A ficha de emergência no transporte terrestre de produtos perigosos

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque.

A NBR 7503 de 06/2020 – Transporte terrestre de produtos perigosos — Ficha de emergência — Requisitos mínimos estabelece os requisitos mínimos para o preenchimento da ficha de emergência destinada a prestar informações de segurança do produto perigoso em caso de emergência ou acidente durante o transporte terrestre de produtos perigosos.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como podem ser definidas a equipagem e as partes por milhão?

Qual é o modelo de uma ficha de emergência?

Qual é a sequência de áreas e informações da ficha de emergência?

Os acidentes no transporte terrestre de produtos perigosos adquirem uma importância especial, uma vez que a intensidade de risco está associada à periculosidade do produto transportado. Considera-se produto perigoso aquele que representa risco para as pessoas, para a segurança pública ou para o meio ambiente, ou seja, produtos inflamáveis, explosivos, corrosivos, tóxicos, radioativos e outros produtos químicos que, embora não apresentem risco iminente, podem, em caso de acidentes, representar uma grave ameaça à população e ao meio ambiente.

Os acidentes no transporte desses produtos podem ter consequências catastróficas, sobretudo diante da proximidade de cidades e de populações lindeiras às principais rodovias. Além das perdas humanas de valor social incalculável, os custos decorrentes da contaminação ambiental atingem cifras muito elevadas. Deve-se levar em consideração que, especificamente, num acidente de transporte rodoviário de produtos perigosos, ainda que a empresa transportadora tenha tomado todos os cuidados e não tenha, a princípio, culpa pelo acidente, a responsabilidade pelos danos ambientais causados continua sendo da empresa transportadora, pois a ausência de culpa, neste caso, não é mais excludente da responsabilidade de indenizar e reparar os danos.

Assim, para diferentes produtos com o mesmo número ONU, o mesmo nome apropriado para embarque (inclusive o nome técnico, quando aplicável), mesmo grupo de embalagem, mesmo número de risco e o mesmo estado físico, pode ser usada a mesma ficha de emergência, desde que sejam aplicáveis as mesmas informações de emergência, exceto quando previsto em legislação vigente. A ficha de emergência é destinada às equipes de atendimento à emergência. As informações de segurança do produto transportado, bem como as orientações sobre as medidas de proteção e ações em caso de emergência devem constar na ficha de emergência para facilitar a atividade das equipes em uma emergência.

Os expedidores de produtos perigosos são responsáveis pela elaboração da ficha de emergência dos produtos com base nas informações fornecidas pelo fabricante ou importador do produto. O idioma a ser usado deve ser o oficial do Brasil. O modelo de ficha de emergência desta norma pode ser utilizado como instruções escritas para o caso de qualquer acidente com produtos perigosos, constantes no Acordo para a facilitação do transporte de produtos perigosos no Mercosul, desde que redigida nos idiomas oficiais dos países de origem, trânsito e destino.

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque. Esta norma permite flexibilidade para adaptar diferentes sistemas de edição, leiaute e transmissão de texto. É livre a formatação dos títulos e textos, como, fonte, tamanho, cor, maiúsculo, minúsculo, sublinhado etc.

A área “A” deve conter o seguinte: o título: “Ficha de emergência”; a identificação do expedidor, tanto para produtos nacionais quanto para importados, os títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Expedidor”: deve ser preenchido com a identificação do expedidor e o uso do título “Expedidor” é facultativo; logomarca da empresa: nesta área pode (facultativo) ser colocada a logomarca (logotipo) da empresa expedidora.

Caso a logomarca da empresa seja inserida, pode ser impressa em qualquer cor; título “Endereço”: deve ser preenchido com o endereço do Expedidor, sendo facultativa a inclusão do CEP. Não é necessário que o endereço constante na ficha de emergência seja o mesmo do documento fiscal, podendo ser o endereço da matriz ou de uma das filiais do expedidor, se houver. O uso do título “Endereço” é facultativo. O título “Telefone” ou “Telefones”: deve ser preenchido com o número do telefone do expedidor. Deve conter ainda o número do telefone (disponível 24 h por dia) da equipe que possa fornecer informações técnicas sobre o produto perigoso em caso de emergência. Este telefone pode ser do expedidor, do transportador, do fabricante, do importador, do distribuidor ou empresa contratada para atendimento à emergência.

Caso o telefone da equipe que possa fornecer informações técnicas sobre o produto seja do próprio expedidor, pode constar apenas o número de um telefone do expedidor. O uso do título “Telefone” ou “Telefones” é facultativo; títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Número de risco”: deve ser preenchido com o número de risco do produto perigoso.

No caso específico dos explosivos da classe 1 que não possuem número de risco, deve ser colocada a sigla “NA” referente à informação de “não aplicável”; título “Número da ONU” ou “Número ONU”: devendo ser preenchido com o número da ONU do produto perigoso; título “Classe ou subclasse de risco”: deve ser preenchido com o número da classe de risco do produto perigoso, nos casos específicos das classes 3, 7, 8 e 9. Nos casos das classes de risco 2, 4, 5 e 6, onde há subdivisão em subclasses de risco, deve ser informado o número da subclasse de risco do produto perigoso.

No caso específico da classe 1, devem ser informados o número da subclasse de risco e a letra correspondente ao grupo de compatibilidade do explosivo. A classe ou subclasse de risco se refere ao risco principal do produto perigoso. Quando existir risco subsidiário para o produto, pode ser incluído nesta área ou na área “B”. Caso opte por incluir nesta área, deve ser incluído o título “Risco subsidiário” e preenchido com o número da classe ou subclasse de risco subsidiário do produto perigoso; título “Descrição da classe ou subclasse de risco”: deve ser preenchido com a definição (nome) da classe ou subclasse de risco do produto perigoso.

A definição (nome) da classe ou subclasse de risco se refere ao risco principal do produto. No caso da Classe 9, em razão da definição (nome) ser extensa, na descrição da classe de risco, podem constar apenas as palavras “Substâncias e artigos perigosos diversos”. No caso da subclasse, podem constar apenas as palavras “Sólidos inflamáveis”. No caso específico da classe 1, deve ser preenchido com a definição (nome) “Explosivos”, referente à classe de risco, e não as definições (nomes) das subclasses. Quando existir risco subsidiário para o produto e for incluído nesta área, este título “Descrição da classe ou subclasse de risco” deve ser preenchido com a definição (nome) da classe ou subclasse de risco principal e subsidiário do produto perigoso.

O título “Grupo de embalagem” deve ser preenchido em algarismos romanos o grupo de embalagem do produto perigoso indicado na coluna 6 ou em provisão especial da relação de produtos perigosos. Nos casos onde na coluna 6 ou em alguma provisão especial não constar o grupo de embalagem, deve ser colocada a sigla “NA” referente à informação de “não aplicável”. O grupo de embalagem, quando exigido, consta na coluna 6 ou em alguma provisão especial da relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação em vigor.

O título: “Nome apropriado para embarque”. O nome apropriado para embarque do produto perigoso deve ser preenchido conforme previsto na relação de produtos perigosos das instruções complementares do regulamento de transporte terrestre de produtos perigosos da legislação vigente. Para resíduo classificado como perigoso para o transporte terrestre, é opcional a inclusão da palavra “Resíduo” antes do nome apropriado para embarque na ficha de emergência. Para o número ONU 1263 ou ONU 3066, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS” acondicionadas no mesmo volume; ONU 3470, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” acondicionadas no mesmo volume.

ONU 3464, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” acondicionadas no mesmo volume. ONU 1210, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” pode ser utilizado para expedições de embalagens contendo “TINTA PARA IMPRESSÃO” ou “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” acondicionadas no mesmo volume.

O título “Nome comercial”: tanto o título como o nome comercial do produto perigoso podem (facultativo) ser acrescidos abaixo do nome apropriado para embarque. O nome apropriado para embarque consta na relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação vigente. Para o caso dos produtos que possuem as provisões especiais 274 e 318, é colocado o nome técnico entre parênteses imediatamente após o nome apropriado para embarque. A área “B” é destinada ao título “Aspecto”.

Esta área deve ser preenchida com a descrição do estado físico do produto, podendo-se citar cor e odor. Pode ser incluída nesta área ou na área “A” a descrição do risco subsidiário do produto, quando existir. Incompatibilidades químicas previstas na NBR 14619 podem ser expressas neste campo, bem como os produtos não classificados como perigosos que possam acarretar reações químicas que ofereçam risco. Incompatibilidades químicas previstas na FISPQ e não previstas na NBR 14619 podem ser incluídas nesta área, quando aplicável no transporte.

A área “C” é destinada ao título “EPI de uso exclusivo da equipe de atendimento à emergência” ou ao título “EPI de uso exclusivo para a equipe de atendimento à emergência”. Devem ser mencionados, única e exclusivamente, os equipamentos de proteção individual para o (s) integrante (s) da equipe que forem atender à emergência, devendo-se citar a vestimenta apropriada (por exemplo, roupa, capacete, luva, bota, etc.) e o equipamento de proteção respiratória, quando exigido: tipo da máscara (peça semifacial, peça facial inteira etc.) e tipo de filtro (químico, mecânico ou combinado).

Em razão da ficha de emergência ser destinada às equipes de atendimento à emergência, neste campo não pode ser incluído o EPI do motorista ou da equipagem (transporte ferroviário), constante na NBR 9735. Após a relação dos equipamentos, pode ser incluída a seguinte frase: “O EPI do motorista está especificado na NBR 9735”. No caso de transporte ferroviário, o termo “motorista” pode ser substituído por “equipagem”, ou utilizar os dois termos “motorista e/ou equipagem”. No caso de transporte ferroviário, entende-se que o termo “motorista” é aplicável também à equipagem do transporte ferroviário.

Os avisos públicos nos incidentes

Deve-se conhecer as diretrizes para o desenvolvimento, gestão e implementação de avisos públicos antes, durante e após incidentes. É aplicável a qualquer organização responsável por avisos públicos.

A NBR ISO 22322 de 06/2020 – Segurança da sociedade – Gestão de emergências – Diretrizes para aviso público fornece as diretrizes para o desenvolvimento, gestão e implementação de avisos públicos antes, durante e após incidentes. É aplicável a qualquer organização responsável por avisos públicos. É aplicável a todos os níveis, de local até internacional. Antes de planejar e implementar o sistema de alerta público, são avaliados riscos e consequências de possíveis perigos. Este processo não faz parte desta norma.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a visão geral do processo de aviso público?

Como deve ser feita a tomada de decisão operacional?

Qual o objetivo do alerta e da notificação?

Qual é função da disseminação de aviso público?

Os desastres, ataques terroristas e outros incidentes consideráveis precisam de uma resposta eficaz a incidentes para salvar vidas, mitigar prejuízos e danos. As organizações de resposta a emergências precisam responder rapidamente a uma situação de emergência em desenvolvimento. O tempo para se comunicar é limitado e, frequentemente, uma mensagem específica envolvendo ação prática deve ser disseminada para um grande grupo.

Procedimentos simples que enviam a mensagem de forma eficiente e criam a resposta desejada podem salvar vidas, proteger a saúde e impedir grandes disrupções. A proteção de pessoas em risco de danos é uma parte importante de uma resposta a incidentes. O aviso público possibilita que as organizações de resposta alertem suas equipes de resposta e permite que as pessoas em risco tomem medidas de segurança para reduzir o impacto de incidentes.

Um aviso público eficaz que consiste em alerta e notificação pode prevenir reações de pânico e apoiar as organizações de resposta a otimizar suas respostas e mitigar o impacto. A resposta eficaz a incidentes precisa de um aviso público estruturado e pré-planejado. O aviso público é baseado em duas funções: monitoramento de perigos e disseminação de avisos.

Também é necessário estabelecer um mecanismo para identificação de riscos, monitoramento de perigos, tomada de decisões, disseminação de avisos, e avaliar e melhorar. A organização deve estabelecer, documentar, implementar, manter e melhorar continuamente um sistema de aviso público (ver figura abaixo), com base em uma política de aviso público descrita na Seção 4. Esta norma não descreve a política de aviso público.

Convém que a organização avalie os perigos potenciais que podem ocorrer dentro de uma área definida e o nível de risco potencial que cada um apresenta. Convém que os resultados desta avaliação determinem o tipo de aviso público que pode ser necessário e que sejam documentados para referência futura. Convém que o sistema de aviso público desenvolvido pela organização: atenda aos requisitos legais e a outros requisitos aplicáveis, forneça a estrutura para definir e analisar criticamente os objetivos de aviso público, seja planejado com antecedência, seja documentado, implementado e mantido, disponha de recursos humanos e técnicos para planejar, implementar, manter e melhorar o sistema de aviso público, seja comunicado a todas as pessoas que trabalham para ou em nome da organização, forneça treinamento adequado para as equipes de resposta, esteja disponível e seja comunicado ao público em geral e especialmente às pessoas em risco potencial, envolva consulta apropriada com representantes ou órgãos da comunidade preocupados com interesses públicos, e inclua um comprometimento com a melhoria contínua.

Convém que a organização projete uma estrutura com base em duas funções: monitoramento de perigos e disseminação de avisos. Convém que a responsabilidade de emitir aviso público seja atribuída às partes interessadas que são especialistas individuais, grupos de especialistas ou organizações no setor público ou privado no nível local, até o nível internacional. Convém que aqueles que contribuem para ambas as funções sejam familiarizados com as capacidades e competências do sistema de aviso público, a fim de disseminar avisos pertinentes, precisos, confiáveis e oportunos, façam esforços contínuos para aumentar e manter a conscientização do público, e especifiquem ações de segurança dentro do aviso.

O monitoramento de perigos é baseado na avaliação de riscos realizada para determinar os perigos a serem monitorados. Os envolvidos na função de monitoramento de perigos são responsáveis pelo seguinte: entender as operações de monitoramento de perigos das agências locais até as internacionais e ter canais para se comunicar com elas; monitorar continuamente os riscos identificados dentro de uma área definida e na sua gama de conhecimento; fornecer informações antecipadas sobre riscos emergentes; fornecer informações sobre mudanças no nível de risco; definir as medidas de emergência a serem tomadas; notificar a função de disseminação de avisos; cooperar com autoridades públicas para aumentar a conscientização pública.

Convém que o monitoramento seja baseado em dados científicos e/ou evidências confiáveis. A função de monitoramento de perigos monitora os riscos potenciais que os perigos apresentam. A função de disseminação de avisos é responsável pelo seguinte: acionar prontamente os procedimentos para disseminar avisos públicos; transformar informações baseadas em evidências em mensagens de notificação e alerta; especificar procedimentos para disseminar mensagens de aviso; considerar as necessidades de informação das pessoas em risco e a diversidade de grupos vulneráveis; coordenar com outras organizações responsáveis pelo aviso público; disseminar prontamente avisos públicos.

Convém que a organização identifique o indivíduo ou grupo responsável por autorizar o aviso público de acordo com os regulamentos nacionais ou locais ou com a própria estrutura de responsabilidade da organização. Convém que a autorização seja baseada nos requisitos da política e nos objetivos públicos de aviso e na entrada da função de monitoramento de perigos e da função de disseminação de avisos, bem como de outras fontes pertinentes. Convém que um indivíduo ou grupo de indivíduos treinados e nomeados sejam designados para usar as informações de monitoramento de perigos para tomar decisões oportunas, pertinentes e precisas sobre a disseminação pública de avisos.

Convém que a organização identifique objetivos para o sistema de aviso público com base na política de aviso público. Convém que estes objetivos sejam considerados ao usar as informações da função de monitoramento de perigos para identificar as pessoas em risco e o impacto potencial de um incidente em uma área. Convém que a organização implemente um processo de aviso público de acordo com a Seção 5. Convém que a organização estabeleça cooperação e coordenação interorganizacionais eficazes entre a função de monitoramento de perigos e a função de disseminação de avisos, bem como entre outras partes interessadas pertinentes, incluindo grupos da comunidade.

Convém que todas as atividades operacionais no processo de aviso público sejam registradas em um formato recuperável, de acordo com os regulamentos de privacidade e proteção de dados. Convém que a organização avalie regularmente o desempenho das funções de monitoramento de perigos e disseminação de avisos. Convém que os resultados da avaliação sejam usados para identificar potenciais melhorias.

Convém que os processos de avaliação sejam realizados em intervalos regulares não superiores a cinco anos. Convém que a função de disseminação de avisos avalie o conteúdo e a pontualidade das notificações e alertas, bem como a escolha dos canais de comunicação. Convém que os processos de avaliação sejam ativados sempre que as pessoas em risco não executarem as ações de segurança esperadas.

Convém que a função de monitoramento de perigos identifique e liste perigos relevantes, estabeleça indicadores a serem usados para monitorar o status de um perigo, determine os critérios científicos ou baseados em evidências confiáveis para emitir um aviso público, identifique os critérios para emitir uma notificação, um alerta e um sinal verde, e determine os critérios para cada área de risco. Convém que a função de monitoramento de perigos designe aqueles com conhecimento apropriado das operações de monitoramento de perigos, colete dados científicos para avaliação de risco para cada área em risco, prepare decisões sobre a emissão de aviso público para a função de disseminação de avisos, obtenha as informações de risco recomendadas que sejam incluídas no aviso público, e passe as informações para a função de disseminação de avisos imediatamente.

Para cada área em risco, convém que a função de monitoramento de perigos identifique o seguinte: a área em risco para onde o aviso deve ser enviado; as pessoas em risco nessa área; a função responsável pela disseminação de alerta nessa área; o risco para áreas adjacentes que podem ser potencialmente afetadas. Convém que a função de monitoramento de perigos forneça atualizações regulares do status do perigo para a função de disseminação de avisos, para os responsáveis por autorizar aviso público e, quando apropriado, para as pessoas em risco; solicite confirmação de que as atualizações de status foram recebidas e consideradas; informe as pessoas em risco sobre o limite de risco para cada área.

A prevenção de legionelose em água de edificações

Conheça os métodos para gerenciamento de risco e práticas para a prevenção de legionelose associada aos sistemas prediais coletivos de água de edificações industriais, comerciais, de serviços, públicos e residenciais. É aplicável à incorporação, projeto, construção, instalação, gerenciamento, operação e manutenção de edificações.

A NBR 16824 de 06/2020 – Sistemas de distribuição de água em edificações — Prevenção de legionelose — Princípios gerais e orientações especifica os métodos para gerenciamento de risco e práticas para a prevenção de legionelose associada aos sistemas prediais coletivos de água de edificações industriais, comerciais, de serviços, públicos e residenciais. É aplicável à incorporação, projeto, construção, instalação, gerenciamento, operação e manutenção de edificações. A Legionella é um gênero de bactérias patogênicas que podem causar doenças respiratórias conhecidas como legionelose. Foi identificada pela primeira vez após um surto de grande repercussão entre membros da Legião Americana na Filadélfia (EUA) em 1976. Essas bactérias são encontradas em sistemas de água naturais e artificiais, bem como, ocasionalmente, em alguns solos. Mais de 50 espécies de Legionella já foram identificadas.

A espécie Legionella pneumophila está associada à grande maioria dos casos de legionelose (cerca de 90%). A legionelose é um termo genérico usado para descrever qualquer infecção causada por bactéria do gênero Legionella. A doença do legionário (LD) e a Febre Pontiac são os dois tipos mais comuns de legionelose. Ambas são infecções no sistema respiratório, sendo a doença dos legionários a mais grave preocupação para a saúde pública por ser uma pneumonia atípica que pode ser fatal. A Febre Pontiac não tem fatalidades associadas e pessoas saudáveis se recuperam em no máximo cinco dias.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os procedimentos de partida e parada no plano APPCC?

Como manter a qualidade da água e desinfecção?

Como proceder no caso das fontes decorativas e outros dispositivos?

O que fazer em resfriadores de ar diretos e indiretos, pulverizadores, umidificadores e lavadores de ar?

O levantamento de risco na edificação deve ser realizado por pessoa (s) ou entidade responsável (eis). Convém que a periodicidade máxima para este levantamento seja de dois anos. Para edificações com riscos identificados, convém que os levantamentos de risco sejam repetidos ao menos uma vez ao ano. Se as características da edificação forem alteradas durante este período, a edificação deve ser submetida a medidas preventivas de um novo levantamento de risco.

O levantamento de risco da edificação deve levar em conta um ou mais fatores de risco relacionados à legionelose que possam estar presentes nos sistemas listados a seguir: sistemas de água fria e água quente; sistemas de água para irrigação; sistemas de água para recreação (como piscinas, spas etc.); sistemas de água para uso decorativo (como fontes e chafarizes); todos os sistemas de água não potável; todos os outros sistemas de água que gerem aerossol e dispersão de água no ambiente (lavador de ar, umidificador, nebulizador, lava a jato, etc.); todos os sistemas de água que tenham presença residual de cloro menor que 0,2 ppm; sistemas de água para uso em serviços de saúde. O levantamento de risco da edificação deve determinar se há sistema que possua torre de resfriamento ou condensador evaporativo, independentemente do tamanho ou frequência de uso.

A abordagem de APPCC (análise de perigos e pontos críticos de controle que é um método de gerenciamento de riscos com base científica que impede que os riscos possam prejudicar as pessoas) deve considerar os seguintes princípios: condução da avaliação de risco; determinação dos pontos críticos de controle; estabelecimento dos limites críticos para cada ponto crítico de controle; estabelecimento de um sistema para monitorar os controles dos pontos críticos de controle; estabelecimento de ação corretiva a ser realizada quando o monitoramento de um PCC não estiver sob controle; estabelecimento de procedimentos de verificação para confirmar se o sistema de APPCC está funcionando efetivamente; estabelecimento de documentação relativa a todos os procedimentos e registros apropriados a estes princípios e a suas aplicações.

Uma equipe de APPCC deve ser estabelecida, incluindo um profissional habilitado e que possua conhecimento no processo de APPCC de água para edificações e os riscos associados a bactérias do gênero Legionella. Os membros da equipe de APPCC podem ser funcionários, fornecedores, consultores ou a combinação destes. A avaliação de risco deve ser conduzida por um profissional com conhecimento de avaliação de risco para Legionella em sistemas de água com conhecimento do processo de APPCC.

A equipe de APPCC deve ser responsável pelo gerenciamento rotineiro das ações e deve ter acesso às instalações hidráulicas, ao que for necessário para implementar o gerenciamento de risco. Devem ser consideradas as seguintes ações específicas no desenvolvimento do plano de APPCC: identificar os finais de linha de água potável ou outro sistema avaliado na edificação; desenvolver um fluxograma de todos os sistemas de água avaliados que mostre como a água é recebida, processada, armazenada e distribuída aos pontos de consumo e uso na edificação; confirmar a adequação do fluxograma por meio de inspeção in loco; utilizar o fluxograma para identificar os pontos de controle necessários; determinar quais são os pontos críticos de controle (PCC) e indicá-los nos diagramas de fluxo de processo; estabelecer os limites críticos de controle para cada PCC; estabelecer um processo de monitoramento para cada limite crítico em cada PCC; estabelecer as ações corretivas para cada limite crítico, quando houver desvios dos limites críticos; validar a seleção dos PCC, limites críticos e ações corretivas; estabelecer os procedimentos de verificação; estabelecer a documentação e manter os registros dos procedimentos requeridos.

Um único documento deve ser produzido para um plano de APPCC completo, que deve incluir no mínimo os seguintes elementos: lista com os membros da equipe de APPCC e outras pessoas envolvidas (consultores externos, empresas de apoio, etc.), incluindo seus respectivos títulos, funções e informações de contato; diagramas de fluxo de processos para o sistema de água potável e para o sistema de água de utilidade, por meio de esquemas e desenhos de como a água potável e a água de utilidade são processadas na instalação, com os processamentos das etapas nomeados e codificados; resumo da análise de risco com o nome e o código de cada parte do sistema de água e os perigos potenciais. O julgamento do risco de cada perigo identificado cabe à equipe de APPCC, explicitando o critério para avaliação do risco e apontando os PCC estabelecidos.

Incluir um plano de monitoramento descrito para cada controle determinado, com um limite crítico e as ações corretivas necessárias em caso de desvio; planos de manutenção para os equipamentos e partes dos sistemas incorporadas ou anexadas ao plano; um resumo de validação com a justificativa e, quando disponível, a evidência científica usada para validar a seleção de cada PCC e cada limite crítico selecionado pela equipe de APPCC. A seleção dos limites críticos deve cumprir regulamentação local e o cronograma de verificação de todas as atividades de verificação e a frequência em que elas serão realizadas. Levar em consideração as respostas planejadas a interrupções de fornecimento de água, que podem ser associadas a surtos de legionelose.

Convém que o projeto dos sistemas prediais de água fria e água quente leve em conta o seguinte: considerar mecanismos que permitam esvaziamento completo dos reservatórios para limpeza. Recomenda-se que os reservatórios de água quente possibilitem a harmonização de temperatura no seu interior. Onde aplicável, considerar o sistema de recirculação de água quente com isolamento térmico como um recurso de projeto e assegurar que os trechos de distribuição sejam os mais curtos possíveis.

Convém que as operações de armazenamento e distribuição dos sistemas de água fria e água quente atendam ao seguinte: em instalações de cuidados de saúde, lares de idosos e outras semelhantes, recomenda-se que a água fria seja armazenada e distribuída a temperaturas inferiores a 25 °C. Convém que a água quente seja armazenada acima de 60°C e recirculada a uma temperatura mínima de retorno de 51°C. Recomenda-se avaliar a possibilidade de instalação de equipamentos antiescaldamento nos pontos de utilização que forneçam água quente acima de 45 °C.

Em instalações prediais que não sejam de saúde, recomenda-se que a temperatura da água quente seja armazenada à temperatura mínima de 50 °C ou superior. Recomenda-se avaliar a possibilidade de estender os níveis de temperatura a toda extensão do sistema (aquecedores, reservatórios, distribuição e recirculação). Recomenda-se a realização dos seguintes procedimentos de manutenção e inspeção dos sistemas de água fria e água quente, cuidando para evitar riscos de queimaduras: inspeção anual dos sistemas, para garantir que os termostatos estejam funcionando adequadamente.

Também deve ser realizada a drenagem semestral dos reservatórios de água quente, para remoção de calcário e sedimentos; inspeção e/ou limpeza semestral dos reservatórios dos sistemas de água quente ou fria; inspeção visual trimestral do reservatório de água fria, verificando se a tampa está instalada conforme as instruções do fabricante;- a tela para inseto no tubo de saída está instalada; o isolamento térmico do reservatório (se instalado) está conforme as instruções do fabricante; a superfície da água está limpa, brilhante e livre de espuma e mancha de óleo; a superfície acima do nível máximo de água do reservatório está limpa e não apresenta sinais de corrosão, deposição, incrustações ou crescimento biológico; a água não contém quaisquer detritos.

Para sistemas prediais de água fria e água quente, convém que seja instalado um sistema de desinfecção secundária. Quando for necessário implementar a desinfecção secundária em sistemas de água fria e água quente, utilizar produtos e/ou dispositivos desinfetantes para a água, conforme a NBR 15784 e a legislação vigente. A desinfecção secundária é a adição de desinfetante suplementar à água potável além do que já foi aplicado para a desinfecção primária. Seu objetivo é manter a qualidade da água, minimizando micro-organismos patogênicos.

Convém que medidas preventivas para abertura de sistemas para reparos e manutenção sejam descritas e documentadas para evitar a contaminação da água. Recomenda-se que atividades como limpeza e desinfecção de reservatórios, manutenção e reparos do sistema tenham medidas para evitar a entrada de contaminantes externos. Recomendações de medidas e de procedimentos para desinfecção de emergência são apresentadas no Anexo A.

Recomendações e orientações sobre o projeto, manutenção e operação de torres de resfriamento e evaporação de condensadores evaporativos são fornecidas nos ASHRAE Guideline 12 e NSF P453. Outras fontes de referência são a Associated Water Technology (AWT) e Cooling Technology Institute. Para nova construção ou modificações significativas em um sistema de resfriamento, incluindo torres de resfriamento e/ou condensadores evaporativos, recomenda-se que os projetos sejam revisados para minimizar os problemas de contaminação no local, prioritariamente antes do início da construção.

Além disso, recomenda-se que o plano de APPCC identifique e solucione: as condições locais que possam permitir a contaminação do (s) equipamento (s) por agentes externos; as condições que possam permitir a infiltração de contaminação da torre de resfriamento ou condensadores evaporativos nos edifícios ou áreas públicas; as condições que possam reduzir ou impedir o acesso ao(s) equipamento(s) e que possam inibir ou dificultar as atividades de manutenção e inspeções. Recomenda-se que o plano de APPCC inclua um plano de comissionamento que: inclua as etapas de limpeza que fazem parte do comissionamento do sistema de resfriamento e identifique-se os responsáveis; inclua um meio de garantir que um programa de tratamento de água em curso será iniciado imediatamente, uma vez que o sistema esteja carregado com água.

Recomenda-se que o plano de APPCC inclua um programa de manutenção que: especifique cronograma de inspeções para avaliar a limpeza geral do sistema, incluindo a limpeza e condições dos eliminadores de gotas e dos enchimentos, assim como a distribuição de água no interior do equipamento; especifique requisitos e cronograma para limpeza de reservatórios remotos, bacias e inclua purga de tubulações com água estagnada ou zonas de baixo fluxo de água; identifique os responsáveis e inclua um meio de registro das atividades de manutenção e notas de inspeção. Para manutenções prediais ver a NBR 5674. Recomenda-se que o plano de APPCC possua um plano de tratamento de água para controle de incrustação, microbiologia, deposição e corrosão, incluindo: especificação de todos os equipamentos e produtos químicos utilizados no tratamento do sistema de recirculação. Os contaminantes da água do sistema de resfriamento (sólidos em suspensão e em precipitação) facilitam o crescimento das bactérias e dos biofilmes que podem impactar o potencial para Legionella.

Cumprir com o requisito para que o controle de sólidos na água da torre de resfriamento seja realizado por meio de filtragem, lavagem física ou outros meios, como o tratamento químico da água. Fazer a identificação dos responsáveis pela manutenção do sistema de tratamento de água e a inclusão de uma inspeção e cronograma de manutenção para o equipamento de tratamento de água e um cronograma para qualquer ensaio requerido como parte do plano de tratamento de água.

Convém que o plano de APPCC tenha uma descrição dos procedimentos a serem seguidos no caso de indícios de contaminação grave (por exemplo, fezes, vômito, etc.). A política para lidar com tais incidentes pode incluir desinfecção de emergência de todo o sistema. Recomendações de medidas e procedimentos para desinfecção de emergência são apresentadas no Anexo A. Quando houver suspeita de Legionella, recomenda-se que o plano de APPCC tenha uma descrição dos procedimentos a serem seguidos, se houver suspeita de problemas de saúde associados à Legionella.

Convém que estes procedimentos incluam critérios para quando se ensaiar a Legionella nas águas de piscinas ou banheiras de uso coletivo. A política para lidar com tais incidentes pode incluir desinfecção de emergência de todo o sistema. As recomendações de medidas e procedimentos para desinfecção de emergência são apresentadas no Anexo A. Recomenda-se que o plano de APPCC inclua uma política para atualizar regularmente todos os manuais de operação para filtros, bombas e equipamentos de halogenação, e para mantê-los em um local seguro e acessível aos responsáveis pela manutenção.

Os ensaios em solos

Há vários ensaios em solos e um deles é a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas.

A NBR 16843 de 05/2020 – Solo — Determinação do índice de vazios mínimo de solos não coesivos especifica o método de determinação do índice de vazios mínimo (mín.) de solos granulares, não coesivos, contendo no máximo 12 % (em massa) de material que passa na peneira de 0,075 mm. Esta norma também especifica o método para o cálculo de compacidade relativa correspondente a um determinado índice de vazio mínimo do material ensaiado.

A NBR 16853 de 05/2020 – Solo — Ensaio de adensamento unidimensional especifica o método de ensaio para determinação das propriedades de adensamento do solo, caracterizadas pela velocidade e magnitude das deformações, quando o solo é lateralmente confinado e axialmente carregado e drenado. A NBR 16867 de 05/2020 – Solo – Determinação da massa específica aparente de amostras indeformadas — Método da balança hidrostática especifica um método para determinação da massa específica aparente de amostras indeformadas de solo, com emprego da balança hidrostática. Esta norma é aplicável somente a materiais que possam ser adequadamente talhados.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o método do enchimento com água para a determinação do índice de vazios?

Como deve ser a mesa vibratória para realizar peneiramento para a determinação do índice de vazios?

Como deve ser os corpos de prova para determinação das propriedades de adensamento do solo?

Como deve ser feito a montagem do corpo de prova na célula de adensamento?

Como fazer a determinação da massa específica aparente da parafina?

Para a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas. Nesta norma, o índice de vazios mínimo absoluto não é necessariamente obtido.

Para os solos não coesivos, os índices de vazios máximo e mínimo constituem-se nos parâmetros básicos para avaliação do estado de compacidade. Para tanto, a compacidade relativa, como especificada em 7.4, fornece uma indicação do estado de compacidade de uma determinada massa de solo, seja uma ocorrência natural, seja construída pelo homem. No entanto, as propriedades de engenharia, como a resistência ao cisalhamento, compressibilidade e permeabilidade de um dado material, compactado por métodos distintos, para um mesmo estado de compacidade, podem variar consideravelmente.

Por outro lado, solos distintos, no mesmo estado de compacidade, podem apresentar diferenças ainda mais acentuadas dessas propriedades, dependendo da granulometria, formato dos grãos, etc. Por esse motivo, discernimento considerável deve ser usado ao se relacionarem as propriedades de engenharia dos solos com o estado de compacidade. A amplitude dupla de vibração vertical tem efeito significativo no índice de vazios obtido. Para uma mesa vibratória e molde específicos, o menor índice de vazios de um dado material pode ser obtido para uma amplitude dupla diferente das especificadas nesta norma, ou seja, o índice de vazios pode inicialmente diminuir com o aumento da amplitude dupla de vibração, atingir um mínimo e então aumentar com o incremento da amplitude dupla.

Portanto, a relação entre o menor índice de vazios e a amplitude dupla de vibração ótima pode variar com o tipo de solo. A aparelhagem necessária para a execução do ensaio é a seguinte: estufa capaz de manter a temperatura entre 105 °C e 110 °C; peneiras de 75 mm, 38 mm, 19 mm, 9,5 mm, 4,8 mm e 0,075 mm, de acordo com as NBR NM ISO 2395 e NBR NM ISO 3310-1; balanças que permitam pesar nominalmente 40 kg, 10 kg e 1,5 kg, com precisões de 5 g, 1g e 0,1 g, respectivamente; outros equipamentos, como bandeja metálica, conchas metálicas, pá, escova de cerdas macias, cronômetro com indicação de minutos e segundos, e paquímetro que possibilite leituras de no mínimo 30 mm, com precisão de 0,2 mm.

O conjunto para a realização do ensaio pelo método A deve conter o seguinte: moldes cilíndricos metálicos padrões, com volumes nominais de 2.830 cm³ e 14.200 cm³; tubo-guia com dispositivo de fixação ao molde, para cada tamanho de molde. Para facilitar a centralização do tubo-guia acima do molde, ele deve ser dotado de três dispositivos de fixação. Incluir um disco-base da sobrecarga, para cada tamanho de molde, perfurado e dotado de três pinos para centralização da sobrecarga; sobrecarga de seção circular dotada de alça para cada tamanho de molde.

A massa total do disco-base e sobrecarga deve ser suficiente para a aplicação de uma pressão de (13,8 ± 0,1) kPa. Incorporar uma alça dotada de rosca para colocação e retirada do disco-base; suporte encaixável no guia do molde, ao qual fica acoplado um deflectômetro, para medir a diferença de elevação entre o topo do molde e o disco-base da sobrecarga, após a densificação. O deflectômetro deve possibilitar medições de no mínimo 50 mm, com resoluções de 0,02 mm, devendo ser instalado de modo que a sua haste fique paralela ao eixo barra de calibração metálica (opcional), com largura de aproximadamente 7 cm, altura de 0,5 cm e comprimento adequado.

Incluir uma mesa vibratória eletromagnética de aço, com vibração vertical acionada por um vibrador eletromagnético do tipo impacto sólido, com massa maior que 45 kg. A mesa deve ser instalada em ambiente acusticamente isolado do restante do laboratório, sobre um piso ou laje de concreto, com massa de 500 kg, de modo que vibrações excessivas não sejam transmitidas a outras áreas onde estejam sendo realizados outros ensaios. O tampo da mesa deve ter dimensões adequadas, que confiram rigidez suficiente, de forma que o conjunto molde + tubo-guia + sobrecarga fique firmemente fixado e rigidamente apoiado durante o ensaio, devendo por este motivo ser dotado de dispositivo de fixação ao conjunto mencionado.

O conjunto para a realização do ensaio pelo método B deve conter o seguinte: cilindro de Proctor, com volume nominal de 1.000 cm³, de acordo com a NBR 7182, soldado à base, de modo que o conjunto resulte estanque. A base do molde deve ser mais espessa que a normalmente utilizada no ensaio de compactação, além de ser dotada de dispositivo de fixação à mesa vibratória. Deve-se dispor de um tubo-guia, constituído por outro cilindro de Proctor solidário ao colarinho; disco-base da sobrecarga, perfurado e dotado de dispositivo para centralização da sobrecarga; sobrecarga de seção circular dotada de alça. A massa total do disco-base e da sobrecarga deve ser suficiente para aplicação de uma pressão de (13,8 ± 0,1) kPa.

Deve-se incluir uma mesa vibratória, do tipo utilizado para realizar o peneiramento de amostras na análise granulométrica. Este método de ensaio para determinação das propriedades de adensamento do solo requer que um elemento de solo, mantido lateralmente confinado, seja axialmente carregado em incrementos, com pressão mantida constante em cada incremento, até que todo o excesso de pressão na água dos poros tenha sido dissipado. Durante o processo de compressão, medidas de variação de altura da amostra são feitas, e estes dados são usados no cálculo do parâmetro que descreve a relação entre a pressão efetiva e o índice de vazios, bem como a evolução das deformações em função do tempo.

Os dados de ensaio de adensamento podem ser utilizados na estimativa, tanto da magnitude dos recalques totais e diferenciais de uma estrutura ou de um aterro, como da velocidade desses recalques. Como aparelhagem, usar um sistema de aplicação de carga (prensa de adensamento), que permite a aplicação e manutenção das cargas verticais especificadas, ao longo do período necessário de tempo, e com uma precisão de 0,5% da carga aplicada. Quando da aplicação de um incremento de carga, a transferência para o corpo de prova deve ocorrer em um intervalo de tempo não superior a 2 s e sem impacto significativo.

Usar uma célula de adensamento apropriada para conter o corpo de prova e que proporcione meios para aplicação de cargas verticais, medida da variação da altura do corpo de prova e sua eventual submersão. Esta célula consiste em uma base rígida, um anel para manter o corpo de prova, pedras porosas e um cabeçote rígido de carregamento. O anel pode ser do tipo fixo (indeslocável em relação à base rígida) ou flutuante (deslocável em relação à base, sendo suportado pelo atrito lateral desenvolvido entre o corpo de prova e o anel), conforme os esquemas indicados na figura abaixo.

Incluir um anel de adensamento, conforme a seguir: o diâmetro interno do anel deve ser no mínimo de 50 mm (preferencialmente 100 mm) e, no caso de amostras extrudadas e talhadas, no mínimo 5 mm (preferencialmente 10 mm) menor do que o diâmetro interno do tubo de amostragem; a altura do anel deve ser no mínimo de 13 mm e não inferior a dez vezes o máximo diâmetro de partícula do corpo de prova; a relação entre o diâmetro interno e a altura do anel deve ser no mínimo de 2,5 (preferencialmente 3,0); a rigidez do anel deve ser tal que, sob a condição de pressão hidrostática igual à máxima pressão axial a ser aplicada ao corpo de prova, a variação do diâmetro do anel não exceda 0,03%; o anel de adensamento deve ser feito de material não corrosível (preferencialmente aço inoxidável), e sua superfície interna deve ser altamente polida ou recoberta com material de baixo atrito, por exemplo, politetrafluoroetileno (PTFE).

Recomenda-se, antes do ensaio, untar a superfície interna do anel com graxa de silicone. O anel fixo permite a execução de ensaios de permeabilidade, junto com o ensaio de adensamento. Quando o solo a ser ensaiado se constituir de material muito mole, não se utiliza anel flutuante. Usar pedras porosas, conforme a seguir. As pedras porosas devem ser confeccionadas com material quimicamente inerte em relação ao solo e à água dos poros. Devem ser constituídas de poros com dimensões suficientemente pequenas, de forma a se evitar a intrusão de partículas de solo.

Se necessário, papel-filtro resistente pode ser utilizado entre o corpo de prova e a pedra porosa para impedir a infiltração de solo e facilitar a limpeza posterior da pedra. O conjunto pedra porosa e papel-filtro deve apresentar permeabilidade suficientemente alta, de modo a não retardar a drenagem do corpo de prova. As pedras porosas devem ser uniformes e estar sempre limpas e livres de trincas.

A adequabilidade de pedra porosa sob o ponto de vista de permeabilidade e limpeza pode ser comprovada por meio de ensaios expeditos, submetendo-a a uma carga hidráulica da ordem de 10 cm e observando-se o gotejamento em sua face inferior. o diâmetro da pedra porosa do topo deve ser 0,2 mm a 0,5 mm menor que o diâmetro interno do anel. Se for utilizado anel flutuante, a pedra de base deve apresentar o mesmo diâmetro da pedra do topo. Recomenda-se a utilização de pedras biseladas, com a face de maior diâmetro em contato com o solo. As pedras porosas devem ser espessas o suficiente para se evitar a sua quebra, sendo de topo, na sua face superior, protegida por um disco metálico (cabeçote) rígido, resistente à corrosão e com diâmetro igual ao da pedra.

Já a aparelhagem necessária para o ensaio para determinação da massa específica aparente de amostras indeformadas de solo é a seguinte: estufa capaz de manter a temperatura de 60 °C a 65 °C e de 105 °C a 110 °C; balança que permita pesar nominalmente 1,5 kg, com precisão de 0,1 g e sensibilidade compatível; moldura que possa ser acoplada ao prato da balança, sendo que balanças que disponham de dispositivo adequado para realização deste ensaio prescindem de tal moldura. Incluir um recipiente contendo água, de dimensões adequadas, para imersão do corpo de prova; fogareiro ou aquecedor para derreter a parafina; linha comum, ou preferencialmente de náilon, e utensílios como panela, faca, espátula, pincel, etc.; parafina isenta de impurezas e com massa específica aparente, no estado sólido, conhecida e verificada a cada mudança de lote.

ASME B31.5: a tubulação para a refrigeração e os componentes de transferência de calor

Essa norma, editada em 2020 pela American Society of Mechanical Engineers (ASME), especifica os refrigerantes, os componentes de transferência de calor e a tubulação secundária de refrigerante para temperaturas tão baixas quanto -320°F (-196°C), para que sejam montadas nas instalações ou montadas na fábrica. Os usuários são avisados de que outras seções do código de tubulação podem fornecer requisitos para tubulação de refrigeração em seus respectivos países.

A ASME B31.5:2020 – Refrigeration Piping and Heat Transfer Components especifica os refrigerantes, os componentes de transferência de calor e a tubulação secundária de refrigerante para temperaturas tão baixas quanto -320 ° F (-196 ° C), para que sejam montadas nas instalações ou montadas na fábrica. Os usuários são avisados de que outras seções do código de tubulação podem fornecer requisitos para tubulação de refrigeração em seus respectivos países.

Este código não se aplica a sistemas autônomos ou de unidades sujeitas aos requisitos dos Underwriters Laboratories ou de outro laboratório de ensaios reconhecido nacionalmente. Também não se aplica a tubulações de água; tubulação projetada para pressão manométrica externa ou interna não superior a 15 psi (105 kPa), independentemente do tamanho; ou vasos de pressão, compressores ou bombas. No entanto, inclui toda a tubulação para refrigerante e refrigerante secundário de conexão, começando na primeira junta adjacente a esse aparelho.

As principais alterações nesta edição incluem revisões de seções em revestimentos de flanges, aparafusamento de flanges de ferro fundido e materiais de ferro fundido e ferro maleável. Prescreve soluções abrangentes para materiais, projeto, fabricação, montagem, ensaio e inspeção. Também serve como complemento do código B31.1 da ASME em tubulação de energia, bem como de outros códigos da série B31 da ASME.

Juntos, eles permanecem como referências essenciais para qualquer pessoa envolvida com tubulação. A aplicação cuidadosa desses códigos B31 ajudará os usuários a cumprir com as regulamentações aplicáveis em seus países, ao mesmo tempo em que obtêm os benefícios operacionais, de custo e segurança a serem obtidos com as muitas práticas recomendadas do setor, detalhadas nesses volumes. Destina-se a projetistas, proprietários, reguladores, inspetores e fabricantes de componentes de tubulação de refrigeração e transferência de calor.

CONTEÚDO DA NORMA

Prefácio . . . . . . . . . . vi

Lista do Comitê. . . . . vii

Correspondência com o Comitê B31. . . . . .. ix

Introdução . . . . . . . . . . . . . . . . . . . . . XI

Sumário de Mudanças . . . . . . . . . . . .. xiii

Capítulo I Escopo e Definições. . . . . .. 1 1

500 Declarações gerais. . . . . .. . .. 1 1

Capítulo II Projeto. . . . . . . . . . . . . . . 10

Parte 1 Condições e Critérios. . . . . . . 10

501 Condições de projeto.. . . . . . . . . . 10

502 Critérios de Projeto . . . . . . . . . . . 11

Parte 2 Projeto de componentes de tubulação . . . . . . . 23

503 Critérios para projeto de componentes de tubulação. . . . 23

504 Projeto de pressão dos componentes da tubulação. . . . . . . 23

Parte 3 Aplicação de projeto da seleção e limitação de componentes de tubulação. . . 33

505 Tubulação  . . . . . . . . . . . . . . . . . . . 33

506 Acessórios, dobras e cruzamentos. . . . . . . . . . 34

507 Válvulas. . . . . . . . . . . . . . . . . . . . . . . . . . 34

508 Flanges, Espaços em Branco, Revestimentos de Flange, Juntas e Parafusos. . . . . . . . . . . . 34

Parte 4 Seleção e limitações das juntas de tubulação . . . . 35

510 Juntas de tubulação . . . . . . . . . . . . . . 35

511 Juntas soldadas. . . . . . . . . . . . . . . . . . 35

512 Juntas flangeadas . . . . . . . . . . . . . . . 35

513 Juntas expandidas. . . . . . . . . . . . . . . . . 35

514 Juntas roscadas. . . . . . . . . . . . . . . . . . . 35

515 Juntas alargadas, sem flange e de compressão.. . . . . 36

517 Juntas soldadas e brasadas . . . . . . . . . . 36

518 Acoplamentos de luva e outras articulações novas ou patenteadas……36

Parte 5 Expansão, flexibilidade, anexos estruturais, suportes e restrições. ….. 36

519 Expansão e flexibilidade. . . . . . . . . . . . . . . . 36

520 Projeto de elementos de suporte para tubos . . . . . . . . 46

521 Cargas de projeto para elementos de suporte de tubo. . . . . 47

Capítulo III Materiais.. . . . . . . . . . . . . . . . . . . . . . . . . . 49

523 Materiais – Requisitos Gerais. . . . . . . . . . . . . . . 49

524 Materiais aplicados a peças diversas. . . . . .. . 55

Capítulo IV Requisitos dimensionais.. . . . . . . . . . . . . . . . 56

526 Requisitos dimensionais para componentes de tubulação padrão e não padrão. .. . . . 56.

Capítulo V Fabricação e Montagem. . . . . . . . . . . . . . . . 59

527 Soldagem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

528 Brasagem e soldagem . . . . . . . . . . . . . . . . . . 66

529 Flexão – quente e fria. . . . . . . . . . . . . . . . . 68

530 Formação. . . . . . . . . . . . . . . . . . . . . . . . 69

531 Tratamento Térmico. . .. . . . . . . . . . . . . 69

535 Montagem. . . . . . . . . . . . . . . . . . . . . . . 70

Capítulo VI Exame, Inspeção e ensaio. . . . . . . . . . . . . 75

536 Exame. . . . . . . . . . . . . . . . . . . . . . . . . . . 75

537 Inspeção. . . . . . . . . . . . . . . . . . . . . . . . . . . 77

538 Ensaio. . . . . . . . . . . . . . . . . . . . . . . .. 77

539 Registros . . . . . . . . . . . . . . . . . . . . . . . . 78

Apêndice Obrigatório

I Normas referenciadas . . . . . . . . . . . … 79

Apêndices não obrigatórios

A Preparação para perguntas técnicas . . . . . . . . … 82

B Seleção de códigos de tubulação aplicáveis. . . . . .. 83

C Nomenclatura. . . . . . . . . . . . . . . . . . . . … 85

O Código ASME B31 para Tubulação de Pressão consiste em várias Seções publicadas individualmente, cada uma de acordo com o uma norma nacional norte americana, sob a direção do Comitê ASME B31, Código de Tubulação de Pressão. As regras para cada Seção refletem os tipos de instalações de tubulação consideradas durante seu desenvolvimento. Esta é a seção de código dos componentes da tubulação de refrigeração B31.5 e da transferência de calor. A seguir, nesta Introdução e no texto desta Seção B31.5 do Código, quando a palavra “Código” for usada sem identificação específica, significa esta Seção do Código. Esta seção também inclui apêndices que contêm padrões referenciados (Apêndice obrigatório I), informações que instruem os usuários sobre a seleção de códigos de tubulação apropriados (Apêndice não obrigatório B) e nomenclatura (Apêndice não obrigatório).

É de responsabilidade do proprietário selecionar a Seção de Código que mais se aplica a uma instalação de tubulação proposta. Fatores a serem considerados pelo proprietário incluem limitações da Seção de Código, requisitos jurisdicionais e a aplicabilidade de outros códigos e normas. Todos os requisitos aplicáveis da Seção de Código selecionada devem ser atendidos.

Para algumas instalações, mais de uma seção de código pode ser aplicada a diferentes partes da instalação. O proprietário também é responsável por impor requisitos complementares aos do Código, se necessário, para garantir a tubulação segura para a instalação proposta. (Veja o Apêndice B. Não Obrigatório). O Código especifica os requisitos de engenharia considerados necessários para o projeto e construção seguros de refrigeração, componentes de transferência de calor e sistemas de tubulação de refrigerante secundário. Embora a segurança seja a principal consideração, esse fator sozinho não governará necessariamente as especificações finais de qualquer sistema de tubulação de pressão.

O Código não é um manual de projeto. Muitas decisões que devem ser tomadas para produzir uma instalação de tubulação não são especificadas em detalhes nesse Código. O Código não serve como um substituto para julgamentos sólidos de engenharia por parte do proprietário e do projetista. O Código contém dados de referência básicos e fórmulas necessárias para o design. Pretende-se declarar esses requisitos em termos de princípios básicos de projeto, na medida do possível, complementados com requisitos específicos, quando necessário, para obter uma interpretação uniforme dos princípios. Contém proibições em áreas onde se sabe que práticas ou projetos não são seguros. Em outras áreas, o Código contém avisos ou “sinalizadores” onde se sabe que é necessário cautela, mas onde se considera que uma proibição direta seria injustificada.

O Código inclui o seguinte: referências a especificações de materiais e padrões de componentes aceitáveis para uso do Código; referências a normas dimensionais aceitáveis para os elementos que compreendem sistemas de tubulação; os requisitos para o projeto de pressão de componentes e unidades montadas; (d) requisitos para avaliação e limitação de tensões, reações e movimentos associados à pressão, temperatura, forças externas e para o projeto de suportes de tubos; os requisitos para a fabricação, montagem e montagem de sistemas de tubulação; os requisitos para exame, inspeção e teste de sistemas de tubulação Podem ser usadas unidades norte americanas (USC) ou International System (SI, também conhecidas como métricas) com esta edição.

As unidades habituais locais também podem ser usadas para demonstrar conformidade com este Código. Um sistema de unidades deve ser usado consistentemente para requisitos aplicáveis a uma instalação específica. As equações deste Código podem ser usadas com qualquer sistema consistente de unidades. É de responsabilidade da organização realizar cálculos para garantir que um sistema consistente de unidades seja usado.

É intenção do Código que isso não seja retroativo e que, a menos que seja feito um acordo específico entre as partes contratantes para usar outras questões, ou o órgão regulador com jurisdição imponha o uso de outras questões, o Código mais recente, emitido 6 meses antes de a data original do contrato para a primeira fase da atividade que cobre uma tubulação dos sistema (s), seja o documento de governo para todas as atividades de projeto, materiais, fabricação, montagem, exame e teste dos sistemas de tubulação até a conclusão do trabalho e operação inicial.

Os fabricantes e usuários da tubulação são advertidos contra o uso de revisões menos restritivas do que os requisitos anteriores, sem ter a garantia de que foram aceitas pelas autoridades competentes da jurisdição em que a tubulação será instalada. Os usuários deste Código são aconselhados a que, em alguns locais, a legislação possa estabelecer jurisdição sobre o objeto deste Código.

Este Código de Componentes de Tubulação de Refrigeração e Transferência de Calor é uma seção do Código de Tubulação de Pressão da Sociedade Americana de Engenheiros Mecânicos (ASME), B31. Esta seção é publicada como um documento separado para simplificar e facilitar a conveniência dos usuários do Código. Os usuários deste Código são avisados de que, em algumas áreas, a legislação pode estabelecer jurisdição governamental sobre o assunto coberto pelo Código. O proprietário de uma instalação de tubulação deve escolher quais códigos de tubulação são aplicáveis à instalação e terá a responsabilidade geral pelo cumprimento deste Código. (Consulte o Apêndice B. Não Obrigatório). O proprietário de uma instalação de tubulação completa terá a responsabilidade geral pelo cumprimento deste código.

É necessário que o projeto de engenharia especifique quaisquer requisitos especiais pertinentes ao serviço específico envolvido. Por exemplo, o projeto de engenharia não deve, para nenhum serviço, especificar uma qualidade de solda menor que a estipulada no par pela qualidade do exame visual exigido pelo Código e pelos tipos de solda envolvidos. Mas, quando os requisitos de serviço exigirem qualidade adicional e um exame não destrutivo mais abrangente, eles deverão ser especificados no projeto de engenharia e em qualquer revisão do mesmo, e quando especificado, o Código exige que eles sejam cumpridos.

O Código geralmente emprega uma abordagem simplificada para muitos de seus requisitos. Um projetista pode optar por usar uma análise mais completa e rigorosa para desenvolver requisitos de projeto e construção. Quando o projetista decide adotar essa abordagem, ele deve fornecer os detalhes e cálculos demonstrando que design, construção, exame e teste são consistentes com os critérios deste Código. Os detalhes devem ser documentados no projeto de engenharia.

API STD 650: a fabricação dos tanques soldados para armazenamento de óleo

Essa norma, editada em 2020 pelo American Petroleum Institute (API), estabelece os requisitos mínimos para o material, o projeto, a fabricação, a montagem e a inspeção de tanques de armazenamento soldados verticais, cilíndricos, acima do solo, de topo fechado e aberto em vários tamanhos e capacidades para pressões internas próximas à pressão atmosférica (pressões internas não excedendo o peso das chapas de teto), mas uma pressão interna mais alta é permitida quando requisitos adicionais são atendidos.

A API STD 650:2020 – Welded Tanks for Oil Storage estabelece os requisitos mínimos para o material, o projeto, a fabricação, a montagem e a inspeção de tanques de armazenamento soldados verticais, cilíndricos, acima do solo, de topo fechado e aberto em vários tamanhos e capacidades para pressões internas próximas à pressão atmosférica (pressões internas não excedendo o peso das chapas de teto), mas uma pressão interna mais alta é permitida quando requisitos adicionais são atendidos. Aplica-se apenas a tanques cujo fundo inteiro é uniformemente suportado e a tanques em serviço não refrigerado que tenham uma temperatura máxima de projeto de 93 ° C (200 ° F) ou menos.

Esta norma fornece à indústria os tanques de segurança adequados e com economia razoável para o uso no armazenamento de petróleo, produtos derivados de petróleo e outros produtos líquidos. Esta norma não apresenta ou estabelece uma série fixa de tamanhos de tanque permitidos, em vez disso se destina a permitir que o comprador selecione o tamanho do tanque que melhor atenda às suas necessidades.

Essa norma destina-se a ajudar os compradores e os fabricantes a encomendar, fabricar e montar tanques e não se destina a proibir os compradores e os fabricantes de comprar ou fabricar tanques que atendam a especificações diferentes das contidas nesta norma. Um marcador (•) no início de um parágrafo indica que há uma decisão ou ação expressa exigida ao comprador.

A responsabilidade do comprador não se limita apenas a essas decisões ou ações. Quando essas decisões e ações são tomadas, elas devem ser especificadas em documentos como requisições, requisições de mudança, folhas de dados e desenhos. Esta norma possui requisitos dados em dois sistemas alternativos de unidades.

O fabricante deve cumprir com todos os requisitos dados nesta norma em unidades SI; ou todos os requisitos dados nesta norma em unidades habituais nos EUA. A seleção de qual conjunto de requisitos (SI ou US Customary) a aplicar deve ser uma questão de acordo mútuo entre o fabricante e o comprador e indicado na Folha de Dados, Página 1. Todos os tanques e acessórios devem cumprir a Folha de Dados e todos os acessórios.

Os tanques montados em campo devem ser fornecidos completamente montados, inspecionados e prontos para as conexões de serviço, a menos que especificado de outra forma. Os tanques fabricados nos locais onde ficarão devem ser fornecidos inspecionados e prontos para instalação. Os anexos desta norma fornecem várias opções de projeto que requerem decisões do comprador, requisitos, recomendações e informações da norma que complementam a norma básica.

Exceto pelo Anexo L, um Anexo se torna um requisito somente quando o comprador especifica uma opção coberta por esse Anexo ou especifica todo o Anexo. A designação normativa deve ser entendida como obrigatória. A designação informativo deve ser entendida como não obrigatória (isto é, são dados informativos, recomendações, sugestões, comentários, amostras e exemplos). O conteúdo dos anexos a esta norma é normativo ou informativo. Normativo” é dividido em

– Sempre necessário (L).

– Necessário se especificado pelo comprador (A, E, J, Y, U, W).

– Necessário se materiais especiais forem especificados pelo comprador (AL, N, S, SC, X).

– Necessário se pressão, vácuo e alta temperatura forem especificados pelo comprador (F, V, M).

– Necessário se componentes ou métodos especiais de projeto ou construção forem especificados pelo comprador (C, G, H, I, O, P).

Todos os outros anexos são informativos (B, D, CE, K, R, T).

O anexo A fornece requisitos alternativos simplificados de projeto para tanques onde há os componentes sob tensão, como placas de carcaça e placas de reforço, e estão limitados a uma espessura nominal máxima de 12,5 mm (1/2 pol.). Incluindo qualquer tolerância à corrosão e cujas temperaturas do metal de projeto excedam os valores mínimos indicados no anexo. O anexo AL fornece requisitos para tanques de alumínio. O Anexo B fornece recomendações para o projeto e construção de fundações para tanques de armazenamento de óleo de fundo plano. O anexo C estabelece requisitos mínimos para coberturas flutuantes externas do tipo pontão e do tipo dois andares.

O anexo D fornece requisitos para o envio de perguntas técnicas relacionadas a esta norma. O anexo E estabelece os requisitos mínimos para os tanques sujeitos a carga sísmica. Um projeto alternativo ou suplementar pode ser mutuamente acordado entre o fabricante e o comprador. O anexo F fornece requisitos para o projeto de tanques sujeitos a uma pequena pressão interna. O anexo G fornece requisitos para coberturas de cúpula de alumínio.

O anexo H fornece requisitos mínimos que se aplicam a um teto flutuante interno em um tanque com um teto fixo na parte superior da carcaça do tanque. O Anexo I fornece detalhes aceitáveis de construção que podem ser especificados pelo comprador para o projeto e construção de sistemas de tanques e fundações que fornecem detecção de vazamentos e proteção de subleito no caso de vazamento no fundo do tanque, e prevê tanques suportados por grelhar.

O anexo J fornece requisitos que abrangem o conjunto completo da oficina de tanques que não excedem 6 m (20 pés) de diâmetro. O anexo K fornece uma amostra de aplicação do método do ponto de projeto variável para determinar as espessuras das placas de revestimento. O anexo L fornece a folha de dados e as instruções para listar as informações necessárias a serem usadas pelo comprador e pelo fabricante. O uso da Folha de Dados é obrigatório, a menos que renunciado pelo comprador.

O anexo M estabelece requisitos para tanques com uma temperatura máxima de projeto superior a 93 ° C (200 ° F), mas não superior a 260 ° C (500°F). O anexo N fornece requisitos para o uso de chapas e tubos novos ou não utilizados que não sejam completamente identificados como cumprindo qualquer especificação listada para uso de acordo com esta norma. O anexo O fornece requisitos e recomendações para o projeto e construção de conexões de fundo para tanques de armazenamento.

O anexo P fornece requisitos para o projeto de aberturas de revestimento que estejam em conformidade com a Tabela 5.6a e a Tabela 5.6b que estão sujeitas a cargas externas de tubulação. Um projeto alternativo ou suplementar pode ser acordado pelo comprador ou fabricante. O Anexo R fornece referências a vários documentos e publicações do setor que fornecem orientações adicionais para considerações específicas sobre design e seleção de materiais, a fim de reduzir ou impedir que mecanismos de corrosão acelerados danifiquem um tanque em serviços de produtos não petrolíferos.

O anexo S fornece requisitos para tanques de aço inoxidável. O anexo SC fornece requisitos para tanques de materiais mistos que utilizam aço inoxidável (incluindo austenítico e duplex) e aço carbono no mesmo tanque para anéis de casca, placas inferiores, estrutura do telhado e outras partes de um tanque que exijam alta resistência à corrosão. O anexo T resume os requisitos para o exame por método de exame e as seções de referência dentro da norma.

As normas de aceitação, qualificações do inspetor e requisitos de procedimentos também são fornecidas. O presente anexo não se destina a ser utilizado isoladamente para determinar os requisitos de exame dentro desta norma. Os requisitos específicos listados em cada seção aplicável devem ser seguidos em todos os casos. O anexo U fornece requisitos que abrangem a substituição do exame ultrassônico em vez do exame radiográfico.

O anexo V fornece requisitos adicionais para tanques projetados para carregamento externo por pressão (vácuo) superior a 0,25 kPa (1 pol./de água). O anexo W fornece recomendações que cobrem as questões comerciais e de documentação. Requisitos alternativos ou suplementares podem ser mutuamente acordados entre o fabricante e o comprador. O anexo X fornece requisitos para tanques duplex de aço inoxidável. O anexo Y fornece requisitos para os licenciados da API que desejam marcar seus produtos com o monograma da API.

As regras desta norma não são aplicáveis além dos seguintes limites de tubulação conectada interna ou externamente ao teto, concha ou fundo dos tanques construídos de acordo com esta norma. Por exemplo, a face do primeiro flange em conexões flangeadas aparafusadas, a menos que sejam fornecidas tampas ou persianas conforme permitido nesta norma. A primeira superfície de vedação para conexões ou acessórios proprietários. A primeira junta rosqueada no tubo em uma conexão rosqueada à carcaça do tanque. A primeira junta circunferencial nas conexões dos tubos de extremidade de soldagem se não for soldada a um flange.

O fabricante é responsável por cumprir todas as disposições desta norma. A inspeção pelo comprador não nega a obrigação de o fabricante fornecer o controle de qualidade e a inspeção necessária para garantir essa conformidade. O fabricante também deve comunicar os requisitos especificados aos subcontratantes ou fornecedores relevantes que trabalham a pedido do fabricante.

O comprador deve especificar na Folha de Dados, Linha 23, os regulamentos jurisdicionais aplicáveis e os requisitos do proprietário que podem afetar o projeto e a construção do tanque e aqueles que se destinam a limitar a evaporação ou liberação de conteúdo líquido do tanque. Quais regulamentos/requisitos, se houver, se aplicam, dependem de muitos fatores, como a unidade de negócios à qual o tanque está atribuído, a pressão de vapor dos líquidos armazenados no tanque, os componentes do líquido armazenado no tanque, a localização geográfica do tanque. tanque, a data de construção do tanque, a capacidade do tanque e outras considerações.

Essas regras podem afetar as questões como quais tanques requerem coberturas flutuantes e a natureza de sua construção; os tipos e detalhes das vedações utilizadas no espaço da borda anular do teto flutuante e nas aberturas no teto. O comprador deve fornecer todas as autorizações de jurisdição que possam ser necessárias para a montagem do (s) tanque (s), incluindo licenças para o descarte da água do ensaio hidráulico. O fabricante deve fornecer todas as outras permissões necessárias para concluir ou transportar o tanque.

O comprador se reserva o direito de fornecer pessoal para observar todo o trabalho da loja e do local de trabalho dentro do escopo do trabalho contratado (incluindo testes e inspeção). Esses indivíduos devem ter acesso total e gratuito para esses fins, sujeitos a restrições de segurança e cronograma. Nessa norma, o texto que indica que o comprador aceita, concorda, revisa ou aprova o projeto, o processo de trabalho, a ação de fabricação do fabricante, etc., não deve limitar ou aliviar a responsabilidade do fabricante de obedecer aos códigos de projeto especificados, especificações do projeto e desenhos e mão de obra profissional.

O fabricante deve informar o comprador sobre quaisquer conflitos identificados entre esta norma e qualquer documento referenciado pelo comprador e solicitar esclarecimentos. Nesta norma, o texto que indica que qualquer questão em particular está sujeita a acordo entre o comprador e o fabricante deve ser interpretado como exigindo que tal contrato seja documentado por escrito. Para os requisitos de documentação, deve-se atentar para o Anexo W e a Folha de Dados para que cobrem os vários documentos a serem desenvolvidos para o tanque. Quanto às fórmulas, onde as unidades não estiverem definidas nessa norma, deve- usar as unidades consistentes (por exemplo, pol., pol.2, pol.3, lbf/pol.2).

Os tubos de PVC para o transporte de água ou de esgoto sob pressão

A NBR 7665 de 03/2020 – Sistemas de transporte de água ou de esgoto sob pressão — Tubos de PVC-M DEFOFO com junta elástica — Requisitos especifica os requisitos para tubos de poli (cloreto de vinila) (PVC), com tensão circunferencial admissível de 12 MPa, com diâmetros externos equivalentes aos dos tubos de ferro fundido, DEFOFO, com junta elástica, para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água e sistemas pressurizados de esgoto, com pressões máximas de serviço (incluindo sobrepressões provenientes de variações dinâmicas, inclusive transitórios hidráulicos) de 1,0 MPa, 1,25 MPa ou 1,60 MPa, à temperatura de 25 °C. Nas aplicações específicas em sistemas enterrados de esgotamento pressurizado, recomenda-se a utilização de um dispositivo que minimize a ocorrência de oscilações da pressurização, o que não elimina a ocorrência de transientes hidráulicos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a resistência à pressão hidrostática interna de longa duração?

Quais são as dimensões dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa de tubos de junta elástica com anel removível alojado na bolsa?

Para temperaturas de fluidos até 25 °C, a pressão de serviço permissível (PFA) equivale à pressão nominal (PN). Para temperaturas de fluidos acima de 25 °C e até 45 °C, deve ser aplicado à pressão nominal um fator de correção, fT, como indicado a seguir: PFA = fT × PN. Este fator é apresentado no gráfico da figura abaixo.

É responsabilidade do usuário aplicar os produtos conforme os requisitos desta norma e recomendações dos fabricantes. Os tubos objetos desta norma devem ser armazenados e instalados conforme os procedimentos especificados na NBR 9822. A resina de PVC utilizada na produção do composto de PVC-M deve ser do tipo suspensão e apresentar valor K maior ou igual a 65, quando determinado de acordo com a NBR 13610.

O composto de PVC-M deve estar aditivado somente com produtos necessários à sua transformação e à utilização dos tubos de acordo com esta norma. Os pigmentos devem estar total e adequadamente dispersos no composto a ser empregado na fabricação dos tubos. Os pigmentos e o sistema de aditivação devem minimizar as alterações de cor e das propriedades dos tubos durante a sua exposição às intempéries, no manuseio e na estocagem em obra.

Não é permitido o uso de material reprocessado e/ou reciclado. Não é permitida a utilização de compostos de chumbo como estabilizantes térmicos na fabricação de tubos de PVC. O composto de PVC-M empregado na fabricação dos tubos deve ser de cor azul para transporte de água, e de cor ocre para transporte de esgoto pressurizado, permitindo-se nuances devido às diferenças naturais de cor das matérias primas.

O composto utilizado na fabricação dos tubos deve estar de acordo com os requisitos especificados na norma. Estes requisitos devem ser reavaliados sempre que houver uma alteração do produto (projeto, matérias-primas e/ou escopo de aplicação). A substituição de um fornecedor de matéria prima ou do tipo de estabilizante não constitui uma alteração do produto.

Uma alteração na natureza química do estabilizante constitui uma alteração do produto. As seguintes características são relevantes na alteração do projeto do produto: dimensões, geometria e sistema de junta. Para definir a condição de reavaliação destes requisitos, é especificada na tabela abaixo uma tolerância quanto ao valor K da resina e em relação ao teor de estabilizante térmico e de cinzas do composto. Os valores “X” devem ser definidos pelo fabricante em seu controle de qualidade. Se qualquer um destes níveis exceder a tolerância, os requisitos especificados na norma devem ser reavaliados.

O composto de PVC-M empregado na fabricação dos tubos deve preservar o padrão de potabilidade da água no interior da tubulação, sem transmitir sabor, odor e não provocar turvamento ou coloração à água. O composto, bem como as concentrações máximas dos seus aditivos, devem estar em conformidade com a legislação em vigor, de maneira a não transmitir para a água potável qualquer elemento que possa alterar suas características, tornando-a imprópria para consumo humano.

Os tubos e conexões de PVC-M, para adução e distribuição de água, devem ter sua inocuidade avaliada conforme a NBR 8219 e os limites aplicados a todas as extrações devem estar em conformidade com a legislação vigente. Caso ocorra uma alteração de natureza química de um dos componentes do composto, deve ser realizado um novo ensaio de efeito sobre a água. Este ensaio não tem como objetivo avaliar a potabilidade da água para consumo humano, sendo utilizado para atender a regulamentações específicas.

Eventual teor de chumbo encontrado nos tubos de PVC-M não pode ser superior a 0,1%. O ensaio deve ser realizado por espectrometria de fluorescência de raios X, conforme EN 62321, ou por outra metodologia validada. O composto empregado na fabricação dos tubos de PVC-M deve ter ponto de amolecimento Vicat maior ou igual a 80 °C. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 82.

O composto empregado na fabricação dos tubos de PVC-M deve ter densidade na faixa de 1,35 g/cm³ a 1,50 g/cm³, medida à temperatura de 20 -2+3 °C. O valor especificado pelo fabricante do composto, em relação ao resultado do ensaio, pode ter variação máxima de 0,05 g/cm³. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 83.

O teor de cinzas dos tubos de PVC-M não pode ser superior a 5%. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 84, Método A, à temperatura de (1 050 ± 50) °C. O composto do tubo deve ter σLPL (lower prediction limit of the predicted hydrostatic strenght) de no mínimo 24 MPa. O composto do tubo deve ser analisado conforme o método II da ISO 9080, com o LPL (lower prediction limit) obtido no ensaio de pressão hidrostática interna conforme as ISO 1167-1 e ISO 1167-2, utilizando caps do tipo B. O valor de σLPL deve ser obtido a partir do LPL de 97,5% e o composto deve ser classificado conforme a ISO 12162.

No caso de alterações de uma determinada formulação já classificada para além dos limites especificados na tabela acima, o fabricante deve apresentar comprovação da realização do ensaio de pressão hidrostática interna de cinco corpos de prova a 20 °C durante 1.000 h a 5.000 h e cinco corpos de prova a 60 °C durante 1.000 h a 5.000 h. Os tubos devem ser fabricados com composto de poli (cloreto de vinila) PVC-M, que assegure a obtenção de um produto que satisfaça os requisitos desta norma, avaliado por meio de ensaios permanentes durante a fabricação e ensaios de desempenho.

Cada tubo deve ter cor uniforme e ser livre de corpos estranhos, bolhas, rachaduras ou outros defeitos visuais que indiquem descontinuidade do material e/ou do processo de extrusão. As conexões para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água ou esgotamento pressurizado de esgoto devem ser de ferro fundido dúctil, do tipo “bolsa – bolsa”, fabricadas de acordo com as NBR 7675 e NBR 15420.

Para avaliação de lotes de tubos coletados fora das dependências dos fabricantes, desde que as condições de estocagem estejam de acordo com a NBR 9822, devem ser realizados todos os ensaios de desempenho e de fabricação prescritos nesta norma, com exceção do ensaio de verificação da resistência ao impacto, que deve ser realizado obrigatoriamente no controle do processo de fabricação e na inspeção de recebimento em fábrica. Se não for comprovada a realização do ensaio de verificação da resistência ao impacto no controle do processo de fabricação e na inspeção de recebimento em fábrica, o lote deve ser rejeitado.

A inspeção de recebimento do produto acabado deve ser feita em fábrica ou por acordo prévio entre comprador e fabricante, em laboratórios acreditados. O comprador deve ser avisado com antecedência mínima acordada com o fabricante da data na qual deve ter início a inspeção de recebimento. Caso o comprador não compareça na data estipulada para acompanhar os ensaios de recebimento e não apresente justificativa para este fato, o fabricante deve proceder à realização dos ensaios previstos nesta norma e tomar as providências para a entrega do produto com o correspondente laudo de inspeção emitido pelo controle da qualidade da fábrica.

Nas inspeções realizadas em fábrica, o fabricante deve colocar à disposição do comprador os equipamentos e pessoal especializado para a execução dos ensaios de recebimento. Todo fornecimento deve ser dividido pelo fabricante em lotes de mesmo diâmetro nominal (DN) e cujas quantidades estejam de acordo com as tabelas 14 e 15, disponíveis na norma. De cada lote formado devem ser retiradas as amostras, de forma representativa, sendo a escolha aleatória e não intencional.

A inspeção de recebimento de lotes com tamanho inferior a 16 unidades deve ser objeto de acordo prévio entre fornecedor e comprador. Os ensaios de recebimento devem ser feitos conforme estabelece esta norma e limitam-se aos lotes de produto acabado apresentados pelo fabricante. Os tubos constituintes das amostras devem ser submetidos aos seguintes ensaios não destrutivos: visual (4.3.3.2 e Seção 7) e dimensional (4.4.1.1, 4.4.1.3, 4.4.1.4 e 4.6.1); e aos seguintes ensaios destrutivos: estabilidade dimensional (4.6.2), resistência ao impacto (4.6.3), compressão diametral (4.6.4), resistência à pressão hidrostática interna de curta duração (4.6.5), resistência ao cloreto de metileno (4.6.6), resistência à pressão hidrostática interna de tubo com entalhe longitudinal (4.9.1), estanqueidade da junta elástica (4.7.2) e resistência do anel C (4.8.1).

O comprador ou seu representante pode solicitar ao fabricante a execução do ensaio para verificação do índice de refração do cloreto de metileno em sua presença, antes da realização do ensaio de resistência ao cloreto de metileno. Para cada lote entregue, o relatório de inspeção deve conter no mínimo o seguinte: identificação do produto; código de rastreabilidade do produto; tamanho do lote inspecionado; resultados dos ensaios de recebimento; resultados dos ensaios de caracterização e de desempenho apresentados pelo fabricante; declaração de que o lote atende ou não às especificações desta norma.

A elaboração de planos de intervenção para reabilitação de áreas contaminadas

Entenda os procedimentos para a elaboração de planos de intervenção para reabilitação de áreas contaminadas, contemplando a definição de medidas de intervenção, a apresentação do modelo conceitual de intervenção e o relatório técnico do plano de intervenção.

A NBR 16784-1 de 04/2020 – Reabilitação de áreas contaminadas — Plano de intervenção – Parte 1: Procedimento de elaboração estabelece o procedimento para a elaboração de planos de intervenção para reabilitação de áreas contaminadas, contemplando a definição de medidas de intervenção, a apresentação do modelo conceitual de intervenção e o relatório técnico do plano de intervenção.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como executar a caracterização do meio físico e mapeamento espacial da contaminação?

Como fazer a definição das medidas de intervenção?

Como realizar a análise das incertezas e limitações do plano de intervenção?

O que deve apresentar a síntese das etapas de investigação e avaliação de risco?

Pode-se definir uma área contaminada como aquela área, terreno, local, instalação, edificação ou benfeitoria que contenha quantidades ou concentrações de matéria em condições que causem ou possam causar danos à saúde humana, ao meio ambiente ou a outro bem a proteger. A área contaminada com risco confirmado (ACRi) é a aquela onde foi constatada contaminação, por meio de investigação detalhada e avaliação de risco, no solo ou em águas subterrâneas, a existência de risco à saúde ou à vida humana, risco ecológico (quando aplicável), ou onde foram ultrapassados os requisitos legais aplicáveis.

A área contaminada em processo de remediação (ACRe) é a área onde estão sendo aplicadas medidas de remediação visando à eliminação da massa de contaminantes ou, na impossibilidade técnica ou econômica, sua redução ou a execução de medidas de contenção e/ou isolamento. A área contaminada em processo de reutilização (ACRu) é aquela área contaminada onde se pretende estabelecer um uso do solo diferente daquele que originou a contaminação, com a eliminação, ou a redução a níveis aceitáveis, dos riscos aos bens a proteger, decorrentes da contaminação com a implementação das medidas de intervenção propostas.

A área em processo de monitoramento para encerramento (AME) é a área na qual não foi constatado risco acima dos níveis aceitáveis, ou a área nas quais as concentrações máximas aceitáveis (CMA) não foram superadas após implantadas as medidas de intervenção, encontrando-se em processo de monitoramento para verificação da manutenção das concentrações em níveis aceitáveis. A área reabilitada para o uso pretendido declarado (AR) é a área, terreno, local, instalação, edificação ou benfeitoria anteriormente contaminada que, depois de submetida às medidas de intervenção, ainda que não tenha sido totalmente eliminada a massa de contaminação, mas tenha restabelecido o nível de risco aceitável à saúde humana, ao meio ambiente e a outros bens a proteger.

Assim, a elaboração de um plano de intervenção deve ser realizada de forma clara e concisa, dentro de uma abordagem sistemática de avaliação das melhores alternativas de intervenção visando à reabilitação da área contaminada para uso pretendido, considerando a mitigação dos riscos à saúde humana e ao meio ambiente a níveis aceitáveis de risco bem como, quando possível, a extinção da exposição. As medidas de intervenção propostas no plano de intervenção devem ser definidas em função da natureza dos contaminantes, das características do meio, dos cenários de exposição, do nível de risco existente, das metas para reabilitação, do uso pretendido para o local, da proteção dos bens a proteger e da sustentabilidade a elas associadas.

Caso necessário, medidas emergenciais também podem ser previstas no plano de intervenção. A elaboração do plano de intervenção deve ter como base, mas não se limitar a, as informações e dados gerados e disponibilizados a partir das etapas relacionadas ao gerenciamento de áreas contaminadas, anteriormente executadas. O plano de intervenção deve ser desenvolvido considerando as seguintes etapas: definição dos objetivos do plano de intervenção; definição das medidas de intervenção a serem adotadas; seleção das técnicas a serem adotadas; desenvolvimento do modelo conceitual de intervenção; e a análise das incertezas e limitações do plano de intervenção.

Os objetivos do plano de intervenção devem ser definidos considerando a conclusão acerca da necessidade de adoção de medidas de intervenção, definidas na etapa de avaliação de riscos à saúde humana que deve ser realizada conforme a NBR 16209 ou risco ecológico, quando em ecossistemas naturais ou a possibilidade de ocorrência de efeitos adversos aos organismos presentes em ecossistemas naturais, entendido como fragmento de vegetação legalmente protegida, localizado dentro de Unidade de Conservação de Proteção Integral, em decorrência de substancias presentes em uma área contaminada.

Os seguintes objetivos devem ser considerados na elaboração do plano de intervenção, quando aplicáveis: controlar as fontes de contaminação identificadas; atingir os níveis aceitáveis de risco aos receptores humanos ou ecológicos expostos à área contaminada; evitar que outros bens a proteger sejam afetados. A definição dos objetivos do plano de intervenção deve estar alinhada à classificação da área, conforme a seguir: área contaminada com risco confirmado; área contaminada em processo de remediação; área contaminada em processo de reutilização; área em processo de monitoramento para encerramento.

A decisão sobre as medidas de intervenção a serem propostas deve ter como base: a redução das concentrações das substâncias químicas de interesse nos compartimentos do meio físico contaminados que oferecem risco à saúde humana ou risco ecológico, considerando a sua distribuição espacial mapeada anteriormente na etapa de investigação detalhada, a qual deve ser realizada conforme a NBR 15515-3; o controle e, se possível, a eliminação da exposição de receptores localizados em regiões nas quais foi quantificado algum risco acima de níveis aceitáveis; a contenção e o controle da expansão das plumas de contaminação mapeadas na investigação detalhada.

A definição das medidas de intervenção deve ser realizada com base nas seguintes etapas: a definição das premissas; a compilação e análise de dados existentes; a definição das medidas de intervenção; e a discussão técnica com as partes interessadas. Para o atingimento dos objetivos propostos, o plano de intervenção pode também estabelecer medidas de remediação (técnicas de tratamento e contenção), medidas de engenharia e medidas de controle institucional, que podem ser adotadas em conjunto ou isoladamente.

A principal premissa para a elaboração do plano de intervenção é garantir por meio de medidas de remediação, de engenharia, e/ou institucionais que seja possível a reabilitação do imóvel para o uso pretendido. As premissas a serem consideradas incluem: não ampliação das unidades de exposição definidas nos mapas de risco; controlar, eliminar ou interromper a exposição dos receptores; considerar a viabilidade técnica e os aspectos econômicos e ambientais; considerar a capacitação técnica das partes envolvidas na elaboração do plano de intervenção. As etapas do gerenciamento de áreas contaminadas, realizadas antes do plano de intervenção, devem atender o disposto nas NBR 15515-1, NBR 15515-2, NBR 15515-3 e NBR 16209.

Com base nos dados e informações gerados nestas etapas do gerenciamento de áreas contaminadas, realizar a compilação e análise de dados existentes, considerando: a caracterização dos compartimentos do meio físico de interesse, bem como mapeamento espacial da contaminação, desenvolvidos na etapa de investigação detalhada; o modelo conceitual de exposição (MCE) definido na etapa de avaliação de risco à saúde humana ou risco ecológico; as metas para reabilitação da área para o uso pretendido declarado na etapa da avaliação de risco à saúde humana ou risco ecológico, quando em ecossistemas naturais. Os dados analisados nesta etapa devem ser suficientes e representar a realidade atual da área de interesse, de modo a possibilitar a elaboração do plano de intervenção, caso contrário, estes devem ser atualizados e/ou complementados.

A instalação correta de um sistema de aquecimento solar (SAS)

Saiba quais são os requisitos de projeto e instalação para o sistema de aquecimento solar (SAS), considerando aspectos de concepção, dimensionamento, arranjo hidráulico, instalação e manutenção, onde o fluido de transporte é a água. 

A NBR 15569 de 04/2020 – Sistema de aquecimento solar de água em circuito direto — Requisitos de projeto e instalação estabelece os requisitos de projeto e instalação para o sistema de aquecimento solar (SAS), considerando aspectos de concepção, dimensionamento, arranjo hidráulico, instalação e manutenção, onde o fluido de transporte é a água. É aplicável ao SAS composto por coletor(es) solar(es), reservatório (s) termossolar (es)

com ou sem sistema de aquecimento auxiliar de água e com circulação de água nos coletor (es) solar (es), por termossifão ou por circulação forçada. Esta norma não é aplicável ao aquecimento de água de piscinas nem a sistemas de aquecimento solar em circuito indireto.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser classificado o SAS?

Como deve ser feito o alívio de pressão ou respiro?

Por que prever a proteção contra corrosão?

Qual a aparência de um reservatório termossolar fechado para atmosfera?

A documentação do projeto deve contemplar no mínimo os seguintes elementos: premissas de cálculo; dimensionamento; fração solar; produção mensal específica de energia (PMEe); memorial descritivo; volume de armazenamento; pressão de trabalho; fontes de abastecimento de água; área coletora; ângulos de orientação e de inclinação dos coletores solares; estudo de sombreamento; previsão de dispositivos de segurança; massa dos principais componentes; considerações a respeito de propriedades físico-químicas da água; localização, incluindo endereço; indicação do norte geográfico; planta, corte, isométrico, vista, detalhe e diagrama esquemático necessários, para perfeita compreensão das interligações hidráulicas e interfaces dos principais componentes; esquema, detalhes e especificação para operação e controle de componentes elétricos (quando aplicável); especificação dos coletores solares e reservatórios termossolares; especificação de tubos, conexões, isolamento térmico, válvulas e motobomba; tipos e localização de suportes e métodos de fixação de equipamentos, quando aplicável; e especificação do sistema de aquecimento auxiliar.

O profissional capacitado ou qualificado deve instruir o responsável pelo uso do SAS sobre o método de sua operação e entregar no mínimo a documentação contendo as seguintes informações: contatos dos responsáveis técnicos pelo projeto, execução e entrega do SAS; nome, telefone, endereço físico e eletrônico do fornecedor/fabricante do produto; modelo e características dos equipamentos contidos no SAS; descrição do funcionamento do SAS; procedimentos para operação e manutenção do SAS; programa de manutenção do SAS; garantias e condições de exclusão da garantia.

A descrição do funcionamento do SAS deve contemplar: diagrama do SAS, mostrando seus componentes e suas inter-relações no sistema típico instalado; diagramas elétricos e de fluxo (se aplicável). Os procedimentos de operação devem contemplar: procedimentos para partida do sistema; rotinas de operação; procedimentos de desligamento do SAS em situações de emergência e de segurança. O programa de manutenção deve contemplar no mínimo: quadro sintomático com os problemas mais comuns, seus sintomas e soluções; descritivo da limpeza periódica dos coletores solares e reservatórios termossolares indicando os materiais adequados a serem utilizados; descritivo para drenagem e reabastecimento; inspeção periódica de corrosão; inspeção periódica dos elementos instalados contra corrosão (quando aplicável); inspeção periódica do sistema de anticongelamento (quando aplicável); inspeção dos componentes elétricos e cabos de interligação (quando aplicável); inspeção periódica do sistema de fixação e suporte dos componentes do SAS; inspeção periódica do sistema de aquecimento auxiliar (quando aplicável).

O responsável pelo uso do SAS deve solicitar e manter os seguintes documentos: projeto; manual de operação e manutenção; documentação necessária para a análise e aprovação das autoridades competentes conforme legislações vigentes aplicáveis para elaboração do projeto e da instalação; registros de manutenção. Recomenda-se que os documentos citados estejam sempre disponíveis e que sejam de fácil acesso para análise, no local da instalação. O projeto do SAS deve ser elaborado por profissional habilitado, conforme legislação vigente.

O sistema de aquecimento solar deve ser executado em conformidade com o projeto. Qualquer alteração no projeto do SAS deve ser registrada e executada após aprovação do profissional habilitado responsável pelo projeto. A instalação do SAS deve ser supervisionada por profissional habilitado e deve ser acompanhada da respectiva ART. O profissional capacitado ou qualificado do SAS deve estar de posse dos procedimentos definidos e ser qualificado para execução dos serviços, bem como registros e evidências que possam comprovar tal capacitação.

A equipe responsável pela instalação do SAS deve possuir no mínimo as capacitações em: instalações de sistemas de aquecimento solar; instalações hidráulicas; instalações elétricas em baixa tensão (quando aplicável); instalações de redes internas de gases combustíveis (quando aplicável); segurança na realização de serviços de instalações de SAS; segurança de trabalhos em altura. A entrega do SAS deve ser realizada por profissional capacitado, qualificado ou habilitado.

Recomenda-se a análise adequada dos materiais e equipamentos a serem utilizados, e dos serviços de projeto, de instalação e de manutenção, bem como o atendimento aos requisitos de projeto definidos para o funcionamento adequado do SAS. Em relação aos materiais e equipamentos, deve-se assegurar de que eles atendam aos requisitos das normas de especificação aplicáveis.

Com relação à prestação de serviços, deve-se assegurar a capacidade e gestão organizacional das empresas, principalmente em relação aos requisitos de qualidade, de segurança e de meio ambiente, bem como a adequada capacitação da mão-de-obra empregada na realização de cada tipo de serviço executado. O SAS é constituído basicamente por três elementos principais: coletor (es) solar (es); reservatório (s) termossolar (es); e sistema de aquecimento auxiliar.

O projeto do SAS deve considerar e especificar a vida útil projetada para cada um dos elementos principais. A transferência de energia entre cada um destes elementos é assegurada pelos seguintes circuitos: primário (transferência de energia captada nos coletores para seu armazenamento), ver Anexo A; secundário (abastecimento e distribuição da água na rede), ver Anexo A. Os materiais e componentes do SAS e suas interligações devem ser especificados de maneira que contemplem a dilatação térmica, característica de cada material em função da variação da temperatura do SAS.

As medidas necessárias para acomodar as dilatações devem ser previstas em projeto. Os componentes que contenham partes móveis, com manutenção adequada, devem ser capazes de cumprir a função para a qual tenham sido projetados sem desgaste ou deterioração excessiva. Os coletores solares, reservatórios termossolares, motobombas, válvulas, tubulações e outros componentes devem operar corretamente dentro dos intervalos de pressão e temperatura de projeto e suportar as condições ambientais previstas para o funcionamento real sem a redução da vida útil projetada para o sistema.

Deve-se prever que o SAS resista a períodos sem consumo de água quente sem deterioração significativa do sistema e de seus componentes. O SAS deve estar projetado de modo a suportar falhas no fornecimento de energia e de água evitando que haja danos aos seus componentes. Os materiais incompatíveis do ponto de vista de corrosão, erosão e incrustação devem ser protegidos ou tratados para prevenir degradação dentro das condições de serviço. A tabela abaixo apresenta os componentes e suas respectivas funções para o SAS.

Para o dimensionamento dos coletores solares deve-se considerar, entre outros aspectos, as características de consumo, as temperaturas de armazenamento, a pressão de trabalho e as características da água. A seleção dos coletores solares deve considerar os seguintes parâmetros: curva de eficiência térmica instantânea para a aplicação pretendida; características de instalação do(s) coletor(es) como localidade, orientação, inclinação e sombreamento; compatibilidade de uso.

Para o dimensionamento do sistema de armazenamento deve-se considerar entre outros aspectos, as características de consumo, as temperaturas de armazenamento, a pressão de trabalho e as características da água. A seleção do sistema de armazenamento deve considerar os seguintes parâmetros: as perdas térmicas; a estratificação térmica; a compatibilidade de uso. Devem ser tomadas as precauções necessárias para prever as variações volumétricas e térmicas da água sem que a sua pressão supere as condições de trabalho do SAS.

Quando aplicável, deve ser previsto um sistema de aquecimento auxiliar para complementar a demanda energética para o perfil de consumo previsto. A especificação do sistema de aquecimento auxiliar e seu modo de funcionamento devem considerar a influência que esta causa no desempenho do SAS. A especificação do sistema de aquecimento auxiliar, de qualquer tipo, deve priorizar o aquecimento solar. O sistema de aquecimento auxiliar pode ser utilizado em série ou em paralelo com o reservatório termossolar desde que seja compatível com as temperaturas do sistema, em relação ao circuito secundário.

IEC 62003: os ensaios de compatibilidade eletromagnética em equipamentos em usinas nucleares

Essa norma internacional, publicada em 2020 pela International Electrotechnical Commission (IEC), estabelece os requisitos para os ensaios de compatibilidade eletromagnética de instrumentação, controle e equipamentos elétricos fornecidos para uso em sistemas importantes para a segurança em usinas nucleares e outras instalações nucleares.

A IEC 62003:2020 – Nuclear power plants – Instrumentation, control and electrical power systems – Requirements for electromagnetic compatibility testing estabelece os requisitos para os ensaios de compatibilidade eletromagnética de instrumentação, controle e equipamentos elétricos fornecidos para uso em sistemas importantes para a segurança em usinas nucleares e outras instalações nucleares. O documento lista as normas IEC aplicáveis, principalmente a série IEC 61000, que definem os métodos gerais de ensaio e fornece os parâmetros e critérios específicos da aplicação necessários para garantir que os requisitos de segurança nuclear sejam atendidos.

Esta segunda edição cancela e substitui a primeira edição publicada em 2009. Esta edição inclui várias alterações técnicas significativas em relação à edição anterior. Por exemplo, o título foi modificado, o escopo foi expandido para abranger as considerações de compatibilidade eletromagnética magnética (electromagnetic magnetic compatibility – EMC) para equipamentos elétricos e passou a fornecer orientação para abordar o uso da tecnologia sem fio.

O texto buscou aprimorar a descrição do ambiente eletromagnético para fornecer esclarecimentos ao selecionar níveis de ensaios personalizados ou para isenções de ensaio, incluiu as informações de exemplo a serem contidas em um plano de ensaio de EMC e passou a fornecer as orientações para a caracterização do ambiente eletromagnético no ponto de instalação dentro de uma instalação nuclear.

Conteúdo da norma

PREFÁCIO…………………… 4

INTRODUÇÃO ……………… 6

1 Escopo……………………… 8

2 Referências normativas…………. 8

3 Termos e definições…………….. 10

4 Termos abreviados………. …….. 11

5 Requisitos do ensaio de EMC……… 12

6 Ambiente eletromagnético………… 13

7 Ensaio de imunidade…….. ……….. 15

7.1 Geral…………………. …………… 15

7.2 Aplicabilidade……………… …….. 15

7.3 Incerteza da medição…………….. 15

7.4 Requisitos do ensaio………………. 16

7.5 Considerações sobre ensaios de imunidade para tecnologia sem fio……………. 19

8 Ensaio de emissões……………….. ……… 20

9 Considerações sobre o ensaio………. …… 21

10 Documentação do relatório de ensaio……………. 22

Anexo A (normativo) Critérios de qualidade funcional de I&C nuclear e ESE elétrica para imunidade…………….. 23

Anexo B (informativo) Características de qualidade que definem a classificação de severidade do ambiente eletromagnético nos locais onde I&C nuclear e energia elétrica do equipamento de força deve ser instalado……………. 24

Anexo C (informativo) Explicação dos graus de severidade dos ensaios para EMC…………………. 27

C.1 Geral…………….. …………….. 27

C.2 Imunidade a descargas eletrostáticas de acordo com a IEC 61000-4-2…………….. 27

C.3 Imunidade ao campo eletromagnético de radiofrequência de acordo com a IEC 61000-4-3 (ou IEC 61000-4-20) …….27

C.4 Imunidade a transientes elétricos rápido/rajadas de acordo com a IEC 61000-4-4……………. 28

C.5 Imunidade a surtos de distúrbios de grande energia, de acordo com a IEC 61000-4-5 ……… 28

C.6 Imunidade a distúrbios induzidos por campos de radiofrequência de acordo com a IEC 61000-4-6……………… 28

C.7 Imunidade ao campo magnético da frequência de potência de acordo com a IEC 61000-4-8…………. 28

C.8 Imunidade ao pulso do campo magnético de acordo com a IEC 61000-4-9…………………… 29

C.9 Imunidade a um campo magnético oscilatório amortecido de acordo com a IEC 61000-4-10………………… …… 29

C.10 Imunidade a quedas de tensão e interrupções curtas de tensão de acordo com a IEC 61000-4-11, IEC 61000-4-29 e IEC 61000-4-34………… 29

C.11 Imunidade a um pico de onda de anel de acordo com a IEC 61000-4-12………………. 29

C.12 Imunidade à distorção de harmônicos e inter-harmônicos, incluindo a sinalização da rede elétrica na porta de alimentação CA de acordo com a IEC 61000-4-13…….. 30

C.13 Imunidade a flutuações da tensão da fonte de alimentação de acordo com a IEC 61000-4-14…………………. 30

C.14 Imunidade a distúrbios conduzidos no modo comum na faixa de frequências de 0 Hz a 150 kHz, de acordo com a IEC 61000-4-16…………… 30

C.15 Imunidade a ondulações nas portas de energia de entrada CC de acordo com a IEC 61000-4-17……….. 30

C.16 Imunidade a distúrbios oscilatórios amortecidos de acordo com a IEC 61000-4-18……….. 31

C.17 Imunidade à variação da frequência de potência de acordo com a IEC 61000-4-28……….. 31

Anexo D (informativo) Diretrizes para os ensaios e avaliação do ambiente do sistema eletromagnético em uma usina nuclear…………………….. 32

Anexo E (informativo) Diretrizes para ensaios e avaliação de conformidade com os requisitos para emissões e imunidade da operação de I&C nuclear e eletricidade do equipamento………………. 33

Anexo F (informativo) Exemplo de forma de plano de ensaio para I&C nuclear e elétrica e para os ensaios de equipamentos para emissões e imunidade…………………… 34

Anexo G (informativo) Exemplo de forma de relatório de ensaio para I&C nuclear e elétrica dos ensaios de equipamentos para emissões e imunidade……………….. 35

Anexo H (informativo) Ensaio EMC da eletrônica de potência e dos acionamentos de velocidade ajustável……… 36

Bibliografia…………. ………………….. 38

Figura 1 – Exemplos de portas………………. 11

Figura 2 – Exemplo da situação de uma central elétrica…. 14

Tabela 1 – Descrição dos ensaios de imunidade e emissões CEM aplicáveis para I&C nuclear e dos equipamentos elétricos importantes para a segurança……………….. 13

Tabela 2 – Especificações de imunidade – Porta do gabinete………………… 16

Tabela 3 – Especificações de imunidade – Portas de sinal e controle………… ……… 17

Tabela 4 – Especificações da imunidade – Portas de entrada e saída ca de baixa tensão……………. 18

Tabela 5 – Especificações de imunidade – Portas de entrada e saída de baixa tensão CC……………. 19

Tabela 6 – Limites para emissões irradiadas de I&C nuclear e equipamento elétrico ………… 20

Tabela 7 – Limites para emissões conduzidas de I&C nuclear e equipamento elétrico……….. 21

Tabela A.1 – Critérios de qualidade funcional de I&C nuclear e ESE elétrico para imunidade……… 23

Tabela B.1 – Características de qualidade que definem a classificação eletromagnética e severidade do meio ambiente nos locais onde I&C nuclear e equipamentos elétricos devem ser instalados………………….. 24

Tabela H.1 – IEC 61800-3, limites de emissões conduzidos para a categoria C3 e sistema de distribuição no segundo ambiente (industrial típico) …………………………….. 36

Tabela H.2 – Limites de emissões irradiadas pela IEC 61800-3 para distribuição de energia da categoria C3 no sistema no segundo ambiente (industrial típico) ………………. 37

Esta norma internacional foi preparada e baseada, em grande medida, na aplicação atual da série IEC 61000 para qualificação de equipamentos comerciais para compatibilidade eletromagnética (EMC). Pretende-se que esta norma seja usada por operadores de usinas nucleares (concessionárias), avaliadores de sistemas e licenciadores.

A situação da norma atual na estrutura da série padrão SC 45A IEC 62003 é o documento SC 45A de terceiro nível que trata da questão da qualificação para compatibilidade eletromagnética (EMC) aplicável a Instrumentação e Controle (I&C) e sistemas elétricos importantes para segurança em instalações nucleares. Para mais detalhes sobre a estrutura da série padrão SC 45A, veja o texto abaixo desta introdução.

A recomendação e a limitação em relação à aplicação desta norma: é importante observar que esta norma não estabelece requisitos funcionais adicionais para sistemas de segurança, mas esclarece os critérios a serem aplicados para a qualificação de interferência eletromagnética e de radiofrequência (EMI/RFI) do mercado comercial. Os aspectos para os quais requisitos e recomendações especiais foram produzidos são: série IEC 61000 com qualificações específicas para aplicações nucleares em todo o mundo; interpretações regulatórias para requisitos no nível de qualificação necessário e tipos de ensaios recomendados para lidar com todos os estressores ambientais em potencial, relacionados a esse tipo de qualificação; IEC 61000-6-2, Compatibilidade eletromagnética (EMC) – Parte 6-2: Padrões genéricos – Imunidade para ambientes industriais, atende aos requisitos para todos os ambientes industriais, enquanto esse padrão trata especificamente de ambientes em instalações nucleares.

Esta norma visa se alinhar com as orientações contidas nas normas IEC 61000-6-5 e IEC 61000-6-7, sempre que possível. As considerações adicionais dessas normas podem ser usadas em conjunto com esta norma ao abordar a EMC de eletricidade e I&C equipamentos em instalações nucleares. A descrição da estrutura da série padrão IEC SC45A e relações com outros documentos IEC e outros documentos de organismos (IAEA, ISO) Os documentos de nível superior da série padrão IEC SC45A são IEC 61513 e IEC 63046.

A IEC 61513 fornece requisitos gerais para sistemas e equipamentos de I&C que são usados para executar funções importantes para a segurança nas plantas nucleares. A IEC 63046 fornece requisitos gerais para sistemas de energia elétrica de centrais nucleares; abrange sistemas de fornecimento de energia, incluindo os sistemas de fornecimento dos sistemas de I&C. As normas IEC 61513 e IEC 63046 devem ser consideradas em conjunto e no mesmo nível. As normas IEC 61513 e IEC 63046 estruturam a série padrão IEC SC45A e formam uma estrutura completa, estabelecendo requisitos gerais para instrumentação, controle e sistemas elétricos para usinas nucleares.

A IEC 61513 e a IEC 63046 se referem diretamente a outros padrões da IEC SC45A para tópicos gerais relacionados à categorização de funções e classificação de sistemas, qualificação, separação, defesa contra falha de causa comum, design da sala de controle, compatibilidade eletromagnética, segurança cibernética, aspectos de software e hardware para programação. sistemas digitais, coordenação de requisitos de segurança e gestão do envelhecimento. As normas referenciadas diretamente neste segundo nível devem ser consideradas em conjunto com a IEC 61513 e a IEC 63046 como um conjunto consistente de documentos.

Em um terceiro nível, as normas IEC SC45A não referenciadas diretamente pela IEC 61513 ou IEC 63046 são as normas relacionadas a equipamentos, métodos técnicos ou atividades específicas. Geralmente esses documentos, que fazem referência a documentos de segundo nível para tópicos gerais, podem ser usados por si próprios. Um quarto nível, estendendo a série IEC SC45, corresponde aos relatórios técnicos que não são normativos.

A série de normas IEC SC45A implementa e detalha consistentemente os princípios de segurança e proteção e os aspectos básicos fornecidos nas normas de segurança da IAEA relevantes e nos documentos relevantes da série de segurança nuclear da IAEA (NSS). Em particular, isso inclui os requisitos da AIEA SSR-2/1, estabelecendo requisitos de segurança relacionados ao

projeto de usinas nucleares, o guia de segurança da IAEA SSG-30, que trata da classificação de segurança de estruturas, sistemas e componentes em centrais nucleares, o guia de segurança da AIEA SSG-39, que trata do projeto de sistemas de instrumentação e controle para centrais nucleares, o Guia de segurança da IAEA SSG-34, que trata do projeto de sistemas de energia elétrica para centrais nucleares e o guia de implementação NSS17 para segurança de computadores em instalações nucleares. A terminologia e definições de segurança usadas pelas normas SC45A são consistentes com as usadas pela IAEA.

A IEC 61513 e a IEC 63046 adotaram um formato de apresentação semelhante à publicação básica de segurança IEC 61508, com uma estrutura de ciclo de vida geral e uma estrutura de ciclo de vida do sistema. Em relação à segurança nuclear, as normas IEC 61513 e IEC 63046 fornecem a interpretação dos requisitos gerais das normas IEC 61508-1, IEC 61508-2 e IEC 61508-4, para o setor de aplicações nucleares.

Nesta estrutura, as IEC 60880, IEC 62138 e IEC 62566 correspondem à IEC 61508-3 para o setor de aplicações nucleares. As normas IEC 61513 e IEC 63046 referem-se à ISO, bem como à IAEA GS-R parte 2 e IAEA GS-G-3.1 e IAEA GS-G-3.5 para tópicos relacionados à garantia de qualidade (QA). No nível 2, em relação à segurança nuclear, a IEC 62645 é o documento de entrada para os padrões de segurança IEC/SC45A. Baseia-se nos princípios válidos de alto nível e nos principais conceitos das normas genéricas de segurança, em particular ISO/IEC 27001 e ISO/IEC 27002; adapta-os e os completa para se ajustarem ao contexto nuclear e coordenar com a série IEC 62443. No nível 2, a IEC 60964 é o documento de entrada para os padrões das salas de controle IEC/SC45A e a IEC 62342 é o documento de entrada para as normas de gestão de envelhecimento.