Os ensaios de poeiras combustíveis

Os incêndios e as explosões industriais são um perigo para as pessoas e edificações. A cada ano, muitas pessoas são feridas em incêndios industriais e explosões em diferentes países e muitas delas acabam perdendo a vidas nesses acidentes.

Além disso, os incêndios industriais e explosões causam bilhões de dólares em danos materiais e, todos os dias, milhares de trabalhadores correm o risco de se ferir em incêndios industriais e explosões. No entanto, muitos ainda não estão cientes dos perigos que enfrentam em seus locais de trabalho e quais são as principais causas desses incêndios e explosões.

Embora existam várias causas de incêndios industriais e explosões, a poeira combustível está entre os materiais mais perigosos e, infelizmente, inevitáveis, usados em muitas indústrias. Ela é produzida em uma ampla gama de indústrias e pode ser derivada de produtos sintéticos e naturais.

Igualmente, pode ser derivada de produtos naturais, como farinha, leite e ovos e de produtos feitos pelo homem, como cloreto de vinila e epóxi. Portanto, é um equívoco achar que apenas as fábricas de confecções, roupas e de madeira produzam pó que possa incendiar-se. É importante notar que, em seu estado natural, alguns produtos podem ser inflamáveis, mas podem se tornar explosivos na forma de poeira.

Existem vários medidas importantes que podem ser tomadas para evitar incêndios ou explosões de poeira combustível. Por exemplo, os empregadores devem colocar em prática procedimentos de arrumação adequados que devem ser inspecionados e mantidos.

Os trabalhos que exigem o uso de ferramentas como ferro de solda, soldador ou cortador de tocha devem ser realizados muito longe de locais onde possa haver poeira combustível. Isto é importante porque as faíscas do trabalho a quente podem viajar até vários pés e fazer com que a pilha de pó se incendeie.

Os dispositivos de limpeza de alta potência e dutos de ventilação devem ser usados para manter o pó combustível a um mínimo possível. As áreas de trabalho devem ser inspecionadas regularmente para garantir que não haja camadas visíveis de poeira combustível se acumulando durante cada turno.

Os trabalhadores devem estar cientes dos perigos e devem ser treinados em procedimentos de emergência no caso de ocorrer um incêndio ou explosão de pó combustível. Grandes equipamentos e caixas elétricas devem ser varridos regularmente com aspiradores de mão ou mangueiras de alta potência para evitar que a poeira combustível se acumule em áreas escondidas.

A NBR ISO/IEC 80079-20-2 de 05/2018 – Atmosferas explosivas – Parte 20-2: Características dos materiais – Métodos de ensaio de poeiras combustíveis descreve os métodos de ensaios para a identificação de poeiras combustíveis e camadas de poeiras combustíveis, de a forma a permitir a classificação de áreas onde tais materiais possam estar presentes, para a finalidade da adequada seleção e instalação de equipamentos elétricos e mecânicos para utilização na presença de poeiras combustíveis. As condições atmosféricas normais para a determinação das características das poeiras combustíveis são: temperatura: –20 °C a +60 °C, pressão: 80 kPa (0,8 bar) a 110 kPa (1,1 bar), e ar com conteúdo normal de oxigênio, tipicamente 21 % v/v. Os métodos de ensaios definidos não são aplicáveis para: materiais explosivos reconhecidos, propelentes (por exemplo, pólvora, dinamite) ou substâncias ou misturas de substâncias que, sob determinadas circunstâncias, se comportam de forma similar, ou poeiras de explosivos e propelentes que não requerem a presença do oxigênio da atmosfera para a combustão, ou substâncias pirofóricas.

Pode-se definir a poeira combustível como as partículas sólidas finamente divididas, com diâmetro nominal de 500 μm ou menor, as quais podem formar misturas explosivas com o ar, nas condições normais de temperatura e pressão. Isto inclui poeiras e partículas combustíveis em suspensão, de acordo com o definido na ISO 4225. O termo “partículas sólidas” é destinado a se referir a partículas na fase sólida, embora não exclua uma partícula oca.

Para a receita da amostra para ensaio, deve-se ter uma ficha de dados de segurança ou equivalente com a amostra. O material de ensaio deve ser fornecido em uma embalagem adequada, etiquetada de acordo com as regras de etiquetagem aplicáveis, sendo apropriado para transporte. É usual o fornecimento de uma quantidade de no mínimo 0,5 kg para ensaios.

Se a preparação da amostra requerer uma quantidade maior, esta quantidade pode ser insuficiente. Se somente um pequeno volume do material for disponível, então pode não ser possível a execução de todos os ensaios. A amostra deve ser representativa do material, da forma como ele se apresenta na forma geral no processo que estiver sendo operado.

Muitas operações unitárias, como sistemas de extração, separam a poeira em frações mais finas que são presentes nos principais equipamentos de processo, e recomenda-se que seja levado em consideração quando da seleção da amostra. Se a amostra não for representativa do material como ele é encontrado no processo, então a preparação da amostra deve ser realizada de forma a considerar as condições de pior caso.

No mínimo as seguintes informações sobre a amostra devem ser fornecidas: tamanho mínimo da partícula, tamanho médio da partícula, tamanho máximo da partícula, distribuição da partícula, conteúdo de umidade, e método de determinação (por exemplo, métodos ópticos ou peneiramento). Se não for possível o fornecedor da amostra fornecer estes dados, então estes dados devem ser determinados separadamente.

Quanto à preparação da amostra, se não for possível ensaiar a amostra da forma como foi recebida, ou se a amostra não for mais representativa do material do processo, então pode ser necessário condicionar ou alterar a amostra para ensaio. Isto pode incluir: trituração e peneiramento, secagem, e umidificação.

Qualquer alteração aparente verificada nas propriedades da poeira durante a preparação da amostra, por exemplo, devido ao peneiramento ou nas condições de temperatura ou umidade, deve ser relatada no relatório de ensaio. Na preparação da amostra, como durante as atividades de trituração, peneiramento ou secagem, as características do material podem ser alteradas.

Quando frações finas estão presentes em uma instalação, é apropriado captar amostras de partículas com diâmetros menores que 63 μm, de forma a possibilitar as misturas mais facilmente capazes de causar ignição. Quando a amostra é uma mistura de substâncias, a preparação da amostra pode resultar em uma alteração da composição da amostra. A presença de solventes pode se alterar durante o processo de preparação da amostra.

Os ensaios devem ser realizados a uma temperatura atmosférica padronizada de 20 +10-10  °C e a uma pressão atmosférica padronizada de 80 kPa a 110 kPa (0,8 bar a 1,1 bar), a menos que especificado em contrário. A sequência seguida para a determinação das propriedades dos poeiras combustíveis e das partículas combustíveis em suspensão é apresentada em 5.2, Seção 6 e Figura 1, Figura 2 e Figura 3 (disponíveis na norma). Consultar também as informações indicadas no Anexo G. 2 O ensaio no tubo de Hartmann é um método fechado. O procedimento pode ser diretamente iniciado com uma esfera de 20 L ou com um forno do tipo GG.

Os ensaios para determinar se um material é uma poeira combustível ou um material particulado combustível podem ser feitos com uma inspeção visual. Fazer uma inspeção visual do material de ensaio (por meio de microscópio, se necessário), para determinar se o material consiste em material particulado combustível. Se o material consistir em material particulado combustível com poeira combustível, então continuar o procedimento de ensaio em um tubo de Hartmann (ver 5.2.3), para determinar se a combinação das duas é uma poeira combustível.

Se o material consistir somente em material particulado combustível, então continuar o procedimento de ensaio em um tubo de Hartmann (ver 5.2.3), para determinar que se trata de partículas combustíveis em suspensão. A determinação da distribuição da partícula, para materiais que não contenham partículas combustíveis em suspensão, verificar a distribuição do tamanho da partícula deve ser executada segundo algumas regras. Se não existirem partículas menores que 500 μm em tamanho, então o material não é uma poeira combustível. Se existirem partículas menores que 500 μm em tamanho, continuar o procedimento de ensaio em um tubo de Hartmann, para determinar se o material é uma poeira combustível.

Para o ensaio em um tubo de Hartmann com uma centelha (ver 7.1), se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível (prosseguir para o procedimento de caracterização de poeira combustível ou material particulado combustível (ver Seção 6)). Se nenhuma ignição ocorrer: prosseguir para o ensaio em um tubo de Hartmann, com uma fonte de ignição por espira aquecida (ver 7.1); pode ser assumido, neste caso, que a energia mínima de ignição é maior que 1 J e que o material de ensaio é difícil de entrar em ignição.

Para o ensaio em um tubo de Hartmann com uma fonte de ignição por espira aquecida (ver 7.1), se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível, (prosseguir para a caracterização de poeira combustível ou material particulado combustível (ver Seção 6)). Se nenhuma ignição ocorrer: prosseguir para o ensaio na esfera de 20 L (ver 7.2); pode ser assumido que a energia mínima de ignição é maior que 10 J.

Para o ensaio de ignição em uma esfera de 20 L, se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível (prosseguir para a caracterização de poeira combustível ou material particulado combustível (ver Seção 6). Se nenhuma ignição ocorrer, então o material não é uma poeira combustível ou um material particulado combustível, e o procedimento de ensaio está concluído.

Embora o material não forme misturas explosivas com o ar, ele pode ainda causar a ignição de uma camada de poeira combustível. Se existir material insuficiente disponível para o ensaio em uma esfera de 20 L, então o ensaio de um forno do tipo Godbert-Greenwald (GG), a 1 000 °C, é uma alternativa aceitável (ver 7.3). Se nenhuma ignição ocorrer a 1 000 °C, então o material não é uma poeira combustível ou um material particulado combustível.

Se ocorrer uma ignição a 1.000 °C, então é recomendado que o material seja submetido a verificação adicional em uma esfera de 20 L antes deste material ser considerado combustível ou não combustível. O procedimento indicado a seguir é o procedimento para a caracterização de poeira combustível ou material particulado combustível: ensaio para temperatura mínima de ignição de uma nuvem de poeira (MIT – minimum ignition temperature) (ver Seção 8): forno do tipo GG (ver 8.1.2), ou forno do tipo BAM (ver 8.1.3) ensaio para temperatura mínima de ignição (MIT) da camada de poeira (ver 8.2); o ensaio para a energia mínima de ignição (MIE) da nuvem de poeira (ver 8.3); e o ensaio para a resistividade de poeira a granel (ver 8.4).

Os dados das características das poeiras são conhecidos e variam muito de acordo com as propriedades da amostra, por exemplo, umidade e tamanho da partícula. Os dados apresentados neste banco de dados representam uma grande coleção de informações que podem ser utilizadas quando forem cuidadosamente avaliados para a devida aplicação para o material combustível em consideração disponível existente.

Anúncios

Riscos e emergência no transporte rodoviário de produtos perigosos conforme a norma técnica

Guia de produtos e serviços qualificados

adnormas_anuncio

Pode ser que você não saiba, mas, milhares de pessoas, diariamente, acessam normas técnicas ABNT NBR para especificarem um produto ou um serviço que precisam comprar ou contratar. Dessa forma, se seus produtos fazem parte de uma lista muito especial, produtos que atendem às normas técnicas brasileiras ABNT NBR, você não pode ficar fora do Target AdNormas.

Qualidade, no contexto da melhoria contínua, compreende o grau de atendimento (ou conformidade) de um produto, processo, serviço ou ainda um profissional a requisitos mínimos estabelecidos em normas ou regulamentos técnicos, ao menor custo possível para a sociedade. Dessa forma, você pode associar a sua marca à norma técnica que os seus produtos obrigatoriamente cumprem.

Agora, a sua empresa pode estar relacionada com a norma técnica quando potenciais clientes estiverem pesquisando sobre o que você oferece e querem um fornecedor qualificado.

Entre em contato e apareça agora mesmo na norma que desejar: (11) 5641-4655 ramal 883 ou https://www.adnormas.com.br/cadastrar

Pode-se definir esse tipo de transporte como sendo o carregamento de substância ou artigo, natural ou fabricado pelo homem, que em função de suas características físico-químicas e/ou toxicológicas representa perigo a saúde humana, ao patrimônio – público ou privado – e/ou ao meio ambiente. Assim, em linhas gerais, devem ser cumpridas as normas técnicas que estabelece a verificação dos requisitos operacionais mínimos para o transporte rodoviário de produtos perigosos referentes à saúde, segurança, meio ambiente e qualidade, sem prejuízo da obrigatoriedade de cumprimento da legislação, regulamentos e normas vigentes. O objetivo é atender à legislação, aos regulamentos e às normas vigentes de transporte de produtos perigosos verificando o atendimento às condições mínimas de segurança, sendo aplicada ao expedidor, destinatário (quando aplicável) e transportador, e, excluindo-se os itens obrigatórios específicos, podendo também ser aplicada ao transporte de produtos não perigosos.

A NBR 15480 de 02/2018 – Transporte rodoviário de produtos perigosos – Programa de gerenciamento de risco e plano de ação de emergência estabelece os requisitos mínimos para o gerenciamento dos riscos no transporte rodoviário de produtos perigosos (TRPP), por meio de orientações para a elaboração de programa de gerenciamento de risco (PGR) e plano de ação de emergência (PAE), cujos objetivos são, respectivamente, a prevenção dos eventos acidentais e o planejamento para a intervenção emergencial.

Deve-se observar as instruções normativas das instituições e órgãos afins, bem como os instrumentos legais pertinentes ao transporte rodoviário de produtos perigos os. Não é necessário portar o PGR e o PAE no veículo de transporte de carga. O PGR consiste em um documento que estabelece os mecanismos técnicos e administrativos para a gestão preventiva dos riscos decorrentes do transporte de produtos perigosos, com vistas à redução e controle dos fatores que contribuem para a ocorrência de acidentes com produtos perigosos.

O PAE se destina ao estabelecimento das técnicas, procedimentos, recursos e requisitos para a atuação das equipes de emergência nos acidentes ocorridos durante o transporte rodoviário de produtos perigosos e a consequente mitigação dos impactos socioambientais decorrentes. Embora o PAE seja um dos itens que integrem a estrutura do PGR, ele pode ser concebido como documento em separado, a fim de facilitar sua utilização. Todavia, deve estar em perfeita consonância com o escopo do programa.

Na elaboração do PGR e do respectivo PAE, deve ser considerada a capacidade de transporte de cada transportadora, bem como suas características operacionais, produtos transportados, peculiaridades das rotas, riscos do trajeto e ações preventivas e emergenciais adequadas aos riscos existentes. O PGR e o PAE são aplicáveis tanto ao transporte de produtos perigosos realizado com recursos e equipe do próprio transportador como àquele realizado por empresas terceirizadas ou subcontratadas.

O PGR e o PAE devem ser precedidos de estudo qualitativo que permita identificar os riscos do transporte de produtos perigosos, a abrangência, as consequências e a sensibilidade socioambiental dos ambientes passíveis de serem impactados. Opcionalmente podem ser empregados métodos quantitativos para análise dos riscos.

São exemplos de estudos qualitativos e quantitativos: técnicas e ferramentas de identificação de perigos, como análise preliminar de perigos (APP), What if, análises históricas de frequência de acidentes, emprego de modelos matemáticos para estimativa dos efeitos físicos, mapeamento e classificação dos elementos socioambientais ao longo das rotas, entre outras técnicas para análise dos riscos.

O PGR deve contemplar no mínimo a seguinte estrutura: introdução; objetivo; caracterização da atividade de transporte da empresa e da área de influência; análise de risco; revisão da análise de risco; gestão do programa; procedimentos operacionais; gerenciamento de mudanças; manutenção e garantia de integridade; investigação de acidentes e incidentes; plano de ação de emergência; capacitação de recursos humanos; equipe responsável pela elaboração do programa; bibliografia; apêndices e anexos.

Podem ser acrescidos outros tópicos considerados relevantes ao controle e mitigação dos riscos. O nível de detalhamento de cada item deve ser determinado em cada caso específico conforme as especificidades da empresa, produtos perigosos transportados, ambientes passíveis de serem afetados, impactos esperados e demais estudos e levantamentos preliminares adotados na identificação dos riscos.

O PGR pode ser elaborado pelos profissionais da própria empresa interessada e/ou por colaboradores externos contratados para tal finalidade. Todavia, em ambos os casos, são necessários o nome e a assinatura de um responsável da empresa e do(s) responsável(eis) pela elaboração do plano. A elaboração do PGR deve se basear, mas não se limitar, ao conteúdo mínimo descrito.

Deve contextualizar de forma sucinta a importância do gerenciamento de risco na política da empresa, pressupostos legais e método adotado na elaboração do PGR. Estabelecer o(s) objetivo(s) do programa no tocante aos aspectos preventivos e de intervenção durante as emergências no transporte rodoviário de produtos perigosos. Fazer a caracterização da atividade de transporte da empresa e da área de influência inclui os dados gerais de identificação: razão social, nome de fantasia, logradouro, bairro, município, CEP, responsável, telefone e endereço eletrônico (e-mail). Aplicam-se tanto à sede como às filiais.

Devem ser descritas as operações, descrevendo sucintamente as atividades desenvolvidas pela empresa, rotas na forma de tabelas e mapas, inclusive a quantidade de viagens mensal/anual prevista por rota ou região. Abordar, quando aplicável, os processos de manutenção, descontaminação, limpeza, redespacho, transbordo, armazenamento temporário de resíduos de acidentes, entre outros desenvolvidos pela empresa, que tenham relação com o transporte de produtos perigosos.

Listar os produtos perigosos transportados na forma de tabela que contenha, minimamente, o nome apropriado para embarque, nome técnico ou comercial, quando aplicável, número da ONU, classe e subclasse de risco, número de risco e grupo de embalagem. Apresentar estimativa do volume transportado ao mês/ano para cada produto perigoso e correlacionar com as rotas ou regiões.

Para as instalações, descrever sucintamente as instalações físicas da sede da empresa e das filiais. Frota para transporte a granel e fracionado: listar e quantificar a frota por família (para transporte a granel) e tipo de veículo e equipamento de transporte. A empresa deve manter os dados técnicos do projeto e construção para cada família, tipo de veículo e equipamento de transporte, exceto para contêiner de carga, contêiner-tanque, contentores de múltiplos elementos para gás (MEGC) e tanque portátil.

A família de veículo para transporte a granel consta na Portaria Inmetro nº 16:2016. A sinalização e sistemas de segurança adicionais: descrever a simbologia de identificação aplicável para o transporte terrestre, conforme NBR 7500, que pode ser apresentada em figuras-tipo anexadas ao PGR. Descrever, ainda, o conjunto de equipamentos para emergências das unidades de transporte (ver NBR 9735), bem como os sistemas de gerenciamento de risco com rastreamento de cargas/veículo e os sistemas de comunicação, quando existentes ou obrigatórios.

A área de influência corresponde ao traçado das rotas ou regiões adotadas pela empresa para o transporte de produtos perigosos. A representação gráfica das rotas e áreas adjacentes pode ser feita no formato de um mapa geral do traçado sobre base cartográfica ou imagem de satélite, em escala e resolução que permitam a identificação dos elementos socioambientais de interesse. De forma opcional ou concomitante, pode ser adotada a representação no formato de planta retigráfica ou qualquer software de representação de dados geográficos.

Os elementos socioambientais ao longo das rotas ou regiões, a serem levantados com base em dados secundários obtidos em fontes oficiais, compreendem a hidrografia, malha rodoviária, ferroviária e dutoviária, limites municipais, serviços e pontos de apoio das administradoras públicas e privadas das rodovias utilizadas, postos da Polícia Rodoviária, unidades do Corpo de Bombeiros, áreas de ocupação humana, sistemas de captação superficial e tratamento de água, unidades de conservação, entre outras áreas de importância ambiental e socioeconômica.

Para a análise de risco, devem ser elaborados estudos que permitam a identificação e análise dos riscos envolvidos no transporte de produtos perigosos, ou ainda outros estudos qualitativos e quantitativos, desde que devidamente fundamentados. Recomenda-se, no mínimo, o uso da técnica de análise preliminar de perigos (APP), que deve ser elaborada a partir de reunião da qual participem profissionais das diversas áreas da empresa.

A APP deve focalizar todos os eventos perigosos cujas falhas tenham origem no transporte rodoviário de produtos perigosos, contemplando as falhas de equipamentos e operacionais. Na APP devem ser identificados os perigos, as causas e as consequências dos possíveis receptores atingidos ou afetados direta ou indiretamente (solo, água, fauna, flora, áreas urbanizadas, entre outros), bem como as proteções existentes e recomendações pertinentes aos perigos identificados, cujos resultados devem ser consolidados em planilha.

A implantação das recomendações deve ser objeto de plano de ação a ser gerenciado no âmbito do PGR. As hipóteses acidentais podem tomar como premissa os produtos perigosos considerados individualmente, de acordo com suas características físico-químicas ou por classe de risco, conforme preconizado pela legislação de transporte rodoviário vigente.

Podem ser adotados outros critérios para a definição das hipóteses acidentais de acordo com as características de cada empresa, produtos envolvidos e peculiaridades das rotas ou regiões utilizadas. Dados históricos de acidentes da empresa ou de banco de dados oficiais podem ser utilizados como subsídio para a formulação das hipóteses acidentais, de modo a permitir a análise das causas, consequências, classes dos produtos envolvidas, entre outras estatísticas que permitam a formulação das hipóteses acidentais.

As hipóteses acidentais devem ser consolidadas e apresentadas em tabela por ordem sequencial, para estabelecer posteriormente as ações de resposta emergenciais do PAE. A APP pode constar integralmente no conteúdo do PGR ou ser elaborada como um documento à parte. Na segunda opção, devem ser inseridas no corpo do PGR uma síntese do método e a relação das hipóteses acidentais consolidadas.

A revisão da(s) técnica(s) de análise de risco utilizada(s) na elaboração do PGR deve conter as diretrizes metodológicas na forma de um procedimento. Os fatos ensejadores das revisões, como alterações operacionais expressivas, novos produtos transportados ou recomendações de mudanças decorrentes da análise de acidentes ocorridos, devem ser claramente estabelecidos, assim como devem ser estabelecidos os responsáveis pelas revisões. Se inexistentes os fatos ensejadores para a revisão da(s) técnica(s) de análise(s) de risco, esta(s) deve(m) ser revalidada(s) no máximo a cada cinco anos.

Deve-se elaborar fluxograma geral de acionamento e tomada de decisões das equipes próprias, subcontratadas ou terceirizadas, para o atendimento emergencial. Atentar para a definição das etapas do processo de decisão e responsáveis de acordo com as hipóteses acidentais.

O fluxograma pode conter as chaves de decisão para a comunicação dos órgãos públicos e demais elos da cadeia de responsabilidade em acidentes com produtos perigosos, que não se confundem com aquelas de responsabilidade exclusiva da empresa. O fluxograma pode ser estratificado conforme o porte da emergência, a fim de manter coerência com a classificação em níveis citada.

De forma complementar, podem ser criados fluxogramas específicos para cada procedimento de controle emergencial. A figura fornece um exemplo simplificado de fluxograma geral de acionamento. Deve-se criar padrão documental, impresso ou em meio eletrônico, para registro das informações relativas aos acidentes desde a primeira comunicação do evento até a finalização das ações de campo.

Este padrão deve conter informações relativas à cronologia dos eventos, localidade, identificação do informante, veículos e produtos envolvidos, características do sinistro, áreas atingidas, aspectos socioambientais do local, órgãos públicos e empresas acionadas, entre outras. Tais informações devem subsidiar a formação do banco de dados citado. No Anexo B é apresentado um exemplo simplificado de formulário para registro inicial do atendimento aos acidentes.

A empresa deve estabelecer e manter a capacidade de comunicação com a(s) equipe(s) técnica(s) de atendimento à emergência, embarcador, comunidade, imprensa e órgãos públicos, de modo a otimizar o fluxo de informações, fazendo uso de equipamentos e recursos apropriados, como, por exemplo, radiocomunicadores, telefones celulares, megafones etc.

O sistema de comunicação do PAE, quer seja próprio ou terceirizado, deve operar de forma ininterrupta, de modo a garantir o acionamento das equipes, fornecedores e órgãos públicos, bem como o contato durante o atendimento às emergências, sempre que necessário.

Para cada hipótese acidental identificada, deve ser elaborado o respectivo procedimento de controle emergencial, que deve conter as diretrizes para atuação das equipes de intervenção. Para os casos nos quais for identificada uma quantidade expressiva de hipóteses de acidentes, admite-se que sejam elaborados procedimentos de resposta que se apliquem a mais de uma hipótese (grupo de hipóteses assemelhadas), desde que os riscos e as ações de resposta aplicáveis sejam similares.

Os procedimentos devem apresentar as táticas e técnicas de intervenção de forma objetiva e, preferencialmente, na forma de um “passo a passo” encadeado de forma lógica e sequencial, com os respectivos responsáveis pela execução, conforme estabelecido na estrutura organizacional, e devem ser específicos para cada tipo de hipótese acidental ou grupo de hipóteses identificadas na análise de risco.

São considerados como conteúdo mínimo de um procedimento de controle emergencial: ações de avaliação inicial e aproximação; avaliação dos impactos socioambientais; avaliação dos riscos e demais aspectos de segurança; acionamento dos órgãos públicos; cadeia de comando e fluxo de comunicação; monitoramento ambiental; acionamento da estrutura do PAE e dos órgãos públicos; zoneamento de áreas; isolamento e controle de acesso; definição dos equipamentos de proteção individual e de combate adequados às atividades e riscos; combate a vazamentos; controle de fontes de ignição e incêndios; contenção de derrames em solo, ar e água; recolhimento de produtos; limpeza de ambientes; transbordo de carga; recolhimento e acondicionamento de resíduos, avaliação periódica do cenário acidental; registros das ações desenvolvidas; critérios para encerramento da emergência; desmobilização; entre outros.

Para a capacitação de recursos humanos, estabelecer procedimento que defina os requisitos e permita o gerenciamento da capacitação da força de trabalho e terceirizados que exerçam atividades relacionadas à operação, manutenção, inspeção, atuação emergencial, entre outros. O procedimento deve conter a política de capacitação da empresa, o conteúdo programático, tipologia (teórico, prático, inicial, periódico, reciclagem etc.), frequência dos treinamentos, público-alvo com base nas funções e competências dentro da hierarquia da empresa, recursos necessários, registro e acompanhamento. Os treinamentos para atuação em emergências são abordados no âmbito do PAE. Todavia, são gerenciados por meio do PGR.

Como evitar acidentes com a rede elétrica

Clicando aqui é possível ter conhecimento dos Projetos de Normas Brasileiras e Mercosul, disponíveis para Consulta Nacional. Selecione o Comitê Técnico desejado e clique sobre o código ou título para consultar e votar.

Rodrigo Cunha

“Não corro riscos de acidentes com a rede elétrica. É apenas baixa tensão”. O seu caixão pode ficar um pouco mais aberto com um golpe de baixa tensão, mas, mesmo assim, você ainda estará morto. A única diferença entre baixa e alta tensão é a rapidez com que esta pode matá-lo. Se a alta tensão mata instantaneamente, a baixa tensão apenas prolonga um pouco mais o desfecho fatal.

Estudos sobre exposições a choques de baixa tensão apontam que um choque de 120 volts pode matar em até 48 horas. Além disso, muitos médicos da sala de emergência não estão familiarizados com o choque elétrico e um eletrocardiograma pode não mostrar que existe um problema. A lesão no músculo cardíaco tende a se espalhar ao longo do tempo e nem sempre pode ser identificada nesse tipo de exame.

Ao se trabalhar em sistemas ou equipamentos energizados ao invés de desligá-los, isso é “coisa de homem”. É muito comum em usinas de energia nunca desenergizar os equipamentos.

No entanto, a desenergização é a única maneira possível de eliminar totalmente os riscos. O Equipamento de Proteção Individual (EPI) apenas aumenta as suas chances de sobrevivência, mas não afasta o perigo. Certifique-se de que o equipamento a ser manipulado e os sistemas estejam em condições de trabalho seguras do ponto de vista da eletricidade e o EPI e todos os procedimentos apropriados sejam utilizados para a proteção do profissional.

Outro problema: não usar os Equipamentos de Proteção Individual. As pessoas realmente não gostam de usar luvas de isolamento de borracha e outros tipos de equipamentos de proteção. O argumento é que é muito quente, desconfortável, restringe o movimento e retarda todo o trabalho.

Não apenas por usá-lo, mas por ter de selecionar o EPI certo e ficar colocando-o e tirando-o a cada momento. Só que este mesmo EPI também salvará sua vida. Um dos momentos mais prováveis de as pessoas negligenciam o uso dos equipamentos de proteção é justamente durante a resolução de problemas.

A lógica parece ser: “Eu não estou realmente trabalhando nisso, apenas testando”. No entanto, pesquisas revelam que 24% dos acidentes elétricos são causados durante a resolução de problemas, testes de tensão e atividades similares. Temos uma tendência a ignorar os perigos associados às tarefas que consideramos “seguras”.

Não se pode dormir durante um treinamento de segurança. Nada como um bom cochilo para nos prepararmos para um árduo dia de trabalho! Reuniões e treinamentos de segurança podem ser chatos e cansativos, mas são fundamentais para a prevenção de possíveis problemas. Por isso, é tão importante que os treinamentos sejam focados, concisos e interessantes, caso contrário, ninguém escuta.

Quando os medidores estiverem desgastados, é hora de substituí-los. Não seja emocionalmente apegado aos seus equipamentos. Se você realmente ama seu antigo testador de tensão, leve-o para casa e faça um pequeno santuário, assim você estará realmente seguro. O comitê da NFPA (Códigos Nacionais Contra Incêndio) estava preocupado o suficiente com o uso deste tipo de equipamento que inseriu dois requisitos diferentes orientando para o trabalho com ferramentas elétricas portáteis e equipamentos de teste adequadamente classificados.

Um item fundamental: não vestir o equipamento de segurança correto. Não, não estou me repetindo. Algumas pessoas pensam que, se vestirem algo por meio do EPI, qualquer coisa, isso deve ser suficiente. Embora seja verdade que as lesões sofridas provavelmente não serão tão graves quanto se você não vestir nenhum equipamento, há uma grande probabilidade de que, se o EPI correto fosse utilizado, você não sofreria nenhuma lesão.

Isso reafirma o que já foi escrito, pois se você não prestar atenção durante o treinamento de segurança, provavelmente você não poderá escolher o equipamento correto. Você sabe como interpretar as etiquetas Arc Flash? O que você faz se não houver uma etiqueta Arc Flash nos equipamentos de energia elétrica? Você sabe como usar as tabelas do NFPA 70E? Você se refere às notas quando usa as tabelas?

Se você responder “não” a qualquer uma dessas questões, não está escolhendo o EPI correto. Na verdade, você provavelmente não seria considerado qualificado pelos órgãos reguladores. Sua empresa tem a responsabilidade de fornecer treinamento para que você atenda a definição destes órgãos como um eletricista qualificado, caso contrário você estará exposto ao perigo. É o seu corpo que será queimado! Você precisa fazer a lição de casa para se proteger.

Não realizar a manutenção necessária dos equipamentos e sistema de energia é muito comum. Muitas vezes, as empresas consideram os custos de manutenção como uma despesa indireta. Nada poderia estar mais longe da verdade.

O problema é que é difícil depositar as economias em algo que não aparece. Falhas não programadas, perda de produção, compra de equipamentos em preços premium, horas extras, eliminação do equipamento de cratera, por exemplo.

Aqueles de nós que já atravessaram as batalhas envolvidas com os processos de manutenção, conhecem bem os custos de uma postura negligente. Mas, para os novos gerentes e certas contabilidades mais recentes, é realmente difícil de compreender esta necessidade.

Não carregar suas luvas. Já observei em aulas de treinamento de segurança que pouquíssimas pessoas realmente carregam sempre com elas suas luvas isolantes de borracha. Bem, adivinhe, se você não as carrega, quer dizer que tampouco as usa. Isso pode vir acompanhado do pensamento de que uma carga de baixa tensão não irá te machucar. “Nós ficamos apenas tontos e isso não é um grande problema!”, pensam. No início de 2008, no Texas, três trabalhadores da TXU trabalhavam em um transformador de 120/220 volts. Um dos trabalhadores levantou-se e disse: “Bem, meninos. Parece que eu consegui de novo!”, deu três passos e estava morto. Carregue suas luvas e use-as, sempre.

As pessoas tendem a odiar a papelada. Esta é, porém, uma boa hora para abrir uma exceção. A OSHA quer que o profissional planeje cada trabalho, tenha as ferramentas e equipamentos adequados para a sua segurança e siga um planejamento. A Licença de Trabalho Elétrico Energizado fornece os meios para planejar cada trabalho, avaliar os riscos, escolher o EPI mais adequado e documentá-lo.

Nós passamos pela vida cometendo pequenos erros atrás de pequenos erros e nada acontece, até o momento de um acidente, e quando este acontece, perdemos o controle. Por isso, o melhor a se fazer é evitar e prever as falhas, reforçando a segurança em nosso ambiente de trabalho.

Rodrigo Cunha é gerente de produto e aplicação da Fluke do Brasil.

Publicada a nova ISO 31000

Os danos à reputação ou à marca, o crime cibernético, o risco político e o terrorismo são alguns dos problemas que as organizações privadas e públicas de todos os tipos e tamanhos do mundo devem enfrentar cada vez mais. A última versão da ISO 31000:2018 – Risk management Guidelines foi publicada com a intenção de gerenciar a incerteza dos riscos.

O risco entra em todas as decisões da vida, mas claramente algumas delas precisam de uma abordagem estruturada. Por exemplo, um executivo sênior ou um funcionário do governo pode precisar fazer julgamentos de risco associados a situações muito complexas. Lidar com o risco é parte da governança e liderança e é fundamental para a forma como uma organização é gerenciada em todos os níveis.

As práticas de gestão de risco de ontem já não são adequadas para lidar com as ameaças de hoje e precisam evoluir. Essas considerações foram o cerne da revisão da ISO 31000 que se tornou, um guia mais claro, mais curto e mais conciso que ajudará as organizações a usar os princípios de gestão de risco para melhorar o planejamento e tomar melhores decisões.

Algumas mudanças desde a edição anterior: revisão dos princípios da gestão de riscos, que são os principais critérios para o sucesso; deve-se concentrar na liderança da alta administração que garantirá que o gerenciamento de riscos seja integrado em todas as atividades organizacionais, começando pela governança; maior ênfase na natureza iterativa da gestão de riscos, com base em novas experiências, conhecimentos e análises para a revisão de elementos de processo, ações e controles em cada etapa do processo; e racionalização do conteúdo com maior foco na manutenção de um modelo de sistemas abertos que regularmente troca feedback com seu ambiente externo para atender a múltiplas necessidades e contextos.

Segundo Jason Brown, presidente do comitê técnico ISO/TC 262 que desenvolveu o guia, a versão revisada da ISO 31000 se concentra na integração com a organização e no papel dos líderes e suas responsabilidades. “Os profissionais de risco estão muitas vezes à margem do gerenciamento organizacional e essa ênfase irá ajudá-los a demonstrar que o gerenciamento de riscos é parte integrante dos negócios”.

Cada seção foi revisada com o espírito de clareza, usando linguagem mais simples para facilitar a compreensão e torná-la acessível a todas as partes interessadas. A ideia foi colocar um foco maior na criação e proteção de valor como o principal motor de gerenciamento de riscos e possui outros princípios relacionados, como a melhoria contínua, a inclusão de partes interessadas, sendo personalizado para a organização e consideração de fatores humanos e culturais.

O risco agora é definido como o efeito da incerteza sobre os objetivos que se concentra no efeito do conhecimento incompleto de eventos ou circunstâncias na tomada de decisões de uma organização. Isso requer uma mudança na compreensão tradicional do risco, forçando as organizações a adaptar o gerenciamento de riscos às suas necessidades e objetivos – um benefício fundamental da ISO 31000.

Brown explica que ela fornece uma estrutura de gerenciamento de riscos que suporte todas as atividades, incluindo a tomada de decisões em todos os níveis da organização. A sua estrutura e seus processos devem ser integrados com os sistemas de gerenciamento para garantir a consistência e a eficácia do controle de gerenciamento em todas as áreas da organização. “Isso incluiu a estratégia e o planejamento, a resiliência organizacional, a Tecnologia da Informação (TI), a governança corporativa, o RH, a conformidade, a qualidade, a saúde e a segurança”.

O documento resultante não é apenas uma nova versão da ISO 31000, pois, além de uma revisão simples, dá um novo significado à maneira como gerenciaremos o risco será no futuro. Em relação à certificação, fornece diretrizes, não requisitos e, portanto, não se destina a fins de certificação. Isso dá aos gerentes a flexibilidade para implementar a norma de forma a atender às necessidades e objetivos da organização.

Brown acrescenta que o principal objetivo do ISO/TC 262 foi ajudar as organizações a garantir sua viabilidade e sucesso a longo prazo, no interesse de todas as partes interessadas, fornecendo boas práticas de gestão de riscos porque a sua falta está ligada ao fracasso. Dessa forma, o documento é para uso de pessoas que criam e protegem valor em organizações, gerenciando riscos, tomando decisões, estabelecendo e alcançando objetivos e melhorando o desempenho.

Fornece as diretrizes sobre gestão de riscos enfrentados pelas organizações. A aplicação dessas diretrizes pode ser personalizada para qualquer organização e seu contexto.

Este documento fornece uma abordagem comum para gerenciar qualquer tipo de risco e não é específico do setor ou do setor. Pode ser usado ao longo da vida da organização e pode ser aplicado a qualquer atividade, incluindo a tomada de decisões em todos os níveis.

Organizações de todos os tipos e tamanhos enfrentam fatores e influências externas e internas que tornam insegura se eles alcançarão seus objetivos. A gestão dos riscos é iterativa e auxilia as organizações na definição da estratégia, na consecução dos objetivos e na tomada de decisões informadas. É parte da governança e liderança e é fundamental para a forma como a organização é gerenciada em todos os níveis. Contribui para a melhoria dos sistemas de gestão.

A gestão do risco faz parte de todas as atividades associadas a uma organização e inclui a interação com as partes interessadas. Deve considerar o contexto externo e interno da organização, incluindo os comportamentos humanos e os fatores culturais.

A gestão de risco baseia-se nos princípios, estrutura e processo descritos neste documento, conforme ilustrado na figura 1. Esses componentes podem já existir total ou parcialmente na organização, no entanto, eles podem precisar ser adaptados ou melhorados para que o gerenciamento do risco seja eficiente, eficaz e consistente.

Figura 1 – Princípios, estrutura e processo

O guia define o risco como o efeito da incerteza sobre os objetivos. Um efeito é um desvio do esperado. Pode ser positivo, negativo ou ambos, e pode abordar, criar ou resultar em oportunidades e ameaças. Os objetivos podem ter diferentes aspectos e categorias e podem ser aplicados em diferentes níveis. O risco geralmente expresso em termos de fontes de risco (3.4), eventos potenciais (3.5), suas consequências (3.6) e sua probabilidade (3.7).

Brasil no fundo do poço no ranking da competitividade

Conforme estudo da Confederação Nacional da Indústria (CNI), o Brasil é o penúltimo colocado no ranking geral de competitividade entre 18 países selecionados. Apesar de registrar mudanças nos rankings de sete dos nove fatores avaliados, o país se mantém em penúltimo lugar desde a edição de 2012, quando o ranking geral começou a ser divulgado. Entre os nove fatores, a melhor posição do Brasil é em Disponibilidade e custo de mão de obra (4º de 16). Em três fatores – Disponibilidade e custo de capital, Ambiente macroeconômico e Ambiente de negócios –, o país está na última posição (18º de 18).

Dessa forma, o país corre o risco de ser superado pela Argentina e cair para o último lugar do ranking. O estudo mostra que, em 2017, a Argentina passou à frente do Brasil nos fatores ambiente macroeconômico e ambiente de negócios. Em outros três fatores – disponibilidade e custo de capital, infraestrutura e logística e educação, a Argentina está na frente do Brasil. “No ranking geral, o Brasil só não perdeu a posição para a Argentina, pois, nos fatores em que possui vantagens, o desempenho brasileiro ainda é muito superior ao argentino”, constata a CNI.

“A Argentina vem melhorando seu ambiente de negócios e reduzindo o desequilíbrio das contas públicas”, afirma o gerente-executivo de Pesquisa e Competitividade da CNI, Renato da Fonseca. Ele lembra que o Brasil fez mudanças importantes em 2017, mas os demais países também estão avançando e conseguem se manter à frente na corrida da competitividade. “Para enfrentar os competidores, o Brasil precisa atacar problemas antigos e fazer as reformas que melhorem o ambiente de negócios e o ambiente macroeconômico”, completa Fonseca.

O ranking anual compara o Brasil com 17 países de economias similares: África do Sul, Argentina, Austrália, Canadá, Chile, China, Colômbia, Coreia do Sul, Espanha, Índia, Indonésia, México, Peru, Polônia, Rússia, Tailândia e Turquia, em nove fatores decisivos para a competitividade. Os países são avaliados em nove fatores e 20 subfatores que afetam a eficiência e o desempenho das empresas na conquista de mercados.

Os nove fatores que têm impacto na competitividade considerados pela CNI são: disponibilidade e custo de mão de obra, disponibilidade e custo de capital, infraestrutura e logística, peso dos tributos, ambiente macroeconômico, competição e escala do mercado doméstico, ambiente de negócios, educação e tecnologia e inovação. Os fatores foram desdobrados em 20 subfatores, aos quais foram associadas 56 variáveis.

Conforme o estudo, o Brasil só fica entre os cinco primeiros colocados no fator disponibilidade e custo da mão de obra. O primeiro lugar neste fator é da Indonésia, seguida pelo Peru e a China. “Na comparação com o ranking de 2016, o Brasil avançou sete posições no fator disponibilidade e custo da mão de obra, o maior avanço registrado entre os 16 países considerados e voltou a ocupar o terço superior do ranking”, informa a CNI. Isso é resultado da melhora da posição do país nos subfatores custo e disponibilidade de mão de obra.

“No subfator custo da mão de obra o Brasil subiu da 12ª para a 4ª posição devido à maior produtividade no trabalho na indústria”, diz o estudo.  No subfator disponibilidade da mão de obra, o país avançou seis posições e subiu do 10º para o 4º lugar, por que, depois de um longo período de crise e de desalento com o desemprego, a população economicamente ativa voltou a crescer.

O Brasil também avançou uma posição no fator peso dos tributos e assumiu a 15ª posição que, no ranking de 2016, era ocupada pela Polônia. Nesse fator, a Tailândia ocupa o primeiro lugar e a Indonésia, o segundo. Em 2017, o Brasil ficou à frente de Argentina (18º lugar), Espanha (17 º lugar) e Polônia (16º). Mesmo assim, o país se mantém em uma posição desfavorável, especialmente porque o total de impostos recolhidos pelas empresas equivalia, em 2017, a 68,4% do lucro. No Canadá, que está no 3º lugar do ranking, o peso dos tributos, esse valor equivale a 20,9% do lucro das empresas.

Mas entre 2016 e 2017, o Brasil caiu da 15ª para a 17ª posição no fator infraestrutura e logística, como resultado da baixa competitividade nos subfatores infraestrutura de transportes, de energia e logística internacional. Exemplo da baixa competitividade do Brasil no quesito infraestrutura é o elevado custo da energia elétrica para a indústria. Aqui, o kWh custava 0,15 em 2016. No Chile, país com a segunda maior tarifa, o custo do kWh era de US$ 0,12.

O Brasil está em último lugar do ranking nos fatores ambiente macroeconômico, ambiente de negócios e disponibilidade e custo de capital. No fator ambiente de negócios, a Argentina passou à frente do Brasil, onde a eficiência do estado, a segurança jurídica, a burocracia e as relações do trabalho têm a pior avaliação entre os países que integram o ranking. A avaliação dos argentinos melhorou nos subfatores eficiência do estado e em segurança jurídica, burocracia e relações do trabalho.

O Brasil também é o último do ranking no fator ambiente macroeconômico. “Taxa de inflação, dívida bruta e carga de juros elevadas e baixa taxa de investimento contribuem para a falta de competitividade do país”, diz o estudo.  Nesse fator, a China está em primeiro lugar. Em segundo, vem a Indonésia e, em terceiro, a Turquia.

Atuando no pior ambiente macroeconômico e em um ambiente de negócios desfavorável, a indústria brasileira terá dificuldades de se recuperar da crise. “Se não avançarmos na agenda de competitividade, a reação será de curta duração”, observa Renato da Fonseca. Por isso, destaca ele, é importante que o Brasil faça as reformas estruturais, como a da Previdência e a tributária, para garantir o equilíbrio das contas públicas no longo prazo e estimular os investimentos.

Os riscos de incêndios no transporte sobre trilhos

Os problemas no trânsito nas cidades brasileiras evidenciam a necessidade de se ampliar o transporte sobre trilhos – um sistema elétrico que não polui e não sofre com as interferências urbanas. Por exemplo, os trens metropolitanos, também chamados de trens de subúrbio, apresentam elevada capacidade de transporte (capacidade da linha) – de 40.000 a 80.000 passageiros por sentido por hora. Ligam, nas regiões metropolitanas, os municípios periféricos à metrópole (capital ou cidade mais populosa), numa dinâmica de deslocamento pendular casa-trabalho-casa.

Os metrôs são sistemas de alta capacidade – movimentam de 40.000 a 80.000 passageiros por sentido por hora – que operam em vias totalmente segregadas, podendo utilizar infraestrutura subterrânea, de superfície, elevada e em trincheira. Nas zonas centrais, predomina o traçado subterrâneo e, nos bairros, os metrôs podem circular também em superfície, elevados ou em trincheira, mas sempre com segregação total.

Os monotrilhos são um sistema de transporte de média capacidade, composto de um material rodante leve, que circula em via elevada. Transportam de 20.000 a 48.000 passageiros por sentido por hora, com espaçamento entre estações de 500 a 1.000 metros e intervalo entre trens de 180 a 480 segundos no horário de pico (3 a 8 minutos).

Os veículos leves sobre trilhos (VLT) são uma modalidade de transporte de média capacidade. Movimentam de 7.000 a 24.000 passageiros por sentido por hora com linhas curtas atendendo os centros das cidades, cujo espaçamento entre estações varia de 500 a 800 metros, podendo ter segregação total ou parcial.

Quanto aos riscos de incêndios nesses meios de transporte sobre trilhos, o desenvolvimento inicial do fogo dentro de um veículo depende do desempenho do material de acabamento frente ao fogo, do tamanho e da localização da chama inicial, do tamanho do enclausuramento onde o incêndio se iniciou e da ventilação no local de enclausuramento. O desempenho do material frente ao fogo é mais comumente considerado na avaliação do desempenho do veículo ao fogo.

O desempenho do material frente ao fogo é medido em termos de inflamabilidade, da taxa de liberação de calor e da produção de gases e fumaça tóxicas. A propagação das chamas e o desenvolvimento do incêndio dependem da inflamabilidade do material e da taxa de liberação de calor, assim como da intensidade do incêndio inicial e do ambiente próximo ao incêndio.

Para uma avaliação mais detalhada do desempenho dos materiais nos ensaios com o calorímetro tipo cone, devem ser realizados ensaios com amostras em duplicatas nos três diferentes níveis de níveis de fluxo de calor usados para a ignição do material (por exemplo, 25 kW/m², 50 kW/m² e 75 kW/m²).

Este calorímetro também pode ser usado para medir o fluxo crítico de calor de material, que é o fluxo de calor mais baixo em que este material entra em ignição. O fluxo crítico de calor pode ser usado para medir a temperatura mínima da qual o material entra em ignição. As análises para determinar a propagação das chamas nos materiais vão requerer um conjunto mais detalhado de dados do calorímetro junto com o fluxo de calor crítico do material.

A NBR 16484 de 12/2017 – Segurança contra incêndio para sistemas de transporte sobre trilhos — Requisitos especifica os requisitos de proteção contra incêndio e da vida de usuários em trânsito sobre trilhos subterrâneos, ao nível do solo e aéreos, incluindo estações, vias, trilhos, sistemas de ventilação de emergência, veículos sobre trilhos, análise de riscos de incêndio, procedimentos de emergência, sistemas de controle e comunicação e áreas de garagem de veículos. Abrange aspectos relacionados com: a proteção à vida humana; o controle e propagação do incêndio; o controle e propagação da fumaça; a redução de danos ao meio ambiente; a integridade física das instalações, estações e vias pelo tempo necessário para escape dos ocupantes durante cenários de incêndio e explosão; proporcionar meios de controle, extinção do incêndio e atendimento à emergência; condições de acesso às operações das brigadas de salvamento e combate a incêndio, por meio dos procedimentos operacionais implantados; a redução de danos ao patrimônio e viabilização do retorno do sistema às condições normais de operação o mais breve possível.

Esta norma não se aplica às instalações, equipamentos ou estruturas existentes ou cuja construção ou implantação tenha sido aprovada antes da data de entrada em vigor. Porém, quando da substituição de sistemas e equipamentos, estes devem atender a esta norma. É aplicável aos novos sistemas metroferroviários e às extensões de sistemas, existentes.

Não é aplicável aos serviços de manutenção destes sistemas, que são de responsabilidade da empresa operadora, bem como aos seguintes serviços: sistemas convencionais de carga; ônibus e veículos do tipo trolley; trem que transporte circo; operações de excursão, turística, histórica, etc., com equipamentos antiquados; paradas de abrigo para embarque ou desembarque de passageiros, localizadas em vias públicas. Esta norma não impede a utilização de sistemas, métodos ou dispositivos que possuam qualidade, poder de resistência ao fogo, eficiência, durabilidade e segurança equivalentes ou superiores aos itens por ela recomendados.

A estação deve ser utilizada por passageiros que esperam na plataforma para embarque ou desembarque. Convém que considerações especiais sejam adotadas, nos casos de ocupação comercial contígua da estação ou onde a estação esteja integrada com edificação de ocupação que não seja a de trânsito de passageiros do sistema metroferroviário. A estação também pode ser utilizada por trabalhadores do sistema metroferroviário ou pessoas contratadas para serviços de manutenção, limpeza, segurança e inspeção.

O acesso à estação e às saídas de emergência também deve atender às NBR 9050 e NBR 9077, respectivamente. Os requisitos para cabos elétricos instalados em estações devem atender às NBR 5410, NBR 13418, NBR 13570 e NBR 15688, e à Seção 9. Todos os fios e cabos devem ter características de não propagação e autoextinção de chamas, conforme a NBR 6245.

Os fios e cabos devem atender à ABNT NBR 13248, para baixíssima emissão de fumaça e para ser livres de materiais halogenados, bem como devem possuir isolação igual ou superior a 1 kV. Visando manter a integridade e funcionamento de cabos elétricos, de controle e de detecção em uma situação de incêndio, convém que os bandejamentos ou leitos atendam ao TRRF mínimo de 120 min. Os cabos que alimentam os sistemas de emergência devem ser projetados e fabricados para suportarem elevadas temperaturas, de acordo com a Seção 9.

O projeto da rota de escape da estação deve ser dimensionado com base na condição de emergência requerida pela evacuação do trem, plataformas e da estação até o ponto seguro definido pelo operador do serviço de transporte sobre trilhos. É permitida a utilização de escadas fixas e rolantes como rota de escape. Para o cálculo da capacidade de evacuação da estação, deve-se considerar a contribuição destas escadas para se dimensionar a rota de escape.

Deve-se considerar como meio alternativo de escape o seguinte: ao menos duas rotas de escape em posições distintas devem ser previstas em cada plataforma da estação; deve ser permitida a convergência de fluxo de rotas de escape de outras plataformas da estação. O trajeto comum na rota de escape, a partir do final da plataforma, não pode exceder 25 m ou o comprimento de um vagão. Considerar o de maior comprimento entre os dois casos.

As escadas rolantes são permitidas como meio de saída em estações, desde que os alguns critérios sejam atendidos. As escadas rolantes devem ser construídas com materiais não combustíveis; é permitido que escadas rolantes operando na direção de saída continuem operando; escadas rolantes operando no sentido contrário de saída devem ser interrompidas local ou remotamente, como a seguir: localmente, por dispositivo de parada manual na escada rolante; remotamente, por um dos seguintes critérios: um dispositivo de parada manual em um local remoto; como parte de uma resposta ao plano de ação de emergência da estação.

Quando prevista a parada remota de escadas rolantes consideradas como rota de escape, um dos seguintes critérios deve ser aplicado: a parada da escada rolante deve ser precedida por um sinal sonoro de no mínimo 15 s ou mensagem de aviso audível aos usuários da escada rolante; onde as escadas rolantes estiverem equipadas com os controles necessários para desacelerar de forma controlada a plena carga nominal, a parada deve ser adiada por pelo menos 5 s antes de começar a desaceleração, e a taxa de desaceleração deve ser maior do que 0,052 m/s².

Quando um sinal sonoro ou mensagem de aviso for utilizado, aplica-se o seguinte: o sinal da mensagem deve ter uma intensidade de som de pelo menos 15 dBA acima do nível do som médio ambiente em toda a extensão da escada rolante; o sinal deve ser diferente do sinal de alarme de incêndio; a mensagem de alerta deve atender aos requisitos de audição e inteligibilidade.

É permitida a instalação de portas de borda de plataforma horizontais entre as plataformas da estação e as vias, desde que atendam aos seguintes critérios: devem permitir o escape de emergência dos trens, independentemente da posição de parada do trem na plataforma; para abertura total da porta de emergência no lado da via do trem, a força aplicada no dispositivo de abertura deve ser inferior a 220 N; as portas devem ser projetadas para resistir a pressões positivas e negativas pela passagem dos trens nas vias da estação.

A carga de ocupação para a estação deve se basear no carregamento de todos os trens que entram simultaneamente na estação em operação normal e na carga ocupacional da estação correspondente aos passageiros que esperam na plataforma. Deve ser considerada para o cálculo da carga de ocupação aquela contida em cada trem estacionado na plataforma. A base de cálculo deve considerar a carga ocupacional do período de pico na estação como o utilizado no projeto da estação ou na atualização do sistema operacional.

Para estações que atendam às áreas de serviços, como centros cívicos, complexos educacionais ou esportivos e centros de convenção ou comerciais (shoppings), o número de carga ocupacional deste tipo de estação deve considerar a ocupação destas áreas. Pode ser considerada a carga ocupacional da plataforma de acesso, de modo que esta carga adicional não contribua para o excesso de carga ocupacional de escape da estação.

Para estações com vários pisos, plataformas e multiestações, a carga de ocupação de cada plataforma deve ser considerada individualmente, para ser possível o dimensionamento da rota de escape das plataformas em questão. Para estações com vários pisos, plataformas e diferentes linhas, as cargas simultâneas devem ser consideradas para todas as rotas de escape que passam individualmente em cada nível de piso da estação.

Em áreas onde a ocupação na estação é diferente da de passageiros ou empregados, a carga de ocupação deve ser determinada de acordo com a demanda prevista para a estação, conjugada com a frequência do intervalo dos trens, conforme os seguintes parâmetros: a carga de ocupação adicional deve ser incluída na determinação da rota de escape desta área; a carga de ocupação adicional pode ser omitida da carga de ocupação da estação quando a área tiver um número suficiente de rotas de escape independentes e de capacidade nestas rotas de escape.

A estação deve ser projetada para permitir a evacuação a partir do ponto mais remoto da plataforma até um local de segurança em 6 min ou menos. Pode ser considerado um local seguro, um local interno à estação. Este local interno deve conter elementos construtivos (de acabamento e de revestimento) incombustíveis e ser resistente ao fogo, permitindo que as pessoas continuem sua saída para um local de segurança, como escadas de segurança, escadas abertas externas e corredores de circulação (saídas) ventilados.

Para estações abertas em que os saguões fiquem abaixo ou protegidos destas plataformas pela distância ou por materiais como determinados pelo projeto, esta área pode ser considerada uma área segura para os seus ocupantes. As estações equipadas com dispositivos de detecção e alarme de incêndio devem ser protegidas por sistema exclusivo, como definido na NBR 17240.

Cada estação contendo dispositivos de detecção de alarme de incêndio deve ter uma central do sistema de detecção e alarme de incêndio em local de fácil acesso à brigada de incêndio que: seja certificado, assim como a sua localização seja aprovada pelo órgão regulador; sinalize por meio de alarme do tipo audível a ativação de qualquer dispositivo de detecção de alarme de incêndio na estação e exiba visualmente a localização do dispositivo acionado. Os sinais dos dispositivos de detecção, de proteção e de combate a incêndio, quando acionados, devem ser transmitidos simultaneamente para a SSO e para o CCO.

A monitoração do fluxo de água no sistema de chuveiros automáticos e a das válvulas principais de controle devem ser sinalizadas separadamente nos painéis anunciadores de alarme, desse sistema. Sistemas automáticos de detecção de incêndio devem ser providenciados em todas as salas técnicas e operacionais pela instalação combinada de detectores de temperatura fixa e de aumento de calor ou detectores de fumaça, inclusive onde houver proteção por chuveiros automáticos.

Não há necessidade de compartimentação de salas operacionais. As salas de armazenamento de lixo não necessitam de compartimentação, mas devem dispor de sistema de detecção automática de incêndio. Um sistema público de anúncio e dispositivos de alarme de emergência por voz (por exemplo, caixas telefônicas de emergências ou caixas de alarme de incêndio, com acionamentos manuais) deve ser instalado nas estações, atendendo à NBR 15981.

Os CCO e cada estação local devem ser equipados com sistema certificado de comunicação de alarme de emergência por voz, de modo que possam ser feitos anúncios apropriados referentes a alarmes de incêndio, incluindo dispositivos para apresentar informações necessárias e orientações para o público, após o recebimento de qualquer sinal de alarme manual ou automático de incêndio no local. Estes dispositivos de anunciação devem ser instalados em locais aprovados pelo órgão regulador.

Os dispositivos de alarme de emergência devem ser localizados nas plataformas de passageiros e em todas as estações, de modo que as distâncias de trajeto em qualquer ponto da área pública não ultrapassem 100 m lineares, a menos que aprovada de outra forma pelo órgão regulador. Estes dispositivos devem ter cores diferentes e sua localização deve estar claramente indicada por sinais de segurança adequados.

Os equipamentos que produzem calor ou equipamentos que apresentam risco de ignição em veículos, incluindo seus sistemas elétricos associados, devem ser isolados dos materiais combustíveis nos compartimentos de passageiros e de funcionários. Outros equipamentos destinados a conforto térmico que operem a uma tensão maior que 300 V devem ser localizados externamente e isolados dos compartimentos de passageiros e de funcionários para prevenir que falhas elétricas se propaguem para estas áreas.

Os veículos energizados por rede aérea devem ser projetados para prevenir a penetração do arco voltaico, a ignição e a propagação de incêndio nos equipamentos do teto dos veículos. Os tanques de combustível devem ser projetados para minimizar a exposição dos passageiros e funcionários aos perigos destes combustíveis. A inflamabilidade, a taxa de liberação de calor e a produção de fumaça e gases tóxicos devem ser medidas de acordo com a tabela abaixo. Os procedimentos de ensaio e o desempenho mínimo para materiais e dispositivos estão apresentados também na tabela.

Os materiais ensaiados em relação à inflamabilidade não podem apresentar chamas correntes ou gotejamento. Os limites máximos de chama ensaiados de acordo com a ASTM E662 para emissão de fumaça (densidade ótica específica) se baseiam nos modos de chamas e sem chamas. Os ensaios de um conjunto completo de assentos, incluindo o assento de camadas de tecido e estofamento, de acordo com a NBR 16405 e ensaios para conjuntos completos de colchões (incluindo, espuma e tecido), de acordo com a ASTM E1590, devem ser permitidos para os métodos de ensaio descritos, desde que as unidades dos componentes desses conjuntos permaneçam sem mudanças ou novos componentes do conjunto (substituição) apresentem propriedades de desempenho contra incêndio equivalente às dos componentes originais ensaiados.

Na análise de risco de incêndio deve ser também considerado o ambiente operacional, onde o conjunto de assento ou acolchoado/colchão possa ser usado em atos de vandalismo, furações e cortes, introdução de materiais inflamáveis adicionais e outros atos que exponham este conjunto a uma fonte de ignição. As características de inflamabilidade superficial e emissão de fumaça devem ser demonstradas como permanentes, após realização dos ensaios dinâmicos I2 ou I3, da ASTM D3574.

Em ambos os ensaios deve ser utilizado o procedimento B, exceto pelo fato das amostras terem no mínimo as dimensões de 150 mm × 450 mm versus a espessura utilizada na configuração para uso final ou múltiplo. No caso do ensaio I3 ser utilizado, o tamanho do perfurador descrito na ASTM D3574-17:2008, Seção 96.2, deve ser modificado, para acomodar a amostra ao ensaio específico.

As características de inflamabilidade superficial e emissão de fumaça devem ser determinadas como permanentes, por lavagem, se apropriada, de acordo com o procedimento especificado pelo fabricante. Se o procedimento de lavagem não for especificado pelo fabricante, o tecido deve ser lavado, conforme ASTM E2061:2015, Anexo A.1.

As características de inflamabilidade superficial e emissão de fumaça devem ser determinadas como permanentes, por lavagem a seco, se apropriado, conforme ASTM D2724. Os materiais que não possam ser lavados ou limpos a seco devem ser rotulados desta forma e devem atender aos critérios de desempenho aplicáveis, após serem limpos, conforme recomendações do fabricante.

A sinalização operacional e de segurança não precisa submeter-se aos ensaios de propagação de chama e emissão de fumaça, desde a massa combustível em uma única sinalização não exceda 500 g e a área total combustível da placa não exceda 0,10 m² por metro do comprimento do vagão. Os materiais utilizados para produtos diversos, pequenas peças descontínuas (maçanetas, rolos, prendedores, clipes, ilhoses e pequenas peças elétricas), que não contribuam substancialmente para o aumento do incêndio na configuração final, devem ser isentos de requisitos de desempenho de inflamabilidade e de emissão de fumaça.

Isso deve acontecer desde que a área superficial de qualquer peça individual pequena seja inferior a 100 cm², na configuração de uso final; a análise de risco de incêndio seja elaborada; sejam consideradas a localização e a quantidade dos materiais utilizados e a vulnerabilidade destes materiais em relação à ignição e sua contribuição à propagação de chama. Os carpetes utilizados como revestimento de parede ou de teto devem ser ensaiados conforme NBR 9442 e ASTM E662 e atender aos critérios especificados na tabela.

Se for utilizado algum tipo de camada de revestimento no piso, esta camada juntamente com seu substrato, deve ser ensaiada de acordo com NBR 9442 e ASTM E662. As passagens utilizadas para cabos e dutos devem ser seladas, de forma a impedir a propagação de chamas e/ou da fumaça para os ambientes vizinhos. O material de selagem deve ser incluído no ensaio, conforme a ASTM E814:2013, Seção 7.

As partes da carroceria do veículo que se separarem das maiores fontes de ignição, fontes de energia ou fontes de carga combustível dos interiores do veículo devem ser resistentes ao fogo determinado pela análise de riscos de incêndio (Anexos E e I) e aceitáveis pela autoridade competente. Estas partes do veículo devem incluir as partes do suporte de equipamentos do teto e a estrutura interna que separa os níveis de um carro de dois andares, mas não inclui um conjunto de piso sujeito ao descrito em 8.5. Nestes casos, não é necessário usar procedimento de ensaio da NBR 5628.

Desmistificando o captor Early Streamer Emission (ESE)

“A ciência que estuda a proteção contra raios evolui a cada ano que passa e pode-se dizer que o homem já conhece muito sobre o fenômeno chamado raio, mais ainda não conhece tudo. E o captor ESE eletrônico existente hoje pode até não ser ainda a solução definitiva, mas está bem próximo disso. Atualmente esta é a melhor opção que se tem para a proteção de grandes áreas.” (Hélio Blauth)

 Hayrton Rodrigues do Prado Filho, jornalista profissional registrado no Ministério do Trabalho e Previdência Social sob o nº 12.113 e no Sindicato dos Jornalistas Profissionais do Estado de São Paulo sob o nº 6.008

A tecnologia ESE ou para-raios com dispositivo de ionização (PDI) foi desenvolvida na França a partir de 1986 com o Prevectron da Indelec e o Pulsar da Helita. Seu funcionamento baseia-se nas características elétricas da formação do raio. O raio inicia produzindo um traçador descendente que se propaga em qualquer direção. Num segundo instante, das estruturas e objetos pontiagudos do solo são gerados traçadores ascendentes que tentam se encontrar com o traçador descendente. Num terceiro instante ocorre o encontro do traçador descendente com um dos traçadores ascendentes, formando assim um canal ionizado para o raio acontecer.

Conforme explica Hélio Blauth (helioblauth@gmail.com), engenheiro em eletrônica, formado pela PUC – RS em dezembro de 1972, com atuação na atividade de pesquisas, projetos e implantação de sistemas de proteção contra descargas atmosféricas desde 1975 e autor do livro “A prática na instalação de para-raios – Volume II”, o objetivo do sistema externo de proteção contra o raio é proporcionar um ponto de impacto para que a descarga possa ocorrer de maneira segura e controlada, proporcionando à corrente do raio um caminho seguro até a terra, sem danificar a estrutura a ser protegida. O PDI se caracteriza com a emissão de um traçador ascendente continuo antes que qualquer outro objeto dentro do seu raio de proteção, o que permite oferecer um raio de proteção maior que uma ponta simples (captor Franklin).

As normas técnicas para o PDI são baseadas nos modelos eletrogeométricos (modelo de todas as normas NFPA, IEC e NBR), sendo a norma francesa NFC 17.102 considerada a norma de referência. Ela foi traduzida em espanhol com a denominação de UNE 21186 e para o português com o nome de NP 4426.

No Brasil, existe o Protocolo de Cooperação Técnica celebrado entre o Inmetro e o Instituto Português de Qualidade (IPQ) que é uma declaração de interesse entre os participantes. Este protocolo regulamenta a partilha das suas experiências, informações e outras formas de cooperação, como também a promoção de projetos comuns na área da qualidade e metrologia. Assim, na falta de uma norma brasileira específica para os captores de tecnologia ESE, poderá ser utilizada a Norma Portuguesa NP 4426 – Proteção contra descargas atmosféricas – Sistemas com dispositivo de ionização não radioativo.

Dessa forma, a NP 4426, especifica, no estado atual do conhecimento e da tecnologia, os requisitos para desenvolver projetos para sistemas de proteção satisfatórios contra descargas atmosféricas.  Tais projetos contemplam proteções de estruturas (prédios, instalações, equipamentos etc.) e áreas abertas (áreas de armazenamento, áreas de lazer ou desportivas, etc.), com a utilização de captores com dispositivo de ionização.

A exemplo das demais normas sobre Sistemas de Proteção contra Descargas Atmosféricas (SPDA), uma instalação de proteção contra descargas atmosféricas concebida e construída de acordo com a NP 4426, ao que concerne a fenômenos naturais, não pode garantir a proteção absoluta de estruturas, pessoas ou objetos. Contudo, a aplicação destas recomendações deve reduzir significativamente o risco de danos causados por descargas atmosféricas em estruturas ou áreas abertas protegidas.

Segundo a NP 4426, os para-raios com dispositivo de ionização (PDI) geram um traçador ascendente de inicialização mais rápido que um para-raios de haste simples. Ele é composto por uma ponta de captura, um dispositivo de ionização, um elemento de fixação e uma ligação aos condutores de descida.

“Dessa forma”, acrescenta Blauth, “um Sistema de Proteção contra Descargas Atmosféricas com dispositivo de ionização (SPDI) é um projeto completo baseado em um ou mais PDI e todos os elementos necessários para conduzir a corrente da descarga atmosférica à terra com toda a segurança a fim de proteger uma estrutura, um edifício ou uma área aberta contra os impactos diretos das descargas atmosféricas. Este sistema de proteção inclui tanto as proteções interiores (áreas fechadas) como exteriores (áreas abertas) contra descargas atmosféricas”.

A necessidade de proteção é determinada por muitos parâmetros, incluindo densidade de descargas atmosféricas da zona em questão. Um método de análise de risco é proposto no Anexo A da norma portuguesa. A densidade de descarga atmosféricas é apresentada no Anexo B ou pelos dados locais, incluindo por exemplo a rede de detecção, mapas e estatísticas que são fornecidos pelo Instituto Nacional de Pesquisas Espaciais (INPE).

Outras considerações podem levar à adoção de medidas de proteção, por outras razões não estatísticas. Podem ser, por exemplo, regulamentos obrigatórios ou considerações pessoais uma vez que alguns fatores não podem ser avaliados: o desejo de evitar risco de vida ou fornecer aos ocupantes de um edifício uma certa segurança. Nestes casos, podem requerer a utilização duma proteção, mesmo que o nível de risco calculado seja inferior ao nível tolerável.

Em função do nível de proteção contra descargas atmosféricas necessário, deve-se desenvolver um projeto para determinar o posicionamento dos captores, as trajetórias dos condutores de descida e a localização e o tipo de ligação à terra. Devem ser tomadas em consideração as restrições de arquitetura da edificação a ser protegida, durante o projeto do SPDA. Este fato pode implicar em reduzir significativamente a eficácia do sistema a ser utilizado.

Convém que essas considerações sejam baseadas nos dados disponíveis, incluindo os seguintes: forma e inclinação dos telhados; material do telhado, paredes e da estrutura interna; as partes metálicas do telhado e grandes elementos metálicos externos, tais como: tubulações de gás, equipamentos de ar condicionado, escadas, antenas, depósitos de água, etc. Também devem ser considerados os componentes metálicos dos telhados como calhas, algerozes e tubos de queda pluviais, bem como  partes proeminentes da estrutura e o material que eles compõem (condutor ou não).

De uma maneira geral, deverá ser considerada no projeto a presença de objetos e estruturas metálicas localizadas sobre a cobertura da edificação a ser protegida. Um PDI é caracterizado pela sua eficácia ΔT, determinada através do ensaio de avaliação (Anexo C). O valor máximo de ΔT permitido é de 60 us, mesmo quando o valor dos resultados dos ensaios é superior.

O raio teórico de proteção de um PDI é determinado pela equação apresentada no item 5.2.3.2 da NP 4426, onde:

Rp é o raio de proteção a ser determinado

h é a diferença de altura entre captor e o ponto mais alto da edificação a ser protegida. A equação é válida somente para valores de h iguais ou inferiores a 5 metros.

D é o raio da esfera rolante, em relação ao Nível de proteção considerado.

ΔT é o tempo de antecipação do PDI em relação a uma ponteira simples, em microssegundos. É a característica principal do captor a ser utilizado.

 

(clique na imagem para uma melhor visualização)

“Em termos práticos, o raio teórico de proteção de um captor ESE (PDI) pode chegar até 79 metros, dependendo do nível de segurança escolhido, do tempo de antecipação ΔT do captor utilizado e da altura de instalação do mesmo em relação ao ponto mais alto da edificação a ser protegida. Hoje, o PDI está sendo utilizado no mundo inteiro porque oferece um custo reduzido e um raio de proteção maior permitindo, por exemplo, a proteção de áreas abertas tais como campos de futebol, áreas de lazer, praias, estacionamentos, clubes, minerações, campos de golfe, etc. A tecnologia PDI é uma opção e alternativa largamente utilizada e comprovada que permite uma proteção onde seria difícil ou até impossível com sistemas convencionais”, complementa Hélio Blauth.

Igualmente, há a Norma Regulamentadora nº 10 (NR 10), constante da Portaria nº 598 de 07/12/2004 do Ministério do Trabalho e Emprego (MTE), que estabelece os requisitos e condições mínimas para a implementação de medidas de controle e sistemas preventivos de acidentes com eletricidade. Hoje, observa-se uma grande quantidade de acidentes de trabalho que vem ocorrendo nesta atividade, principalmente com mortes de trabalhadores que lidam com alta tensão e a terceirização de trabalhadores tem contribuído muito para a elevação de acidentes.

Ela se aplica às fases de geração, transmissão, distribuição e consumo, incluindo as etapas de projeto, construção, montagem, operação, manutenção das instalações elétricas e quaisquer trabalhos realizados nas suas proximidades, observando-se as normas técnicas oficiais estabelecidas pelos órgãos competentes e, na ausência ou omissão destas, as normas internacionais cabíveis.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital Banas Qualidade e editor do blog Qualidade Onlinehayrton@hayrtonprado.jor.br

Os riscos dos espaços confinados

Define-se o espaço confinado como qualquer área não projetada para ocupação humana contínua, a qual tem meios limitados de entrada e saída ou uma configuração interna que possa causar aprisionamento ou asfixia em um trabalhador e na qual a ventilação é inexistente ou insuficiente para remover contaminantes perigosos e/ou deficiência/ enriquecimento de oxigênio que possam existir ou se desenvolver ou conter um material com potencial para engolfar/afogar um trabalhador que entrar no espaço.

O espaço confinado “não perturbado” é uma característica técnica do espaço confinado, definida no cadastro com os riscos inerentes ao local, antes de o trabalhador adentrar neste espaço. As medidas de controle de riscos são norteadas pela permissão de entrada e trabalho (PET). O espaço confinado “perturbado” é uma característica da alteração ocasionada pela (s) atividade (s) que será (ão) executada (s) no interior do espaço confinado, sua dinâmica de evolução de riscos associada aos riscos presentes no espaço confinado “não perturbado”.

Neste caso, as medidas de controle de riscos são baseadas na análise preliminar de risco (APR). O espaço confinado simulado é um espaço confinado representativo em tamanho, configuração e meios de acesso para o treinamento do trabalhador, simulando as condições reais e que não apresenta riscos à sua segurança e saúde.

A NBR 16577 de 03/2017 – Espaço confinado — Prevenção de acidentes, procedimentos e medidas de proteção estabelece os requisitos para identificar, caracterizar e reconhecer os espaços confinados, bem como para implantar o sistema de gestão de forma a garantir, permanentemente, a segurança e a saúde dos trabalhadores que interagem, direta ou indiretamente, nestes espaços durante a realização de trabalhos no seu interior.

Pode-se definir uma atmosfera de risco como a condição em que a atmosfera, em um espaço confinado, possa oferecer riscos ao expor os trabalhadores ao perigo de morte, incapacitação, restrição da habilidade para autorresgate, lesão ou doença aguda causada por uma ou mais das seguintes causas: gás, vapor ou névoa inflamável em concentrações superiores a 10% do seu limite inferior de explosividade (LIE), do(s) material(ais) previamente identificados; poeira em uma concentração no ambiente de trabalho que exceda o seu limite inferior de explosividade (LIE). As misturas de poeiras combustíveis com ar podem sofrer ignição dentro de suas respectivas faixas de explosividades, as quais são definidas pelo limite inferior de explosividade (LIE) e o limite superior de explosividade (LSE). O LIE está geralmente situado entre 20 g/m³ e 60 g/m³, em condições normais de temperatura e pressão (CNTP), ao passo que o LSE se situa entre 2 kg/m³ e 6 kg/m³ (nas mesmas CNTP). Caso as concentrações de poeiras puderem ser mantidas fora dos seus limites de explosividade, as explosões serão evitadas.

Os seguintes fatores influenciam o processo de combustão/explosão: partículas em suspensão no ar; partículas de tamanho conveniente ao processo de combustão; ar (oxigênio) presente no meio ambiente; fonte de ignição de potência adequada para iniciar o processo de combustão; umidade relativa do ar; e geometria do espaço confinado. As camadas de poeiras, diferentemente dos gases e vapores, não são diluídas por ventilação geral diluidora, após o vazamento ter cessado. Insuflar ar aumenta a dispersão da poeira no ambiente, acentuando a suspensão do material e, consequentemente, propiciando o seu processo de combustão. Camadas de poeiras podem sofrer turbulência inadvertida e se espalharem, pelo movimento de equipamentos de transporte, deslocamento de pessoas, insuflação de ar, funcionamento de máquinas, etc. A ventilação local exaustora (VLE), para a remoção de contaminantes no interior do espaço confinado, é recomendada em atividades que possam gerar poeiras, névoas, gases, vapores, fumos, etc., e no ponto de origem, antes que estes atinjam a zona respiratória do trabalhador.

Uma atmosfera pobre em oxigênio, em que a concentração de oxigênio está abaixo de 19,5 % (v/v) pode ser problema e também uma atmosfera rica em oxigênio em que a concentração de oxigênio está acima de 23 % (v/v). O percentual de oxigênio aceitável em espaços confinados é de 19,5 % a 23 % de VOL, desde que a causa da redução ou enriquecimento de O2 seja conhecida. É importante observar que presença de outros gases tóxicos ou inertes em baixas concentrações, porém perigosas, podem não alterar a leitura do sensor de oxigênio de modo significativo. O limite de tolerância – definido como a concentração atmosférica de qualquer substância cujo valor máximo está determinado na NR-15 do Ministério do Trabalho ou em recomendação mais restritiva (ACGIH), e que possa resultar na exposição do trabalhador acima do limite de tolerância.

São muitos os requisitos se aplicam aos espaços confinados. Assim, devem ser eliminadas quaisquer condições que torne insegura a operação de abertura no momento anterior à remoção de um vedo, tampa ou tampão de entrada; elaboração de procedimento de controle de energias perigosas relacionadas ao espaço confinado, mediante identificação, bloqueio e sinalização; em casos de trabalho em atmosfera IPVS ou potencialmente capaz de atingir níveis de atmosfera IPVS, os trabalhadores devem estar treinados para utilizar os equipamentos de proteção individual (EPI) e principalmente os equipamentos de proteção respiratória (EPR) que garantam a sua saúde e integridade física; para seleção, uso, inspeção, manutenção, higienização, guarda e descarte de EPR, e utilização de ar comprimido respirável, devem ser seguidas todas as normativas contidas no Programa de Proteção Respiratória (PPR), recomendações, seleção e uso de respiradores da Fundacentro, não se atendo apenas a esses tópicos como também para condições em atmosferas IPVS; a ventilação é aplicável a todos os espaços confinados e o método deve ser selecionado através de critérios técnicos para cada caso. (veja tabela abaixo)

Clique na tabela para uma melhor visualização

Os métodos podem ser ventilação geral diluidora (VGD) e ventilação local exaustora (VLE) ou a combinação de ambas. Certificar-se de que o ventilador tem a capacidade necessária para as trocas de ar recomendadas. O dimensionamento do exaustor/insuflador a ser utilizado deve levar em conta o número de trocas de ar necessárias dentro do espaço confinado para que se atinjam as condições mínimas para a execução dos trabalhos, em condições seguras, dentro de um tempo desejado. Se uma atmosfera perigosa for detectada durante a entrada no espaço confinado, as seguintes medidas devem ser tomadas: o espaço deve ser analisado para determinar como a atmosfera perigosa se desenvolveu, registrando os dados; o empregador, ou seu preposto, deve verificar se o espaço confinado está seguro para entrada e garantir que as medidas que antecedem a entrada tenham sido tomadas e consignadas na permissão de entrada e trabalho (PET).

São tipos de espaços confinados (não se limitando a estes): vasos, colunas, tanques, silos, casa de bombas, caixas d’água, cisternas, torres, galerias subterrâneas, forros técnicos, caldeiras, vasos de pressão, reatores, tanques de combustível, vagões, valas, trincheiras, diques, contêineres, tubulões, caixas de inspeção, túneis, dutos de ventilação, câmaras, fornos, asas de avião, compartimento de cargas, trocadores de calor, cárter, porões e outros. Todos os espaços confinados devem ser adequadamente sinalizados, identificados e isolados, para evitar que pessoas não autorizadas adentrem estes locais. O cadastro de espaço confinado do tipo “não perturbado” deve conter no mínimo as seguintes informações: volume em metros cúbicos (m³); número de entradas, acessos ou “bocas de visita”; dimensão, geometria e forma de acessos; fatores de riscos; medidas de controle desses riscos; e plano de salvamento.

A análise preliminar de risco para espaço confinado do tipo “perturbado”, que envolva utilização de produtos inflamáveis, deve ser cuidadosamente estudada devido ao risco de incêndio/explosão, de acordo com as características dos produtos que serão utilizados. Deve-se analisar a Ficha de Informação e Segurança de Produto Químico (FISPQ) dos produtos químicos, observando-se as propriedades físico-químicas a seguir: densidade, LIE ou LEL, ponto de fulgor e a temperatura de ignição. Quanto ao controle de entrada em espaços confinados, deve ser desenvolvido e implantado um programa por escrito, contemplando a permissão de entrada.

Este programa deve estar disponível para o conhecimento dos trabalhadores, seus representantes autorizados e órgãos fiscalizadores. Se o empregador, ou seu preposto, decidir que os trabalhadores contratados e subcontratados não podem entrar no espaço confinado, o empregador deve tomar todas as medidas efetivas para evitar que estes trabalhadores entrem no espaço confinado. Antes de um trabalhador entrar em um espaço confinado, a atmosfera interna deve ser verificada pelo supervisor de entrada, com um instrumento de leitura direta, calibrado e verificado antes do seu uso, adequado para trabalho em áreas potencialmente explosivas, intrinsecamente seguro, protegido contra emissões eletromagnéticas ou interferências de radiofrequências para as seguintes condições: concentração de oxigênio , sendo que o percentual de oxigênio aceitável é de 19,5 % a 23 % de VOL, desde que a causa da redução ou enriquecimento de O2 seja conhecida e a presença de outros gases tóxicos ou inertes em concentrações perigosas podem não alterar a leitura do sensor d e O2; gases e vapores inflamáveis presentes ou passiveis de serem originados no espaço confinado perturbado; contaminantes do ar potencialmente tóxicos presentes ou passíveis de serem originados no espaço confinado perturbado.

O registro dos dados supracitados deve ser documentado pelo empregador, ou seu preposto, e estar disponível para os trabalhadores que adentrem o espaço confinado. Um programa de entrada em espaço confinado deve ser estabelecido, com as seguintes finalidades: manter permanentemente um procedimento de permissão de entrada que contenha a permissão de entrada, arquivando-a; implantar as medidas necessárias para prevenir as entradas não autorizadas; identificar e avaliar os riscos dos espaços confinados, antes da entrada dos trabalhadores; providenciar treinamento periódico para os trabalhadores envolvidos com espaços confinados sobre os riscos a que estão expostos, medidas de controle e procedimentos seguros de trabalho; manter por escrito os deveres dos supervisores de entrada, dos vigias e dos trabalhadores autorizados, com os respectivos nomes e assinaturas; implantar o serviço de emergências e salvamento, com equipe treinada e dotada de equipamentos em perfeitas condições de uso, mantendo-o sempre disponível quando da realização de atividades em espaços confinados; providenciar exames médicos admissionais, periódicos, de mudança de função, de retorno ao trabalho e demissionais, com emissão dos respectivos atestados de saúde ocupacional, bem como abordar os exames complementares, requisitados pelo médico do trabalho e previstos no Programa de Controle Médico de Saúde Ocupacional (PCMSO), de acordo com a avaliação de cada espaço confinado.

Dessa forma, deve-se desenvolver e implementar os meios, procedimentos e práticas necessárias para operações de entradas seguras em espaços confinados, incluindo no mínimo os seguintes tópicos: manter o espaço confinado devidamente sinalizado e isolado, providenciando o controle dos riscos mapeados para proteger os trabalhadores que nele entrarão; implementar travas e bloqueios, quando houver necessidade; proceder à avaliação da atmosfera quanto à presença de gases ou vapores inflamáveis ou tóxicos e a concentração de oxigênio. Antes de efetuar a avaliação da atmosfera, realizar teste de resposta do equipamento de detecção de gases. Também, deve-se proceder à avaliação da atmosfera quanto à presença de poeiras, quando reconhecido o risco; purgar, inertizar, neutralizar, lavar ou ventilar o espaço confinado, para eliminar ou controlar os riscos presentes no meio ambiente de trabalho; proceder à avaliação de riscos atmosféricos, físicos, químicos, biológicos, ergonômicos e mecânicos que garantam a segurança dos trabalhadores.

No reconhecimento e avaliação de espaços confinados, a seguinte metodologia deve ser implementada: reconhecer os espaços confinados existentes, cadastrando-os e sinalizando-os; restringir e controlar o acesso a todo e qualquer espaço confinado; considerar que operações nas superfícies de grãos são extremamente perigosas e que a entrada e movimentação de trabalhadores sobre massa de grãos ou materiais que ofereçam riscos de engolfamento, soterramento, afogamento e sufocamento são proibidas, salvo quando garantidas, por meio de análise de riscos e adoção de medidas de caráter coletivo e/ou individual comprovadamente efetivas. Deve ser mantida a sinalização específica na entrada do local de armazenamento, constando os seus riscos e a proibição de acesso.

Igualmente, deve-se garantir a divulgação da localização e da proibição de entrada em espaço confinado para todos os empregados, próprios ou terceirizados; designar e capacitar as pessoas que têm obrigações ativas nas operações de entrada, relacionando os deveres de cada trabalhador; verificar as condições nos espaços confinados para determinar se as condições de entrada são seguras. Por fim, deve-se monitorar continuamente o interior dos espaços confinados onde os trabalhadores autorizados estiverem em atividade.