O comportamento ao fogo de telhados e revestimentos de cobertura

Saiba como especificar um método para avaliação do comportamento ao fogo de telhados e revestimentos de cobertura submetidos a uma fonte de ignição externa. Os produtos são considerados em relação à sua aplicação de uso final.

A NBR 16841 de 06/2020 – Comportamento ao fogo de telhados e revestimentos de cobertura submetidos a uma fonte de ignição externa especifica um método para avaliação do comportamento ao fogo de telhados e revestimentos de cobertura submetidos a uma fonte de ignição externa. Os produtos são considerados em relação à sua aplicação de uso final. Esta norma não é aplicável às coberturas constituídas por membranas poliméricas e/ou componentes individuais das coberturas. Nestes casos, a avaliação e a classificação são realizadas de acordo com a NBR 16626.

Em complemento, a NBR 16626 de 11/2017 – Classificação da reação ao fogo de produtos de construção estabelece os procedimentos para a classificação da reação ao fogo dos produtos de construção, incluindo produtos incorporados dentro dos elementos construtivos. Não se aplicam a produtos empregados nas instalações elétricas e hidráulicas das edificações, exceto produtos de isolamento térmico. Os produtos classificados de acordo com esta norma são considerados em relação à sua aplicação de uso final, e são divididos em três categorias que são tratadas separadamente nesta Norma: produtos de construção de forma geral (excluindo revestimentos de pisos e produtos de isolamento térmico de tubulações); revestimentos de pisos; e produtos de isolamento térmico de tubulações. Um produto pode ter mais de uma classificação de acordo com sua aplicação final e a forma que é aplicado.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido o campo direto de aplicação?

O que são os danos internos?

O que é a propagação interna do fogo?

O que deve apresentar o relatório de classificação?

Deve ser empregado o ensaio 1 da CEN/TS 1187:2012, que avalia o comportamento do telhado e de revestimentos de coberturas sob condições de exposição de uma massa de palha de madeira em chamas. O desempenho de telhados e revestimentos de coberturas expostos a um foco externo de incêndio que alcance a superfície externa está condicionado a aspectos como propagação de chamas na superfície interna e externa, danos externos e internos, penetração do fogo e ocorrência de gotejamento ou queda de materiais ignizados.

Este desempenho não depende apenas do comportamento da superfície exposta ao foco, mas também da influência dos diversos componentes do telhado ou do revestimento da cobertura, como a sua inclinação, a natureza e a espessura das camadas de isolamento e de barreira de vapor juntamente com os componentes de sustentação. Também pode depender da forma de ligação entre estes componentes, como adesivos ou fixações mecânicas.

Os corpos de prova devem ser representativos da cobertura que se deseja avaliar, incluindo todos os detalhes, como substrato, juntas, espessura, número de camadas e forma de fixação entre elas. A inclinação da cobertura também exerce grande influência nos resultados dos ensaios. Os corpos de prova devem ser preparados, condicionados e montados de acordo com as condições estabelecidas na CEN/TS 1187:2012, ensaio 1 e com as especificações técnicas do fornecedor ou fabricante do produto. Os corpos de prova devem ser representativos do sistema avaliado, considerando: substrato empregado na cobertura; tipo, número e conjunto de todas as camadas que compõem o telhado ou o revestimento de cobertura; forma de fixação entre as camadas.

Com o propósito de reduzir a quantidade de ensaios, o método de ensaio propõe avaliações empregando montagens-padrão de corpos de prova cobrindo um campo de aplicação mais amplo, tendo como referência o emprego de substrato-padrão, tipos e posicionamento de juntas. Os corpos de prova devem ter comprimento e largura mínimos de, respectivamente, 1,80 m e 0,80 m. Com o propósito de reduzir o número de ensaios, algumas inclinações-padrão são estabelecidas cobrindo um espectro amplo de aplicações. As inclinações-padrão são 0°, 15° e 45°.

Os ensaios realizados na inclinação a 0° aplicam-se às coberturas com inclinação menor que 5°; aqueles realizados na inclinação a 15° aplicam-se às coberturas com inclinação menor que 20°; e os ensaios realizados com inclinação a 45° aplicam-se às coberturas com qualquer inclinação maior ou igual a 20°. Pode-se realizar o ensaio com inclinações específicas da cobertura, limitando a aplicação da classificação a elas. No caso de coberturas com inclinações variáveis, os corpos de prova devem reproduzir o trecho mais íngreme das coberturas. Devem ser ensaiados três corpos de prova para cada inclinação considerada. Caso existam juntas na cobertura, estas devem ser reproduzidas fielmente e devem fazer parte dos corpos de prova, privilegiando-se sempre a situação considerada mais crítica.

Como pressupostos, para todos os produtos de construção, a consideração é de um incêndio, iniciado em um recinto, que pode crescer e, eventualmente, atingir a inflamação generalizada (flashover). Este cenário inclui três situações de incêndio, correspondentes aos três estágios no desenvolvimento de um incêndio. A primeira fase inclui o início do fogo pela ignição de um produto, com uma pequena chama, em uma área limitada de um produto.

O segundo estágio aborda o crescimento do fogo, chegando à inflamação generalizada. Ele é simulado por um único item queimando em um canto do recinto, criando um fluxo de calor em superfícies adjacentes ou pelo fogo se intensificando no recinto criando um fluxo de calor sobre os revestimentos associados a uma chama intensa atingindo a extremidade do produto. Para revestimentos de piso, considera-se que o fogo está crescendo no recinto de origem, criando um fluxo de calor sobre os revestimentos em um recinto adjacente ou corredor.

Na fase posterior à ocorrência da inflamação generalizada (pós-flashover), todos os produtos combustíveis contribuem para a carga de incêndio. As diferentes classes propostas se referem à exposição do produto em diferentes estágios de desenvolvimento de incêndio nos três estágios indicados de desenvolvimento do incêndio. Não há relação inequívoca entre diferentes características de comportamento, ou entre características similares sob diferentes exposições ao fogo, válida para todos os produtos.

Diferentes classes abordam diferentes exposições e diferentes características de comportamento. No entanto, uma classificação mais elevada deve representar pelo menos o mesmo desempenho em cada característica relevante, mas também deve representar um melhor desempenho, se forem considerados todos os aspectos comportamentais relevantes para determinada classe. Considera-se que produtos classificados como I (incombustíveis) não tenham nenhuma contribuição para o crescimento de fogo ou para incêndio totalmente desenvolvido.

Além disso, considera-se que não apresente nenhum perigo de fumaça. Um princípio que deve ser considerado é que ensaios realizados em condições mais severas são aceitos como válidos para todos os menos severos. Em alguns casos, um uso final típico pode cobrir uma utilização mais severa. Por exemplo, as EN 13823 e EN ISO 11925-2 propõem que os ensaios sejam realizados em orientação vertical, e são válidos para todas as outras orientações.

Da mesma maneira, os ensaios de um produto de frente para um espaço aberto são usados para o mesmo produto exposto dentro de vazios verticais e horizontais. Existem duas possibilidades para desenvolvimento e implementação de regras de aplicação direta. A primeira é quando as regras são desenvolvidas por um comitê de normalização e redigidas na forma de uma especificação técnica harmonizada. Essas regras são então aplicadas por todos os usuários da especificação técnica.

A segunda é quando um fabricante específico, na ausência destas regras ou limites, desenvolve suas próprias regras para um produto ou grupo de produtos em particular. No desenvolvimento de regras de aplicação direta, o conceito de “pior” desempenho é importante. Isso significa que qualquer mudança no produto ou na forma de aplicação final que aponte para o aprimoramento do desempenho quanto à reação ao fogo pode ser aplicada com relativa facilidade.

Mudanças que apontem na direção da redução do desempenho devem ser tratadas com cuidado de forma a garantir que não haja redução suficiente para levar ao enquadramento em uma classe de desempenho inferior. Cada parâmetro de desempenho deve ser considerado independentemente. As regras de aplicação direta podem ser aplicadas em um produto isoladamente ou a um grupo de produtos, cada uma associada à forma de aplicação final destes.

Enquanto houver vantagens comerciais e técnicas em tentar desenvolver limites para aplicação direta para todos os produtos cobertos por uma especificação técnica harmonizada não haverá requisitos específicos para fazê-lo. Também não há qualquer requisito específico para definir limites para todos os parâmetros de um produto ou de sua aplicação final que tenham efeitos no desempenho quanto à reação ao fogo. Quando os parâmetros não forem dados em uma especificação harmonizada de produtos, os fabricantes devem desenvolver suas próprias regras ou limites específicos.

BS EN 1706: a composição química do alumínio e suas ligas

Essa norma europeia, editada pelo BSI em 2020, especifica os limites da composição química das ligas de fundição de alumínio, e as propriedades mecânicas dos provetes vazados separadamente para essas ligas. O Anexo C é um guia para a seleção de ligas para um uso ou processo específico.

A BS EN 1706:2020 – Aluminium and aluminium alloys. Castings. Chemical composition and mechanical properties abrange os limites de composição química e propriedades mecânicas das ligas de fundição de alumínio. Essa norma é uma atualização abrangente da versão 2010. Essa norma é indicada para quem faz casting em engenharia, aqueles que fazem fundição em engrenagens automotivas e aeroespaciais, para quem faz investimentos, designers, arquitetos.

Esta norma europeia especifica os limites de composição química das ligas de fundição de alumínio e as propriedades mecânicas dos provetes vazados separadamente para essas ligas. O Anexo C é um guia para a seleção de ligas para um uso ou processo específico. Essa norma fornece orientações particularmente importantes, uma vez que a maioria do alumínio, em alguns países, é reciclada. Além disso, o seu uso cria condições equitativas entre rodízios, produtores e designers; ajuda na criação de melhores produtos; aumenta a confiança, dando aos usuários finais confiança nos produtos; permite a entrada em novos mercados e facilita o comércio; e gerencia os riscos.

A BS EN 1706:2020 deve ser usada em conjunto com as BS EN 576, BS EN 1559-1, BS EN 1559-4, BS EN 1676 e BS EN ISO 8062-3. Essa norma pode contribuir para que os usuários alcancem o Objetivo de Desenvolvimento Sustentável da ONU em indústria, inovação e infraestrutura, porque promove uma infraestrutura resiliente. Também contribui para o Objetivo 12, sobre consumo e produção responsáveis, porque apoia a reciclagem de alumínio.

A norma em sua edição de 2020 foi amplamente reescrita para atualizá-la com as metodologias atuais. Em comparação com a edição de 2010, foram feitas as alterações significativas. A referência normativa BS EN 10002-1 foi substituída pela BS EN ISO 6892-1. Os termos e definições foram atualizados. Na tabela 1 duas ligas foram excluídas e seis adicionadas, o limite máximo de chumbo foi reduzido para 0,29% e notas de rodapé foram adicionadas e modificadas.

Além disso, foram alterados os limites de composição química das ligas EN AC-43000 [EN AC-Al Si10Mg], EN AC43300 [EN AC-Al Si9Mg] e EN AC-51300 [EN AC-AlMg5]. Na tabela 2, duas ligas foram excluídas e três adicionadas, foi adicionada uma nova nota de rodapé e as propriedades mecânicas das ligas já existentes EN AC-42100 [EN AC-Al Si7Mg0,3], EN AC-43300 [EN AC-Al Si9Mg] e EN AC-71100 [EN AC-Al Zn10Si8Mg] foram modificadas.

Na tabela 3, duas ligas foram excluídas e duas adicionadas, as propriedades mecânicas das ligas já existentes EN AC-46200 [EN AC-Al Si8Cu3], EN AC-43300 [EN AC-Al Si9Mg] e EN AC-71100 [EN AC-Al Zn10Si8Mg] foram modificadas. Na Tabela A.1, uma liga foi excluída e três adicionadas, as propriedades mecânicas das ligas já existentes EN AC-43500 [EN AC-Al Si10MnMg], EN AC-46000 [EN AC-Al Si9Cu3 (Fe)] e EN AC-71100 [EN AC-Al Zn10Si8Mg] foram modificadas.

Foi adicionado um novo Anexo B e o antigo Anexo B foi renomeado para Anexo C. Na Tabela C.1, as mesmas ligas da Tabela 1 foram adicionadas ou excluídas, respectivamente. A adequação de alguns métodos de fundição foi revisada para algumas ligas, bem como algumas classificações de propriedades, e as notas de rodapé foram modificadas. O antigo Anexo C foi renomeado para o anexo D e o quadro D.1 foi completamente revisado.

Conteúdo da norma

Prefácio da versão europeia………………… … 3

1 Escopo……………………………….. ……………. 6

2 Referências normativas……………………… 6

3 Termos e definições………………………….. 6

4 Informações para pedidos…………………… 8

5 Sistemas de designação…………………….. 8

5.1 Sistema de designação numérica…………… 8

5.2 Sistema de designação baseado em símbolos químicos…………… 8

5.3 Designações de têmpera…………………. 8

5.4 Designações do processo de fundição…………. 9

5.5 Designações a serem incluídas nos desenhos…………… 9

6 Composição química……………… ……………………………. 9

6.1 Geral…………………………………….. ………… 9

6.2 Amostras para análise química…………. 9

7 Propriedades mecânicas…………………….. 15

7.1 Geral……………………………………. ……… 15

7.2 Ensaios de tração…………………………. 19

7.3 Provetes…………………………………. … 19

7.3.1 Geral……………………………. ……….. 19

7.3.2 Amostras de ensaio fundidas separadamente………………….. 19

7.3.3 Provetes retirados de peças vazadas……………….. 20

7.4 Ensaios de dureza………………………………………. 21

8 Regras de arredondamento para determinação da conformidade…………… 21

Anexo A (informativo) Propriedades mecânicas de ligas fundidas sob alta pressão…………………….. 22

Anexo B (informativo) Propriedades mecânicas potencialmente alcançáveis dos provetes coletados de um grupo……………… 23

Anexo C (informativo) Comparação das características de fundição, mecânicas e outras propriedades…………………………….. 25

Anexo D (informativo) Comparação entre as designações de ligas de alumínio fundido………………….. 34

Bibliografia…………………….. 36

A classificação das chapas de gesso diferenciadas para drywall

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra.

A NBR 16831 de 05/2020 – Chapas de gesso diferenciadas para drywall — Classificação e requisitos estabelece a classificação e os requisitos das chapas de gesso diferenciadas para com suas características para aplicação e inspeção. Não é aplicável às chapas de gesso para drywall dos tipos standard (ST), resistente à umidade (RU) e resistente ao fogo (RF), sendo seus requisitos encontrados na NBR 14715-1.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os valores da carga de ruptura?

Qual é a densidade superficial de massa em função das espessuras das chapas?

Como deve ser feita a identificação das chapas?

Quais são os critérios para aceitação e rejeição?

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra. A lâmina ou véu podem variar em função da aplicação de um determinado tipo de chapa, e o núcleo pode conter aditivos a fim de proporcionar características adicionais à NBR 14715-1.

As chapas de gesso diferenciadas para drywall são selecionadas de acordo com o seu tipo, tamanho e espessura. São aplicáveis a ambientes construídos com características específicas demandadas. Devem ser classificadas pelos seguintes tipos indicados na EN 520 2004+A1 e descritas a seguir. As chapas de gesso diferenciadas para drywall do Tipo A para utilização em áreas secas, chapas produzidas para utilização em áreas secas classificadas de acordo com o seu peso e a espessura.

As chapas de gesso diferenciadas do Tipo A devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo standard (ST), especificadas na NBR 14715-1. As chapas de gesso diferenciadas para drywall do Tipo H com absorção d’água reduzida, chapas com capacidade reduzida de absorção d’água adequadas para aplicações em locais sujeitos à umidade por tempo limitado e intermitente ou esporádico. As chapas de gesso diferenciadas do Tipo H devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo resistente à umidade (RU), especificadas na NBR 14715-1.

As chapas de gesso para drywall do Tipo E para utilização em exteriores, chapas produzidas para utilização em áreas externas. Devem sempre ser especificadas com o uso de algum tipo de revestimento ou proteção, a ser indicado pelo fabricante. A exposição da chapa sem revestimento é por tempo limitado, a ser indicado pelo fabricante.

Esta norma não prevê os tipos de revestimento ou proteção. A permeabilidade ao vapor d’água deve ser mínima, bem como a capacidade de absorção d’água reduzida. As chapas de gesso para drywall do Tipo F com coesão do núcleo de gesso para altas temperaturas, chapas que contêm fibras minerais e/ou outros aditivos no núcleo de gesso para melhorar sua coesão às altas temperaturas. Essas características são dependentes dos sistemas construtivos.

As chapas de gesso diferenciadas do Tipo F devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declaradas pelo fabricante, que as distinguem das chapas de gesso do tipo resistente ao fogo (RF), especificadas na NBR 14715-1. As chapas de gesso para drywall do Tipo P chapas para serem combinadas mediante colagem a outros materiais em forma de chapas ou painéis ou películas. Esse tipo pode também apresentar furos a fim de melhorar as características acústicas do ambiente construído.

As chapas de gesso para drywall do Tipo D com densidade controlada, chapas que possuem densidade controlada que permitem melhorar algumas aplicações, entre elas as características acústicas do ambiente construído; chapas de gesso para drywall do Tipo R com resistência aumentada, chapas utilizadas para aplicações diferenciadas que requeiram resistência mais elevada às cargas de ruptura tanto no sentido longitudinal quanto no transversal. As chapas de gesso para drywall do Tipo I com dureza superficial aumentada, chapas utilizadas para aplicações diferenciadas que requeiram maior dureza superficial.

As utilizações dos diversos tipos de chapas de gesso diferenciadas para drywall, constantes nesta norma, podem ser combinadas em uma única chapa, neste caso a designação da chapa deve incluir a letra que identifica cada tipo de aplicação. Os tipos D, E, F, H, I, R podem ser combinados e os tipos A e P não podem ser combinados. EXEMPLO: Tipo A3, Tipo A1, Tipo F-H, ou seja, chapa resistente ao fogo com absorção de água reduzida, Tipo D-F-H, ou seja, chapa com densidade controlada, resistente ao fogo e com absorção de água reduzida.

Todos os tipos de chapas de gesso diferenciadas para drywall devem atender à classe IIA de reação ao fogo de acordo com NBR14432 e podem receber em uma das faces acabamentos. Os tipos das chapas de gesso diferenciadas para drywall são classificados nesta norma, de acordo com os requisitos descritos na Seção 5. A carga de ruptura à flexão das chapas de gesso diferenciadas para drywall, constantes nesta norma para os tipos A, D, E, F, H e I, devem estar conforme a NBR 14715-2, não podendo ser inferior aos valores indicados na tabela abaixo. Nenhum resultado individual do ensaio pode ser inferior em mais de 10% dos valores indicados na tabela abaixo.

A densidade da chapa diferenciada para drywall do tipo D ou sua combinação, determinada conforme o método descrito na NBR 14715-2, deve ser no mínimo 0,8 × 103 kg/m³. A dureza superficial aumentada da chapa de gesso diferenciada do Tipo I ou sua combinação é determinada medindo o diâmetro da mossa produzida na superfície, quando ensaiada conforme o método descrito na NBR 14715-2. O diâmetro da mossa não pode ser superior a 15 mm.

As características dimensionais das chapas de gesso diferenciadas para drywall, seus valores e tolerâncias estão especificadas na NBR 14715-1, sendo verificadas conforme a NBR 14715-2. A tolerância na espessura para as chapas de 6,0 mm a 6,5 mm é de ± 0,2 mm. A tolerância na espessura para as chapas de 6,6 mm a 15,0 mm é de ± 0,5 mm.

Outras espessuras nominais são também possíveis, de acordo com a mínima espessura de 6,0 mm. Para espessuras nominais maiores ou iguais a 15,1 mm, as tolerâncias devem ser ± 0,04 × t, arredondadas para o próximo 0,1 mm. A critério do comprador e do fornecedor as análises dimensionais e pesos, podem ser avaliados em função da NBR 5426. Para a amostragem, dez chapas (amostras) devem ser retiradas aleatoriamente do lote declarado pelo fornecedor, constituindo as amostras, sendo cinco chapas à guisa de prova e cinco chapas à guisa de contraprova.

As testemunhas ou contraprovas devem ficar sob a guarda do fabricante. As amostras devem ser identificadas de forma a permitir, inclusive, a rastreabilidade do lote de produção. O local de inspeção deve ser previamente acordado entre o fornecedor e o comprador, podendo ser ou no pátio da fábrica, no distribuidor ou na obra.

Para a inspeção visual, todas as chapas diferenciadas para drywall devem ser submetidas às inspeções conforme determinado na norma, rejeitando-se apenas as chapas que não estiverem conforme. Para as chapas, de per si, devem ser verificadas e comparadas as características expressas indicadas na seção 5, com as Instruções ou declaração do fabricante. Para os sistemas construtivos executados com chapas diferenciadas para drywall, podem ser avaliados por meio de ensaios tipo, estabelecidos de comum acordo entre fabricante e consumidor.

BS EN IEC 62984-2: as baterias secundárias para alta temperatura

Essa norma europeia, editada em 2020 pelo BSI, especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes).

A BS EN IEC 62984-2:2020 – High-temperature secondary batteries. Safety requirements and tests especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes). As baterias de alta temperatura são sistemas eletroquímicos cuja temperatura operacional interna mínima das células está acima de 100 °C.

CONTEÚDO DA NORMA

PREFÁCIO…………………… 4

1 Escopo……………………… 6

2 Referências normativas………… ….. 6

3 Termos, definições, símbolos e termos abreviados………… 7

3.1 Construção da bateria……………………………………. 7

3.2 Funcionalidade da bateria………………………….. 10

3.3 Símbolos e termos abreviados…………………….. 12

4 Condições ambientais (de serviço)…………………………… 13

4.1 Geral………………………. …………… 13

4.2 Condições normais de serviço para instalações estacionárias……………………. .13

4.2.1 Geral………………… ……… 13

4.2.2 Condições ambientais normais adicionais para instalações internas ……………. 14

4.2.3 Condições ambientais normais adicionais para instalações externas ………….. 14

4.3 Condições especiais de serviço para instalações estacionárias……………………….. .14

4.3.1 Geral…………………. ……… 14

4.3.2 Condições especiais de serviço adicionais para instalações internas………………….. 14

4.3.3 Condições especiais de serviço adicionais para instalações externas………………… 14

4.4 Condições normais de serviço para instalações móveis (exceto propulsão) ………………. 14

4.5 Condições especiais de serviço para instalações móveis (exceto propulsão) ……………… 14

5 Projeto e requisitos……………………… 15

5.1 Arquitetura da bateria……………………. 15

5.1.1 Módulo…………. ………. 15

5.1.2 Bateria………………. ……….. 15

5.1.3 Montagem das baterias………………. 16

5.1.4 Subsistema de gerenciamento térmico……….. 17

5.2 Requisitos mecânicos……………………………. 17

5.2.1 Geral…………………………… ……… 17

5.2.2 Carcaça da bateria………………….. 17

5.2.3 Vibração………………………… …….. 18

5.2.4 Impacto mecânico……………………… 18

5.3 Requisitos ambientais………………………. 18

5.4 Requisitos de Electromagnetic compatibility (EMC)…………….. 18

6 Ensaios……… ……………………… 19

6.1 Geral……………… …………… 19

6.1.1 Classificação dos ensaios………………….. 19

6.1.2 Seleção de objetos de ensaio…………………….. 19

6.1.3 Condições iniciais do DUT antes dos ensaios………………… 20

6.1.4 Equipamento de medição……………. 20

6.2 Lista de ensaios…………….. ……….. 20

6.3 Ensaios de tipo…………….. ………… 21

6.3.1 Ensaios mecânicos………………. 21

6.3.2 Ensaios ambientais…………………………. 23

6.3.3 Ensaios EMC…………………….. ……. 24

6.4 Ensaios de rotina……………… …….. 33

6.5 Ensaios especiais………………. …….. 33

7 Marcações………….. …………………. 33

7.1 Geral……………………………. …………… 33

7.2 Marcação da placa de dados……………………. 33

8 Regras para transporte, instalação e manutenção ……… 33

8.1 Transporte…………………….. …. 33

8.2 Instalação………………. ………. 33

8.3 Manutenção………………… ……. 33

9 Documentação……………………. ………… 33

9.1 Manual de instruções……………………. 33

9.2 Relatório de ensaio……. ……….. 34

Bibliografia……………… ………………….. 35

Figura 1 – Componentes de uma bateria………………….. 16

Figura 2 – Componentes de um conjunto de baterias……….. 16

Figura 3 – Subsistema de gerenciamento térmico……………………. 17

Tabela 1 – Lista de símbolos e termos abreviados………………….. 13

Tabela 2 – Ambientes eletromagnéticos……………. 19

Tabela 3 – Ensaios de tipo…………………….. ………….. 21

Tabela 4 – Ensaio de calor úmido – Estado estacionário…………………………. 23

Tabela 5 – Nível de gravidade dos ensaios EMC………………………… 25

Tabela 6 – Descrição dos critérios de avaliação para ensaios de imunidade…….. …….. 26

Tabela 7 – Parâmetros de ensaio EFT/Burst……………….. 28

Tabela 8 – Níveis de ensaio de surto…………………. ….. 29

Segundo a International Electrotechnical Commission (IEC), as baterias são dispositivos indispensáveis na vida cotidiana: muitos itens que são usados diariamente, desde os telefones celulares até os laptops, dependem da energia da bateria para funcionar. No entanto, apesar de uso mundial, a tecnologia das baterias está subitamente dominando os holofotes porque é usada para alimentar todos os tipos de diferentes veículos elétricos (VE), de carros elétricos a scooters eletrônicas, que estão regularmente nos mercados. Para os ambientalistas, no entanto, a tecnologia da bateria é mais interessante como forma de armazenar eletricidade, à medida que a geração e o uso de energia renovável – que é intermitente – aumentam.

As baterias de íon lítio podem ser recicladas, mas esse processo permanece caro e, por enquanto, as taxas de recuperação de material raramente chegam a 20%. As matérias-primas usadas nas baterias de íon lítio são geralmente níquel, cobalto, manganês e lítio, que são caros de se obter. Algumas dessas matérias primas são escassas e, mesmo que as pesquisas estejam progredindo rapidamente, alguns laboratórios conseguiram atingir 80% dos níveis de recuperação.

Os cientistas também estão analisando as baterias recarregáveis de ar lítio como uma alternativa ao íon lítio. As baterias de íon de lítio usadas em uma aplicação podem ser avaliadas quanto à capacidade de serem usadas em outras aplicações menos exigentes. Uma segunda vida útil possível para as baterias é um componente para estações de carregamento flexíveis.

São estações de carregamento rápido que podem ser operadas de forma autônoma durante eventos de grande escala, como festivais ou eventos esportivos. As baterias de veículos elétricos podem ser reutilizadas em tudo, desde energia de backup para data centers até sistemas de armazenamento de energia. Na Europa, vários fabricantes de veículos, empresas pioneiras no mercado de carros elétricos, instalaram baterias usadas principalmente em diferentes tipos de sistemas de armazenamento de energia, variando de pequenos dispositivos residenciais a soluções maiores em escala de grade em contêiner.

A conformidade dos campos e aventais cirúrgicos, e roupas para sala limpa

Conheça os requisitos de fabricação e processamento, bem como os métodos de ensaio e requisitos de desempenho para campos cirúrgicos, aventais cirúrgicos e roupas para sala limpa de uso único ou reutilizáveis, utilizados como produtos para saúde por pacientes e profissionais de saúde e para equipamentos.

A NBR 16064 de 10/2016 – Produtos têxteis para saúde – Campos cirúrgicos, aventais e roupas para sala limpa, utilizados por pacientes e profissionais de saúde e para equipamento – Requisitos e métodos de ensaio especifica os requisitos de fabricação e processamento, bem como os métodos de ensaio e requisitos de desempenho para campos cirúrgicos, aventais cirúrgicos e roupas para sala limpa de uso único ou reutilizáveis, utilizados como produtos para saúde por pacientes e profissionais de saúde e para equipamentos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual o método de ensaio para avaliação de limpeza microbiana?

Quais as características e os requisitos de desempenho a serem avaliados para vestimentas para sala limpa cirúrgica?

Quais as características e os requisitos de desempenho a serem avaliados em campos cirúrgicos de paciente?

Quais as características e requisitos de desempenho a serem avaliados em aventais cirúrgicos?

A transmissão de agentes infecciosos durante procedimentos cirúrgicos invasivos pode ocorrer de várias maneiras (ver Anexo B). Campos cirúrgicos estéreis, aventais cirúrgicos estéreis e roupas estéreis para sala limpa são utilizados para minimizar a disseminação de agentes infecciosos das, e para as, incisões cirúrgicas nos pacientes, ajudando assim a prevenir infecções pós-operatórias nas feridas (ver Anexo B).

O desempenho necessário das coberturas para paciente, equipe cirúrgica e equipamento varia de acordo com, por exemplo, o tipo e a duração do procedimento, o grau de umidade do campo de operação, o grau de tensão mecânica em materiais e da suscetibilidade do paciente à infecção. O uso de aventais cirúrgicos com resistência à penetração de líquidos pode também diminuir o risco à saúde da equipe de cirurgia, devido aos agentes infecciosos transportados no sangue ou outros fluidos corporais.

Para atender a esta norma, os produtos devem atender a todos os requisitos especificados nas tabelas abaixo (conforme apropriado para o produto), quando ensaiados de acordo com esta norma em toda a sua vida útil. Caso a finalidade prevista de um produto para saúde especifique o seu uso como um campo estéril, aplicar os requisitos para campos cirúrgicos e coberturas de equipamentos, conforme as tabelas abaixo.

Os requisitos de desempenho são especificados em função da área do produto e do nível de desempenho. No entanto, algumas características de desempenho são aplicadas a todos os níveis de desempenho e áreas do produto para saúde. No Anexo B são dadas as informações sobre características que não são possíveis de serem avaliadas devidamente (como adesão para a fixação com a finalidade de isolamento da incisão ou controle de líquido), ou que não são consideradas passíveis de normalização (como conforto).

Os ensaios para a avaliação do desempenho dos produtos devem ser feitos de acordo com os métodos especificados no Anexo A. Todos os resultados e as condições de ensaio devem ser registrados e arquivados. Os ensaios devem ser realizados no produto acabado. Se o produto for usado após a esterilização, o ensaio deve ser realizado com produtos após a esterilização, com exceção da limpeza microbiana. O ensaio deve incluir potenciais pontos fracos.

Os requisitos de desempenho podem variar em relação às áreas do produto e aos riscos de envolvimento com a transferência de agentes infecciosos para a, ou a partir da, ferida. Para garantir o desempenho do produto, podem ser usadas combinações de materiais ou produtos em sistemas. No caso de kits cirúrgicos, cada componente é considerado um produto, independentemente de tamanho e modelo, desde que não se altere a matéria-prima.

Durante a fabricação e processamento, o ensaio deve ser realizado de acordo com as orientações do fabricante e do sistema de qualidade do processador. Podem ser utilizados métodos de ensaio alternativos para monitoramento, desde que sejam validados e abordem as mesmas características, e desde que os resultados se correlacionem com os métodos de ensaio apresentados nesta norma.

O fabricante e o processador devem documentar se os requisitos estabelecidos nesta norma foram atendidos e se foi estabelecida a adequação para a finalidade pretendida para cada uso, tanto para produtos para saúde de uso único como para reutilizáveis. É recomendável um sistema de qualidade. Devem ser utilizados os procedimentos de fabricação e processamento validados. Uma especificação de fabricação e processamento deve ser concebida e validada para o produto, incluindo limpeza visual e higiênica.

A validação deve incluir todas as etapas de fabricação e processamento. A frequência de revalidação deve ser determinada durante a validação e deve ser reavaliada após qualquer mudança de fabricação ou processamento que possa afetar o produto. As principais variáveis de fabricação e processamento devem ser identificadas, monitoradas e registradas. O tipo e a frequência de monitoramento de rotina devem ser documentados.

Os resultados da validação e do controle de rotina devem ser registrados e armazenados. É recomendado dar preferência a ensaios biológicos, químicos e/ou físicos quantitativos para os processos de validação e de monitoramento. Durante a fabricação e processamento, o controle de descontaminação, os procedimentos de desinfecção e a rastreabilidade da esterilização devem ser registrados e armazenados. Quanto à informação a ser fornecida pelo fabricante ou processador, deve ser feita de acordo com a legislação vigente, referente a correlatos médicos e produtos para saúde.

Se houver diferença de áreas críticas e menos críticas do produto, fornecedor e/ou convertedor devem fornecer estas informações para identificá-las. As seguintes informações adicionais são fornecidas, se solicitadas: identidade ou informações sobre os métodos de ensaio utilizados; resultados dos ensaios e condições para as características dadas na Seção 4.

A conformidade da produção do adobe ou tijolo de barro

Conheça os requisitos para a produção de adobe e execução da alvenaria, além dos métodos de ensaio para sua caracterização física e mecânica, não sendo aplicável à edificação com parede em alvenaria estrutural de adobe superior a dois pisos, assim como à execução de arcos, abóbadas e cúpulas.

A NBR 16814 de 01/2020 – Adobe — Requisitos e métodos de ensaio estabelece os requisitos para a produção de adobe e execução da alvenaria, além dos métodos de ensaio para sua caracterização física e mecânica. Esta norma não é aplicável à edificação com parede em alvenaria estrutural de adobe superior a dois pisos, assim como à execução de arcos, abóbadas e cúpulas. Esta norma não é aplicável aos projetos elaborados com alcance e base diferentes das considerações aqui estabelecidas. Esta norma contribui com a ampliação de alternativas de materiais e técnicas de construção, principalmente para produção de habitação de interesse social, especialmente em regiões nas quais existe a tradição de uso do adobe como material de construção, como forma de qualificar esta prática.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como se define o adobe e o adobe estabilizado?

Qual deve ser a argamassa de assentamento do adobe?

Qual deve ser o número de adobes dos lotes e da amostragem?

Como deve ser executada a inspeção por ensaios?

Em geral, as técnicas de construção com terra são de baixo impacto ambiental negativo, principalmente pela produção local e em pequena escala, reduzido gasto energético com transporte, utilização de matéria prima local e abundante, reduzido consumo de energia para produção, baixo nível de geração de resíduos da construção e demolição, e elevado potencial de reciclagem. Assim sendo, estes materiais atendem às principais premissas do desenvolvimento sustentável, reduzindo os impactos ambientais negativos produzidos pela construção civil, uma das grandes preocupações da atualidade.

Entre as inúmeras técnicas de construção com terra encontradas ao redor do mundo, destacam-se três, que foram introduzidas no Brasil pelos colonizadores portugueses, no século XVI: taipa (ou taipa de pilão): solo predominantemente arenoso, com umidade próxima ao teor de umidade ótima de compactação, compactado em camadas no interior de formas móveis (taipal), conformando paredes consideradas monolíticas; adobe: solo arenoargiloso, em estado plástico firme (barro), moldado em formas, desmoldado logo em seguida e colocado para secar naturalmente, para produção de elementos de alvenaria (blocos ou tijolos); e pau a pique (ou taipa de mão, ou taipa de sopapo, ou técnica mista): solo argiloso, em estado plástico mole, preenchendo os espaços formados por um entramado de madeira de pequena seção (fixado em uma estrutura de pilares e vigas de madeira), aplicado em várias camadas, intercaladas por processo de secagem.

Posteriormente, notadamente nos anos 70 e 80, e com a popularização do uso do cimento na construção civil, outra técnica de construção com terra foi incentivada no Brasil. Trata-se dos blocos de terra comprimida (BTC), estabilizados com cimento. Não existiam normas brasileiras para as três técnicas anteriores, quer seja para caracterização dos materiais ou para sua aplicação na elevação de paredes.

Em outros países, existem algumas normas para construção com adobes, ou com taipa, porém de difícil adaptação à realidade brasileira, porque são países com considerável vulnerabilidade sísmica e/ou solos muito diversos dos encontrados no Brasil. Para avaliação da adequação do solo para a produção de adobe, devem ser realizados ensaios de laboratório, cujos resultados atendam aos seguintes requisitos: a composição granulométrica da terra, determinada conforme as NBR 6457 e NBR 7181, deve atender preferencialmente aos seguintes parâmetros: areia: entre 45% e 65%; silte: até 30%; e argila: entre 25% e 35%.

Para os solos fora dos parâmetros indicados ou com presença de sais, realizar ensaios de comportamento físico e mecânico de adobes produzidos experimentalmente, os quais devem atender às especificações de desempenho desta norma e não utilizar solos orgânicos (ou contendo matéria orgânica em decomposição) ou com comportamento expansivo.

A composição granulométrica do solo pode ser corrigida com adição de areia, ou com mistura de dois ou mais tipos de solos. A água a ser utilizada deve atender aos mesmos requisitos daquela aplicada nos concretos e argamassas. Caso seja necessário, podem ser utilizados estabilizantes, desde que sejam realizados ensaios de comportamento físico e mecânico de adobes produzidos experimentalmente, para verificação do atendimento dos parâmetros de desempenho desta norma.

Para as características visuais do adobe, para seu emprego, o adobe deve estar seco, livre de materiais estranhos, trincas ou outros defeitos que possam comprometer sua resistência ou durabilidade. Recomenda-se que o adobe tenha a forma externa de um paralelepípedo retangular, sendo suas dimensões nominais ajustadas às seguintes condições, de acordo com a figura abaixo: comprimento do adobe (C), correspondente à maior dimensão das faces de assentamento, preferencialmente igual ao dobro da largura (L), sendo acrescida de uma vez a espessura da junta vertical de assentamento (j), em que as juntas de assentamento horizontais e verticais não podem exceder 20 mm de espessura e devem ser preenchidas completamente; altura do adobe (H), correspondente à distância entre as faces de assentamento, preferencialmente igual à metade da largura e maior ou igual a 7 cm.

Para as dimensões efetivas do adobe são admitidas as seguintes tolerâncias, com relação às dimensões nominais: a tolerância de dimensões individuais efetivas do adobe, para H, L e C, estabelecidas em 4.3.1 e determinadas de acordo com o procedimento estabelecido no Anexo A, é de ± 5 mm; a tolerância de dimensões médias da amostra para Hm, Lm e Cm, é de ± 5 mm. Para atender às necessidades específicas de projeto, por exemplo, paredes curvas ou formação de ângulos diferentes de 90º entre si, é permitida a produção de adobes com formatos especiais, desde que sejam asseguradas as mesmas características físicas e mecânicas dos demais adobes de uma mesma edificação.

O adobe deve ser maciço, sendo permitidos um ou dois furos perpendiculares à face de assentamento, para passagem de tubulações ou grauteamento para reforço estrutural. O diâmetro do furo (d) deve ser de no máximo metade da largura do adobe, conforme a figura abaixo.

O barro para moldagem do adobe deve ser preparado de acordo com as seguintes etapas: o material seco deve ser destorroado e homogeneizado, antes da adição da água; adicionar água, homogeneizando a mistura (amassamento) até obter a consistência apropriada para a moldagem; deixar o barro em repouso por cerca de 24 h, coberto com lona plástica, e amassá-lo novamente, antes do uso.

Devem ser tomados os seguintes cuidados na moldagem do adobe: o barro deve preencher completamente o volume do molde; desmoldar o adobe logo após a sua conformação, sobre uma superfície nivelada; se necessário, utilizar desmoldante. O tempo de secagem varia em função das condições climáticas da região. Deve-se atentar para: proteger o adobe das intempéries; evitar a secagem acelerada no início do processo; assegurar que a secagem seja uniforme em todas as faces do adobe.

A umidade e a erosão produzidas nas paredes de terra são as principais causadoras da deterioração destas construções, sendo necessário protegê-las por meio de elementos construtivos, como: argamassas para emboços e rebocos de terra, que podem ser estabilizadas nos ambientes internos molhados, quando expostas ao contato direto com a água, ou quando houver necessidade; nas paredes externas, expostas às chuvas, estas argamassas devem ser estabilizadas com materiais que garantam melhor proteção mecânica, como a cal, por exemplo; revestimentos com outros materiais para proteção mecânica das paredes, desde que assegurem seu comportamento higroscópico; parede assentada em uma base de material que impeça a ascensão capilar de água e proteja a base da alvenaria; calçadas perimétricas; sistema de drenagem apropriado no entorno imediato da construção; beirais de cobertura. Não podem ser empregadas argamassas de cimento e areia para o revestimento de paredes de adobe.

O índice de reciclagem das embalagens

reciclagemA reciclagem é o termo utilizado para designar o reaproveitamento de materiais beneficiados como matéria-prima para um novo produto. Muitos materiais podem ser reciclados e os exemplos mais comuns são o papel, o vidro, os metais como alumínio e aço e os diferentes tipos de plástico. A reciclagem proporciona a minimização da utilização de matérias-primas de fontes naturais e a minimização da quantidade de resíduos encaminhados para a destinação final.

O conteúdo reciclado é a proporção, em massa, de material reciclado em um produto ou em uma embalagem. Somente os materiais pré-consumo e pós-consumo devem ser considerados como conteúdo reciclado.

A destinação adequada é o descarte seletivo para revalorização ou disposição final. Deve-se orientar o consumidor sobre o descarte dos resíduos para sua posterior revalorização ou disposição final e consequentes impactos ambientais.

A disposição final é a coleta, triagem, transporte e tratamento de resíduos não revalorizados e seu depósito, em definitivo, em aterros industriais ou municipais. O material pós-consumo é o descartado por domicílios ou instalações comerciais, industriais e institucionais após o uso do produto. Ele não pode mais ser usado para o fim ao qual se destina.

O material pré-consumo é o desviado do fluxo de resíduos durante um processo de manufatura. Exclui-se a reutilização de sucata, materiais retrabalhados, retriturados ou gerados em um processo e que podem ser reaproveitados dentro do mesmo processo que os gerou (aparas).

Já a embalagem de uso único ou one way é a projetada para ser utilizada apenas uma vez, também denominada descartável (e que após o seu uso deve ser encaminhada para a coleta seletiva). A embalagem reutilizável é a reutilizada em sua forma original para o mesmo fim para a qual foi concebida e projetada para desempenhar um número mínimo de viagens ou rotações dentro de seu ciclo de vida.

Assim, a embalagem é um recipiente ou envoltura que armazena produtos temporariamente, individualmente ou agrupando unidades, tendo como principal função protegê-lo e estender o seu prazo de vida (shelf life), viabilizando sua distribuição, identificação e consumo. Tornou-se ferramenta crucial para atender à sociedade em suas necessidades de alimentação, saúde, conveniência, disponibilizando produtos com segurança e informação para o bem estar das pessoas, possibilitando a acessibilidade a produtos frágeis, perecíveis, de alto ou baixo valor agregado. A embalagem possibilita ainda o desenvolvimento de novos produtos e de formas de preparo com o uso dos eletrodomésticos.

A Pesquisa Ciclosoft 2016 apontou que a concentração dos programas municipais de coleta seletiva permanece nas regiões Sudeste e Sul do país, totalizando 81%. Do total de municípios brasileiros que realizam esse serviço, 8% estão na região Centro-Oeste, 10% na região Nordeste e apenas 1% na região Norte do país.

No total, estima-se que apenas 31 milhões (o equivalente a 15%) de brasileiros têm acesso aos programas municipais de coleta seletiva. Esse índice sofreu pequena elevação, se comparado à edição anterior do estudo, quando esse número atingia 13% da população.

A pesquisa também revelou que 54% dos municípios ainda realiza a coleta seletiva por meio de pontos de entrega voluntária e Cooperativas, enquanto apenas 51% da coleta seletiva é feita pela própria prefeitura das cidades pesquisadas. Com relação aos materiais recicláveis mais coletados, o Ciclosoft 2016 mostrou que o papel e papelão continuam sendo os tipos de materiais recicláveis mais coletados em peso, representando 34% da coleta, seguidos de plástico com 11% e vidro com 6%.

Ainda se está muito longe do aumento das embalagens sustentáveis, que deveriam contemplar a proporção ideal de embalagem versus produto, otimizando o seu peso específico e proporcionando as condições ideais para o acondicionamento do produto. A sustentabilidade só pode ser alcançada por meio da busca pela eficiência em todos os processos ao longo do ciclo de vida da produção embalagem e do produto, incluindo seu consumo e descarte.

Busca-se a sustentabilidade por meio do processo de melhoria contínua fazendo uso nas novas tecnologias e da evolução do cenário social, econômico e mercadológico, maximizando-se a distribuição do produto, a segurança do consumidor, o sucesso de seu uso e minimizar a geração de resíduo e desperdício, prevendo a destinação final adequada, oferecendo o reaproveitamento de seu material e não tendo efeitos indesejáveis no meio ambiente.

Entre outros aspectos, a embalagem tem a função primordial de proteção dos produtos demandados por todos nós. Esta proteção deve viabilizar a adequada distribuição dos mesmos, o prolongamento da sua vida útil e consequentemente a redução de perdas, o atendimento dos requisitos legais, bem como de segurança do consumidor. Algumas poucas embalagens que estão hoje no mercado já atendem aos quesitos de sustentabilidade como otimização de seu peso específico, possibilidade de reciclagem ou reaproveitamento de seu material, entre outros aspectos.

A NBR 15792 de 01/2010 – Embalagem – Índice de reciclagem – Definições e método de cálculo estabelece as definições e o método de cálculo do índice de reciclagem de embalagem pós-consumo. Também fornece os métodos de cálculo dos índices de revalorização energética e orgânica. Cálculo do índice de reciclagem pós-consumo (IRpc).

O método de cálculo deve ser aplicado a qualquer grupo (embalagens celulósicas, plásticas, de alumínio, de aço, de vidro etc.) ou subgrupo (por exemplo, caixa de papelão ondulado, garrafas PET, latas de bebida, embalagens multicamadas, acessórios como tampas, rótulos etc.) de embalagens para os quais os dados podem ser fornecidos conforme Figura 1. Tomando como referência a Figura 1, o índice de reciclagem de embalagens pós-consumo deve ser calculado através da equação:

Clique nas figuras para uma melhor visualização

reciclagem1

O índice de reciclagem pós-consumo deve ser calculado dentro dos limites geográficos do país e deve incluir embalagens importadas e excluir as embalagens exportadas. O denominador é o total das embalagens utilizadas no mercado brasileiro, inclusive aquelas de produtos importados já embalados.

É possível utilizar outros limites geográficos bem definidos, como regiões ou estados, desde que esta adaptação seja explicitamente declarada. Os pontos de medição para determinar o índice de reciclagem pós-consumo devem ser baseados no fluxograma da Figura 1.

Estes pontos de medição são definidos para fornecer a forma mais prática de obter dados confiáveis. O índice de reciclagem pós-consumo deve ser calculado no ano civil (janeiro a dezembro), e as medições do numerador e do denominador devem tomar como referência o mesmo período de tempo

É possível utilizar outros períodos de tempo, desde que esta adaptação seja explicitamente declarada. Devido à complexidade do efeito dos fluxos flutuantes (embalagens de produtos com validade maior que o período considerado) e longos intervalos de tempo entre processos (produção, consumo e reciclagem), o índice calculado é obtido pelas quantidades de embalagens colocadas no mercado e recicladas em um determinado período de tempo.

O índice de reciclagem pós-consumo deve ser calculado com base em dados coletados em unidades de massa e deve excluir todo e qualquer fluxo de aparas internas de produção industrial e de aparas de conversão industrial, como, por exemplo, resíduos de produção de embalagens ou de produção de materiais de embalagem ou de qualquer outro processo de produção.

O fluxograma que orienta o cálculo do índice de reciclagem pós-consumo é reproduzido na Figura 1. O numerador e o denominador do índice de reciclagem são baseados na entrada de material de embalagem, sendo o numerador a quantidade de embalagens usadas, recolhidas no pós-consumo e direcionadas para a reciclagem.

reciclagem2

A energia dos resíduos sólidos

resíduos

O engenheiro ambiental e aluno do Instituto de Energia e Ambiente (IEE) da USP, Clauber Barão Leite, em uma parceria com o IPT, está trabalhando em um projeto de avaliação comparativa de duas tecnologias de tratamento (digestão anaeróbia e incineração) de resíduos sólidos com aproveitamento energético. A escolha do pesquisador pelo tema para a sua dissertação de mestrado foi motivada por duas questões socioeconômicas que estão na ordem do dia – a crescente demanda pela geração de energia elétrica e o aumento da quantidade de resíduos sólidos – e a intenção de buscar uma solução conjunta.

Uma das disposições da Política Nacional de Resíduos Sólidos, instituída pelo governo em 2010, é a observação da seguinte ordem de prioridade na gestão e no gerenciamento de resíduos sólidos: não geração; redução; reutilização; reciclagem; tratamento dos resíduos sólidos e disposição final ambientalmente adequada dos rejeitos, aqui definidos como todos os resíduos sólidos que, depois de esgotadas todas as chances de tratamento e de recuperação por processos tecnológicos economicamente viáveis, não apresentem outra possibilidade além da destinação final. “Os resíduos sólidos têm uma componente energética importante: no meu estudo, a intenção é avaliar o seu aproveitamento, levantando informações sobre o potencial de geração de energia, e as tecnologias existentes”, explica Leite.

Analisando a composição dos resíduos no Brasil, continua ele, a média é de 50% de material orgânico, 25% a 30% de resíduos passíveis de reciclagem e o restante (20% a 25%) do rejeito propriamente dito: “Somente os rejeitos deveriam ser destinados aos aterros; tudo o que é passível de aproveitamento, tanto orgânicos como recicláveis, deveria passar por um tratamento antes da destinação final, mas isso ainda não acontece”.

A digestão anaeróbia e a incineração são os processos mais utilizados para o tratamento dos resíduos sólidos na Europa e nos Estados Unidos e foram as escolhidas pelo pesquisador para o estudo. “Meu trabalho segue uma linha de comparação, mas de adaptar o cenário para a realidade brasileira porque existem diferenças – não basta transferir uma tecnologia bem-sucedida no exterior para o Brasil, pois existem diferenças nos tipos de resíduos e nos hábitos da população, e tudo isso provoca impactos na operação e nos custos”, ressalta ele.

Embora ainda não estejam presentes no Brasil em larga escala, o pesquisador optou pelas duas tecnologias por conta da rentabilidade econômica, enfatizando que processos como o plasma térmico e a gaseificação estão ainda em um patamar científico ou não têm viabilidade comercial. Mais de 41% das 78,6 milhões de toneladas de resíduos sólidos gerados no país em 2014 tiveram como destino lixões e aterros controlados, segundo estudo da Associação Brasileira de Empresas de Limpeza Pública e Resíduos Especiais (Abrelpe).

A metodologia da pesquisa da entidade envolveu 400 municípios, o equivalente a 91,7 milhões de pessoas, e apontou que o brasileiro gera, em média, 1,062 kg de lixo por dia. Os dados coletados na pesquisa apontaram ainda que 52,5% dos resíduos eram provenientes da Região Sudeste.

Leite havia pensado inicialmente em estudar o cenário de cinco regiões administrativas do estado de São Paulo – São Paulo, Campinas, Santos, São José dos Campos e Sorocaba – que representam cerca de 70% dos resíduos gerados no estado, mas decidiu delimitar a área de estudo para a região metropolitana da capital paulista pelo maior número de equipamentos instalados. Existem biodigestores nas cidades vizinhas a São Paulo e projetos de instalação de incineradores em Barueri e em São Bernardo do Campo, por exemplo.

Para a comparação entre as duas tecnologias, o pesquisador considerou um desempenho econômico-financeiro necessário ao atendimento de uma oferta de mil toneladas diárias de resíduos sólidos, para cada uma das alternativas propostas. Foram obtidas preliminarmente informações de duas instalações, o que se pretende aprofundar ainda no estudo com a coleta de mais dados, e os primeiros resultados apontaram a necessidade de um investimento de R$ 160 milhões para a instalação de um incinerador, a um custo operacional de R$ 44,6 milhões/ano, enquanto o biodigestor demandaria tanto menor capital (R$ 140 milhões) quanto desembolso anual para seu funcionamento (R$ 25 milhões).

A análise preliminar de Fluxo de Caixa Descontado da alternativa do biodigestor revelou uma viabilidade econômico-financeira significativa no cenário macroeconômico atual do País, produzindo uma taxa interna de retorno (TIR) de 13,9% – no caso da alternativa da incineração, a mesma análise revelou um prejuízo acumulado de R$ 292 milhões.

A tecnologia de biodigestão está se mostrando até agora mais viável em comparação à incineração, mas o pesquisador alerta que algumas premissas precisam ser respeitadas: a primeira é a coleta diferenciada, que ainda não acontece em todas as cidades brasileiras e demandaria, nas palavras do pesquisador, um choque de gestão, pela necessidade de um controle rígido do material que seria usado no equipamento, a fim de propiciar um composto de melhor qualidade.

O outro princípio é a de reciclagem de todos os resíduos passíveis de reaproveitamento, o que tampouco acontece hoje: “Somente é reciclado o que tem valor econômico, como as garrafas PET e as latinhas de alumínio de alimentos e bebidas. O isopor, por exemplo, pode ser reciclado, mas o material tem baixo valor e acaba sendo destinado aos aterros, assim como o vidro”, afirma ele.

Os gastos para a instalação das plantas e da operação das duas tecnologias não encontram viabilidade, no entanto, quando são comparados aos valores de deposição dos resíduos em aterros que são pagos pelas administrações municipais (de R$ 50 a R$ 60) atualmente aos prestadores de serviços de transporte do lixo.

“Para dar viabilidade à instalação de um biodigestor, o valor por tonelada ficaria em torno de R$ 80, e para a instalação de um incinerador o valor por tonelada chegaria a cerca de R$ 160, ou seja, os custos são mais altos do que a simples disposição em aterros. Isso mostra que será necessária uma nova maneira para tratar os passivos ambientais para que sejam cumpridos os objetivos da Política Nacional de Resíduos Sólidos. Em algum momento, não será mais possível aceitar resíduos sólidos em aterros, mas somente rejeitos”.

Gestão de resíduos sólidos em São Paulo

A Cetesb divulgou os resultados da gestão dos resíduos sólidos dos 645 municípios paulistas, que pode ser acessado no link Inventário Estadual de Resíduos Sólidos Urbanos-2015. Segundo o documento,  no decorrer dos últimos 19 anos, foram alcançadas melhorias substanciais nas condições ambientais dos locais de destinação final de resíduos urbanos em São Paulo.

CLIQUE NAS FIGURAS PARA UMA MELHOR VISUALIZAÇÃO

resíduos

 

resíduos2

Verificou-se, por exemplo, um aumento do número de municípios que contavam com instalações de disposição final enquadradas na condição Adequad, de 492, em 2011, para 600, em 2015, correspondentes a 93,6% das municipalidades, além de uma redução do número de municípios com instalações consideradas Inadequadas, de 153, em 2011, para 41, em 2015, correspondendo a 6,4% dos municípios.

Ressalte-se que 90 prefeituras obtiveram 10,0 pontos, atendendo a todos os quesitos avaliados na pesquisa realizada por técnicos da Cetesb ao longo do ano passado. Além dos aspectos técnicos e operacionais dos aterros, considerados adequados, estes locais para onde os resíduos são destinados corretamente contam com guaritas de vigilância, cercas e outras benfeitorias.

O levantamento estima que em São Paulo são gerados, diariamente, excetuados os quatro municípios que exportam seus resíduos para outros estados, 39.307 toneladas de resíduos, das quais 95,6% são destinadas de forma adequada e 4,4%, inadequada, contra, por exemplo, 84,7% e 15,3%, respectivamente, em 2011.

Entre as condições inadequadas, observam-se presença de vetores de doenças, emanação de odores incômodos e falta de controle operacional. Nipoã é o município que se encontra em pior situação, tendo alcançado 2,0 pontos, numa escala que vai até 7,0 (a partir da qual as condições passam a ser consideradas adequadas). Mirandópolis, que se localiza na mesma região, também obteve baixa pontuação, com 2,6.

Na opinião dos especialistas da Cetesb, os resultados alcançados nos últimos anos são decorrentes das ações de fiscalização e controle, somadas às de apoio e orientação técnica prestadas aos municípios, para o melhor desempenho de suas atribuições legais na gestão dos resíduos sólidos, assim como as ações de implementação das Políticas Nacional e Estadual de Resíduos Sólidos e do Plano de Resíduos Sólidos do Estado de São Paulo.

O apoio financeiro também foi fundamental para a evolução registrada desde a elaboração do primeiro inventário, em 1997. O governo do Estado já destinou R$ 283,22 milhões às prefeituras, por intermédio do Fundo Estadual de Prevenção e Controle da Poluição (Fecop), para aquisição de equipamentos como caminhões, tratores e pás carregadeiras, além de R$ 28,73 milhões pelo Fundo Estadual de Recursos Hídricos (Fehidro), para elaboração de projetos e implantação de aterros sanitários, centros de triagem e ecopontos.

Normas técnicas

Existem algumas normas técnicas para os requisitos dos resíduos sólidos: a NBR 13332 de 11/2010 – Coletor-compactador de resíduos sólidos e seus principais componentes – Terminologia define os termos relativos ao coletor-compactador de resíduos sólidos, acoplado ao chassi de um veículo rodoviário, e seus principais componentes. A NBR 14879 de 01/2011 – Implementos rodoviários — Coletor-compactador de resíduos sólidos — Definição do volume que estabelece os critérios de definição dos volumes geométricos das caixas de carga e dos compartimentos de carga dos coletores-compactadores de resíduos sólidos de carregamento traseiro.

A NBR 12980 de 08/1993 – Coleta, varrição e acondicionamento de resíduos sólidos urbanos define termos utilizados na coleta, varrição e acondicionamento de resíduos sólidos urbanos. A NBR 10005 (MB2616) de 05/2004 – Procedimento para obtenção de extrato lixiviado de resíduos sólidos fixa os requisitos exigíveis para a obtenção de extrato lixiviado de resíduos sólidos, visando diferenciar os resíduos classificados pela ABNT NBR 10004 como classe I – perigosos – e classe II – não perigosos.

A NBR 13463 de 09/1995 – Coleta de resíduos sólidos classifica a coleta de resíduos sólidos urbanos dos equipamentos destinados a esta coleta, dos tipos de sistema de trabalho, do acondicionamento destes resíduos e das estações de transbordo. A NBR 10004 (CB155) de 05/2004 – Resíduos sólidos – Classificação classifica os resíduos sólidos quanto aos seus riscos potenciais ao meio ambiente e à saúde pública, para que possam ser gerenciados adequadamente. A NBR 10007 (NB1068) de 05/2004 – Amostragem de resíduos sólidos fixa os requisitos exigíveis para amostragem de resíduos sólidos.

 

 

As latas de aço para embalagens de produtos

A embalagem de aço é, tecnicamente, uma das melhores formas de se acondicionar produtos. Convenientes, duráveis, livre de conservantes químicos proporcionam uma alimentação saudável e rápida a qualquer hora e em qualquer lugar, evitando o desperdício e protegendo adequadamente a integridade de seu conteúdo no transporte e comercialização.

Completamente recicláveis e contendo uma série de diferentes produtos, incluindo alimentos com baixos teores de sal e açúcar, diet e light, as latas de aço podem conter, desde produtos delicados como balas e biscoitos finos até produtos de uso industrial, como os óleos lubrificantes e tintas navais. Quando se pensa no transporte de longa distância ou em condições críticas, por exemplo, a embalagem de aço é a primeira a ser cogitada por sua resistência mecânica.

Além de serem embalagens ecologicamente corretas, pois são feitas de metal 100% reciclável, a litografia fornece um excelente facing de prateleira possuindo a propriedade de transformar latas de aço em brindes colecionáveis para o consumidor. A história da lata começou em 1795 quando as tropas de Napoleão estavam sendo arrasadas mais pela fome e doenças relacionadas do que pelo combate. As conquistas militares e expansão colonial requeriam a invenção de algum recipiente capaz de transportar comida sem apodrecer, foi quando o governo francês ofereceu um prêmio de 12.000 francos para quem inventasse um método de conservar comida.

Depois de 15 anos de experiências, um parisiense chamado Nicholas Appert obteve sucesso na preservação de comida, vedando as garrafas com rolhas e imergindo as garrafas em água fervente. Appert supôs que como no vinho, exposição ao ar estragava a comida. Assim, a comida colocada num recipiente que vedava a entrada do ar, ficaria fresca e com boa qualidade. E isso funcionou.

Em meados do ano de 1830 as latas de conserva de tomates, sardinhas e ervilhas começaram a aparecer no mercado, tendo se popularizado em quase um século mais tarde com o aperfeiçoamento do enlatamento. Segundo Rogério Parra, chefe do Laboratório de Embalagem e Acondicionamento do IPT (rparra@ipt.br), o aço é uma liga metálica à base de ferro. Várias composições de aço são utilizadas para fabricação de latas. A liga MR, que possui relativamente poucos elementos residuais, é utilizada para vegetais e carnes. A liga L é utilizada para produtos mais corrosivos. A liga N, que possui nitrogênio na composição, torna a chapa com mais resistência mecânica, é utilizada em domos de aerossóis. O liga D é a mais fácil de dobrar, indicada para latas com design mais exigentes.

“A chapa de aço nua escurece facilmente pela oxidação da superfície. Originalmente, esta chapa era revestida com estanho por imersão a quente para que o estanho desse a proteção ao aço. Esta é a chamada folha-de-flandres. Durante a Segunda Guerra, foi desenvolvido um processo eletrolítico de deposição, o que produz uma camada de estanho mais fina e uniforme. Um processo semelhante pode ser utilizado também para depositar cromo”, explica ele.

Parra diz que a camada de cromo ou estanho impede a oxidação da chapa de aço e também impede que, por exemplo, uma bebida enlatada retire ferro do aço e fique com gosto ruim. A espessura da camada de cromo ou estanho pode ser diferente em cada lado da chapa de aço dependendo da agressividade do que será envasado na lata ou do ambiente em que esta lata ficará exposta.

Ele exemplifica: uma lata de pêssegos da Grécia viaja em um contêiner e, sem o revestimento adequado, o calor e a umidade farão com que a lata chegue ao Brasil com pontos de corrosão no lado externo. Para uma lata de molho de tomate, que parte do interior paulista para a capital, deve se ter uma proteção melhor no lado interno porque a acidez do molho é a maior preocupação.

A camada de estanho oferece melhor resistência à corrosão que o cromo. Mas a camada de cromo possui melhor resistência ao calor, permite melhor litografia, adere melhor a outros revestimentos e resiste ao ataque de produtos que contenham enxofre. No entanto, a placa cromada não solda tão facilmente quanto a estanhada, o que é importante para a formação da lata. Ela requer o uso de um elemento intermediário de fusão ou, então, a remoção da camada de cromo na região de solda.

No entanto, a eficiência desta camada protetiva tem um limite. Daí a necessidade de vernizes e revestimentos internos e externos. Estes revestimentos protegem a lata de corrosão, reação com o produto envasado e abrasão. Existe uma grande variedade de revestimentos: oleorresinas, alquídicos, vinílicos, acrílicos, fenólicos, epóxi-amínicos, polibutadienos, organo-vinílicos ou epóxi-fenólicos.

O revestimento a utilizar é definido pelo conteúdo e pelos processos ao qual a lata será submetida. Por exemplo, para uma lata para vegetais é mais adequado um revestimento a base de oleorresinas. Revestimentos vinílicos são mais flexíveis, mas não resistem ao calor. Epóxi-fenólicos possuem boa adesão e alta resistência química. Organo-vinílicos são flexíveis a ponto de resistirem aos dobramentos e estiramentos da folha de aço quando da formação da lata.

Atualmente, há a possibilidade da aplicação de poliéster para substituir a camada de verniz, o que além da proteção, permite um ótimo efeito decorativo. O fundo de uma lata de espuma de barbear sem um revestimento polimérico provavelmente irá manchar a pia do banheiro.

A NM 42 de 04/2001 – Folha-de-flandres e chapa não-revestida em folhas e bobinas de simples e dupla redução estabelece os requisitos mínimos a que devem atender a folha-de-flandres eletrolítica e a chapa não-revestida, em folhas e bobinas de simples e dupla redução empregadas na fabricação de latas, tampas metálicas, filtros de óleo para automóveis e outros usos. O aço usado na produção da chapa não revestida deve ser fabricado por qualquer processo que assegure um material adequado às características do produto final. O aço deve atender aos requisitos de composição química de acordo com seu tipo, descritos na tabela 1.

Clique nas figuras para uma melhor visualização

flandes1

O aço se classifica, de acordo com seu uso, em:

– Aço tipo D – Metal base de aço resistente ao envelhecimento, acalmado com alumínio e tratado para adquirir excelentes características de embutimento. É usado principalmente para partes submetidas a embutimento muito profundo e para aplicações em que seja necessário evitar a formação de estrias e de marcas superficiais devidas ao alongamento do material ao deformar-se, ou onde sejam exigidas propriedades direcionais especiais.

– Aço tipo L – Metal base de aço baixo em metalóides e elementos residuais que são selecionados frequentemente para a folha de flandres destinada a latas de produtos alimentícios fortemente corrosivos. Os elementos residuais como fósforo, silício, cobre, níquel, cromo e molibdênio são restritos aos limites mínimos praticamente possíveis.

– Aço tipo MR – Metal base de aço, similar em teor de metalóides ao tipo L, mas com menos restrições quanto ao teor de elementos residuais como cobre, níquel e cromo, entretanto, o fósforo se mantém em nível baixo. É usado para a maioria das aplicações de folhas de flandres para enlatar alimentos moderadamente corrosivos.

Importante observar que a massa da chapa não revestida e da folha de flandres, determinada com uma precisão de 2 g, deve ser a estabelecida na tabela 2, de acordo com a sua espessura. As espessuras nominais da chapa não revestida e da folha de flandres devem ser as estabelecidas na tabela 2 da presente norma.

A tolerância admissível na espessura da chapa não revestida e da folha de flandres em bobinas é de + 8,5% da espessura nominal em 98% do comprimento da bobina. As tolerâncias superiores admissíveis tanto para a largura como para o comprimento poderão ser reduzidas mediante acordo prévio. As larguras para as folhas e para as bobinas devem ser múltiplas de 2, sendo a largura mínima de 560 mm.

flandes2

A tolerância admissível na largura das folhas e bobinas é de + 3,2 mm para a superior e zero para a inferior. A tolerância admissível no comprimento das folhas é de + 3,0 mm para a superior e zero para a inferior. No caso de folha de flandres com revestimento diferencial, a marcação deve ser realizada de forma individual, tanto em folhas como em bobinas e realizada da seguinte maneira: a menos que exista outro acordo entre fabricante comprador, a marcação da folha de flandres com revestimento diferencial deve ser feita na face de maior revestimento e esta deve ser a face superior no amarrado ou o exterior da bobina.

O sistema de marcação deve ser de aspecto somente visual e não deve afetar a espessura do estanho. Nos rótulos da embalagem devem constar, pelo menos, as seguintes informações: nome do fabricante; identificação do lote; designação da massa de revestimento, no caso da folha de flandres; peso líquido e bruto do amarrado ou bobina; grau de encruamento; aspecto superficial; quantidade de folhas contidas no amarrado e, no caso de bobinas, a quantidade de metros.

A mitificação dos lacres das latas de alumínio por cadeira de rodas

lacresNo Brasil, existe um mito que a gente vê se espalhar pela rua, bares, resturantes, etc. de pessoas retirando o lacre das latas de alumínio a fim de trocar algumas toneladas dele por uma cadeira de rodas. Isso não é verdade.

Segundo a Associação Brasileira do Alumínio (Abal), não se sabe como isso começou, mas o boato de que os lacres das latas de alumínio teriam um alto valor comercial se espalhou pelo Brasil. Em São Paulo, principalmente, pessoas de todas as idades passaram a juntar quilos de lacres com a esperança de engordar o rendimento mensal, uma vez que, conforme o boato, uma garrafa de plástico de dois litros (contendo um quilo aproximadamente de lacres) valeria muitas vezes mais que um quilo da própria lata.

A venda dos lacres das latas de alumínio chegou até a internet com pessoas anunciando promoções, todas em busca de comprador. Mas ninguém sabe para onde ou para quem vender os lacres, e o resultado é um grande número de telefonemas e e-mails dirigidos à associação e às empresas de reciclagem em busca de informações.

A verdade é que as empresas de reciclagem de alumínio reciclam a lata inteira (com ou sem o lacre), mas não compram o lacre separadamente. Isso porque o anel da lata é muito pequeno e pode se perder durante o processo de transporte e peneiragem do material a ser reciclado, ou mesmo durante o processo de fundição. Daí ser importante manter o anel preso à tampa, razão pela qual foi adotado o sistema atual de abertura para as latas de alumínio chamado originalmente de stay-on-tab, conhecido como tampa ecológica.

O lacre, assim como o corpo da lata, é feito de uma liga de alumínio, com alto teor de magnésio. Ao contrário do que sugerem os boatos, não entram em sua composição ouro, prata e nem platina.

O conselho às pessoas: junte a lata e o lacre, amasse-os, e vá juntando uma quantidade suficiente para comprar uma cadeira de rodas. Uma cadeira de rodas simples custa em torno de 350 a 500 reais. O preço de latas soltas ou enfardadas está por volta de 3,59 o quilograma. A lata prensada pode ser vendida a 3,90 por quilograma. Assim, a pessoa precisará juntar mais ou menos 100 kg de latas de alumínio, comprar uma cadeira de rodas e doar para quem quiser. Fim do mito!

Você acredita nos laudos enviados pelos seus fornecedores?

Carlos Roberto Moreschi, coordenador da qualidade da Kap Componentes Elétricos – qualidade@kap.com.br

Um laudo é um relatório contendo os resultados dos ensaios de cada lote. Algumas observações:

– Você está lá no fornecedor para ver os ensaios?

– Observe os valores dos ensaios de cada laudo, na maioria das vezes, são os mesmos valores, ou quando muito, são bem próximos uns dos outros.

– Desde quando um pedaço de papel com alguns valores pode revelar a qualidade de uma peça/produto?

– Se tiver laudo tem qualidade, se não tem laudo, então não tem qualidade?

– Normalmente são enviados, pelos fornecedores, laudos em papel para cada lote. Estes são arquivados para nunca serem vistos (olha a ecologia).

Trata-se, em minha opinião, de uma hipocrisia, do tipo, me engana que eu gosto. Os laudos só devem ser aceitos, quando de uma matéria prima muito importante cujo ensaio no cliente for oneroso. Porém, este fornecedor deve ser auditado frequentemente.

No lugar dos laudos, devemos sempre ter a nossa inspeção de recebimento, sem usar do perigosíssimo skip-lote. Lembrete: nunca confie no seu fornecedor, um dia ele falhará e você vai pagar caro por isso.

Vamos melhorar a qualidade dos produtos brasileiros, temos que criar um “corrente” entre nós para que a imagem do nosso país cresça e com isto cada empresa se beneficiará com esta imagem. Vamos imitar os nossos amigos japoneses. Hoje, quando falamos de uma empresa japonesa, já imaginamos que o produto tem qualidade, porque é japonês.