medição de desempenho. Este documento é destinado a elevar o padrão de conservação e aumentar os níveis de qualidade, estimulando, assim, a maturidade organizacional e a competição para a entrega de FM.

Os benefícios de um padrão de sistema integrado para FM incluem: melhoria da produtividade, segurança do trabalho, saúde e bem-estar da equipe de trabalho; melhoria da comunicação de requisitos e metodologias dentro das organizações do setor público e privado e entre elas; melhoria da eficiência e efetividade, melhorando assim o custo-benefício para as organizações; melhoria da consistência do serviço; fornecimento de uma plataforma comum para todos os tipos de organizações.

Este documento é aplicável a qualquer organização que deseja: estabelecer, implementar, manter e melhorar um sistema de FM integrado; assegurar-se da conformidade com sua política de gestão declarada; demonstrar conformidade com este documento: realizando uma autodeterminação e autodeclaração; buscando confirmação de sua conformidade pelas partes que tenham interesse na organização; buscando confirmação de sua autodeclaração por uma parte externa à organização; buscando certificação/registro de seu sistema de FM por um organismo de certificação terceirizado acreditado.

Este documento aplica a estrutura desenvolvida pela ISO para melhorar o alinhamento entre suas normas de sistemas de gestão. Este documento promove a adoção de uma abordagem do processo ao desenvolver, implementar e melhorar a efetividade de uma norma de sistema de gestão para melhorar a satisfação do cliente pelo atendimento de seus requisitos. Para uma organização funcionar efetivamente, ela precisa determinar e gerenciar inúmeras atividades inter-relacionadas.

Uma atividade, ou conjunto de atividades, que utiliza recursos e gerenciados para permitir a transformação de entradas em saídas pode ser considerada como um processo. Geralmente, a saída de um processo forma diretamente a entrada para o próximo. A aplicação de um sistema de processos dentro de uma organização, juntamente com a identificação, interações desses processos e sua gestão para produzir o resultado desejado, pode ser referido como a abordagem do processo.

Uma vantagem da abordagem do processo é o controle contínuo que ela provê sobre a ligação entre os processos individuais dentro do sistema de processos, bem como sobre a sua combinação e interação. Quando utilizada dentro de um sistema de FM, essa abordagem enfatiza a importância: de entender e atender aos requisitos da organização demandante por meio de um processo de planejamento integrado. Uma organização demandante é uma entidade que tem uma necessidade e autoridade para incorrer custos para ter os requisitos atendidos. Normalmente, ela é um representante autorizado dentro de uma unidade funcional da organização.

Deve-se, também, entender o relacionamento entre o processo de planejamento integrado e as Seções 4 a 10 do sistema de FM; da documentação associada aos requisitos do sistema de FM e o assunto das avaliações de certificação; de todos os itens descritos anteriormente no contexto dos níveis de gestão; e da melhoria contínua de processos com base na medição objetiva. Para visualização do sistema de FM, os processos centrais se iniciam com o entendimento e definição dos seguintes critérios dentro de uma organização demandante.

— Contexto da organização: entendendo e determinando o sistema de FM apropriado (ver Seção 4).

— Liderança: entendendo as funções, responsabilidades, políticas e autoridades organizacionais (ver Seção 5).

— Planejamento: entendendo os riscos, objetivos estratégicos e políticas atuais (ver Seção 6).

— Suporte: entendendo os recursos disponíveis versus recursos requeridos na forma de recursos financeiros, humanos e tecnológicos (ver Seção 7).

— Operações: entregando serviços de FM integrados (ver Seção 8).

— Avaliação de desempenho: comparando padrões, monitorando e atendendo aos requisitos alvo (ver Seção 9).

— Melhoria: revisando os padrões já comparados, identificando e implementando iniciativas de melhoria do processo (ver Seção 10).

Referência é feita à organização demandante e à organização em todo este documento. Esta distinção é realizada devido à natureza variável na qual os serviços de FM podem ser entregues por meio do pessoal interno dentro da organização demandante, prestadores de serviços externos ou uma combinação dos dois.

Os requisitos deste documento se aplicam à organização de FM. Entretanto, conforme ilustrado na figura abaixo, a organização de FM e a organização demandante precisam trabalhar em conjunto para definir claramente as necessidades para atender à estratégia do negócio principal e desenvolver políticas e práticas de FM que permitirão as atividades do negócio principal da organização demandante. A organização (e a alta direção) se refere à organização de FM por todo o documento, salvo observado em contrário como a organização demandante.

Além disso, as Seções deste documento podem ser consideradas por meio da metodologia de abordagem do processo conhecida como Planejar-Executar-Verificar-Agir (PDCA), conforme ilustrado na figura abaixo. O PDCA pode ser descrito resumidamente da seguinte maneira.

Planejar: estabelecer os objetivos e os processos necessários para entregar resultados de acordo com os requisitos do cliente e as políticas da organização.

Executar: implementar os processos.

Verificar: monitorar e medir os processos e produtos em comparação às políticas, objetivos e requisitos para o produto, e reportar os resultados.

Agir: tomar medidas para melhorar continuamente o desempenho do processo.

A organização deve determinar, demonstrar e documentar questões externas e internas que sejam relevantes ao seu propósito e seus objetivos estratégicos, e que afetem a sua capacidade de alcançar

o(s) resultado(s) pretendido(s) de seu sistema de FM. A organização deve determinar e documentar: as partes interessadas que são relevantes ao sistema de FM; os requisitos dessas partes interessadas; as saídas que atenderão aos requisitos; as entradas requeridas para alcançar essas saídas; o processo para manter os requisitos atualizados.

A organização deve determinar os limites e a aplicabilidade do sistema de FM para estabelecer seu escopo. Ao determinar este escopo, a organização deve considerar: as questões externas e internas referidas em 4.1; os requisitos referidos em 4.2; a interação com outros sistemas de gestão, se utilizados, e os recursos para atender aos requisitos. O escopo deve estar disponível como informação documentada. A organização deve estabelecer, implementar, manter e melhorar continuamente um sistema de FM, incluindo os processos necessários e suas interações, de acordo com os requisitos deste documento.

A alta direção da organização deve demonstrar liderança e comprometimento em relação ao sistema de FM: assegurando que a política de FM e os objetivos de FM são estabelecidos e são compatíveis com a direção estratégica da organização demandante; assegurando a integração e o suporte dos requisitos do sistema de FM nos processos de negócios da organização; assegurando que os recursos necessários para o sistema de FM estão disponíveis; comunicando a importância de um sistema de FM efetivo e da conformidade com os requisitos do sistema de FM; comunicando-se com a alta direção da organização demandante; assegurando que o sistema de FM alcance o (s) resultado (s) pretendido (s) conforme documentado; direcionando e apoiando as pessoas para contribuir com a efetividade do sistema de FM; coordenando e colaborando interdepartamentalmente; promovendo a melhoria contínua em inovação, comunicação, motivação, integração funcional cruzada, apoio dos objetivos da organização e gestão responsável; apoiar outras funções de gestão relevantes para demonstrar a sua liderança quando for aplicada nas suas áreas de responsabilidade; assegurar que a abordagem utilizada para gerenciar riscos em FM esteja alinhada com a abordagem da organização para gerenciar riscos.

A referência ao termo negócios neste documento pode ser interpretada de forma ampla para significar aquelas atividades que são fundamentais aos propósitos da existência da organização demandante. A alta direção deve estabelecer uma política de FM que seja apropriada ao propósito da organização; forneça uma estrutura para definir os objetivos de FM; assegure a gestão de riscos; inclua um comprometimento para atender aos requisitos aplicáveis; inclua um comprometimento com a melhoria contínua do sistema de FM; seja endossada pela alta direção ou por um responsável-chave da organização demandante; corresponda às características e requisitos da organização demandante; considere as características e requisitos dos usuários da instalação e da própria instalação; enfatize como ela responde às questões apropriadas ao contexto local.

A política de FM deve estar disponível como informação documentada; ser comunicada regularmente dentro da organização e com outras partes interessadas; estar disponível às partes interessadas, conforme apropriado; ser consistente e estar integrada com outras políticas organizacionais relevantes; ser consistente com o plano organizacional; ser apropriada à natureza e escala da organização e suas operações; ser implementada, revisada periodicamente e reportada à alta direção e, se requerido, atualizada.

A alta direção deve assegurar que as responsabilidades e autoridades para funções relevantes sejam atribuídas e comunicadas dentro da organização. A alta direção deve atribuir a responsabilidade e autoridade para: assegurar que o sistema de FM está em conformidade com os requisitos deste documento; assegurar que as políticas e objetivos são estabelecidos para o sistema de FM e são compatíveis com a direção estratégica da organização; reportar sobre o desempenho do sistema de FM à alta direção; assegurar que o processo de FM está estabelecido e é compatível com a política de FM e objetivos de FM; estabelecer e atualizar o plano de FM; assegurar que os sistemas de gestão, procedimentos e qualquer cadeia de suprimentos utilizados suportam totalmente a entrega dos objetivos de FM; assegurar a conformidade, robustez, adequação e efetividade do sistema de FM; assegurar que as estratégias de fornecimento suportam o sistema de FM; estabelecer, revisar, reportar e atualizar o sistema de FM.

Ao planejar o sistema de FM, a organização deve considerar as questões referidas em 4.1 e os requisitos referidos em 4.2 e determinar os riscos e as oportunidades que precisam ser tratados para: dar garantia que o sistema de FM possa alcançar o (s) resultado (s) pretendido (s); evitar ou reduzir efeitos indesejados; assegurar a continuidade dos negócios e a preparação para emergências; alcançar a melhoria contínua. A organização deve planejar as ações para tratar esses riscos e oportunidades, considerando como esses riscos e oportunidades podem se alterar com o tempo; como integrar e implementar as ações em seus processos do sistema de FM; avaliar a efetividade dessas ações.

A organização deve estabelecer objetivos de FM em funções, subfunções e níveis relevantes. A organização deve considerar os requisitos das partes interessadas relevantes e de outros requisitos financeiros, técnicos e organizacionais do processo de planejamento de FM. Os objetivos de FM devem ser consistentes e alinhados com os objetivos organizacionais; ser consistentes com a política de FM; ser mensuráveis (se praticável) sem custo ou documentação em excesso; ser estabelecidos e atualizados utilizando os critérios determinados em 4.2; considerar os requisitos aplicáveis; ser monitorados; ser comunicados às partes interessadas relevantes; ser revisados e atualizados conforme apropriado.

A organização deve reter a informação documentada sobre os objetivos de FM. Ao planejar como alcançar seus objetivos de FM, a organização deve determinar o que será feito; quais recursos e orçamentos serão requeridos; quem será o responsável; quando serão concluídos e com quais frequências; como os resultados serão avaliados; horizontes de planejamento apropriados com a organização demandante para a entrega completa e efetividade.

A organização deve determinar e prover os recursos necessários para o estabelecimento, implementação, manutenção e melhoria contínua do sistema de FM. A organização deve fornecer, supervisionar conforme necessário e monitorar os recursos utilizados na implementação das atividades requeridas para alcançar os objetivos do (s) plano (s) de FM.

A organização deve determinar a competência necessária da (s) pessoa (s) (ou entidades) que realizam o trabalho sob seu controle que afeta o seu desempenho de FM; assegurar que essas pessoas sejam competentes com base na educação, treinamento e/ou experiência apropriados; quando aplicável, tomar medidas para adquirir a competência necessária, manter a educação, treinamento e certificações de forma contínua e avaliar a efetividade das medidas tomadas; assegurar que as competências estejam alinhadas com o contexto local aplicável; reter as informações documentadas apropriadas como evidência da competência; planejar recursos futuros e requisitos de longo prazo. As ações aplicáveis podem incluir, por exemplo, o fornecimento de treinamento, orientação ou nova atribuição de pessoas atualmente empregadas; ou a contratação efetiva ou temporária de pessoas competentes.

A segurança das lingas de cabos de fibra para operação de içamento

Os pontos de contato da linga ou a linga como um todo podem ser cobertos por uma capa protetora/manga. A capa protetora/manga não foi projetada para suportar a carga, uma vez que se destina apenas à proteção e contenção da alma.

A NBR ISO 18264 de 03/2020 – Lingas têxteis – Lingas de cabos de fibra para operação de içamento de utilização geral – Polietileno de alto módulo (HMPE) especifica os requisitos relacionados à segurança, incluindo métodos de ensaio e de determinação da carga máxima de trabalho (rating) das lingas com construções olhal-olhal e laço sem fim com uma (1), duas (2), três (3) ou quatro (4) pernas (com ou sem acessórios). Estas pernas de lingas são confeccionadas a partir de cabos trançados de oito pernas (tipo L), cabos trançados de 12 pernas (tipo T) e cabo com capa (tipo C), de acordo com a NBR ISO 10325. Alternativamente, outras construções de cabos torcidos e trançados diferentes da NBR ISO 10325, porém ensaiadas de acordo NBR ISO 2307, podem ser utilizadas.

Essa norma é aplicável às construções de cabos confeccionadas a partir de fibras de polietileno de alto módulo [HMPE, também conhecidas como polietileno de ultraalto peso molecular (UHMWPE)], com número de referência mínimo de 12 e máximo de 72, apesar de não haver uma ligação direta entre os números de referências de cabos e o tipo das operações de içamento, tanto em operações de içamento de utilização geral como operações de içamento especiais. Os pontos de contato da linga ou a linga como um todo podem ser cobertos por uma capa protetora/manga. A capa protetora/manga não foi projetada para suportar a carga, uma vez que se destina apenas à proteção e contenção da alma. O termo capa protetora, em inglês protective cover, é também conhecido como jacket.

As lingas de cabo de fibras cobertas por esta norma são apenas para operações de içamento para utilização geral, isto é, quando utilizadas para içar objetos, materiais ou bens, que não requeiram desvio dos requisitos, fatores de segurança, também referente a fatores de projeto ou carga máxima de trabalho especificada. Operações de içamento que não estão cobertas por esta norma incluem o içamento de pessoas; de materiais potencialmente perigosos, como metais derretidos e ácidos, chapas de vidro, materiais radioativos, reatores nucleares e operações de içamento especiais. Essa norma trata de requisitos técnicos a fim de minimizar os perigos listados na Seção 4, que podem surgir durante a utilização das lingas de cabos de fibra, quando realizados de acordo com as instruções e especificações dadas pelo fabricante, seu representante autorizado e/ou pessoa qualificada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os fatores de segurança (FS) regionais para pernas de linga de cabo de fibra?

Quais são as equações para redução da carga máxima de trabalho (CMT) de uma perna de linga?

Qual o procedimento básico para ensaio de tipo/verificação da carga de ruptura mínima (CRM)?

Qual deve ser o ensaio de tipo para verificar a interação de uma perna de linga com acessórios?

O desengate por acidente de uma carga suspensa ou o desengate de uma carga suspensa devido à falha de um componente coloca sob risco, diretamente ou indiretamente, a segurança e a saúde das pessoas que se encontram na zona de perigo. A fim de proporcionar a resistência e a durabilidade necessárias dos acessórios de içamento, esta norma especifica requisitos para o projeto, a fabricação, o ensaio, a utilização e a manutenção, para assegurar que os níveis especificados de desempenho sejam atingidos.

A resistência/durabilidade não é identificada como risco quando as lingas de cabo de fibra são projetadas e fabricadas corretamente, compreendendo com fibras de HMPE de alta tenacidade, tendo os níveis especificados de desempenho, de acordo com esta norma, se adequadamente utilizadas e inspecionadas para operações de içamento de utilização geral. Como a falha pode ser causada por sobrecarga, ou seleção incorreta da carga máxima de trabalho (CMT) e especificações dos acessórios de içamento, esta norma também fornece requisitos para a marcação e a declaração do fabricante. Os aspectos de seleção e de utilização segura associados com boa prática são fornecidos no Anexo A e no Anexo B.

A tabela abaixo lista perigos, citados na NBR ISO 12100:2013, conforme são tratados nesta norma, que requerem ação para reduzir estes perigos identificados como sendo específicos e significativos para lingas de cabo de fibra de HMPE. É conhecido que as fibras de HMPE são suscetíveis à fluência, assim como a maioria das fibras sintéticas, que, sob certas condições, pode ocasionar uma ruptura. Sob carregamento constante, fibras e cabos de HMPE mostram um comportamento de deformação irreversível (fluência) que é fortemente dependente da carga e da temperatura, assim como da especificação da fibra de HMPE.

As fibras de HMPE diferentes apresentam diferentes comportamentos de fluência sob condições idênticas. Dependendo das condições às quais as lingas são destinadas, o usuário deve consultar o fabricante de lingas a fim de selecionar o projeto apropriado.

Os materiais de cabos de fibra abrangidos por esta Norma para a utilização de conjuntos de lingas são fibras de Polietileno de Alto Módulo (HMPE) de acordo com o definido pela ISO 2076. As construções de cabos de HMPE abrangidos por esta norma são as seguintes: cabos trançados de 8 pernas (tipo L), cabos trançados de 12 pernas (tipo T) e construções de cabos com capa (tipo C) fabricados e ensaiados de acordo com as NBR ISO 2307 e NBR ISO 10325; construções de cabos trançados e torcidos não cobertos pela  NBR ISO 10325, fabricadas e ensaiadas de acordo com a NBR ISO 2307.

Os acabamentos e revestimentos não podem prejudicar o desempenho da perna de linga. Um óleo de encimagem da fibra é normalmente aplicado nas fibras dos filamentos individuais depois da extrusão, mas antes dos processos de bobinagem ou durante a torção ou acoplamento. Um revestimento pode ser aplicado durante a produção do cabo ou da linga ou, posteriormente na linga pronta em uma etapa separada.

Os revestimentos podem ser aplicados a fim de melhorar o desempenho em quatro áreas principais: o aprimoramento estrutural como, mas não limitado a resistência (variabilidade), rigidez da forma, proteção ambiental (por exemplo, produtos químicos) e escorregamento da capa; otimização de costura (como na fricção); fadiga/abrasão (como, mas não limitado a, fadiga de tração e fadiga de dobramento); aditivos funcionais (como, mas não limitado a, cor, resistência a raios UV, retardamento de fogo e aumento da aderência). Partes diferentes da perna de linga podem requerer diferentes propriedades friccionais e características de revestimento.

Quando aplicadas em perna (s) de linga, capas ou revestimentos de proteção, cobrindo o cabo de fibra parcialmente ou integralmente, as capas devem fornecer proteção apropriada contra abrasão e corte durante o armazenamento, manuseio e utilização pernas de lingas/conjunto de lingas durante a operação de içamento. As extremidades da capa devem ser acabadas de forma que não possam se desfazer, nem prejudicar o desempenho do cabo de fibra que suporta a carga da linga.

O (s) tipo (s) de material (is) de fibra utilizado (s) na capa dependem dos requisitos de desempenho e dos riscos em potencial (abrasão, corte, perfuração, exposição a produtos químicos etc.) a serem mitigados. Os componentes mecânicos, como sapatilhos, manilhas, pinos, acessórios e anéis de carga, utilizados como partes da construção da linga de cabo de fibra devem ser selecionados de modo que sejam compatíveis com a perna da linga de cabo de fibra, que atendam aos requisitos e que não prejudiquem o desempenho da perna de linga.

A fabricação da perna de linga, incluindo desvios de métodos de fabricação, deve ser verificada e documentada por um fabricante de linga de acordo com esta norma. Pernas de linga, utilizadas na montagem de lingas de múltiplas pernas, devem ser construídas de forma que todos os componentes correspondentes sejam idênticos quanto à construção, tamanho, material, acessórios e anéis.

A costura é o método utilizado comumente para fabricar pernas de lingas olhal-olhal ou laço sem fim. Todas as costuras devem ser feitas por um profissional de confecção de emenda treinado e qualificado e de acordo com as instruções de costura fornecidas pelo fabricante de lingas, seu representante autorizado ou pessoa qualificada. Amostras destas costuras devem ter sido fabricadas previamente de acordo com os requisitos da aplicação e devem ter sido verificadas de maneira eficaz de acordo com ensaios da Seção 7.

Adicionalmente, o seguinte deve ser observado: em uma construção olhal-olhal típica, nenhuma outra costura além daquelas necessárias para criar um olhal devem ser permitidas; uma perna de linga de laço sem fim deve, preferencialmente, ter apenas uma costura; onde as partes salientes das pernas em uma costura de uma linga são contidas, por exemplo, mediante amarração, colagem ou ao se passar uma fita para melhorar a aparência da costura, este acabamento não pode afetar o desempenho da costura; pernas de lingas olhal-olhal devem ter um comprimento mínimo intacto do cabo de dez vezes o número de referência do cabo entre as extremidades das costuras; desvios devem ser verificados e documentados de acordo com a Seção 7 desta norma; nós ou grampos não podem ser utilizados para fabricar lingas; se sapatilhos não tiverem orelhas para prevenir uma rotação, devem ser amarrados ao cabo.

Os sapatilhos devem ser utilizados em lingas sempre que requerido e instalados de uma maneira que impeça o sapatilho de girar dentro do olhal ou de sair do olhal. A metodologia de costura para qualquer perna de linga é para ser definida e documentada pelo fabricante da linga. Como regra de projeto, o comprimento interno mínimo (LOLHAL) de um olhal sem sapatilho para uma perna de linga olhal-olhal, medido com uma fita de aço ou régua medida em incrementos de 1 mm, é dado a seguir. Desvios devem ser documentados e verificados de acordo com a Seção 7.

Para os propósitos de verificação da qualidade de uma perna de linga de cabo de fibra de HMPE, é necessário prestar atenção para a determinação da carga de ruptura e do comprimento efetivo de trabalho, na verificação da (s) costura (s) e na carga de prova. Estes aspectos são descritos nesta subseção e representam apenas os requisitos mínimos quanto ao ensaio de tração. O fabricante de linga pode decidir fazer qualquer ensaio adicional, ou ser solicitado a fazer, e deve fornecer uma documentação correspondente.

Todo ensaio de carga e inspeção deve ser feito utilizando-se uma máquina de ensaio de tração de acordo com a NBR NM ISO 7500-1, classe 1, e, onde aplicável, uma fita de aço ou régua graduada com incrementos de 1 mm. O ensaio de carga e inspeção do comprimento efetivo de trabalho, de acordo com o descrito em 7.3 a 7.5, deve ser realizado de acordo com a NBR ISO 2307.

No caso de as pernas de lingas serem modificadas, como mudanças de projeto ou de matéria-prima, é necessário prestar atenção para o descrito em 7.5. Durante o ensaio de carga, uma quantidade de energia considerável é armazenada no cabo sob tração. Se a amostra romper, esta energia será, repentinamente, liberada. Convém que precauções apropriadas sejam tomadas, para de garantir a segurança das pessoas na zona de perigo. Todo ensaio e inspeção deve ser feito por pessoa qualificada.

Os ensaios de tipo devem demonstrar a carga de ruptura mínima (CRM) certificada de pernas de lingas fabricadas de acordo com os requisitos estabelecidos nesta norma para cada fabricante. Uma perna de linga é caracterizada pelo seu projeto específico, especificação e tipo da matéria-prima, número de referência do cabo, método de fabricação (incluindo revestimento, costura, acabamento) e os acessórios conectados a ela. Pernas de lingas que se diferenciam em um desses aspectos devem passar por um ensaio de tipo separadamente.

Qualquer mudança de projeto, especificação e tipo da matéria-prima, método de fabricação e/ou em qualquer dimensão fora das tolerâncias normais de fabricação que possa gerar modificação das propriedades mecânicas requer que os ensaios de tipo especificados nesta subseção sejam realizados na perna de linga modificada. Todas as pernas de linga a serem ensaiadas devem estar de acordo com todos os outros requisitos desta norma. Todo ensaio de carga e inspeção deve ser realizado utilizando-se uma máquina de ensaio de tração em conformidade com a NBR NM ISO 7500-1, classe 1. Ao se ensaiar um laço sem fim, a costura deve ser posicionada a meio comprimento entre os dois pontos de apoio.

O ensaio de tipo deve ser válido por no máximo cinco anos. Como os resultados do ensaio de tipo e de fabricação de conjuntos de lingas, de acordo com 7.3 a 7.5, também dependem da DHW/dCABO e de outras condições de ensaio, o fabricante da linga, ou seu representante autorizado, deve garantir que um DHW/dCABO consistente e de outras condições de ensaio sejam aplicados. Uma mudança de DHW/dCABO e outras condições de ensaio durante o ensaio de tipo e de fabricação de conjuntos de lingas devem ser aliadas à documentação correspondente.