O líquido gerador de espuma para fogo é obrigado a cumprir a norma técnica

O líquido gerador de espuma (LGE) é aquele que, quando diluído em água e aerado, gera espuma para extinção de incêndios classe A ou os que envolvem materiais combustíveis sólidos, como madeiras, tecidos, papéis, borrachas, plásticos termoestáveis e/ou fibras orgânicas, que queimam em superfície e profundidade, deixando resíduos. Esses produtos requerem ensaios periódicos ou os laboratoriais e ensaios de fogo, que devem ser realizados em condições e equipamentos adequados por laboratório competente, conforme a NBR ISO/IEC 17025.

O LGE classe A deve possuir um relatório contendo os resultados dos ensaios laboratoriais iniciais e dos ensaios de fogo. Os ensaios laboratoriais são apresentados na tabela abaixo. Quando o ensaio de fogo apresentar resultado satisfatório, os resultados dos ensaios laboratoriais devem ser considerados como valores de referência (VR).

Os resultados dos ensaios laboratoriais periódicos devem atender ao estabelecido na tabela abaixo. Caso ocorra reprovação em algum ensaio laboratorial periódico, é facultativa a realização do ensaio de fogo. Havendo aprovação no ensaio de fogo, o LGE classe A pode ser mantido em uso.

Como material, usa-se água destilada e a aparelhagem necessária é a seguinte: termômetro de no mínimo 10 °C a 40 °C, com resolução de no máximo 0,5 °C; balão volumétrico de 500 mL; balança com resolução de no máximo 0,1 g; peagômetro com resolução de no máximo 0,1; refratômetro com resolução de no máximo 0,000 2; viscosímetro rotativo (tipo Brookfield) com capacidade para medição de 1 mPa.s a 10 000 mPa.s; cronômetro com resolução de no máximo 0,2 s; dispositivo para ensaio de expansão e drenagem, constituído de: proveta graduada de 1.000 mL, com resolução de no máximo 10 mL e diâmetro externo aproximado de 65 mm, com uma marca indicando 25 mL; disco de alumínio, perfurado com 31 furos, com as seguintes dimensões: diâmetro: (55 ± 3) mm; espessura: (4 ± 0,3) mm; diâmetro dos furos: (5 ± 0,3) mm. O disco perfurado é fixado na extremidade de uma haste metálica com (565 ± 10) mm de comprimento. Incluir uma tampa ou membrana com orifício central, apoiada na proveta, por onde deve ser inserida a haste do disco perfurado.

É necessária uma amostra de 1 L de LGE classe A que deve estar a (25 ± 3) °C. Colocar o balão volumétrico limpo e seco na balança e tarar. Encher com água destilada, a (25 ± 3) °C, até a marca de 500 mL, e determinar a massa (m²). Esvaziar o balão volumétrico. Colocar LGE classe A até a marca de 500 mL do balão volumétrico tarado e determinar a massa (m1). Calcular a massa específica pela seguinte equação: ρ = (m1/m2) × 1000, onde ρ é o valor numérico da massa específica, expresso em quilogramas por metro cúbico

(kg/m³); m1 é o valor numérico da massa de LGE classe A, expresso em gramas (g); m2 é o valor numérico da massa de água, expresso em gramas (g). Para o cálculo da massa específica foi adotado o valor de 1 m³ = 1.000 kg de água destilada. A amostra de LGE classe A deve estar a (25 ± 3) °C. Seguir as recomendações especificadas pelo fabricante do peagômetro para a execução da medição e determinar o pH.

A amostra de LGE classe A deve estar a (25 ± 3) °C, exceto se o refratômetro utilizado possuir compensação automática de temperatura. Seguir as recomendações especificadas pelo fabricante do refratômetro para a execução da medição e determinar o índice de refração. A amostra de LGE classe A deve estar a (25 ± 3) °C. Seguir as recomendações especificadas pelo fabricante do viscosímetro para a execução da medição e determinar a viscosidade. Anotar a rotação e o número da haste utilizada.

Para a expansão e tempo de drenagem a 25%, são necessárias as seguintes condições: temperatura ambiente: (25 ± 3) °C; temperatura da solução de LGE classe A: (25 ± 3) °C. Preparar 100 mL de solução de LGE classe A, na dosagem de uso especificada pelo fabricante. Transferir a solução para a proveta. Inserir o disco perfurado na proveta. Iniciar a cronometragem e imediatamente puxar o disco perfurado até a borda da proveta, abaixando-o novamente por completo.

Repetir este ciclo por (60 ± 5) s, com uma frequência de (60 ± 5) ciclos por minuto. Após o último ciclo, remover o disco. Iniciar novamente a cronometragem, partindo do zero. Com uma espátula, retirar a espuma remanescente do disco perfurado e recolocá-la na proveta.

Não são admissíveis interpretações de qualquer natureza para justificar a não realização de certos ensaios, como, por exemplo, água salgada é mais rigorosa que água doce, portanto, não precisa realizar o ensaio na água doce, o que não é uma verdade absoluta. O usuário deve informar ao laboratório qual água está disponível no sistema de combate a incêndio (água doce ou salgada).

Não há necessidade de ensaiar o LGE classe A com solução preparada com água doce, se estiver disponível somente água salgada e vice-versa. O usuário deve manter em seu poder o histórico dos relatórios de ensaios, emitidos pelo laboratório competente. Este documento pode ser exigido pelo Corpo de Bombeiros, Prefeitura, companhia de seguro ou outros órgãos.

A NBR 16963 de 07/2022 – Líquido gerador de espuma para fogo classe A especifica os requisitos para o líquido gerador de espuma (LGE classe A) utilizado em combate e extinção de incêndios classe A. Não se aplica ao LGE classe A, destinado a formar uma barreira de proteção contra incêndio. A espuma do agente extintor é constituída por um aglomerado de bolhas produzidas por turbilhonamento da água com LGE classe A e ar atmosférico e o fogo classe A é aquele que envolve os materiais combustíveis sólidos, como madeiras, tecidos, papéis, borrachas, plásticos termoestáveis e/ou fibras orgânicas, que queimam em superfície e profundidade, deixando resíduos.

O LGE classe A deve ser sempre adequado para o uso com água doce. A adequação ao uso com água salgada é opcional, entretanto, se aplicável, o LGE classe A deve ser adequado para as águas doce e salgada. O LGE classe A pode ser fornecido nas dosagens de 0,1% a 6%. As dosagens mais usuais são 1%, 3% e 6%.

A dosagem para uso com água doce e água salgada deve ser igual. O projetista e o usuário devem verificar se há equipamentos compatíveis com a dosagem do LGE classe A especificada pelo fabricante. O Anexo A fornece informações gerais sobre o LGE classe A.

Quanto ao desempenho, para a extinção de fogo classe A, o fogo deve ser extinto em no máximo 300 s. Em 8 min, não pode haver reignição com chamas visíveis. O volume da solução de LGE classe A efetivamente utilizado no ensaio deve ser menor ou igual a 3,3 L.

A verificação destes requisitos deve ser feita por meio de ensaio de desempenho (ver Anexo B). Para o uso com água salgada (opcional), a verificação deste requisito deve ser feita por meio do ensaio de fogo (ver Anexo B). Quando, por interesse do usuário, for desejada a mistura de LGE classe A de diferentes origens dentro de um mesmo tanque de armazenamento, deve ser realizado o ensaio de miscibilidade conforme o Anexo C.

Este ensaio deve ser realizado antes da efetiva mistura dentro do tanque. Recomenda-se solicitar orientação ao fabricante antes da realização deste ensaio. No caso de pré-mistura, como, por exemplo, em tanques estacionários ou viaturas, o usuário deve realizar o ensaio de estabilidade da solução.

A vida útil da pré-mistura depende das propriedades da água a ser utilizada no preparo da solução. Este ensaio não é aplicável à solução obtida por meio de equipamento proporcionador, utilizada imediatamente após a sua formação. Não pode ser utilizada solução não estável em pré-mistura.

A solução considerada estável deve ser analisada por meio de ensaio de fogo, no máximo a cada 12 meses. A embalagem do LGE classe A deve possuir marcação ou rótulo, ou uma combinação dos dois, com no mínimo as seguintes informações: nome do fabricante e endereço; nome do produto e inscrição: LGE para fogo classe A; dosagem de uso para combate e extinção de incêndio; faixa de temperatura recomendada para armazenamento, em graus Celsius; a inscrição: uso indicado com águas doce e salgada ou uso não indicado com água salgada; número desta norma; número do lote e data de fabricação; instruções de emergência e primeiros socorros; a inscrição: ATENÇÃO: consultar a folha de dados do LGE classe A; a inscrição: A validade deste produto é condicionada à realização de ensaios periódicos a cada 12 meses, conforme a NBR 16963; volume, em litros, e peso bruto, em quilogramas.

O peso é uma força e é expresso em newtons (N). A massa é expressa em quilogramas. Entretanto, para fins comerciais, no contexto da embalagem e dos documentos fiscais, admite-se que seja utilizada a expressão peso bruto, expresso em quilogramas. As marcações devem ser indeléveis e legíveis.

A embalagem deve ser dimensionada pelo fabricante de forma a assegurar que as características essenciais do LGE classe A sejam preservadas, quando ele for armazenado e manuseado de acordo com as recomendações contidas na folha de dados. O fabricante deve disponibilizar a folha de dados do LGE classe A com no mínimo as seguintes informações: dosagem de uso para combate e extinção de incêndio; adequação ao uso com água salgada; as instruções de armazenamento, preservação, manuseio e utilização do LGE classe A; a faixa de temperatura recomendada para armazenamento (em graus Celsius); e a validade do LGE classe A, incluindo a inscrição “A validade deste produto é condicionada à realização de ensaios periódicos a cada 12 meses, conforme a NBR 16963; as instruções de emergência e primeiros socorros; os materiais recomendados para tanques de armazenamento, tubulações e equipamentos do sistema de aplicação.

Caso o armazenamento seja feito em tanque de material diferente dos recomendados, recomenda-se consultar o fabricante do LGE classe A. A ficha de informações de segurança de produtos químicos (FISPQ), conforme a NBR 14725-4, deve ser fornecida com o LGE classe A.

Os ensaios periódicos é responsabilidade do usuário que deve analisar, a cada 12 meses, o desempenho do LGE classe A, ao longo de sua vida útil projetada, por meio de ensaios periódicos. O LGE classe A armazenado em tanques, viaturas, carretas, contêineres ou embalagens com lacre original pode sofrer deterioração e alteração de suas propriedades, incluindo a sua capacidade de extinção.

Certos elementos aceleram este processo: temperatura, revestimentos, materiais de tanques, composição química, evaporação de solventes e contaminações diversas. Desta forma, há a necessidade de ensaios periódicos do LGE classe A, para avaliar o seu desempenho ao longo de sua vida útil projetada.

A vida útil projetada do LGE classe A é indeterminada. O LGE classe A, aprovado nos ensaios periódicos, pode ser mantido em uso mesmo que, por exemplo, ele tenha sido fabricado há dez anos ou mais.

A análise periódica aplica-se a todo LGE classe A disponível para os sistemas de combate a incêndio de uma empresa ou instituição, incluindo o estocado em almoxarifados. Para o LGE classe A recém-adquirido, o prazo para o primeiro ensaio laboratorial deve ser de 12 meses após a data de emissão da Nota Fiscal de compra.

Os ensaios periódicos do LGE classe A devem abranger os ensaios laboratoriais e os ensaios de fogo. Os ensaios laboratoriais devem ser realizados a cada 12 meses e o ensaio de fogo a cada 36 meses, ou antes, caso seja observada alguma divergência significativa nos ensaios laboratoriais.

Para os ensaios periódicos (responsabilidade do revendedor ou fabricante), em para o LGE classe A em estoque de revendedor ou fabricante, disponível para venda, o prazo para o primeiro ensaio laboratorial deve ser de até 36 meses após a data de fabricação. O ensaio de fogo deve ser realizado em até 60 meses após a data de fabricação.

Prisão em flagrante por não cumprir a norma ABNT NBR

Ao não obedecer a norma obrigatória NBR 15514 de 08/2020 — Recipientes transportáveis de gás liquefeito de petróleo (GLP) — Área de armazenamento — Requisitos de segurança que estabelece os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização, o responsável de uma revendedora de gás foi preso em flagrante por inúmeros botijões de gás estarem armazenados em local absolutamente inadequado, encostados aos muros divisórios do estabelecimento, inclusive aquele que dá acesso à calcada destinada a circulação de pedestres. Ele recorreu, mas o tribunal manteve a prisão.

Hayrton Rodrigues do Prado Filho

Para a juíza, a conduta do responsável está em desacordo com o laudo de exigências emitido pelo Corpo de Bombeiros do Estado do Rio de Janeiro, cujas exigências têm por escopo garantir a segurança do estabelecimento, seus funcionários e da vizinhança, bem como do meio ambiente, diante da nocividade do GLP, cujo armazenamento é submetido aos rigores da ANP e do Corpo de Bombeiros, na forma na NBR 15514 e da Lei Estadual 4945/2006, sendo capaz de gerar danos à-coletividade e ao meio ambiente. Por isso, condenou os acusados como incursos nas penas dos artigos 1 º, 1, da Lei 8.176/91 e 56 da Lei 9.605/98, na forma do artigo 69 do Código Penal. Os acusados recorreram, mas o tribunal de apelação manteve a sentença. (link http://www4.tjrj.jus.br/numeracaoUnica/faces/index.jsp?numProcesso=0132120-43.2016.8.19.0001)

A norma técnica brasileira (NBR) tem a natureza de norma jurídica, de caráter secundário, impositiva de condutas porque fundada em atribuição estatal, sempre que sinalizada para a limitação ou restrição de atividades para o fim de proteção de direitos fundamentais e do desenvolvimento nacional, funções, como já se afirmou, eminentemente estatais. Pode ser equiparada, por força do documento que embasa sua expedição, à lei em sentido material, vez que obriga o seu cumprimento.

Não custa repetir que as NBR, por imporem condutas restritivas de liberdades fundamentais (liberdade de iniciativa, de indústria, de comércio, etc.) e se destinarem a proteger o exercício de direitos fundamentais (direito à vida, à saúde, à segurança, ao meio ambiente, etc.), são uma atividade normativa material secundária do Estado brasileiro, ou seja, podem ser qualificadas de atos normativos equiparados à lei em sentido material, por retirarem sua força e validade de norma impositiva de conduta de atos legislativos e regulamentares do ordenamento jurídico brasileiro.

Uma dessas normas obrigatórias é a NBR 15514 de 08/2020 — Recipientes transportáveis de gás liquefeito de petróleo (GLP) — Área de armazenamento — Requisitos de segurança que estabelece os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. Por não obedecer a essa norma, não houve tragédia, mas o dono de uma revendedora de gás foi preso em flagrante por inúmeros botijões de gás estavam armazenados em local absolutamente inadequado, encostados aos muros divisórios do estabelecimento, inclusive aquele que dá acesso à calcada destinada a circulação de pedestres.

A norma diz que o armazenamento exclusivamente para consumo próprio, pode ser feito nos locais cinco ou menos recipientes transportáveis, com massa líquida de até 13 kg de GLP (cheios, parcialmente cheios ou vazios), ou carga equivalente em outro tipo de recipiente, devem atender aos seguintes requisitos: estar em local aberto com ventilação natural; estar afastado no mínimo 1,5 m de outros produtos inflamáveis, de fontes de calor, de faíscas, ralos, caixas de gordura e de esgotos, bem como de galerias subterrâneas e similares; não podem estar expostos ao público.

Já o lote de recipientes transportáveis de GLP pode armazenar até 6.240 kg, em botijões ou cilindros, (novos, cheios, parcialmente cheios e vazios). O local de assento dos recipientes transportáveis de GLP deve ter ventilação natural, piso plano pavimentado com superfície que suporte carga e descarga, podendo ter inclinação desde que não comprometa a estabilidade do empilhamento máximo.

Além de serem de observância obrigatória, as NBR são um produto de conteúdo tecnológico e, como tal, tem um valor de uso na atividade econômica, em geral, e no processo produtivo em particular. Como tal, agrega valor a bens e serviços. E isso afeta a vida dos mais de 200 milhões de brasileiros que consomem produtos e serviços que deveriam cumprir obrigatoriamente as normas técnicas. A sustentabilidade do processo da normalização deverá resultar da conjugação de diversos fatores e não deverá depender excessivamente da venda de normas, o que poderia dificultar a sua utilização pela sociedade.

Aqueles que, de forma irresponsável, defendem a voluntariedade das normas técnicas, se obtiverem sucesso, vão aumentar as tragédias no Brasil e as prisões em flagrante pelo não cumprimento obrigatório dos procedimentos técnicos. Vão, ainda, ser responsabilizados criminalmente, pois essa posição criminosa contraria o que está claro na Constituição Federal: Capítulo I Dos Direitos e Deveres Individuais e Coletivos Art. 5: XXXII — o Estado promoverá, na forma da lei, a defesa do consumidor.

Por fim, o leitor deve entender que a normalização técnica é uma atividade de interesse público, essencial para a salvaguarda de direitos e para propiciar o desenvolvimento. Trata-se, na verdade, do exercício de um poder e um dever do Estado, expressa e implicitamente ditado pela Constituição. Isso para ordenar, coordenar e balizar a produção de bens e serviços, com a finalidade de modelar o mercado em proveito do próprio produtor e do desenvolvimento econômico e visa à proteção e a defesa de direitos fundamentais essenciais como a vida, a saúde, a segurança, o meio ambiente, etc.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital AdNormas https://revistaadnormas.com.br e membro da Academia Brasileira da Qualidade (ABQ) e editor do blog — https://qualidadeonline.wordpress.com/ — hayrton@hayrtonprado.jor.br

O controle da fumaça e do calor em um incêndio

A fumaça liberada por qualquer tipo de incêndio (floresta, mato, lavoura, estrutura, pneus, resíduos ou queima de madeira) é uma mistura de partículas e produtos químicos produzidos pela queima incompleta de materiais contendo carbono. Toda a fumaça contém monóxido de carbono, dióxido de carbono e material particulado ou fuligem.

Ela pode conter muitos produtos químicos diferentes, incluindo aldeídos, gases ácidos, dióxido de enxofre, óxidos de nitrogênio, hidrocarbonetos aromáticos policíclicos, benzeno, tolueno, estireno, metais e dioxinas. O tipo e a quantidade de partículas e produtos químicos na fumaça variam dependendo do que está queimando, da quantidade de oxigênio disponível e da temperatura de queima.

A exposição a altos níveis de fumaça deve ser evitada. Os indivíduos são aconselhados a limitar seu esforço físico se a exposição a altos níveis de fumaça não puder ser evitada. Indivíduos com problemas cardiovasculares ou respiratórios (por exemplo, asma), fetos, bebês, crianças pequenas e idosos podem ser mais vulneráveis aos efeitos da exposição à fumaça sobre a saúde.

A inalação de fumaça por um curto período de tempo pode causar efeitos imediatos (agudos), sendo irritante para os olhos, nariz e garganta, e seu odor pode ser nauseante. Estudos mostraram que algumas pessoas expostas à fumaça pesada apresentam alterações temporárias na função pulmonar, o que dificulta a respiração. Dois dos principais agentes da fumaça que podem causar efeitos à saúde são o gás monóxido de carbono e as partículas finas. Essas partículas possuem 2,5 µ ou menos de tamanho, sendo muito pequenas para serem vistas a olho nu.

A inalação de monóxido de carbono diminui o suprimento de oxigênio do corpo. Isso pode causar dores de cabeça, reduzir o estado de alerta e agravar uma condição cardíaca conhecida como angina. As partículas finas são capazes de viajar profundamente no trato respiratório, atingindo os pulmões. A inalação de partículas finas pode causar uma variedade de efeitos à saúde, incluindo irritação respiratória e falta de ar e pode piorar as condições médicas, como asma e doenças cardíacas.

Durante o aumento do esforço físico, os efeitos cardiovasculares podem ser agravados pela exposição ao monóxido de carbono e material particulado. Uma vez que a exposição à fumaça para, os sintomas da inalação de monóxido de carbono ou partículas finas geralmente diminuem, mas podem durar alguns dias.

Evitar as situações de fumaça é a melhor maneira de evitar a exposição. Se a idade ou estado de saúde colocar em maior risco de exposição ao fumo, deve falar com o seu médico sobre as medidas alternativas que pode tomar quando se deparar com situações de fumaça. Qualquer pessoa com sintomas persistentes ou frequentes que acreditem estar associados à exposição à fumaça deve consultar o médico.

Dessa forma, o incêndio ocorre da combinação simultânea de um combustível, o calor e o oxigênio. Quando uma substância combustível se aquece, em determinada temperatura crítica, ela se inflamará e continuará queimando enquanto houver combustível, temperatura adequada e oxigênio no ambiente. Os três elementos citados formam o que se chama de triângulo do fogo: se algum deles for eliminado ou isolado dos demais, não ocorrerá o fogo.

O calor pode ser eliminado por resfriamento. O oxigênio por abafamento. O combustível, mantendo-o em um local onde não haja calor suficiente para a sua inflamação. O fogo gera calor, que pode causar a combustão ou a fusão dos materiais atingidos e danos como trincas e rachaduras nas estruturas.

Quando se extingue o fogo, pode-se eliminar o calor: quando o principal agente é a água, podendo ser usada sob a forma de jato pleno, pulverizada ou com jato de água e espuma; eliminar o oxigênio: quando se provoca o abafamento, cobrindo-se o local com material incombustível como a espuma química, pó químico seco, gás carbônico e agente mecânico; e a retirada do material combustível.

A NBR 16983 de 02/2022 – Controle de fumaça e calor em incêndio especifica os requisitos para sistemas de controle de fumaça e calor em incêndio com os seguintes objetivo: manutenção de um ambiente seguro nas edificações, durante o tempo necessário para permitir o abandono do local sinistrado pelos ocupantes da edificação, reduzindo o perigo da intoxicação; manter as rotas de escape e as vias de acesso livres da fumaça do incêndio, permitindo a visualização da sinalização de orientação e a ação do sistema de iluminação de emergência; facilitar as operações de combate ao fogo pelas equipes de brigadistas ou do corpo de bombeiros que terão mais facilidade de visualizar o foco do incêndio; atrasar e/ou prevenir a ocorrência do flashover e, assim, o pleno desenvolvimento do fogo; proteger os equipamentos, os mobiliários e o conteúdo das edificações; reduzir os efeitos térmicos em elementos estruturais durante um incêndio; reduzir os danos causados por produtos de decomposição térmica e gases quentes. Não se se aplica a controle de fumaça em átrios e não se aplica a tuneis de transporte metroferroviários subterrâneos e suas plataformas de estação.

Esta norma estabelece os parâmetros técnicos básicos para a implementação do sistema de controle de fumaça e calor em incêndio, objetivando: a manutenção de um ambiente seguro nas edificações, durante o tempo necessário para o abandono do local sinistrado, evitando os perigos da intoxicação e falta de visibilidade pela fumaça; o controle e redução da propagação de gases quentes e fumaça entre a área incendiada e áreas adjacentes, baixando a temperatura interna e limitando a propagação do incêndio; prever as condições dentro e fora da área incendiada que auxiliem nas operações de busca e resgate de pessoas, localização e controle do incêndio.

Mediante a remoção de fumaça e calor, o sistema de controle de fumaça e calor em incêndio (CFCI) gera um vão livre de fumaça abaixo de uma camada de fumaça flutuante que se propaga no ambiente sinistrado. Sua importância principal e proporcionar o abandono seguro das pessoas nas edificações, a redução de danos oriundo do incêndio bem como perdas financeiras, diminuindo o volume de fumaça acumulado, facilitando o combate a incêndios, reduzindo a temperatura ao nível do telhado, bem como retardando a propagação lateral do incêndio quando este está estável.

Para que todos estes resultados sejam alcançados é primordial que o CFCI seja instalado de acordo com o projeto, bem como os ensaios, que devem ser realizados de forma confiável durante toda a vida útil do sistema. O CFCI deve ser entendido como um sistema complexo, composto por equipamentos destinados a desempenhar um papel positive em uma emergência envolvendo incêndio. As edificações devem ser dotadas de meios de controle de fumaça que promovam a extração mecânica ou natural dos gases e da fumaça do local de origem do incêndio, controlando a entrada de ar (ventilação) e prevenindo a migração de fumaça e gases quentes para as áreas adjacentes não sinistradas.

Toda a instalação com sistema de extração de fumaça deve assegurar uma altura da zona livre de fumaça de no mínimo 2,2 m, respeitando os critérios da altura da barreira de contenção de fumaça, para garantir o escape ou remoção de pessoas e o início de combate ao incêndio na edificação ou área de risco. Para obter um controle de fumaça eficiente, as seguintes condições devem ser estabelecidas: divisão dos volumes de fumaça a extrair por meio da compartimentação de área ou pela previsão de área de acantonamento, ver figura abaixo ; extração adequada da fumaça, não permitindo a criação de zonas mortas (estagnado) onde a fumaça possa vir a ficar acumulada, ap6s o sistema entrar em funcionamento, ver figura abaixo; permitir um diferencial de pressão, por meio do controle das aberturas de extração de fumaça da zona sinistrada, e o fechamento das aberturas de extração de fumaça das demais áreas adjacentes a zona sinistrada, conduzindo a fumaça para as saídas externas da edificação, ver figura abaixo.

O controle de fumaça é obtido simultaneamente pela introdução de ar limpo e pela extração de fumaça. A tabela abaixo apresenta as combinações possíveis.

A escolha do sistema a ser adotado fica a critério do projetista, desde que atenda as condições descritas nesta norma. O fabricante deve fornecer as características e especificações dos componentes, e seus respectivos funcionamentos, com comprovação de ensaios de produtos realizados por organismos de certificação nacional ou internacionalmente reconhecidos, utilizando os métodos de ensaio, conforme a EN-12101.

Não pode haver sistemas de extração natural e mecânica que possam interferir um no outro. A lógica de funcionamento do sistema deve ser projetada de forma que a área sinistrada seja colocada em pressão negativa em relação às áreas adjacentes. Deve ser acionada a extração de fumaça apenas do acantonamento sinistrado, e concomitantemente, deve ser acionada a introdução de ar para o acantonamento sinistrado e também para os acantonamentos adjacentes.

Cuidados especiais devem ser observados no projeto e execução do sistema de controle de fumaça, prevendo sua entrada em operação no início da formação da fumaça pelo incêndio, projetando a camada de fumaça em determinada altura, de forma a se evitar condições perigosas, como explosão ambiental (backdraft) e a propagação do incêndio decorrente do aumento de temperatura do local incendiado.

Para evitar as condições perigosas citadas no item anterior, deve ser previsto o acionamento em conjunto da abertura de extração de fumaça da área sinistrada e de introdução de ar correspondente. Para a exigência de aplicação do sistema de controle de fumaça, de forma genérica, o controle de fumaça deve ser previsto isoladamente ou em conjunto nos locais indicados para: espaços amplos (grandes volumes); átrios, halls e corredores; rotas de fuga horizontais; e nos subsolos, nos locais com ocupação distinta de estacionamento. No sistema de extração natural, a entrada de ar livre de fumaça pode ser por: aberturas de entrada de ar livre localizadas nas fachadas externas e acantonamentos adjacentes; por portas dos locais para extrair fumaça, localizadas nas fachadas externas e acantonamentos adjacentes; por vão aberto entre pisos.

A extração de fumaça pode ser feita pelos seguintes dispositivos: por abertura ou vão de extração; por janela e veneziana de extração; grelhas ligadas a dutos; claraboia ou alçapão de extração; poço inglês; dutos e peças especiais; registros corta-fogo e fumaça; mecanismos elétricos, pneumáticos e mecânicos de acionamento dos dispositivos de extração de fumaça. O sistema de extração mecânica deve ter a entrada de ar, livre de fumaça, e pode ser por: abertura ou vão de entrada; pelas portas; pelos vãos das escadas abertas; pela abertura de ar por insuflação mecânica por meio de grelhas; e por escadas pressurizadas.

A extração de fumaça pode ser feita pelos seguintes dispositivos: grelha de extração de fumaça em dutos; duto e peças especiais; registro corta-fogo e fumaça; ventiladores de extração mecânica de fumaça; mecanismos elétricos, pneumáticos e mecânicos de acionamento dos dispositivos de extração de fumaça. Os sistemas aplicados tanto para controle de fumaça mecânico como natural deve ter um sistema de detecção automática de fumaça e calor; fonte de alimentação; quadros e comandos elétricos; acionadores automáticos e mecânicos dos dispositivos de controle de extração de fumaça; sistema de supervisão e acionamento.

As barreiras de contenção de fumaça são constituídas por: elementos de construção do edifício ou qualquer outro componente rígido e estável; materiais incombustíveis, para-chamas, que apresentem o mesmo tempo de resistência ao fogo previsto para as coberturas; podem ser utilizados vidros de segurança, conforme a NBR 14925; outros dispositivos, decorrentes de inovações tecnol6gicas, desde que submetidos a aprovação previa da autoridade com jurisdição.

As barreiras de contenção de fumaça devem ter altura suficiente para center a camada de fumaça. O tamanho da barreira de contenção de fumaça depende do tamanho da camada de fumaça adotada em projeto. Caso as barreiras de contenção de fumaça possuam aberturas, estas devem ser protegidas por dispositivos de fechamento automático ou par dutos adequadamente protegidos para controlar o movimento da fumaça pelas barreiras.

A conformidade dos projetos de válvulas para cilindros recarregáveis de cloro

A corrosão é apenas um fato da vida quando se trata de válvulas de cloro, pois elas sofrem corrosão, por isso é importante sempre fazer uma inspeção visual periódica das válvulas. Embora as válvulas sejam feitas com materiais da mais alta qualidade, a corrosão pode ocorrer devido à natureza do gás cloro e aos ambientes onde o cilindro e as válvulas estão sendo usados e armazenados.

Uma preocupação comum é que os operadores na planta tenham medo de serem expostos ao gás cloro. O gás cloro é altamente tóxico e pode ser muito perigoso quando os materiais de armazenamento não são mantidos. Alguns operadores tendem a ser cautelosos demais e acreditam que é melhor apertar demais as válvulas.

Embora isso possa parecer uma ideia lógica, não é. Quando se aperta demais (torque) uma válvula, pode-se colocar pressão excessiva na válvula. A tensão excessiva ao longo do tempo fará com que a porca da gaxeta rache. O aperto excessivo da válvula também pode sobrecarregar o corpo da válvula, causando rachaduras e liberando gás cloro.

Deve-se apertar a válvula de acordo com as especificações fornecidas pelo fabricante. Algumas pessoas tendem a borrifar amônia na válvula para testar se há vazamentos. O problema com este método é que a amônia também é corrosiva e é por isso que às vezes se vê válvulas de cor esverdeada. Nas conexões de entrada da válvula, os orifícios nos cilindros pequenos e grandes destinados às válvulas possuem originalmente a rosca padrão 3/4” 14NGT (CL)-0.

Com o tempo, a rosca dos cilindros se desgasta devido às constantes retiradas e recolocações das válvulas. Para aumentar o tempo de vida do cilindro, é necessário o alargamento dos orifícios e das roscas com outras dimensões. Com isto, nos cilindros pequenos, as válvulas da série 3/4” 14NGT (CL)-1 a 3/4” 14NGT (CL)-4 podem ser utilizadas.

Nos cilindros grandes, além destas, as válvulas da série 1–11½” NGT (CL)-4 também podem ser utilizadas. O padrão NGT é um padrão americano para roscas cônicas. Quando empregado em válvulas para cilindros de cloro, elas são denominadas NGT (CL). Estas roscas podem ser fabricadas em diversos tamanhos padronizados para uso com cloro.

Historicamente, o padrão NGT (CL) tem sido utilizado no Brasil para as válvulas de cloro. Tomando como exemplo a rosca 3/4” 14 NGT (CL)-0, é possível descrever o significado da expressão que caracteriza estas roscas: 3/4” – É a dimensão nominal da conexão de entrada da válvula para cilindro de cloro; 14 – Significa a quantidade de fios de rosca por polegada; NGT – National Gas Taper (rosca cônica de entrada das válvulas para cilindros de gás); (CL) – Significa o uso em cilindros de cloro; (CL) – 0 Corresponde à válvula padrão com a quantidade mínima de roscas para uso nos cilindros novos.

As demais roscas (CL)-1 a (CL)-4 possuem maior quantidade de roscas para emprego em cilindros em uso com roscas alargadas. Os aspectos da modificação de um projeto, que podem afetar a válvula, devem ser identificados pelo responsável do projeto.

Quando forem realizadas mudanças em um projeto de válvula aprovado e documentado conforme os requisitos da norma técnica, é necessário aplicar os seguintes critérios: as conexões de entrada e saída: o emprego de outro tipo de conexão CGA, ISO ou outras de diferentes tamanhos de roscas conforme 5.5.1 não configura alteração de projeto; corpo da válvula: as mudanças nas dimensões internas ou externas e/ou as mudanças nos materiais construtivos do corpo da válvula exigem que todos os ensaios atendam aos demais requisitos da norma.

Este tipo de mudança deve ser tratado como um novo projeto. Outras modificações, por exemplo, na concepção de outros componentes (anéis, gaxetas, hastes, entre outros) exigem a verificação de conformidade com os requisitos da norma e a realização de novos ensaios de desempenho que podem ser afetados pela mudança. Todas as modificações no projeto devem ser documentadas, incluindo os registros dos ensaios de qualificação.

Todas as variantes de projeto de válvula e/ou modificações introduzidas no projeto devem ser registradas e anexadas à documentação do projeto. Um projeto aprovado de válvula, para uso em cilindros contendo outros gases, somente pode ser utilizado para uso em cilindros de cloro se for objeto de um projeto variante que atenda aos requisitos da norma. Um projeto de válvula aprovado para uso em cilindros pequenos de cloro, mas ainda não aprovado de acordo com a norma para uso em cilindros grandes de cloro (ou vice-versa), também deve ter um projeto variante que atenda aos requisitos da norma.

A NBR 17016 de 03/2022 – Válvulas para cilindros de cloro – Especificação e ensaio de protótipo se aplica às válvulas empregadas em cilindros recarregáveis de cloro, aos tubos coletores (manifolds) e às válvulas empregadas nos kits de emergência dos tipos A, B e C. Estabelece os requisitos para o projeto de válvulas para cilindros recarregáveis de cloro, incluindo dimensões, materiais de construção, conexões, qualificação do projeto e documentação. O cloro líquido é o cloro gás liquefeito por aplicação de pressão, caracterizado como um líquido claro, de cor âmbar e aproximadamente 1,5 vez mais pesado que a água.

Os cilindros pequenos e grandes de cloro são utilizados por estações de tratamento de água, nas indústrias e outros consumidores do produto. As válvulas destes cilindros são peças de engenharia que precisam ser de alta confiabilidade, visto que sua falha pode levar a vazamentos significativos de cloro durante seu carregamento, uso e transporte.

O cloro é um produto tóxico, oxidante e corrosivo. No Brasil, ele é transportado como um produto da classe 2.3 (gás tóxico), com riscos subsidiários 5.1 (oxidante) e 8 (corrosivo), conforme a ANTT N° 5.232/2016. As válvulas em cilindros recarregáveis para cloro devem ter a qualidade e a resistência requeridas nessa norma para assegurar tanto o desempenho adequado como a segurança nas operações de envasamento, armazenamento, movimentação, transporte e esvaziamento dos cilindros.

As válvulas nacionais devem ser projetadas e manufaturadas em conformidade com esta norma. As válvulas importadas devem atender aos requisitos de desempenho, construção, qualificação e manufatura equivalentes aos desta norma, por exemplo, as válvulas manufaturadas conforme os requisitos da CGA V-9. Todas as marcações nas válvulas devem ser indeléveis.

As válvulas para cilindros de cloro devem ter um projeto elaborado e aprovado conforme os requisitos dessa norma. O projeto deve ser elaborado considerando os seguintes aspectos: as propriedades químicas e físicas e os perigos do cloro; as operações a que habitualmente os cilindros de cloro são submetidos, como preparação para o enchimento, armazenamento, transporte, esvaziamento e uso.

O projeto da válvula para cilindro de cloro deve atender aos requisitos específicos relacionados a: dimensões; materiais de construção e lubrificantes; corpo da válvula, mecanismo operacional e dispositivo operacional; conexão de entrada e saída da válvula; bujão fusível (somente na válvula para cilindro pequeno de cloro); e tampa (cap) da saída da válvula. O projeto deve prever as marcações mínimas requeridas na válvula e nos componentes, de acordo com essa norma.

Os protótipos do projeto da válvula devem ser submetidos aos ensaios relacionados nessa norma e atender aos requisitos descritos. O projeto deve ser documentado, incluindo as informações necessárias para a manufatura da válvula, de acordo com o projeto qualificado (aprovado), conforme os requisitos dessa norma. A documentação do projeto, incluindo as suas modificações, deve ser conservada por até dez anos após o encerramento da manufatura da válvula.

As dimensões externas máximas da válvula devem estar de acordo com as figuras abaixo, para assegurar a sua compatibilidade com: a fixação do capacete de proteção da válvula colocado no cilindro pequeno ou grande; a operação dos equipamentos e a operação de enchimento e de esvaziamento dos cilindros; e a fixação dos dispositivos do kit de emergência do tipo A ou B nos cilindros pequenos ou grandes. O kit de emergência é um conjunto de peças, ferramentas e acessórios, destinado a conter vazamentos de cloro que podem ocorrer nas válvulas ou no corpo do cilindro de cloro líquido.

O orifício de passagem do fluxo de gás da válvula deve ter dimensões adequadas para atender à vazão requerida sem que haja comprometimento da resistência mecânica da válvula. A seleção de materiais construtivos deve ser conforme os critérios estabelecidos nas ISO 11114-1 (materiais metálicos) e ISO 11114-2 (materiais não metálicos), demonstrando sua compatibilidade química com o cloro.

Isto inclui, no caso de materiais metálicos, a resistência à corrosão em condições secas e úmidas, a corrosão por impurezas, as reações violentas e de trincas devido à corrosão sob tensão (stress corrosion cracking), e, no caso de materiais não metálicos, as condições relacionadas a reações violentas, a perda de massa por extração ou por ataque químico, o inchaço, a perda das propriedades mecânicas, a reação de formação de substâncias indesejáveis e o envelhecimento. Para a determinação da suscetibilidade da formação de trinca devido à corrosão sob tensão (stress corrosion cracking) de ligas de cobre, podem ser utilizados os métodos das ISO 6957, ASTM B858, e ASTM B154.

Os materiais metálicos já ensaiados e aprovados, que habitualmente são utilizados na manufatura de válvulas para cilindros de cloro, estão relacionados no Anexo C. Os lubrificantes não podem ser empregados nas válvulas para cilindros de cloro. Os materiais metálicos e não metálicos devem atender aos requisitos dos ensaios requeridos, conforme descritos nessa norma. O material do corpo da válvula deve ser forjado ou laminado.

O material do corpo da válvula deve atender às especificações de dureza, resistência à tração, escoamento e alongamento, comprovadas por ensaios estabelecidos na ASTM B16. No descritivo e/ou nos desenhos de projeto, devem estar claramente relacionados e especificados os materiais construtivos do corpo e os demais componentes da válvula.

O fechamento da válvula deve ocorrer no sentido horário. As válvulas para cilindros de cloro não podem empregar volantes. Para sua abertura e seu fechamento, deve ser empregada uma chave especial com um comprimento não superior a 20 cm e com bocal quadrado na extremidade que se encaixe na haste da válvula.

A haste da válvula deve ter, na sua extremidade superior, uma seção quadrada de 9,525 mm (3/8”), para encaixar a chave utilizada para a abertura e o fechamento da válvula. A abertura e o fechamento da válvula devem ser possíveis na pressão de projeto de 3 450 kPa (500 psig). O mecanismo de operação da válvula deve ser projetado de modo que seja evitada a alteração inadvertida na sua montagem.

A elevação da extremidade da haste deve estar limitada a 3,175 mm (1/8”) para 360º de rotação. Não podem ser utilizados lubrificantes no mecanismo de operação da válvula. A conexão de entrada das válvulas de cilindros novos pequenos e grandes, em uso no Brasil, deve ser uma conexão 3/4” – NGT(CL)-0 (ver o Anexo D).

A conexão de entrada das válvulas de cilindros pequenos e grandes, em uso no Brasil, deve ser uma das conexões da série 3/4” – NGT(CL)-0 à série 3/4” – NGT(CL)-4 (ver o Anexo D). As medidas de construção das conexões 3/4” – NGT(CL) devem estar de acordo com essa norma. A válvula também pode ser projetada com a conexão de entrada no padrão 25E da ISO 11363-1, para fins de exportação.

O uso da conexão 25E (ISO 11363-1) também é possível, porém podem ocorrer vazamentos de cloro, caso ocorra troca de válvulas na conexão com os cilindros, como, por exemplo, válvula com conexão 3/4” – NGT (CL) conectada em cilindros com conexão 25E. O projeto de uma válvula para uso em cilindro de cloro deve ser documentado, incluindo as suas eventuais modificações e revisões.

A documentação do projeto deve referenciar essa norma. O projeto deve possuir um número e/ou uma denominação para distingui-lo de outros projetos. A documentação deve ser suficiente para a reprodução fidedigna do protótipo de válvula aprovada conforme os requisitos dessa norma, contendo: um desenho da válvula com suas partes, suas dimensões relevantes e suas modificações, se for o caso, ver o exemplo no Anexo A; um desenho das partes com as medidas e suas tolerâncias, bem como as marcações na válvula e na haste.

Também, devem constar, na documentação, no desenho ou em uma lista separada, as especificações dos materiais utilizados em cada parte da válvula (ver o exemplo no Anexo B) e o nome do responsável pela aprovação do projeto da válvula para uso em cilindros de cloro, ou do responsável pela aprovação da variante da válvula para este uso. A documentação do projeto deve permitir a rastreabilidade do processo empregado para sua qualificação, incluindo: a seleção de materiais que atendam aos requisitos dessa norma, ou aqueles listados no Anexo C, sejam novos materiais que foram ensaiados e aprovados; os registros de todos os ensaios de qualificação da válvula para uso em cilindros de cloro, incluindo o nome do executante dos ensaios, os resultados e a avaliação e aprovação da válvula pelo responsável do projeto.

O treinamento dos trabalhadores para o transporte terrestre de produtos perigosos

As mercadorias perigosas estão sujeitas a regulamentos de transporte, local de trabalho, armazenamento, proteção do consumidor e do meio ambiente, para evitar acidentes com pessoas, bens ou meio ambiente, com outras mercadorias ou com o meio de transporte utilizado. Para garantir a consistência entre todos esses sistemas regulatórios, foram desenvolvidos mecanismos para a harmonização dos critérios de classificação de perigos e ferramentas de comunicação, e para as condições de transporte para todos os modos de transporte.

Além disso, em uma sociedade altamente industrializada, esses produtos perigosos são frequentemente usados. No contexto do transporte, é importante proteger a segurança, a vida e a saúde do público em geral, exercendo o máximo cuidado e confiabilidade. Dessa forma, o equipamento adequado da frota e a formação dos colaboradores são indispensáveis para garantir o transporte seguro de mercadorias que oferecem riscos à sociedade.

Todos os trabalhadores que atuam no transporte de produtos perigosos devem receber as informações sobre as precauções a serem tomadas e se familiarizar com o produto, a fim de conhecer os requisitos e habilitar-se a identificar os produtos perigosos, conforme a sinalização regulamentada. Sempre que, por qualquer motivo, for necessário paralisar um veículo que esteja transportando um produto perigoso na faixa de rolamento e/ou no acostamento da via onde haja tráfego, devem ser tomados cuidados especiais para proteger o condutor, o veículo e a carga, ou devem ser desenvolvidos esforços necessários para evitar riscos.

Alguns esforços especiais devem ser tomados para remover o veículo para um local seguro, onde os riscos aos produtos transportados possam ser minimizados. Devem ser utilizados os elementos constantes no conjunto de equipamentos para emergência, de acordo com a NBR 9735 de 03/2020 – Conjunto de equipamentos para emergências no transporte terrestre de produtos perigosos, para isolamento e sinalização da via.

Esta norma estabelece o conjunto mínimo de equipamentos para situações de emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual (EPI), a ser utilizado pelo condutor e pelos auxiliares envolvidos (se houver) no transporte nas ações iniciais, equipamentos para sinalização da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para carga.

Um transportador não pode mover um veículo de transporte que contenha um produto perigoso em situação de emergência, salvo se o veículo estiver sinalizado e autorizado, desde que o veículo seja escoltado por um representante de uma autoridade; o transportador tenha a permissão da autoridade de trânsito; a movimentação do veículo de transporte seja necessária para proteger vidas, meio ambiente ou propriedades. No caso de vazamento (s) de produto perigoso em veículos que torne (m) a viagem insegura, o veículo com carga vazando deve ser removido da faixa de rolamento da via para um local seguro e deve ser empregado um meio seguro para contenção do vazamento.

Tais procedimentos podem ser o estabelecimento de trincheiras, canaletas ou valetas que desviem o produto perigoso para longe de córregos ou esgotos, se possível, ou a coleta do produto em recipientes, se possível. Não é permitido fumar ou utilizar qualquer outra fonte de ignição nas proximidades de onde ocorreu o vazamento.

A movimentação de veículos com carga vazando é aceita apenas por uma distância mínima necessária para chegar a um lugar onde o conteúdo do veículo possa ser manuseado com segurança. Todos os meios disponíveis devem ser utilizados para impedir o vazamento ou derramamento do produto na via ou no meio ambiente.

Quando ocorrerem vazamentos em embalagens/recipientes no percurso do transporte após o carregamento inicial, a disposição de tais recipientes ou embalagens deve ser feita por meio prático e seguro, de acordo com a reparação da embalagem/recipiente. As embalagens/recipientes podem ser reparadas quando possível e prático e tais reparos devem ser de acordo com a melhor e mais segura prática conhecida e disponível.

As embalagens/recipientes seguramente reparados devem ser transportados para um local adequado onde possam ser dispostos de forma segura, de acordo com os seguintes requisitos: a embalagem/recipiente deve ser seguro para o transporte; a reparação da embalagem/recipiente deve ser adequada para evitar contaminação ou mistura perigosa com outros materiais transportados no mesmo veículo; o transporte de embalagem/recipiente avariado deve atender à NBR 13221; e deve-se usar a embalagem de resgate. A NBR 13221 de 02/2021 – Transporte terrestre de produtos perigosos – Resíduosestabelece os requisitos para o transporte terrestre de resíduos classificados como perigosos, conforme a legislação vigente, incluindo resíduos que possam ser reaproveitados, reciclados e/ou reprocessados, e os resíduos provenientes de acidentes, de modo a minimizar os danos ao meio ambiente e a proteger a saúde.

A movimentação de recipientes/embalagens danificados e inseguros, com vazamento, é aceita apenas por uma distância mínima necessária para chegar a um lugar onde eles possam ser manuseados

com segurança. Todos os meios disponíveis devem ser utilizados para impedir o vazamento ou derramamento do produto na via ou no meio ambiente.

A NBR 16173 de 09/2021 – Transporte terrestre de produtos perigosos – Carregamento, descarregamento e transbordo a granel e embalados (fracionados) – Requisitos para capacitação de trabalhadores estabelece os requisitos para a capacitação de trabalhadores para realização das atividades de carregamento, descarregamento e transbordo de produtos classificados como perigosos para transporte a granel e embalados (fracionados). Estabelece os requisitos para trabalhadores que atuam no carregamento, descarregamento e transbordo de veículos de carga, como caminhões-tanque, contêiner-tanque ou vagões-tanque, e de embalagens, por exemplo, tambores, IBC, tanque portátil, recipientes, etc., a fim de desenvolver e implementar procedimentos de operação segura com base em análise de risco.

Os procedimentos operacionais incluem os requisitos relativos aos diversos aspectos das operações de carregamento, descarregamento e transbordo incluindo provisões das instalações envolvendo manutenção, programas de ensaios nos equipamentos de transferência utilizados no carregamento (por exemplo, programas de manutenção de mangueiras), descarregamento e transbordo de veículos de carga, misto ou especial. No caso de carga a granel, quando da manipulação do produto do veículo para outro veículo ou do veículo para a embalagem ou vice-versa, observar as regulamentações e normas de segurança específicas.

Essa norma estabelece treinamento, avaliação e reciclagem da capacitação de trabalhadores que atuam nas operações de carregamento, descarregamento e transbordo, para desenvolver tais operações. Visa reduzir os riscos dessas operações com produtos perigosos e pode ser aplicada à capacitação de trabalhadores para outros produtos. Não se aplica à capacitação de operadores de transvasamento no sistema de abastecimento de gás liquefeito de petróleo (GLP) a granel (ver NBR 15863).

O pré-requisito mínimo para participação neste treinamento é ser alfabetizado e conhecer o idioma oficial do Brasil. Para executar as operações de transbordo em situações de emergência, o trabalhador deve ter concluído todos os módulos de treinamento (básico e 1 a 6), conforme os Anexos A e B.

O treinamento funcional específico para os trabalhadores que atuam com produtos perigosos e que executam atividades relacionadas ao carregamento, descarregamento e transbordo de produtos perigosos a granel ou embalados (fracionados) deve ser desenvolvido de forma que assegure que eles entendam e implementem o treinamento e que sejam capazes de desenvolver as atividades necessárias para cumprir as tarefas de forma segura. Recomenda-se que o supervisor da instalação faça uma avaliação de desempenho dos trabalhadores no mínimo anualmente.

Os mecanismos para avaliar os trabalhadores que atuam com produtos perigosos incluem, mas não se limitam ao desenvolvimento de rotinas regulares cobertas pelas atividades ou seções práticas específicas e exercícios simulados para verificar o seu desempenho. Um programa mínimo de capacitação deve incluir o seguinte: identificação das atividades e dos trabalhadores cobertos pelo programa; observação e avaliação do desempenho de cada trabalhador envolvido na execução das tarefas cobertas; fornecimento do resultado da avaliação quanto ao desempenho dos trabalhadores em relação às tarefas; estabelecimento de um programa de melhorias do processo para os trabalhadores; certificação com a data em que o trabalhador foi qualificado para desenvolver as operações de carregamento, descarregamento e transbordo, de acordo com o programa de capacitação desenvolvido para a instalação.

Estes treinamentos devem ser aplicados para todos os trabalhadores que tenham como atividade o carregamento, descarregamento e transbordo de produtos perigosos. Os procedimentos operacionais devem conter no mínimo o seguinte: uma análise sistemática para identificar, avaliar e controlar os riscos associados com as operações de carregamento, descarregamento e transbordo de produtos perigosos, e para desenvolver um guia passo a passo da operação (com as ações sequenciais que devem ser realizadas durante essas operações), para ser aplicado de forma concisa e apropriada ao nível de treinamento, considerando a escolaridade e o conhecimento prévio dos trabalhadores; identificação e implementação dos procedimentos de emergência, incluindo treinamento e simulados, manutenção, ensaio dos equipamentos e treinamento nos procedimentos operacionais; as características e riscos dos produtos a serem manuseados (embalados) e manipulados (granel) durante essas atividades; as medidas necessárias para assegurar o manuseio e a manipulação seguros de produtos perigosos; as condições que afetam a segurança da operação, incluindo controle de acesso, iluminação, fontes de ignição, obstruções físicas e condições climáticas.

Os procedimentos devem ser desenvolvidos com base na avaliação dos riscos associados com os produtos perigosos específicos ou com o transporte, as circunstâncias operacionais e o meio ambiente. Existem tipos de procedimentos a serem desenvolvidos para carregamento, descarregamento e transbordo: verificar a operação antes do carregamento, descarregamento e transbordo; monitorar a operação de carregamento, descarregamento e transbordo; atender às emergências durante todas essas operações; verificar a operação de pós-carregamento, pós-descarregamento e transbordo. Os tipos de procedimentos podem estar agrupados ou separados, de acordo com a necessidade da empresa (expedidor, transportador ou destinatário).

Para assegurar a qualidade e a segurança das operações (carregamento, descarregamento e transbordo), recomenda-se supervisão por pessoal da instalação, quando essas operações forem realizadas por condutores ou pessoal terceirizado. Os procedimentos devem ser revistos com frequência (quando necessário ou no máximo, a cada cinco anos) para assegurar que correspondam às práticas atuais, aos produtos, à tecnologia, à responsabilidade do pessoal e aos equipamentos.

Os procedimentos atualizados devem ser mantidos nos pontos principais da instalação a fim de estarem acessíveis aos trabalhadores (por exemplo, nas instalações onde as operações de carregamento, descarregamento e transbordo sejam executadas). É responsabilidade dos expedidores ou destinatários de produtos perigosos treinar e emitir certificado com validade, constando as informações mínimas, indicadas no Anexo A.

O treinamento pode ser realizado por entidade pública ou privada com anuência do expedidor ou destinatário. O transportador pode ministrar parte do treinamento (módulos 1 e 2), com anuência do expedidor ou destinatário.

Cada trabalhador que atua com produtos perigosos deve receber: o treinamento funcional específico e de segurança concernente com os requisitos aplicáveis; a orientação sobre medidas de proteção quanto aos riscos associados aos produtos perigosos aos quais eles podem ficar expostos em seu local de trabalho, incluindo medidas específicas que o expedidor tenha implementado para proteger seus trabalhadores da exposição; a orientação sobre métodos e procedimentos para evitar acidentes, como um procedimento apropriado para manuseio de embalagens contendo produtos perigosos. A empresa responsável pela operação das instalações de carregamento, descarregamento e transbordo deve contratar somente trabalhadores que tenham sido capacitados e aprovados de acordo com essa norma.

Um trabalhador que manuseie produtos perigosos, para assumir ou mudar de função, deve ter sido treinado, no mínimo, nos módulos básicos 1 a 5 (Anexo A) para poder desenvolver tais atividades antes de ter sido aprovado no treinamento, desde que o desempenho nas funções de carregamento, descarregamento e transbordo esteja sob supervisão direta de outro trabalhador apropriadamente capacitado e aprovado para tal; e o treinamento seja completado nos demais módulos e aprovado após assumir ou mudar de função.

Um treinamento similar recebido anteriormente em uma outra instalação ou de outra fonte pode ser utilizado para satisfazer os requisitos deste novo treinamento, desde que um registro adequado do treinamento anterior possa ser obtido e esteja válido. O treinamento deve ser avaliado e complementado de acordo com as características da nova instalação. O treinamento teórico deve ter no máximo a participação de 20 pessoas.

A simulação prática de operação e de situações de emergência deve ser feita em equipes com duas pessoas, sendo a avaliação de desempenho realizada individualmente, considerando as características das instalações. Independentemente do prazo para a atualização obrigatória, o treinamento deve ser reaplicado quando ocorrerem mudanças em: produtos manuseados; equipamentos de transferência; controles; e procedimentos e responsabilidades operacionais (plano de ação de emergência).

A qualificação das empresas de transporte de produtos com riscos à saúde, à segurança e ao meio ambiente

Os produtos com potencial de risco são aqueles com probabilidade de ocorrência de perigos que causem lesão física e/ou prejuízo à saúde, ao meio ambiente ou à propriedade e o produto químico perigoso é toda substância ou preparado que tiver sido classificado como perigoso, em função do tipo e do grau de riscos físicos que oferecem para a saúde das pessoas, para a segurança e para o meio ambiente. É importante que a empresa de transporte tenha implementado um programa de gestão ambiental visando a sustentabilidade, incluindo reciclagem ou reaproveitamento de materiais, produtos, insumos e recursos naturais utilizados na prestação de serviços.

Igualmente, a direção da empresa de transporte deve definir os indicadores mensuráveis para os aspectos da qualidade, saúde, segurança e meio ambiente; os métodos para sua medição; as metas e os prazos para atendimento de todos os indicadores de desempenho. As metas devem ser analisadas e revisadas, no mínimo anualmente, após a análise crítica pela direção. Os indicadores de desempenho definidos pela direção da empresa devem ser coerentes com a política da qualidade, saúde, segurança e meio ambiente, e incluir no mínimo os indicadores listados na tabela abaixo.

Clique na figura para uma melhor visualização

Para a gestão de sua mão de obra, as empresas devem dispor de um programa aos trabalhadores para verificar se estão em condições saudáveis para a realização do trabalho e que não estão sob influência externa, inclusive dependência de drogas e/ou álcool. A empresa deve definir formalmente os equipamentos de proteção individual/coletivos necessários para cada fase do processo e assegurar sua disponibilidade.

Deve assegurar o uso dos equipamentos de proteção individual (EPI) e que sejam tomadas ações imediatas para substituir os equipamentos de proteção coletiva (EPC) e EPI defeituosos ou que estejam em falta ou vencidos. A empresa deve estabelecer e manter planos e procedimentos para identificar, atender, prevenir e minimizar doenças e lesões que possam estar associadas ao trabalho dos trabalhadores.

A empresa deve documentar, implementar, manter e revisar, pelo menos anualmente, um procedimento de primeiros socorros. Deve desenvolver ou aderir a programas de boas práticas que incentivem o bom comportamento e as regras de segurança no desempenho das suas funções.

Em relação à competência e treinamento, a empresa de transporte deve identificar os conhecimentos específicos e a habilidade ou experiência apropriada requerida para cada função da área operacional e demais áreas que afetem a qualidade, saúde, segurança e meio ambiente; documentar, implementar e manter procedimentos para identificar periodicamente, no mínimo anualmente, as necessidades de treinamento e providenciá-lo para o pessoal que executa atividades que podem implicar em riscos de qualidade, saúde, segurança e meio ambiente. Deve ser mantido o registro de treinamento.

A transportadora deve estabelecer um plano de treinamento que inclua no mínimo a prevenção de incidentes/acidentes, devendo prever precauções contra derrames e quedas de volumes durante o manuseio, modo correto de abrir e fechar válvulas nos equipamentos de transporte a granel, verificação de aberto/fechado das válvulas e drenos; o atendimento a emergências; a comunicação e a análise do incidente e acidentes; o manuseio, armazenamento e transporte de produtos com potenciais de risco; o uso e a conservação de EPI; a comunicação eletrônica; os primeiros socorros; as emergências no transporte; as operações de carregamento, descarregamento e transbordo da carga. Para o transporte de produtos perigosos, a empresa deve atender à NBR 16173; realizar simulados de atendimento a emergências pelo menos uma vez ao ano, envolvendo todos os trabalhadores; e operar máquinas e equipamentos especiais.

Deve, ainda, treinar os trabalhadores recém-designados para operações com equipamentos diferentes daqueles que operava (transferência de habilidades para trabalhadores). Em termos de conscientização, deve assegurar que os trabalhadores estejam conscientes quanto à política da qualidade, saúde, segurança e meio ambiente; aos aspectos ambientais significativos e aos impactos ambientais reais ou potenciais associados com seu trabalho; aos perigos e riscos significativos; à sua contribuição para a eficácia do sistema de gestão; e às implicações de não estar conforme com os requisitos do sistema de gestão, incluindo o não atendimento aos requisitos legais e outros requisitos da organização.

Além disso, o efetivo gerenciamento de risco em transporte deve ser considerado um processo contínuo para a redução e avaliações de risco. O gerenciamento de risco é a chave para um efetivo programa de segurança no transporte. para o gerenciamento dos riscos no transporte rodoviário, por meio de orientações para a elaboração de programa de gerenciamento de risco (PGR), cujo objetivo é a prevenção dos eventos acidentais.

O PGR consiste em um documento que estabelece os mecanismos técnicos e administrativos para a gestão preventiva dos riscos decorrentes da atividade de transporte, com vistas à redução e controle dos fatores que contribuem para a ocorrência de acidentes. O PGR deve contemplar no mínimo a seguinte estrutura: introdução; objetivo; a caracterização da atividade de transporte da empresa e da área de influência; a análise de risco; a revisão da análise de risco; a gestão do programa; os procedimentos operacionais; o gerenciamento de mudanças; a manutenção e a garantia de integridade; a investigação de acidentes e incidentes; o plano de ação de emergência; a capacitação dos recursos humanos; a equipe responsável pela elaboração do programa. Para o caso de transporte de produtos perigosos é necessário a elaboração do PGR e do plano de ação de emergência (PAE), seguindo as diretrizes da NBR 15480.

A NBR 15518 de 12/2021 – Transporte rodoviário de carga — Sistema de qualificação para empresas de transporte de produtos com potencial de risco à saúde, à segurança e ao meio ambienteestabelece os requisitos de gestão para qualificação de empresa de transporte para movimentar (manuseio e distribuição) e transportar produtos com potencial de risco à saúde, à segurança e ao meio ambiente, englobando uma variedade de requisitos que objetivam principalmente: minimizar os riscos potenciais para os trabalhadores das empresas de transporte, contratados e comunidade em geral, no exercício de atividades ligadas ao transporte, reduzindo continuamente incidentes/acidentes que podem ameaçar a saúde humana, a segurança e o meio ambiente; melhorar os procedimentos operacionais das empresas de transporte, voltados para o foco de saúde, segurança e meio ambiente; promover, em todos os níveis hierárquicos, o senso de responsabilidade individual relacionado ao meio ambiente, à segurança e à saúde ocupacional, e o senso de prevenção de todas as fontes potenciais de risco associadas às suas operações e locais de trabalho, gerando melhorias no desempenho operacional; promover a melhoria contínua na gestão da qualidade, saúde, segurança e meio ambiente.

Uma carga a granel é aquela transportada sem qualquer embalagem ou recipiente, sendo contida pelo próprio tanque, vaso, caçamba, carroceria, contêiner-tanque ou contentor para granéis. Uma carga embalada é aquela transportada em embalagens, IBC, embalagens grandes, tanques portáteis e contentores de múltiplos elementos para gás (MEGC) que não se enquadrem na definição de contêiner da Convenção Internacional sobre Segurança de Contêineres (CSC).

Assim, o produto químico perigoso para o transporte é todo produto químico classificado como perigoso para o transporte conforme relação de produtos perigosos definidos na legislação. A empresa de transporte deve identificar as questões externas e internas que afetem sua capacidade de alcançar os resultados pretendidos do seu sistema de gestão para atender às necessidades do mercado em que atua.

A empresa de transporte deve planejar, documentar e implementar o sistema de qualificação para um escopo definido. O escopo deve apresentar: a abrangência dos serviços incluídos no sistema de qualificação (local, regional, nacional ou internacional); os tipos de serviços de transporte executados (fracionado, carga geral, granel, contêiner, etc.); os tipos de produtos transportados (mudanças, químicos, perigosos, frigorificados, alimentícios, etc.); a parte da organização envolvida no escopo (matriz, filiais, terminais, franquias, representantes, agentes, etc.); as partes interessadas que sejam pertinentes e as respectivas necessidades e expectativas.

O sistema de gestão da empresa de transporte deve ser documentado contendo no mínimo: a política da qualidade, saúde, segurança e/ou meio ambiente; os indicadores de desempenho estabelecidos nesta norma; o organograma da empresa; o escopo de seu sistema de qualificação; a lista dos processos e sua inter-relação; a lista dos principais procedimentos de negócios (ver Seção 8) e de apoio (ver Seção 7).

A empresa de transporte deve apresentar um plano documentado prevendo a garantia de todo transporte realizado, devendo atender no mínimo a qualificação do condutor de acordo com a categoria do veículo e o tipo de transporte realizado; a garantia das condições de segurança técnicas e operacionais do veículo; o estabelecimento de procedimentos de emergência para todo serviço executado; o estabelecimento de rotas, contendo no mínimo origem, destino e pontos de parada; a definição de critérios de movimentação (manuseio e distribuição) e armazenamento, quando aplicável.

A direção da empresa de transporte deve estabelecer e documentar sua política de qualidade, saúde, segurança e meio ambiente. A política deve incluir o compromisso com a melhoria contínua e o atendimento aos requisitos legais aplicáveis.

A direção da empresa de transporte deve assegurar que a política de qualidade, saúde, segurança e meio ambiente seja compreendida, implementada e mantida por todos os trabalhadores (funcionários e terceiros) que executam atividades que afetam o serviço. A política de gestão deve conter: o compromisso com a qualidade, saúde, segurança, meio ambiente, responsabilidade social e sustentabilidade; o atendimento aos requisitos legais; os compromissos com a moral, ética e boas práticas; o comprometimento com a melhoria contínua do desempenho do sistema de gestão da qualidade, ambiental, segurança e saúde.

Isso deve estar disponível a todas as partes interessadas (acionistas, trabalhadores, fornecedores, comunidade, clientes) e promover o comprometimento e a participação de todos. Para assegurar a efetiva qualificação, a direção da empresa de transporte deve definir, documentar e comunicar as relações de responsabilidades e autoridades, indicando claramente os responsáveis pela aprovação e implementação de documentos e procedimentos referentes a esta norma.

A direção da empresa de transporte deve indicar um membro da administração como coordenador de saúde, segurança e meio ambiente. Este coordenador, independentemente de outras responsabilidades, deve ter autoridade e responsabilidade definidas que incluam: planejar e gerenciar a implantação do sistema de gestão de transporte; assegurar que os processos do sistema de gestão de transporte estão estabelecidos e mantidos; relatar à direção o desempenho do sistema de gestão de transporte e dos indicadores de desempenho, incluindo necessidades de melhoria.

Caso a empresa de transporte decida pela terceirização de seu coordenador, este deve participar do dia a dia da empresa. Este coordenador pode ser o mesmo coordenador da qualidade ou outro trabalhador. A empresa deve designar formalmente um coordenador de segurança de produtos e bens perigosos, que deve gerar um relatório anual sobre as atividades da empresa no transporte de produtos e bens perigosos.

A empresa de transporte deve ter procedimentos para identificar e avaliar riscos potenciais à qualidade, saúde, segurança e meio ambiente ligados à operação, incluindo no mínimo: os aspectos que têm ou podem ter um impacto significativo; os critérios para identificação da significância, contemplando probabilidade de ocorrência e potencial impacto; o atendimento aos requisitos legais; o alcance dos resultados pretendidos; a prevenção ou redução de efeitos indesejáveis; a melhoria contínua. As diretrizes do Anexo A para avaliação de riscos podem ser seguidas como critérios orientativos.

A empresa de transporte deve manter atualizados a relação dos requisitos legais e as normas referenciais aplicáveis aos seus serviços que possam afetar a saúde, a segurança, o meio ambiente e a qualidade das operações, e determinar como estes requisitos aplicam-se à empresa. A direção da empresa de transporte deve verificar e evidenciar o atendimento aos requisitos legais e normas referenciais aplicáveis e demonstrar o seu completo atendimento.

Conheça um método para a contagem de E. coli e bactérias coliformes na água

A NBR ISO 9308-2 de 09/2021 – Qualidade da água – Enumeração de Escherichia coli e bactérias coliformes – Parte 2: Método do número mais provável especifica um método para a contagem de E. coli e bactérias coliformes na água. O método é baseado no crescimento de organismos-alvo em meio líquido e no cálculo do número mais provável (NMP) de organismos por referência às tabelas de NMP. Este método pode ser aplicado a todos os tipos de água, incluindo aquelas contendo uma quantidade considerável de matéria suspensa e altas contagens de fundo de bactérias heterotróficas.

Contudo, não pode ser usado para a contagem de bactérias coliformes na água do mar. Ao usar para a enumeração de E. coli em águas marinhas, uma diluição de 1→10 em água estéril é normalmente necessária, embora o método tenha mostrado funcionar bem com algumas águas marinhas que têm uma concentração de sais inferior ao normal. Na ausência de dados para apoiar o uso do método sem diluição, uma diluição de 1→10 é usada.

Este método se baseia na detecção de E. coli com base na expressão da enzima β-D-glucuronidase e, consequentemente, não detecta muitas das cepas entero-haemorágicas de E. coli, que normalmente não expressam essa enzima. Além disso, há um pequeno número de outras cepas de E. coli que não expressam β-D-glucuronidase.

A escolha dos ensaios usados na detecção e confirmação do grupo de bactérias coliformes, incluindo E. coli, pode ser considerada parte de uma sequência contínua. A extensão da confirmação com uma amostra particular depende em parte da natureza da água e em parte dos motivos do ensaio. O ensaio descrito nesta parte fornece um resultado confirmado sem necessidade de confirmação adicional de poços positivos. Embora este método descreva o uso de um dispositivo de enumeração que está disponível comercialmente, o meio descrito também pode ser usado em um formato padrão NMP.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Para o ensaio, como deve ser feita a inoculação do meio?

O que é a seladora Quanti-Tray5) e como deve ser feito o cálculo dos resultados?

Quais são as informações microbiológicas sobre as bactérias coliformes?

Como fazer a validação de Colilert8) – 18/Quanti-Tray8 para a enumeração de E.coli e bactérias coliformes da água?

A presença e extensão da poluição fecal são um fator importante na avaliação da qualidade de uma massa de água e no risco de infecção para a saúde humana. O ensaio de amostras de água para a presença de Escherichia coli (E. coli), que normalmente habita o intestino do homem e de outros animais de sangue quente, fornece uma indicação dessa poluição.

O ensaio de bactérias coliformes pode ser mais difícil de interpretar, porque algumas bactérias coliformes vivem no solo e na superfície da água doce e nem sempre são intestinais. Portanto, a presença de bactérias coliformes, embora não seja uma prova de contaminação fecal, pode indicar uma falha no tratamento ou entrada de água no sistema de distribuição.

Chama-se a atenção para a possibilidade de que alguns dos elementos deste documento podem estar sujeitos a direitos de patente diferentes daqueles identificados acima. A ABNT não pode ser responsabilizada pela identificação de qualquer ou todos esses direitos de patente.

De acordo com a ISO, desenvolvedora do documento original sendo adotado (ISO 9308-2), a conformidade com este documento pode envolver o uso de patentes relativas à Colilert-18 e Quanti-Tray e Quanti-Tray 2000 fornecidas nesta Norma. A ABNT não se posiciona a respeito da evidência, validade e escopo desses direitos de patente.

O detentor deste direito de patente garantiu à ISO, elaboradora original do documento sendo adotado, que ele está disposto a negociar licenças gratuitamente ou sob termos e condições razoáveis e não discriminatórios com requerentes em todo o mundo. A este respeito, a declaração do titular deste direito de patente é registrada na ISO. As informações podem ser obtidas em: IDEXX Laboratories, Inc., One IDEXX Drive, Westbrook, Maine 04092 USA. A ISO (http://www.iso.org/patents) e a IEC (http://patents.iec.ch) mantêm bases de dados online de patentes relevantes para suas normas.

Os usuários são incentivados a consultar as bases de dados para obter as informações mais atualizadas sobre patentes. Um flaconete de meio desidratado é adicionado a uma amostra de água (100 mL), ou a uma diluição de uma amostra feita até 100 mL. A amostra e o meio de cultura são agitados suavemente para garantir a mistura adequada e para permitir a dissolução do meio. A amostra e o meio são, então, vertidos assepticamente em uma cartela Quanti-Tray1) ou cartela Quanti-Tray/20001), para enumerar até 201 organismos ou 2.419 organismos por 100 mL, respectivamente.

As cartelas são seladas com um selador Quanti-Tray1) e então incubadas a (36 ± 2) °C, por 18 h a 22 h. Após a incubação, os poços de amostra que têm uma cor amarela de intensidade igual ou superior à dos poços comparadores são considerados positivos para bactérias coliformes.

Os poços amarelos que também exibem qualquer grau de fluorescência são considerados positivos para E. Coli. Por meio de tabelas estatísticas, ou um simples programa de computador, pode-se determinar o número mais provável (NMP) de bactérias coliformes e E. coli em 100 mL da amostra.

A coloração amarela pode ser vista a olho nu e resulta da clivagem do ortonitrofenol galactosídeo pela enzima β-D-galactosidase. A fluorescência é demonstrável sob luz ultravioleta (365 nm) e se origina da clivagem da molécula 4 metilumbeliferil glucuronídeo (MUG) pela enzima β-D-glucuronidase, para produzir o composto fluorescente metilumbeliferona.

Como aparelhagem e utensílios de vidro, utilizar instrumental de laboratório microbiológico e, em particular, o descrito a seguir. Como aparelho para esterilização por vapor (autoclave), os materiais e vidrarias não fornecidos estéreis devem ser esterilizados de acordo com as instruções fornecidas na ISO 8199. Forno de ar quente, para esterilização por calor seco. Incubadora, termostaticamente controlada a (36 ± 2) °C. Selador Quanti-Tray2). Frascos estéreis com boca larga de pelo menos 110 mL. Comparador Quanti-Tray2). Lâmpada ultravioleta, de 365 nm. Quanti-Tray2) ou Quanti-Tray/20002), ver o Anexo B. (Quanti-Tray é uma marca comercial ou marca registrada da IDEXX Laboratories, Inc. ou de suas afiliadas nos Estados Unidos e/ou em outros países. Esta informação é dada para facilitar aos usuários desta parte e não constitui um endosso por parte da ABNT ao produto citado).

Para os meios de cultura e reagentes, como materiais básicos, o método utiliza Colilert3)-18 um meio baseado na Tecnologia de Substrato Definido disponível para uma amostra de 100 mL como um pó pronto para uso distribuído em flaconetes. Cada flaconete contém meio suficiente (2,8 g) para um único ensaio.

O meio deve ser armazenado em condições ambientais (2 °C a 25 °C) longe da luz solar direta, e convém que seja utilizado antes da data de vencimento indicada no flaconete. O meio é composto por dois componentes para fornecer as concentrações finais conforme mostrado no Anexo C.

Para diluições a serem usadas com Colilert3)-18, utilizar apenas água estéril, não inibitória e livre de oxidantes (deionizada ou da torneira). O uso de diluentes contendo tampão, solução salina ou peptona interfere no desempenho do ensaio.

O antiespumante B é uma suspensão 10% ativa de silicone solúvel em água. Coletar as amostras e entregá-las ao laboratório de acordo com a ISO 19458. Para a avaliação dos resultados, avaliar o Quanti-Tray4) ou Quanti-Tray4)/2000 após a incubação de 18 h a 22 h e considerar como reações positivas para bactérias coliformes os poços que estiverem com uma coloração amarela igual ou maior que a coloração do comparador Quanti-Tray.

Avaliar as cartelas sob luz ultravioleta (365 nm) em uma sala escura ou em uma câmara que obscureça a luz do ambiente. Considerar todos os poços amarelos que também exibirem qualquer grau de fluorescência como positivos para E. coli. Se os resultados forem ambíguos após 18 h (ou seja, se a coloração amarela for menor do que a do comparador), convém que a incubação seja estendida até 22 h. Os resultados positivos para bactérias coliformes e E. coli observados antes de 18 h de incubação, bem como resultados negativos observados após 22 h, também são válidos.

O relatório de ensaio deve conter pelo menos as seguintes informações: método de ensaio usado, juntamente com uma referência a esta parte da NBR ISO 9308; todas as informações necessárias para a identificação completa da amostra; os resultados expressos de acordo com a Seção 9; qualquer(quaisquer) ocorrência(s) particular(es) observada(s) durante o andamento da análise e qualquer(quaisquer) operação (ões) não especificadas nesta parte que possam ter influenciado os resultados. O laboratório deve ter um sistema de controle da qualidade claramente especificado para garantir que a aparelhagem, os reagentes e as técnicas sejam adequados para o ensaio. A utilização de controles positivos, controles negativos e brancos é parte do ensaio.

API STD 1164: a segurança cibernética de sistemas de controle de dutos

A API STD 1164:2021 – Pipeline Control Systems Cybersecurity fornece os requisitos e a orientação para o gerenciamento de risco cibernético associado a ambientes de automação e controle industrial (industrial automation and control – IAC) para atingir os objetivos de segurança, integridade e resiliência. Dentro dessa norma, isso é realizado por meio do isolamento adequado de ambientes IAC para ajudar na sua continuidade operacional.

Mesmo com o isolamento adequado dos ambientes IAC dos ambientes de TI, ambos desempenham um papel na continuidade geral dos negócios. A continuidade operacional do IAC e a continuidade do sistema de TI são frequentemente desenvolvidas e implementadas em conjunto como parte do plano geral de continuidade de negócios.

O escopo desta norma é limitado apenas aos aspectos de segurança cibernética da IAC que podem influenciar a continuidade geral dos negócios. Ela foi feita sob medida para a indústria de dutos de petróleo e gás natural (oil and natural gas – ONG), que inclui, mas não está limitado a sistemas de dutos de transmissão de gás natural e líquidos perigosos, sistemas de dutos de distribuição de gás natural, instalações de gás natural liquefeito (GNL), instalações de ar propano e outros envolvidos nessas indústrias.

Essa norma foi desenvolvida para fornecer uma abordagem acionável para proteger as funções essenciais do IAC, gerenciando o risco de segurança cibernética para os ambientes IAC. Isso pode incluir, mas não estão limitados a soluções de controle de supervisão e aquisição de dados (Scada), controle local e internet das coisas industriais (IIoT).

A norma deve ser usada no contexto de desenvolvimento, implementação, manutenção e melhoria de um programa de segurança cibernética do IAC, que inclui as políticas, processos, e controles de procedimentos e técnicos para ambientes cibernéticos IAC. Trata-se de um conjunto de requisitos que deve ser customizado antes da implementação usando os processos de gerenciamento de riscos da empresa.

O resultado é um conjunto de requisitos personalizados e específicos da empresa para um programa de segurança cibernética IAC a fim de ajudar a gerenciar a postura de segurança cibernética e qualquer risco residual resultante para seus ambientes IAC em alinhamento com a missão, objetivos e estratégia de risco da empresa, e de acordo com as suas políticas e procedimentos. Embora a identificação de ameaças e impactos seja crítica para o desenvolvimento do programa de segurança cibernética do IAC, uma avaliação baseada no risco de cada um garantirá que o programa seja implementado, executado e sustentado de forma adequada, de acordo com a postura de risco desejada pela organização.

Essa norma se concentra nos resultados de segurança cibernética desejados, definindo requisitos para níveis de proteção de impacto de objetivos de negócios específicos. Embora os princípios definidos nesta norma possam ser aplicados a sistemas instrumentados de segurança (safety instrumented systems – SIS), eles estão fora do escopo deste documento.

Os requisitos de segurança especificados nesta norma não tentam abordar os impactos potenciais para a seleção ou determinação do nível de integridade de segurança (safety integrity level – SIL) do SIS. Qualquer uso desta norma em ambientes SIS fica por conta e risco do implementador. Para as empresas que já têm um programa de segurança cibernética IAC, incluindo uma ou mais políticas de programa aprovadas e um plano ou planos de segurança cibernética IAC documentados implementados ou em implementação, esta norma deve ser considerada um acréscimo aos elementos existentes do programa de segurança cibernética.

Nessas situações, um processo de mapeamento desta norma para os elementos atuais do programa de segurança cibernética da IAC determinará quaisquer requisitos da API 1164 que não estejam atualmente no programa existente. A implementação de quaisquer elementos ausentes deve ser adaptada e priorizada usando os processos de gerenciamento de risco da empresa. O processo de adaptação para os requisitos de segurança cibernética API 1164 é descrito em 5.5.

Conteúdo da norma

1 Escopo. . . . . .. . . . . . . . . . . 1

1.1 Objetivo. . . .. . . . . . . . . . . 1

1.2 Público-alvo. . . . . . . . . . . . 2

1.3 Como ler esta norma . . . . . . . 2

2 Referências normativas. . . . . . . 4

3 Termos, definições, acrônimos e abreviações. .  . . . 4

3.1 Termos e definições. . .. . . . . . . . . . . . . . . . 4

3.2 Siglas. . . . . . . . . . . . . . . . . . . . . . 9

4 Perfis de cibersegurança de dutos IAC de ONG. .  . . 10

4.1 Introdução ao perfil de cibersegurança IAC. …. . 10

4.2 Perfil de segurança cibernética da IAC – restrições comuns………..10

4.3 Perfil de segurança cibernética da IAC – objetivos da proteção contra ameaças. . . . . . . . . . . . . 11

4.4 Perfil de segurança cibernética da IAC – objetivos de missão e negócios. . . . . . . . . . . . . 12

4.5 IAC: perfil de segurança cibernética – objetivos e impacto no mapeamento de proteção contra ameaças. . .  . 13

5 Política, plano e programa de segurança cibernética da ONG e IAC. . . . . . . . . . . . . . . 13

5.1 Plano de desenvolvimento de segurança cibernética da IAC. . . . . . . . . . . . . . . . . . . . . 15

5.2 IAC: plano de segurança cibernética – gerenciamento de risco. . . . .. . . . . . . . 15

5.3 Plano de segurança cibernética da IAC – operacionalizando um programa de segurança cibernética . . . . . . 17

5.4 Perfis de segurança cibernética de seleção de planos de segurança cibernética da IAC. . . . . . . . . . . 18

5.5 Requisitos de perfil selecionado de personalização do plano de segurança cibernética da IAC. . . . . 27

6 ONG IAC: requisitos do perfil de cibersegurança – requirements identify (ID). . . . . . . . 28

6.1 Governança (ID.GV). .. . . . . . . . . 28

6.2 Estratégia de gerenciamento de risco (ID.RM). . 32

6.3 Ambiente de negócios (ID.BE). . . . . . . . . . . . 35

6.4 Gestão de riscos da cadeia de suprimentos (ID.SC)… . 39

6.5 Avaliação de Risco IAC (ID.RA). . . . . . . . . 42

6.6 Gerenciamento de ativos (ID.AM). . . . . . . 49

7 ONG IAC: perfil de cibersegurança – profiles protect (PR)….55

7.1 Controle de acesso (PR.AC). . .  . . . . . 56

7.2 IAC Conscientização e treinamento em segurança cibernética (PR.AT). . . . . . . . . . . . 63

7.3 Segurança de dados (PR.DS).. . . . . . . . 67

7.4 Processos e procedimentos de proteção da informação (PR.IP). . . . . . . . . . . . . . . . 75

7.5 Manutenção (PR.MA). .. . . . . . . . . . . . . 89

7.6 Tecnologia de proteção (PR.PT). . .. . . . . . . . . 92

8 ONG IAC: requisitos do perfil de cibersegurança (detecção – DE). . . .  . . . . . . . . . . . . . 97

8.1 Anomalias e eventos (DE.AE). . .. . . . . . 97

8.2 Monitoramento contínuo de segurança (DE.CM). . .. 100

8.3 Processos de detecção (DE.DP). .. . . . . . . . . . . 106

9 ONG IAC: perfil de cibersegurança dos requisitos de respostas (RS). .  . . . . . . . . . . . . . . 110

9.1 Planejamento de Resposta (RS.RP). . . . . . . . 110

9.2 Comunicações (RS.CO). . .. . . . . . . . . 111

9.3 Análise (RS.AN).. . . . . . . . . . . . . . 114

9.4 Mitigação (RS.MI). . . . . . . . . . . . . . . . 118

9.5 Melhorias (RS.IM). . . . . . . . . . . . . . . . 120

10 ONG IAC: perfil de cibersegurança dos requisitos de recuperação (RC). . . . . . . . . . . . 122

10.1 Planejamento de Recuperação (RC.RP). . . 122

10.2 Melhorias (RC.IM). . . . . . . . . . . . . . . . 122

10.3 Comunicações (RC.CO). .  . . . . . . . . . 124

Anexo A (informativo) Construção e mapeamento da norma API 1164. . . . . .  . . . . . . . 126

Anexo B (informativo) Modelo Plan-Do-Check-Act.  . 129

Anexo C (informativo) Ações recorrentes. . . . . . . . . 131

Bibliografia. . .. . . . . . . . . . . . . . . . . . . . . . . . . . 132

Em resumo, a infraestrutura de dutos – composta por milhares de empresas e mais de 2,7 milhões de quilômetros de dutos responsáveis pelo transporte de petróleo, gás natural e outras commodities – é um facilitador fundamental da segurança econômica mundial. Como os proprietários e os operadores de dutos estão cada vez mais confiando na integração de tecnologias de informação e comunicação (TIC) em tecnologia da informação (TI) e tecnologia operacional (TO) para conduzir a automação, eles também devem implementar medidas de segurança para proteger os dutos de riscos cibernéticos em evolução e emergentes. A integração de dispositivos de TIC em sistemas de dutos críticos cria uma vulnerabilidade que os hackers cibernéticos podem explorar.

Os requisitos mínimos para o transporte de produtos perigosos por ferrovias

A NBR 16960 de 08/2021 – Via férrea – Requisitos mínimos para o transporte de produtos perigosos estabelece os requisitos mínimos para a via permanente, para o transporte ferroviário de produtos perigosos, com velocidade máxima autorizada de até 128 km/h. Fornece orientações técnicas para a aplicação dos parâmetros de segurança, compreendendo os parâmetros de geometria de via e as classes de velocidade máxima autorizada. Não se aplica às vias dedicadas exclusivamente para metrô, pré-metrô, trem metropolitano de passageiros, veículo leve sobre trilhos (VLT) ou bonde.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que é um dormente inservível?

Qual a aparência de um dormente de concreto com trinca no vão central?

Qual é o percentual máximo de dormentes inservíveis em pontes não lastreadas?

Qual é o distanciamento máximo permitido entre dormentes servíveis em região de junta para classes de via 3 a 5?

As inspeções citadas nessa norma objetivam a verificação dos parâmetros contemplados, relativos à geometria da via e não contemplam a inspeção dos componentes da via. Para esse tipo de transporte, os requisitos da via permanente envolvem a identificação de dormente inservível e deve ser considerado inservível o dormente que apresentar qualquer das condições físicas descritas a seguir, detectadas visualmente.

O dormente de madeira (de lei ou de reflorestamento) ou de polímero: quebrado; rachado em sua superfície, de forma que o lastro penetre dentro do dormente e não permita a instalação dos conjuntos de fixação; deteriorado, queimado ou danificado (inclusive por acidente), de forma que a base do sistema de fixação consiga se mover mais que 12 mm em relação ao dormente; cortado e/ou afundado pela placa de apoio em mais de 20% da sua seção; e com furação em excesso. Por exemplo, um dormente que já sofreu consolidação de fixação ou correção de bitola com a movimentação da placa de apoio para geração de nova furação.

O dormente de aço com: empenamento, gerando alteração na bitola nominal; empenamento de aba lateral, prejudicando a ancoragem do dormente no lastro; presença de corrosão, comprometendo a sua resistência mecânica; trinca em qualquer região; fratura do perfil, do shoulder ou da solda do shoulder; danos ou desgastes no olhal de aplicação do grampo que comprometam a instalação adequada da fixação.

Os dormentes de concreto com: trinca na região de apoio do trilho; trinca no vão central; quebra ou danos nos chumbadores dos conjuntos de fixação; desgaste abrasivo da região de apoio do trilho, com perda de inclinação ou perda de acabamento fino. Para o transporte de produtos perigosos, independentemente da bitola, a via permanente deve estar conforme a NBR 16387, considerando-se os parâmetros geométricos que determinam a velocidade operacional de uma classe acima (ver tabela abaixo).

Para o transporte de produtos perigosos, a dormentação da via permanente deve atender aos seguintes requisitos: todos os dormentes devem permitir a fixação segura dos trilhos; cada segmento de 10 m de via (aproximadamente 18 dormentes) deve possuir os seguintes requisitos de dormentação: um número suficiente de dormentes que, em conjunto, mantenham uma condição de suporte que mantenha a bitola, o nivelamento e o alinhamento, conforme a NBR 16387; um número mínimo de dormentes e condição de dormentes que estejam distribuídos e mantenham o suporte e a fixação dos trilhos do segmento de 10 m de forma inteiriça; no máximo um dormente considerado inservível localizado em região de junta. Cada segmento de 10 m de via não pode possuir um percentual de dormentes inservíveis superior ao especificado na tabela abaixo.

Se o percentual de dormentes inservíveis for superior ao citado na tabela acima, o agrupamento de dormentes inservíveis (mesmo intercalado) é considerado uma malha inservível (cluster) e o transporte de produtos perigosos deve ser suspenso. Os dormentes inservíveis não podem estar agrupados de forma que exista uma sequência superior a três dormentes inservíveis consecutivos para qualquer classe de via ou geometria.

O maior espaçamento de dormentes permitido, independentemente da condição deles, não pode ultrapassar 70 cm (eixo a eixo). Para os dormentes situados em túneis, viadutos, pontes lastreadas, passagens em nível ou perímetros urbanos, o percentual máximo de dormentes inservíveis apresentado na tabela acima deve ser reduzido pela metade.

Na segregação da via em segmentos de 10 m, o início do segmento para medição pode ser em qualquer posição quilométrica da via, não sendo, necessariamente, obrigado a coincidir com regiões de juntas e/ou com outros elementos da via permanente. As condições dos dormentes em juntas devem ser conforme a seguir.

Para a classe de via 2, em região de junta, deve existir pelo menos um dormente servível, com o seu eixo distanciado em no máximo 30 cm do eixo da junta. Para as classes de via de 3 a 5, em região de juntas, deve existir pelo menos um dormente servível, com o seu eixo distanciado em no máximo 22 cm do eixo da junta ou dois dormentes servíveis, com os eixos distanciados em no máximo 60 cm do eixo da junta.

Em suma, o transporte de mercadorias perigosas por ferrovias deve ser regulado de forma a prevenir, na medida do possível, acidentes pessoais ou patrimoniais e danos ao meio ambiente, aos meios de transporte empregados ou a outras mercadorias. Ao mesmo tempo, os regulamentos e as normas técnicas devem ser formulados de modo a não impedir o movimento de tais mercadorias, exceto aquelas muito perigosas para serem aceitas para transporte por ferrovias.

Com esta exceção, o objetivo da regulamentação é viabilizar o transporte, eliminando os riscos ou reduzindo-os ao mínimo. É, portanto, uma questão de segurança e também de facilitar o transporte. Dessa forma, as ferrovias devem ter planos de resposta de emergência em vigor, para garantir uma resposta imediata e abrangente no caso de um incidente de transporte. Devem fornecer aos municípios relatórios regulares sobre os produtos que circulam em suas comunidades, incluindo o número de trens unitários, a porcentagem de vagões que transportam mercadorias perigosas e a natureza e o volume desses produtos.

A qualificação do procedimento dos ensaios não destrutivos por líquido penetrante

A NBR 16450 de 06/2021 – Ensaios não destrutivos – Líquido penetrante – Qualificação de procedimento estabelece os requisitos para uma sistemática de qualificação do procedimento de ensaio não destrutivo por líquido penetrante tipos I e II (fluorescente e colorido), técnicas “a” e “c” (removível com água e com solvente), com revelador tipo “d” (úmido não aquoso), para o nível de sensibilidade especificado (nível 1 ou 2). A aplicação dos requisitos desta norma é de responsabilidade do profissional nível 3, no método de liquido penetrante. A qualificação de procedimento de ensaios não destrutivos (END) é uma atribuição do nível 3, consistindo na análise da compatibilidade e na adequação do procedimento de ensaio aos requisitos citados nas normas e especificações aplicáveis, com base em ensaios em peças de produção ou padr6es, por meio de evidencias documentadas.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definida a validação de um procedimento?

Como deve ser feito o registro do ensaio?

Como devem ser executados os padrões de ensaios?

O que é a qualificação de procedimento de ensaios não destrutivos (END)?

A pessoa que executa o ensaio de liquido penetrante deve atender a NBR NM ISO 9712. Os seguintes instrumentos são necessários para a condução dos ensaios de qualificação, conforme a técnica aplicada: medidor de tempo; medidor de temperatura; medidor de luz branca; medidor de luz ultravioleta; termo-higrômetro (quando aplicável).

Os instrumentos mencionados nessa norma devem estar calibrados.

A temperatura para a realização dos ensaios de qualificação fora da faixa especificada pelo fabricante dos materiais penetrantes deve ser monitorada para garantir a qualidade do ensaio a ser realizado. O bloco de referência deve ser conforme a ISO 3452-3, tipo 1. Durante toda a execução dos ensaios de qualificação do procedimento, os dispositivos devem garantir a manutenção da temperatura de ensaio, conforme estabelecido no procedimento e respeitando os limites determinados na Seção 5.

Os materiais penetrantes devem ser certificados pelo fabricante. Os ensaios em temperaturas convencionais (5 °C a 52 °C) devem ser conduzidos em temperatura dentro da faixa estabelecida no procedimento. Durante a condução do ensaio de qualificação, os materiais penetrantes e o bloco de referência devem estar mantidos em temperatura dentro da faixa estabelecida no procedimento.

Imediatamente antes da aplicação do penetrante no bloco de referência, deve-se efetuar uma leve limpeza da superfície do bloco com panos secos e limpos, de forma a remover qualquer contaminante que possa interferir no ensaio. O excesso de penetrante deve ser removido com a utilização de panos secos ou levemente umedecidos.

A aplicação do revelador deve ser efetuada no tempo máximo estabelecido no procedimento, após o termino do processo de remoção do excesso do penetrante. A avaliação do ensaio deve ser efetuada após decorrido o tempo mínimo de revelação especificado no procedimento.

Quando da utilização de penetrantes tipo I, o processo de remoção e de avaliação devem ser conduzidos sob luz UVA. Os ensaios em temperatura não convencionais devem ser conduzidos na temperatura mínima estabelecida no procedimento, com tolerância de 0 cc a – 5 cc. Durante a condução do ensaio de qualificação, os materiais penetrantes e o bloco de referência devem estar mantidos a temperatura mínima.

Antes da aplicação do penetrante no bloco de referência e após estabilizada a temperatura mínima, deve-se efetuar uma leve limpeza da superfície do bloco com panos secos e limpos, de forma a remover qualquer contaminante que possa interferir no ensaio.

Após decorrido o tempo de penetração especificado, a remoção do excesso de penetrante deve ser conduzida com panos secos e limpos ou com panos levemente umedecidos. A aplicação do revelador deve ser efetuada no tempo máximo estabelecido no procedimento, após o termino do processo de remoção do excesso do penetrante e secagem.

A avaliação do ensaio deve ser efetuada após decorrido o tempo mínimo de revelação especificado no procedimento. Quando da utilização de penetrantes tipo I, o processo de remoção e de avaliação devem ser conduzidos sob luz UVA. Se o ensaio for realizado em temperaturas acima de 52 °C, deve ser utilizado um conjunto de blocos, sendo que um dos blocos deve ser aquecido e mantido na temperatura estabelecida durante todo o ensaio. As indicações de trinca devem ser comparadas com o outro bloco na faixa de temperaturas entre 5 °C e 52 °C.

O ensaio deve ser conduzido na temperatura máxima estabelecida no procedimento, com limite de± 10 cc. Para qualificar um procedimento para temperaturas acima de 52 °C, os limites inferior e superior devem ser determinados, e o procedimento deve ser qualificado para estas temperaturas.

Como, por exemplo, para qualificar um procedimento para a faixa de temperatura de 52 °C a 93 °C, a capacidade do penetrante de revelar as indicações no bloco-padrão deve ser demonstrada em ambas as temperaturas (como especificado na NBR NM 334:2012, Anexo B). Apenas o bloco-padrão deve ser aquecido e mantido na maior temperatura estipulada pelo procedimento para realização do ensaio, simulando assim a real condição da inspeção de campo, em que apenas as peças ou equipamentos que são objeto de inspeção se encontram na temperatura elevada.

Os produtos aplicados sobre a superfície aquecida do bloco devem estar na temperatura ambiente. O controle dos tempos de penetração, de remoção, de revelação e de interpretação na condução do ensaio de sensibilidade deve ser rigoroso, de forma que as indicac;6es produzidas no bloco-padrão sejam logo observadas, pois qualquer variação no processo pode implicar em não visualização das descontinuidades.

Os testes devem ser efetuados nos tempos de penetração mínimo e máximo, especificados no procedimento. A avaliação dos resultados deve ser efetuada no tempo máximo de interpretação de resultados estabelecido no procedimento para a faixa de temperatura.

Para controle e manutenção da temperatura do ensaio, devem ser utilizados equipamentos e/ou dispositivos que garantam o atendimento a faixa determinada para o ensaio. A aplicação do penetrante no bloco de ensaio deve ser efetuada após a estabilização da temperatura do ensaio.

Como uma alternativa aos requisitos, quando da utilização de um penetrante colorido, é permitido o uso de um único bloco-padrão para a temperatura convencional (5 °C a 52 °C) e não convencional. A comparação deve ser realizada por meio de uma fotografia.

Quando a técnica alternativa for utilizada, os detalhes de processamento descritos nessa norma são aplicados. O bloco deve ser minuciosamente limpo entre as duas etapas de processamento. Fotografias devem ser feitas após o processamento para as temperaturas convencional e não convencional.

As indicac;6es de trincas devem ser comparadas entre as duas fotografias, e devem ser aplicados os critérios especificados no procedimento. As técnicas fotográficas idênticas devem ser utilizadas para fazer a comparação das fotografias, como especificado na NBR NM 334:2012, Anexo B.

A qualificação do procedimento e valida enquanto não houver alteração de variáveis essenciais especificadas no procedimento e que impactem na sensibilidade do ensaio. Os materiais e processos de ensaio com penetrante são classificados de acordo com a classificação dos materiais contida na MIL-I-25135 ou AMS 2644. Os sistemas de penetrante devem ser dos seguintes tipos, métodos e níveis de sensibilidade: Tipo I – Fluorescente, Tipo II – Visível. Os métodos: Método A – Lavável com água; Método B – Pós-emulsificava, lipofílico; Método C – Removível com solvente; e Método D – Pós-emulsificava, hidrofílico.

Estes níveis de sensibilidade aplicam-se somente aos sistemas de penetrante Tipo I. Penetrantes do Tipo II possuem apenas um nível de sensibilidade, o qual não é representado por qualquer nível dos listados abaixo: Sensibilidade nível 1/2 – Muito baixa, Sensibilidade nível 1 – Baixa, Sensibilidade nível 2 – Média, Sensibilidade nível 3 – Alta e Sensibilidade nível 4 – Ultra alta. Os reveladores devem ser nas seguintes formas: Forma a – Pó seco, Forma b – Solúvel em água, Forma c – Suspenso em água, Forma d – Não aquoso para penetrante fluorescente Tipo I, Forma e – Não aquoso para penetrante visível Tipo II, Forma f – Aplicação específica.

A classificação dos solventes: Classe 1 – Halogenados, Classe 2 – Não halogenados e Classe 3 – Aplicação específica. A menos que de outra forma especificado no contrato ou ordem de compra, a engenharia competente da organização é responsável pela realização de todos os requisitos de ensaio aqui especificados. Quando necessário, a engenharia reconhecida da organização deve especificar requisitos mais conservativos que os mínimos especificados para assegurar que o componente está em conformidade com os requisitos necessários funcionais e de confiabilidade.

Exceto se de outra forma especificado, o fornecedor pode utilizar suas próprias instalações ou qualquer outra instalação conveniente para a realização dos ensaios propostos. Ao comprador reserva-se o direito de realizar quaisquer ensaios propostos, quando forem necessários, para assegurar que os materiais supridos e os serviços prestados estão em conformidade com os requisitos descritos.

O equipamento de processamento utilizado no ensaio por líquidos penetrantes deve ser construído e disponibilizado para permitir uma operação uniforme e controlada. O equipamento deve estar em conformidade com todos os requisitos de segurança nacionais e locais, bem como os requisitos especificados. As áreas onde as peças devem ser inspecionadas devem sempre ser mantidas limpas. Para os ensaios com penetrante visível Tipo II, o sistema de iluminação deve ser de pelo menos 100 fc (1.076 lux) de luz branca quando medido na superfície da peça.

Um procedimento escrito geral pode ser usado quando abrange detalhes comuns para uma variedade de componentes. Como mínimo, as seguintes informações são exigidas tanto para procedimento individual, quanto para procedimento geral, ou uma combinação de ambos: detalhes da pré-limpeza e de processos de usinagem química, incluindo materiais usados e especificações ou outros documentos de controle do processo de ensaio, parâmetros de secagem e tempos de processamento.

Se estas operações forem realizadas por outras pessoas que não aquela do ensaio, detalhes em relação a estas operações podem ser especificados em outros documentos, porém devem estar referenciados no (s) procedimento (s). Usar como referência a ASTM E 165 para instruções detalhadas de métodos de limpeza. A classificação dos materiais para ensaio por penetrante exigido deve ser de acordo com a Seção 5 e a MIL-I-25135 ou AMS 2644

Deve-se cumprir os parâmetros completos de processamento para os materiais para o ensaio por penetrante, incluindo concentração, métodos de aplicação, tempos de drenagem, tempo de secagem, temperaturas e controles para evitar a secagem excessiva do penetrante ou superaquecimento do componente, como apropriado. Utilizar como referência a ASTM E165 para detalhes adicionais; requisitos completos de avaliação/interpretação, incluindo a intensidade de luz (ambos na inspeção e ambiente), o critério de aceitação/rejeição e o método e os locais de marcações. Utilizar como referência a ASTM E 165 para detalhes adicionais;

Um ou mais métodos apropriados de limpeza, como limpeza com solvente, desengraxe a vapor, limpeza ultrassônica, limpeza com bases aquosas, devem ser usados para a remoção de óleos, graxas e ceras, e como passo final antes do ensaio por penetrante, em concordância com a engenharia reconhecida da organização. Se a usinagem química é exigida, as partes devem ser limpas, usinadas e enviadas para o ensaio por penetrante.

Pode ser usada limpeza química na remoção de tintas, vernizes, escória, carbono ou outros contaminantes que não podem ser removidos por métodos de limpeza com solvente. Deve ser usada cautela quando são usados produtos químicos, porque podem irritar os olhos ou a pele.

Os métodos mecânicos de limpeza podem ser usados para a remoção de sujeiras, que não podem ser removidas com métodos de limpeza com solvente ou química. O jateamento abrasivo sem posterior usinagem química pode ser um método de limpeza aceitável, se ficar demonstrado que o jato abrasivo fino (granulação 150 ou mais fina) não causa micromartelamento e pode ser removido com detergente de limpeza ou limpador alcalino.