Os riscos de segurança em software para a saúde

No passado, os softwares relacionados à saúde eram aplicados principalmente em funções administrativas relativamente não críticas, nas quais o potencial de causar danos ao paciente era baixo em contraste com o risco de interrupção da organização.

No passado, os softwares relacionados à saúde eram aplicados principalmente em funções administrativas relativamente não críticas, nas quais o potencial de causar danos ao paciente era baixo em contraste com o risco de interrupção da organização. Geralmente, os sistemas clínicos não eram sofisticados e frequentemente apresentavam um grande conteúdo administrativo (e não clínico) e pouco apoio à decisão. Mesmo os sistemas de apoio à decisão clínica tendiam a ser leves, relativamente simples e compreensíveis em sua lógica, e usados como um complemento básico para as decisões, em vez de constituir-se em uma grande influência na qual se confia rotineiramente.

Isso mudou e continuará a mudar substancialmente. A natureza destas mudanças aumentará o potencial de riscos para os pacientes. Têm ocorrido alguns incidentes negativos de grande destaque relacionados com software clínico, por exemplo, na área de triagem e recepção de pacientes e/ou recall, nos quais os problemas de funcionamento do software resultaram em falha ao chamar pacientes em risco. Tais incidentes não só causaram angústia para muitos pacientes envolvidos, mas também podem ter levado a mortes prematuras.

A confiança do público foi gravemente prejudicada. O escopo de triagem de doenças está aumentando significativamente, e é nesses aplicativos, que envolvem um grande número de indivíduos, que haverá grande dependência, tanto administrativa como clínica, de softwares para detectar elementos normais e anormais e para chamar ou processar aqueles considerados como estando em risco. Tal software precisa ser seguro para o propósito a que se destina.

Existe uma preocupação crescente em todo o mundo com o número substancial de incidentes clínicos evitáveis que causam um efeito adverso nos pacientes e dos quais uma proporção significativa resulta em morte evitável ou incapacidade grave. Vários destes incidentes evitáveis envolvem diagnósticos ou outras decisões inconsistentes ou erradas. Muitas vezes um fator contribuinte é a informação em falta ou incompleta, ou simplesmente ignorância, por exemplo, a respeito de opções clínicas em circunstâncias difíceis ou reações cruzadas de tratamentos.

Cada dia está mais confirmado que os sistemas de informação, como apoio à decisão, protocolos, diretrizes e linhas de cuidado, poderiam reduzir acentuadamente estes efeitos adversos. Somente este motivo (independentemente de outros que existem) está conduzindo ao aumento na utilização de sistemas de apoio à decisão e de gerenciamento de doenças, que, inevitavelmente, se tornarão mais sofisticados e complexos.

Também se pode prever que, devido às pressões de tempo e dos aspectos médico-legais, os clínicos dependerão cada vez mais destes sistemas com menos questionamentos sobre seu resultado. De fato, à medida que estes sistemas se tornam integrados aos cuidados médicos, qualquer falha em usar instalações, padrão de apoio pode ser criticada por motivos legais. Pode-se prever um aumento no suporte à decisão não somente no tratamento clínico, mas também em outras áreas importantes para a segurança do paciente, como a tomada de decisão de encaminhamento, em que a falha em realizar um encaminhamento correto ou realizar um encaminhamento a tempo pode causar graves consequências.

Pressões econômicas também estão levando a mais sistemas de suporte à decisão. A área de prescrição genérica e/ou econômica é a mais óbvia, sendo outra a economia no número e custo de ensaios de investigação clínica. Sistemas como os de suporte à decisão têm um considerável potencial para reduzir erros clínicos e melhorar a prática clínica. Por exemplo, um grande corpo de evidências publicadas oferece testemunho da redução de erros e incidentes adversos, resultantes da implantação da prescrição eletrônica.

No entanto, todos estes sistemas também carregam o potencial de causar dano. Os danos podem, obviamente, resultar do uso sem questionamentos e/ou não profissional, embora os fabricantes possam mitigar estas circunstâncias por meio de, por exemplo, instruções de uso, treinamento e técnicas de apresentação na tela, orientação ou instrução. O potencial de dano pode estar igualmente no projeto de sistema, em áreas como: fraca base de evidências para o projeto; falha na lógica do projeto em representar adequadamente as intenções de projeto; falha na lógica para representar boa prática ou evidências na fase de projeto; apresentação insatisfatória ou confusa da informação ou funcionalidades de busca precárias; falha em atualizar em sincronia com o conhecimento mais atual.

Algumas destas deficiências de sistemas são insidiosas e podem ser invisíveis ao usuário. Em muitos sistemas nacionais de saúde, é evidente um aumento substancial nos gastos com gestão da informação e tecnologia. Os cronogramas associados são apertados e as metas são ambiciosas. Pode-se esperar que este aumento no gasto atraia novos fabricantes e alguns destes podem ser inexperientes nos processos de assistência à saúde.

Esta circunstância pode levar a um ambiente de aumento nos riscos ao bem-estar do paciente. Parte da explosão na tecnologia de informação e comunicação previsível ocorrerá na telemedicina. Muitos dos produtos de software para saúde que suportam estes aplicativos serão inovadores e não experimentados, e a distância entre clínicos e pacientes aumentará a possibilidade de erros assim como os tornará menos evidentes.

Da mesma forma, o aumento no uso de dispositivos móveis inovadores e o seu uso em novos campos provavelmente estão associados a riscos. Considerando que se está a muitos anos de distância de hospitais sem papel e sem filme, as práticas de clínica geral estão indo nesta direção. A incapacidade de recorrer ao papel e filmes traz maior dependência de computadores e bancos de dados. Corrupção e perda de dados podem não apenas trazer caos administrativo, mas também podem afetar o atendimento ao paciente de forma significativa.

Em suma, o potencial de causar danos aos pacientes decorrentes do uso de tecnologias de informação e comunicação (TIC) em aplicações para a saúde aumentará, à medida que o uso de TIC em aplicações de saúde cresça, a sofisticação dos aplicativos aumente e a confiança nas TIC cresça. Há evidência de crescente preocupação entre os profissionais e o público com incidentes de mau funcionamento de software que levam a consequências adversas à saúde, aumentando a conscientização do público.

Consequentemente, várias organizações de saúde estão cada vez mais concentradas nos padrões de garantia de controles, incluindo aqueles sobre governança e gerenciamento de risco. Uma característica importante destes controles consiste no gerenciamento de risco no contexto de danos aos pacientes e deficiências na qualidade assistencial. Estes controles geralmente envolvem a compra e a aplicação de produtos de software para a saúde.

Falhas e deficiências em produtos de software para a saúde podem, é claro, apresentar impactos adversos, além de causar danos aos pacientes. Elas podem, por exemplo, criar inconveniências administrativas ou mesmo gerar caos administrativo, com uma variedade de possíveis impactos na organização, incluindo perdas financeiras. O dano causado a um paciente também pode resultar em impacto na organização, como perdas financeiras resultantes de litígios.

Considerando que estes impactos organizacionais adversos serão significativos para uma organização, eles não são objeto desta especificação técnica, a menos que resultem em danos a um paciente. Por exemplo, a falha do sistema central de administração de pacientes de um hospital certamente causará transtornos administrativos substanciais, mas este impacto adverso não está, por si mesmo, no escopo desta especificação técnica, a menos que tenha o potencial de causar danos a um paciente (o que é possível).

O tema desta especificação técnica é o dano potencial ao paciente. Em muitos países assegura-se a segurança de medicamentos e de dispositivos médicos por meio de uma diversidade de medidas legais e administrativas; por exemplo, na União Europeia se está sujeito a várias diretivas da UE. Estas medidas são, muitas vezes, apoiadas por uma série de normas relacionadas com a segurança, provenientes de várias fontes, nacionais e internacionais, incluindo a International Organization for Standardization (ISO), o European Committee for Standardization (CEN) e a International Electrotechnical Commission (IEC).

Estes controles legislativos frequentemente abrangem o software necessário para a aplicação ou funcionamento correto de um dispositivo médico. No entanto, outros softwares aplicados à saúde geralmente não estão cobertos desta maneira. Esta especificação técnica se refere ao software aplicado à saúde, excluindo o que é necessário para a aplicação ou funcionamento corretos de um dispositivo médico. Um precursor necessário para estabelecer e implementar controles apropriados de projeto e produção, para minimizar os riscos aos pacientes decorrentes do mau funcionamento do produto ou do seu desempenho inadequado, é um entendimento claro dos riscos que um produto pode apresentar aos pacientes se puder ocorrer mau funcionamento ou um evento não intencional, e a possibilidade deste mau funcionamento ou evento causar danos ao paciente.

Além disso, se os fabricantes de produtos de software para a saúde forem orientados no projeto e controle de produção (e os correspondentes padrões produzidos), então será preciso reconhecer que os controles necessários para produtos com baixo risco não serão os mesmos que para aqueles apresentando riscos elevados. Os controles precisam corresponder ao nível de risco que um produto pode representar para um paciente.

Com este fim, muitos padrões, legislações e especificações que lidam com o controle de riscos, tanto em projeto como em produção, agrupam produtos em um número limitado de classes ou tipos, de acordo com o risco que podem representar. Esta especificação técnica apresenta um processo para este tipo de agrupamento de produtos de software para a saúde. Ela propõe cinco classes de risco e facilitará uma ampla triagem de tipos genéricos de produtos e de produtos individuais, de forma a permitir diferentes níveis, ou rigor, na aplicação de controles de projeto e produção compatíveis com o risco.

Assim, a classificação proposta pode ser a precursora para padrões de projeto e de controles de produção, em que os últimos podem requerer uma análise de risco muito mais detalhada, aprofundada e rigorosa para um produto específico daquele requerido para o processo de classificação mais amplo descrito nesta especificação técnica. São oferecidos exemplos da aplicação do processo de atribuição de uma classe de risco para vários tipos diferentes de produtos de software de saúde.

O termo produtos de software para a saúde refere-se a qualquer produto de software para a saúde, esteja ou não colocado no mercado, e esteja à venda ou seja distribuído gratuitamente. Esta especificação técnica, portanto, abrange produtos comerciais, bem como, por exemplo, software de código aberto e softwares criados para, e usados em, uma única organização de saúde, como um hospital. Existe uma ampla gama de produtos de software para a saúde, que vão desde simples bancos de dados de pesquisa até sistemas de chamadas e rechamadas, suporte a decisões clínicas, sistemas de registros eletrônicos de saúde, sistemas de despacho de ambulância, sistemas de laboratório clínico hospitalar e sistemas de clínica geral. O Anexo B fornece quatro exemplos da aplicação desta especificação técnica a diferentes produtos de software para a saúde. Entretanto, qualquer software que seja necessário para o uso adequado ou para o funcionamento de um dispositivo médico está fora do escopo desta especificação técnica.

A ABNT ISO/TS25238 de 09/2019 – Informática em saúde – Classificação dos riscos de segurança em software para a saúde preocupa-se com a segurança dos pacientes e fornece orientação sobre a análise e a categorização dos perigos e riscos que os produtos de software para a saúde apresentam para os pacientes, a fim de permitir a classificação de qualquer produto em uma das cinco classes de risco. É aplicável aos perigos e riscos que podem causar danos a um paciente. Outros riscos, como riscos financeiros ou organizacionais, estão fora do escopo desta especificação técnica, a menos que tenham potencial de prejudicar um paciente.

É aplicável a qualquer produto de software para a saúde, quer seja ou não colocado no mercado, e esteja à venda ou seja gratuito. São oferecidos exemplos da aplicação do esquema de classificação. Não se aplica a qualquer software que seja necessário para a correta aplicação ou para o funcionamento de um dispositivo médico. Destina-se a classificar o software para a saúde em classes de risco amplas, para auxiliar em decisões como, por exemplo, quais controles convém que sejam aplicados para garantir a segurança. Não se destina à aplicação da análise de risco e gerenciamento de risco ao projeto de produtos de software para a saúde e à mitigação de quaisquer riscos identificados a níveis aceitáveis (ver Anexo A).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os perigos de uma atribuição de categorias de consequência?

Qual é a atribuição de possibilidade a consequências?

Qual é o conceito das classes de risco?

Como executar a análise de consequências?

Qual é o relacionamento de classes de risco ao projeto e controle de produção de produtos?

Convém que os fabricantes de produtos de software para a saúde possuam um claro entendimento dos perigos que o seu produto pode representar para um paciente, se ele funcionar de maneira errada ou causar um evento inesperado, e do grau de possibilidade de que o perigo se concretize se ele ocorrer em circunstâncias razoáveis de uso. Este conhecimento é necessário para a extensão e natureza das medidas de controle necessárias e o rigor com que elas precisam ser aplicadas, assim como para reduzir os riscos aos pacientes a níveis aceitáveis, por exemplo, por meio de medidas como características inerentes de projeto, instruções de uso e treinamento de indução.

O que é tolerável dependerá das circunstâncias e das atuais visões da sociedade e reguladores. O precursor essencial para este processo é realizar uma análise de perigos e riscos. Existem diversas abordagens para realizar as análises de perigos e riscos, sendo que todas compartilham um conjunto de conceitos básicos. Os padrões, diretrizes e publicações existentes tendem a focar em setores específicos de atividade (por exemplo, sistemas de segurança eletrônica, aeronáutica) ou áreas de conhecimento (por exemplo, riscos financeiros, riscos à propriedade, riscos à segurança de dados pessoais).

Desta forma, necessitam de interpretações no contexto de produtos de software para saúde. Esta especificação técnica se inspira em uma diversidade de fontes para se manter alinhada com princípios geralmente aceitos. A Bibliografia fornece uma lista de fontes de informação úteis no contexto. Ao considerar a abordagem a ser adotada para produtos de software para a saúde, tem-se que atentar para como os dispositivos médicos são classificados e controlados em termos de segurança. O Anexo A trata desta matéria.

A seguir são apresentados alguns dos conceitos básicos, na forma como são utilizados nesta especificação técnica. Esta seção não pretende abranger todos os aspectos da análise de perigo/risco. O risco para a segurança de um paciente ou pacientes a partir de um produto de software para a saúde dependerá das possíveis consequências que podem resultar, se o produto funcionar de forma errada ou resultar em um evento ou eventos adversos, e da possibilidade de que estas consequências possam acontecer de fato.

Desta forma, o risco possui dois aspectos: consequência e probabilidade. O ISO Guide 51 define risco como a combinação da probabilidade de um evento e sua consequência, enquanto esta especificação técnica define risco como a combinação da possibilidade de ocorrência de dano e a gravidade deste dano (2.7). A probabilidade que um perigo se concretize pode, em alguns domínios, ser quantitativamente representada como uma probabilidade que pode estar baseada em análises de falhas históricas ou experimentais e estatísticas de incidentes.

É muito improvável que esta situação ocorra com a segurança de produtos de informática em saúde, uma vez que estas estatísticas e evidências não estão disponíveis e, desta forma, são necessários julgamentos qualitativos. Ainda que a probabilidade possa ser representada qualitativamente, o termo possibilidade representa melhor este significado e é usado nesta especificação técnica.

O ISO Guide 73:2002 define risco como a combinação da probabilidade de um evento e sua consequência”. Esta definição possui os mesmos problemas que o uso do termo probabilidade ao invés de possibilidade. Entretanto, esta especificação técnica está focada somente em eventos que são propensos a causar dano a pacientes e a gravidade deste dano, mais do que outros eventos.

Desta forma, não é usado o termo evento. A consequência, ou seja, o dano ao paciente, pode ocorrer de diferentes formas, variando da morte a inconvenientes menores, por exemplo. Consequências podem ser categorizadas. Estas categorias precisam ser interpretadas de acordo com a sua esfera de aplicação, neste caso a aplicação de TIC à saúde.

Esta Especificação Técnica propõe cinco categorias de consequências, cada uma com uma descrição de seu escopo (ver 5.2). A possibilidade de um perigo se concretizar em circunstâncias razoavelmente previsíveis pode, em alguns domínios, ser quantitativamente representada como uma probabilidade que pode estar baseada em análises históricas ou experimentais de falhas e na análise de incidentes.

É muito improvável que este seja o caso para a segurança de produtos de software para a saúde para os quais não estão disponíveis estatísticas e evidências e, deste modo, são necessários julgamentos qualitativos. Esta especificação técnica propõe cinco categorias de possibilidade, cada uma com uma descrição de seu escopo (ver 5.3). Como notado anteriormente, o risco para a segurança de um paciente ou pacientes de um produto de software para a saúde depende das possíveis consequências que podem ocorrer se o produto tiver mau funcionamento ou resultar em um ou mais eventos adversos, e da possibilidade de que estas consequências possam ocorrer de fato. O nível de riscos pode ser representado em uma matriz de riscos na qual a possibilidade e a consequência são suas duas dimensões (ver tabela abaixo).

Cada célula da matriz representa um nível de risco. Desta forma, na matriz de risco da tabela, as 25 células representam 25 resultantes de risco, que diminuem de gravidade ao mover-se diagonalmente do quadrante superior esquerdo para o inferior direito. Estas resultantes de risco podem ser agrupadas em classes como as seguintes: a classe de risco mais alta pode ser um grupo de células na parte superior esquerda, como 1, 2 e 3; a classe de risco mais baixa pode ser um grupo de células na parte inferior direita, como 4, 5 e 6.

As células na matriz de riscos podem, desta forma, ser preenchidas com classes de risco. Ao agrupar conjuntos de células em uma classe, considerações precisam ser tomadas sobre as circunstâncias no setor de aplicação e os significados atribuídos a cada categoria de consequência e possibilidade. O objetivo é reduzir a complexidade por meio da identificação de células que representem de forma ampla um grau similar de risco ao paciente e agrupá-las em uma classe com este perfil. Assim, uma consequência menor, com uma alta possibilidade, geralmente pode se equiparar a uma consequência pior, mas com menor possibilidade. Esta especificação técnica propõe cinco classes de risco.

Anúncios

NFPA 654: a prevenção de incêndios e explosões em poeiras combustíveis

Essa norma internacional, publicada pela National Fire Protection Association (NFPA) em 2020, apresenta as medidas de segurança para prevenir e mitigar os incêndios e as explosões de poeira em instalações que lidam com sólidos particulados combustíveis, que incluem pós combustíveis, fibras, bandos, flocos, flocos, lascas e pedaços.

A NFPA 654:2020 – Standard for the Prevention of Fire and Dust Explosions from the Manufacturing, Processing, and Handling of Combustible Particulate Solids apresenta as medidas de segurança para prevenir e mitigar os incêndios e as explosões de poeira em instalações que lidam com sólidos particulados combustíveis, que incluem pós combustíveis, fibras, bandos, flocos, flocos, lascas e pedaços. Exemplos de indústrias que lidam com sólidos particulados combustíveis, como material de processo ou como pó fugitivo ou incômodo, incluem, entre outras as de produtos agrícolas, químicos e alimentares, fibras e materiais têxteis; indústrias de produtos florestais e de móveis; processamento de metais; produtos de papel; produtos farmacêuticos; operações de recuperação de recursos (pneus, resíduos sólidos urbanos, operações de reciclagem de metal, papel ou plástico); madeira metálica ou fabricantes de plásticos.

Esta norma fornece requisitos para todas as fases da fabricação, processamento, mistura, transporte, reembalagem e manuseio de sólidos particulados combustíveis ou misturas híbridas, independentemente da concentração ou tamanho das partículas, onde os materiais apresentam um incêndio, um incêndio instantâneo, ou um risco de explosão. O proprietário/operador será responsável por implementar os requisitos desta norma.

Conteúdo da norma

Capítulo 1 Administração

1.1 Escopo

1.2 Objetivo

1.3 Objetivo

1.4 Aplicação

1.5 Conflitos

1.6 Retroatividade

1.7 Equivalência

1.8 Unidades e fórmulas

Capítulo 2 Publicações referenciadas

2.1 Geral

2.2 Publicações da NFPA

2.3 Outras publicações

2.4 Referências para extratos em seções obrigatórias

Capítulo 3 Definições

3.1 Geral

3.2 Definições oficiais da NFPA

3.3 Definições gerais

Capítulo 4 Requisitos gerais

4.1 Obrigação do proprietário

4.2 Objetivo

4.3 Opções de conformidade

Capítulo 5 Identificação de perigos

5.1 Identificação de perigos

Capítulo 6 Opção de projeto baseado em desempenho

6.1 Requisitos gerais

6.2 Critérios de desempenho

6.3 Cenários de projeto

6.4 Avaliação do projeto proposto

Capítulo 7 Análise de riscos de poeira (Dust Hazards Analysis – DHA)

7.1 Requisitos gerais

7.2 Avaliação de perigos

Capítulo 8 Sistemas de gestão

8.1 Retroatividade

8.2 Geral (Reservado)

8.3 Procedimentos operacionais

8.4 Procedimentos de limpeza e aspiradores portáteis

8.5 Chamas e faíscas abertas (trabalho a quente)

8.6 Equipamentos de proteção individual (EPI)

8.7 Inspeção e manutenção

8.8 Procedimentos e treinamento de funcionários

8.9 Empreiteiros e subcontratados

8.10 Planejamento e resposta a emergências

8.11 Investigação de incidentes

8.12 Gerenciamento de mudanças

8.13 Retenção de documentos (Reservado)

8.14 Revisão dos sistemas de gerenciamento (Reservado)

8.15 Participação dos funcionários (Reservado)

Capítulo 9 Gestão de riscos: mitigação e prevenção

9.1 Projeto de processo e instalação

9.2 Projeto de construção

9.3 Projeto do equipamento

9.4 Controle da fonte de ignição

9.5 Poeiras pirofóricas Reservado)

9.6 Controle de poeira

9.7 Prevenção e proteção contra explosões

9.8 Proteção contra incêndio

Anexo A Material explicativo

Anexo B Proteção contra explosão

Anexo C Cartilha informativa sobre sistemas de detecção e extinção de faíscas

Anexo D Caracterização e precauções da camada de poeira

Anexo E Métodos de isolamento da propagação por deflagração

Anexo F Uso da água como agente extintor de sólidos particulados combustíveis

Anexo G Referências informativas

Em sua nova edição, a NFPA 654 foi completamente reorganizada, apresentando muitos requisitos existentes movidos para se alinhar com a NFPA 652 – Standard on the Fundamentals of Combustible Dust, com as alterações indicadas para o usuário. Pode-se obter orientação abrangente sobre a gestão de riscos de incêndio e explosão envolvendo sólidos particulados combustíveis e misturas híbridas, principalmente com os novos requisitos para lidar com riscos exclusivos e desenvolver tecnologias.

Os requisitos para equipamento de vias aéreas

Conheça os os requisitos que geralmente são aplicáveis aos riscos associados ao EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS. Um processo estabelecido de GERENCIAMENTO DE RISCO deve ser aplicado ao projeto do EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS.

A NBR ISO 18190 de 08/2019 – Equipamento anestésico e respiratório — Requisitos gerais para equipamento de vias aéreas e relacionados especifica os requisitos gerais em comum para equipamento de vias aéreas e relacionados e são aplicáveis às normas específicas dos dispositivos que as referenciam. Os requisitos da norma específica do dispositivo têm prioridade em relação a esta Norma. Os requisitos gerais contidos nesta norma têm historicamente sido referenciados em mais de duas outras normas de EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS.

Acesse alguns questionamentos relacionados a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Por que o equipamento deve ter resistência à deterioração?

Quais os meios de proteção contra ajustes inadvertidos?

Quais devem ser as marcações em controles e instrumentos?

Quais são as informações de limpeza, desinfecção e esterilização?

Esta norma especifica os requisitos que geralmente são aplicáveis aos riscos associados ao EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS. Um processo estabelecido de GERENCIAMENTO DE RISCO deve ser aplicado ao projeto do EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS. O processo de GERENCIAMENTO DE RISCO deve incluir os seguintes elementos: ANÁLISE DE RISCO; AVALIAÇÃO DE RISCO; controle de RISCO – informações de produção e de pós-produção.

O fabricante deve aplicar um processo de engenharia de usabilidade de modo a avaliar e atenuar quaisquer RISCOS causados por problemas de usabilidade associados à utilização correta (ou seja, utilização normal) e erros de utilização (ver NBR IEC 60601-1-6 IEC 62366-1). Verificar a conformidade por meio de inspeção do arquivo de engenharia de usabilidade. Quando apropriado, investigações clínicas devem ser realizadas sob as condições para as quais o desempenho é alegado e documentado no ARQUIVO DE GERENCIAMENTO DE RISCO.

As investigações clínicas devem estar em conformidade com os requisitos da ISO 14155. Os dados clínicos podem ser provenientes de investigação (ões) clínica (s) do dispositivo em questão, investigação (ões) clínica (s) ou outros estudos relatados na literatura científica, de um dispositivo equivalente, de modo que cada equivalência ao dispositivo em questão possa ser demonstrada, ou relatos publicados e/ou não publicados sobre outras experiências clínicas com o dispositivo em questão ou um dispositivo equivalente, de modo que cada equivalência ao dispositivo em questão possa ser demonstrada. Verificar a conformidade por meio de inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO.

Quando apropriado, uma pesquisa de modelagem ou validação biofísica deve ser realizada sob as condições em que cada desempenho é declarado, e documentado no ARQUIVO DE GERENCIAMENTO DE RISCO. A pesquisa de modelagem ou biofísica é a aplicação de métodos físicos validados e teorias aos problemas biológicos. Exemplos incluem a utilização de combinação de modelos (ou seja, matemático, computacional, físico, celular e de cultura de tecido, e animal) de maneira interativa e complementar de modo a simular o desempenho de produtos para saúde. Verificar a conformidade por meio de inspeção do arquivo técnico.

O EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS, em seu estado pronto para uso após qualquer preparação para utilização recomendada pelo fabricante, deve satisfazer ao ensaio de segurança biológica apropriado (por exemplo: NBR ISO 10993-1). Verificar a conformidade por meio de inspeção do arquivo técnico. O EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS devem ser fabricados com materiais adequados à sua utilização destinada e às condições ambientais às quais podem ficar sujeitos durante transporte, armazenamento ou quando em utilização. Verificar a conformidade por meio de inspeção do arquivo técnico.

O EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS deve ser fabricado de modo a reduzir ao mínimo os RISCOS representados pelas substâncias geradas por percolação de outros materiais. Atentar para as substâncias que são carcinogênicas, mutagênicas ou tóxicas à reprodução. Verificar a conformidade por meio de inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO.

Os agentes de esterilização, desinfecção e limpeza recomendados não podem alterar o desempenho especificado do dispositivo durante sua vida útil declarada. Verificar a conformidade por meio de inspeção do arquivo técnico. Os fabricantes de EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS de utilização destinada para o tratamento de crianças ou gestantes ou mulheres amamentando, e fabricados com materiais que incorporam ftalatos, que são classificados como carcinogênicos, mutagênicos ou tóxicos à reprodução, devem fornecer justificativa específica em seus arquivos técnicos para a utilização dessas substâncias. Ver também 9.1.1.4-m) e 9.2.3-c) para marcação adicional e instruções para requisitos de utilização. Verificar a conformidade por meio de inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO do fabricante.

Os fabricantes de EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS que são fabricados com materiais que incorporam látex natural devem fornecer justificativa específica em seus arquivos técnicos para a utilização dessas substâncias. Ver também 9.1.1.4-n) para requisitos de marcação adicional. Verificar a conformidade por meio de inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO do fabricante.

O EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS deve ser compatível com os vapores e gases médicos especificados pelo fabricante. Verificar a conformidade por meio de inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO do fabricante. Os dispositivos que são EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS em contato com oxigênio durante utilização normal devem cumprir os requisitos de limpeza da ISO 15001. Este requisito é necessário para reduzir o RISCO de contaminação por ignição e incêndio em atmosferas ricas em oxigênio. Verificar a conformidade por meio de ensaios e requisitos da ISO 15001 e por meio de inspeção dos controles de RISCO descritos na DETERMINAÇÃO DE RISCO e verificação associada e estudos de VALIDAÇÃO.

Os componentes de EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS em contato com gases médicos durante utilização normal devem cumprir os requisitos de limpeza da ISO 15001. Este requisito é necessário para reduzir o RISCO de contaminação por ignição e incêndio em atmosferas ricas em oxigênio. Verificar a conformidade por meio de ensaio e requisito da ISO 15001:2010, Seção 4.

Os RISCOS associados à ignição por uma chama, eletrocauterização, descarga eletrostática ou feixe de laser em uma atmosfera rica em oxigênio em EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS devem ser identificados. Chama-se a atenção para o seguinte: manutenção de combustão em atmosferas ricas em oxigênio; refletância especular de modo a evitar lesão por laser em tecido não alvo; transferência de calor que pode danificar o tecido adjacente; produtos de pirólise e combustão que satisfazem ao ensaio de segurança biológica apropriado, como indicado na NBR ISO 10993-1; RISCOS associados à eletrocauterização e lasers em ambientes de sala de cirurgia; RISCOS associados à utilização em ambientes domésticos (ou seja, cozinhar, fumar cigarros, etc.). Verificar a conformidade por meio de inspeção do ARQUIVO DE GERENCIAMENTO DE RISCO.

A marcação em EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS deve ser durável. Verificar a conformidade por meio dos requisitos e ensaios descritos na NBR IEC 60601-1:2010, 7.1.3. Quanto às informações sobre desmontagem e montagem, as instruções de utilização devem incluir o seguinte: se aplicável, os procedimentos para desconectar o EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS da fonte de energia (elétrica ou pneumática) e para desmontagem e montagem; o (s) ensaio (s) recomendado (s) a ser (em) realizado(s) após montagem e antes da reutilização; se aplicável, um aviso afirmando que “o EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS deve ser desconectado da fonte de energia (elétrica ou pneumática), antes da desmontagem e montagem”.

Para as informações de descarte de dispositivo, as instruções de utilização devem incluir informações sobre quaisquer precauções a serem tomadas se houver qualquer RISCO residual associado ao descarte de EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS. A lista das partes que não são partes integrais do EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS, mas que são necessárias para a utilização correta, deve ser incluída nas instruções para utilização. Verificar a conformidade de 9.2.3 a 9.2.9 por meio de inspeção de rotulagem.

A necessidade de um ARQUIVO DE GERENCIAMENTO DE RISCO é um processo bem reconhecido por meio do qual o fabricante de um produto para a saúde pode identificar perigos associados a um produto para a saúde, estimar e avaliar os RISCOS associados a estes perigos, controlar estes RISCOS e monitorar a eficiência desse controle. A avalição clínica pode também ser necessária para confirmar a adequação dos controles (ver NBR ISO 14971 para informações adicionais).

A marcação no EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS, sua embalagem unitária, prateleira ou embalagem multiunitária ou folheto deve estar em conformidade com EN 1041 e deve incluir o seguinte, se apropriado: o nome ou nome comercial e endereço do fabricante ou fornecedor. Além disso, onde requerido, o nome e endereço de seus representantes autorizados; o código do lote precedido pela palavra “LOTE”, onde aplicável, ou número de série; uma indicação da data em que o EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS, ou partes deste pode ser utilizado, expressa em mês e ano; se apropriado, os detalhes necessários para o usuário identificar o EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS e os conteúdos da embalagem; se apropriado, instruções sobre a preparação para utilização; se apropriado, a palavra “ESTÉRIL”; se apropriado, uma indicação de que o dispositivo ou partes deste são para uma única utilização –convém que a indicação pelo fabricante de uso único seja consistente; se apropriado, a palavra ANTIESTÁTICO.

O EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS também pode apresentar uma marcação amarela indelével e contínua por todo o seu comprimento. Se apropriado, com indicação de que o EQUIPAMENTO DE VIAS AÉREA E RELACIONADOS é adequado para utilização com agentes/gases anestésicos inflamáveis (por exemplo: símbolo “AP” ou “APG” apresentados na IEC 60417-5331 ou IEC 60417-5332). Onde requerido, uma declaração de que a venda, distribuição e utilização deste dispositivo se restringe à utilização por prescrição.

Isto serve para cumprir os requisitos de US 21 CFR 801.109. Se apropriado, instruções para limpeza e desinfecção ou esterilização e o número máximo ou período de reutilizações e, se apropriado, os RISCOS associados à reutilização do EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS. Se apropriado, uma indicação de que os ftalatos estão presentes no dispositivo. Exemplo: utilizar símbolo apresentado na ISO 15986.

Se apropriado, uma indicação de que borracha natural (látex) está presente no dispositivo. Exemplo, utilizar a NBR ISO 15223-1:2015, símbolo 5.4.5. A categoria de paciente como indicado na tabela abaixo para o volume de liberação destinado; quaisquer condições especiais de manuseio ou armazenamento.

Quaisquer avisos ou precauções a serem tomados e como exemplo a compatibilidade com a utilização de misturas de gases ou compatibilidade com drogas administradas, a utilização que pode desviar da prática médica aceita atualmente e o RISCO de incêndio associado ao equipamento de oxigênio e terapia.

Se apropriado, a máxima pressão que a tubulação e os conectores podem suportar nas condições ambientais expressas em Pascals. Convém que a compatibilidade de IRM do EQUIPAMENTO DE VIAS AÉREAS E RELACIONADOS esteja disposta nas informações a serem apresentadas pelo fabricante. Verificar a conformidade por meio de inspeção do arquivo de gerenciamento de risco do fabricante. A rotulagem do dispositivo deve estar em acordo com ASTM F2503. Verificar a conformidade por meio de inspeção.

Quanto à durabilidade das marcações, embora a biocompatibilidade de materiais seja importante para todos os EQUIPAMENTOS DE VIAS AÉREAS E RELACIONADOS, essa foi considerada de importância especial para vias aéreas que podem permanecer in situ durante semanas. Agentes anestésicos não estariam em contato com os materiais de marcação de tubulação por longos períodos de tempo, mas esses agentes podem ser prejudiciais aos materiais de marcação.

Os riscos de cargas fora das tolerâncias em movimentação de carga

A NBR 8400-5 de 06/2019 – Equipamentos de elevação e movimentação de carga – Regras para projeto – Parte 5: Cargas para ensaio e tolerâncias de fabricação estabelece as cargas de ensaio e as tolerâncias de fabricação para equipamentos de elevação de carga. As tolerâncias especificadas são válidas para equipamentos, como pontes rolantes, pórticos rolantes e guindastes. A NBR 8400, sob o título geral Equipamentos de elevação e movimentação de carga – Regras para projeto, tem previsão de conter as seguintes partes: Parte 1: Classificação e cargas sobre estruturas e mecanismos; Parte 2: Verificação das estruturas ao escoamento, fadiga e estabilidade; Parte 3: Verificação à fadiga e seleção de componentes dos mecanismos; Parte 4: Equipamento elétrico; Parte 5: Cargas para ensaio e tolerâncias de fabricação. Esta parte não é aplicável aos seguintes equipamentos: guindastes móveis com lança sobre pneus de borracha sólida ou pneumáticos, esteiras de lagartas, caminhões e reboques; equipamentos de elevação produzidos em série; talhas elétricas; talhas pneumáticas; acessórios para içamento; talhas manuais; plataformas de elevação, plataformas de trabalho; guinchos; macacos, tripés, aparelhos combinados para tração e içamento; empilhadeiras; equipamentos de manuseio de materiais a granel.

Antes de estarem em serviço, os equipamentos devem ser ensaiados dinamicamente sob condições de sobrecarga, utilizando a velocidade nominal máxima para cada movimento de acionamento e com sobrecarga que não seja menor do que a obtida pela multiplicação da carga de trabalho SL pelo coeficiente ρ fornecido na tabela abaixo.

Aplicando este ensaio dinâmico nas velocidades nominais, não é necessário realizar o ensaio estático. O procedimento detalhado dos ensaios a serem aplicados aos equipamentos de elevação e movimentação de cargas, antes da colocação em marcha, está estabelecido na NBR 16147. O uso das normas de projeto pressupõe que as tolerâncias especificadas para os equipamentos nos itens 4.2.1.1 ao 4.2.1.13 devem ser mantidas. Estas tolerâncias são aplicáveis exceto se outras condições tiverem sido acordadas com o usuário, sem levar em consideração as deformações elásticas durante a operação.

As deformações elásticas devem ser levadas em consideração se requerido. As tolerâncias especificadas são válidas para equipamentos como pontes rolantes, pórticos rolantes e guindastes. Quando forem utilizadas trenas, elas devem ser metálicas e calibradas. As leituras obtidas devem ser corrigidas levando-se em consideração a catenária da trena, bem como a divergência da temperatura ambiente em relação à temperatura-padrão de calibração. Todas as medições em um e no mesmo equipamento devem ser efetuadas com a mesma trena e a mesma força de tração.

A maior variação do vão do equipamento a partir da dimensão de projeto não pode exceder os seguintes valores: para s ≤ 15 m: Δs = ± 2 mm; para s > 15 m: Δs = ± [2 + 0,15 × (s – 15)] mm (máx. ± 15 mm). (s deve ser expresso em metros). As vigas do equipamento, suportadas livremente em suas extremidades, não podem ter flecha, mesmo se o projeto não prescrever uma contraflechas.

Isso significa que o caminho de rolamento do carro com o equipamento descarregado (sem carro) não pode ter qualquer desvio abaixo da horizontal. Este requisito somente é aplicável aos equipamentos com vão maior que 20 m. Para equipamentos com vão maior que 20 m, as vigas principais devem ser projetadas com uma contraflecha cujo valor deve ser igual à deflexão ocasionada pelo próprio peso das vigas mais 50% da soma do próprio peso do carro e da carga máxima.

Fica a critério do fabricante a aplicação da contraflecha nos seguintes casos: quando o valor calculado for inferior a 5 mm ou 1/2000 do vão (o que for maior); para vigas fabricadas de perfis simples. O equipamento de elevação é qualquer equipamento de trabalho para elevar e baixar cargas, e inclui todos os acessórios utilizados para o fazer (como acessórios para apoiar, fixar ou fixar o equipamento). Exemplos de equipamentos de elevação incluem: pontes rolantes e suas pistas de apoio; gruas de pacientes; elevadores de veículos; elevadores de cauda de veículos e guindastes montados em veículos; um berço de limpeza de edifícios e seu equipamento de suspensão; elevadores de mercadorias e passageiros; empilhadeiras; e acessórios de elevação.

Acessórios de levantamento são peças de equipamento que são usadas para prender a carga ao equipamento de elevação, fornecendo uma ligação entre as duas. Qualquer acessório de içamento usado entre o equipamento de içamento e a carga pode precisar ser levado em conta na determinação do peso total da carga. Exemplos de acessórios de elevação incluem: estilingues de fibra ou corda; cadeias (perna única ou múltipla); ganchos; olhais; vigas espalhadoras; dispositivos magnéticos e de vácuo.

A carga inclui qualquer material, pessoas ou animais (ou qualquer combinação destes) que seja levantada pelo equipamento de elevação. As cargas geralmente são fornecidas com pontos fixos ou fixos permanentes ou semipermanentes para elevação. Na maioria dos casos, esses são considerados parte da carga. Exemplos de cargas incluem: materiais a granel soltos; sacos, malas, paletes, etc.; itens como um grande bloco de concreto, máquinas e quaisquer olhais de elevação fixados permanentemente.

Os ensaios de poeiras combustíveis

Os incêndios e as explosões industriais são um perigo para as pessoas e edificações. A cada ano, muitas pessoas são feridas em incêndios industriais e explosões em diferentes países e muitas delas acabam perdendo a vidas nesses acidentes.

Além disso, os incêndios industriais e explosões causam bilhões de dólares em danos materiais e, todos os dias, milhares de trabalhadores correm o risco de se ferir em incêndios industriais e explosões. No entanto, muitos ainda não estão cientes dos perigos que enfrentam em seus locais de trabalho e quais são as principais causas desses incêndios e explosões.

Embora existam várias causas de incêndios industriais e explosões, a poeira combustível está entre os materiais mais perigosos e, infelizmente, inevitáveis, usados em muitas indústrias. Ela é produzida em uma ampla gama de indústrias e pode ser derivada de produtos sintéticos e naturais.

Igualmente, pode ser derivada de produtos naturais, como farinha, leite e ovos e de produtos feitos pelo homem, como cloreto de vinila e epóxi. Portanto, é um equívoco achar que apenas as fábricas de confecções, roupas e de madeira produzam pó que possa incendiar-se. É importante notar que, em seu estado natural, alguns produtos podem ser inflamáveis, mas podem se tornar explosivos na forma de poeira.

Existem vários medidas importantes que podem ser tomadas para evitar incêndios ou explosões de poeira combustível. Por exemplo, os empregadores devem colocar em prática procedimentos de arrumação adequados que devem ser inspecionados e mantidos.

Os trabalhos que exigem o uso de ferramentas como ferro de solda, soldador ou cortador de tocha devem ser realizados muito longe de locais onde possa haver poeira combustível. Isto é importante porque as faíscas do trabalho a quente podem viajar até vários pés e fazer com que a pilha de pó se incendeie.

Os dispositivos de limpeza de alta potência e dutos de ventilação devem ser usados para manter o pó combustível a um mínimo possível. As áreas de trabalho devem ser inspecionadas regularmente para garantir que não haja camadas visíveis de poeira combustível se acumulando durante cada turno.

Os trabalhadores devem estar cientes dos perigos e devem ser treinados em procedimentos de emergência no caso de ocorrer um incêndio ou explosão de pó combustível. Grandes equipamentos e caixas elétricas devem ser varridos regularmente com aspiradores de mão ou mangueiras de alta potência para evitar que a poeira combustível se acumule em áreas escondidas.

A NBR ISO/IEC 80079-20-2 de 05/2018 – Atmosferas explosivas – Parte 20-2: Características dos materiais – Métodos de ensaio de poeiras combustíveis descreve os métodos de ensaios para a identificação de poeiras combustíveis e camadas de poeiras combustíveis, de a forma a permitir a classificação de áreas onde tais materiais possam estar presentes, para a finalidade da adequada seleção e instalação de equipamentos elétricos e mecânicos para utilização na presença de poeiras combustíveis. As condições atmosféricas normais para a determinação das características das poeiras combustíveis são: temperatura: –20 °C a +60 °C, pressão: 80 kPa (0,8 bar) a 110 kPa (1,1 bar), e ar com conteúdo normal de oxigênio, tipicamente 21 % v/v. Os métodos de ensaios definidos não são aplicáveis para: materiais explosivos reconhecidos, propelentes (por exemplo, pólvora, dinamite) ou substâncias ou misturas de substâncias que, sob determinadas circunstâncias, se comportam de forma similar, ou poeiras de explosivos e propelentes que não requerem a presença do oxigênio da atmosfera para a combustão, ou substâncias pirofóricas.

Pode-se definir a poeira combustível como as partículas sólidas finamente divididas, com diâmetro nominal de 500 μm ou menor, as quais podem formar misturas explosivas com o ar, nas condições normais de temperatura e pressão. Isto inclui poeiras e partículas combustíveis em suspensão, de acordo com o definido na ISO 4225. O termo “partículas sólidas” é destinado a se referir a partículas na fase sólida, embora não exclua uma partícula oca.

Para a receita da amostra para ensaio, deve-se ter uma ficha de dados de segurança ou equivalente com a amostra. O material de ensaio deve ser fornecido em uma embalagem adequada, etiquetada de acordo com as regras de etiquetagem aplicáveis, sendo apropriado para transporte. É usual o fornecimento de uma quantidade de no mínimo 0,5 kg para ensaios.

Se a preparação da amostra requerer uma quantidade maior, esta quantidade pode ser insuficiente. Se somente um pequeno volume do material for disponível, então pode não ser possível a execução de todos os ensaios. A amostra deve ser representativa do material, da forma como ele se apresenta na forma geral no processo que estiver sendo operado.

Muitas operações unitárias, como sistemas de extração, separam a poeira em frações mais finas que são presentes nos principais equipamentos de processo, e recomenda-se que seja levado em consideração quando da seleção da amostra. Se a amostra não for representativa do material como ele é encontrado no processo, então a preparação da amostra deve ser realizada de forma a considerar as condições de pior caso.

No mínimo as seguintes informações sobre a amostra devem ser fornecidas: tamanho mínimo da partícula, tamanho médio da partícula, tamanho máximo da partícula, distribuição da partícula, conteúdo de umidade, e método de determinação (por exemplo, métodos ópticos ou peneiramento). Se não for possível o fornecedor da amostra fornecer estes dados, então estes dados devem ser determinados separadamente.

Quanto à preparação da amostra, se não for possível ensaiar a amostra da forma como foi recebida, ou se a amostra não for mais representativa do material do processo, então pode ser necessário condicionar ou alterar a amostra para ensaio. Isto pode incluir: trituração e peneiramento, secagem, e umidificação.

Qualquer alteração aparente verificada nas propriedades da poeira durante a preparação da amostra, por exemplo, devido ao peneiramento ou nas condições de temperatura ou umidade, deve ser relatada no relatório de ensaio. Na preparação da amostra, como durante as atividades de trituração, peneiramento ou secagem, as características do material podem ser alteradas.

Quando frações finas estão presentes em uma instalação, é apropriado captar amostras de partículas com diâmetros menores que 63 μm, de forma a possibilitar as misturas mais facilmente capazes de causar ignição. Quando a amostra é uma mistura de substâncias, a preparação da amostra pode resultar em uma alteração da composição da amostra. A presença de solventes pode se alterar durante o processo de preparação da amostra.

Os ensaios devem ser realizados a uma temperatura atmosférica padronizada de 20 +10-10  °C e a uma pressão atmosférica padronizada de 80 kPa a 110 kPa (0,8 bar a 1,1 bar), a menos que especificado em contrário. A sequência seguida para a determinação das propriedades dos poeiras combustíveis e das partículas combustíveis em suspensão é apresentada em 5.2, Seção 6 e Figura 1, Figura 2 e Figura 3 (disponíveis na norma). Consultar também as informações indicadas no Anexo G. 2 O ensaio no tubo de Hartmann é um método fechado. O procedimento pode ser diretamente iniciado com uma esfera de 20 L ou com um forno do tipo GG.

Os ensaios para determinar se um material é uma poeira combustível ou um material particulado combustível podem ser feitos com uma inspeção visual. Fazer uma inspeção visual do material de ensaio (por meio de microscópio, se necessário), para determinar se o material consiste em material particulado combustível. Se o material consistir em material particulado combustível com poeira combustível, então continuar o procedimento de ensaio em um tubo de Hartmann (ver 5.2.3), para determinar se a combinação das duas é uma poeira combustível.

Se o material consistir somente em material particulado combustível, então continuar o procedimento de ensaio em um tubo de Hartmann (ver 5.2.3), para determinar que se trata de partículas combustíveis em suspensão. A determinação da distribuição da partícula, para materiais que não contenham partículas combustíveis em suspensão, verificar a distribuição do tamanho da partícula deve ser executada segundo algumas regras. Se não existirem partículas menores que 500 μm em tamanho, então o material não é uma poeira combustível. Se existirem partículas menores que 500 μm em tamanho, continuar o procedimento de ensaio em um tubo de Hartmann, para determinar se o material é uma poeira combustível.

Para o ensaio em um tubo de Hartmann com uma centelha (ver 7.1), se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível (prosseguir para o procedimento de caracterização de poeira combustível ou material particulado combustível (ver Seção 6)). Se nenhuma ignição ocorrer: prosseguir para o ensaio em um tubo de Hartmann, com uma fonte de ignição por espira aquecida (ver 7.1); pode ser assumido, neste caso, que a energia mínima de ignição é maior que 1 J e que o material de ensaio é difícil de entrar em ignição.

Para o ensaio em um tubo de Hartmann com uma fonte de ignição por espira aquecida (ver 7.1), se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível, (prosseguir para a caracterização de poeira combustível ou material particulado combustível (ver Seção 6)). Se nenhuma ignição ocorrer: prosseguir para o ensaio na esfera de 20 L (ver 7.2); pode ser assumido que a energia mínima de ignição é maior que 10 J.

Para o ensaio de ignição em uma esfera de 20 L, se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível (prosseguir para a caracterização de poeira combustível ou material particulado combustível (ver Seção 6). Se nenhuma ignição ocorrer, então o material não é uma poeira combustível ou um material particulado combustível, e o procedimento de ensaio está concluído.

Embora o material não forme misturas explosivas com o ar, ele pode ainda causar a ignição de uma camada de poeira combustível. Se existir material insuficiente disponível para o ensaio em uma esfera de 20 L, então o ensaio de um forno do tipo Godbert-Greenwald (GG), a 1 000 °C, é uma alternativa aceitável (ver 7.3). Se nenhuma ignição ocorrer a 1 000 °C, então o material não é uma poeira combustível ou um material particulado combustível.

Se ocorrer uma ignição a 1.000 °C, então é recomendado que o material seja submetido a verificação adicional em uma esfera de 20 L antes deste material ser considerado combustível ou não combustível. O procedimento indicado a seguir é o procedimento para a caracterização de poeira combustível ou material particulado combustível: ensaio para temperatura mínima de ignição de uma nuvem de poeira (MIT – minimum ignition temperature) (ver Seção 8): forno do tipo GG (ver 8.1.2), ou forno do tipo BAM (ver 8.1.3) ensaio para temperatura mínima de ignição (MIT) da camada de poeira (ver 8.2); o ensaio para a energia mínima de ignição (MIE) da nuvem de poeira (ver 8.3); e o ensaio para a resistividade de poeira a granel (ver 8.4).

Os dados das características das poeiras são conhecidos e variam muito de acordo com as propriedades da amostra, por exemplo, umidade e tamanho da partícula. Os dados apresentados neste banco de dados representam uma grande coleção de informações que podem ser utilizadas quando forem cuidadosamente avaliados para a devida aplicação para o material combustível em consideração disponível existente.

Riscos e emergência no transporte rodoviário de produtos perigosos conforme a norma técnica

Guia de produtos e serviços qualificados

adnormas_anuncio

Pode ser que você não saiba, mas, milhares de pessoas, diariamente, acessam normas técnicas ABNT NBR para especificarem um produto ou um serviço que precisam comprar ou contratar. Dessa forma, se seus produtos fazem parte de uma lista muito especial, produtos que atendem às normas técnicas brasileiras ABNT NBR, você não pode ficar fora do Target AdNormas.

Qualidade, no contexto da melhoria contínua, compreende o grau de atendimento (ou conformidade) de um produto, processo, serviço ou ainda um profissional a requisitos mínimos estabelecidos em normas ou regulamentos técnicos, ao menor custo possível para a sociedade. Dessa forma, você pode associar a sua marca à norma técnica que os seus produtos obrigatoriamente cumprem.

Agora, a sua empresa pode estar relacionada com a norma técnica quando potenciais clientes estiverem pesquisando sobre o que você oferece e querem um fornecedor qualificado.

Entre em contato e apareça agora mesmo na norma que desejar: (11) 5641-4655 ramal 883 ou https://www.adnormas.com.br/cadastrar

Pode-se definir esse tipo de transporte como sendo o carregamento de substância ou artigo, natural ou fabricado pelo homem, que em função de suas características físico-químicas e/ou toxicológicas representa perigo a saúde humana, ao patrimônio – público ou privado – e/ou ao meio ambiente. Assim, em linhas gerais, devem ser cumpridas as normas técnicas que estabelece a verificação dos requisitos operacionais mínimos para o transporte rodoviário de produtos perigosos referentes à saúde, segurança, meio ambiente e qualidade, sem prejuízo da obrigatoriedade de cumprimento da legislação, regulamentos e normas vigentes. O objetivo é atender à legislação, aos regulamentos e às normas vigentes de transporte de produtos perigosos verificando o atendimento às condições mínimas de segurança, sendo aplicada ao expedidor, destinatário (quando aplicável) e transportador, e, excluindo-se os itens obrigatórios específicos, podendo também ser aplicada ao transporte de produtos não perigosos.

A NBR 15480 de 02/2018 – Transporte rodoviário de produtos perigosos – Programa de gerenciamento de risco e plano de ação de emergência estabelece os requisitos mínimos para o gerenciamento dos riscos no transporte rodoviário de produtos perigosos (TRPP), por meio de orientações para a elaboração de programa de gerenciamento de risco (PGR) e plano de ação de emergência (PAE), cujos objetivos são, respectivamente, a prevenção dos eventos acidentais e o planejamento para a intervenção emergencial.

Deve-se observar as instruções normativas das instituições e órgãos afins, bem como os instrumentos legais pertinentes ao transporte rodoviário de produtos perigos os. Não é necessário portar o PGR e o PAE no veículo de transporte de carga. O PGR consiste em um documento que estabelece os mecanismos técnicos e administrativos para a gestão preventiva dos riscos decorrentes do transporte de produtos perigosos, com vistas à redução e controle dos fatores que contribuem para a ocorrência de acidentes com produtos perigosos.

O PAE se destina ao estabelecimento das técnicas, procedimentos, recursos e requisitos para a atuação das equipes de emergência nos acidentes ocorridos durante o transporte rodoviário de produtos perigosos e a consequente mitigação dos impactos socioambientais decorrentes. Embora o PAE seja um dos itens que integrem a estrutura do PGR, ele pode ser concebido como documento em separado, a fim de facilitar sua utilização. Todavia, deve estar em perfeita consonância com o escopo do programa.

Na elaboração do PGR e do respectivo PAE, deve ser considerada a capacidade de transporte de cada transportadora, bem como suas características operacionais, produtos transportados, peculiaridades das rotas, riscos do trajeto e ações preventivas e emergenciais adequadas aos riscos existentes. O PGR e o PAE são aplicáveis tanto ao transporte de produtos perigosos realizado com recursos e equipe do próprio transportador como àquele realizado por empresas terceirizadas ou subcontratadas.

O PGR e o PAE devem ser precedidos de estudo qualitativo que permita identificar os riscos do transporte de produtos perigosos, a abrangência, as consequências e a sensibilidade socioambiental dos ambientes passíveis de serem impactados. Opcionalmente podem ser empregados métodos quantitativos para análise dos riscos.

São exemplos de estudos qualitativos e quantitativos: técnicas e ferramentas de identificação de perigos, como análise preliminar de perigos (APP), What if, análises históricas de frequência de acidentes, emprego de modelos matemáticos para estimativa dos efeitos físicos, mapeamento e classificação dos elementos socioambientais ao longo das rotas, entre outras técnicas para análise dos riscos.

O PGR deve contemplar no mínimo a seguinte estrutura: introdução; objetivo; caracterização da atividade de transporte da empresa e da área de influência; análise de risco; revisão da análise de risco; gestão do programa; procedimentos operacionais; gerenciamento de mudanças; manutenção e garantia de integridade; investigação de acidentes e incidentes; plano de ação de emergência; capacitação de recursos humanos; equipe responsável pela elaboração do programa; bibliografia; apêndices e anexos.

Podem ser acrescidos outros tópicos considerados relevantes ao controle e mitigação dos riscos. O nível de detalhamento de cada item deve ser determinado em cada caso específico conforme as especificidades da empresa, produtos perigosos transportados, ambientes passíveis de serem afetados, impactos esperados e demais estudos e levantamentos preliminares adotados na identificação dos riscos.

O PGR pode ser elaborado pelos profissionais da própria empresa interessada e/ou por colaboradores externos contratados para tal finalidade. Todavia, em ambos os casos, são necessários o nome e a assinatura de um responsável da empresa e do(s) responsável(eis) pela elaboração do plano. A elaboração do PGR deve se basear, mas não se limitar, ao conteúdo mínimo descrito.

Deve contextualizar de forma sucinta a importância do gerenciamento de risco na política da empresa, pressupostos legais e método adotado na elaboração do PGR. Estabelecer o(s) objetivo(s) do programa no tocante aos aspectos preventivos e de intervenção durante as emergências no transporte rodoviário de produtos perigosos. Fazer a caracterização da atividade de transporte da empresa e da área de influência inclui os dados gerais de identificação: razão social, nome de fantasia, logradouro, bairro, município, CEP, responsável, telefone e endereço eletrônico (e-mail). Aplicam-se tanto à sede como às filiais.

Devem ser descritas as operações, descrevendo sucintamente as atividades desenvolvidas pela empresa, rotas na forma de tabelas e mapas, inclusive a quantidade de viagens mensal/anual prevista por rota ou região. Abordar, quando aplicável, os processos de manutenção, descontaminação, limpeza, redespacho, transbordo, armazenamento temporário de resíduos de acidentes, entre outros desenvolvidos pela empresa, que tenham relação com o transporte de produtos perigosos.

Listar os produtos perigosos transportados na forma de tabela que contenha, minimamente, o nome apropriado para embarque, nome técnico ou comercial, quando aplicável, número da ONU, classe e subclasse de risco, número de risco e grupo de embalagem. Apresentar estimativa do volume transportado ao mês/ano para cada produto perigoso e correlacionar com as rotas ou regiões.

Para as instalações, descrever sucintamente as instalações físicas da sede da empresa e das filiais. Frota para transporte a granel e fracionado: listar e quantificar a frota por família (para transporte a granel) e tipo de veículo e equipamento de transporte. A empresa deve manter os dados técnicos do projeto e construção para cada família, tipo de veículo e equipamento de transporte, exceto para contêiner de carga, contêiner-tanque, contentores de múltiplos elementos para gás (MEGC) e tanque portátil.

A família de veículo para transporte a granel consta na Portaria Inmetro nº 16:2016. A sinalização e sistemas de segurança adicionais: descrever a simbologia de identificação aplicável para o transporte terrestre, conforme NBR 7500, que pode ser apresentada em figuras-tipo anexadas ao PGR. Descrever, ainda, o conjunto de equipamentos para emergências das unidades de transporte (ver NBR 9735), bem como os sistemas de gerenciamento de risco com rastreamento de cargas/veículo e os sistemas de comunicação, quando existentes ou obrigatórios.

A área de influência corresponde ao traçado das rotas ou regiões adotadas pela empresa para o transporte de produtos perigosos. A representação gráfica das rotas e áreas adjacentes pode ser feita no formato de um mapa geral do traçado sobre base cartográfica ou imagem de satélite, em escala e resolução que permitam a identificação dos elementos socioambientais de interesse. De forma opcional ou concomitante, pode ser adotada a representação no formato de planta retigráfica ou qualquer software de representação de dados geográficos.

Os elementos socioambientais ao longo das rotas ou regiões, a serem levantados com base em dados secundários obtidos em fontes oficiais, compreendem a hidrografia, malha rodoviária, ferroviária e dutoviária, limites municipais, serviços e pontos de apoio das administradoras públicas e privadas das rodovias utilizadas, postos da Polícia Rodoviária, unidades do Corpo de Bombeiros, áreas de ocupação humana, sistemas de captação superficial e tratamento de água, unidades de conservação, entre outras áreas de importância ambiental e socioeconômica.

Para a análise de risco, devem ser elaborados estudos que permitam a identificação e análise dos riscos envolvidos no transporte de produtos perigosos, ou ainda outros estudos qualitativos e quantitativos, desde que devidamente fundamentados. Recomenda-se, no mínimo, o uso da técnica de análise preliminar de perigos (APP), que deve ser elaborada a partir de reunião da qual participem profissionais das diversas áreas da empresa.

A APP deve focalizar todos os eventos perigosos cujas falhas tenham origem no transporte rodoviário de produtos perigosos, contemplando as falhas de equipamentos e operacionais. Na APP devem ser identificados os perigos, as causas e as consequências dos possíveis receptores atingidos ou afetados direta ou indiretamente (solo, água, fauna, flora, áreas urbanizadas, entre outros), bem como as proteções existentes e recomendações pertinentes aos perigos identificados, cujos resultados devem ser consolidados em planilha.

A implantação das recomendações deve ser objeto de plano de ação a ser gerenciado no âmbito do PGR. As hipóteses acidentais podem tomar como premissa os produtos perigosos considerados individualmente, de acordo com suas características físico-químicas ou por classe de risco, conforme preconizado pela legislação de transporte rodoviário vigente.

Podem ser adotados outros critérios para a definição das hipóteses acidentais de acordo com as características de cada empresa, produtos envolvidos e peculiaridades das rotas ou regiões utilizadas. Dados históricos de acidentes da empresa ou de banco de dados oficiais podem ser utilizados como subsídio para a formulação das hipóteses acidentais, de modo a permitir a análise das causas, consequências, classes dos produtos envolvidas, entre outras estatísticas que permitam a formulação das hipóteses acidentais.

As hipóteses acidentais devem ser consolidadas e apresentadas em tabela por ordem sequencial, para estabelecer posteriormente as ações de resposta emergenciais do PAE. A APP pode constar integralmente no conteúdo do PGR ou ser elaborada como um documento à parte. Na segunda opção, devem ser inseridas no corpo do PGR uma síntese do método e a relação das hipóteses acidentais consolidadas.

A revisão da(s) técnica(s) de análise de risco utilizada(s) na elaboração do PGR deve conter as diretrizes metodológicas na forma de um procedimento. Os fatos ensejadores das revisões, como alterações operacionais expressivas, novos produtos transportados ou recomendações de mudanças decorrentes da análise de acidentes ocorridos, devem ser claramente estabelecidos, assim como devem ser estabelecidos os responsáveis pelas revisões. Se inexistentes os fatos ensejadores para a revisão da(s) técnica(s) de análise(s) de risco, esta(s) deve(m) ser revalidada(s) no máximo a cada cinco anos.

Deve-se elaborar fluxograma geral de acionamento e tomada de decisões das equipes próprias, subcontratadas ou terceirizadas, para o atendimento emergencial. Atentar para a definição das etapas do processo de decisão e responsáveis de acordo com as hipóteses acidentais.

O fluxograma pode conter as chaves de decisão para a comunicação dos órgãos públicos e demais elos da cadeia de responsabilidade em acidentes com produtos perigosos, que não se confundem com aquelas de responsabilidade exclusiva da empresa. O fluxograma pode ser estratificado conforme o porte da emergência, a fim de manter coerência com a classificação em níveis citada.

De forma complementar, podem ser criados fluxogramas específicos para cada procedimento de controle emergencial. A figura fornece um exemplo simplificado de fluxograma geral de acionamento. Deve-se criar padrão documental, impresso ou em meio eletrônico, para registro das informações relativas aos acidentes desde a primeira comunicação do evento até a finalização das ações de campo.

Este padrão deve conter informações relativas à cronologia dos eventos, localidade, identificação do informante, veículos e produtos envolvidos, características do sinistro, áreas atingidas, aspectos socioambientais do local, órgãos públicos e empresas acionadas, entre outras. Tais informações devem subsidiar a formação do banco de dados citado. No Anexo B é apresentado um exemplo simplificado de formulário para registro inicial do atendimento aos acidentes.

A empresa deve estabelecer e manter a capacidade de comunicação com a(s) equipe(s) técnica(s) de atendimento à emergência, embarcador, comunidade, imprensa e órgãos públicos, de modo a otimizar o fluxo de informações, fazendo uso de equipamentos e recursos apropriados, como, por exemplo, radiocomunicadores, telefones celulares, megafones etc.

O sistema de comunicação do PAE, quer seja próprio ou terceirizado, deve operar de forma ininterrupta, de modo a garantir o acionamento das equipes, fornecedores e órgãos públicos, bem como o contato durante o atendimento às emergências, sempre que necessário.

Para cada hipótese acidental identificada, deve ser elaborado o respectivo procedimento de controle emergencial, que deve conter as diretrizes para atuação das equipes de intervenção. Para os casos nos quais for identificada uma quantidade expressiva de hipóteses de acidentes, admite-se que sejam elaborados procedimentos de resposta que se apliquem a mais de uma hipótese (grupo de hipóteses assemelhadas), desde que os riscos e as ações de resposta aplicáveis sejam similares.

Os procedimentos devem apresentar as táticas e técnicas de intervenção de forma objetiva e, preferencialmente, na forma de um “passo a passo” encadeado de forma lógica e sequencial, com os respectivos responsáveis pela execução, conforme estabelecido na estrutura organizacional, e devem ser específicos para cada tipo de hipótese acidental ou grupo de hipóteses identificadas na análise de risco.

São considerados como conteúdo mínimo de um procedimento de controle emergencial: ações de avaliação inicial e aproximação; avaliação dos impactos socioambientais; avaliação dos riscos e demais aspectos de segurança; acionamento dos órgãos públicos; cadeia de comando e fluxo de comunicação; monitoramento ambiental; acionamento da estrutura do PAE e dos órgãos públicos; zoneamento de áreas; isolamento e controle de acesso; definição dos equipamentos de proteção individual e de combate adequados às atividades e riscos; combate a vazamentos; controle de fontes de ignição e incêndios; contenção de derrames em solo, ar e água; recolhimento de produtos; limpeza de ambientes; transbordo de carga; recolhimento e acondicionamento de resíduos, avaliação periódica do cenário acidental; registros das ações desenvolvidas; critérios para encerramento da emergência; desmobilização; entre outros.

Para a capacitação de recursos humanos, estabelecer procedimento que defina os requisitos e permita o gerenciamento da capacitação da força de trabalho e terceirizados que exerçam atividades relacionadas à operação, manutenção, inspeção, atuação emergencial, entre outros. O procedimento deve conter a política de capacitação da empresa, o conteúdo programático, tipologia (teórico, prático, inicial, periódico, reciclagem etc.), frequência dos treinamentos, público-alvo com base nas funções e competências dentro da hierarquia da empresa, recursos necessários, registro e acompanhamento. Os treinamentos para atuação em emergências são abordados no âmbito do PAE. Todavia, são gerenciados por meio do PGR.

Como evitar acidentes com a rede elétrica

Clicando aqui é possível ter conhecimento dos Projetos de Normas Brasileiras e Mercosul, disponíveis para Consulta Nacional. Selecione o Comitê Técnico desejado e clique sobre o código ou título para consultar e votar.

Rodrigo Cunha

“Não corro riscos de acidentes com a rede elétrica. É apenas baixa tensão”. O seu caixão pode ficar um pouco mais aberto com um golpe de baixa tensão, mas, mesmo assim, você ainda estará morto. A única diferença entre baixa e alta tensão é a rapidez com que esta pode matá-lo. Se a alta tensão mata instantaneamente, a baixa tensão apenas prolonga um pouco mais o desfecho fatal.

Estudos sobre exposições a choques de baixa tensão apontam que um choque de 120 volts pode matar em até 48 horas. Além disso, muitos médicos da sala de emergência não estão familiarizados com o choque elétrico e um eletrocardiograma pode não mostrar que existe um problema. A lesão no músculo cardíaco tende a se espalhar ao longo do tempo e nem sempre pode ser identificada nesse tipo de exame.

Ao se trabalhar em sistemas ou equipamentos energizados ao invés de desligá-los, isso é “coisa de homem”. É muito comum em usinas de energia nunca desenergizar os equipamentos.

No entanto, a desenergização é a única maneira possível de eliminar totalmente os riscos. O Equipamento de Proteção Individual (EPI) apenas aumenta as suas chances de sobrevivência, mas não afasta o perigo. Certifique-se de que o equipamento a ser manipulado e os sistemas estejam em condições de trabalho seguras do ponto de vista da eletricidade e o EPI e todos os procedimentos apropriados sejam utilizados para a proteção do profissional.

Outro problema: não usar os Equipamentos de Proteção Individual. As pessoas realmente não gostam de usar luvas de isolamento de borracha e outros tipos de equipamentos de proteção. O argumento é que é muito quente, desconfortável, restringe o movimento e retarda todo o trabalho.

Não apenas por usá-lo, mas por ter de selecionar o EPI certo e ficar colocando-o e tirando-o a cada momento. Só que este mesmo EPI também salvará sua vida. Um dos momentos mais prováveis de as pessoas negligenciam o uso dos equipamentos de proteção é justamente durante a resolução de problemas.

A lógica parece ser: “Eu não estou realmente trabalhando nisso, apenas testando”. No entanto, pesquisas revelam que 24% dos acidentes elétricos são causados durante a resolução de problemas, testes de tensão e atividades similares. Temos uma tendência a ignorar os perigos associados às tarefas que consideramos “seguras”.

Não se pode dormir durante um treinamento de segurança. Nada como um bom cochilo para nos prepararmos para um árduo dia de trabalho! Reuniões e treinamentos de segurança podem ser chatos e cansativos, mas são fundamentais para a prevenção de possíveis problemas. Por isso, é tão importante que os treinamentos sejam focados, concisos e interessantes, caso contrário, ninguém escuta.

Quando os medidores estiverem desgastados, é hora de substituí-los. Não seja emocionalmente apegado aos seus equipamentos. Se você realmente ama seu antigo testador de tensão, leve-o para casa e faça um pequeno santuário, assim você estará realmente seguro. O comitê da NFPA (Códigos Nacionais Contra Incêndio) estava preocupado o suficiente com o uso deste tipo de equipamento que inseriu dois requisitos diferentes orientando para o trabalho com ferramentas elétricas portáteis e equipamentos de teste adequadamente classificados.

Um item fundamental: não vestir o equipamento de segurança correto. Não, não estou me repetindo. Algumas pessoas pensam que, se vestirem algo por meio do EPI, qualquer coisa, isso deve ser suficiente. Embora seja verdade que as lesões sofridas provavelmente não serão tão graves quanto se você não vestir nenhum equipamento, há uma grande probabilidade de que, se o EPI correto fosse utilizado, você não sofreria nenhuma lesão.

Isso reafirma o que já foi escrito, pois se você não prestar atenção durante o treinamento de segurança, provavelmente você não poderá escolher o equipamento correto. Você sabe como interpretar as etiquetas Arc Flash? O que você faz se não houver uma etiqueta Arc Flash nos equipamentos de energia elétrica? Você sabe como usar as tabelas do NFPA 70E? Você se refere às notas quando usa as tabelas?

Se você responder “não” a qualquer uma dessas questões, não está escolhendo o EPI correto. Na verdade, você provavelmente não seria considerado qualificado pelos órgãos reguladores. Sua empresa tem a responsabilidade de fornecer treinamento para que você atenda a definição destes órgãos como um eletricista qualificado, caso contrário você estará exposto ao perigo. É o seu corpo que será queimado! Você precisa fazer a lição de casa para se proteger.

Não realizar a manutenção necessária dos equipamentos e sistema de energia é muito comum. Muitas vezes, as empresas consideram os custos de manutenção como uma despesa indireta. Nada poderia estar mais longe da verdade.

O problema é que é difícil depositar as economias em algo que não aparece. Falhas não programadas, perda de produção, compra de equipamentos em preços premium, horas extras, eliminação do equipamento de cratera, por exemplo.

Aqueles de nós que já atravessaram as batalhas envolvidas com os processos de manutenção, conhecem bem os custos de uma postura negligente. Mas, para os novos gerentes e certas contabilidades mais recentes, é realmente difícil de compreender esta necessidade.

Não carregar suas luvas. Já observei em aulas de treinamento de segurança que pouquíssimas pessoas realmente carregam sempre com elas suas luvas isolantes de borracha. Bem, adivinhe, se você não as carrega, quer dizer que tampouco as usa. Isso pode vir acompanhado do pensamento de que uma carga de baixa tensão não irá te machucar. “Nós ficamos apenas tontos e isso não é um grande problema!”, pensam. No início de 2008, no Texas, três trabalhadores da TXU trabalhavam em um transformador de 120/220 volts. Um dos trabalhadores levantou-se e disse: “Bem, meninos. Parece que eu consegui de novo!”, deu três passos e estava morto. Carregue suas luvas e use-as, sempre.

As pessoas tendem a odiar a papelada. Esta é, porém, uma boa hora para abrir uma exceção. A OSHA quer que o profissional planeje cada trabalho, tenha as ferramentas e equipamentos adequados para a sua segurança e siga um planejamento. A Licença de Trabalho Elétrico Energizado fornece os meios para planejar cada trabalho, avaliar os riscos, escolher o EPI mais adequado e documentá-lo.

Nós passamos pela vida cometendo pequenos erros atrás de pequenos erros e nada acontece, até o momento de um acidente, e quando este acontece, perdemos o controle. Por isso, o melhor a se fazer é evitar e prever as falhas, reforçando a segurança em nosso ambiente de trabalho.

Rodrigo Cunha é gerente de produto e aplicação da Fluke do Brasil.