A sustentabilidade no Antropoceno

A solidão do Homo sapiens sapiens

homo_sapiens_sapiens

Hayrton Rodrigues do Prado Filho, jornalista profissional registrado no Ministério do Trabalho e Previdência Social sob o nº 12.113 e no Sindicato dos Jornalistas Profissionais do Estado de São Paulo sob o nº 6.008

Se você ficar em um lugar escuro, sem música, sem barulho do mundo exterior, dá para você escutar o rumor da sua solidão. Esse é o homo sapiens sapiens olhando a fogueira nas cavernas ou olhando a tela de seu computador ou seu celular. A solidão que faz buscar paraísos, infernos ou purgatórios para tentar explicar o inexplicável. A lógica ilógica das coisas sobre a Terra, dos planetas visíveis, do universo em uma noite escura e brilhante. Olhando o horizonte infinito de uma praia, os seus olhos chegam a arder e à sua mente vem a vontade de ir até lá.

Uma jornada de mais de 160.000 anos. Há evidência arqueológica do seu genoma mitocondrial (mtDNA materno) e cromossomo Y (DNA paterno) no leste da África. Antes disto (pelo menos há 500.000 anos), grupos de hominídeos como o homem de Pequim, de Heidelberg e de Neandertal haviam saído da África e habitaram a Europa e Ásia. Mas estes não eram homo sapiens sapiens.

Entre 160.000 a 135.000 anos quatro grupos portando a primeira geração de genoma mitocondrial tipo L1 viajaram como caçadores para o sul ao Cabo da Boa Esperança, para o sudoeste até a bacia do rio Congo e para oeste rumo à Costa do Marfim. Entre 135.000 a 115.000 anos um grupo viajou através de um Saara verde e fértil, através de uma passagem, subiu o rio Nilo e ocupou a Ásia Menor.

Entre 115.000 a 90.000 anos o grupo que chegou à Ásia Menor se extinguiu. Um resfriamento global converteu esta área e o norte da África num deserto extremo. A região voltou a ser ocupada mais tarde por Neandertais.

Entre 90.000 a 85.000 um grupo atravessou a boca do Mar Vermelho – pela Porta das Lamentações (Bab el-Mandeb) – antes de seguir seu caminho ao longo da costa sul da península arábica em direção à Índia. Todos os não africanos são descendentes deste grupo.

Entre 85.000 a 75.000, a partir do Sri Lanka (antigo Ceilão ao sul da Índia) eles continuaram ao longo da costa do Oceano Índico até a Indonésia ocidental, que na época era parte da Ásia continental. Ainda seguindo a costa eles passaram ao redor de Bornéu e chegaram ao sul da China.

Há 74.000 anos uma enorme erupção do Monte Toba, na Sumatra, causou um inverno artificial que durou 6.000 anos e uma instantânea era glacial por 1.000 anos, desencadeando uma aniquilação da população humana que ficou reduzida a menos de 10.000 adultos. As cinzas vulcânicas cobriram grande parte da Índia e do Paquistão cobrindo a superfície com uma camada de 5 metros.

Entre 74.000 a 65.000 anos, após a devastação do subcontinente indiano, ocorreu um novo povoamento. Alguns grupos navegaram em botes do Timor para Austrália e também de Bornéu para a Nova Guiné. Havia um frio intenso no Pleniglacial Inferior ao norte.

Entre 65.000 a 52.000 anos um dramático aquecimento global finalmente permitiu que alguns grupos pudessem se dirigir ao norte pela Crescente Fértil para retornar a Ásia Menor. Dali, há 50 mil anos, chegaram ao Bósforo e entraram no continente europeu.

Entre 52.000 a 45.000 anos, houve uma pequena idade do gelo. A cultura Aurignaciana do Paleolítico Superior saiu da Turquia para a Bulgária na Europa. Novos estilos de ferramentas de pedra se estenderam ao norte pelo rio Danúbio em direção a Hungria e depois para a Áustria.

Entre 45.000 a 40.000 anos grupos da costa oriental da Ásia Central seguiram rumo ao nordeste da Ásia. Do Paquistão rumaram para a Ásia Central e da Indochina através do Tibet até a planície de Qing-Hai.

Entre 40.000 a 25.000 anos, da Ásia Central, grupos seguiram para Oeste rumo ao Leste Europeu e para o Norte ao círculo polar ártico unindo-se com asiáticos orientais e disseminaram o nordeste da Eurásia (Sibéria). Este período assistiu o nascimento de espetaculares obras de arte como os da Caverna Chauvet (França).

Entre 25.000 a 22.000 anos os ancestrais dos nativos americanos cruzaram o estreito de Bering pela ponte terrestre que ligava a Sibéria ao Alaska. Passaram tanto pelo corredor de gelo antes do Último Máximo Glacial atingindo Meadowcroft (Pensilvânia) como pela rota costeira.

Entre 22.000 a 19.000 anos, durante a última Idade do Gelo, o norte da Europa, da Ásia e América do Norte estavam totalmente despovoadas com alguns grupos sobreviventes isolados em refúgios. Na América do Norte o corredor de gelo se fechou e a rota costeira congelou.

Entre 19.000 a 15.000 anos, houve o último Máximo Glacial. Na América do Norte, ao sul do gelo, alguns grupos continuaram a desenvolver diversidades na língua, cultura e genética à medida em que cruzaram para a América do Sul.

Entre 15.000 a 12.500 anos, o clima global continuou melhorando. A rota costeira recomeçou. Em Monte Verde (Chile) foram descobertas habitações humanas. Datação por carbono 14 indicam que isso ocorreu entre 11.790 e 13.565 anos. Escavações da Universidade de Kentucky encontraram ferramentas de pedra lascada e pedras arredondadas para calçamento.

Entre 22.500 a 10.000 anos o gelo retrocedeu do sul para o norte. Há 11.500 anos grupos saíram dos seus refúgios do sul do Ártico da Beríngia para se desenvolverem como esquimós, aleutas e falantes da língua Na-Dené.

Entre 10.500 a 8.000 anos o colapso final da Idade do Gelo anunciou o amanhecer da agricultura. O Saara era um pasto cheio de árvores como sugerem os petróglifos de girafas do período Neolítico no deserto de Níger.  Inicia a recolonização das ilhas britânicas e da Escandinávia.

Há 8 mil anos o Homo Sapiens já havia conquistado o mundo. Desta época, saindo da Idade da Pedra atravessou a Idade do Bronze e a Idade do Ferro. De uma população total de 4 milhões chegou a 7 bilhões de habitantes.

Atualmente, já existe a ideia de uma nova era geológica, pois está havendo uma mudança radical no Planeta em um curto espaço de tempo, acelerada pela ação humana. Uma enorme pressão sobre a Terra: o Antropoceno.

O Planeta em seus 4,5 milhões de anos de existência já passou por vários ciclos na escala geológica, com devastações, sendo que a última ocorreu há 67 milhões de anos. Há uma teoria de que um asteróide atingiu o México há 65 milhões de anos, formando a cratera Chicxulub, e que provocou a alteração do clima e a extinção de espécies como os dinossauros. A era Mesozóica, dominada pelos répteis, foi seguida pela era Cenozóica – dos mamíferos – o que incluiu o aparecimento dos primatas.

Nessa nova era, as atividades dos seres humanos estariam influenciando as transformações no mundo, num ritmo acelerado. O modo de vida relacionado com a produção e o consumo está mexendo com o clima. E podem aumentar o risco de aquecimento do planeta. Contudo, a solidão continua a atormentar a eternidade do ser humano.

Falar em sustentabilidade hoje está complicado e vai envolver fortes mudanças de atitude de para todos os seres humanos. A enorme desigualdade na distribuição das riquezas no planeta traz instabilidade política, econômica e social, e é preciso minimizá-la para evitar conflitos ainda mais sérios. Desenvolvimento sustentável demanda um esforço conjunto para a construção de um futuro com inclusão e resiliente para todas as pessoas e todo o planeta.

As mudanças climáticas são um dos pontos centrais, pois ela já impacta a saúde pública, a segurança alimentar e hídrica, a migração, a paz e a segurança. E, se não for controlada, reduzirá os ganhos de desenvolvimento alcançados nas últimas décadas e impedirá possíveis ganhos futuros para as próximas gerações.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital Banas Qualidade, editor do blog https://qualidadeonline.wordpress.com/ e membro da Academia Brasileira da Qualidade (ABQ)hayrton@hayrtonprado.jor.br

As análises da NASA e NOAA revelaram um recorde de altas temperaturas globais em 2015

terra_quente

As temperaturas continuaram altas em 2015, havendo uma tendência de aquecimento global de longo prazo, de acordo com análises feitas pelos cientistas da National Aeronautics and Space Administration (NASA) e da National Oceanic and Atmospheric Administration (NOAA). O NASA’s Goddard Institute for Space Studies (GISS) in New York (GISTEMP) concordou com a constatação de que 2015 foi o ano mais quente já registrado com base em análises dos dados. A análise da NASA estimou que 2015 foi o ano mais quente com 94% de certeza.

“A mudança climática é o desafio de nossa geração e o trabalho vital da NASA sobre esta importante questão afeta cada pessoa na Terra”, explica o administrador da NASA Charles Bolden. “O anúncio não só ressalta como é crítico o programa de observação da Terra da NASA, ou seja se tornou um ponto de dados chave que deveria fazer com que as gestores públicos se movimentassem ao tomar conhecimento disso. Agora é a hora de agir sobre o clima”.

A temperatura média da superfície do planeta subiu cerca de 1,8 graus Fahrenheit (1,0 grau Celsius) desde o final do século 19, uma mudança em grande parte impulsionado pelo aumento do dióxido de carbono e outras emissões criadas pelo homem na atmosfera. A maior parte do aquecimento ocorrido nos últimos 35 anos, com 15 dos 16 anos mais quentes registrados ocorrendo desde 2001. No ano passado foi a primeira vez que as temperaturas médias globais foram de 1 grau Celsius ou mais acima da média de 1880-1899.

Os fenômenos como o El Niño ou La Niña, que esquenta ou esfria o Oceano Pacífico tropical, podem contribuir para as variações de curto prazo na temperatura média global. Um aquecimento do El Niño esteve em vigor durante a maior parte de 2015.

“2015 foi notável, mesmo no contexto da continuidade do El Niño”, disse Gavin Schmidt, diretor do GISS. “As temperaturas do ano passado tiveram uma assistência de El Niño, mas é o efeito cumulativo da tendência de longo prazo que resultou no registro de aquecimento que estamos assistindo”.

A dinâmica do tempo muitas vezes afetam as temperaturas regionais, de modo que nem todas as regiões na Terra experimentaram as temperaturas médias recordes no ano passado. Por exemplo, a NASA e a NOAA descobriram que a temperatura média anual de 2015 para os 48 estados dos Estados Unidos foi o segundo mais quente já registrado.

As análises da NASA incorporaram as medições de temperatura de superfície de 6.300 estações meteorológicas, as observações navais e os dados baseados em boia de temperaturas da superfície do mar e as medições de temperatura de estações de pesquisa da Antártida. Estas medições são analisadas utilizando um algoritmo que considera o espaçamento variado das estações de temperatura em todo o mundo e os efeitos do aquecimento local que poderiam distorcer as conclusões. O resultado desses cálculos é uma estimativa da diferença de temperatura média global a partir de um período de referência de 1951 a 1980.

Os cientistas da NOAA usaram os mesmos dados de temperatura, mas em um período de referência diferente e métodos diferentes para analisar as regiões polares e as temperaturas globais da Terra. O GISS é um laboratório da NASA gerenciado pela Earth Sciences Division of the agency’s Goddard Space Flight Center in Greenbelt, Maryland. O laboratório é afiliado com a Columbia University’s Earth Institute and School of Engineering and Applied Science in New York.

A NASA monitora os sinais vitais da Terra a partir da terra, ar e espaço com uma frota de satélites, bem como com a observação no ar e no solo. A agência desenvolve novas maneiras de observar e estudar os sistemas naturais da Terra interligados com registros de dados de longo prazo e ferramentas de análise de computador para ver melhor como o planeta está mudando. As ações da NASA deste conhecimento exclusivo são compartilhadas com a comunidade global e ela trabalha com instituições nos Estados Unidos e ao redor do mundo que contribuem para a compreensão e proteção do planeta.

Estudo do INPE quantifica o papel do desmatamento e da degradação florestal nas emissões de CO2 até 2050

deforestation

O Instituto Nacional de Pesquisas Espaciais (INPE) fez um estudo apresentando os cenários de uso da terra e emissões de gases do efeito estufa atualizados para a Amazônia brasileira. O trabalho ajuda a elucidar o potencial e as limitações das metas propostas pelo Brasil na intended Nationally Determined Contribution (iNDC), subsidiando as discussões para a COP21 em Paris.

Ana Paula Aguiar, pesquisadora do CCST/INPE e uma das líderes do estudo, explica que a necessidade de elaboração de novos cenários surgiu das mudanças observadas na região na última década. “Muitos estudos discutiram o futuro da Amazônia nos anos 2000, com foco principal na questão do desmatamento. Porém, aqueles estudos foram desenvolvidos com base num contexto socioeconômico e institucional de total falta de controle do desmatamento – e mesmo seus cenários mais otimistas seriam considerados hoje muito pessimistas. A situação mudou e com ela houve a necessidade de atualizar os cenários. Porém, o futuro da região continua muito incerto. Por exemplo, embora as taxas de desmatamento na Amazônia tenham caído desde 2004, elas estabilizaram em torno de 6.000 km²/ano nos últimos cinco anos. As taxas vão cair mais, estabilizar ou subir novamente? O Código florestal será cumprido? Como o passivo ambiental será regularizado? Os altos índices de degradação florestal atuais serão revertidos? As respostas dependem de uma série de fatores, externos e internos – em especial, do modo como os governos e a sociedade irão lidar com a demanda por terra e commodities nas próximas décadas. Mas os novos cenários que propomos não se limitam às questões de recursos naturais e uso da terra. Eles são abrangentes, incluindo explicitamente a dimensão social como eixo de discussão. Temas bastante importantes, tais como a urbanização caótica e a desigualdade de acesso aos recursos na região também foram abordados”, ressalta a pesquisadora.

Neste contexto, narrativas contrastantes sobre o futuro foram construídas de modo participativo, através de workshops com representantes da sociedade civil e governo, no âmbito do projeto Amazalert, em parceria com a Embrapa, Museu Emilio Goeldi e diversas outras organizações. Os elementos destas narrativas, relativos ao uso dos recursos naturais, foram quantificados através de modelos computacionais capazes de estimar o balanço regional de CO2, considerando trajetórias alternativas de desmatamento, da dinâmica da vegetação secundária e também da degradação florestal.

“É o primeiro trabalho que inclui esses três processos no balanço de carbono da região de modo espacialmente explícito. Os cenários representam histórias contrastantes, porém factíveis, e incluem uma série de premissas sobre políticas para região – em especial sobre o cumprimento ou não do Código Florestal”, diz Jean Ometto, chefe do CCST/INPE e um dos líderes da pesquisa. Este estudo integra dados produzidos pelos sistemas de monitoramento do INPE (PRODES, DEGRAD e TerraClass) e utiliza as ferramentas de modelagem de código aberto LuccME e INPE-EM, também desenvolvidas pelo INPE.

O cenário mais otimista (Cenário A – Sustentabilidade) representa um futuro com avanços significativos nas dimensões socioeconômica e ambiental. Neste cenário, as medidas de Restauração e Conservação previstas no Código Florestal são, não apenas cumpridas, mas superadas. A região se tornaria um sumidouro de carbono após 2020, devido ao fim do desmatamento por corte raso e do processo de degradação florestal, aliado a um aumento da área de vegetação secundária (e do seu tempo de permanência), levando a um processo de Transição Florestal.

O cenário oposto, bastante pessimista (Cenário C – Fragmentação), parte da premissa de um retrocesso nos avanços ambientais e sociais da última década, com uma volta a maiores taxas de desmatamento e desrespeito ao Código Florestal, aliados a um processo de urbanização caótico e acirramento dos problemas sociais. Finalmente, um cenário intermediário (Cenário B, Meio do Caminho), combina premissas dos dois cenários mais extremos.

Este cenário também considera o cumprimento do Código Florestal, com taxas de desmatamento legais em torno de 4.000 km²/ano após 2020. As reservas legais são regularizadas principalmente através do mecanismo de compensação no mesmo bioma e a vegetação secundária mantém a mesma dinâmica atual, de abandono e corte cíclico nas áreas menos consolidadas. Neste cenário, talvez o mais plausível, a região continua sendo emissora de CO2.

Sobre a plausibilidade dos cenários, os autores do trabalho advertem: “Cenários não são previsões. Afirmar que a Amazônia vai virar um sumidouro de carbono, como no cenário A, sem esclarecer todas as premissas subjacentes, seria equivocado. Cenários são apenas histórias internamente consistentes sobre como o futuro pode se desenvolver. Técnicas de cenários são aplicadas justamente quando as incertezas sobre o futuro são muito grandes. Por outro lado, o futuro depende das nossas ações hoje. Se ele será mais próximo do cenário A ou C irá depender da organização da sociedade em uma direção ou outra. Fomentar esta discussão é o objetivo principal do método proposto”.

No setor florestal e de mudança do uso da terra, a iNDC prevê, entre outros pontos: “fortalecer políticas e medidas com vistas a alcançar, na Amazônia brasileira, o desmatamento ilegal zero até 2030 e a compensação das emissões de gases de efeito de estufa provenientes da supressão legal da vegetação até 2030”. Ou seja, o Brasil está propondo zerar as emissões líquidas por desmatamento até 2030 – numa situação entre os cenários A e B descritos acima. Alguns aspectos do trabalho do CCST/INPE podem ajudar na análise dos desafios destas metas.

Desmatamento ilegal zero – O que significa? Diversos trabalhos recentes publicados na literatura científica estimaram a área passível de ser desmatada legalmente de acordo com o Código Florestal, obtendo valores de 86.000 km² a 290.000 km² (Martini et al., 2015; Soares-Filho et al., 2014; Sparovek et al., 2015). O cenário B em Aguiar et al. (2015) considera uma taxa de desmatamento (legal) em torno de 4.000 km²/ano após 2020 (isto é, uma perda de aproximadamente 140.000 km² no período 2015 a 2050). Uma fonte importante de incerteza consiste em como estes estudos consideraram as terras públicas sem destinação, sobretudo, no Estado do Amazonas. As opções em relação à estas áreas são (i) a criação de áreas protegidas ou (ii) destinar para produção agrícola. A criação de áreas protegidas nestas áreas poderia diminuir substancialmente o potencial de desmatamento legal. Por outro lado, a literatura indica (o que também foi sido bastante discutido no processo participativo de construção dos cenários) a fragilidade das áreas protegidas existentes, incluindo unidades de conservação não consolidadas e a pressão sobre terras indígenas (Ferreira et al., 2014). Por fim, cabe ressaltar ainda que as taxas de desmatamento caíram significativamente após 2004, mas estabilizaram em 6,000 km² nos últimos anos. Logo, a manutenção e aprimoramento do conjunto de ações dos PPCDAM (Plano de Prevenção e Controle do Desmatamento na Amazônia Legal) e o fortalecimento dos arcabouços institucionais (para evitar retrocessos) são essenciais para que, no máximo, as taxas permaneçam dentro dos limites legais – e não voltem a subir na direção do Cenário C (a Tabela S1.1 do material suplementar do artigo apresenta uma síntese de ações necessárias, resultante do processo participativo de construção dos cenários).
Compensação das emissões provenientes do desmatamento legal: (a) Papel da vegetação secundária no balanço de carbono: Uma das formas de compensar as emissões por desmatamento legal na Amazônia seria a absorção de CO2 através da regeneração da vegetação secundária. De acordo com o sistema TerraClass, em 2008 foram observados cerca de 150,000 km² de vegetação secundária em áreas previamente desmatadas. Esta área vem aumentando nos levantamentos mais recentes do sistema. O processo de crescimento da vegetação secundária poderia, potencialmente, compensar as emissões por corte raso. Porém, os dados da literatura e do próprio TerraClass mostram que parte considerável desta vegetação é ciclicamente cortada (por exemplo, cerca de 25% da área identificada em 2008 havia sido cortada em 2012). Os novos cenários discutem o papel potencial da vegetação secundária no balanço de carbono no futuro, através de modelos que representam a dinâmica de abandono, crescimento e corte cíclico nas áreas desmatadas. Os resultados do cenário B mostram que, mantida a dinâmica atual, as emissões continuariam positivas. É importante notar que a vegetação secundária existente na região foi produzida pelo processo histórico de ocupação da região (pecuária extensiva, falta de assistência técnica, agricultura itinerante, especulação fundiária, etc.), inicialmente dissociado da questão mais recente da regularização do passivo ambiental pelo Código Florestal. Medidas que visem utilizar estas áreas para fim de regularização das reservas legais deverão incluir – além de sistemas de monitoramento adequados e de legislação específica que norteie a necessidade de sua supressão cíclica – a disponibilização de alternativas tecnológicas para que a vegetação secundária possa fazer parte do sistema produtivo aos agricultores da região, como por exemplo, sistemas que integram pastagem/agricultura e floresta. (b) Regularização das Reservas Legais (RL). Os trabalhos mencionados acima (Martini et al., 2015; Soares-Filho et al., 2014; Sparovek et al., 2015) também estimam a área de Reserva Legal a ser restaurada (passivo ambiental) caso as regras do novo Código Florestal venham a ser cumpridas de fato. O trabalho de Soares-Filho et al. (2014), por exemplo, estima cerca de 80.000 km² de passivo ambiental. O Código Florestal oferece dois mecanismos principais de regularização: efetiva restauração da reserva legal dentro da propriedade rural ou compensação em outra área do bioma (através de Cotas de Reserva Ambiental – CRA). Existe muita incerteza em relação a qual mecanismo será adotado por diferentes atores. Em todos estes trabalhos a área de passivo ambiental é consideravelmente menor do que o ativo (área legalmente disponível para conversão), em muitos casos, menos da metade. O mecanismo de compensação pode proteger áreas de floresta primária (diminuindo o ativo), enquanto o mecanismo de restauração pode favorecer o aumento das áreas de florestas secundárias. Existe, portanto, a necessidade de uma ampla discussão sobre os mecanismos de regularização das RL mais apropriados em diferentes contextos – considerando não apenas as emissões líquidas de carbono, mas a perda de biodiversidade, a provisão de serviços ecossistêmicos e os impactos nos atores envolvidos. Os resultados em Aguiar et al (2015) indicam que, em termos de emissões, mesmo no caso de que a regularização dos 80.000 km² de passivo viesse a ocorrer pelo mecanismo de restauração (pouco provável no entender dos autores, pois implicaria, em muitos casos, no abandono de áreas em produção), as emissões continuariam positivas – devido ao balanço entre as áreas passiveis a serem legalmente desmatadas (ativo) e à curva de crescimento da vegetação nas áreas de restauração. Por outro lado, os resultados da simulação B mostram que seria necessária a regeneração de uma área superior a 150 mil km² para zerar as emissões líquidas em 2030. Portanto, apenas o cumprimento do código dificilmente será capaz de zerar as emissões na Amazônia em 2030, independente do mecanismo de regularização das RL utilizado pelos diferentes atores. Serão necessárias medidas complementares que mantenham as taxas de desmatamento por corte-raso abaixo dos níveis “legais”.

Outros pontos relevantes: (a) Emissões por degradação florestal. O trabalho apresenta a quantificação das emissões provenientes do processo de degradação florestal – um componente importante do balanço regional de carbono não considerado na elaboração das metas. Utilizando dados do Sistema DEGRAD do INPE, o trabalho estima que as emissões brutas por degradação no período foram, em média, cerca de 47% das emissões por desmatamento tipo corte raso. Por outro lado, o processo de regeneração pós-distúrbio pode compensar, em parte, essas emissões. (b) Emissões nos outros biomas. A iNDC se refere apenas ao bioma Amazônia. Porém, tanto trabalhos de modelagem econômica (Dalla-Nora 2014), quanto a estimativa da área passível de ser legalmente desmatada de acordo com o Código Florestal no Cerrado (cerca de 400.000 km² de acordo com Soares-Filho et al. 2014) apontam para altas taxas de desmatamento neste bioma nas próximas décadas, devido ao seu potencial produtivo para a agricultura e menor grau de proteção. Caso apenas o cumprimento do Código Florestal seja o balizador de ações para proteger o Cerrado, podemos antever impactos consideráveis nas emissões nacionais e em termos de perda de biodiversidade. Já o bioma Caatinga, embora também apresente um ativo elevado (cerca de 258.000 km², de acordo com Soares-Filho et al. (2014)), não apresenta condições edafoclimáticas para a expansão da agricultura de grãos. Este bioma está, no entanto, sujeito a outros vetores de desmatamento, em especial a exploração predatória para satisfazer demandas por carvão vegetal e lenha para fins energéticos.

O trabalho completo em inglês está no link http://onlinelibrary.wiley.com/doi/10.1111/gcb.13134/abstract

A era dos extremos

Texto: Carlos Orsi

Fotos: Julio Cavalheiro/Secom/Defesa Civil de Santa Cantarina e Giba/Ascom/MCTI

tragédiasNos últimos 14 meses – entre outubro de 2013 e fevereiro deste ano – o Estado de São Paulo assistiu à pior seca já registrada desde que começaram os registros meteorológicos no Sudeste brasileiro, há mais de  80 anos, disse ao Jornal da Unicamp o climatologista Carlos Nobre, atual diretor do Centro Nacional de Monitoramento e Alerta de Desastres Naturais (Cemaden), vinculado ao Ministério da Ciência, Tecnologia e Inovação. “Só para dar uma ideia, de outubro de 2013 a março de 2014, choveu cerca de 50% do que deveria ter chovido nesses seis meses”, declarou. “De outubro de 2014 ao final de março de 2015 choveu 75% do que seria esperado. E 25% abaixo da média ainda é bem seco, mas muito diferente da megaseca que foi há um ano”.

Nobre participou da elaboração de vários relatórios do Painel Intergovernamental de Mudanças Climáticas (IPCC) das Nações Unidas, que avaliam as causas e impactos do aquecimento global. Ele explica que a relação entre a mudança climática, em curso atualmente no mundo, e fenômenos extraordinários específicos, como a recente seca paulista, é mais complexa do que uma simples ligação linear entre causa e efeito. “Não é bem assim, não é tão simples”, adverte.

“Não dá para afirmar que, sem a mudança climática antropogênica, esta seca, possivelmente a maior em 100 anos, não teria acontecido”, disse ele. “Não se pode afirmar, categoricamente, que não haveria a seca se o planeta não tivesse aquecido”.

site

NOVO SITE DA ACADEMIA BRASILEIRA DA QUALIDADE: http://www.abqualidade.org.br/

O que a mudança climática faz – “e fará cada vez mais no futuro”, de acordo com o pesquisador – é exacerbar a variabilidade natural e aumentar a frequência dos fenômenos climáticos extremos. “Uma seca como essa que afligiu São Paulo em 2014 é um fenômeno muito raro. Vamos supor que pudéssemos dizer que isso acontece, naturalmente, uma vez a cada 100 anos”, disse. “O que a mudança climática faz, e fará mais ainda no futuro, é diminuir esse período de recorrência. Não sabemos qual a diminuição ainda, precisamos estudar muito. Mas podemos dizer que eventos dessa natureza, que eram muito raros, vão acontecer com mais frequência, nos extremos com menos ou com mais chuvas”, explicou. “É isso que mudança climática faz: havia uma certa variabilidade de fenômenos extremos muito raros, e de repente, por conta da mudança climática, começam a ficar mais frequentes”.

Esse aumento da frequência torna os eventos extremos mais prováveis ao longo do tempo. Além disso, a mudança climática pode, também, intensificá-los. “Vai acontecer mais vezes, e pode até acontecer com intensidade maior, talvez até com intensidade nunca registrada”, disse, lembrando a seca sem precedentes em São Paulo. “Não se pode dizer que o fenômeno extremo só passou a acontecer como resposta direta ao aquecimento”, reiterou. “O que se pode dizer é que o aquecimento vai mudar a natureza probabilística desses extremos climáticos do ciclo hidrológico e vai torná-los mais frequentes”.

Especificamente na cidade de São Paulo, explica Nobre, o efeito climático dominante é o da ilha urbana de calor, gerado pelo crescimento e adensamento de mudança da cidade, com a eliminação de áreas verdes e a impermeabilização do solo. A temperatura média global à superfície elevou-se em 0,8º C desde a revolução industrial. “Mas em São Paulo, nos últimos 70 anos, subiu entre 3º C e 4º C, em média”, disse o pesquisador.

O climatologista Carlos Nobre“Dependendo do lugar – tomando, como exemplo, um dia ensolarado da primavera, sem nuvens – a diferença entre a temperatura da periferia de São Paulo e a do centro pode chegar tranquilamente a 6º C, 7º C”, acrescenta. “Nesse caso, no centro de São Paulo, o aquecimento urbano, da ilha urbana de calor, já saturou. No entanto, à medida que a cidade vai se urbanizando, vai se concretando, há mais pavimentação e o desaparecimento da vegetação, esse efeito vai cobrindo uma área maior, vai crescendo como uma bola”.

De acordo com os cenários do IPCC, se nada for feito para reduzir as emissões de gases causadores do efeito estufa nas próximas décadas, as temperaturas médias globais poderão chegar (no ano de 2100) de 3º C a 4º C acima dos níveis pré-industriais. “Na região do Estado de São Paulo, haveria uma elevação de 3º C, 3,5º C. O impacto no Brasil central seria de 4º C, 5º C e o impacto na Amazônia em 5 º C, 6 º C”, enumera Nobre. “Isso é o que a maioria dos cenários indica, no caso de continuarem aumentando as emissões”.

No melhor cenário, caso sejam tomadas medidas para impedir a subida de mais 2ºC na temperatura média global, acima dos níveis pré-industriais até 2100, a temperatura no Estado de São Paulo subiria da ordem de 2º C. “Mas como já subiu 0,8º C, nós temos ainda, nesse cenário benigno, 1,2º C para chegar nesse marco simbólico de 2º C”, disse Nobre. “Para isso, temos que chegar a emissões de gases de efeito estufa negativas em 2100. Quer dizer, tirar o dióxido de carbono (CO2) da atmosfera”.

O pesquisador lembra que não é possível prever como serão os próximos verões em São Paulo, se secos ou chuvosos. “Cientificamente, não há previsibilidade, com alto grau de acerto, para além de poucos dias. O que dá para dizer numa escala de décadas, de um século, que a cidade vai estar mais quente”, disse. “E a ilha urbana de calor traz um aumento da chuva. Chove em São Paulo, hoje, 30% a 35% mais do que chovia há 80 anos. Isso é um efeito direto da ilha urbana de calor.”

Numa perspectiva mais geral, para o estado ou a região Sudeste como um todo, os cenários de longo prazo do IPCC indicam uma pequena modificação no volu-me de chuvas, mas sem sinal claro. “Alguns cenários mostram uma tendência à pequena diminuição das chuvas. Outros, uma pequena elevação. O Sudeste é uma região de transição”, explica. “Lá no Nordeste, os modelos indicam uma diminuição da chuva. No Sul e em parte da Argentina, um aumento das chuvas. O Sudeste ficou no meio, num lugar onde o sinal é positivo ao sul e negativo ao norte. Há uma situação de maior incerteza”.

“Mas não se prevê uma mudança climática com maior volume de chuvas, a longo prazo. Então, não vai virar um deserto”, acrescenta. “O que muda é a natureza das chuvas. Deve-se gerar maior número de dias com pancadas fortes de chuvas e, igualmente, maior número consecutivo de dias secos”.

O aumento na variabilidade do clima e na probabilidade de fenômenos climáticos extremos já está exigindo esforços de adaptação por parte dos agentes públicos. “A cidade tem que ter uma preparação para esse novo cenário. E tem que se adaptar rapidamente, porque ele já está acontecendo”, alerta Nobre. “Não é para daqui a 20, 30, 50 anos”.

“Já estamos vivendo uma situação de grande mudança nos regimes climáticos”, disse. “Portanto, toda a infraestrutura e a estrutura de abastecimento de água têm que levar em consideração essa variação, colocando em ação uma série de mecanismos de aumentar resiliência”.

Como exemplo de ação uma necessária, cita o reflorestamento das bacias dos rios. “Isso é muito importante, tanto para melhorar a qualidade da água e aumentar a vida útil dos reservatórios, como também para moderar os picos de inundação. O reflorestamento ajuda a redistribuir a água, com menos vazão na época de chuva e mais vazão na época seca do ano”, explica. “Só estou dando um exemplo de uma atividade típica de adaptação à maior volatilidade climática. Outro caso muito concreto – e que todos estão sentindo, paulistanos e paulistas – é a crise hídrica”.

Pesquisa estuda macroinvertebrados como indicador da qualidade da água

CURSO PELA INTERNET

NBR ISO 50001 – Gestão de Energia – Implantação da metodologia e estudo de casos práticos

As organizações através deste curso poderão estabelecer os sistemas e processos necessários para melhorar o desempenho, a eficiência e intensidade energéticas. Mais informações, clique no link https://www.target.com.br/produtossolucoes/cursos/gravados.aspx?pp=1&c=699

imageConduzido na Reserva Mata do Uru, no Paraná, o estudo indica que a presença de algumas espécies atestam qualidade ambiental de rios

A qualidade da água pode ser medida pela presença e quantidade de animais macroinvertebrados, que são organismos de poucos centímetros que desenvolvem pelo menos uma fase de seu ciclo de vida nos ambientes aquáticos. E esse é o objetivo do projeto de pesquisa conduzido na Reserva Mata do Uru (Lapa/Paraná):, avaliar a qualidade dos rios, em especial do Ribeirão Calixto, que pertence à bacia hidrográfica do Rio Iguaçu e conta com nascentes na Reserva Particular do Patrimônio Natural (RPPN) Mata do Uru.

Iniciada no ano passado, a pesquisa coordenada pelas biólogas Edinalva Oliveira e Ana Meyer, professoras da Universidade Positivo (UP), com participação de alunos e egressos do Curso de Ciências Biológicas, está autorizada até 2017 e deve ter seus primeiros resultados divulgados até o fim deste ano. A cada estação climática, um grupo de pesquisadores realiza amostragens em diferentes regiões do Ribeirão, na Reserva. Na sequência, os trabalhos são desenvolvidos em laboratórios da Universidade, onde os organismos são identificados, quantificados e os dados obtidos são compilados para a obtenção de índices de qualidade ambiental.

O Projeto de pesquisa também tem como objetivo elaborar um Inventário da fauna de macroinvertebrados encontrados no Ribeirão Calixto. “Até o momento, encontramos diferentes espécies de macroinvertebrados, organismos muito exigentes em termos de condições ambientais e que demonstram a biodiversidade local e a integridade do ambiente”, explica a bióloga Edinalva Oliveira.

Em análise mais ampla, os indicativos da qualidade da água do Ribeirão Calixto também significam que a mata ciliar está bem preservada. “A vegetação oferece recursos aos organismos, como estoque constante de matéria orgânica. Muitos invertebrados aquáticos têm fase adulta a qual requer ambientes terrestres íntegros, onde possam depositar larvas”, esclarece a professora.

Algumas espécies de macroinvertebrados possuem particularidades, como o tempo de duração de cada ciclo de vida. Alguns possuem a fase adulta com horas ou semanas, mas as larvas aquáticas podem passar anos nos locais.

“A água é parte do patrimônio natural do planeta Terra. A sua utilização deve ser realizada com consciência e discernimento. Ações mal conduzidas podem favorecer o comprometimento, a deterioração e o esgotamento das reservas atualmente disponíveis. Cada cidadão ou nação deve desenvolver o respeito e tomar atitudes que garantam a manutenção de sua qualidade”, ressalta Edinalva.

Perdas de água no Brasil

CURSO PELA INTERNET

Metodologia para Identificação e Classificação de Aspectos e Impactos Ambientais, Conforme NBR ISO 14001

Possibilitar ao participante a identificação dos aspectos e impactos ambientais, e elaborar o LAIA – Levantamento de Aspectos e Impactos Ambientais de sua organização conforme a norma NBR ISO 14001. Para assistir, clique no link https://www.target.com.br/produtossolucoes/cursos/gravados.aspx?pp=1&c=716

A média brasileira de perdas de água é de aproximadamente 40% (incluindo perdas reais e aparentes), mas em algumas empresas de saneamento essas perdas superam 60%

O cenário brasileiro de perdas de água no setor de saneamento é bastante problemático. A média brasileira de perdas de água é de aproximadamente 40% (incluindo perdas reais e aparentes), mas em algumas empresas de saneamento essas perdas superam 60%. O elevado índice de perdas de água reduz o faturamento das empresas e, consequentemente, sua capacidade de investir e obter financiamentos.

Além disso, gera danos ao meio-ambiente na medida em que obriga as empresas de saneamento a buscarem novos mananciais. O número insuficiente de profissionais do setor – e muitas vezes a qualidade técnica -, como ocorre em algumas regiões do Brasil, é um dos maiores entraves para o enfrentamento do problema, como analisa o presidente da Associação Brasileira de Engenharia Sanitária e Ambiental (ABES), Dante Ragazzi Pauli. “As perdas de água representam um dos maiores desafios e dificuldades para a adequada distribuição de água no Brasil e o nível de combate às perdas tem sido muito desigual pelos estados brasileiros”.

Para Dante, há a clara necessidade de mínima adequação (qualitativa e quantitativa), por parte dos operadores, dos profissionais que serão alocados na atividade, a capacitação deles, a garantia de recursos financeiros e muita perseverança. “As estratégias brasileiras para redução de perdas de água devem combinar ações estruturantes (de gestão de ativos) e ações estruturais (de ampliação e melhoria dos ativos).”

No Brasil, os indicadores estão longe do observado em países desenvolvidos (Japão, Alemanha, Austrália podem ser citados como referenciais) e a situação de perdas é muito desigual quando se comparam unidades da federação, operadores públicos e privados de saneamento básico. O Plansab, aprovado em dezembro de 2013, e do qual não se tem notícias, definiu para o índice o valor de 31% em 2033.

“Ocorre que a situação atual dos prestadores de serviço não favorece os investimentos em redução de perdas. Parte importante dos operadores brasileiros não possui quadro de profissionais suficientemente preparados tanto do ponto de vista quantitativo como qualitativo. Assim, desconhece as principais características do sistema que opera; em alguns, há escassez de equipamentos e instrumentos, como macro e micromedidores”, explica.

Além disso, devem ser citados outros problemas, tais como a ­baixa capacidade dos operadores de se financiar e a ausência de flexibilidade das operadoras de saneamento para alterar seus orçamentos. “Cabe aos operadores, independentemente da estratégia que adotem para o combate às perdas, o pleno conhecimento dos sistemas que operam.”

O presidente da ABES observa que a atual crise hídrica que assola boa parte do Brasil faz aparecer uma série de “especialistas” no assunto, que passam a impressão de que a queda de perdas a níveis aceitáveis é tarefa simples. “Não é, ainda mais ao perceber a situação caótica de muitos de nossos operadores e a falta de comprometimento de boa parte de nossos governantes nas três esferas de governo. Lembremos que o Japão, já acima citado como uma de nossas referências, demorou décadas para atingir o índice atual. Tóquio, hoje tem perdas que beiram os 5%”.

Para Dante, as estratégias que podem ser adotadas jamais podem perder de foco que o ponto de partida para enfrentar o problema das perdas de água é o estabelecimento, por parte dos operadores, de um mínimo de profissionais destacados para o desafio.

O uso de água de chuva

CURSO TÉCNICO

Aterramento e a Proteção de Instalações e Equipamentos Sensíveis contra Raios: Fatos e Mitos

Apresentação de novos conceitos e técnicas de projeto que resultem em maior eficiência dos sistemas de proteção contra os efeitos de surtos gerados internamente ou devidos às descargas atmosféricas. Aterramentos e SPDA´s (Sistema de Proteção contra Descargas Atmosféricas) não garantem a proteção de equipamentos eletroeletrônicos. Mais informações: https://www.target.com.br/home.aspx?pp=1&c=680&cm=1

Pesquisadores do IPT explicam os requisitos básicos e os cuidados para garantir a qualidade da água coletada

Apesar de ser uma técnica relativamente simples, o aproveitamento da água de chuva possui requisitos mínimos que devem ser respeitados para garantir o funcionamento do sistema e, principalmente, para assegurar a qualidade dos volumes coletados. O telhado ou a laje de cobertura da edificação funcionam como área de captação. “Jamais deve-se fazer a captação a partir de pisos”, explica o pesquisador Luciano Zanella, do Centro Tecnológico do Ambiente Construído do IPT.

Calhas e tubos direcionam as águas até o reservatório. É preciso prever um sistema de tratamento, cuja complexidade vai depender dos usos pretendidos. Em alguns casos, pode-se pensar em uma rede de distribuição da água para pontos de consumo de água não potável, caso das bacias sanitárias. Em edificações já construídas, entretanto, é indicado optar por sistemas simplificados, uma vez que o custo de novas instalações hidráulicas prejudicará a viabilidade financeira do projeto.

chuva

Exemplo de sistema permanente de uso. Sistemas simplificados também demandam tratamento dos volumes coletados. (Clique na figura para uma melhor visualização)

A capacidade de reservação é definida em função de diversos fatores, a começar pela localização da edificação. É preciso considerar o regime de chuvas na região, a existência e a regularidade de abastecimento de água potável por uma concessionária, além do custo do recurso.
Entra no cálculo também a demanda por água não potável. O número de usuários e seus hábitos de consumo, além das diversas aplicações que essa água pode ter na edificação, como limpeza de pisos e rega de jardins, também precisam ser levados em conta.

Dois aspectos não podem ser ignorados: o espaço disponível para a instalação do reservatório e, quando a intenção for instalá-lo sobre a laje de cobertura, a capacidade da estrutura para suportar o peso adicional. “A carga extra de um reservatório cheio de água pode não ser suportada por alguns tipos de construção”, ressalta Zanella.

É imprescindível, alertam os pesquisadores do IPT, desprezar as primeiras chuvas. São elas que vão arrastar os poluentes presentes no ar e lavar a sujeira acumulada na área de captação. As recomendação técnicas indicam um descarte em torno de um a dois litros de água da primeira chuva para cada metro quadrado de telhado. Assim, se a cobertura tem 20 metros quadrados, é necessário desconsiderar um volume entre 20 e 40 litros.

Um sistema mínimo de tratamento das águas pluviais envolve não somente o descarte das primeiras águas, mas a remoção dos sólidos, como folhas, galhos e areia, por meio da utilização de filtro ou tela. “É recomendada a desinfecção com compostos de cloro, quando existir a possibilidade de contato da água com a pele do usuário ou quando o tempo de armazenamento for longo”, esclarece o pesquisador Wolney Castilho Alves, do mesmo centro.

Sistemas permanentes de aproveitamento da água da chuva, instalados com o objetivo de suplementar o abastecimento para fins não potáveis, demandam sistemas mais complexos de tratamento. É possível encontrar no mercado filtros e componentes de desinfecção que devem ser empregados nesses casos. É exigido, para sistemas de uso integrados à edificação, um projeto elaborado por profissional devidamente habilitado.

A qualidade da água está diretamente relacionada com o seu armazenamento. Por isso, é fundamental manter o reservatório com tampa e com quaisquer aberturas fechadas para evitar a proliferação de mosquitos ou mesmo a contaminação da água pela entrada de ratos ou insetos. Além disso, o reservatório deve ser protegido de impactos e da luz solar, e também se deve prever uma saída de fundo no reservatório que propicie sua limpeza, quando for necessária.

Os pesquisadores do IPT alertam ainda para a importância de manter o reservatório longe do acesso de crianças. O mais comum é utilizar a água de chuva para a rega de jardins e plantações, lavagem de carros e pisos e também em descargas de bacias sanitárias. Em condições anormais de abastecimento, desde que se mantenha a forma adequada de coleta, tratamento e armazenamento, é possível considerar o uso para lavagem de roupas, louças e para o banho.