Os planos de desativação de empreendimentos com contaminação do solo e/ou de águas subterrâneas

Saiba quais são os procedimentos para a elaboração de planos de desativação total ou parcial de empreendimentos com potencial de contaminação do solo e/ou de águas subterrâneas, de acordo com a legislação vigente. . Não se aplica aos planos de desativação de empreendimentos cuja desativação é pautada por legislações específicas. 

A NBR 16901 de 12/2020 – Gerenciamento de áreas contaminadas — Plano de desativação de empreendimentos com potencial de contaminação — Procedimento estabelece o procedimento para a elaboração de planos de desativação total ou parcial de empreendimentos com potencial de contaminação do solo e/ou de águas subterrâneas, de acordo com a legislação vigente. . Não se aplica aos planos de desativação de empreendimentos cuja desativação é pautada por legislações específicas. A avaliação preliminar é uma verificação inicial, realizada com base nas informações disponíveis, públicas ou privadas, visando fundamentar a suspeita de contaminação de uma área e com o objetivo de identificar as fontes primárias e as potencialidades de contaminação, com base na caracterização das atividades historicamente desenvolvidas e em desenvolvimento no local, embasando o planejamento das ações a serem executadas nas etapas seguintes do gerenciamento de áreas contaminadas.

Confira algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que deve informar o inventário de resíduos?

Qual o objetivo do plano de demolição das estruturas de alvenaria e/ou metálicas?

Por que elaborar um relatório completo de execução do plano de desativação?

Quais são os exemplos de resíduos sólidos?

O gerenciamento de áreas contaminadas (GAC) é um conjunto de medidas que asseguram o conhecimento das características das áreas contaminadas e a definição das medidas de intervenção mais adequadas a serem requeridas, visando eliminar ou minimizar os danos e/ou riscos aos bens a proteger, gerados pelos contaminantes nelas contidas. A tabela abaixo fornece exemplos de produtos e materiais onde substâncias químicas com potencial de contaminação são comumente encontradas.

O plano de desativação deve ser baseado em meios e técnicas disponíveis à época de sua realização, devendo ser observados os seguintes fatores limitantes primordiais: a impossibilidade de acesso irrestrito ao imóvel e instalações existentes no local, pelos mais diversos motivos; a ausência de informações detalhadas e precisas sobre as atividades atuais e pretéritas desenvolvidas no imóvel. Embora estas limitações não inviabilizem a elaboração do plano de desativação, elas devem ser evidenciadas no relatório técnico.

O plano de desativação deve ser elaborado pelo profissional técnico habilitado e apoiado pelo responsável pelo empreendimento, cuja responsabilidade deve ser limitada pela disponibilidade de informações no momento e nas circunstâncias em que este seja realizado. Na avaliação da pertinência das informações obtidas durante a condução do levantamento das informações necessárias ao plano de desativação, o profissional técnico habilitado e o responsável pelo empreendimento devem ter cautela e razoabilidade no trato das informações do empreendimento em desativação.

O surgimento de fatos novos ou anteriormente desconhecidos, o desenvolvimento tecnológico e outros fatores não podem ser utilizados para a desqualificação do plano de desativação. A elaboração do plano de desativação deve ter como base, mas não estar limitada a, as informações e dados históricos gerados e disponibilizados a partir das etapas realizadas relacionadas ao gerenciamento de áreas contaminadas.

A NBR 16209 se aplica em estudos de avaliação de risco à saúde humana para fins de remediação e reabilitação de áreas contaminadas e, por outro lado, nos casos específicos de avaliação de risco à saúde humana para fins de saúde pública, com foco na gestão pública de saúde, essa avaliação é desenvolvida utilizando as diretrizes estabelecidas pelo Ministério da Saúde. Durante a execução das demais etapas do gerenciamento de áreas contaminadas, o modelo conceitual, inicialmente estabelecido na etapa de avaliação preliminar, deve ser continuamente atualizado de acordo com os dados obtidos.

Os resultados das etapas do gerenciamento de áreas contaminadas produzirão elementos para a tomada de decisão sobre as medidas que devem ser adotadas, permitindo a compatibilização do local quanto ao seu uso futuro. Após a avaliação de risco à saúde humana, deve ser realizado um plano de intervenção para a área, conforme a NBR 16784-1, se aplicável. O plano de intervenção deve contemplar um conjunto de medidas que devem ser estabelecidas em função dos objetivos a serem atingidos, da natureza dos contaminantes, das características do meio, dos cenários de exposição, do nível de risco existente, das metas de reabilitação, do uso pretendido para o local, da proteção dos bens a proteger e da sustentabilidade associada às medidas.

Deve-se mapear e identificar eventuais intervenções e potenciais riscos sobre habitats protegidos e bens a proteger, decorrentes dos trabalhos de desativação, respeitando-se a legislação vigente e os procedimentos estabelecidos para cada caso pelos órgãos competentes, para a avaliação e controle destes potenciais riscos. O plano de desativação deve ser elaborado com base na documentação disponibilizada pelo responsável pelo empreendimento, nos projetos executivos e nos memoriais descritivos, bem como na inspeção de verificação das instalações.

O plano de desativação deve conter no mínimo o seguinte: a caracterização da área de estudo, incluindo descrição e identificação da instalação, dos equipamentos e dos processos produtivos (atuais e históricos); o levantamento dos produtos e materiais, equipamentos e estruturas com potencial de contaminação do solo e/ou de águas subterrâneas, incluindo matéria-prima e produtos acabados (atuais e históricos); o inventário de resíduos; o plano de gerenciamento de resíduos sólidos; a verificação por suspeitas ou indícios de contaminação nas estruturas (como pisos, paredes, etc.); a especificação técnica para desativação e/ou descontaminação dos equipamentos e instalações identificados; e a destinação final dos equipamentos e materiais.

A descrição e identificação da instalação, dos equipamentos e dos processos produtivos (atuais e históricos) devem ocorrer com acompanhamento técnico criterioso, orientação consultiva dos procedimentos a serem adotados, realização de registro fotográfico e elaboração de listagem e/ou memorial descritivo. A descrição e a identificação da instalação, dos equipamentos e dos processos produtivos (atuais e históricos) devem apresentar a relação e localização em planta, em escala adequada, de obras de infraestrutura, como ruas, rede de distribuição de energia elétrica e utilidades, sistemas de drenagem, efluentes industriais e sanitários (por exemplo, estação de tratamento de efluentes (ETE), estação de tratamento de água (ETA), estações elevatórias, caixas de contenção e de passagem), dutos de insumos e de matérias primas e demais informações pertinentes às particularidades da instalação; edificações e demais estruturas metálicas e não metálicas, entre outras; equipamentos instalados e suas características principais (potência, dimensão, capacidade e quantidade); tanques, linhas de transferência ou estruturas de armazenamento aéreos e/ou subterrâneos, instalações (por exemplo, caixa de contenção) e tubulações associadas (relacionadas a processo, utilidades e especificação técnica), com respectiva quantidade e capacidade volumétrica.

Deve-se realizar o inventário atual e histórico dos produtos químicos e materiais com potencial de contaminação do solo e/ou de águas subterrâneas presentes no empreendimento, incluindo matérias primas, insumos e produtos acabados. A lista de produtos deve ser acompanhada de suas respectivas Fichas de Informação de Segurança de Produtos Químicos (FISPQ). Deve-se apresentar uma planta do empreendimento indicando onde cada um dos produtos encontrava-se armazenado, o histórico de uso e armazenamento, as quantidades e/ou os volumes e a forma de acondicionamento e, principalmente, onde cada um se inseria no processo produtivo, quando aplicável.

Deve-se realizar o levantamento de produtos e materiais com potencial de contaminação do solo e/ou de águas subterrâneas, equipamentos e estruturas que contenham, em sua composição, substâncias que gerem risco à saúde humana ou ao meio ambiente (ver tabela acima). A confirmação da presença destas substâncias nos materiais pode ser feita considerando-se a data de fabricação de compostos atualmente em desuso ou de análises químicas específicas.

Deve ser apresentado o levantamento quantitativo de cada um dos materiais identificados, bem como suas localizações em planta e sua destinação final. Estes materiais identificados devem fazer parte do documento que contenha todas as informações sobre a forma de gerenciamento dos resíduos sólidos gerados durante o processo de desativação.

Os requisitos normativos do biodiesel e/ou óleo diesel BX

Compreenda os procedimentos para o armazenamento, transporte, abastecimento e controle de qualidade de biodiesel e/ou óleo diesel BX.

A NBR 15512 de 11/2020 – Armazenamento, transporte, abastecimento e controle de qualidade de biodiesel e/ou óleo diesel BX estabelece os requisitos e procedimentos para o armazenamento, transporte, abastecimento e controle de qualidade de biodiesel e/ou óleo diesel BX. Os procedimentos aplicam-se aos sistemas de recebimento, armazenamento, expedição, transporte e abastecimento, na produção, distribuição e revenda de biodiesel e/ou óleo diesel BX, e abrangem modos de transporte, tanques de armazenamento ou quaisquer outras instalações apropriadas para armazenamento, incluindo ponto de abastecimento.

O uso desta norma pode envolver o emprego de materiais, operações e equipamentos perigosos, e essa norma não pretende tratar de todos os problemas de segurança associados com seu uso. É responsabilidade de o usuário estabelecer as práticas de segurança e saúde apropriadas, bem como determinar a aplicabilidade de limitações regulamentares, antes de seu uso.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser a conformidade do tanque de armazenamento no produtor, distribuidor e terminais?

Por que deve ser evitada a troca de produtos nos tanques de armazenamento?

Quais são os limites de misturas e/ou contaminações do biodiesel?

Como deve ser a guarda de amostra-testemunha?

O biodiesel é um combustível composto de alquil ésteres de ácidos carboxílicos de cadeia longa, produzido a partir da transesterificação e/ou esterificação de matérias graxas, de gorduras de origem vegetal ou animal, conforme especificação estabelecida na legislação vigente. O biocombustível somente pode ser considerado biodiesel se atender à especificação estabelecida pela legislação vigente. O óleo diesel BX é um combustível de uso rodoviário ou não rodoviário, destinado aos veículos e equipamentos dotados de motores do ciclo Diesel, produzido nas refinarias, nas centrais de matérias-primas petroquímicas e nos formuladores, misturado ao biodiesel em proporção definida (X%). Os equipamentos de medição para fins de ensaio exigível na legislação vigente devem ser verificados e calibrados, conforme estabelecido na NBR ISO 10012.

O produtor, distribuidor, transportador, revendedor e o ponto de abastecimento devem manter as instalações adequadas ao armazenamento, manuseio e movimentação do biodiesel e/ou diesel BX a serem comercializados, conforme os requisitos mínimos apresentados nesta Seção. Face às características dos produtos, alguns cuidados devem ser tomados, visando preservar a qualidade e evitar as alterações. A seguir, são apresentados alguns aspectos do biodiesel e/ou diesel BX que influenciam sua movimentação e armazenamento, bem como a qualidade do produto.

O biodiesel pode remover ou dissolver resíduos depositados nos tanques. Assim sendo, deve-se efetuar a limpeza do tanque antes de utilizá-lo para estocar este produto, conforme especificado na NBR 17505-5. O biodiesel e/ou diesel BX em temperaturas próximas ao ponto de congelamento têm um aumento de viscosidade, que pode comprometer as operações de bombeamento e descarga e a realização da mistura biodiesel com óleo diesel nas operações de carregamento.

O biodiesel e/ou diesel BX degradam certos tipos de borracha utilizados na fabricação de mangueiras, gaxetas e anéis de vedação. Deve-se evitar o seu contato com acessórios fabricados com borracha nitrílica ou borracha natural. As mangueiras devem ser fabricadas à base de politetrafluoretileno ou poliamidas, conforme a BS 5842.

As gaxetas e os anéis de vedação utilizados no sistema de movimentação, armazenamento e transferência também devem ser fabricados em politetrafluoretileno ou poliamidas. Deve-se evitar contato do produto com cobre, chumbo, cádmio, estanho, zinco e ligas metálicas que contenham esses metais e aços galvanizados, pois isso pode aumentar a concentração de sedimentos no produto, se houver contato por um longo período.

Os recipientes plásticos fabricados com polietilenos e polipropilenos podem ser permeáveis a biodiesel e/ou óleo BX, portanto, para armazenamento e/ou movimentação por tubulação não metálica, a taxa de permeação do biodiesel e óleo diesel BX não pode ser superior a 2,0 g/m²/dia, conforme especificado nas NBR 14722 e NBR 15931. Para assegurar a qualidade do biodiesel armazenado por mais de 30 dias, recomenda-se o monitoramento, avaliando-se primeiramente a água total, o índice de acidez e, em seguida, a estabilidade à oxidação, para verificar se o produto se mantém conforme a especificação vigente.

Recomenda-se que o produtor utilize aditivos antioxidantes. O biodiesel e/ou diesel BX também podem sofrer decomposição por hidrólise, ou seja, pela ação da água. A presença da água é capaz de alterar a sua composição, trazendo sérias implicações para os sistemas de movimentação e armazenamento, introduzindo a possibilidade de elevação da acidez.

Pode ocorrer o estabelecimento de processos corrosivos e formação de sedimentos de origem química (goma e óxidos de ferro) e a proliferação de micro-organismos e estabelecimento de processos de biocorrosão e de formação de biodepósitos (sedimentos de origem microbiana). Recomenda-se monitorar a estabilidade hidrolítica do biodiesel por meio da medição regular do teor de água total, do número de acidez e de sedimentos. Para o caso de tanques, a amostragem deve ser em conformidade com a NBR 14883.

Os tanques devem ser projetados e construídos conforme as NBR 15461, NBR 7821 e NBR 16161, ou outras normas internacionalmente aceitas. A disposição dos tanques deve seguir a NBR 17505 (todas as partes). O sistema de filtração deve ser adequado para assegurar a qualidade do produto, devendo estar convenientemente instalado em todas as etapas de movimentação, de modo a assegurar o descarregamento de produto aos tanques, assim como o seu carregamento para a remoção de impurezas antes da mistura ao óleo diesel.

Recomenda-se que os sistemas de filtração possuam identificação adequada, de forma a permitir a verificação dos registros de manutenção, bem como drenos, pontos para amostragem, manômetro de leitura direta de diferencial de pressão, válvulas de alívio de pressão e eliminadora de ar. Recomenda-se que todo o abastecimento de veículo disponha de sistema de filtração dotado de filtro coalescedor e elemento filtrante com grau de retenção de partículas de 10 μm no máximo, podendo, complementarmente, utilizar os parâmetros de filtração em todos os elos da cadeia de abastecimento.

A verificação do funcionamento dos filtros e drenagem da água separada no filtro coalescedor deve ser realizada antes do início da operação, com a manutenção do equipamento seguindo as recomendações do fabricante. Para fins de transporte terrestre, o biodiesel deve ser considerado produto não perigoso. O enquadramento adotado é devido à inexistência da classificação ONU para o biodiesel e dos estudos de ecotoxicidade existentes na literatura internacional.

Para fins de transporte terrestre, o diesel BX deve ser classificado de acordo com o número ONU 1202 (óleo diesel), classe de risco 3 (líquido inflamável). O carregamento dos compartimentos dos modos de transporte deve ser feito mediante a prévia verificação e garantia do total esgotamento do produto anteriormente transportado. O tanque para transporte rodoviário dos produtos abrangidos por esta norma deve seguir as especificações vigentes, observados os requisitos constantes na Seção 5, alíneas c) a e). O tanque para transporte ferroviário dos produtos abrangidos por esta norma deve ser projetado, construído, ensaiado e inspecionado periodicamente conforme as especificações vigentes, observados os requisitos constantes na Seção 5, alíneas c) e d).

O transporte por via terrestre dos produtos abrangidos por esta norma deve atender às NBR 7500, NBR 7501, NBR 7503, NBR 9735, NBR 13221, NBR 14064, NBR 14619 e NBR 15481. Para armazenamento, consumo e transporte de biocombustíveis em embarcações, devem ser seguidos os requisitos vigentes estabelecidos por órgão competente. Os requisitos de operação dos tanques de armazenamento devem atender à NBR 17505-5.

Nas várias etapas do sistema de produção, distribuição e revenda de biodiesel e/ou diesel BX, são necessárias coletas de amostras e realização de ensaios seguindo padrões internos, ou requisitos legais, para a garantia de qualidade. As coletas e os ensaios de amostras objetivam verificar a conformidade do produto, tanto por meio de suas respectivas especificações, quanto visando detectar possíveis contaminações ou degradações do biodiesel e/ou diesel BX no transporte e/ou armazenamento. Devem ser coletadas amostras representativas no recebimento e na expedição do produto, de acordo com a NBR 14883.

Devem-se utilizar recipientes fabricados com materiais distintos dos descritos na Seção 5, alíneas c) e d), para a amostragem de biodiesel e/ou diesel BX. Para o biodiesel, quando a amostragem for realizada em tanques sem movimentação há mais de 30 dias, é recomendado que os controles sejam precedidos da verificação da homogeneidade do biodiesel no tanque por meio da determinação da massa específica em amostras coletadas nos níveis superior, médio e inferior do tanque, quando aplicável.

Caso a diferença entre as massas específicas seja maior que 3 kg/m³, os ensaios de controle de qualidade do tanque devem ser realizados nas três amostras dos diferentes níveis. Caso comprove-se a homogeneidade do tanque, os ensaios podem ser realizados na amostra composta do tanque. Em todas as etapas dos procedimentos de controle de qualidade em que for previsto o ensaio de aparência, o biodiesel deve estar claro, límpido e visualmente isento de água livre e de material sólido (ver NBR 16048).

A avaliação deve ser realizada em amostra de 1 L, em recipiente de vidro transparente, sem qualquer tipo de imperfeição, de modo a possibilitar a agitação por rotação da amostra. Devido à característica higroscópica do biodiesel, o processo de amostragem deve evitar o contato da amostra com a umidade do ar, para não interferir nos resultados de análise de teor de umidade.

Os seguintes documentos da qualidade são partes integrantes desta norma, conforme a Seção 3: certificado da qualidade do biodiesel; boletim de conformidade do diesel BX. O controle de qualidade do biodiesel deve ser realizado nas etapas de recebimento, armazenamento e liberação do produto. Para a execução dos ensaios previstos para emissão do “certificado da qualidade”, recomenda-se coletar no mínimo 2 L de biodiesel. Para a emissão do “boletim de conformidade”, recomenda-se coletar no mínimo 1 L de diesel BX.

O biodiesel recebido em bases e terminais deve ser acompanhado do certificado da qualidade, e o diesel BX deve ser acompanhado do boletim de conformidade. Antes do recebimento do produto, devem ser verificados os resultados dos ensaios realizados na origem, constantes no documento da qualidade, os quais devem estar de acordo com as especificações vigentes. Os primeiros ensaios a serem realizados no recebimento do produto são os de aspecto e de massa específica.

Para a correção de massa específica à temperatura de 20 °C, consultar a tabela de conversão da Resolução CNP 6, 1970. A inspeção da inviolabilidade dos lacres na boca de visita, conexões de descarga e enchimento devem seguir as referências e cores informadas pelo fornecedor. A verificação da conformidade do produto deve ser realizada em cada tanque ou compartimento, coletando-se a amostra, de modo a investigar a presença de qualquer vestígio de partículas contaminantes. Recomenda-se a utilização de mangote adequado ao biodiesel e ao diesel BX, com material compatível.

O produto contido no tanque recebedor deve ser analisado, verificando-se a conformidade dos resultados obtidos, tomando-se por referência a regulamentação vigente. Os tanques devem estar isentos de impurezas, como água e partículas sólidas. Recomenda-se que a verificação da presença de impurezas seja realizada e registrada. As aberturas dos tanques para transporte ou armazenamento, aéreo ou enterrado, devem ser vedadas, para evitar a entrada de água.

Recomenda-se a drenagem de fundo dos tanques aéreos para avaliar a presença de água livre antes da liberação do produto para expedição. Para os tanques enterrados, verificar a presença de água livre pelo menos semanalmente. Para minimizar os riscos de geração de eletricidade estática, o recipiente metálico utilizado para a drenagem deve estar ligado com cabo antiestático ao equipamento e deve assegurar boas condições de aterramento do tanque.

A inspeção interna do tanque é feita de acordo com a API STD 653. Para execução da inspeção interna, o tanque deve ser previamente limpo. A inspeção interna de tanques pode envolver trabalho em ambiente confinado e/ou em atmosfera explosiva. Seguir as orientações de saúde e segurança para trabalho em ambiente confinado e para o uso de equipamento adequado.

A verificação a olho nu da presença de água livre, partículas sólidas, contaminação microbiana e impurezas deve ser realizada com periodicidade máxima de um mês. Uma vez verificada a presença de água livre, esta deve ser retirada, pela drenagem ou bombeamento da água presente no fundo do tanque, antes de qualquer operação. Independentemente dos resultados obtidos nas inspeções operacionais periódicas, recomenda-se que os tanques sejam limpos com periodicidade máxima de cinco anos.

Caso sejam identificados materiais em suspensão ou sujeiras, durante a drenagem ou bombeamento da água no fundo do tanque de biodiesel ou do diesel BX a ser comercializado, é necessário prosseguir com a drenagem até a retirada de toda a água ou contaminação, sendo recomendada a limpeza do tanque, independentemente do prazo de inspeção. A limpeza do tanque deve ser suficiente para que não restem vestígios de produtos químicos, evitando a contaminação de futuros produtos armazenados.

As oportunidades e os desafios para ampliar o investimento privado em saneamento no Brasil

A aprovação e sanção da Lei 14.026 – a Lei de Saneamento Básico – foi um marco na história recente do Brasil. Segundo estimativas da OMS/UNICEF, em 2017 o país estava posicionado em 117º lugar em percentual da população com acesso a serviços básicos de saneamento, com implicações de primeira ordem para a saúde das famílias, aprendizado das crianças, produtividade dos trabalhadores e competitividade das empresas. Com cerca de 100 milhões de brasileiros sem saneamento básico; proporção elevada de escolas do ensino fundamental à margem do mínimo aceitável em termos de acesso; e doenças de veiculação hídrica crescendo a um ritmo superior ao da população, a situação há muito se tornou insustentável.

Cláudio R. Frischtak

A aprovação e sanção da Lei 14.026 – a Lei de Saneamento Básico – foi um marco na história recente do Brasil. Segundo estimativas da OMS/UNICEF, em 2017 o país estava posicionado em 117º lugar em percentual da população com acesso a serviços básicos de saneamento (1), com implicações de primeira ordem para a saúde das famílias, aprendizado das crianças, produtividade dos trabalhadores e competitividade das empresas. Com cerca de 100 milhões de brasileiros sem saneamento básico; proporção elevada de escolas do ensino fundamental à margem do mínimo aceitável em termos de acesso (2); e doenças de veiculação hídrica crescendo a um ritmo superior ao da população, a situação há muito se tornou insustentável (3).

O setor de saneamento básico é provido basicamente por entes estatais: departamentos e autarquias no âmbito municipal; e 26 empresas estatais nos estados e Distrito Federal. De modo geral essas instituições, que detém 93% do mercado, operam sob um regime regulatório falho e fragmentado; com contratos frágeis que pouco vinculam em termos de obrigações, metas e penalidades pelo seu não cumprimento; e cuja governança não impede a captura das instituições estatais por interesses políticos, corporativos e econômicos. Há relevantes exceções – principalmente no âmbito dos municípios – mas assim permanecem. Já o setor privado não apenas tem um papel secundário, mas em contraposição ao setor público, enfrenta agências que fiscalizam com relativo maior rigor, e está sujeito a contratos vinculantes. A lei veio para reduzir essa assimetria e abrir o setor à competição.

Um dos elementos, portanto, responsáveis pelo atraso do país em saneamento básico e o enorme custo em termos de bem-estar das famílias e competitividade das empresas é resultado da ausência – para os entes públicos que detém acima de 90% do mercado no país – de metas de cobertura e qualidade de serviços, assim como de eficiência operacional. A lei obriga a que se preencha essa lacuna, e um decreto do executivo irá detalhar a metodologia para comprovação de capacidade econômico-financeira de contratada para prestação dos serviços públicos de saneamento básico, de modo que o ente – público ou privado – que assumir a obrigação de universalização e melhoria operacional deverá demonstrar a capacidade de cumprir com o contratado.

A universalização dos serviços até 2033 é uma enorme oportunidade para o setor privado, mas também um desafio. Em 2019, o investimento em saneamento totalizou R$ 14,6 bilhões, e projeta-se um valor semelhante em 2020. No período 2001-20 o investimento médio do setor foi de 0,21% do PIB, e a universalização irá demandar investimentos adicionais de R$ 30 bilhões por ano até 2033. Empresas estatais e autarquias (ou departamentos municipais) não têm como mobilizar esses recursos; o setor privado irá liderar essa nova fase.

O hiato a ser coberto – R$ 30 bilhões – dará um impulso não desprezível na construção civil e serviços de engenharia e correlatos, pois estima-se que no conjunto absorverão 90% desses recursos. Apenas para dimensionar a ordem de magnitude: em 2018, o valor das obras e serviços das empresas de infraestrutura somaram R$ 87 bilhões (PAIC, IBGE); em 2019, o PIB da construção civil foi de R$ 230,4 bilhões (IBGE).

O novo marco é o ponto de partida; provê maior segurança jurídica para os investidores. Nesse contexto, espera-se que o Congresso sustente os vetos do executivo, ampliando a competição e eficiência no setor. Ato contínuo é essencial uniformizar as regras e melhorar a qualidade da regulação, de forma a minimizar o risco – e o prêmio – regulatório. A Agência Nacional de Águas e Saneamento Básico (ANA) terá um papel de relevância, pois assim dita a nova lei.

Assim, torna-se imperativo – pela dimensão dos investimentos – pensar em novas estruturas de financiamento, particularmente em como viabilizar o verdadeiro project finance. Finalmente, nos casos de maior complexidade e magnitude, o BNDES se torna a instituição que reduz os custos de coordenação e informação, sendo instrumental em prover credibilidade e transparência ao processo. A Caixa poderia ter papel semelhante em operações menores, que envolvem municípios isolados ou mesmo consorciados. Dado o tamanho do desafio, é essencial que as duas instituições, assim como os bancos regionais, se engajem no processo de atrair o setor privado – incumbentes e entrantes – para transformar o setor de saneamento no país, e transitarmos rapidamente para o século 21.

Referências

(1) WHO/UNICEF Joint Monitoring Programme for Water Supply, Sanitation and Hygiene (www.washdata.org)

(2) Segundo o Censo Escolar 2018 INEP, de 181,9 mil escolas da educação básica (ensino infantil, fundamental e médio), 16% não contavam com banheiro dentro do prédio da escola; 49% não estavam ligadas à rede de esgoto; 26% não possuíam acesso a água encanada; e 21% não tinham coleta periódica de lixo.

(3) No período 2010-18, o número de casos de Doenças Diarreicas Agudas cresceu a uma média de 2,3% a.a., chegando a 4,97 milhões, enquanto que a população cresceu a uma média de 0,8% no período de acordo com o IBGE.

Cláudio Frischtak é fundador e sócio da Inter.B Consultoria e Diretor Nacional na International Growth Center (LSE). Foi professor (adjunct) na Universidade de Georgetown e Principal Economist do Banco Mundial (1984-91). Publicações recentes do autor incluem: “Uma Estimativa do Estoque de Capital de Infraestrutura no Brasil”, em Desafios da Nação (IPEA, 2018); “Industries without smokestacks: Telecommunication and ICT-Based Services Trade”, em Industries without smokestacks: Industrialization in Africa Reconsidered (Oxford University Press, 2018); e “Science and Innovation in Brazil: where to now?”, em Innovation in Brazil: Advancing Development in the 21st Century (Routledge, 2019).

 

Fonte: BNDES

O projeto dos equipamentos de irrigação agrícola

Saiba quais são as diretrizes para o projeto, seleção, instalação e uso dos equipamentos requeridos para estabelecer instalações básicas de ensaio para avaliação dos equipamentos de irrigação.

A ABNT ISO/TR15155-1 de 09/2020 – Equipamentos de irrigação agrícola — Instalações de ensaio para equipamentos de irrigação agrícola – Parte 1: Generalidades fornece diretrizes para o projeto, seleção, instalação e uso dos equipamentos requeridos para estabelecer instalações básicas de ensaio para avaliação dos equipamentos de irrigação. Este Documento fornece as informações suficientes para complementar os procedimentos incluídos nas ISO 7714, NBR ISO 8026, NBR ISO 9261, NBR ISO 9635 (todas as partes), ISO 9644, ISO 9911, ISO 10522, NBR ISO 15886 e NBR ISO 16399, para o ensaio de componentes do sistema de irrigação agrícola, especificamente emissores, aspersores, válvulas, sprays e medidores de água.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executado o projeto da bancada de ensaio?

Quais devem ser os procedimentos e políticas da instalação de ensaio?

Quais são as propriedades hidráulicas de aspersores em água limpa?

Quais são as propriedades hidráulicas de emissores de gotejamento e tubos emissores em água limpa?

Para obter informações específicas antes de selecionar uma bomba, ver Anexo A para aspersores, Anexo B para emissores e tubos emissores, Anexo C para válvulas, Anexo D para sprays e Anexo E para medidores. O tamanho e o tipo de bomba selecionados dependem dos requisitos do equipamento a ser ensaiado. Mais de uma bomba pode ser requerida, dependendo das faixas de vazões e pressões requeridas pelo equipamento a ser ensaiado.

Recomenda-se que o equipamento, a faixa de vazão de ensaio e a faixa de pressão de ensaio sejam selecionados antes de selecionar uma bomba. Uma bomba centrífuga ou uma bomba do tipo turbina é selecionada com base na configuração desejada da bancada de ensaio. Convém que as bombas e os controles sejam selecionados para fornecer as características hidráulicas requeridas de maneira contínua e sem vibração, para evitar que a exatidão da medição seja afetada. Convém que a turbulência seja atenuada ou que os estabilizadores de fluxo sejam utilizados em locais críticos, como na entrada do tubo de subida para ensaio de aspersor.

Convém que um inversor de frequência (variable-frequency drive – VFD) seja utilizado para controlar a rotação do motor com, permitindo que a bomba opere em uma faixa mais ampla de vazões e pressões. A vazão é controlada utilizando o equipamento instalado na bancada de ensaio (bocal, emissores, válvula, regulador e tamanho do tubo) e/ou pela velocidade de rotação na qual a bomba é operada.

Convém que a vazão e/ou pressão sejam controladas com válvulas reguladoras no tubo de entrada ou saída, conforme necessário. Convém que a bomba forneça pelo menos 110% da pressão máxima a 110% da vazão máxima requerida para o dispositivo que está sendo ensaiado. Convém que a curva da bomba selecionada seja revisada para assegurar que a bomba opere na faixa requerida.

Convém que a bomba seja instalada em uma configuração que não requeira escorva e na qual o tanque de suprimento/recebimento de água tenha volume suficiente para que a mudança de temperatura da água durante um ensaio não exceda os critérios de ensaio. Convém que a filtragem mantenha a qualidade do suprimento de água e que seja suficiente para atender aos requisitos do equipamento a ser ensaiado.

Se nenhuma norma de filtragem específica for requerida, o equivalente a um filtro de 200 mesh (75 microns) é recomendado. Recomenda-se que um circuito de derivação (by-pass) seja fornecido para aumentar efetivamente a faixa de operação da bancada de ensaio. Abaixo uma figura com as configurações típicas de bancada de ensaio para válvulas.

Convém que equipamentos de segurança adequados sejam instalados e que procedimentos operacionais sejam documentados. Os códigos de identificação locais asseguram que a instalação e o uso atendam às normas de segurança. A pressão é medida utilizando um manômetro abastecido com mercúrio ou outro líquido calibrado. É recomendado ler manualmente os manômetros ou registrar dados de transdutores com um monitor analógico ou digital, ou registrar diretamente, utilizando um registrador de dados (data-logger).

Convém que a faixa de medição de pressão do manômetro seja maior que as pressões esperadas, para evitar sobrepressão no manômetro. Ver Anexos A, B e C para especificações recomendadas. O tamanho e o tipo de manômetros requeridos dependem dos requisitos do equipamento a ser ensaiado. Mais de um manômetro pode ser requerido, dependendo da faixa de pressões declaradas pelo equipamento a ser ensaiado.

Convém que um manômetro seja selecionado de modo que opere no meio de sua faixa de operação para o procedimento de ensaio e que seja grande o suficiente para ser facilmente lido com incrementos, conforme requerido pela exatidão indicada no procedimento de ensaio. Um mostrador de 100 mm e uma exatidão mínima de ± 0,5 % da leitura são recomendados, salvo se especificado em contrário no procedimento de ensaio relativo à norma internacional que está sendo utilizada (ver Seção 1 para menção das normas pertinentes).

Um transmissor de pressão eletrônico pode ser utilizado para uma ampla faixa de pressões. As tomadas de pressão são projetadas para permitir o fácil acesso à inspeção e manutenção do manômetro. Convém que um cronograma de calibração regular seja utilizado para assegurar a confiabilidade contínua das leituras. É recomendado, para cada medidor, que um número de identificação seja fornecido e que um registro de calibração seja mantido.

Convém que os medidores do tipo peso morto comerciais sejam utilizados para calibrar manômetros. Em geral, a calibração é efetuada antes e após um programa de ensaio específico. Convém que a frequência e operação de inspeção estejam em conformidade com a NBR ISO/IEC 17025. Convém que a vazão real e o volume acumulado sejam medidos utilizando medidores de vazão calibrados ou registrando o intervalo de tempo para coletar determinada massa ou volume da água ou outro líquido e, em seguida, calculando a vazão e o volume total.

Os medidores de vazão do tipo eletromagnético são considerados o tipo mais exato de medidor de vazão. Existem vários tipos de medidores de vazão, que são classificados de acordo com o princípio de operação. Os tipos turbina, rotor, magnético e de deslocamento positivo dependem de um sensor instalado na tubulação. Os medidores de vazão deprimogênios dependem das placas de orifício instaladas na tubulação.

Convém que os medidores ou sensores sejam instalados conforme especificado pelo fabricante. Convém que um conjunto de medidores de vazão seja selecionado para que proporcione a exatidão requerida em toda a faixa de vazões dos dispositivos a serem ensaiados. O método volumétrico pode ser utilizado para dispositivos com baixas vazões, como bocais e emissores, e um medidor de vazão para dispositivos de vazão mais alta.

Um medidor adequado é aquele que seja durável e mantenha a calibração. O tempo e massa ou tempo e volume podem ser utilizados para determinar a vazão e o volume durante o período selecionado. O método de tempo e massa é mais fácil de automatizar. Embora este método seja mais difícil de projetar em uma bancada de ensaio, a necessidade de calibração periódica é bastante reduzida. A calibração da escala mássica ou volumétrica é requerida com menos frequência (anualmente) do que a calibração de um medidor de vazão e é um procedimento mais simples. Após o tanque recebedor ter sido calibrado, não é necessário recalibrar, a menos que o tanque seja realocado ou esteja danificado.

Este método pode não ser prático para medir o volume total de dispositivos que requerem altas vazões, a menos que um tanque recebedor de grande dimensão seja construído. Convém que a tubulação seja grande o suficiente para que as perdas de pressão ou fluxo turbulento no sistema não afetem os procedimentos de ensaio ou as condições de medição. Recomenda-se que o projeto seja desenvolvido para uma velocidade recomendada de 2,5 m/s.

Se uma bomba centrífuga for selecionada, recomenda-se que a entrada seja reta na bomba, sem alterações no diâmetro, e é recomendado que ela seja cuidadosamente verificada quanto a vazamentos na sucção de ar. Recomenda-se que a carga líquida positiva de sucção disponível (NPSHd) seja pelo menos 2 m maior que a carga líquida positiva de sucção requerida (NPSHr). Convém que todas as vazões de retorno sejam descarregadas abaixo da superfície livre da água para reduzir o potencial de introdução de ar na sucção do sistema.

Os conceitos da drenagem oleosa em postos de combustíveis

É obrigatório ter as iniciativas para o manuseio das águas superficiais e sua origem, e seus potenciais contaminantes oleosos, para a prevenção de contaminação das águas e para a instalação dos sistemas de drenagem em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos.

A NBR 14605-1 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis – Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 1: Conceituação e projeto da drenagem oleosa estabelece as iniciativas para o manuseio das águas superficiais e sua origem, e seus potenciais contaminantes oleosos, para a prevenção de contaminação das águas e para a instalação dos sistemas de drenagem em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos. O objetivo desta parte é assegurar que o efluente líquido do posto revendedor de combustíveis automotivos, dos pontos de abastecimento e de demais serviços automotivos seja destinado dentro dos padrões mínimos de contaminantes oleosos sendo estes padrões estabelecidos pela legislação vigente.

A NBR 14605-2 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 2: Dimensionamento de vazão de sistema de contenção e separação de efluentes estabelece a metodologia para o dimensionamento de vazão do sistema de drenagem oleosa em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos (PRC/PA). A NBR 14605-3 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 3: Ensaio-padrão, equipamentos e técnica de amostragem para determinação do desempenho de caixas separadoras de água tem o objetivo de avaliar o desempenho da caixa separadora de água e óleo sob as condições da legislação ambiental local vigente e as necessidades do usuário. Outro objetivo desta parte é estabelecer que uma caixa separadora de água e óleo operando na sua capacidade nominal esteja sujeita à prática, ao receber águas provenientes do sistema de separação de água e óleo. Estabelece os procedimentos relacionados aos equipamentos e à técnica de amostragem a serem usados na determinação do desempenho da separação da mistura água/óleo oriunda da contaminação das águas superficiais. Não expressa a determinação da eficiência da separação água/óleo, sujeita às emissões de grandes quantidades de hidrocarbonetos que podem ocorrer na sua forma pura ou em altas concentrações, do afluente para a caixa separadora de água e óleo.

A NBR 14605-4 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 4: Projeto, construção e montagem de sistema de contenção e separação de efluentes fornece orientações e requisitos para o projeto, construção, montagem e instalação de sistema de contenção e separação de efluentes. Não contempla o esgotamento sanitário e o dimensionamento do sistema de águas pluviais. A NBR 14605-5 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 5: Comissionamento, operação e manutenção de sistema de contenção e separação de efluentes fornece orientações para o comissionamento, operação e manutenção de sistema de captação, condução e separação de efluentes oleosos. não é aplicável ao comissionamento, à operação e à manutenção do sistema de esgotamento sanitário e do sistema de águas pluviais.

A NBR 14605-6 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 6: Construção de sistema de contenção, tratamento e separação de efluente — Área de lavagem estabelece as diretrizes e os requisitos para o desenvolvimento de sistemas de contenção, tratamento e separação de águas oleosas, bem como a metodologia de dimensionamento de vazão do sistema de drenagem oleosa da área de lavagem em posto revendedor de combustível automotivo, ponto de abastecimento e demais serviços automotivos. Os veículos somente podem ser lavados em áreas especificadas, onde a água de lavagem e qualquer precipitação pluvial podem ser contidas. A captação e a condução da água utilizada na operação de lavagem devem ser independentes da captação e condução das águas pluviais. Na área de lavagem de veículos são geradas correntes líquidas que podem conter os seguintes produtos e materiais contaminantes: óleo, combustível, graxa, produtos químicos utilizados na lavagem e sólidos em suspensão. A água escoada da área de lavagem de veículos deve ser dirigida a um sistema de separação de água e óleo ou tratamento no próprio local, podendo ser possível o seu reuso. Alternativamente, esta água pode ser coletada em uma unidade de armazenamento e enviada para um local de descarte autorizado. No caso da utilização de produtos químicos na operação de lavagem de veículos, a corrente líquida contendo produtos químicos não pode ser direcionada exclusivamente para uma caixa separadora de água e óleo (CSAO), uma vez que pode interferir no seu funcionamento e eficiência, devendo ser utilizado concomitantemente um sistema de reciclagem ou devendo esta corrente líquida ser coletada em uma unidade de armazenamento para posterior envio para um local de descarte autorizado. Produtos químicos com pH entre 6 e 9, de modo geral, podem não afetar o funcionamento e a eficiência da CSAO, sendo que aqueles com pH neutro praticamente não afetam esta eficiência.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como proceder na drenagem de águas oleosas?

Como deve ser executado o dimensionamento da caixa separadora de água e óleo?

Como realizar o Ensaio A – Investigação do arraste de óleo na sua capacidade de armazenamento de óleo?

Quais as considerações quando de construção nova, de ampliação ou de reforma de posto revendedor de combustíveis?

Pode-se dizer que as operações do posto revendedor de combustíveis automotivos, do ponto de abastecimento e dos demais serviços automotivos envolvendo o manuseio de produtos oleosos apresentam potencial para a presença destes produtos no piso, por deficiências na operação ou eventos acidentais. Os produtos oleosos, se não contidos e recolhidos adequadamente, quando em contato com a água, produzirão águas oleosas.

A utilização de água de forma não seletiva nas áreas operacionais é fonte de geração de água oleosa que é captada e conduzida de forma segregada das águas pluviais do posto revendedor de combustíveis automotivos ou ponto de abastecimento e demais serviços automotivos. O impacto de águas oleosas no meio ambiente pode ser evitado adotando-se as seguintes estratégias: não geração de águas oleosas; captação das águas oleosas superficiais, separação e destinação do óleo, e lançamento do efluente aquoso dentro de parâmetros ambientais aceitos.

A não geração ou a minimização de águas oleosas é condição fundamental para a redução do impacto nas águas pluviais, provocado pelas operações do posto revendedor de combustíveis automotivos, do ponto de abastecimento e dos demais serviços automotivos. Por conseguinte, deve ser minimizada a presença de material oleoso no piso por meio de equipamentos adequados e bem mantidos, procedimentos operacionais seguros e procedimentos de emergência. Por outro lado, a presença de água em determinadas áreas onde possa potencialmente haver a presença de material oleoso deve ser eliminada, sempre que possível.

Não sendo viável a não geração de águas oleosas, deve haver um sistema segregado de captação das águas, condução e separação do óleo e lançamento do efluente aquoso dentro de padrões ambientalmente aceitos. A não geração de águas oleosas tem início na especificação e na devida manutenção e calibração dos equipamentos envolvidos nas operações, de modo a não permitir a presença de material oleoso no piso. No caso da operação na área de abastecimento, a unidade abastecedora e os seus acessórios, como os bicos de abastecimento, devem estar corretamente especificados e em boas condições de uso, de forma que evitem o derramamento de produto.

No ambiente de troca de óleo lubrificante e de lubrificação, os cuidados devem partir do momento da retirada dos bujões do cárter, da caixa de marcha e transmissão, do recipiente do fluido de freio até a troca do filtro de óleo e da lubrificação dos pinos graxeiros, e devem ser realizados com precaução. No caso da área de descarga de produto, os cuidados devem iniciar com a correta especificação dos equipamentos, com a utilização da descarga selada, continuando com o perfeito acoplamento e desacoplamento da mangueira de descarga e com a devida manutenção da câmara de contenção da descarga de combustível (spill de descarga).

O sistema de drenagem oleosa (SDO) deve ser constituído por componentes para executar as funções de captação, separação, estocagem temporária de resíduos oleosos provenientes da operação do PRC/PA e a devida condução do efluente para a rede coletora, corpo receptor ou outro destino determinado pelo poder público. O SDO deve garantir a captação das águas oleosas provenientes das áreas onde existam equipamentos e atividades com possibilidade de geração de resíduos oleosos (ver figura abaixo). Eventuais resíduos oleosos provenientes da operação de descarga de combustíveis têm como captação as câmaras de contenção de descarga, conforme as NBR 13786 e NBR 13783.

Os casos de derrames acidentais não estão contemplados nesta norma. Os PRC/PA com lavagem de veículos devem possuir SDO independente das demais áreas. A área de abastecimento de veículos onde são realizadas operações utilizando água para a limpeza de vidros e partes da carroceria, e de reposição da água de reservatórios de veículos, deve ser dotada de canaletas em seu entorno, localizados internamente a 0,5 m da projeção da cobertura da área de abastecimento, quando houver.

O dimensionamento de canaletas para águas oleosas deve ser feito com seção suficiente para vazão de projeto Q3 ou Q4, conforme o Anexo A, considerando um fator de segurança de 1,5 para a vazão da canaleta, devendo a seção mínima ser de 60 mm × 60 mm. A pavimentação da área de abastecimento deve garantir caimento para as canaletas, limitando a captação a esta área, evitando contribuição das áreas externas. Quando for inevitável o caimento do piso das áreas externas para a área de abastecimento e/ou troca

de óleo devido à topografia do terreno, deve ser previsto uma canaleta independente para a captação das águas pluviais, evitando a contribuição de águas não oleosas para a CSAO (ver figura abaixo). As áreas de troca de óleo e de outros serviços automotivos com contribuição de resíduos oleosos devem ser dotadas de canaletas que captem as águas oleosas.

O uso da parte 3 da NBR 14605 pode envolver o emprego de materiais, operações e equipamentos perigosos, e esta norma não pretende tratar de todos os problemas de segurança associados com seu uso. É responsabilidade do usuário estabelecer as práticas de segurança, meio ambiente e saúde apropriados, e determinar a aplicabilidade de limitações regulamentadoras, antes de seu uso. Esta parte 3 não é aplicável se o afluente contiver uma liberação inesperada de contaminante oleoso que gere uma concentração na água oleosa maior que a prevista em projeto. Não é aplicável se o afluente for transferido por bombeamento.

Os dados produzidos na parte 3 são considerados válidos somente para as caixas separadoras de água e óleo ensaiadas. Entretanto, os resultados dos ensaios podem ser extrapolados para caixas separadoras de água e óleo menores ou maiores, desde que providos de uma geometria e dinâmica semelhantes. Quando a utilização da extrapolação não for aplicável, submeter a unidade ao ensaio.

A vazão utilizada para realização dos ensaios é a mesma vazão dada pelo fabricante para uma dada caixa separadora de água e óleo, a fim de determinar o máximo nível de contaminação no afluente relacionado com a concentração máxima permitida no efluente. O projeto deve contemplar o encaminhamento, o perfil, os equipamentos e o material utilizado para os sistemas pluvial e oleoso, a partir do leiaute de arquitetura do posto de serviço, ponto de abastecimento e demais serviços automotivos. O projeto deve estabelecer o diâmetro mínimo de 100 mm no sistema de condução de águas oleosas, para evitar o entupimento com contaminantes particulados.

O projeto deve contemplar a utilização de materiais plásticos para a condução das águas oleosas. O projeto deve prever dispositivos para separação e retenção de contaminantes particulados, conforme a NBR 14605-2. Estes dispositivos são integrados pelos seguintes componentes: caixa de areia; sistema de retenção de resíduos flutuantes. A localização dos dispositivos que integram o conjunto responsável pela remoção dos contaminantes particulados deve ser tal que o acesso a eles ocorra sem dificuldades e não sofra a interferência do trânsito de veículos.

REVISTA DIGITAL ADNORMAS – Edição 125 | Ano 3 | 24 SETEMBRO 2020

Acesse a versão online: https://revistaadnormas.com.br
Edição 125 | Ano 3 | 24 SETEMBRO 2020
ISSN: 2595-3362
Confira os artigos desta edição:

A segurança no armazenamento de recipientes de gás liquefeito de petróleo (GLP)

Saiba quais são os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. 

A NBR 15514 de 08/2020 – Recipientes transportáveis de gás liquefeito de petróleo (GLP) — Área de armazenamento — Requisitos de segurança estabelece os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. Não se aplica às bases de armazenamento, envasamento e distribuição de GLP, para as quais é aplicável a NBR 15186, e aos recipientes transportáveis de GLP quando em uso. A não ser que seja especificado de outra forma por regulamentação legal, os requisitos desta norma não são obrigatórios para as instalações que já existiam ou tiveram sua construção, instalação e ampliação aprovadas e executadas anteriormente à data de publicação desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o empilhamento de recipientes transportáveis de GLP?

Como deve ser feito o empilhamento de recipientes em paletes estruturados?

Que medidas devem ser tomadas em relação à máquina de vendas de recipientes transportáveis de GLP?

Quais são as características da área de armazenamento de apoio?

Os locais que armazenam, para consumo próprio, cinco ou menos recipientes transportáveis, com massa líquida de até 13 kg de GLP (cheios, parcialmente cheios ou vazios), ou carga equivalente em outro tipo de recipiente, devem atender aos seguintes requisitos: estar em local aberto com ventilação natural; estar afastado no mínimo 1,5 m de outros produtos inflamáveis, de fontes de calor, de faíscas, ralos, caixas de gordura e de esgotos, bem como de galerias subterrâneas e similares; não podem estar expostos ao público. As áreas de armazenamento de recipientes transportáveis de GLP devem ser classificadas pela capacidade de armazenamento, em quilogramas de GLP, conforme tabela abaixo.

A capacidade de armazenamento, em quilogramas de GLP, de uma área deve ser limitada pela soma da massa líquida total preestabelecida nos recipientes transportáveis. Quando a área de armazenamento estiver instalada em postos revendedores de combustíveis líquidos-PR, ela deve ser limitada a uma única área, classe I ou II. O lote de recipientes transportáveis de GLP pode armazenar até 6.240 kg, em botijões ou cilindros, (novos, cheios, parcialmente cheios e vazios).

O local de assento dos recipientes transportáveis de GLP deve ter ventilação natural, piso plano pavimentado com superfície que suporte carga e descarga, podendo ter inclinação desde que não comprometa a estabilidade do empilhamento máximo estabelecido na Tabela 3, disponível na norma. O local de assento dos lotes pode ser localizado ao nível do solo ou plataforma elevada. As áreas de armazenamento de classe III ou superiores devem possuir corredores de circulação com no mínimo 1,0 m de largura, entre os lotes de recipientes e ao redor destes.

A plataforma elevada destinada a áreas de armazenamento de recipientes transportáveis de GLP, quando existente, deve ser construída com materiais incombustíveis e possuir ventilação natural de forma a evitar o acúmulo de gás. O corredor de circulação pode ter inclinação, podendo estar em nível diferente do local de assentamento dos lotes desde que não ultrapasse a diferença máxima de 0,2 m, conforme Figura A.1, disponível na norma. A área ou corredor de circulação pode estar situado em outro nível diferente do assentamento dos recipientes, desde que a diferença de altura não ultrapasse 0,2 m, conforme Figura A.2, disponível na norma.

Uma mesma área de armazenamento pode possuir lotes em diferentes níveis de altura. Caso uma área esteja 0,2 m acima das demais ou do solo, essa deve possuir corredor de circulação, conforme Figura A.3, disponível na norma. A delimitação da área de armazenamento deve ser através de pintura ou demarcação de material incombustível no piso ou por meio de cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível, para assegurar ampla ventilação.

Para as áreas de armazenamento de classe III e superiores, também deve ser demarcado o piso para o local do (s) lote (s) de recipientes. A área de armazenamento, quando coberta, deve ter no mínimo 2,6 m de altura não sendo permitido o cercamento total do limite da área de armazenamento por paredes, permitindo-se, entretanto, sua delimitação por no máximo duas paredes. A estrutura e a cobertura devem ser construídas com produto incombustível e fora da projeção da edificação, tendo a cobertura menor resistência mecânica do que a estrutura que a suporta.

Quando a delimitação da área de armazenamento é feita por paredes, estas devem estar posicionadas a no mínimo 1,0 m do limite do lote, não podendo ter cobertura e atendendo aos distanciamentos de segurança da respectiva classe. Quando a área de armazenamento for delimitada por paredes ou cercas deve possuir acesso através de uma ou mais aberturas (portões) de no mínimo 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos.

Quando o imóvel não for delimitado por muros, cercas ou outros materiais, as áreas de armazenamento de qualquer classe devem ser delimitadas por cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível. O imóvel que contenha qualquer classe de área de armazenamento deve possuir no mínimo uma abertura (portão), com dimensões mínimas de 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos, para permitir a evasão de pessoas em caso de emergência. Adicionalmente, o imóvel pode possuir outros acessos com dimensões quaisquer e com qualquer tipo de abertura.

Não é permitida a armazenagem de outros materiais e equipamentos na área de armazenamento dos recipientes transportáveis de GLP, excetuando-se aqueles exigidos pela legislação vigente, como: balança, material para teste de vazamento, extintor(es) e placa(s), e outros destinados à operação de carga e descarga, como: carrinho de transporte, rampa metálica, incluindo as disposições de 4.9 e 4.10. Os recipientes transportáveis de GLP devem estar dentro da área de armazenamento, com exceção do estabelecido em 7.2 e dos recipientes carregados em veículos previsto na Seção 8.

Os recipientes transportáveis de GLP que apresentem defeitos ou vazamentos devem ser identificados e organizados separadamente dentro da área de armazenamento. As operações de carga e descarga de recipientes transportáveis de GLP devem ser realizadas com cuidado, evitando-se impacto no solo ou na plataforma elevada, para que não sejam danificados. Não é permitida a circulação de pessoas não autorizadas na área de armazenamento.

O muro do limite do imóvel deve ser construído com material resistente ao fogo (TRRF 60 minutos), com altura mínima 1,8 m, sem aberturas, com comprimento mínimo de 1,0 m excedente da (s) extremidade (s) do lote. Os muros internos ao imóvel não podem ser considerados como limite de propriedade. A área de armazenamento deve ser mantida limpa, livre, e os lotes afastados 1,5 m de acumulações de materiais de fácil combustão.

Deve ser observada a distância mínima de 3,0 m contados a partir dos limites do lote até onde existam reservatórios de líquidos inflamáveis cujo volume seja superior a 50 L, exceto tanque de combustível de veículos. As tolerâncias dimensionais desta norma admitem um desvio de até 0,1 m para menos. O (s) lote (s) de recipientes devem estar a 1,0 m no mínimo de qualquer parede, exceto na condição prevista em 7.2.

As distâncias mínimas de segurança definidas na Tabela 4 (disponível na norma) podem ser reduzidas pela metade com a construção de paredes resistentes ao fogo, desde que observado o estabelecido na Seção 9. Na entrada do imóvel deve ser exibida placa que indique no mínimo a (s) classe (s) de armazenamento existente (s) e a capacidade de armazenamento de GLP, em quilogramas, de cada classe. Exibir as placa (s) em locais visíveis, a uma altura de mínimo 1,8 m, medida do piso acabado à base da placa, distribuída (s) ao longo do perímetro da(s) área(s) de armazenamento, com os seguintes dizeres: PERIGO – INFLAMÁVEL; PROIBIDO O USO DE FOGO OU DE QUALQUER INSTRUMENTO QUE PRODUZA FAÍSCA.

As quantidades mínimas de placas a serem exibidas são as seguintes: classes I e II – uma placa; classes III e superiores – duas placas. As dimensões das placas devem permitir a visualização e a identificação da sinalização a uma distância mínima de 3,0 m. Os afastamentos entre placas de mesmo dizeres devem ter entre si no máximo 15,0 m. A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura.

O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.4.8.1 A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura. O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.

A performance dos calibradores de nível sonoro

Saiba como é o desempenho para três classes de calibradores de nível sonoro: classe LS (Padrão de Laboratório), classe 1 e classe 2. Limites de aceitação são menores para instrumentos de classe LS e maiores para os de classe 2. 

A NBR IEC 60942 de 08/2020 – Eletroacústica — Calibradores de nível sonoro especifica os requisitos de desempenho para três classes de calibradores de nível sonoro: classe LS (Padrão de Laboratório), classe 1 e classe 2. Limites de aceitação são menores para instrumentos de classe LS e maiores para os de classe 2. Os calibradores de nível sonoro de classe LS são normalmente utilizados apenas em laboratório; calibradores de nível sonoro de classe 1 e de classe 2 são considerados calibradores de nível sonoro para uso em campo. Um calibrador de nível sonoro de classe 1 é principalmente destinado à utilização com um sonômetro de classe 1 e um calibrador de nível sonoro de classe 2 é principalmente destinado à utilização com um sonômetro de classe 2, como especificado na IEC 61672-1.

Os limites de aceitação para calibradores de nível sonoro de classe LS são baseados na utilização de um microfone padrão de laboratório, como especificado na IEC 61094-1, para demonstrações de conformidade aos requisitos deste documento. Os limites de aceitação para calibradores de nível sonoro de classe 1 e classe 2 são baseados na utilização de um microfone padrão de trabalho, como especificado na IEC 61094-4, para demonstrações de conformidade aos requisitos deste documento.

Para promover a consistência de teste de calibradores de nível sonoro e facilidade de uso, este documento contém três anexos normativos – Anexo A “Testes de aprovação de modelo”, Anexo B “Testes periódicos”, Anexo C “Relatório de aprovação de modelo”, e dois anexos informativos – Anexo D “Relação entre intervalo de tolerância, intervalo de aceitação e a máxima incerteza de medição permitida correspondentes” e Anexo E “Exemplos de avaliações da conformidade às especificações deste documento”.

Este documento não inclui requisitos para equivalência a níveis de pressão sonora em campo livre ou em incidência aleatória, como aqueles que podem ser usados no ajuste global de sensibilidade de um sonômetro. Um calibrador de nível sonoro pode fornecer outras funções, por exemplo, pulsos tonais. Os requisitos para essas outras funções não estão incluídos neste documento.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os limites de aceitação para nível de pressão sonora e flutuação de nível de curta duração, nas condições ambientais de referência e em torno delas?

Quais são os limites de aceitação para frequência nas condições ambientais e em torno delas?

Qual é a máxima distorção total + ruído?

Quais são os limites das descargas eletrostáticas para os calibradores?

O calibrador de nível sonoro é um dispositivo que gera uma pressão sonora senoidal de frequência e nível de pressão sonora especificados, quando acoplados a modelos especificados de microfone em configurações especificadas. O pistonfone é um calibrador de nível sonoro no qual a pressão sonora é gerada pelo movimento de um ou mais pistões em um volume constante de ar, criando uma velocidade volumétrica bem definida. Os calibradores de nível sonoro são projetados para produzir um ou mais níveis de pressão sonora conhecidos em uma ou mais frequências especificadas, quando acoplados a modelos especificados de microfone em configurações especificadas, por exemplo, com ou sem grade de proteção.

O nível de pressão sonora gerado por alguns calibradores de nível sonoro depende da pressão estática. Os calibradores de nível sonoro têm duas aplicações principais: a determinação da sensibilidade à pressão eletroacústica de modelos especificados de microfone em configurações especificadas; e a verificação ou ajuste da sensibilidade global dos dispositivos ou sistemas de medição acústica. As condições ambientais de referência para especificar o desempenho de um calibrador de nível sonoro são: temperatura do ar 23 °C; pressão estática do ar 101,325 kPa; umidade relativa 50 %.

Um calibrador de nível sonoro em conformidade com os requisitos deste documento deve ter as características descritas na Seção 5. Os adaptadores podem ser fornecidos para acoplar mais de um modelo de microfone. Para efeitos deste documento, qualquer adaptador é uma parte integrante do calibrador de nível sonoro. O calibrador de nível sonoro deve cumprir com os requisitos deste documento para uma ou mais combinações disponíveis de nível de pressão sonora e frequência.

Um calibrador de nível sonoro multinível e multifrequência deve estar em conformidade com os requisitos para a mesma designação de classe para todas as combinações de nível de pressão sonora e frequência para as quais o manual de instruções declara que o instrumento está em conformidade com os requisitos deste documento. A conformidade com os requisitos deste documento não pode ser declarada para configurações de nível de pressão sonora e frequência para as quais este documento não fornece limites de aceitação.

Ao longo deste documento, onde é feita referência a uma classe específica de calibrador de nível sonoro, todas as designações sob essa classe são incluídas, a menos que indicado de outra forma. Os calibradores de nível sonoro de classe LS devem ser fornecidos com um certificado de calibração individual contendo as informações requeridas em 6.2. Para calibradores de nível sonoro de classe 1 e de classe 2, os níveis de pressão sonora especificados e as frequências especificadas devem ser fornecidas no manual de instruções. Cada nível especificado deve ser definido em termos de um nível absoluto.

Os pistonfones de classe LS e de classe 1 que requerem correções para influência da pressão estática para cumprirem com as especificações para a classe apropriada devem ter a letra “M” adicionada à sua designação de classe. As classes e designações permitidas estão descritas na tabela abaixo. Os calibradores de nível sonoro designados como de classe LS/M e de classe 1/M não podem requerer correções para quaisquer das outras condições ambientais para alcançar os requisitos especificados para a classe apropriada.

Para calibradores de nível sonoro de classe LS/M e classe 1/M, as correções de pressão estática, necessárias para que o calibrador de nível sonoro esteja em conformidade com os requisitos deste documento, devem ser declaradas no manual de instruções, juntamente com as incertezas de medição correspondentes a uma probabilidade de abrangência de 95%. Os calibradores de nível sonoro designados como de classe LS/M também podem reivindicar conformidade com os requisitos para um calibrador de nível sonoro designado como de classe 1/M, se atenderem completamente às especificações descritas neste documento para ambas as classes de calibrador de nível sonoro.

Os calibradores de nível sonoro, além daqueles designados como classe LS/M ou classe 1/M, não podem requerer correções para qualquer condição ambiental para que estejam em conformidade com os requisitos da classe aplicável. Os calibradores de nível sonoro designados como classe LS/M e classe 1/M devem ser fornecidos com um barômetro, ou o fabricante deve declarar as especificações no manual de instruções para qualquer barômetro a ser usado.

Uma declaração deve ser incluída no manual de instruções, fornecendo a incerteza da medição da pressão estática requerida, para uma probabilidade de abrangência de 95%, para que a capacidade de um calibrador de nível sonoro classe LS/M ou classe 1/M não seja afetada e esteja em conformidade com os requisitos para a classe aplicável. Um calibrador de nível sonoro classe LS/M é normalmente utilizado apenas em laboratório, onde entende-se que um dispositivo adequado esteja disponível para medir a pressão estática.

Alguns barômetros fornecem os dados diretamente na forma a ser utilizada para corrigir os níveis de pressão sonora medidos para a pressão estática de referência. Se uma orientação específica do calibrador de nível sonoro for para ser utilizada para estar em conformidade com os requisitos deste documento, esta orientação deve ser indicada no calibrador de nível sonoro ou a indicação no calibrador de nível sonoro deve referir-se ao manual de instruções, que deve indicar a orientação necessária.

Todos os requisitos de desempenho referem-se ao funcionamento do calibrador de nível sonoro após a estabilização do acoplamento do microfone e do calibrador de nível sonoro, e após o nível de pressão sonora e a frequência terem estabilizado. O tempo necessário para estabilizar o nível de pressão sonora e a frequência, que começa quando o calibrador de nível sonoro é ligado com o microfone acoplado a ele, deve ser indicado no manual de instruções e não pode exceder 30 s para qualquer combinação aplicável de condições ambientais especificadas em 5.5.

Quando esse tempo de estabilização exceder 10 s, um indicador deve ser fornecido para mostrar quando a saída do calibrador de nível sonoro estiver estabilizada. Informações sobre o funcionamento deste indicador devem ser fornecidas no manual de instruções. Se os testes descritos no Anexo A requererem que o calibrador de nível sonoro opere por mais tempo do que o tempo normal de operação, o fabricante deve fornecer informações no manual de instruções para descrever como isso pode ser alcançado.

Aqueles componentes de um calibrador de nível sonoro que não se destinam a ser acessíveis ao usuário devem ser protegidos por marcações ou por um mecanismo que torne esses componentes inacessíveis. Em 5.3 a 5.9, os limites de aceitação são fornecidos para valores permitidos de desvios medidos a partir das metas de projeto. Para laboratórios, as máximas incertezas de medição permitidas para uma probabilidade de abrangência de 95% são apresentadas no Anexo A.

O Anexo D descreve a relação entre o intervalo de tolerância, o intervalo de aceitação e a máxima incerteza de medição permitida correspondentes. Os limites de aceitação fornecidos para calibradores de nível sonoro classe LS também se aplicam aos calibradores de nível sonoro designados como classe LS/M. Os limites de aceitação fornecidos para os calibradores de nível sonoro classe 1 também se aplicam aos calibradores de nível sonoro designados como classe 1/M.

A conformidade com uma especificação de desempenho é demonstrada quando os seguintes critérios forem satisfeitos: os desvios medidos a partir das metas de projeto não excederem o limite de aceitação aplicável e a incerteza de medição correspondente não exceder a máxima incerteza de medição permitida correspondente dada no Anexo A para uma probabilidade de abrangência de 95%. Se a incerteza de uma medição realizada pelo laboratório, calculada para uma probabilidade de abrangência de 95 %, exceder o valor máximo permitido dado no Anexo A, a medição não pode ser usada para demonstrar a conformidade com os requisitos deste documento.

O Anexo E fornece exemplos de avaliação de conformidade com as especificações deste documento. A total conformidade com este documento só é demonstrada quando o modelo de calibrador de nível sonoro tiver demonstração de conformidade com os requisitos deste documento para aprovação de modelo, quando testado de acordo com o Anexo A, e uma amostra individual de calibrador de nível sonoro tiver demonstração de conformidade com os requisitos deste documento para testes periódicos, quando testado de acordo com o Anexo B.

O manual de instruções do calibrador de nível sonoro pode fornecer informações para permitir o projeto de adaptadores para serem utilizados com o calibrador de nível sonoro. Esses dados de projeto devem incluir todas as informações necessárias para criar um adaptador que possa ser utilizado com o calibrador de nível sonoro especificado de uma maneira que mantenha o desempenho da classe especificada.

Quando esses dados de projeto são fornecidos, o manual de instruções deve especificar a distância de inserção e o diâmetro mínimo do microfone no qual a vedação ocorrerá. Todos os níveis de pressão sonora especificados devem ser declarados no manual de instruções com uma resolução melhor ou igual a 0,1 dB. Todos os requisitos e limites de aceitação especificados neste documento estão relacionados ao nível da pressão sonora produzida no diafragma do microfone inserido.

O nível de pressão sonora principal do calibrador de nível sonoro deve ser de no mínimo 90 dB e 20 μPa, quando o calibrador de nível sonoro for aplicado aos modelos de microfone nas configurações especificadas no manual de instruções. O valor absoluto da diferença entre um nível de pressão sonora medido e o nível de pressão sonora especificado correspondente não pode exceder os limites de aceitação indicados na Tabela 2 (disponível na norma) para a classe do calibrador de nível sonoro. Para calibradores de nível sonoro com designação de classe LS/M ou 1/M, o nível medido deve ser corrigido para pressão estática, se necessário, para a pressão estática do ar de referência dada na Seção 4.

Estes limites de aceitação se aplicam a medições feitas em condições ambientais de referência dentro das seguintes faixas: de 97 kPa a 105 kPa, de 20 °C a 26 °C e de 40% a 65% de umidade relativa do ar. A flutuação do nível de pressão sonora deve ser medida utilizando a ponderação temporal F (constante de tempo nominal de 125 ms, conforme especificado na IEC 61672-1), pela determinação da média e dos níveis máximo e mínimo gerados durante um período de 60 s de operação do calibrador de nível sonoro, amostrando pelo menos 30 vezes. O valor absoluto da diferença entre cada um dos níveis máximo e mínimo medidos e o valor médio não podem exceder, cada um, os limites de aceitação de flutuação do nível de curta duração indicados na Tabela 2 para a classe do calibrador de nível sonoro.

Estes limites de aceitação de flutuação de nível de curta duração aplicam-se às medições feitas nas condições ambientais de referência, e em condições próximas, dentro dos intervalos especificados em 5.3.2. Quando um calibrador de nível sonoro é operado por um período maior que 60 s, por exemplo, ao medir o desempenho de outros instrumentos, como sonômetros, é necessário estabelecer a flutuação de nível durante o período de tempo mais longo.

Nenhuma especificação é fornecida neste documento para um período maior de tempo de operação. Em frequências mais baixas, mesmo para um sinal estável, uma flutuação de nível de curta duração maior que zero será indicada pelo método de medição especificado. Isso é causado pela variação na pressão sonora instantânea e pela média de tempo limitado pela ponderação temporal F especificada. Os limites de aceitação para a flutuação de nível de curta duração são aumentados em frequências mais baixas para permitir esse fenômeno.

As competências dos especialistas em gestão da energia

Saiba quais são as recomendações de competências esperadas de especialistas em implementação do sistema de gestão da energia (SGE) por meio da aplicação da NBR ISO 50001:2018. 

A NBR 16883 de 06/2020 – Sistema de gestão da energia — Diretrizes para seleção de especialistas em implementação da NBR ISO 50001 estabelece as recomendações de competências esperadas de especialistas em implementação do sistema de gestão da energia (SGE) por meio da aplicação da NBR ISO 50001:2018. Esta norma aplica-se às pessoas que trabalham como especialistas em implementação do SGE em qualquer tipo de organização, independentemente do seu tamanho, tipo, localização e nível de maturidade. Tem caráter orientativo, para que as organizações selecionem os especialistas em implementação de SGE, cabendo às organizações decidirem se é desejável ou não a sua aplicação integral ou parcial, de acordo com as suas diretrizes internas.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como podem ser definidas a competência e a compreensão?

Qual seria o conceito de competência para o especialista?

Quais os conhecimentos e habilidades específicas que o especialista deve ter?

Por que o especialista em implementação de SGE deve entender dos usos da energia?

Vários princípios podem ser aplicados à atuação do especialista em implementação do SGE. O atendimento a estes princípios contribui para a eficácia e consistência do trabalho do implementador de sistemas de gestão da energia. A implementação do sistema de gestão da energia é antecedida pelo estabelecimento de um termo de confidencialidade relacionado à divulgação, manutenção e distribuição dos dados com os quais o especialista entrará em contato durante o serviço, conforme aplicável. A confidencialidade visa a proteger a organização da utilização não autorizada destes dados pelo especialista para interesses pessoais ou de terceiros, ou para prejudicar a organização.

Tendo a anuência da organização, o especialista pode usar os dados desta, de forma anônima, para, por exemplo, complementar bases de dados públicas. Convém que o especialista aja de maneira independente e imparcial para identificar com objetividade potenciais conflitos de interesse. Convém que o especialista esteja preparado para executar o serviço, de modo que todos os aspectos da implementação sejam transparentes, ao menos para a organização onde o SGE estiver sendo implementado.

Recomenda-se solicitar referências dos potenciais especialistas em implementação de SGE aos clientes ou empregadores anteriores. Recomendações sobre papéis e responsabilidades potencialmente assumidos pelo contratante do serviço e pelo especialista em implementação de SGE são apresentadas na tabela abaixo.

Além disso, a segurança e a confiança no processo de implementação de um SGE dependem da competência de quem lidera o processo. Esta competência pode ser verificada pela observação dos seguintes pontos: atributos pessoais; capacidade para aplicar conhecimentos e habilidades, adquiridos pela formação, experiência profissional, treinamento em sistema de gestão da energia e experiência na implementação de sistemas de gestão da energia. Convém que os especialistas em implementação de SGE desenvolvam, mantenham e aperfeiçoem as suas competências por meio de um contínuo desenvolvimento profissional e participação regular em processos de implementação, manutenção e melhoria de SGE.

Convém que um especialista em implementação de SGE possua as seguintes características: disposição a considerar ideias e pontos de vista alternativos; diplomacia, assertividade e respeito nas relações com as pessoas; perceptividade, atenção às pessoas e processos ocorrendo ao seu redor; versatilidade e adaptabilidade a diferentes situações; tenacidade, persistência e foco em alcançar objetivos; segurança e capacidade de trabalhar e atuar de forma independente e de interagir de forma eficaz com os outros profissionais; liderança na condução de processos e proatividade. Convém que os especialistas em implementação de SGE demonstrem conhecimentos e habilidades nas seguintes áreas: princípios, procedimentos e técnicas de implementação de sistemas de gestão, que o permitam executar a implementação de forma consistente e sistemática.

Convém que o especialista em implementação de SGE seja capaz de aplicar os seus conhecimentos em princípios, requisitos, procedimentos e técnicas para implementar um sistema de gestão; planejar e organizar com eficácia o seu trabalho; liderar as atividades e conduzir os membros da organização ao alcance dos resultados planejados; prever e solucionar conflitos; realizar a implementação de sistemas de gestão segundo o programa acordado; coletar informações por meio de entrevistas eficazes, escutar, observar e analisar criticamente documentos, registros e dados; compreender a conveniência e as consequências de usar técnicas de amostragem para monitorar a implementação; confirmar a suficiência e conveniência das evidências da implementação para apoiar os resultados e conclusões de seu trabalho; avaliar os fatores que podem afetar a confiabilidade dos resultados e as conclusões da implementação; desenvolver os documentos de trabalho para o planejamento das atividades de implementação; preparar informes dos avanços e progressos da implementação; manter a confidencialidade; comunicar-se eficazmente por meio das habilidades linguísticas pessoais ou de um intérprete; sistema de gestão documental de referência, que o permita compreender o alcance do trabalho de implementação do SGE.

Convém que os conhecimentos e habilidades nesta área incluam a aplicação de sistemas de gestão da energia para diferentes organizações; a interação entre os componentes do sistema de gestão da energia; as normas de sistemas de gestão, procedimentos aplicáveis e outros documentos do sistema de gestão usados como critério para a implementação; o reconhecimento de diferenças e prioridades entre os documentos de referência; a aplicação de documentos de referência em diferentes situações; os sistemas de informação e tecnologia para autorização, segurança, distribuição e controle de documentos, dados e registros; as situações organizacionais que permitam compreender o contexto operacional da organização.

Convém que o conhecimento e as habilidades nesta área incluam: o tamanho organizacional, estrutura, funções e relações; o processo hierárquico de negócio e terminologia relacionada; os costumes culturais e sociais da organização em que será realizada a implementação. Os costumes culturais e sociais da organização são normalmente de conhecimento dos especialistas da própria organização. No caso de especialistas externos à organização, está alínea pode ser excluída ou adaptada, tornando-se mais genérica.

Deve entender de leis, regulamentos e outros requisitos aplicáveis à organização. Convém que os conhecimentos e habilidades nesta área incluam: os códigos locais, regionais e nacionais, leis e regulamentos, particularmente os aplicáveis aos aspectos energéticos; os contratos e acordos; as leis e as normas relativas à segurança do trabalho; os tratados e convênios internacionais; outros requisitos legais.

O alívio normal e emergencial de vapores em tanques de armazenamento

Saiba quais são os requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão.

A NBR ISO 28300 de 06/2020 – Indústrias de petróleo, petroquímica e gás natural — Alívio de tanques de armazenamento atmosféricos e de baixa pressão trata dos requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão. Nesta norma são discutidas as causas de sobrepressão e vácuo; determinação de requisitos de alívio; tipos de alívio; seleção e instalação de dispositivos de alívio; e ensaios e marcação de dispositivos de alívio. Esta norma considera tanques contendo petróleo e seus derivados, mas pode também ser aplicados aos tanques contendo outros líquidos. Entretanto, é necessário utilizar uma análise de engenharia e uma avaliação técnica adequadas quando se aplicar esta norma a outros líquidos. Não se aplica aos tanques de teto flutuante externo.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os requisitos de alívio para aspiração?

Qual é o fator de redução para tanques com isolamento?

Quais os requisitos de alívio em presença de fogo?

Qual é a capacidade de alívio?

Esta norma foi elaborada a partir da 5ª edição da API 2000 e da EN 14015:2005, com a intenção de que a 6ª edição da API 2000 seja idêntica a esta norma. Foi desenvolvida a partir de conhecimentos acumulados e da experiência de engenheiros qualificados em indústrias de óleo, petróleo, petroquímica, química e de armazenamento de líquido a granel. Estudos de engenharia de um tanque particular podem indicar uma capacidade apropriada de alívio que não esteja de acordo com a capacidade estimada de alívio determinada por esta norma.

As muitas variáveis associadas aos requisitos de alívio para o tanque podem tornar impraticável a definição de regras simples que são aplicáveis a todos os locais e condições. Onde for aplicável nesta norma, as unidades de medidas inglesas (USC) são incluídas para informação entre parênteses ou em tabelas separadas. Para determinação das possíveis causas de sobrepressão e vácuo em um tanque, considerar o seguinte: movimento de enchimento e esvaziamento de líquido do tanque; respiração (aspiração e expiração) do tanque devido a mudanças climáticas (por exemplo, mudanças de pressão e temperatura); exposição ao fogo; outras circunstâncias resultantes de falhas de equipamento e erros operacionais.

Existem outras circunstâncias que convém que sejam consideradas, mas não foram incluídas nesta norma. O processo de enchimento e esvaziamento de um tanque pode ser por bombeamento, gravidade ou diferença de pressão. O vácuo pode resultar do esvaziamento do tanque. A sobrepressão pode resultar do enchimento do tanque e da vaporização normal ou instantânea do líquido. A vaporização instantânea pode ser significativa para líquidos próximos ou acima do seu ponto de ebulição na pressão do tanque.

O vácuo pode resultar da contração ou condensação de vapores causada pela diminuição da temperatura atmosférica ou outras mudanças climáticas, como mudanças de vento, precipitação atmosférica, etc. Sobrepressão pode resultar da expansão ou vaporização causada pelo aumento da temperatura atmosférica ou outras mudanças climáticas. A sobrepressão pode resultar da expansão dos vapores ou da vaporização do líquido que ocorre quando o tanque absorve calor do fogo externo.

Quando as possíveis causas de sobrepressão ou vácuo no tanque estiverem sendo determinadas, devem ser consideradas e avaliadas outras circunstâncias resultantes de falhas de equipamentos ou erros operacionais. Os métodos de cálculos para estas circunstâncias não estão previstos nesta norma. A transferência de líquido desde outros vasos, caminhões-tanque e carros-tanque pode ser auxiliada ou realizada inteiramente pela pressurização destes com um gás, mas o tanque de recepção pode encontrar uma oscilação de fluxo ao final da transferência, devido à passagem do gás/vapor.

Dependendo da pressão preexistente e do espaço livre no tanque de recepção, o volume de gás/vapor adicional pode ser suficiente para exercer pressão excessiva neste tanque. A ação de controle é garantir o enchimento até um nível máximo, de modo que reste pouco espaço dentro do tanque, para não absorver a oscilação de pressão. Colchões de inertização e purgas são utilizados nos tanques para proteger o seu conteúdo contra contaminação, manter atmosferas não inflamáveis e reduzir a inflamabilidade destes vapores aliviados do tanque.

Um sistema de inertização e purga normalmente tem um regulador de alimentação e de contrapressão para manter a pressão interna do tanque dentro de uma faixa operacional estreita. A falha deste regulador pode resultar em fluxo de gás descontrolado para o tanque e, subsequentemente, pressão excessiva no tanque, redução do fluxo de gás ou perda total do fluxo de gás. A falha fechada do regulador de contrapressão pode resultar em bloqueio da saída e sobrepressão.

Se o regulador de contrapressão estiver conectado a um sistema de recuperação do vapor, a sua falha aberta pode resultar em vácuo. Vapor, água quente e óleo quente são meios comuns de aquecimento para tanques que contêm substâncias que precisam ser mantidas a temperaturas elevadas. A falha de uma válvula de controle de suprimento de calor para o tanque, do elemento sensor de temperatura ou do sistema de controle pode resultar em aumento de aquecimento no tanque. A vaporização do líquido estocado pode resultar na sobrepressão do tanque.

Tanques aquecidos que contenham duas fases de líquido apresentam possibilidade de uma vaporização rápida, se a fase inferior for aquecida até a temperatura onde a sua densidade torna-se inferior à densidade do líquido superior. Estas condições devem ser evitadas na especificação do projeto e nos procedimentos operacionais. Se o tanque mantido em elevadas temperaturas estiver vazio, isso pode resultar em uma vaporização excessiva na alimentação do tanque.

Se o sistema de controle de temperatura do tanque estiver funcionando com o sensor de temperatura exposto ao vapor, o meio usado no aquecimento do tanque pode circular com uma vazão máxima, elevando até a máxima temperatura da parede do tanque. Enchimento do tanque sob estas condições pode resultar em uma vaporização excessiva durante a alimentação deste. A vaporização excessiva da alimentação é interrompida tão logo as paredes do tanque sejam esfriadas e com o nível do líquido cobrindo o sensor de temperatura.

Para tanques com camisas de resfriamento ou serpentinas, deve ser considerada a vaporização líquida como resultado da perda do fluxo de meio resfriador deste. A falha mecânica de um dispositivo interno de aquecimento ou resfriamento do tanque pode expor o conteúdo do tanque ao meio de aquecimento ou de resfriamento usado no dispositivo. Para tanques de baixa pressão, pode-se assumir que a direção de fluxo do meio de transferência de calor esteja dentro do tanque quando houver falha do dispositivo.

Deve-se considerar a compatibilidade química entre o conteúdo do tanque e o meio de transferência de calor. Pode ser necessário haver alívio do meio de transferência de calor (por exemplo, vapor). A falha do sistema de coleta de alívio deve ser avaliada quando o vapor de um tanque for coletado para tratamento ou direcionado para um sistema de tratamento de alívio. Falhas afetando a segurança de um tanque podem incluir o desenvolvimento de contrapressões a partir de problemas na tubulação [selo líquido (liquid-filled pockets) e crescimento de sólidos], outro equipamento de alívio ou alívio para o tubo de comunicação (header) ou bloqueio devido à falha do equipamento.

Quando apropriado, pode ser usado um dispositivo de alívio de emergência com ajuste de pressão maior que o sistema de tratamento de alívio, aliviando para a atmosfera. Falhas de energia local, da fábrica e utilidades devem ser consideradas possíveis causas de sobrepressão e formação de vácuo. A perda de energia elétrica afeta diretamente qualquer válvula motorizada ou controles, e pode também interromper o suprimento de ar de instrumento. Durante este tipo de falha elétrica pode haver também a perda de fluidos de aquecimento e resfriamento.

A mudança de temperatura no fluido de alimentação do tanque devido à perda de resfriamento ou aumento de aquecimento pode causar sobrepressão neste tanque. Fluido de alimentação à temperatura baixa pode resultar em condensação de vapor e contração, causando vácuo. Os conteúdos de alguns tanques podem estar submetidos a reações químicas que podem gerar calor e/ou vapores.

Alguns exemplos de reações químicas incluem a alimentação inadvertida de água em tanques contendo ácidos e/ou ácidos usados, gerando vapor e/ou vaporização de hidrocarbonetos leves; reações fora de controle em tanques contendo hidroperóxido de cumeno, etc. Em alguns casos pode haver formação de espuma, causando alívio de dupla fase. Para avaliar estes casos, pode ser usada a tecnologia disponível no Design Institute for Emergency Relief Systems (DIERS) do grupo de usuários do American Institute of Chemical Engineers (AICHE) ou do grupo europeu do DIERS.

Para informação sobre proteção para evitar o transbordo de líquido, ver as API 2510, API RP 2350 e EN 13616. A prevenção contra o transbordo de líquido do tanque é efetuada pela salvaguarda de instrumentos e/ou por ações efetivas de intervenção do operador. Um aumento ou queda da pressão barométrica pode causar vácuo ou sobrepressão em um tanque. Esta situação deve ser considerada para tanques de estocagem refrigerados.

O efeito de falha aberta ou fechada de uma válvula de controle deve ser considerado para determinar o valor de pressão ou vácuo devido ao desbalanceamento de massa e/ou de energia. Por exemplo, a falha de uma válvula de controle na linha de líquido para um tanque deve ser considerada, porque pode sobrecarregar o equipamento de troca térmica, resultando na admissão, para dentro do tanque, de material em alta temperatura. A falha de uma válvula de controle também pode causar a queda do nível de líquido abaixo do bocal de saída do vaso pressurizado, permitindo a entrada de vapor em alta pressão neste tanque.

Se um tanque não isolado termicamente for preenchido com vapor, a taxa de condensação devido ao resfriamento ambiental pode exceder as taxas de alívio especificadas nesta norma. O uso de grandes aberturas (boca de visita aberta), o controle da taxa de resfriamento ou a injeção de gás não-condensável, como ar ou nitrogênio, são procedimentos frequentemente necessários para evitar a formação de vácuo interno excessivo. Tanques não isolados termicamente com espaços de vapores excepcionalmente quentes podem, durante uma tempestade, exceder os requisitos de aspiração térmica previstos nesta norma.

A contração de vapor pode causar um vácuo excessivo no tanque. Recomenda-se, para tanques aquecidos não isolados, com temperatura de espaço-vapor superior a 48,9°C (120°F), que seja realizada uma análise crítica de engenharia. Os conteúdos dos tanques podem ignitar, produzindo uma deflagração interna com sobrepressões que podem se desenvolver muito rapidamente, além da capacidade dos dispositivos de alívio. Para alívio de explosão, ver NFPA 68 e EN 13237. Para inertização, ver Anexo F.

A alimentação de produtos mais voláteis, do que aqueles normalmente armazenados, pode ser possível devido a distúrbios no processo a montante ou por erro humano. Isso pode resultar em sobrepressão. É necessário quantificar os requisitos de alívio para excesso de pressão ou vácuo produzido por qualquer causa aplicável, como apresentado para estabelecer as bases de projeto para o dimensionamento dos dispositivos de alívio ou quaisquer outros meios de proteção adequada.

Para auxiliar a quantificação, esta norma apresenta orientação para o cálculo detalhado referente às seguintes condições normalmente encontradas: aspiração normal resultante da máxima vazão de descarga do tanque (efeitos de transferência de líquido); aspiração normal resultante da contração ou condensação de vapores, causada pela máxima diminuição de temperatura do espaço-vapor (efeitos térmicos); expiração normal resultante da máxima vazão de entrada de líquido no tanque e máxima vaporização causada por tal entrada de líquido (efeitos de transferência de líquido); expiração normal resultante da expansão do vapor e vaporização do líquido causada pelo máximo aumento de temperatura do espaço-vapor (efeitos térmicos); alívios de emergência resultantes de exposição ao fogo externo.

Ao determinar os requisitos de alívio, deve ser considerado como base de projeto, o requisito da maior ocorrência individual ou qualquer combinação razoável e provável de ocorrências. No mínimo, deve ser considerada a combinação dos efeitos térmicos e de transferência de líquido para determinar a vazão de aspiração ou de expiração normal total. Exceto no caso de tanques de armazenamento refrigerados, é prática comum considerar somente a aspiração normal total para determinação dos requisitos necessários de alívio.

Isto é, cargas de aspiração devido a outras circunstâncias descritas são geralmente consideradas não coincidentes com a aspiração normal. Isto é considerado uma aproximação razoável, porque a aspiração térmica é uma condição severa e de curta duração. Para expiração total, considerar os cenários descritos e determinar se estes são coincidentes com os fluxos de expiração normal.