NFPA 13E: os procedimentos dos bombeiros em sistemas de aspersão

Essa norma contra incêndios, editada em 2020 pela National Fire Protection Association (NFPA), é uma prática recomendada que fornece informações e procedimentos para operações do departamento de bombeiros em propriedades equipadas com sistemas de aspersão e tubulação de incêndio. Os sistemas fixos abordados nesta prática recomendada são sistemas internos de sprinklers automáticos, sistemas externos de sprinklers e sistemas de tubulação vertical.

A NFPA 13E:2020 – Recommended Practice for Fire Department Operations in Properties Protected by Sprinkler and Standpipe Systems é uma prática recomendada que fornece informações e procedimentos para operações do departamento de bombeiros em propriedades equipadas com sistemas de aspersão e tubulação de incêndio. Os sistemas fixos abordados nesta prática recomendada são sistemas internos de sprinklers automáticos, sistemas externos de sprinklers e sistemas de tubulação vertical.

Conteúdo da norma

Capítulo 1 Administração

1.1 Escopo

1.2 Objetivo

Capítulo 2 Publicações referenciadas

2.1 Geral

2.2 Publicações da NFPA

2.3 Outras publicações

2.4 Referências para extratos nas seções de recomendações

Capítulo 3 Definições

3.1 Geral

3.2 Definições oficiais da NFPA

3.3 Definições gerais

Capítulo 4 Geral

4.1 Geral

4.2 Inspeção e planejamento pré-incidente

4.3 Abastecimento de água para combate a incêndios

Capítulo 5 Propriedades protegidas pelos sistemas de aspersão

5.1 Operações em primeiro plano nas propriedades de aspersão

5.2 Operações pós-incêndio

5.3 Relatórios

5.4 Sistemas gerais de sprinklers externos

5.5 Operações em primeiro plano envolvendo sprinklers externos

Capítulo 6 Propriedades protegidas pelos sistemas de tubo vertical

6.1 Inspeção e planejamento pré-incidente

6.2 Operações em primeiro plano envolvendo propriedades protegidas por sistemas manuais de tubos secos ou úmidos manuais

6.3 Operações em primeiro plano envolvendo propriedades protegidas por sistemas automáticos de tubo vertical com bombas de incêndio

Capítulo 7 Comprometimentos

7.1 Procedimentos de imparidade

Capítulo 8 Confiabilidade dos sistemas

8.1 Status do sistema

Capítulo 9 Edifícios em construção

9.1 Visitas ao local

Capítulo 10 Requisitos de inspeção e ensaio

10.1 Inspeção, ensaio e manutenção de sistemas de aspersão e tubo vertical

Anexo A Material explicativo

Anexo B Recomendações para combater incêndios em pneus de borracha em edifícios com aspersão

Anexo C Referências informativas

Para a edição de 2020, o comitê revisou e atualizou todos os materiais extraídos e referenciados no documento. O comitê também fez muitas alterações para garantir que as disposições sejam consistentes dentro do guia e com outros documentos da NFPA. Muitos capítulos foram reorganizados para facilitar o uso do guia e ajudar melhor os usuários a entender o que as disposições tratam.

O comitê acrescentou um texto para explicar como as cabeças dos aspersores devem ser mantidas para fins de investigação de incêndio após o uso em situações de emergência, além de esclarecer o processo de inspeção das cabeças dos aspersores e colocá-las novamente em serviço por pessoas qualificadas. O comitê também adicionou material para esclarecer como os museus e bibliotecas podem responder ou fazer um pré-planejamento no caso de uma ativação por aspersão, e que os usuários devem estar cientes dessas condições especiais se eles estiverem em sua jurisdição. Outra área que o comitê esclareceu é o fato de que é necessário fazer ajustes de pressão quando as conexões da mangueira estão abaixo do nível.

O alívio normal e emergencial de vapores em tanques de armazenamento

Saiba quais são os requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão.

A NBR ISO 28300 de 06/2020 – Indústrias de petróleo, petroquímica e gás natural — Alívio de tanques de armazenamento atmosféricos e de baixa pressão trata dos requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão. Nesta norma são discutidas as causas de sobrepressão e vácuo; determinação de requisitos de alívio; tipos de alívio; seleção e instalação de dispositivos de alívio; e ensaios e marcação de dispositivos de alívio. Esta norma considera tanques contendo petróleo e seus derivados, mas pode também ser aplicados aos tanques contendo outros líquidos. Entretanto, é necessário utilizar uma análise de engenharia e uma avaliação técnica adequadas quando se aplicar esta norma a outros líquidos. Não se aplica aos tanques de teto flutuante externo.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os requisitos de alívio para aspiração?

Qual é o fator de redução para tanques com isolamento?

Quais os requisitos de alívio em presença de fogo?

Qual é a capacidade de alívio?

Esta norma foi elaborada a partir da 5ª edição da API 2000 e da EN 14015:2005, com a intenção de que a 6ª edição da API 2000 seja idêntica a esta norma. Foi desenvolvida a partir de conhecimentos acumulados e da experiência de engenheiros qualificados em indústrias de óleo, petróleo, petroquímica, química e de armazenamento de líquido a granel. Estudos de engenharia de um tanque particular podem indicar uma capacidade apropriada de alívio que não esteja de acordo com a capacidade estimada de alívio determinada por esta norma.

As muitas variáveis associadas aos requisitos de alívio para o tanque podem tornar impraticável a definição de regras simples que são aplicáveis a todos os locais e condições. Onde for aplicável nesta norma, as unidades de medidas inglesas (USC) são incluídas para informação entre parênteses ou em tabelas separadas. Para determinação das possíveis causas de sobrepressão e vácuo em um tanque, considerar o seguinte: movimento de enchimento e esvaziamento de líquido do tanque; respiração (aspiração e expiração) do tanque devido a mudanças climáticas (por exemplo, mudanças de pressão e temperatura); exposição ao fogo; outras circunstâncias resultantes de falhas de equipamento e erros operacionais.

Existem outras circunstâncias que convém que sejam consideradas, mas não foram incluídas nesta norma. O processo de enchimento e esvaziamento de um tanque pode ser por bombeamento, gravidade ou diferença de pressão. O vácuo pode resultar do esvaziamento do tanque. A sobrepressão pode resultar do enchimento do tanque e da vaporização normal ou instantânea do líquido. A vaporização instantânea pode ser significativa para líquidos próximos ou acima do seu ponto de ebulição na pressão do tanque.

O vácuo pode resultar da contração ou condensação de vapores causada pela diminuição da temperatura atmosférica ou outras mudanças climáticas, como mudanças de vento, precipitação atmosférica, etc. Sobrepressão pode resultar da expansão ou vaporização causada pelo aumento da temperatura atmosférica ou outras mudanças climáticas. A sobrepressão pode resultar da expansão dos vapores ou da vaporização do líquido que ocorre quando o tanque absorve calor do fogo externo.

Quando as possíveis causas de sobrepressão ou vácuo no tanque estiverem sendo determinadas, devem ser consideradas e avaliadas outras circunstâncias resultantes de falhas de equipamentos ou erros operacionais. Os métodos de cálculos para estas circunstâncias não estão previstos nesta norma. A transferência de líquido desde outros vasos, caminhões-tanque e carros-tanque pode ser auxiliada ou realizada inteiramente pela pressurização destes com um gás, mas o tanque de recepção pode encontrar uma oscilação de fluxo ao final da transferência, devido à passagem do gás/vapor.

Dependendo da pressão preexistente e do espaço livre no tanque de recepção, o volume de gás/vapor adicional pode ser suficiente para exercer pressão excessiva neste tanque. A ação de controle é garantir o enchimento até um nível máximo, de modo que reste pouco espaço dentro do tanque, para não absorver a oscilação de pressão. Colchões de inertização e purgas são utilizados nos tanques para proteger o seu conteúdo contra contaminação, manter atmosferas não inflamáveis e reduzir a inflamabilidade destes vapores aliviados do tanque.

Um sistema de inertização e purga normalmente tem um regulador de alimentação e de contrapressão para manter a pressão interna do tanque dentro de uma faixa operacional estreita. A falha deste regulador pode resultar em fluxo de gás descontrolado para o tanque e, subsequentemente, pressão excessiva no tanque, redução do fluxo de gás ou perda total do fluxo de gás. A falha fechada do regulador de contrapressão pode resultar em bloqueio da saída e sobrepressão.

Se o regulador de contrapressão estiver conectado a um sistema de recuperação do vapor, a sua falha aberta pode resultar em vácuo. Vapor, água quente e óleo quente são meios comuns de aquecimento para tanques que contêm substâncias que precisam ser mantidas a temperaturas elevadas. A falha de uma válvula de controle de suprimento de calor para o tanque, do elemento sensor de temperatura ou do sistema de controle pode resultar em aumento de aquecimento no tanque. A vaporização do líquido estocado pode resultar na sobrepressão do tanque.

Tanques aquecidos que contenham duas fases de líquido apresentam possibilidade de uma vaporização rápida, se a fase inferior for aquecida até a temperatura onde a sua densidade torna-se inferior à densidade do líquido superior. Estas condições devem ser evitadas na especificação do projeto e nos procedimentos operacionais. Se o tanque mantido em elevadas temperaturas estiver vazio, isso pode resultar em uma vaporização excessiva na alimentação do tanque.

Se o sistema de controle de temperatura do tanque estiver funcionando com o sensor de temperatura exposto ao vapor, o meio usado no aquecimento do tanque pode circular com uma vazão máxima, elevando até a máxima temperatura da parede do tanque. Enchimento do tanque sob estas condições pode resultar em uma vaporização excessiva durante a alimentação deste. A vaporização excessiva da alimentação é interrompida tão logo as paredes do tanque sejam esfriadas e com o nível do líquido cobrindo o sensor de temperatura.

Para tanques com camisas de resfriamento ou serpentinas, deve ser considerada a vaporização líquida como resultado da perda do fluxo de meio resfriador deste. A falha mecânica de um dispositivo interno de aquecimento ou resfriamento do tanque pode expor o conteúdo do tanque ao meio de aquecimento ou de resfriamento usado no dispositivo. Para tanques de baixa pressão, pode-se assumir que a direção de fluxo do meio de transferência de calor esteja dentro do tanque quando houver falha do dispositivo.

Deve-se considerar a compatibilidade química entre o conteúdo do tanque e o meio de transferência de calor. Pode ser necessário haver alívio do meio de transferência de calor (por exemplo, vapor). A falha do sistema de coleta de alívio deve ser avaliada quando o vapor de um tanque for coletado para tratamento ou direcionado para um sistema de tratamento de alívio. Falhas afetando a segurança de um tanque podem incluir o desenvolvimento de contrapressões a partir de problemas na tubulação [selo líquido (liquid-filled pockets) e crescimento de sólidos], outro equipamento de alívio ou alívio para o tubo de comunicação (header) ou bloqueio devido à falha do equipamento.

Quando apropriado, pode ser usado um dispositivo de alívio de emergência com ajuste de pressão maior que o sistema de tratamento de alívio, aliviando para a atmosfera. Falhas de energia local, da fábrica e utilidades devem ser consideradas possíveis causas de sobrepressão e formação de vácuo. A perda de energia elétrica afeta diretamente qualquer válvula motorizada ou controles, e pode também interromper o suprimento de ar de instrumento. Durante este tipo de falha elétrica pode haver também a perda de fluidos de aquecimento e resfriamento.

A mudança de temperatura no fluido de alimentação do tanque devido à perda de resfriamento ou aumento de aquecimento pode causar sobrepressão neste tanque. Fluido de alimentação à temperatura baixa pode resultar em condensação de vapor e contração, causando vácuo. Os conteúdos de alguns tanques podem estar submetidos a reações químicas que podem gerar calor e/ou vapores.

Alguns exemplos de reações químicas incluem a alimentação inadvertida de água em tanques contendo ácidos e/ou ácidos usados, gerando vapor e/ou vaporização de hidrocarbonetos leves; reações fora de controle em tanques contendo hidroperóxido de cumeno, etc. Em alguns casos pode haver formação de espuma, causando alívio de dupla fase. Para avaliar estes casos, pode ser usada a tecnologia disponível no Design Institute for Emergency Relief Systems (DIERS) do grupo de usuários do American Institute of Chemical Engineers (AICHE) ou do grupo europeu do DIERS.

Para informação sobre proteção para evitar o transbordo de líquido, ver as API 2510, API RP 2350 e EN 13616. A prevenção contra o transbordo de líquido do tanque é efetuada pela salvaguarda de instrumentos e/ou por ações efetivas de intervenção do operador. Um aumento ou queda da pressão barométrica pode causar vácuo ou sobrepressão em um tanque. Esta situação deve ser considerada para tanques de estocagem refrigerados.

O efeito de falha aberta ou fechada de uma válvula de controle deve ser considerado para determinar o valor de pressão ou vácuo devido ao desbalanceamento de massa e/ou de energia. Por exemplo, a falha de uma válvula de controle na linha de líquido para um tanque deve ser considerada, porque pode sobrecarregar o equipamento de troca térmica, resultando na admissão, para dentro do tanque, de material em alta temperatura. A falha de uma válvula de controle também pode causar a queda do nível de líquido abaixo do bocal de saída do vaso pressurizado, permitindo a entrada de vapor em alta pressão neste tanque.

Se um tanque não isolado termicamente for preenchido com vapor, a taxa de condensação devido ao resfriamento ambiental pode exceder as taxas de alívio especificadas nesta norma. O uso de grandes aberturas (boca de visita aberta), o controle da taxa de resfriamento ou a injeção de gás não-condensável, como ar ou nitrogênio, são procedimentos frequentemente necessários para evitar a formação de vácuo interno excessivo. Tanques não isolados termicamente com espaços de vapores excepcionalmente quentes podem, durante uma tempestade, exceder os requisitos de aspiração térmica previstos nesta norma.

A contração de vapor pode causar um vácuo excessivo no tanque. Recomenda-se, para tanques aquecidos não isolados, com temperatura de espaço-vapor superior a 48,9°C (120°F), que seja realizada uma análise crítica de engenharia. Os conteúdos dos tanques podem ignitar, produzindo uma deflagração interna com sobrepressões que podem se desenvolver muito rapidamente, além da capacidade dos dispositivos de alívio. Para alívio de explosão, ver NFPA 68 e EN 13237. Para inertização, ver Anexo F.

A alimentação de produtos mais voláteis, do que aqueles normalmente armazenados, pode ser possível devido a distúrbios no processo a montante ou por erro humano. Isso pode resultar em sobrepressão. É necessário quantificar os requisitos de alívio para excesso de pressão ou vácuo produzido por qualquer causa aplicável, como apresentado para estabelecer as bases de projeto para o dimensionamento dos dispositivos de alívio ou quaisquer outros meios de proteção adequada.

Para auxiliar a quantificação, esta norma apresenta orientação para o cálculo detalhado referente às seguintes condições normalmente encontradas: aspiração normal resultante da máxima vazão de descarga do tanque (efeitos de transferência de líquido); aspiração normal resultante da contração ou condensação de vapores, causada pela máxima diminuição de temperatura do espaço-vapor (efeitos térmicos); expiração normal resultante da máxima vazão de entrada de líquido no tanque e máxima vaporização causada por tal entrada de líquido (efeitos de transferência de líquido); expiração normal resultante da expansão do vapor e vaporização do líquido causada pelo máximo aumento de temperatura do espaço-vapor (efeitos térmicos); alívios de emergência resultantes de exposição ao fogo externo.

Ao determinar os requisitos de alívio, deve ser considerado como base de projeto, o requisito da maior ocorrência individual ou qualquer combinação razoável e provável de ocorrências. No mínimo, deve ser considerada a combinação dos efeitos térmicos e de transferência de líquido para determinar a vazão de aspiração ou de expiração normal total. Exceto no caso de tanques de armazenamento refrigerados, é prática comum considerar somente a aspiração normal total para determinação dos requisitos necessários de alívio.

Isto é, cargas de aspiração devido a outras circunstâncias descritas são geralmente consideradas não coincidentes com a aspiração normal. Isto é considerado uma aproximação razoável, porque a aspiração térmica é uma condição severa e de curta duração. Para expiração total, considerar os cenários descritos e determinar se estes são coincidentes com os fluxos de expiração normal.

A ficha de emergência no transporte terrestre de produtos perigosos

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque.

A NBR 7503 de 06/2020 – Transporte terrestre de produtos perigosos — Ficha de emergência — Requisitos mínimos estabelece os requisitos mínimos para o preenchimento da ficha de emergência destinada a prestar informações de segurança do produto perigoso em caso de emergência ou acidente durante o transporte terrestre de produtos perigosos.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como podem ser definidas a equipagem e as partes por milhão?

Qual é o modelo de uma ficha de emergência?

Qual é a sequência de áreas e informações da ficha de emergência?

Os acidentes no transporte terrestre de produtos perigosos adquirem uma importância especial, uma vez que a intensidade de risco está associada à periculosidade do produto transportado. Considera-se produto perigoso aquele que representa risco para as pessoas, para a segurança pública ou para o meio ambiente, ou seja, produtos inflamáveis, explosivos, corrosivos, tóxicos, radioativos e outros produtos químicos que, embora não apresentem risco iminente, podem, em caso de acidentes, representar uma grave ameaça à população e ao meio ambiente.

Os acidentes no transporte desses produtos podem ter consequências catastróficas, sobretudo diante da proximidade de cidades e de populações lindeiras às principais rodovias. Além das perdas humanas de valor social incalculável, os custos decorrentes da contaminação ambiental atingem cifras muito elevadas. Deve-se levar em consideração que, especificamente, num acidente de transporte rodoviário de produtos perigosos, ainda que a empresa transportadora tenha tomado todos os cuidados e não tenha, a princípio, culpa pelo acidente, a responsabilidade pelos danos ambientais causados continua sendo da empresa transportadora, pois a ausência de culpa, neste caso, não é mais excludente da responsabilidade de indenizar e reparar os danos.

Assim, para diferentes produtos com o mesmo número ONU, o mesmo nome apropriado para embarque (inclusive o nome técnico, quando aplicável), mesmo grupo de embalagem, mesmo número de risco e o mesmo estado físico, pode ser usada a mesma ficha de emergência, desde que sejam aplicáveis as mesmas informações de emergência, exceto quando previsto em legislação vigente. A ficha de emergência é destinada às equipes de atendimento à emergência. As informações de segurança do produto transportado, bem como as orientações sobre as medidas de proteção e ações em caso de emergência devem constar na ficha de emergência para facilitar a atividade das equipes em uma emergência.

Os expedidores de produtos perigosos são responsáveis pela elaboração da ficha de emergência dos produtos com base nas informações fornecidas pelo fabricante ou importador do produto. O idioma a ser usado deve ser o oficial do Brasil. O modelo de ficha de emergência desta norma pode ser utilizado como instruções escritas para o caso de qualquer acidente com produtos perigosos, constantes no Acordo para a facilitação do transporte de produtos perigosos no Mercosul, desde que redigida nos idiomas oficiais dos países de origem, trânsito e destino.

A ficha de emergência deve fornecer as informações sobre o produto perigoso em seis áreas, cujos títulos e sequência estão descritos nessa norma. As seis áreas devem ser separadas claramente e os títulos devem ser apresentados em destaque. Esta norma permite flexibilidade para adaptar diferentes sistemas de edição, leiaute e transmissão de texto. É livre a formatação dos títulos e textos, como, fonte, tamanho, cor, maiúsculo, minúsculo, sublinhado etc.

A área “A” deve conter o seguinte: o título: “Ficha de emergência”; a identificação do expedidor, tanto para produtos nacionais quanto para importados, os títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Expedidor”: deve ser preenchido com a identificação do expedidor e o uso do título “Expedidor” é facultativo; logomarca da empresa: nesta área pode (facultativo) ser colocada a logomarca (logotipo) da empresa expedidora.

Caso a logomarca da empresa seja inserida, pode ser impressa em qualquer cor; título “Endereço”: deve ser preenchido com o endereço do Expedidor, sendo facultativa a inclusão do CEP. Não é necessário que o endereço constante na ficha de emergência seja o mesmo do documento fiscal, podendo ser o endereço da matriz ou de uma das filiais do expedidor, se houver. O uso do título “Endereço” é facultativo. O título “Telefone” ou “Telefones”: deve ser preenchido com o número do telefone do expedidor. Deve conter ainda o número do telefone (disponível 24 h por dia) da equipe que possa fornecer informações técnicas sobre o produto perigoso em caso de emergência. Este telefone pode ser do expedidor, do transportador, do fabricante, do importador, do distribuidor ou empresa contratada para atendimento à emergência.

Caso o telefone da equipe que possa fornecer informações técnicas sobre o produto seja do próprio expedidor, pode constar apenas o número de um telefone do expedidor. O uso do título “Telefone” ou “Telefones” é facultativo; títulos: “Número de risco”, “Número da ONU” ou “Número ONU”, “Classe ou subclasse de risco”, “Descrição da classe ou subclasse de risco” e “Grupo de embalagem”, devendo estes serem preenchidos com as seguintes informações: título “Número de risco”: deve ser preenchido com o número de risco do produto perigoso.

No caso específico dos explosivos da classe 1 que não possuem número de risco, deve ser colocada a sigla “NA” referente à informação de “não aplicável”; título “Número da ONU” ou “Número ONU”: devendo ser preenchido com o número da ONU do produto perigoso; título “Classe ou subclasse de risco”: deve ser preenchido com o número da classe de risco do produto perigoso, nos casos específicos das classes 3, 7, 8 e 9. Nos casos das classes de risco 2, 4, 5 e 6, onde há subdivisão em subclasses de risco, deve ser informado o número da subclasse de risco do produto perigoso.

No caso específico da classe 1, devem ser informados o número da subclasse de risco e a letra correspondente ao grupo de compatibilidade do explosivo. A classe ou subclasse de risco se refere ao risco principal do produto perigoso. Quando existir risco subsidiário para o produto, pode ser incluído nesta área ou na área “B”. Caso opte por incluir nesta área, deve ser incluído o título “Risco subsidiário” e preenchido com o número da classe ou subclasse de risco subsidiário do produto perigoso; título “Descrição da classe ou subclasse de risco”: deve ser preenchido com a definição (nome) da classe ou subclasse de risco do produto perigoso.

A definição (nome) da classe ou subclasse de risco se refere ao risco principal do produto. No caso da Classe 9, em razão da definição (nome) ser extensa, na descrição da classe de risco, podem constar apenas as palavras “Substâncias e artigos perigosos diversos”. No caso da subclasse, podem constar apenas as palavras “Sólidos inflamáveis”. No caso específico da classe 1, deve ser preenchido com a definição (nome) “Explosivos”, referente à classe de risco, e não as definições (nomes) das subclasses. Quando existir risco subsidiário para o produto e for incluído nesta área, este título “Descrição da classe ou subclasse de risco” deve ser preenchido com a definição (nome) da classe ou subclasse de risco principal e subsidiário do produto perigoso.

O título “Grupo de embalagem” deve ser preenchido em algarismos romanos o grupo de embalagem do produto perigoso indicado na coluna 6 ou em provisão especial da relação de produtos perigosos. Nos casos onde na coluna 6 ou em alguma provisão especial não constar o grupo de embalagem, deve ser colocada a sigla “NA” referente à informação de “não aplicável”. O grupo de embalagem, quando exigido, consta na coluna 6 ou em alguma provisão especial da relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação em vigor.

O título: “Nome apropriado para embarque”. O nome apropriado para embarque do produto perigoso deve ser preenchido conforme previsto na relação de produtos perigosos das instruções complementares do regulamento de transporte terrestre de produtos perigosos da legislação vigente. Para resíduo classificado como perigoso para o transporte terrestre, é opcional a inclusão da palavra “Resíduo” antes do nome apropriado para embarque na ficha de emergência. Para o número ONU 1263 ou ONU 3066, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS” acondicionadas no mesmo volume; ONU 3470, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, CORROSIVO, INFLAMÁVEL” acondicionadas no mesmo volume.

ONU 3464, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” pode ser utilizado para expedições de embalagens contendo “TINTA” ou “MATERIAL RELACIONADO COM TINTAS, INFLAMÁVEL, CORROSIVO” acondicionadas no mesmo volume. ONU 1210, o nome apropriado para embarque “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” pode ser utilizado para expedições de embalagens contendo “TINTA PARA IMPRESSÃO” ou “MATERIAL RELACIONADO COM TINTA PARA IMPRESSÃO” acondicionadas no mesmo volume.

O título “Nome comercial”: tanto o título como o nome comercial do produto perigoso podem (facultativo) ser acrescidos abaixo do nome apropriado para embarque. O nome apropriado para embarque consta na relação de produtos perigosos das instruções complementares ao regulamento de transporte terrestre de produtos perigosos constante na legislação vigente. Para o caso dos produtos que possuem as provisões especiais 274 e 318, é colocado o nome técnico entre parênteses imediatamente após o nome apropriado para embarque. A área “B” é destinada ao título “Aspecto”.

Esta área deve ser preenchida com a descrição do estado físico do produto, podendo-se citar cor e odor. Pode ser incluída nesta área ou na área “A” a descrição do risco subsidiário do produto, quando existir. Incompatibilidades químicas previstas na NBR 14619 podem ser expressas neste campo, bem como os produtos não classificados como perigosos que possam acarretar reações químicas que ofereçam risco. Incompatibilidades químicas previstas na FISPQ e não previstas na NBR 14619 podem ser incluídas nesta área, quando aplicável no transporte.

A área “C” é destinada ao título “EPI de uso exclusivo da equipe de atendimento à emergência” ou ao título “EPI de uso exclusivo para a equipe de atendimento à emergência”. Devem ser mencionados, única e exclusivamente, os equipamentos de proteção individual para o (s) integrante (s) da equipe que forem atender à emergência, devendo-se citar a vestimenta apropriada (por exemplo, roupa, capacete, luva, bota, etc.) e o equipamento de proteção respiratória, quando exigido: tipo da máscara (peça semifacial, peça facial inteira etc.) e tipo de filtro (químico, mecânico ou combinado).

Em razão da ficha de emergência ser destinada às equipes de atendimento à emergência, neste campo não pode ser incluído o EPI do motorista ou da equipagem (transporte ferroviário), constante na NBR 9735. Após a relação dos equipamentos, pode ser incluída a seguinte frase: “O EPI do motorista está especificado na NBR 9735”. No caso de transporte ferroviário, o termo “motorista” pode ser substituído por “equipagem”, ou utilizar os dois termos “motorista e/ou equipagem”. No caso de transporte ferroviário, entende-se que o termo “motorista” é aplicável também à equipagem do transporte ferroviário.

API RP 652: os revestimentos de tanques de armazenamento de petróleo

Essa norma, editada em 2020 pela American Petroleum Institute (API), fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes.

A API RP 652:2020 – Linings of Aboveground Petroleum Storage Tank Bottoms fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes. Em muitos casos, os revestimentos do fundo do tanque provaram ser um método eficaz para evitar a corrosão interna do fundo do tanque de aço.

O objetivo desta prática recomendada (RP) é fornecer informações e orientações específicas para tanques de armazenamento de aço acima do solo em serviço de hidrocarbonetos. Certas práticas recomendadas também podem ser aplicáveis a tanques em outros serviços. Esta prática recomendada destina-se a servir apenas como um guia. As especificações detalhadas do revestimento do fundo do tanque não estão incluídas. Não designa os revestimentos específicos do fundo do tanque para todas as situações, devido à grande variedade de ambientes de serviço.

A NACE No.10/SSPC-PA 6 e a NACE No. 11/SSPC-PA 8 são normas da indústria para a instalação de revestimentos nos fundos dos tanques. Elas são escritas em linguagem obrigatória e contêm critérios específicos destinados ao uso por pessoas que fornecem especificações escritas para revestimentos de tanques e navios. Estes documentos devem ser considerados ao projetar e instalar um sistema de revestimento para tanques com fundo de aço.

Conteúdo da norma

1 Escopo……………………………. 1

2 Referências normativas…………….. 1

3 Termos e definições………………….. 2

4 Mecanismos de corrosão…………….. 6

4.1 Geral……………………… ………. 6

4.2 Corrosão química………………………… 6

4.3 Corrosão da célula de concentração………….. 6

4.4 Corrosão das células de oxigênio……………….. 7

4.5 Corrosão de células galvânicas………………… 7

4.6 Corrosão influenciada microbiologicamente (MIC)……… 7

4.7 Corrosão por erosão…………………………. 7

4.8 Corrosão relacionada ao atrito…………………. 8

4.9 Corrosão generalizada versus localizada…… …….. 8

4.10 Quebra por corrosão sob tensão………………… 8

4.11 Mecanismos de corrosão internos……………… 8

5 Determinação da necessidade de revestimento do fundo do tanque………………. 9

5.1 Geral……………………. ………. 9

5.2 Revestimentos para proteção contra corrosão…….. 9

5.3 Histórico de corrosão do tanque……………………… 9

5.4 Fundação do tanque……………………………… 10

6 Seleção do revestimento do fundo do tanque……………… 10

6.1 Geral………………………………………. 10

6.2 Zinco inorgânico/silicato de zinco (IOZ)…………….. 11

6.3 Revestimentos inferiores do tanque de filme fino…………….. 12

6.4 Revestimentos de fundo de tanque sem reforço de filme espesso……………… 13

6.5 Revestimentos inferiores reforçados do tanque de filme espesso………………….. 14

6.6 Circunstâncias que afetam a seleção de revestimento… 16

6.7 Seleção de revestimentos internos para tanques que armazenam combustíveis alternativos…………………. 18

7 Preparação da superfície………………………. 20

7.1 Geral…………………………….. …….. 20

7.2 Pré-limpeza…………………………… 21

7.3 Reparo inferior e preparação subsequente de solda e componente………………… 21

7.4 Limpeza da superfície……………………………….. 21

7.5 Perfil de superfície ou padrão de ancoragem………….. 22

7.6 Limpeza com ar e por abrasivo………………………….. 22

7.7 Remoção de sais………………………….. 22

7.8 Remoção de poeira…………………………. 22

8 Aplicação de revestimento…………………. 22

8.1 Geral…………………………….. …….. 22

8.2 Diretrizes para aplicação de revestimento……………… 23

8.3 Controle de temperatura e umidade………………. 23

8.4 Espessura do revestimento………………………. 23

8.5 Cura de revestimento…………………… 23

9 Inspeção…………………………… 24

9.1 Geral…………………….. …….. 24

9.2 Qualificação do pessoal de inspeção………………. 24

9.3 Parâmetros de inspeção recomendados……….. 24

10 Avaliação, reparo e substituição de revestimentos existentes……………….. 25

10.1 Geral………. …….. 25

10.2 Métodos de avaliação…………. 25

10.3 Critérios de avaliação para revestimentos………. 25

10.4 Avaliando a capacidade de manutenção de revestimentos existentes………………………….. 26

10.5 Determinando a causa da degradação/falha do revestimento…………………….. 26

10.6 Reparo e substituição do revestimento……. 26

11 Maximizando a vida útil do revestimento pela seleção e especificação adequadas de material……. 27

11.1 Geral……………………………… 27

11.2 Seleção de material de revestimento…………….. 28

11.3 Especificações escritas………………………. 28

12 Saúde, segurança e meio ambiente………………… 28

12.1 Geral………………………….. 28

12.2 Entrada do tanque……………………. …. 29

12.3 Preparação da superfície e aplicação de revestimento……29

12.4 Folhas de dados de segurança do fabricante…………….. 29

Bibliografia……… 30

BS EN 1706: a composição química do alumínio e suas ligas

Essa norma europeia, editada pelo BSI em 2020, especifica os limites da composição química das ligas de fundição de alumínio, e as propriedades mecânicas dos provetes vazados separadamente para essas ligas. O Anexo C é um guia para a seleção de ligas para um uso ou processo específico.

A BS EN 1706:2020 – Aluminium and aluminium alloys. Castings. Chemical composition and mechanical properties abrange os limites de composição química e propriedades mecânicas das ligas de fundição de alumínio. Essa norma é uma atualização abrangente da versão 2010. Essa norma é indicada para quem faz casting em engenharia, aqueles que fazem fundição em engrenagens automotivas e aeroespaciais, para quem faz investimentos, designers, arquitetos.

Esta norma europeia especifica os limites de composição química das ligas de fundição de alumínio e as propriedades mecânicas dos provetes vazados separadamente para essas ligas. O Anexo C é um guia para a seleção de ligas para um uso ou processo específico. Essa norma fornece orientações particularmente importantes, uma vez que a maioria do alumínio, em alguns países, é reciclada. Além disso, o seu uso cria condições equitativas entre rodízios, produtores e designers; ajuda na criação de melhores produtos; aumenta a confiança, dando aos usuários finais confiança nos produtos; permite a entrada em novos mercados e facilita o comércio; e gerencia os riscos.

A BS EN 1706:2020 deve ser usada em conjunto com as BS EN 576, BS EN 1559-1, BS EN 1559-4, BS EN 1676 e BS EN ISO 8062-3. Essa norma pode contribuir para que os usuários alcancem o Objetivo de Desenvolvimento Sustentável da ONU em indústria, inovação e infraestrutura, porque promove uma infraestrutura resiliente. Também contribui para o Objetivo 12, sobre consumo e produção responsáveis, porque apoia a reciclagem de alumínio.

A norma em sua edição de 2020 foi amplamente reescrita para atualizá-la com as metodologias atuais. Em comparação com a edição de 2010, foram feitas as alterações significativas. A referência normativa BS EN 10002-1 foi substituída pela BS EN ISO 6892-1. Os termos e definições foram atualizados. Na tabela 1 duas ligas foram excluídas e seis adicionadas, o limite máximo de chumbo foi reduzido para 0,29% e notas de rodapé foram adicionadas e modificadas.

Além disso, foram alterados os limites de composição química das ligas EN AC-43000 [EN AC-Al Si10Mg], EN AC43300 [EN AC-Al Si9Mg] e EN AC-51300 [EN AC-AlMg5]. Na tabela 2, duas ligas foram excluídas e três adicionadas, foi adicionada uma nova nota de rodapé e as propriedades mecânicas das ligas já existentes EN AC-42100 [EN AC-Al Si7Mg0,3], EN AC-43300 [EN AC-Al Si9Mg] e EN AC-71100 [EN AC-Al Zn10Si8Mg] foram modificadas.

Na tabela 3, duas ligas foram excluídas e duas adicionadas, as propriedades mecânicas das ligas já existentes EN AC-46200 [EN AC-Al Si8Cu3], EN AC-43300 [EN AC-Al Si9Mg] e EN AC-71100 [EN AC-Al Zn10Si8Mg] foram modificadas. Na Tabela A.1, uma liga foi excluída e três adicionadas, as propriedades mecânicas das ligas já existentes EN AC-43500 [EN AC-Al Si10MnMg], EN AC-46000 [EN AC-Al Si9Cu3 (Fe)] e EN AC-71100 [EN AC-Al Zn10Si8Mg] foram modificadas.

Foi adicionado um novo Anexo B e o antigo Anexo B foi renomeado para Anexo C. Na Tabela C.1, as mesmas ligas da Tabela 1 foram adicionadas ou excluídas, respectivamente. A adequação de alguns métodos de fundição foi revisada para algumas ligas, bem como algumas classificações de propriedades, e as notas de rodapé foram modificadas. O antigo Anexo C foi renomeado para o anexo D e o quadro D.1 foi completamente revisado.

Conteúdo da norma

Prefácio da versão europeia………………… … 3

1 Escopo……………………………….. ……………. 6

2 Referências normativas……………………… 6

3 Termos e definições………………………….. 6

4 Informações para pedidos…………………… 8

5 Sistemas de designação…………………….. 8

5.1 Sistema de designação numérica…………… 8

5.2 Sistema de designação baseado em símbolos químicos…………… 8

5.3 Designações de têmpera…………………. 8

5.4 Designações do processo de fundição…………. 9

5.5 Designações a serem incluídas nos desenhos…………… 9

6 Composição química……………… ……………………………. 9

6.1 Geral…………………………………….. ………… 9

6.2 Amostras para análise química…………. 9

7 Propriedades mecânicas…………………….. 15

7.1 Geral……………………………………. ……… 15

7.2 Ensaios de tração…………………………. 19

7.3 Provetes…………………………………. … 19

7.3.1 Geral……………………………. ……….. 19

7.3.2 Amostras de ensaio fundidas separadamente………………….. 19

7.3.3 Provetes retirados de peças vazadas……………….. 20

7.4 Ensaios de dureza………………………………………. 21

8 Regras de arredondamento para determinação da conformidade…………… 21

Anexo A (informativo) Propriedades mecânicas de ligas fundidas sob alta pressão…………………….. 22

Anexo B (informativo) Propriedades mecânicas potencialmente alcançáveis dos provetes coletados de um grupo……………… 23

Anexo C (informativo) Comparação das características de fundição, mecânicas e outras propriedades…………………………….. 25

Anexo D (informativo) Comparação entre as designações de ligas de alumínio fundido………………….. 34

Bibliografia…………………….. 36

BS EN IEC 62984-2: as baterias secundárias para alta temperatura

Essa norma europeia, editada em 2020 pelo BSI, especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes).

A BS EN IEC 62984-2:2020 – High-temperature secondary batteries. Safety requirements and tests especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes). As baterias de alta temperatura são sistemas eletroquímicos cuja temperatura operacional interna mínima das células está acima de 100 °C.

CONTEÚDO DA NORMA

PREFÁCIO…………………… 4

1 Escopo……………………… 6

2 Referências normativas………… ….. 6

3 Termos, definições, símbolos e termos abreviados………… 7

3.1 Construção da bateria……………………………………. 7

3.2 Funcionalidade da bateria………………………….. 10

3.3 Símbolos e termos abreviados…………………….. 12

4 Condições ambientais (de serviço)…………………………… 13

4.1 Geral………………………. …………… 13

4.2 Condições normais de serviço para instalações estacionárias……………………. .13

4.2.1 Geral………………… ……… 13

4.2.2 Condições ambientais normais adicionais para instalações internas ……………. 14

4.2.3 Condições ambientais normais adicionais para instalações externas ………….. 14

4.3 Condições especiais de serviço para instalações estacionárias……………………….. .14

4.3.1 Geral…………………. ……… 14

4.3.2 Condições especiais de serviço adicionais para instalações internas………………….. 14

4.3.3 Condições especiais de serviço adicionais para instalações externas………………… 14

4.4 Condições normais de serviço para instalações móveis (exceto propulsão) ………………. 14

4.5 Condições especiais de serviço para instalações móveis (exceto propulsão) ……………… 14

5 Projeto e requisitos……………………… 15

5.1 Arquitetura da bateria……………………. 15

5.1.1 Módulo…………. ………. 15

5.1.2 Bateria………………. ……….. 15

5.1.3 Montagem das baterias………………. 16

5.1.4 Subsistema de gerenciamento térmico……….. 17

5.2 Requisitos mecânicos……………………………. 17

5.2.1 Geral…………………………… ……… 17

5.2.2 Carcaça da bateria………………….. 17

5.2.3 Vibração………………………… …….. 18

5.2.4 Impacto mecânico……………………… 18

5.3 Requisitos ambientais………………………. 18

5.4 Requisitos de Electromagnetic compatibility (EMC)…………….. 18

6 Ensaios……… ……………………… 19

6.1 Geral……………… …………… 19

6.1.1 Classificação dos ensaios………………….. 19

6.1.2 Seleção de objetos de ensaio…………………….. 19

6.1.3 Condições iniciais do DUT antes dos ensaios………………… 20

6.1.4 Equipamento de medição……………. 20

6.2 Lista de ensaios…………….. ……….. 20

6.3 Ensaios de tipo…………….. ………… 21

6.3.1 Ensaios mecânicos………………. 21

6.3.2 Ensaios ambientais…………………………. 23

6.3.3 Ensaios EMC…………………….. ……. 24

6.4 Ensaios de rotina……………… …….. 33

6.5 Ensaios especiais………………. …….. 33

7 Marcações………….. …………………. 33

7.1 Geral……………………………. …………… 33

7.2 Marcação da placa de dados……………………. 33

8 Regras para transporte, instalação e manutenção ……… 33

8.1 Transporte…………………….. …. 33

8.2 Instalação………………. ………. 33

8.3 Manutenção………………… ……. 33

9 Documentação……………………. ………… 33

9.1 Manual de instruções……………………. 33

9.2 Relatório de ensaio……. ……….. 34

Bibliografia……………… ………………….. 35

Figura 1 – Componentes de uma bateria………………….. 16

Figura 2 – Componentes de um conjunto de baterias……….. 16

Figura 3 – Subsistema de gerenciamento térmico……………………. 17

Tabela 1 – Lista de símbolos e termos abreviados………………….. 13

Tabela 2 – Ambientes eletromagnéticos……………. 19

Tabela 3 – Ensaios de tipo…………………….. ………….. 21

Tabela 4 – Ensaio de calor úmido – Estado estacionário…………………………. 23

Tabela 5 – Nível de gravidade dos ensaios EMC………………………… 25

Tabela 6 – Descrição dos critérios de avaliação para ensaios de imunidade…….. …….. 26

Tabela 7 – Parâmetros de ensaio EFT/Burst……………….. 28

Tabela 8 – Níveis de ensaio de surto…………………. ….. 29

Segundo a International Electrotechnical Commission (IEC), as baterias são dispositivos indispensáveis na vida cotidiana: muitos itens que são usados diariamente, desde os telefones celulares até os laptops, dependem da energia da bateria para funcionar. No entanto, apesar de uso mundial, a tecnologia das baterias está subitamente dominando os holofotes porque é usada para alimentar todos os tipos de diferentes veículos elétricos (VE), de carros elétricos a scooters eletrônicas, que estão regularmente nos mercados. Para os ambientalistas, no entanto, a tecnologia da bateria é mais interessante como forma de armazenar eletricidade, à medida que a geração e o uso de energia renovável – que é intermitente – aumentam.

As baterias de íon lítio podem ser recicladas, mas esse processo permanece caro e, por enquanto, as taxas de recuperação de material raramente chegam a 20%. As matérias-primas usadas nas baterias de íon lítio são geralmente níquel, cobalto, manganês e lítio, que são caros de se obter. Algumas dessas matérias primas são escassas e, mesmo que as pesquisas estejam progredindo rapidamente, alguns laboratórios conseguiram atingir 80% dos níveis de recuperação.

Os cientistas também estão analisando as baterias recarregáveis de ar lítio como uma alternativa ao íon lítio. As baterias de íon de lítio usadas em uma aplicação podem ser avaliadas quanto à capacidade de serem usadas em outras aplicações menos exigentes. Uma segunda vida útil possível para as baterias é um componente para estações de carregamento flexíveis.

São estações de carregamento rápido que podem ser operadas de forma autônoma durante eventos de grande escala, como festivais ou eventos esportivos. As baterias de veículos elétricos podem ser reutilizadas em tudo, desde energia de backup para data centers até sistemas de armazenamento de energia. Na Europa, vários fabricantes de veículos, empresas pioneiras no mercado de carros elétricos, instalaram baterias usadas principalmente em diferentes tipos de sistemas de armazenamento de energia, variando de pequenos dispositivos residenciais a soluções maiores em escala de grade em contêiner.

API STD 650: a fabricação dos tanques soldados para armazenamento de óleo

Essa norma, editada em 2020 pelo American Petroleum Institute (API), estabelece os requisitos mínimos para o material, o projeto, a fabricação, a montagem e a inspeção de tanques de armazenamento soldados verticais, cilíndricos, acima do solo, de topo fechado e aberto em vários tamanhos e capacidades para pressões internas próximas à pressão atmosférica (pressões internas não excedendo o peso das chapas de teto), mas uma pressão interna mais alta é permitida quando requisitos adicionais são atendidos.

A API STD 650:2020 – Welded Tanks for Oil Storage estabelece os requisitos mínimos para o material, o projeto, a fabricação, a montagem e a inspeção de tanques de armazenamento soldados verticais, cilíndricos, acima do solo, de topo fechado e aberto em vários tamanhos e capacidades para pressões internas próximas à pressão atmosférica (pressões internas não excedendo o peso das chapas de teto), mas uma pressão interna mais alta é permitida quando requisitos adicionais são atendidos. Aplica-se apenas a tanques cujo fundo inteiro é uniformemente suportado e a tanques em serviço não refrigerado que tenham uma temperatura máxima de projeto de 93 ° C (200 ° F) ou menos.

Esta norma fornece à indústria os tanques de segurança adequados e com economia razoável para o uso no armazenamento de petróleo, produtos derivados de petróleo e outros produtos líquidos. Esta norma não apresenta ou estabelece uma série fixa de tamanhos de tanque permitidos, em vez disso se destina a permitir que o comprador selecione o tamanho do tanque que melhor atenda às suas necessidades.

Essa norma destina-se a ajudar os compradores e os fabricantes a encomendar, fabricar e montar tanques e não se destina a proibir os compradores e os fabricantes de comprar ou fabricar tanques que atendam a especificações diferentes das contidas nesta norma. Um marcador (•) no início de um parágrafo indica que há uma decisão ou ação expressa exigida ao comprador.

A responsabilidade do comprador não se limita apenas a essas decisões ou ações. Quando essas decisões e ações são tomadas, elas devem ser especificadas em documentos como requisições, requisições de mudança, folhas de dados e desenhos. Esta norma possui requisitos dados em dois sistemas alternativos de unidades.

O fabricante deve cumprir com todos os requisitos dados nesta norma em unidades SI; ou todos os requisitos dados nesta norma em unidades habituais nos EUA. A seleção de qual conjunto de requisitos (SI ou US Customary) a aplicar deve ser uma questão de acordo mútuo entre o fabricante e o comprador e indicado na Folha de Dados, Página 1. Todos os tanques e acessórios devem cumprir a Folha de Dados e todos os acessórios.

Os tanques montados em campo devem ser fornecidos completamente montados, inspecionados e prontos para as conexões de serviço, a menos que especificado de outra forma. Os tanques fabricados nos locais onde ficarão devem ser fornecidos inspecionados e prontos para instalação. Os anexos desta norma fornecem várias opções de projeto que requerem decisões do comprador, requisitos, recomendações e informações da norma que complementam a norma básica.

Exceto pelo Anexo L, um Anexo se torna um requisito somente quando o comprador especifica uma opção coberta por esse Anexo ou especifica todo o Anexo. A designação normativa deve ser entendida como obrigatória. A designação informativo deve ser entendida como não obrigatória (isto é, são dados informativos, recomendações, sugestões, comentários, amostras e exemplos). O conteúdo dos anexos a esta norma é normativo ou informativo. Normativo” é dividido em

– Sempre necessário (L).

– Necessário se especificado pelo comprador (A, E, J, Y, U, W).

– Necessário se materiais especiais forem especificados pelo comprador (AL, N, S, SC, X).

– Necessário se pressão, vácuo e alta temperatura forem especificados pelo comprador (F, V, M).

– Necessário se componentes ou métodos especiais de projeto ou construção forem especificados pelo comprador (C, G, H, I, O, P).

Todos os outros anexos são informativos (B, D, CE, K, R, T).

O anexo A fornece requisitos alternativos simplificados de projeto para tanques onde há os componentes sob tensão, como placas de carcaça e placas de reforço, e estão limitados a uma espessura nominal máxima de 12,5 mm (1/2 pol.). Incluindo qualquer tolerância à corrosão e cujas temperaturas do metal de projeto excedam os valores mínimos indicados no anexo. O anexo AL fornece requisitos para tanques de alumínio. O Anexo B fornece recomendações para o projeto e construção de fundações para tanques de armazenamento de óleo de fundo plano. O anexo C estabelece requisitos mínimos para coberturas flutuantes externas do tipo pontão e do tipo dois andares.

O anexo D fornece requisitos para o envio de perguntas técnicas relacionadas a esta norma. O anexo E estabelece os requisitos mínimos para os tanques sujeitos a carga sísmica. Um projeto alternativo ou suplementar pode ser mutuamente acordado entre o fabricante e o comprador. O anexo F fornece requisitos para o projeto de tanques sujeitos a uma pequena pressão interna. O anexo G fornece requisitos para coberturas de cúpula de alumínio.

O anexo H fornece requisitos mínimos que se aplicam a um teto flutuante interno em um tanque com um teto fixo na parte superior da carcaça do tanque. O Anexo I fornece detalhes aceitáveis de construção que podem ser especificados pelo comprador para o projeto e construção de sistemas de tanques e fundações que fornecem detecção de vazamentos e proteção de subleito no caso de vazamento no fundo do tanque, e prevê tanques suportados por grelhar.

O anexo J fornece requisitos que abrangem o conjunto completo da oficina de tanques que não excedem 6 m (20 pés) de diâmetro. O anexo K fornece uma amostra de aplicação do método do ponto de projeto variável para determinar as espessuras das placas de revestimento. O anexo L fornece a folha de dados e as instruções para listar as informações necessárias a serem usadas pelo comprador e pelo fabricante. O uso da Folha de Dados é obrigatório, a menos que renunciado pelo comprador.

O anexo M estabelece requisitos para tanques com uma temperatura máxima de projeto superior a 93 ° C (200 ° F), mas não superior a 260 ° C (500°F). O anexo N fornece requisitos para o uso de chapas e tubos novos ou não utilizados que não sejam completamente identificados como cumprindo qualquer especificação listada para uso de acordo com esta norma. O anexo O fornece requisitos e recomendações para o projeto e construção de conexões de fundo para tanques de armazenamento.

O anexo P fornece requisitos para o projeto de aberturas de revestimento que estejam em conformidade com a Tabela 5.6a e a Tabela 5.6b que estão sujeitas a cargas externas de tubulação. Um projeto alternativo ou suplementar pode ser acordado pelo comprador ou fabricante. O Anexo R fornece referências a vários documentos e publicações do setor que fornecem orientações adicionais para considerações específicas sobre design e seleção de materiais, a fim de reduzir ou impedir que mecanismos de corrosão acelerados danifiquem um tanque em serviços de produtos não petrolíferos.

O anexo S fornece requisitos para tanques de aço inoxidável. O anexo SC fornece requisitos para tanques de materiais mistos que utilizam aço inoxidável (incluindo austenítico e duplex) e aço carbono no mesmo tanque para anéis de casca, placas inferiores, estrutura do telhado e outras partes de um tanque que exijam alta resistência à corrosão. O anexo T resume os requisitos para o exame por método de exame e as seções de referência dentro da norma.

As normas de aceitação, qualificações do inspetor e requisitos de procedimentos também são fornecidas. O presente anexo não se destina a ser utilizado isoladamente para determinar os requisitos de exame dentro desta norma. Os requisitos específicos listados em cada seção aplicável devem ser seguidos em todos os casos. O anexo U fornece requisitos que abrangem a substituição do exame ultrassônico em vez do exame radiográfico.

O anexo V fornece requisitos adicionais para tanques projetados para carregamento externo por pressão (vácuo) superior a 0,25 kPa (1 pol./de água). O anexo W fornece recomendações que cobrem as questões comerciais e de documentação. Requisitos alternativos ou suplementares podem ser mutuamente acordados entre o fabricante e o comprador. O anexo X fornece requisitos para tanques duplex de aço inoxidável. O anexo Y fornece requisitos para os licenciados da API que desejam marcar seus produtos com o monograma da API.

As regras desta norma não são aplicáveis além dos seguintes limites de tubulação conectada interna ou externamente ao teto, concha ou fundo dos tanques construídos de acordo com esta norma. Por exemplo, a face do primeiro flange em conexões flangeadas aparafusadas, a menos que sejam fornecidas tampas ou persianas conforme permitido nesta norma. A primeira superfície de vedação para conexões ou acessórios proprietários. A primeira junta rosqueada no tubo em uma conexão rosqueada à carcaça do tanque. A primeira junta circunferencial nas conexões dos tubos de extremidade de soldagem se não for soldada a um flange.

O fabricante é responsável por cumprir todas as disposições desta norma. A inspeção pelo comprador não nega a obrigação de o fabricante fornecer o controle de qualidade e a inspeção necessária para garantir essa conformidade. O fabricante também deve comunicar os requisitos especificados aos subcontratantes ou fornecedores relevantes que trabalham a pedido do fabricante.

O comprador deve especificar na Folha de Dados, Linha 23, os regulamentos jurisdicionais aplicáveis e os requisitos do proprietário que podem afetar o projeto e a construção do tanque e aqueles que se destinam a limitar a evaporação ou liberação de conteúdo líquido do tanque. Quais regulamentos/requisitos, se houver, se aplicam, dependem de muitos fatores, como a unidade de negócios à qual o tanque está atribuído, a pressão de vapor dos líquidos armazenados no tanque, os componentes do líquido armazenado no tanque, a localização geográfica do tanque. tanque, a data de construção do tanque, a capacidade do tanque e outras considerações.

Essas regras podem afetar as questões como quais tanques requerem coberturas flutuantes e a natureza de sua construção; os tipos e detalhes das vedações utilizadas no espaço da borda anular do teto flutuante e nas aberturas no teto. O comprador deve fornecer todas as autorizações de jurisdição que possam ser necessárias para a montagem do (s) tanque (s), incluindo licenças para o descarte da água do ensaio hidráulico. O fabricante deve fornecer todas as outras permissões necessárias para concluir ou transportar o tanque.

O comprador se reserva o direito de fornecer pessoal para observar todo o trabalho da loja e do local de trabalho dentro do escopo do trabalho contratado (incluindo testes e inspeção). Esses indivíduos devem ter acesso total e gratuito para esses fins, sujeitos a restrições de segurança e cronograma. Nessa norma, o texto que indica que o comprador aceita, concorda, revisa ou aprova o projeto, o processo de trabalho, a ação de fabricação do fabricante, etc., não deve limitar ou aliviar a responsabilidade do fabricante de obedecer aos códigos de projeto especificados, especificações do projeto e desenhos e mão de obra profissional.

O fabricante deve informar o comprador sobre quaisquer conflitos identificados entre esta norma e qualquer documento referenciado pelo comprador e solicitar esclarecimentos. Nesta norma, o texto que indica que qualquer questão em particular está sujeita a acordo entre o comprador e o fabricante deve ser interpretado como exigindo que tal contrato seja documentado por escrito. Para os requisitos de documentação, deve-se atentar para o Anexo W e a Folha de Dados para que cobrem os vários documentos a serem desenvolvidos para o tanque. Quanto às fórmulas, onde as unidades não estiverem definidas nessa norma, deve- usar as unidades consistentes (por exemplo, pol., pol.2, pol.3, lbf/pol.2).

A proteção contra incêndio em áreas de armazenamento de aerossóis por chuveiros automáticos

Conheça os requisitos mínimos para a proteção contra incêndio de áreas de armazenamento e de comercialização de aerossóis, utilizando sistemas de chuveiros automáticos.

A NBR 16812 de 02/2020 – Proteção contra incêndio de áreas de armazenamento e exposição de aerossóis, utilizando sistemas de chuveiros automáticos especifica os requisitos mínimos para a proteção contra incêndio de áreas de armazenamento e de comercialização de aerossóis, utilizando sistemas de chuveiros automáticos. Este documento é aplicável somente aos aerossóis conforme estabelecidos neste documento.

São fornecidos requisitos mínimos de proteção para as seguintes situações: armazenamento de quantidades limitadas de aerossóis em áreas não segregadas de armazéns de uso geral; armazenamento de aerossóis em áreas segregadas de armazéns de uso geral; armazenamento de aerossóis em armazéns exclusivos para essa finalidade; armazenamento de aerossóis em áreas destinadas ao armazenamento de líquidos combustíveis e inflamáveis; armazenamento de aerossóis em armazéns de líquidos combustíveis e inflamáveis; armazenamento de aerossóis em áreas de comercialização em estabelecimentos comerciais; armazenamento em áreas de armazenamento de estabelecimentos comerciais.

Esta norma não trata da proteção das seguintes situações: áreas de fabricação e envase de aerossóis; aerossóis classificados como plásticos X; aerossóis de nível 3, expostos e armazenados pelo método de empilhamento sólido ou empilhamento sobre paletes. Não tem a intenção de evitar a utilização de sistemas, métodos ou dispositivos de qualidade, robustez, resistência ao fogo, eficácia, durabilidade ou segurança, equivalentes ou superiores em relação aos descritos nesta norma.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os requisitos de projeto de sistemas de chuveiros automáticos para proteção de armazenamento de aerossóis de nível 2 e de nível 3?

Como devem ser instalados os chuveiros intraprateleiras?

Quais são as precauções adicionais para armazenamento de aerossóis em armazéns de uso geral, sem segregação de aerossóis?

Como executar a separação de armazenamento de aerossóis do armazenamento de outros produtos, utilizando-se tela metálica?

Para os efeitos deste documento, os aerossóis são classificados de acordo com o volume e o material do recipiente e com o calor de combustão do conteúdo do recipiente (ver tabela abaixo), aplicando-se aos descritos abaixo. O aerossol de nível 1 é o disponível em recipientes metálicos de até 1.000 mL e recipientes plásticos ou de vidro de até 125 mL, cujo conteúdo apresente calor de combustão química menor ou igual a 20 kJ/g. O aerossol de nível 2 é o disponível em recipientes metálicos de até 1.000 mL e recipientes plásticos ou de vidro de até 125 mL, cujo conteúdo apresente calor de combustão química maior que 20 kJ/g e menor ou igual a 30 kJ/g.

O aerossol de nível 3 está disponível em recipientes metálicos de até 1.000 mL e recipientes plásticos ou de vidro de até 125 mL, cujo conteúdo apresente calor de combustão química maior que 30 kJ/g. O aerossol de plástico nível 1 está disponível em recipientes plásticos maiores que 125 mL e menores que 1.000 mL, que cumpram os requisitos já apresentados.

O produto-base não tem qualquer ponto de ignição quando ensaiado em conformidade com a ASTM D 92 e o propelente não é inflamável. O produto-base não apresenta combustão sustentada quando ensaiado em conformidade com a 49 CFR 173, Apêndice H, ou com as recomendações da ONU para o transporte de mercadorias perigosas e o propelente não é inflamável.

O produto-base contém não mais do que 20% em volume (15,8% em peso) de etanol ou propanol, ou misturas destes em uma mistura aquosa e o propelente não é inflamável. O produto-base contém não mais do que 4% em peso de um propelente de gás liquefeito inflamável emulsionado em uma base aquosa. Este propelente deve permanecer emulsionado durante a vida útil do produto. Quando houver possibilidade de o propelente sair da emulsão, o propelente usado deve ser não inflamável para que o aerossol seja considerado de plástico nível 1.

O aerossol de plástico nível 3 está disponível em recipientes plásticos maiores que 125 mL e menores que 1.000 mL e que cumpra os requisitos descritos. O produto-base não tem qualquer ponto de ignição quando ensaiado em conformidade com a ASTM D 92; e o aerossol não apresenta mais que 10 % em peso de propelente inflamável. O produto-base não apresenta combustão sustentada quando ensaiado em conformidade com a 49 CFR 173, Apêndice H, ou com as recomendações da ONU para o transporte de mercadorias perigosas e o aerossol não apresenta mais que 10 % em peso de propelente inflamável.

O produto-base contém não mais do que 50% em volume de álcoois inflamáveis ou combustíveis solúveis em água em solução aquosa; o aerossol não apresenta mais que 10 % em peso de propelente inflamável. O aerossol de plástico tipo x está disponível em recipientes plásticos maiores que 125 mL e menores que 1.000 mL, que não cumpram qualquer um dos requisitos descritos.

As instalações de chuveiros automáticos devem ser executadas em conformidade com a NBR 10897. As instalações de hidrantes, onde requerido por este documento, devem ser projetadas e instaladas em conformidade com a NBR 13714. As instalações de bombas e tanques de incêndio, que são necessários para fornecer a água de proteção contra incêndio, devem ser executadas de acordo com a NBR 16704.

Além dos requisitos de abastecimento de água para os sistemas de chuveiros automáticos, a reserva de água para hidrantes deve ser dimensionada de acordo com um dos requisitos a seguir: 1.900 L/min para as edificações protegidas com chuveiros do tipo controle área-densidade (CCAD) e/ou chuveiros de controle de aplicação específica (CCAE); 950 L/min para as edificações protegidas com chuveiros ESFR. A duração mínima da reserva de água para hidrantes deve ser de 2 h, salvo disposição em contrário.

Existem requisitos de proteção para aerossóis armazenados nos seguintes locais: quantidades ilimitadas em armazéns específicos para o armazenamento de aerossóis; quantidades limitadas em depósitos gerais (sem segregação); quantidades limitadas em áreas segregadas de depósitos gerais. Os aerossóis de nível 1 devem ser protegidos de acordo com os requisitos para mercadorias de classe III, conforme estabelecido na NBR 13792. Os aerossóis de nível 2 em recipientes cujo peso líquido seja inferior a 28 g devem ser protegidos conforme os requisitos para plásticos do grupo A, não expandidos em caixas de papelão, conforme estabelecido na NBR 13792.

O armazenamento de aerossóis de nível 2 e de nível 3 não pode ser feito em áreas de subsolo. Os aerossóis de nível 2 e de nível 3 em caixas de papelão encapsuladas devem ser protegidos como aerossóis expostos (sem caixas de papelão). É permitido o enfaixamento com filme plástico para envolver caixas de aerossóis sem alteração do grau de risco.

É permitido o armazenamento encapsulado de aerossóis de nível 2 e nível 3 expostos (isto é, não em caixas de papelão) sobre lâminas ou bandejas. Os aerossóis de nível 2 e de nível 3 cujos recipientes sejam projetados para aliviar a pressão interna em pressões manométricas inferiores a 1.450 kPa não podem ser armazenados. As cortinas antifogo devem se estender para baixo no mínimo 0,60 m a partir do teto e devem ser instaladas na interface entre os chuveiros automáticos de temperatura normal e alta.

O armazenamento de aerossóis plásticos de nível 3 em estruturas porta-paletes, em um armazém de uso geral protegido por sistemas de chuveiros automáticos, deve atender ao seguinte: o sistema de chuveiros automáticos deve cobrir toda a área de armazenamento de aerossóis e se estender por uma distância de 6 m além dessa área em todas as direções, e deve ser projetado de acordo com a Tabela 9 disponível na norma; o armazenamento de líquidos inflamáveis e combustíveis deve ser separado da área de armazenamento de aerossóis por pelo menos 8 m.

O armazenamento segregado dos aerossóis plásticos de nível 3 em armazém de uso geral somente pode ser feito se o armazém estiver protegido por um sistema de chuveiro automático, projetado de acordo com a NBR 13792. O sistema de chuveiros automáticos sobre a área segregada que se estende 6 m além em todas as direções deve atender aos requisitos da Tabela 9 (disponível na norma). O sistema deve ser capaz de proteger os aerossóis de maiores riscos presentes. O armazenamento em estruturas porta-paletes de aerossóis plásticos de nível 3 que exceder as quantidades máximas indicadas no Anexo A deve ser protegido em conformidade com os requisitos descritos.

Os armazéns de aerossóis contendo os de plásticos de nível 3 devem ser protegidos por sistemas de chuveiro automáticos de acordo com a Tabela 9. A proteção é determinada de acordo com o aerossol de mais alto risco presente. As quantidades máximas indicadas de aerossóis plásticos de nível 3 em áreas internas, em salas de armazenamento e em áreas de controle de armazenamento de líquidos combustíveis e inflamáveis encontram-se no Anexo A.

O armazenamento de aerossóis plásticos de nível 3 em um armazém de líquidos combustíveis e inflamáveis, conforme a NBR 17505, deve ser feito em uma área segregada. O armazenamento de aerossóis plásticos de nível 3 deve ser em uma área segregada, separada do resto do armazém, seja por paredes internas ou por alambrado de arame, de acordo com o Anexo A.

O combate a incêndio por espuma de baixa expansão

Um sistema de espuma consiste em suprimento de água, suprimento de líquido gerador de espuma (LGE), equipamento de proporcionamento, sistema de tubos e dispositivos de aplicação, projetados para distribuir efetivamente a espuma.

A NBR 12615 de 02/2020 – Sistema de combate a incêndio por espuma – Espuma de baixa expansão fornece diretrizes para a elaboração de projetos de sistemas fixos, semifixos, móveis e portáteis de combate a incêndios por meio de espuma de baixa expansão, assim como para a instalação, inspeção, ensaio, operação e manutenção dos referidos sistemas. As NBR 12615 e NBR 17505-7 são complementares entre si. Sua aplicação conjunta tem como objetivo substituir as demais normas brasileiras sobre o assunto, consolidando estas normas como referência nacional para sistemas de combate a incêndio por espuma de baixa expansão.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executada a junção de tubulação e conexões?

Quais são os métodos de atuação automática?

Quais os parâmetros de projeto para uso de canhões monitores e linhas manuais para proteger tanques contendo hidrocarbonetos?

Quais os requisitos de projeto para tanques contendo líquidos inflamáveis e combustíveis que requerem LGE tipos 4, 5, 6 e 7?

Um sistema de espuma consiste em suprimento de água, suprimento de líquido gerador de espuma (LGE), equipamento de proporcionamento, sistema de tubos e dispositivos de aplicação, projetados para distribuir efetivamente a espuma. O sistema pode incluir dispositivo de detecção e comando. Em instalações que possuam sistema fixo de água e espuma, todos os locais sujeitos a derramamento ou vazamento de produto, ou onde o produto possa ficar exposto à atmosfera em condições de operação (como, por exemplo, separador de água e óleo), devem estar protegidos pelo sistema de aplicação de espuma.

Isto não se aplica aos sistemas operados com líquidos de classe IIIB. A instalação de sistemas fixos de aplicação de espuma não é obrigatória quando o produto armazenado for de classe IIIB. O projeto deve considerar os mesmos parâmetros estabelecidos para a classe IIIA.

Deve-se tomar cuidado na aplicação de espuma em líquidos aquecidos acima de 93 °C. Embora a pouca quantidade de água contida na espuma aplicada contribua para o resfriamento destes combustíveis, esta água, quando aquecida, pode entrar em ebulição e provocar o transbordamento do conteúdo do tanque. As válvulas de alimentação das câmaras de espuma dos tanques devem estar localizadas fora da bacia de contenção e no mínimo a 15 m do costado do tanque correspondente às referidas válvulas.

A água usada nos sistemas de espuma e resfriamento de combate a incêndio pode ser doce ou salgada, sem tratamento, desde que isenta de óleo ou de outras substâncias incompatíveis com a produção de espuma. Tomar cuidado especial na adição de antiespumante para tratamento de água. Se necessário consultar o fabricante. Quando a água contiver quantidade considerável de material sólido em suspensão que possa obstruir os aspersores ou outros equipamentos, devem ser previstos dispositivos para retenção de impurezas e limpeza das linhas, sem interrupção do sistema de combate a incêndio.

O suprimento de água deve ser baseado em uma fonte inesgotável (mar, rio, etc.), sendo capaz de atender à demanda de 100% da vazão de projeto, na condição mais crítica, em qualquer época do ano ou sob qualquer condição climática. Na inviabilidade desta solução, deve ser previsto um reservatório com capacidade para atender à demanda de 100% da vazão de projeto, durante o período de tempo descrito abaixo e na tabela abaixo.

Para o projeto dos sistemas de proteção contra incêndio por água e espuma, devem ser considerados os seguintes conceitos fundamentais: dimensionamento pelo maior risco predominante quanto à demanda de água, para resfriamento e formação de espuma; dimensionamento do LGE para o cenário com a maior demanda; não simultaneidade de eventos, isto é, o dimensionamento deve ser feito com base na ocorrência de apenas um evento.

As condições e requisitos relativos às bombas de água devem ser conforme estabelecido na NBR 17505-7. Quando as bombas de LGE forem requeridas para a operação de um sistema automático de espuma, enquanto não houver norma brasileira específica, elas devem ser projetadas de acordo com a NFPA 20. Para sistemas manuais, os controles de acordo com a NFPA 20 não são necessários.

O LGE usado em um sistema de espuma deve ser especificado para ser utilizado no combate a incêndio do líquido inflamável ou combustível a ser protegido. O LGE e os equipamentos devem ser armazenados de que não sejam expostos aos riscos que eles protegem. O LGE e os equipamentos devem ficar armazenados em uma estrutura não combustível. A quantidade de LGE deve ser dimensionada de forma a assegurar a aplicação para proteção do maior risco.

O fabricante do LGE deve fornecer relatório de ensaio, para cada lote fornecido, conforme a NBR 15511. A dosagem do LGE para hidrocarbonetos ou solventes polares deve ser a recomendada pelo fabricante do LGE. Havendo mais de um fornecedor de LGE, deve-se observar a compatibilidade entre os LGE no seu armazenamento. Devido às características físico-químicas de alguns LGE, os tanques, tubos, válvulas e conexões devem ser fabricadas com materiais compatíveis com o LGE.

Para efeito de cálculo, a vazão de solução de LGE não considera o ar na mistura, isto é, deve ser apenas a da água com o LGE. O estoque mínimo de LGE deve ser fixado de modo a permitir a operação contínua do sistema de combate a incêndio com espuma para o maior risco a cobrir com aplicação de espuma, considerando as taxas e os tempos de aplicação estabelecidos. O volume de LGE reserva estocado na instalação deve corresponder no mínimo a 100% do volume calculado para o maior risco.

Este volume reserva pode ser compartilhado com as instalações que fazem parte de plano de auxílio mútuo (PAM) ou da rede integrada de emergência (RINEM) oficial, desde que atenda à quantidade necessária, ao tipo e a dosagem de LGE de projeto. O reservatório de LGE deve ser protegido contra a irradiação direta do sol. A tabela abaixo indica os tipos e classes de LGE.

Em líquidos inflamáveis e combustíveis solúveis em água ou que destruam a espuma tipo 1, 2 ou 3, devem ser aplicadas espumas resistentes aos solventes polares do tipo 4, 5, 6 ou 7. A aplicação de espuma por canhões-monitores ou linhas manuais não pode ser utilizada em derramamentos de solventes polares com profundidade superior a 25 mm. Os tanques de armazenamento de LGE devem ser produzidos ou revestidos com material compatível com o LGE a ser armazenado, de forma a não comprometer a qualidade do LGE e a integridade do tanque.

O tanque de armazenamento deve ser projetado de forma a minimizar a evaporação do LGE. Os sistemas de proporcionamento devem possuir instruções e sequência de desligamento ou parada, de forma a prevenir a perda acidental de LGE ou danos ao tanque de armazenamento. Os tanques devem possuir meios que permitam a verificação do nível de LGE.

Para as condições de armazenamento, de forma a assegurar o correto funcionamento de qualquer sistema de espuma, as características químicas e físicas dos materiais devem ser consideradas no projeto. O LGE deve ser armazenado conforme as temperaturas indicadas pelo fabricante. Devem ser colocadas indicações em placas no tanque de armazenamento, indicando: fabricante do LGE; tipo e classe do LGE; dosagem (porcentagem); faixa de temperatura de armazenamento (graus Celsius); e volume de projeto de LGE (em litros).

A taxa de consumo de LGE deve ser baseada no percentual de dosagem do LGE utilizado no projeto do sistema. O estoque mínimo de LGE deve ser fixado de modo a permitir a operação contínua do sistema de combate a incêndio com espuma para o maior risco a ser coberto com aplicação de espuma, considerando as taxas e os tempos de aplicação estabelecidos. O volume de LGE reserva, estocado na instalação deve corresponder no mínimo a 100% do volume calculado para o maior risco.

Este volume reserva pode ser compartilhado com as instalações que fizerem parte de plano de auxílio mútuo (PAM) ou rede integrada de emergência (RINEM) oficial, desde que atenda à quantidade necessária, ao tipo e à dosagem de LGE de projeto. Projetos em que existe a possibilidade de uso de espuma e pó para extinção de incêndio em ação conjunta, deve ser assegurada a compatibilidade dos agentes extintores empregados.

Esta condição deve ser determinada conforme descrito a seguir: a compatibilidade entre pó e espuma deve ser determinada pela medição do tempo de resistência à reignição na presença de pó para extinção; a aparelhagem utilizada deve ser a peneira com malha de abertura de 0,420 mm (40 mesh), com diâmetro nominal 200mm; o ensaio de fogo do LGE deve ser realizado nas classes aplicáveis (HC, AV ou AR), conforme a NBR 15511, em água doce e/ou salgada. Antes de posicionar o cilindro de reignição, distribuir 800 g de pó sobre a superfície de espuma com o auxílio da peneira provida de um cabo longo, com aproximadamente 2 m.

Esta distribuição do pó deve ocorrer em até um minuto após o final da aplicação da espuma. Após 2 min do final da aplicação da espuma, iniciar a contagem do tempo de resistência à reignição. O tempo de resistência à reignição deve atender ao estabelecido na NBR 15511 para as classes aplicáveis (HC, AV ou AR).

Os sistemas de proporcionamento devem ser conforme listados a seguir, quando aplicável: esguicho autoedutor; proporcionador de linha; proporcionadores de pressão (com ou sem diafragma); proporcionadores around-the-pump; bomba de LGE com injeção direta e vazão variável; proporcionador de pressão balanceada; bomba monobloco (bomba acoplada ao motor); proporcionador de dosagem volumétrica. O sistema de proporcionamento deve assegurar a dosagem de LGE para toda a faixa de vazão projetada do sistema de combate a incêndio por espuma.

Os tubos do sistema devem ser de aço-carbono ou outra liga adequada para as pressões e temperaturas envolvidas. Os tubos de aço-carbono não podem ter características inferiores a Schedule 40 até o diâmetro nominal de 305 mm (12”). Os tubos de aço-carbono devem estar em conformidade com a NBR 5590, preferencialmente, ou com a ASTM A 135, ASTM A 53 ou ASTM A 795.

Quando expostos a ambientes corrosivos, os tubos de aço-carbono devem ser de material resistente à corrosão ou então tratados contra a corrosão, de acordo NBR 17505-2:2015, 4.6. A escolha da espessura da parede dos tubos deve considerar a pressão interna, a corrosão interna e externa e os esforços mecânicos. Devem ser usados tubos galvanizados ou de desempenho superior para a tubulação de solução de espuma.

NFPA 72: os sistemas de alarme de incêndio e comunicações de emergência

Essa norma internacional, editada pela (NFPA) em 2019, apresenta as disposições mais avançadas já desenvolvidas para a aplicação, instalação, localização, desempenho e inspeção, ensaio e manutenção de sistemas de alarme de incêndio e comunicações de emergência – incluindo sistemas de notificação em massa (mass notification systems – MNS).

A NFPA 72 – National Fire Alarm and Signaling Code, 2019 Edition apresenta as disposições mais avançadas já desenvolvidas para a aplicação, instalação, localização, desempenho e inspeção, ensaio e manutenção de sistemas de alarme de incêndio e comunicações de emergência – incluindo sistemas de notificação em massa (mass notification systems – MNS).

Assim, essa norma abrange a aplicação, instalação, localização, desempenho, inspeção, teste e manutenção de sistemas de alarme de incêndio, sistemas de alarme de estações de supervisão, sistemas públicos de notificação de alarmes de emergência, equipamentos de alerta de incêndio e sistemas de comunicação de emergência (emergency communications systems – ECS) e seus componentes. As disposições dos capítulos aplicam-se ao longo do Código, salvo indicação em contrário.

Conteúdo da norma

Capítulo 1 Administração

1.1 Escopo

1.2 Objetivo

1.3 Aplicação

1.4 Retroatividade

1.5 Equivalência

1.6 Unidades e fórmulas

1.7 Requisitos de adoção de código

Capítulo 2 Publicações referenciadas

2.1 Geral

2.2 Publicações da NFPA

2.3 Outras publicações

2.4 Referências para extratos em seções obrigatórias

Capítulo 3 Definições

3.1 Geral

3.2 Definições oficiais da NFPA

3.3 Definições gerais

Capítulo 4 Reservado

Capítulo 5 Reservado

Capítulo 6 Reservado

Capítulo 7 Documentação

7.1 Aplicação (SIG-FUN)

7.2 Documentação mínima exigida (SIG-FUN)

7.3 Documentação de projeto (layout)

7.4 Desenhos da oficina (documentação de instalação) (SIG-FUN)

7.5 Documentação de conclusão

7.6 Documentação de inspeção, ensaio e manutenção (SIG-TMS)

7.7 Registros, retenção de registros e manutenção de registros

7.8 Formulários

Capítulo 8 Reservado

Capítulo 9 Reservado

Capítulo 10 Fundamentos

10.1 Aplicação

10.2 Finalidade

10.3 Equipamento

10.4 Projeto e instalação

10.5 Qualificações de pessoal

10.6 Fontes de alimentação

10.7 Prioridade de sinal

10.8 Detecção e sinalização de condições

10.9 Respostas

10.10 Sinais distintos

10.11 Sinais de alarme

10.12 Desativação do dispositivo de notificação de alarme de incêndio

10.13 Desativação do dispositivo de notificação de monóxido de carbono (CO)

10.14 Sinais de supervisão

10.15 Sinais de problema

10.16 Indicadores de status da função de controle de emergência

10.17 Circuitos do dispositivo de notificação e circuitos de controle

10.18 Anunciação e zoneamento

10.19 Monitorando a integridade dos sistemas de comunicação por voz/alarme de emergência em caso de incêndio no prédio

10.20 Documentação e notificação

10.21 Imparidades

10.22 Alarmes indesejados

Capítulo 11 Reservado

Capítulo 12 Circuitos e caminhos

12.1 Aplicação

12.2 Geral

12.3 Designações de classe de caminho

12.4 Sobrevivência no caminho

12.5 Designações de caminhos compartilhados

12.6 Monitorando a integridade e o desempenho do circuito de condutores de instalação e outros canais de sinalização

12.7 Nomenclatura

Capítulo 13 Reservado

Capítulo 14 Inspeção, ensaio e manutenção

14.1 Aplicação

14.2 Geral

14.3 Inspeção

14.4 Ensaio

14.5 Manutenção

14.6 Registros

Capítulo 15 Reservado

Capítulo 16 Reservado

Capítulo 17 Iniciando dispositivos

17.1 Aplicação

17.2 Finalidade

17.3 Projeto baseado em desempenho

17.4 Requisitos gerais

17.5 Requisitos para detectores de fumaça e calor

17.6 Detectores de incêndio com detecção de calor

17.7 Detectores de incêndio com detecção de fumaça

17.8 Detectores de incêndio com detecção de energia radiante

17.9 Detectores combinados, multicritério e multissensor

17.10 Detecção de gás

17.11 Outros detectores de incêndio

17.12 Detectores de monóxido de carbono

17.13 Dispositivos de iniciação de alarme de fluxo de água por aspersão

17.14 Detecção de operação de outros sistemas de extinção automática

17.15 Dispositivos de iniciação de alarme acionados manualmente

17.16 Dispositivo de monitoramento eletrônico do extintor de incêndio

17.17 Dispositivos de iniciação de sinal de supervisão

Capítulo 18 Aparelhos de notificação

18.1 Aplicação

18.2 Finalidade

18.3 Geral

18.4 Características audíveis

18.5 Características visuais – modo público

18.6 Características visuais – modo privado

18.7 Método suplementar de sinalização visual

18.8 Aparelhos audíveis textuais

18.9 Aparelhos visuais textuais e gráficos

18.10 Aparelhos táteis

18.11 Interface padrão de serviço de emergência

Capítulo 19 Reservado

Capítulo 20 Reservado

Capítulo 21 Interfaces de funções de controle de emergência

21.1 Aplicação

21.2 Geral

21.3 Operação de recuperação de emergência da fase I do elevador

21.4 Desligamento de energia do elevador

21.5 Elevadores de acesso aos bombeiros

21.6 Elevadores de evacuação de ocupantes (occupant evacuation elevators – OEE)

21.7 Sistemas de aquecimento, ventilação e ar condicionado (eating, ventilating and air-conditioning – HVAC)

21.8 Ventoinhas de alto volume e baixa velocidade (high volume low speed – HVLS)

21.9 Liberação da porta e do obturador

21.10 Portas trancadas eletricamente

21.11 Sistemas de notificação sonora de marcação de saída

Capítulo 22 Reservado

Capítulo 23 Sistemas de alarme e sinalização de instalações protegidas

23.1 Aplicação

23.2 Geral

23.3 Recursos do sistema

23.4 Desempenho e integridade do sistema

23.5 Desempenho dos circuitos de dispositivos de inicialização (initiating device circuits – IDCs)

23.6 Desempenho dos circuitos de linha de sinalização (signaling line circuits – SLCs)

23.7 Desempenho de circuitos de dispositivo de notificação (notification appliance circuits – NACs)

23.8 Requisitos do sistema

23.9 Comunicações de voz/alarme de emergência de incêndio no prédio

23.10 Sistemas de alarme de incêndio usando tom

23.11 Atuação do sistema de supressão

23.12 Sinais fora das instalações

23.13 Serviço de supervisão da guarda

23.14 Sistema de sinal suprimido (exceção)

23.15 Funções de controle de emergência das instalações protegidas

23.16 Requisitos especiais para sistemas de rádio de baixa potência (sem fio)

Capítulo 24 Sistemas de comunicação de emergência (ECS)

24.1 Aplicação

24.2 Finalidade

24.3 Geral

24.4 Sistemas de comunicação de voz/alarme de emergência contra incêndio no edifício (emergency voice/alarm communications systems – EVACS)

24.5 Sistemas de notificação em massa incorporados

24.6 Sistemas de notificação em massa de área ampla

24.7 Sistemas de notificação de massa de destinatários distribuídos (DRMNS)

24.8 Sistemas de comunicação de serviços de emergência com fio bidirecional no edifício

24.9 Sistemas de aprimoramento de comunicações via rádio bidirecional

24.10 Área de refúgio (área de assistência de resgate) sistemas de comunicação de emergência, sistemas de comunicação de escadas, sistemas de comunicação de aterragem de elevador e sistemas de comunicação de lobby de elevador de evacuação de ocupantes

24.11 Informação, comando e controle

24.12 Projeto baseado em desempenho de sistemas de notificação em massa

24.13 Documentação para sistemas de comunicação de emergência

Capítulo 25 Reservado

Capítulo 26 Supervisão dos sistemas de alarme da estação

26.1 Aplicação

26.2 Geral

26.3 Sistemas de alarme de serviço da estação central

26.4 Sistemas de alarme proprietários da estação de supervisão

26.5 Sistemas de alarme da estação de supervisão remota

26.6 Métodos de comunicação para supervisionar sistemas de alarme de estações

Capítulo 27 Sistemas públicos de comunicação de alarmes de emergência

27.1 Aplicação

27.2 Geral

27.3 Gerenciamento e manutenção

27.4 Métodos de comunicação

27.5 Equipamento de processamento de alarme

27.6 Caixas de alarme

27.7 Central pública de cabos

27.8 Sistemas de comunicação de emergência (ECS)

Capítulo 28 Reservado

Capítulo 29 Alarmes de estação única e múltipla e sistemas de sinalização doméstica

29.1 Aplicação

29.2 Finalidade

29.3 Requisitos básicos

29.4 Anunciação remota

29.5 Notificação

29.6 Premissas

29.7 Detecção de monóxido de carbono

29.8 Detecção e notificação

29.9 Fontes de alimentação

29.10 Desempenho do equipamento

29.11 Instalação

29.12 Funções opcionais

29.13 Inspeção, ensaio e manutenção

29.14 Marcações e instruções

Anexo A Material explicativo

Anexo B Guia de engenharia para espaçamento automático de detectores de incêndio

Anexo C Guia de desempenho e projeto do sistema

Anexo D Inteligência de fala

Anexo E Exemplo de ordenança que adota a NFPA 72

Anexo F Diagramas de fiação e Guia para ensaio de circuitos de alarme de incêndio

Anexo G Diretrizes para estratégias de comunicação de emergência de edifícios e campus

Anexo H Monóxido de carbono

Anexo I Referências informativas

Esta edição apresenta atualizações importantes para projetistas e instaladores – desde requisitos adicionais de ensaio para sistemas de armazenamento de energia (energy storage systems – ESS) até novos requisitos para ventiladores HVLS e detectores de fumaça com amostragem de ar. Em uma grande mudança no escopo, a NFPA 72 agora trata da proteção ao monóxido de carbono.

O material anteriormente disponível na NFPA 720 – Standard for the Installation of Carbon Monoxide (CO) Detection and Warning Equipment foi realocado para a edição 2019 da NFPA 72. Alguns requisitos críticos foram incorporados: Capítulo 17 para detectores de monóxido de carbono; Capítulo 14 para instalação, ensaio e manutenção; Capítulo 29 para alarmes de monóxido de carbono – com uma quantidade significativa de informações adicionais; novo anexo H. Outras mudanças importantes tratam da evacuação dos ocupantes, áreas de refúgio e baterias VRLA.

As principais revisões dos requisitos para elevadores de acesso a serviços de incêndio e elevadores de evacuação de ocupantes (OEE) coordenam-se com as alterações feitas na ASME A17.1 / CSA B44. O texto do anexo é adicionado para esclarecimentos. Alguns requisitos foram amplamente revisados para operação de evacuação de ocupantes (OEO) coordenam-se com as novas melhores práticas e pesquisas de campo.

Além dos requisitos revisados para a área de refúgio (área de assistência de resgate), o Capítulo 24 agora inclui requisitos para sistemas de comunicação em escadas, sistemas de comunicação de desembarque de elevadores e sistemas de comunicação de lobby de elevador de evacuação de ocupantes. O capítulo 14 – Inspeção, ensaio e manutenção agora incorpora baterias de chumbo-ácido reguladas por válvula (VRLA). Algumas definições novas e atualizadas forma incluídas na NFPA 72 com as tecnologias atuais. Por exemplo, os termos estroboscópico, luz e visível foram alterados para dispositivo de notificação visual, reconhecendo o uso de produtos de LED que podem ser usados para alarme de incêndio.