As especificações para a fabricação dos cabos ópticos internos

Deve-se entender os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

A NBR 14771 de 07/2020 – Cabo óptico interno — Especificação especifica os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o código de cores das unidades básicas, dos elementos ópticos e dos cordões ópticos?

Quais são as cores das fibras ópticas?

Como deve ser executado o revestimento externo?

Quais devem ser os requisitos ópticos desses cabos?

O cabo óptico interno é um conjunto constituído por unidades básicas de cordões ópticos, elementos ópticos ou fibras ópticas, elemento de tração dielétrico, eventuais enchimentos e núcleo seco, protegidos por uma capa externa de material termoplástico retardante à chama. prontos satisfaçam os requisitos especificados nesta norma. Os cabos ópticos internos são designados pelo seguinte código: CFOI – X – Y – Z – W, onde CFOI é o cabo óptico interno; X é o tipo de fibra óptica, conforme a tabela abaixo; Y é a formação do núcleo, conforme a tabela abaixo; Z é o número de fibras ópticas, conforme a tabela abaixo; W é o grau de proteção do cabo quanto ao comportamento frente à chama, conforme a tabela abaixo e ao comportamento frente à chama.

Os materiais constituintes dos cabos ópticos internos devem ser dielétricos. Os materiais utilizados na fabricação do cabo devem ser compatíveis entre si. Os materiais utilizados na fabricação dos cabos com função estrutural devem ter suas características contínuas ao longo de todo o comprimento do cabo.

As fibras ópticas tipo multimodo índice gradual, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13487. As fibras ópticas tipo monomodo com dispersão normal, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13488. As fibras ópticas tipo monomodo com dispersão deslocada e não nula, utilizadas na fabricação dos cabos, devem estar conforme a NBR 14604.

As fibras ópticas tipo monomodo com baixa sensibilidade à curvatura, utilizadas na fabricação dos cabos, devem estar conforme a NBR 16028. Não são permitidas emendas nas fibras ópticas durante o processo de fabricação do cabo. O núcleo deve ser constituído por unidades básicas de fibras ópticas, cordões ópticos ou elementos ópticos. Os cabos ópticos internos devem ser fabricados com unidades básicas de 2, 4, 6, 8, 12, 16, 24, 36 ou 48 fibras ópticas. O núcleo deve ser constituído por unidades básicas.

As unidades básicas devem ser dispostas em elementos de proteção adequados, de modo a atender aos requisitos especificados nesta norma. Os elementos de proteção podem ser constituídos por tubos de material polimérico encordoados em uma ou mais coroas ou de forma longitudinal. Os elementos de proteção encordoados devem ser reunidos com passo e sentido escolhidos pelo fabricante, de modo a satisfazer as características previstas nesta norma.

No caso de cabos ópticos constituídos por elementos de proteção encordoados dispostos em mais de uma coroa, opcionalmente estas coroas podem ser separadas por fitas, a fim de facilitar a sua identificação. É recomendado que os cabos ópticos compostos por elementos de proteção de até 12 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter duas ou seis fibras ópticas. Para os cabos ópticos de 18 a 36 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha seis ou 12 fibras ópticas.

Para os cabos ópticos de 48 a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 12 ou 24 fibras ópticas. Para os cabos ópticos superiores a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 24, 36 ou 48 fibras ópticas. Para o núcleo constituído por fibras ópticas dispostas em tubo único (central loose tube), a construção deve conter um único tubo central de material polimérico contendo uma ou mais unidades básicas.

Os cabos ópticos de até 48 fibras ópticas devem ser constituídos por fibras ópticas reunidas. Os cabos ópticos acima de 48 até 72 fibras ópticas devem ser constituídos por unidades básicas. Para o núcleo constituído por unidades básicas de cordões ópticos monofibra, o cordão óptico deve ser conforme a NBR 14106. A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada das unidades básicas, dos elementos ópticos e dos cordões ópticos.

Os cabos de até 12 fibras ópticas devem ser constituídos por cordões ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis cordões ópticos. Para cabos ópticos de 48 a 72 fibras, é recomendado que cada unidade básica contenha 12 cordões ópticos. O cordão óptico deve ser conforme a NBR 14106.

A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada conforme essa norma e os cabos de até 12 fibras ópticas devem ser constituídos por um ou mais cordões ópticos. Para cabos de 18 a 288 fibras ópticas, é recomendado que cada unidade básica contenha seis ou 12 cordões ópticos.

Para o núcleo constituído por unidades básicas de elementos ópticos, a unidade básica de elementos ópticos deve ser constituída por até 12 elementos agrupados e deve ser identificada conforme essa norma. Os cabos de até 12 fibras ópticas devem ser constituídos por elementos ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis elementos ópticos.

Para cabos ópticos de 48 a 144 fibras, é recomendado que cada unidade básica contenha 12 elementos ópticos. Podem ser colocados enchimentos de material polimérico compatível com os demais materiais do cabo, a fim de formar o núcleo cilíndrico. No núcleo do cabo pode haver uma identificação legível e indelével, contendo impressos o nome do fabricante e o ano de fabricação, em intervalos não superiores a 50 cm, ao longo do eixo do cabo.

Sobre o revestimento externo devem ser gravados o nome do fabricante, a designação do cabo, o número do lote e o ano de fabricação, de forma legível e indelével, em intervalos de 1 m ao longo do eixo do cabo. A pedido do comprador, podem ser impressas informações adicionais. A marcação métrica sequencial deve ser feita em intervalos de 1 m ao longo do revestimento externo do cabo óptico interno. A marcação deve ser feita com algarismos de altura, forma, espaçamento e método de gravação ou impressão tais que se obtenha legibilidade perfeita e permanente. Não são permitidas marcações ilegíveis adjacentes.

Na medida da marcação do comprimento ao longo do eixo do cabo, é tolerada uma variação para menos de até 0,5%, não havendo restrição de tolerância para mais. A marcação inicial deve ser feita em contraste com a cor da capa do cabo, sendo preferencialmente azul ou preta para cabos de cores claras, e branca para cabos de cores escuras ou em relevo. Se a marcação não satisfizer os requisitos anteriores, é permitida a remarcação na cor amarela.

A remarcação deve ser feita de forma a não se sobrepor à marcação inicial defeituosa. Cada lance de cabo deve ser fornecido acondicionado em um carretel de madeira com diâmetro mínimo do tambor de 22 vezes o diâmetro externo do cabo. A largura total do carretel não pode exceder 1,5 m e a altura total não pode ser superior a 2,1 m.

Os carretéis devem conter um número de voltas tal que entre a camada superior e as bordas dos discos laterais exista um espaço livre mínimo de 6 cm. Os carretéis utilizados devem estar conforme a NBR 11137. As extremidades do cabo devem ser solidamente presas à estrutura do carretel, de modo a não permitir que o cabo se solte ou se desenrole durante o transporte.

A extremidade interna do cabo na bobina deve estar protegida para evitar danos durante o transporte, ser acessível para ensaios, possuir um comprimento livre de no mínimo 2 m e ser acomodada com diâmetro de no mínimo 22 vezes o diâmetro externo do cabo. Após efetuados todos os ensaios requeridos para o cabo, as extremidades do lance devem ser fechadas, a fim de prevenir a entrada de umidade. Cada lance do cabo óptico interno deve ter um comprimento nominal de 1.000 m, podendo, a pedido do comprador, ser fornecido em comprimento específico. A tolerância de cada lance deve ser de + 3%, não sendo admitidos comprimentos inferiores ao especificado.

Devem ser identificadas em cada bobina, com caracteres perfeitamente legíveis e indeléveis, as seguintes informações: nome do comprador; nome do fabricante; número da bobina; designação do cabo; comprimento real do cabo na bobina, expresso em metros (m); massa bruta e massa líquida, expressas em quilogramas (kg); uma seta ou marcação apropriada para indicar o sentido em que o cabo deve ser desenrolado; identificação de remarcação, quando aplicável. O transporte, armazenamento e utilização das bobinas dos cabos ópticos internos devem ser feitos conforme a NBR 7310.

A conformidade das obras em alvenaria estrutural

A solução estrutural adotada em projeto deve atender aos requisitos de qualidade estabelecidos relativos à capacidade resistente, ao desempenho em serviço e à durabilidade da estrutura. O projeto deve ser consistente de modo a assegurar a segurança à ruptura.

A NBR 16868-1 de 08/2020 – Alvenaria estrutural – Parte 1: Projeto estabelece os requisitos para o projeto de estruturas de alvenaria. Também se aplica à análise do desempenho estrutural de elementos de alvenaria inseridos em outros sistemas estruturais. Esta parte não inclui requisitos para evitar estados-limite gerados por ações como sismos, impactos, explosões e fogo. Esta norma só é aplicável à alvenaria de blocos e tijolos cerâmicos e de blocos de concreto. A NBR 16868-2 de 08/2020 – Alvenaria estrutural – Parte 2: Execução e controle de obras estabelece os requisitos para execução e controle de obras de alvenaria estrutural. A NBR 16868-3 de 08/2020 – Alvenaria estrutural – Parte 3: Métodos de ensaio estabelece os métodos de ensaio de elementos em alvenaria construídos com blocos e tijolos cerâmicos e de concreto (prisma, pequena parede e parede), submetidos a esforços de compressão axial, cisalhamento, flexão e flexocompressão.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os símbolos e abreviaturas usadas na parte 1?

Quais são as propriedades da alvenaria e de seus componentes?

Quais as disposições gerais para o recebimento e armazenamento dos materiais e componentes?

Quais as medidas no recebimento de aço para as armaduras?

Como deve ser executado o ensaio para a determinação da resistência à compressão de pequenas paredes?

Qual o procedimento de preparação dos prismas para o ensaio para a determinação da resistência à compressão de prismas?

A solução estrutural adotada em projeto deve atender aos requisitos de qualidade estabelecidos relativos à capacidade resistente, ao desempenho em serviço e à durabilidade da estrutura. O projeto deve ser consistente de modo a assegurar a segurança à ruptura. A estrutura não pode apresentar danos que comprometam em parte ou totalmente o uso para o qual foi projetada e deve ter capacidade de manter-se em condições plenas de utilização durante sua vida útil. A estrutura deve ter capacidade de resistir às influências ambientais previstas e definidas em conjunto pelo projetista estrutural e seu contratante, no início dos trabalhos de elaboração do projeto.

O projeto de uma estrutura de alvenaria deve ser elaborado, adotando-se: o sistema estrutural adequado à função desejada para a edificação; as ações compatíveis e representativas; o dimensionamento e verificação de todos os elementos estruturais presentes; a especificação de materiais e componentes apropriados e de acordo com os dimensionamentos efetuados; e os procedimentos de controle para projeto. O projeto estrutural, antes de ser liberado para execução, deve ser devidamente compatibilizado com os projetos das demais especialidades técnicas. As interferências desses outros projetos em elementos de alvenaria estrutural devem ser solucionadas antes de sua aprovação final.

O projeto de estrutura de alvenaria deve ser constituído por desenhos técnicos e especificações. Esses documentos devem conter todas as informações necessárias à execução da estrutura de acordo com os critérios adotados, conforme descrito a seguir. O projeto deve apresentar desenhos técnicos detalhando as fiadas diferenciadas, exceto na altura das aberturas, e as elevações de todas as paredes. Em casos especiais de elementos longos repetitivos (como muros, por exemplo), plantas e elevações podem ser representadas parcialmente. Devem ser apresentados, sempre que presentes o posicionamento dos blocos ou tijolos especiais; os detalhes de amarração das paredes; localização dos pontos grauteados e das armaduras; o posicionamento das juntas de controle e de dilatação.

As especificações de projeto devem conter as resistências características à compressão dos prismas ocos e prismas cheios, e grautes, as faixas de resistência média à compressão (ou as classes conforme a NBR 13281) das argamassas, assim como a categoria, classe e bitola dos aços a serem adotados. Também podem ser apresentados os valores de resistência sugeridos para os blocos ou tijolos, de forma que as resistências de prisma especificadas sejam atingidas. O planejamento e procedimentos de controle devem atender a NBR 16868-2.

Entende-se por avaliação de conformidade do projeto de estruturas de alvenaria a verificação e a análise crítica do projeto, realizadas com o objetivo de avaliar se o projeto atende aos requisitos aplicáveis. A avaliação da conformidade do projeto de estruturas de alvenaria deve contemplar, entre outras, as seguintes atividades (integral ou parcialmente): verificar se as premissas adotadas para o projeto estão de acordo com o previsto na parte 1 e se todos os seus requisitos foram considerados; analisar as considerações de cálculo e verificar os resultados dos cálculos; analisar os desenhos que compõem o projeto, inclusive os detalhes construtivos.

A avaliação da conformidade do projeto deve ser realizada por profissional habilitado e independente em relação ao projetista da estrutura. A avaliação deve ser registrada em documento específico que deve acompanhar a documentação do projeto citada nesta parte 1 da NBR 16868. A responsabilidade pela escolha do profissional que for realizar a avaliação da conformidade do projeto cabe ao contratante do projeto da estrutura. Esta responsabilidade pode ser do proprietário da obra, que, no caso de não ter os conhecimentos técnicos necessários para a escolha do profissional responsável pela avaliação da conformidade do projeto, pode designar um representante ou preposto para substituí-lo nesta atribuição.

A avaliação da conformidade do projeto é obrigatória e deve ser realizada antes da fase de construção e, de preferência, simultaneamente com a fase de projeto. É recomendável que o profissional escolhido para realizar a avaliação da conformidade do projeto possua experiência em estruturas de alvenaria. Recomenda-se ao projetista da estrutura alertar o seu contratante sobre a obrigatoriedade da avaliação da conformidade do seu projeto nos termos previstos nesta subseção.

Cabe ao contratante informar ao projetista da estrutura quem é o profissional responsável pela avaliação da conformidade do projeto. Os valores das propriedades da alvenaria podem ser adotados de acordo com a tabela abaixo. Com relação à geometria, a parede construída com junta amarrada no plano da parede pode ser estrutural. Toda parede com junta não amarrada no seu plano deve ser considerada não estrutural, salvo se existir comprovação experimental de sua eficiência.

A resistência característica à compressão simples da alvenaria fk deve ser determinada com base no ensaio de paredes (ver NBR 16868-3). No caso de alvenaria de blocos de 190 mm de altura e junta de argamassa de 10 mm, esse valor pode ser estimado como 70% da resistência característica de compressão simples de prisma fpk ou 85% da pequena parede fppk. No caso de uso de tijolos, a resistência característica à compressão simples da alvenaria pode ser estimada como 60% da resistência característica de compressão simples de prisma fpk. As resistências características de paredes ou prismas devem ser determinadas de acordo com as especificações da NBR 16868-3.

Se as juntas horizontais forem assentadas com argamassa parcial (argamassa horizontal disposta apenas sobre as paredes longitudinais dos blocos) e se a resistência for determinada com base no ensaio de prisma ou pequena parede, moldados com a argamassa aplicada em toda a área líquida dos blocos, a resistência característica à compressão simples da alvenaria deve ser corrigida pelo fator 0,80. Quando a geometria do bloco não permitir alinhamento vertical entre os septos transversais dos blocos na elevação da parede, o cálculo deve ser feito considerando argamassa parcial. Os pontos eventuais de desalinhamento podem ser desconsiderados. O controle da execução da alvenaria estrutural deve ser planejado, considerando-se, minimamente, os seguintes aspectos: atendimento a um projeto estrutural elaborado conforme a NBR 16868-1 e devidamente compatibilizado com os projetos das demais especialidades técnicas. Deve fazer a determinação dos responsáveis pela execução do controle e circulação das informações e a determinação dos responsáveis pelo tratamento e resolução das não conformidades.

Proceder à definição da forma de registro e arquivamento das informações e estabelecer os procedimentos específicos para o controle dos materiais e componentes, do processo de execução da alvenaria e para a sua aceitação. A argamassa de assentamento deve atender integralmente às especificações da NBR 13279, além da resistência e outras especificações do projeto estrutural.

O ensaio de resistência à compressão deve ser realizado de acordo com o Anexo A, ou conforme a NBR 13279. A aderência da argamassa com o bloco ou tijolo deve ser determinada pelos ensaios de resistência de tração na flexão do prisma, conforme a NBR 16868-3. Esses procedimentos devem ser atendidos tanto pelas argamassas preparadas em obra quanto pelas industrializadas. No caso das argamassas preparadas em obra, que utilizem os materiais listados abaixo, as seguintes normas devem ser atendidas nas suas especificações: cimento: NBR 16697; cal: NBR 7175; areia: NBR 7211.

O graute deve atender às especificações do projeto estrutural. A resistência à compressão do graute deve assegurar que a resistência do prisma grauteado atinja a especificada pelo projetista. O graute deve ser ensaiado quanto à resistência à compressão, conforme a NBR 5739. O graute deve ter características no estado fresco que garantam o completo preenchimento dos furos e não pode apresentar retração que provoque o seu descolamento das paredes dos blocos.

A critério do projetista, pode-se empregar argamassa de assentamento utilizada na obra para preenchimento dos vazados, em elementos de alvenaria não armados e sem qualquer tipo de armadura, seja construtiva ou dimensionada, e desde que os ensaios do prisma apresentem os resultados especificados pelo projetista. Antes do início da obra, deve ser feita a caracterização da resistência à compressão dos materiais, componentes e da alvenaria a serem utilizados na construção. Os blocos ou tijolos, argamassa e graute devem ser ensaiados conforme Seção 5.

Para argamassas industrializadas, ou dosadas em obra com adição de incorporadores de ar, a resistência de à tração na flexão deve ser determinada. No caso de argamassa industrializada, o ensaio pode ser fornecido pelo fabricante, realizado por laboratório de terceira parte, sendo aceitos resultados realizados com o mesmo tipo de bloco ou tijolo e argamassa. O ensaio para a determinação da resistência à compressão de paredes deve usar como a aparelhagem: os dispositivos para aplicação de cargas; três defletômetros com resolução mínima de 0,01 mm. Os corpos de prova devem ter as dimensões que os tornem representativos da estrutura real e devem ser construídos de forma que sejam minimizadas as influências das variações das características dos materiais e da mão de obra na resistência das paredes.

Não sendo praticável reproduzir as paredes nas suas dimensões reais, admite-se como sendo corpos de prova representativos aqueles que tenham por dimensões mínimas 1,20 m × 2,60 m (largura × altura). As paredes devem ser ensaiadas aplicando-se cargas uniformemente distribuídas. Isto pode ser conseguido em um sistema de reação como o mostrado na figura abaixo, devendo ser utilizados no mínimo dois macacos hidráulicos equiespaçados.

O sistema de reação e de carregamento deve permitir a determinação da carga de ruptura com exatidão de 3%. O uso de um macaco único é permitido apenas em condição especial de máquina de grande porte e assegurando a distribuição uniforme do carregamento sobre todas as faces das paredes. Os encurtamentos médios das paredes devem ser determinados por meio de no mínimo dois defletômetros, com resolução mínima de 0,01 mm, instalados nas laterais da parede, conforme mostrado na figura abaixo.

Adicionalmente, nas paredes com índice de esbeltez maior que 25, deve ser instalado um defletômetro no meio do terço superior da parede, para a determinação do deslocamento horizontal desta. Nos casos em que o índice de esbeltez da parede é menor do que 25, a colocação deste defletômetro é opcional. Os equipamentos descritos nesta subseção podem ser substituídos por outros que permitam pelo menos a mesma resolução e posição de leitura. O índice de esbeltez é a relação entre a altura e a espessura da parede.

Quando houver necessidade do transporte do corpo de prova para a máquina de ensaio, essa operação deve ser efetuada com as paredes na vertical, sem choques que possam comprometer a integridade do corpo de prova. As paredes devem ser construídas em ambientes protegidos, com temperatura de (25 ± 10) °C e umidade relativa do ar de 40% a 90%. As paredes devem ser construídas entre duas guias (gabaritos) e com o uso de fio de prumo e nível, a fim de assegurar a verticalidade.

A gestão da qualidade para a fabricação de equipamentos e componentes “Ex”

Conheça as informações e os requisitos específicos para o estabelecimento e manutenção de um sistema de gestão da qualidade para a fabricação de equipamentos e componentes “Ex”, de acordo com a sua certificação. Embora este documento não dispense a utilização de outros sistemas de gestão da qualidade que sejam compatíveis com os objetivos da NBR ISO 9001:2015 e que proporcionem resultados equivalentes.

A NBR ISO/IEC 80079-34 de 07/2020 – Atmosferas explosivas – Parte 34: Aplicação de sistemas de gestão da qualidade para a fabricação de produtos “Ex” especifica as informações e os requisitos específicos para o estabelecimento e manutenção de um sistema de gestão da qualidade para a fabricação de equipamentos e componentes “Ex”, de acordo com a sua certificação. Embora este documento não dispense a utilização de outros sistemas de gestão da qualidade que sejam compatíveis com os objetivos da NBR ISO 9001:2015 e que proporcionem resultados equivalentes, os requisitos mínimos são apresentados neste documento.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o controle de processos, produtos e serviços providos externamente?

Qual deve ser o tipo e extensão do controle?

O que deve ser feito em relação à informação para provedores externos?

Qual deve ser o procedimento para a identificação e rastreabilidade?

Esse documento especifica os requisitos para um sistema de gestão da qualidade que possa ser utilizado por uma organização para a fabricação de equipamentos, componentes e sistemas “Ex”. Pode ser utilizado também por terceiras partes, incluindo organismos de certificação, para avaliar a capacidade de uma organização de atender aos requisitos do sistema de avaliação da conformidade ou requisitos legais. A aplicação desta norma é destinada a abranger tanto equipamentos elétricos como não elétricos, sistemas de proteção, dispositivos de segurança, componentes “Ex” e suas combinações.

O conteúdo detalhado (por exemplo, anexos) é normalmente focado em documentos existentes. Os requisitos da qualidade de fabricantes representam parte integrante da maioria de sistemas de certificação e, como tal, este documento foi elaborado considerando os requisitos do sistema de certificação IECEx para equipamentos. Este documento é destinado a ser utilizado como suporte aos requisitos do sistema de certificação para atmosferas explosivas da Diretiva ATEX, para o sistema de gestão da qualidade dos fabricantes, e pode ser aplicado em sistemas nacionais ou regionais de certificação que sejam relacionados à fabricação de equipamentos, componentes e sistemas com tipos de proteção “Ex”. No Anexo D é apresentada uma matriz de correlação em relação aos requisitos da NBR ISO/IEC 80079-34:2014 e desta NBR ISO/IEC 80079-34:2020.

No item entendendo a organização e o seu contexto, a NBR ISO 9001:2015, 4.1, se aplica, com a seguinte adição: em relação a este documento, o contexto da organização deve assegurar que o produto “Ex” esteja de acordo com o seu certificado Ex e com a documentação técnica. No item sistema de gestão da qualidade e seus processos, a NBR ISO 9001:2015, 4.4, se aplica com a seguinte adição: o sistema de gestão da qualidade deve assegurar que o produto “Ex” esteja de acordo com o tipo descrito no certificado e na documentação técnica.

No item papéis, responsabilidades e autoridades organizacionais, a NBR ISO 9001:2015, 5.3, se aplica com a seguinte adição: pessoal “Ex” autorizado deve ser apontado com autoridade e responsabilidades estabelecidas e documentadas para assegurar que os seguintes requisitos sejam atendidos: a coordenação efetiva das atividades relacionadas aos produtos “Ex”; o contato com o emissor do certificado “Ex” (quando não emitido pelo fabricante) em relação a qualquer proposta de alteração do projeto especificado no certificado “Ex” e na documentação técnica; o contato com o organismo de certificação responsável pela verificação do sistema de gestão da qualidade em relação à atualização pretendida do sistema de gestão da qualidade. Não é prático para o fabricante informar ao organismo responsável a verificação do sistema de gestão da qualidade toda vez que o sistema for atualizado. É apenas prático informar sobre atualizações significativas do sistema de gestão da qualidade, relevantes para o tipo de proteção.

De forma similar, não é prático especificar, em termos gerais, quais os tipos de atualização que são ou não são significativos. Portanto, é recomendado que o fabricante informe ao organismo responsável a verificação do sistema de gestão da qualidade sobre qualquer atualização do sistema de gestão da qualidade que tenha consequências sobre a conformidade dos produtos. A mudança do pessoal “Ex” autorizado é considerada uma alteração significativa.

Acrescentar que a autorização para a aprovação inicial e as alterações de desenhos relacionados, se apropriado; a autorização de concessões (ver 8.7 f); a exatidão das informações relevantes em relação ao produto “Ex”, fornecidas pelo cliente para qualquer literatura comercial, e instruções de instalação (as quais devem incluir as condições específicas aplicáveis de utilização e quaisquer relações de limitações). Os números de certificados com um sufixo “X” contêm condições específicas de utilização.

Os números de componentes certificados (com um sufixo “U”) podem conter relações de limitações. Agregar que a coordenação efetiva dos processos de fabricação em relação aos produtos “Ex”, incluindo produtos fornecidos externamente, serviços e processos detalhados em 8.4; no caso de um fabricante com múltiplas instalações de fabricação, uma pessoa “Ex” autorizada com responsabilidades pertinentes deve ser indicada para cada instalação. Os registros evidenciando isto devem estar disponíveis e ser mantidos como informação documentada.

No item recursos de monitoramento e medição, a NBR ISO 9001:2015, 7.1.5, se aplica com a seguinte adição: quando o monitoramento ou a medição é utilizado para verificar a conformidade de produtos “Ex”, o equipamento de medição deve ser calibrado e um certificado válido dessa calibração deve existir. A verificação de equipamento de medição contra equipamento calibrado é permitida, contanto que seja corretamente documentada.

O certificado de calibração deve atender a um dos seguintes requisitos descritos. Quando um certificado de calibração ostentar o logotipo de acreditação de um laboratório de calibração acreditado (que demonstre que suas operações estão de acordo com as normas reconhecidas internacionalmente e estão cobertas por um acordo internacional multilateral), o laboratório de calibração não está sujeito a uma avaliação adicional.

Quando o certificado de calibração não ostentar o logotipo de acreditação de uma autoridade de acreditação nacional, cada certificado de calibração deve incluir no mínimo as seguintes informações: uma identificação não ambígua do item calibrado; evidência de que as medições são rastreáveis a padrões de medição nacionais ou internacionais; o método de calibração; uma declaração de conformidade com qualquer especificação aplicável; os resultados da calibração; a incerteza da medição, quando aplicável; as condições ambientais, quando necessário; a data de calibração; a assinatura da pessoa, sob cuja autoridade o certificado foi emitido; o nome e o endereço da organização emissora e a data de emissão do certificado; e uma identificação única do certificado de calibração.

Quando o certificado de calibração não contiver o logotipo de acreditação de uma autoridade de acreditação nacional ou não contiver as informações relacionadas na NBR ISO 9001:2015, 7.1.5 b), o fabricante deve demonstrar uma relação válida a padrões de medição nacionais ou internacionais, ou de acordo com outros meios (por exemplo, um documento de avaliação do laboratório).

Para o controle de informação documentada, a NBR ISO 9001:2015, 7.5.3, se aplica com a seguinte adição: a documentação técnica e a documentação do fabricante devem ser controladas; os procedimentos documentados devem assegurar que as informações contidas na documentação do fabricante sejam compatíveis com a documentação técnica. O fabricante não pode, inicialmente, aprovar ou, subsequentemente, alterar os desenhos relacionados, a menos que estejam em conformidade com os documentos da certificação.

Além disso, o sistema de gestão da qualidade deve assegurar que nenhum fator (tipo, característica, posição etc.) especificado no certificado do produto “Ex” e na documentação técnica (por exemplo, desenhos de certificação) seja modificado, a menos que permitido pelo emissor do certificado. Deve haver um sistema documentado que referencie todos os desenhos relacionados aos documentos pertinentes da certificação e quando existirem desenhos de certificação associados a mais de um certificado de produto “Ex, deve haver um sistema documentado para assegurar ações simultâneas e suplementares em caso de alterações nesses documentos; Alguns fabricantes utilizam os mesmos componentes com desenhos de mesmo número em mais de um produto que possuem mais de uma pessoa responsável para os produtos acabados.

Um sistema de gestão da qualidade compatível assegura que a mudança do componente para um produto não seja implementada sem a aprovação das pessoas responsáveis para todos os produtos acabados que utilizam aquele componente. Quando o fabricante também possui desenhos para equipamentos não destinados à utilização em atmosferas explosivas, deve possuir um sistema para identificar claramente tanto os desenhos relacionados quanto os de certificação; Os exemplos a seguir indicam alguns métodos de identificação: a utilização de marcações visuais; a utilização de uma única série de números de desenhos, por exemplo, todos os desenhos de produtos certificados possuem um prefixo “Ex” no número do desenho; pode também ser aceitável a utilização de um banco de dados computadorizado contendo a correlação de “listas de materiais” que identifique todos os documentos dos componentes “Ex” críticos e que controle alterações não autorizadas.

O fabricante deve documentar o organismo responsável pela verificação do sistema de gestão da qualidade de cada certificado de conformidade “Ex”. Em alguns esquemas de certificação, o organismo responsável pela verificação do sistema de gestão da qualidade associado a cada certificado “Ex” pode ser diferente do organismo que emitiu o certificado de conformidade “Ex” e, portanto, necessita ser claramente identificado.

Quando os documentos técnicos ou do fabricante são fornecidos a terceiros, esses documentos devem ser fornecidos de forma a não causar uma interpretação errônea. O fabricante deve possuir um sistema documentado para verificar anualmente a validade de todos os documentos relativos aos certificados de conformidade “Ex”, normas, regulamentos e outros documentos de origem externa. O fabricante deve manter os registros da qualidade adequados para demonstrar a conformidade dos produtos “Ex”. É requerido uma retenção de no mínimo dez anos após a colocação do produto “Ex” (lote) no mercado.

A lista dos registros da qualidade que requerem controle e retenção, onde aplicável, no mínimo deve ser: aqueles exigidos por requisitos regulatórios; a informação documentada sobre a qualidade; as responsabilidades e autoridades para a designação e comunicação com a organização de funções relevantes aos produtos “Ex”; os pedidos de clientes; a análise crítica do contrato; os registros de treinamento; as alterações e o desenvolvimento do projeto; os dados de inspeção e ensaio (por lote); os dados da calibração; a rastreabilidade da fabricação; a avaliação dos provedores externos; os dados de expedição (cliente, data de saída e quantidade, incluindo números de série quando disponíveis); e outras informações documentadas, se necessárias.

Os requisitos para os equipamentos elétricos de máquinas

Conheça os requisitos dos equipamentos e sistemas elétricos, eletrônicos e eletrônicos programáveis para máquinas não transportáveis à mão durante o trabalho, incluindo um grupo de máquinas que trabalham em conjunto de forma coordenada.

A NBR IEC 60204-1 de 07/2020 – Segurança de máquinas — Equipamentos elétricos de máquinas – Parte 1: Requisitos gerais se aplica aos equipamentos e sistemas elétricos, eletrônicos e eletrônicos programáveis para máquinas não transportáveis à mão durante o trabalho, incluindo um grupo de máquinas que trabalham em conjunto de forma coordenada. É uma norma de aplicação e não se destina a limitar ou inibir o avanço tecnológico. Nesta parte, o termo elétrico inclui assuntos elétricos, eletrônicos e eletrônicos programáveis (ou seja, equipamentos elétricos, significa equipamentos elétricos, eletrônicos e eletrônicos programáveis). No seu contexto, o termo pessoa refere-se a qualquer indivíduo e inclui as pessoas que são designadas e instruídas pelo usuário ou seu (s) representante (s) no uso e cuidado da máquina em questão.

Os equipamentos abrangidos por esta parte começam no ponto de conexão da alimentação ao equipamento elétrico da máquina. Os requisitos para a instalação de alimentação elétrica são fornecidos na série IEC 60364. Esta parte se aplica aos equipamentos elétricos ou partes dos equipamentos elétricos que operam com tensões nominais de alimentação não superiores a 1.000 V para corrente alternada (ca) e não superiores a 1.500 V para corrente contínua (cc), e com frequências nominais de alimentação não superiores a 200 Hz. Informações sobre equipamentos elétricos ou partes dos equipamentos elétricos que operam com tensões nominais de alimentação mais elevadas podem ser encontradas na IEC 60204-11.

Esta parte não abrange todos os requisitos (por exemplo, proteção, travamento ou controle) que são necessários ou requeridos por outras normas ou regulamentos, a fim de proteger as pessoas dos perigos, exceto perigos elétricos. Cada tipo de máquina tem requisitos únicos a serem acomodados para fornecer segurança adequada. Inclui especificamente, porém não é limitada a equipamentos elétricos de máquinas para montagem de peças ou de componentes ligados entre si, em que pelo menos um deles se move, com os atuadores apropriados da máquina, circuitos de comando e potência agrupados de forma a atender a uma aplicação específica, em particular para o processamento, tratamento, movimento ou empacotamento de um material.

O Anexo C lista exemplos de máquinas cujos equipamentos elétricos podem ser abrangidos por esta parte que não especifica requisitos adicionais e especiais que podem ser aplicados aos equipamentos elétricos de máquinas que, por exemplo: se destinam ao uso ao ar livre (ou seja, fora das edificações ou outras estruturas de proteção); utilizam, processam ou produzem material potencialmente explosivo (por exemplo, tinta ou serragem); se destinam ao uso em atmosferas potencialmente explosivas e/ou inflamáveis; têm riscos especiais ao produzir ou utilizar determinados materiais; se destinam ao uso em minas; são máquinas, unidades e sistemas de costura (que são abrangidas pela IEC 60204-31); são máquinas de içamento (que são abrangidas pela IEC 60204-32); são equipamentos de fabricação de semicondutores (que são abrangidos pela IEC 60204-33). Os circuitos de energia onde a energia elétrica é utilizada diretamente como uma ferramenta de trabalho são excluídos desta parte.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as abreviaturas usadas nessa norma?

Qual (is) o (s) meio (s) de operação do dispositivo de seccionamento da alimentação?

Quais são os dispositivos para remoção de energia para prevenção contra partida inesperada?

Quais são os dispositivos para isolamento do equipamento elétrico?

Essa norma provê os requisitos e as recomendações relativos ao equipamento elétrico de máquinas, de modo a promover a segurança de pessoas e da propriedade; a consistência da resposta do controle; a facilidade de operação e manutenção. Mais orientações sobre o uso desta parte são fornecidas no Anexo F. A figura abaixo foi fornecida como um auxílio para a compreensão da inter-relação dos vários elementos de uma máquina e seus equipamentos associados. É um diagrama de blocos de uma máquina típica e equipamentos associados que mostram os vários elementos dos equipamentos elétricos tratados nesta parte. Os números entre parênteses () referem-se às Seções e Subseções nesta parte.

É entendido na figura abaixo que todos os elementos obtidos em conjunto, incluindo os dispositivos de segurança, ferramental/dispositivo, software e documentação, constituem a máquina e que uma ou mais máquinas que trabalham em conjunto, geralmente com pelo menos um nível de controle de supervisão, constituem uma célula ou sistema de manufatura. Esta norma especifica os requisitos para o equipamento elétrico de máquinas. Os riscos associados aos perigos pertinentes ao equipamento elétrico devem ser avaliados como parte dos requisitos gerais para apreciação de riscos da máquina. Isto vai identificar a necessidade para redução dos riscos; e determinar as reduções adequadas dos riscos; e determinar as medidas de proteções necessárias para as pessoas que podem estar expostas a esses perigos, mantendo ainda um desempenho apropriado da máquina e seus equipamentos.

As situações perigosas podem resultar das, mas não estão limitadas às, seguintes causas: falhas ou defeitos no equipamento elétrico, resultando na possibilidade de choque elétrico, arco elétrico ou incêndio; falhas ou defeitos nos circuitos de controle (ou componentes e dispositivos associados a esses circuitos), resultando no mau funcionamento da máquina; perturbações ou interrupções nas fontes de alimentação, bem como falhas ou defeitos nos circuitos de energia, resultando no mau funcionamento da máquina; perda da continuidade dos circuitos que pode resultar em uma falha de uma função de segurança, por exemplo, aquela que depende de contatos deslizantes ou giratórios; as perturbações elétricas, por exemplo, eletromagnéticas, eletrostáticas externas ao equipamento elétrico ou geradas internamente, resultando no mau funcionamento da máquina; liberação de energia armazenada (elétrica ou mecânica), resultando em, por exemplo, choque elétrico, movimento inesperado que pode provocar lesões; ruído acústico e vibração mecânica em níveis que provoquem problemas de saúde às pessoas; temperaturas da superfície que podem provocar lesões. As medidas de segurança são uma combinação das medidas incorporadas na fase de projeto e das medidas requeridas a serem implementadas pelo usuário.

O processo de projeto e desenvolvimento deve identificar os perigos e os riscos dele decorrentes. Quando os perigos não puderem ser removidos e/ou os riscos não puderem ser suficientemente reduzidos por medidas de segurança inerentes ao projeto, medidas de proteção (por exemplo, dispositivos de proteção) devem ser fornecidas para reduzir o risco. Medidas adicionais (por exemplo, meios informativos) devem ser fornecidas quando uma redução de risco adicional for necessária.

Além disso, os procedimentos de trabalho que reduzam o risco podem ser necessários. É recomendado que, quando o usuário for conhecedor do tipo de máquina ou da aplicação, o Anexo B seja utilizado para facilitar a troca de informações entre o usuário e o (s) fornecedor (es) sobre as condições básicas e especificações adicionais do usuário relativas ao equipamento elétrico. Essas especificações adicionais podem fornecer características adicionais que dependem do tipo de máquina (ou grupo de máquinas) e da aplicação; facilitar a manutenção e o reparo; e melhorar a confiabilidade e a facilidade de operação.

Os componentes e dispositivos elétricos devem ser adequados para o seu uso pretendido; e estar em conformidade com as normas IEC aplicáveis, caso existam; e ser aplicados de acordo com as instruções do fornecedor. O equipamento elétrico deve ser adequado para as condições ambientais físicas e operacionais de seu uso devido. Os requisitos a seguir abrangem as condições ambientais e operacionais físicas da maioria das máquinas abrangidas por esta parte. Quando as condições especiais forem aplicadas ou os limites especificados forem excedidos, uma troca de informações entre o usuário e o fornecedor pode ser necessária.

O equipamento elétrico não pode gerar perturbações eletromagnéticas acima dos níveis que são apropriados para o seu devido ambiente operacional. Além disso, o equipamento elétrico deve ter um nível de imunidade suficiente às perturbações eletromagnéticas, de modo que ele possa funcionar no seu devido ambiente. Os ensaios de imunidade e/ou emissões são requeridos no equipamento elétrico, a menos que as seguintes condições sejam atendidas: os dispositivos e componentes incorporados estejam em conformidade com os requisitos de EMC para o ambiente de EMC pretendido especificado na norma aplicável do produto (ou outras normas, quando não existir a norma do produto); a instalação e a fiação elétrica sejam consistentes com as instruções fornecidas pelo fornecedor dos dispositivos e componentes em relação às influências mútuas (cabeamento, blindagem, aterramento, etc.) ou com o Anexo H informativo, se essas instruções não estiverem disponíveis no fornecedor.

As normas genéricas de EMC da IEC 61000-6-1 ou IEC 61000-6-2 e IEC 61000-6-3 ou IEC 61000-6-4 fornecem limites gerais de emissões e imunidade de EMC. O equipamento elétrico deve ser capaz de operar corretamente à temperatura ambiente pretendida do ar. O requisito mínimo para todo o equipamento elétrico operar corretamente em temperaturas ambiente do ar, fora dos invólucros (gabinete ou caixa), é entre + 5 °C e + 40 °C.

O equipamento elétrico deve ser capaz de operar corretamente quando a umidade relativa não exceder 50 % a uma temperatura máxima de + 40 °C. Umidades relativas mais elevadas são permitidas em temperaturas mais baixas (por exemplo, 90 % a 20 °C). Os efeitos nocivos da condensação ocasional devem ser evitados no projeto do equipamento ou, quando necessário, por medidas adicionais (por exemplo, aquecedores embutidos, condicionadores de ar, furos de drenagem).

O equipamento elétrico deve ser capaz de operar corretamente em altitudes de até 1.000 m acima do nível médio do mar. Para o equipamento a ser utilizado em altitudes mais elevadas, é necessário levar em consideração a redução: da rigidez dielétrica; e da capacidade de chaveamento dos dispositivos; e do efeito de resfriamento do ar. É recomendado que o fabricante seja consultado sobre os fatores de correção a serem utilizados quando esses fatores não forem fornecidos nos dados do produto.

O equipamento elétrico deve ser adequadamente protegido contra a penetração de sólidos e líquidos. O equipamento elétrico deve ser adequadamente protegido contra contaminantes (por exemplo, poeira, ácido, gases corrosivos, sais) que possam estar presentes no ambiente físico em que o equipamento elétrico vai ser instalado. Quando o equipamento for submetido à radiação (por exemplo, micro-ondas, raio ultravioleta, raio laser, raio X), medidas adicionais devem ser tomadas para evitar o mau funcionamento do equipamento e a deterioração acelerada da isolação.

Os efeitos indesejáveis de vibração, choque e impacto (incluindo os gerados pela máquina, pelo equipamento associado e pelo ambiente físico) devem ser evitados pela seleção do equipamento adequado, instalando-o distante da máquina, ou pelo fornecimento de suportes antivibração. O equipamento elétrico deve ser projetado para resistir, ou precauções adequadas devem ser tomadas para proteger contra os efeitos do transporte e das temperaturas de armazenamento dentro da faixa de –25 °C a +55 °C e por curtos períodos não superiores a 24 h em até +70 °C. Meios adequados devem ser fornecidos para evitar danos de umidade, vibração e choque.

Os equipamentos elétricos, incluindo cabos isolados de PVC, são suscetíveis a danos em baixas temperaturas. O equipamento elétrico pesado e volumoso que tenha que ser removido da máquina para transporte ou que seja independente da máquina deve ser fornecido com meios adequados para o manuseio, incluindo, quando necessário, meios para manuseio por gruas ou equipamento similar. É recomendado que, quando possível, o equipamento elétrico de uma máquina seja conectado a uma única alimentação de entrada.

Quando outra alimentação for necessária para certas partes do equipamento (por exemplo, equipamentos eletrônicos que operam em uma tensão diferente), convém que essa alimentação seja derivada, na medida do possível, dos dispositivos (por exemplo, transformadores, conversores) que fazem parte do equipamento elétrico da máquina. Para máquinas de grande porte complexas, pode haver a necessidade de mais de uma alimentação de entrada, dependendo das disposições de alimentação no local. A menos que um plugue seja fornecido com a máquina para a conexão à alimentação, é recomendado que os condutores de alimentação terminem no dispositivo de seccionamento da alimentação.

Quando um condutor neutro for utilizado, ele deve ser claramente indicado na documentação técnica da máquina, como no diagrama de instalação e no diagrama do circuito, e um terminal isolado separado, marcado com a letra N, de acordo com 16.1, deve ser fornecido para o condutor neutro. O terminal neutro pode ser fornecido como parte do dispositivo de seccionamento da alimentação. Não pode haver conexão alguma entre o condutor neutro e o circuito de proteção dentro do equipamento elétrico.

Exceção: uma conexão pode ser efetuada entre o terminal neutro e o terminal PE no ponto da conexão do equipamento elétrico a um sistema de alimentação TN-C. Para máquinas fornecidas de fontes paralelas, os requisitos da IEC 60364-1 para sistemas de fonte múltipla se aplicam. Os terminais para a conexão da alimentação de entrada devem ser claramente identificados de acordo com a IEC 60445.

O terminal para o condutor de proteção externo deve ser identificado como um terminal para conexão do condutor de proteção externo, ou seja, para cada alimentação de entrada, um terminal deve ser fornecido no mesmo compartimento associado aos terminais do condutor de linha para conexão da máquina ao condutor de proteção externa. O terminal deve ser de uma dimensão que permita a conexão de um condutor de proteção externa de cobre, com uma área de seção transversal determinada em relação à seção dos condutores de linha associados, de acordo com a tabela abaixo.

Quando um condutor de proteção externa de um material diferente do cobre for utilizado, a dimensão e o tipo do terminal devem ser selecionados adequadamente. Em cada ponto de alimentação de entrada, o terminal para conexão do condutor de proteção externa deve ser marcado ou identificado com as letras PE (ver IEC 60445). Um dispositivo de seccionamento da alimentação deve ser fornecido: para cada alimentação de entrada da(s) máquina(s). A alimentação de entrada pode ser conectada diretamente ao dispositivo de seccionamento da alimentação da máquina ou ao dispositivo de seccionamento da alimentação de um sistema alimentador da máquina.

Os sistemas alimentadores de máquinas podem incluir fios condutores, barras condutoras, conjuntos de anéis coletores, sistemas de cabos flexíveis (carretéis, polias) ou sistemas de alimentação elétrica por indução. Para cada alimentação elétrica embarcada, o dispositivo de seccionamento da alimentação deve seccionar (isolar) o equipamento elétrico da máquina da alimentação elétrica quando requerido (por exemplo, para intervenções na máquina, incluindo o equipamento elétrico).

Quando dois ou mais dispositivos de seccionamento da alimentação forem fornecidos, intertravamentos de proteção para a sua operação correta também devem ser fornecidos, a fim de evitar situações perigosas, incluindo danos à máquina ou ao trabalho em andamento. O dispositivo de seccionamento da alimentação deve ser de um dos seguintes tipos: interruptor-seccionador, com ou sem fusíveis, de acordo com a NBR IEC 60947-3, categoria de uso AC-23B ou DC-23B; dispositivo de manobra para controle e proteção adequado para isolamento, de acordo com a IEC 60947-6-2; um disjuntor adequado para isolamento de acordo com a NBR IEC 60947-2; qualquer outro dispositivo de manobra de acordo com uma norma IEC de produto para esse dispositivo e que atenda aos requisitos de isolamento e à categoria de uso apropriada e/ou aos requisitos de durabilidade especificados definidos na norma de produto; uma combinação de plugue/tomada para uma alimentação por cabo flexível.

BS EN 10217-1: os tubos de aço soldados para pressão

Essa norma europeia, editada em 2019 pelo BSI, abrange os tubos e tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais.

A BS EN 10217-1:2019 – Welded steel tubes for pressure purposes – Technical delivery conditions. Part 1: Electric welded and submerged arc welded non-alloy steel tubes with specified room temperature properties abrange os tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais. Os usuários dessa norma podem ser os projetistas e produtores de tiras de aço, chapas, tubos e tubulações; especificadores, acionistas e distribuidores de tubos de aço; fornecedores de instalações de ensaio e avaliação; e organismos notificados no âmbito do Pressure Equipment Directive (PED).

Conteúdo da norma

Prefácio europeu……………………. 5

1 Escopo……… ……………………. 6

2 Referências normativas…………… 6

3 Termos e definições……………….. 7

4 Símbolos…………. ……………….. 8

5 Classificação e designação……….. 8

5.1 Classificação…………….. ………. 8

5.2 Designação…………….. …………. 8

6 Informações a serem fornecidas pelo comprador……………. …. 9

6.1 Informação obrigatória………………………………… 9

6.2 Opções…………………………….. ………………… 9

6.3 Exemplo de um pedido……………………………….. 10

7 Processo de fabricação………………………………… 10

7.1 Processo siderúrgico………………………………. 10

7.2 Condições de fabricação e entrega do tubo……………. 10

7.3 Requisitos do pessoal de ensaio não destrutivo………….. 12

8 Requisitos………………………….. 12

8.1 Geral……………… 12

8.2 Composição química……………… 12

8.2.1 Análise do fundido…………… 12

8.2.2 Análise do produto……………. 14

8.3 Propriedades mecânicas……………. 14

8.4 Aparência e solidez interna …………… 15

8.4.1 Junção da solda……… …………… 15

8.4.2 Superfície do tubo……….. ……….. 16

8.4.3 Solidez interna…………………….. 16

8.5 Confiabilidade……………. ……… 16

8.6 Preparação dos fins……………………… 16

8.7 Dimensões, massas e tolerâncias… …………….. 17

8.7.1 Diâmetro e espessura da parede………………….. 17

8.7.2 Massa……………………….. …………………….. 17

8.7.3 Comprimentos………………….. ……………….. 17

8.7.4 Tolerâncias………………………. …………. 22

9 Inspeção………………………….. …………. 24

9.1 Tipos e documentos de inspeção …………….. 24

9.2 Conteúdo dos documentos de inspeção…………. 25

9.3 Resumo da inspeção e ensaios. ……………… 26

10 Amostragem…………………. …………… 28

10.1 Frequência dos ensaios…………………. 28

10.1.1 Unidade de ensaio…… ………………. 28

10.1.2 Número de tubos de amostra por unidade de ensaio…………….. 28

10.2 Preparação de amostras e provetes……………. ……….. 28

10.2.1 Seleção e preparação de amostras para análise do produto…………. 28

10.2.2 Localização, orientação e preparação de amostras e provetes para ensaios mecânicos…………………… ………………….. 28

11 Verificação dos métodos de ensaio…………………….. 30

11.1 Análise química……………………………………. 30

11.2 Ensaio de tração no corpo do tubo…………………. 30

11.3 Ensaio de tração transversal na solda…………… 30

11.4 Ensaio de nivelamento………………………… …… 30

11.5 Ensaio de expansão da derivação…………………. 31

11.6 Ensaio de dobra de solda……………………. …… 31

11.7 Ensaio de impacto…………………. ……….. 31

11.8 Ensaio de estanqueidade………………………. 32

11.8.1 Ensaio hidrostático………………………. ….. 32

11.8.2 Ensaio eletromagnético……………………….. 33

11.9 Inspeção dimensional……………………………. 33

11.10 Exame visual…………………………………… 33

11.11 Ensaios não destrutivos……………………. 33

11.11.1 Geral………………………… ………… 33

11.11.2 Tubos EW e HFW…………………………. 33

11.11.3 Tubos SERRA……………………….. ……. 33

11.11.4 Soldas de extremidade de tira em tubos SAWH………………… 34

11.12 Ensaio, classificação e reprocessamento………………….. 34

12 Marcação………………………………………. …………….. 34

12.1 Marcação a ser aplicada……………………………. 34

12.2 Marcação adicional………………………………….. 35

13 Proteção………………………………….. …………. 35

Anexo A (normativo) Qualificação do procedimento de soldagem para tubo de serra TR2 para produção com qualidade………….. 36

A.1 Geral…………………………. ……………….. 36

A.2 Especificação do procedimento de soldagem…………….. 36

A.2.1 Geral………………………….. ……………….. 36

A.2.2 Metal principal…………………… ……….. 36

A.2.3 Preparação da solda…………………………. 36

A.2.4 Fios e fluxos de enchimento…………………. 36

A.2.5 Parâmetros elétricos………………………………….. 37

A.2.6 Parâmetros mecânicos……………………………….. 37

A.2.7 Entrada de calor (kJ/mm) ……………………………. 37

A.2.8 Temperatura de pré-aquecimento …………………..37

A.2.9 Temperatura de interpasse……………………………… 37

A.2.10 Tratamento térmico pós-soldagem………………………. 37

A.2.11 Exemplo de formulário de especificação do procedimento de soldagem………………………. 37

A.3 Preparação do tubo de amostra e avaliação da amostra……….. 38

A.3.1 Tubo para amostra……………………………… ………… 38

A.3.2 Avaliação da amostra………………………………………. 38

A.4 Inspeção e ensaio da solda………. ………………….. 38

A.5 Provas de solda…………………………………… …… 39

A.5.1 Provas de dobra de solda………………….. 39

A.5.2 Macroexame……………………………………….. 39

A.5.3 Ensaio de tração de solda transversal……………. 39

A.5.4 Ensaio de impacto da solda………………….. …. 39

A.6 Métodos de ensaio……………………… ………. 39

A.6.1 Exame visual………………………………….. 39

A.6.2 Ensaio não destrutivo (END)…. ………………. 39

A.6.3 Ensaio de dobra de solda……………… …….. 39

A.6.4 Macroexame………………………………….. 39

A.6.5 Ensaio de tração de solda transversal………… 40

A.6.6 Ensaio de impacto da solda…………………….. 40

A.7 Níveis de aceitação do ensaio…………………….. 40

A.7.1 Exame visual……………………………………. 40

A.7.2 END……………………… ………………. 40

A.7.3 Ensaio de dobra de solda………. …….. 40

A.7.4 Macroexame………………………………… 40

A.7.5 Ensaio de tração de solda transversal………………… 40

A.7.6 Ensaio de impacto da solda………………………. …. 40

A.7.7 Exemplo de documento de resultado do ensaio…………….. 40

A.8 Gama de uso de procedimentos qualificados………… 42

A.8.1 Grupos de materiais…………………………….. … 42

A.8.2 Espessura dos materiais………………………. 42

A.8.3 Classificação do fio de enchimento……………… 42

A.8.4 Fluxo de soldagem………………….. ……….. 42

A.8.5 Outros parâmetros…………………………. 42

A.9 Registro de qualificação………………………..42

Anexo B (informativo) Alterações técnicas da edição anterior……. 43

B.1 Introdução………………………………………. 43

B.2 Alterações técnicas……………………………….. 43

Anexo ZA (informativo) Relação entre esta norma europeia e os requisitos das normas essenciais de 2014/68/UE………………….. 45

Bibliografia………………………… ………………… 46

Essa ajudará os especificadores, designers e outros, definindo as notas para uso nas condições especificadas. Foi preparada sob um mandato conferido ao CEN pela Comissão Europeia e pela Associação Europeia de Comércio Livre para alinhar-se com os requisitos essenciais da Diretiva Equipamentos de Pressão (PED) (2014/68 / UE). As classes de aço e as propriedades das classes de aço carbono e de baixa liga estão alinhadas com as dos tubos sem costura da série BS EN 10216, permitindo que tubos sem costura ou soldados sejam usados em muitos casos.

Os tubos de aço soldados de alta frequência (HFW), às vezes chamados de tubos de aço soldados por resistência elétrica (ERW), e soldados por arco submerso (SAW), estão são cobertos por essa norma. Os tubos HFW são produzidos a partir de tiras de aço e são soldados eletricamente sem o uso de metal de adição. Os tubos SAW são produzidos a partir de chapa de aço e são soldados por fusão usando consumíveis de soldagem apropriados. Em geral, os tubos HFW são produzidos com até 610 mm de diâmetro externo, enquanto os tubos SAW normalmente não são produzidos em diâmetros abaixo de 406,4 mm.

Os tubos e canos de aço BS EN 10217 podem ser usados para uma ampla gama de aplicações, desde serviços de construção a requisitos industriais críticos que envolvam gás ou produtos químicos ou produção de válvulas ou conexões. Portanto, é muito importante que o especificador, projetista ou usuário selecione o tipo e a classe de tubo mais adequados para atender aos seus requisitos das sete partes dessa série dessa norma. A atualização de 2019 buscou refletir as práticas atuais do setor, buscou atualizar as referências, em particular no que diz respeito aos requisitos de ensaio e avaliação. Além das classes TR1, está alinhado com os requisitos essenciais do PED (2014/68/EU).

As características das placas cerâmicas

Deve-se conhecer os métodos para a determinação das características dimensionais (comprimento, largura, espessura, retitude dos lados, ortogonalidade, curvatura da superfície) e da qualidade superficial das placas cerâmicas. As placas com áreas menores que 4 cm² são excluídas das medidas de comprimento, largura, retitude dos lados, ortogonalidade e curvatura da superfície. 

A NBR ISO 10545-2 de 07/2020 – Placas Cerâmicas – Parte 2: Determinação das dimensões e qualidade superficial especifica os métodos para a determinação das características dimensionais (comprimento, largura, espessura, retitude dos lados, ortogonalidade, curvatura da superfície) e da qualidade superficial das placas cerâmicas. As placas com áreas menores que 4 cm² são excluídas das medidas de comprimento, largura, retitude dos lados, ortogonalidade e curvatura da superfície. Os espaçadores, pingos de esmalte e outras irregularidades dos lados são ignorados ao se realizarem as medidas de comprimento, largura, retitude dos lados, ortogonalidade, se estes ficarem ocultos nas juntas após o assentamento (instalação).

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definida a medida da planaridade da superfície?

Como deve ser feita a medida de retitude dos lados?

Como deve ser executada a medida de ortogonalidade?

Quais são os defeitos superficiais e efeitos intencionais nos produtos?

As placas cerâmicas são materiais de revestimento, na forma de placas, usados na construção civil para revestimento de paredes, pisos, bancadas e piscinas de ambientes internos e externos. Recebem designações tais como: azulejo, pastilha, porcelanato, grês, lajota, piso, etc. Para as medidas de comprimento e largura, usa-se como aparelhagem os paquímetros, ou outros aparelhos adequados para medidas lineares.

A amostragem é feita para as placas com área, A ≤ 0,04 m², dez placas inteiras para cada tipo devem ser ensaiadas; para as placas com área, 0,04 m² < A ≤ 0,36 m², sete placas inteiras de cada tipo devem ser ensaiadas; para as placas com área, A > 0,36 m², cinco placas inteiras de cada tipo devem ser ensaiadas. Deve-se medir, com resolução de 0,1 mm, cada lado da placa ensaiada, a 5 mm de cada vértice.

A dimensão média das placas quadradas é a média das quatro medidas. A dimensão média da amostra é a média das 40 medidas. Para placas retangulares, cada par de lados paralelos da peça fornece uma dimensão média da peça, isto é, a média das duas medidas. A dimensão média de comprimento e largura da amostra é a média das 20 medidas.

O relatório de ensaio deve incluir as seguintes informações: referência a este documento; descrição das placas; todas as medidas individuais do comprimento e largura; dimensão média de cada corpo de prova para placas quadradas e média do comprimento e largura para cada placa retangular; dimensão média da amostragem inteira para placas quadradas e média do comprimento e largura para placas retangulares; desvio, em porcentagem e em milímetros, da dimensão média de cada placa (dois ou quatro lados) em relação à dimensão de fabricação; desvio, em porcentagem e em milímetros, da dimensão média de cada placa (dois ou quatro lados) em relação à dimensão média determinada.

Para a medida da espessura, usa-se como aparelhagem um micrômetro fixo em mesa e calibrado, de 5 mm a 10 mm de diâmetro, ou outros instrumentos adequados que podem reproduzir o procedimento de medições descrito abaixo. A amostragem é feita como a seguir: para placas com área, A ≤ 0,04 m², dez placas inteiras para cada tipo devem ser ensaiadas; para placas com área, 0,04 m² < A ≤ 0,36 m², sete placas inteiras de cada tipo devem ser ensaiadas; para placas com área, A > 0,36 m², cinco placas inteiras de cada tipo devem ser ensaiadas.

Como procedimento, para todas as placas, exceto aquelas com superfícies irregulares, traçar diagonais entre os vértices e medir o ponto de maior espessura em cada um dos quatro segmentos. Convém que todas as medições de espessura incluam as dimensões das nervuras/garra do painel ou garras cônicas presentes no tardoz da placa. Medir, com resolução de 0,1 mm, a espessura de cada placa ensaiada nas quatro posições.

Para peças com superfícies irregulares, traçar quatro linhas em ângulos retos na face à distância de 0,125; 0,375; 0,625 e 0,875 vez o comprimento medido a partir do final. Medir a espessura no ponto mais espesso de cada linha. Para todas as placas, a dimensão média da espessura de cada placa individual é a média das quatro medidas. O relatório de ensaio deve incluir as seguintes informações: referência a este documento; descrição das placas; todas as medidas individuais de espessura; espessura média de cada placa; desvio, em porcentagem e em milímetros, da espessura média de cada placa em relação à espessura de fabricação.

Para a medida da planaridade da superfície (curvatura e empeno), as medições da planaridade da superfície não são possíveis quando a precisão da medição do relógio comparador for afetada devido às características da superfície da placa. Usa-se como aparelhagem, para placas maiores que 40 mm × 40 mm, um aparelho ou qualquer instrumento adequado que possa reproduzir o procedimento de medições descrito abaixo.

Para a medida das placas com superfície lisa, os suportes inferiores (SA, SB, SC) devem ter 5 mm de diâmetro. Para obter resultados significativos para outros tipos de superfícies, suportes inferiores adequados devem ser usados. Incluir uma placa-padrão calibrada, perfeitamente plana, de metal ou vidro, e com pelo menos 10 mm de espessura para uma régua metálica. Para placas com dimensões iguais ou menores que 40 mm × 40 mm, régua metálica e um medidor de espessura calibrado.

A amostragem é feita como a seguir: para placas com área, A ≤ 0,04 m², dez placas inteiras para cada tipo devem ser ensaiadas; para placas com área, 0,04 m² < A ≤ 0,36 m², sete placas inteiras de cada tipo devem ser ensaiadas; para placas com área, A > 0,36 m², cinco placas inteiras de cada tipo devem ser ensaiadas. O procedimento, para placas maiores que 40 mm × 40 mm, selecionar um aparelho de tamanho apropriado e colocar a placa-padrão correspondente na posição exata dos três suportes inferiores (SA, SB, SC). O centro de cada suporte de apoio deve estar a 10 mm da borda da placa, e os dois relógios comparadores (DE, DC) devem estar igualmente a 10 mm das bordas da placa.

Ajustar os três relógios comparadores (DD, DE, DC) para um valor de referência conhecido e apropriado. Remover a placa-padrão, colocar a placa com a superfície esmaltada ou irregular em contato com os aparelhos (para baixo) e registrar as leituras nos três relógios comparadores. Se a placa for quadrada, girá-la para obter quatro medidas de cada propriedade. Repetir este procedimento para cada placa ensaiada.

No caso de placas retangulares, usar instrumentos separados com dimensões apropriadas. Registrar os valores máximos de curvatura central (DD), curvatura lateral (DE) e empeno (DC) de cada placa. Medir com resolução de 0,1 mm. A curvatura central é expressa em milímetros e em porcentagem em relação ao comprimento da diagonal.

A curvatura lateral é expressa em milímetros e em porcentagem em relação: ao comprimento e largura para placas retangulares, e à dimensão para placas quadradas. O empeno é expresso em milímetros e em porcentagem em relação ao comprimento da diagonal. As medidas das placas com espaçadores devem ser expressas em milímetros.

O relatório de ensaio deve incluir as seguintes informações: referência a este documento; descrição das placas; todas as medidas individuais da curvatura central; todas as medidas individuais da curvatura lateral; todas as medidas individuais de empeno; máxima curvatura central, em milímetros e em porcentagem em relação à diagonal calculada a partir da dimensão de fabricação; máxima curvatura lateral, em milímetros e em porcentagem em relação à dimensão de fabricação correspondente; máximo empeno, em milímetros e em porcentagem em relação à diagonal calculada a partir da dimensão de fabricação.

Estão incluídas nessa série várias outras normas. A NBR ISO10545-15 de 07/2020 – Placas cerâmicas – Parte 15: Determinação de cádmio e chumbo presentes nas placas cerâmicas esmaltadas especifica um método para a determinação de cádmio e chumbo presentes no esmalte das placas cerâmicas. A NBR ISO 10545-16 de 07/2020 – Placas cerâmicas – Parte 16: Determinação de pequenas diferenças de cor descreve um método para a utilização de instrumentos de medição de cor para a quantificação de pequenas diferenças de cor entre placas cerâmicas monocolores, que são projetadas para serem de cor uniforme e consistente. A NBR ISO 10545-1 de 10/2017 – Placas Cerâmicas – Parte 1: Amostragem e critérios para aceitação especifica regras para a formação dos lotes, amostragem, inspeção e aceitação / rejeição de placas cerâmicas para revestimento.

A NBR ISO 10545-10 de 11/2017 – Placas Cerâmicas – Parte 10: Determinação da expansão por umidade especifica um método de ensaio para a determinação da expansão por umidade em placas cerâmicas. A NBR ISO 10545-11 de 11/2017 – Placas Cerâmicas – Parte 11: Determinação da resistência ao gretamento de placas esmaltadas define um método de ensaio para a determinação da resistência ao gretamento de todas as placas cerâmicas esmaltadas, exceto quando o gretamento é uma característica decorativa inerente do produto. A NBR ISO 10545-12 de 11/2017 – Placas Cerâmicas – Parte 12: Determinação da resistência ao congelamento especifica um método para determinação da resistência ao congelamento de todas as placas cerâmicas indicadas para o uso em condições de congelamento na presença de água.

A NBR ISO 10545-13 de 07/2020 – Placas cerâmicas – Parte 13: Determinação da resistência química especifica o método de ensaio para determinação da resistência química das placas cerâmicas à temperatura ambiente. Este método é aplicável a todas as tipologias de placas cerâmicas. A NBR ISO 10545-14 de 11/2017 – Placas Cerâmicas – Parte 14: Determinação da resistência ao manchamento especifica um método para determinação da resistência ao manchamento da superfície característica de placas cerâmicas. A NBR ISO 10545-3 de 07/2020 – Placas cerâmicas – Parte 3: Determinação da absorção de água, porosidade aparente, densidade relativa aparente e densidade aparente especifica um método para determinação da absorção de água, porosidade aparente, densidade relativa aparente e densidade aparente de placas cerâmicas. Este método é aplicável à classificação das placas e

A NBR ISO 10545-4 de 07/2020 – Placas cerâmicas – Parte 4: Determinação da carga de ruptura e módulo de resistência à flexão especifica um método de ensaio para determinação do módulo de resistência à flexão e carga de ruptura para todas as placas cerâmicas. A NBR ISO 10545-5 de 11/2017 – Placas Cerâmicas – Parte 5: Determinação da resistência ao impacto pela medição do coeficiente de restituição especifica o método de ensaio para determinação da resistência ao impacto de placas cerâmicas pela medição do coeficiente de restituição. A NBR ISO 10545-6 de 11/2017 – Placas cerâmicas – Parte 6: Determinação da resistência à abrasão profunda para placas não esmaltadas especifica o método de ensaio para determinação da resistência à abrasão profunda de todas as placas cerâmicas não esmaltadas, utilizadas para revestimento de pisos.

A NBR ISO 10545-7 de 11/2017 – Placas Cerâmicas – Parte 7: Determinação da resistência à abrasão superficial para placas esmaltadas especifica um método para determinação da resistência à abrasão superficial de todas as placas cerâmicas esmaltadas usadas como revestimentos de pisos. A NBR ISO 10545-8 de 11/2017 – Placas Cerâmicas – Parte 8: Determinação da expansão térmica linear estabelece o método de ensaio para determinação do coeficiente de expansão térmica linear de placas cerâmicas. A NBR ISO 10545-9 de 11/2017 – Placas Cerâmicas – Parte 9: Determinação da resistência ao choque térmico especifica o método de ensaio para determinação da resistência ao choque térmico para todas as placas cerâmicas sob condições normais de uso.

O desenvolvimento de um projeto urbanístico

Deve-se conhecer as atividades técnicas envolvidas no desenvolvimento do projeto urbanístico, com foco em novas cidades, trechos urbanos ou redesenho de áreas urbanas existentes a serem renovadas.

A NBR 16636-3 de 07/2020 – Elaboração e desenvolvimento de serviços técnicos especializados de projetos arquitetônicos e urbanísticos – Parte 3: Projeto urbanístico estabelece as atividades técnicas envolvidas no desenvolvimento do projeto urbanístico, com foco em novas cidades, trechos urbanos ou redesenho de áreas urbanas existentes a serem renovadas. Esta parte é aplicável a todas as classes (ou categorias) tipológicas funcionais e formais de assentamentos urbanos, referentes aos projetos urbanísticos. Entender a definição de projeto urbanístico conforme a Seção 3: é a atividade técnica realizada por profissional habilitado, proveniente de estudos, pela qual é concebida uma intervenção no espaço urbano, podendo aplicar-se tanto ao todo como à parte do território.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as informações de referência a serem utilizadas?

Quais são os documentos técnicos a serem apresentados no estudo preliminar urbanístico ou plano de massas (EP-PMURB)?

O que deve ser feito em relação ao projeto para licenciamentos (PL)?

Quais são as condições específicas de aplicabilidade?

O projeto urbanístico é a diretriz para o conjunto de projetos das diversas especialidades necessárias e suficientes para a execução de novos espaços urbanos ou intervenção nos espaços existentes. Estes projetos integrados são desenvolvidos por meio de uma abordagem evolutiva, caracterizada por etapas e fases, e, também, considerando-se tempos simultâneos para atividades complementares de diversas especialidades, que têm que ser coordenadas e integradas em um processo contínuo e completo de compatibilização até a contratação das obras.

Estas fases e etapas, durante o processo de projeto, são organizadas em sequência predeterminada, de forma a atender aos requisitos a serem considerados, de acordo com o objeto do projeto urbanístico e com os objetos da construção, mantendo-se a sua conformidade com as determinações e condicionantes técnicas e legais vigentes e as demandas e premissas definidas pelo empreendedor. Esta parte tem o propósito de orientar o planejamento e o desenvolvimento de projetos urbanísticos ao longo de todas as suas etapas, caracterizando as entradas e saídas em cada momento, bem como o inter-relacionamento com as demais especialidades.

Convém que esta norma seja lida em conjunto com a NBR 16636-1, que estabelece o contexto geral das atividades técnicas de projetos arquitetônicos e urbanísticos, que é aplicável a todas as partes da NBR 16636. O projeto urbanístico de criação de novos espaços urbanos ou intervenção nos existentes abrange a determinação e a representação dos ambientes urbanos em diversas escalas, com os seus elementos, componentes e materiais mostrando a sua organização, definição estética e estruturas de ordenamento do espaço construído para uso ativo ou representativo dos seus usuários, envolvendo, também a concepção de obras de cunho cultural ou monumental.

Esta parte é aplicável aos serviços técnicos de projeto, necessários à execução de obras e intervenções, conforme as seguintes classes: projetos urbanísticos de implantação de novas cidades ou relacionados aos novos espaços urbanos a serem ocupados; projetos urbanísticos relacionados à ampliação, contenção, modificação, remanejamento, recuperação, preservação, conservação e restauração de cidades existentes. Os espaços abertos são objetos específicos do projeto urbanístico, visando atividades de construção e de criação de ambientes que interagem e refletem diretamente na configuração urbana.

Levando em conta as duas categorias de projetos urbanísticos acima, existem os seguintes usos: públicos (parques, arruamentos e praças); privados (espaços de acesso do público, áreas comuns de condomínios horizontais e verticais).  Os tipos de projetos urbanísticos são exemplificados no quadro informativo do Anexo C. O projeto urbanístico pode ser realizado por equipe de profissionais de várias especialidades, considerando a coordenação de equipe multidisciplinar por profissional habilitado.

A coordenação técnica envolve também a compatibilização dos projetos das especialidades com o projeto urbanístico. São objetos de projetos das várias especialidades, integradas ao projeto urbanístico, diversos itens que podem ser visualizados na Figura B.1. do Anexo B (disponível na norma), visando a construção destes espaços e considerando-se as interfaces e compatibilizações entre os eles. O projeto urbanístico também segue o caráter evolutivo e de retroalimentação das etapas descritas na NBR 16636-1, conforme demonstrado no gráfico-síntese constante na figura acima.

Conforme a NBR 16636-1, todas as atividades devem ter entradas, saídas, requisitos e recursos previstos no plano de projeto. Em cada etapa existe um contínuo inter-relacionamento de interdependência entre as diferentes especialidades envolvidas na elaboração do projeto completo. Portanto, na fase de planejamento do projeto devem estar previamente estabelecidos quais são os projetos das especialidades e em que etapas estas participam.

O descrito a seguir, configura uma orientação para este plano, no caso de um projeto completo, de acordo com a sua complexidade, e, na eventual ausência dele, deve ser tomado como escopo mínimo, excetuados os itens indicados como opcionais. Os estágios de execução da atividade técnica do projeto urbanístico consideram duas fases principais, a saber: fase 1: Preparação; fase 2: Etapas de elaboração e desenvolvimento de projetos técnicos.

A fase de preparação é o conjunto de atividades a serem desenvolvidas para a produção de subsídios ao projeto, a serem fornecidos pelo empreendedor, contendo as seguintes etapas (incluídas as siglas), na sequência indicada: estudo de viabilidade do empreendimento (EV-EMP); levantamento de informações preliminares (LV- PRE); programa geral de necessidades (PGN); levantamento das informações técnicas específicas (LVIT-URB) a serem fornecidas pelo empreendedor ou contratadas no projeto. A fase de elaboração e desenvolvimento de projetos técnicos envolve a determinação e representação prévias da configuração urbana, concebida e desenvolvida mediante a coordenação e a orientação geral dos projetos de todas as especialidades envolvidas, contendo as definições dos componentes construtivos e a especificação dos materiais de construção, gerando o projeto completo, por meio do processo de sua compatibilização.

As seguintes fases e etapas estão organizadas no gráfico-síntese (Figura B.1.) do Anexo B: levantamento de dados para o projeto urbanístico (LV-PROJURB); programa de necessidades para o projeto urbanístico (PN-PROJURB); estudo de viabilidade para o projeto urbanístico (EV-PROJURB); estudo preliminar do projeto urbanístico ou plano de massas (EP-PMURB), envolvendo também o plano de uso do solo na área, que é geralmente uma decorrência do estudo de viabilidade técnica e econômica de implantação do empreendimento; anteprojeto urbanístico (AP-URB); projeto para licenciamentos (PL-URB) e estudos ambientais (EAMB) quando aplicável; estudo preliminar dos projetos das especialidades (EP-PROJCOMP); anteprojetos das especialidades (AP-PROJCOMP); projeto executivo urbanístico (PE-PROJURB); projetos executivos das especialidades (PE-PROJCOMP); projeto completo (PROJ-COMP); documentação conforme construído (as built).

As informações do projeto devem registrar a caracterização de cada objeto específico de construção, seus atributos funcionais, formais e técnicos considerados, contendo os seguintes requisitos prescritivos e de desempenho, mínimos: identificação; descrição (dimensões, características dos materiais, especificações); condições de localização, de utilização e climáticas; estudos ambientais e de alternativas de implantação e instalação, de acordo com a legislação, requisitos e características relativas ao desempenho no uso; aplicações; informação sobre o canteiro de obra, quando aplicável; subsídios sobre uso, operação e manutenção; informações sobre condições de propriedade.

A elaboração do projeto urbanístico deve ser orientada, em cada uma das suas etapas, por: informações de referência e informações técnicas específicas a serem utilizadas; informações técnicas a serem produzidas; documentos técnicos a serem produzidos e apresentados. As informações técnicas produzidas em quaisquer das etapas de elaboração do projeto completo devem ser apresentadas mediante documentos técnicos (originais e/ou cópias), em conformidade com os padrões estabelecidos nas normas pertinentes, podendo ser: documentos gráficos; documentos escritos (memoriais, relatórios, relações e listagens); planilhas e tabelas; fluxogramas e cronogramas; fotografias; maquetes; outros meios de representação (por exemplo, vídeos, etc.)

As determinações e representações do projeto urbanístico, em todas as suas etapas, devem ser estabelecidas, objetivando a coordenação de projetos e a conformidade das demais atividades técnicas relativas às especialidades que compõem o projeto completo, de acordo com outras normas específicas vigentes, aplicáveis a cada conteúdo setorial. As etapas do projeto urbanístico devem ser determinadas de modo a possibilitar a subsequente definição e articulação das demais etapas das atividades técnicas de outras especialidades que compõem o projeto completo, segundo o grau de complexidade de cada projeto ou estudo específico.

Considerando as duas fases principais, deve ser atendido o descrito a seguir. Fase 1 de preparação, Fase 2 de elaboração e desenvolvimento de projetos técnicos que é o levantamento de dados técnicos para o projeto urbanístico (LV-URB). Esta etapa deve ser elaborada por profissional habilitado e pode contar com profissionais de várias especialidades e compreende os seguintes levantamentos: levantamento topográfico e cadastral (LV-TOP), já apontado na Fase1 (Preparação); os registros de vistorias no local da futura intervenção e de consulta técnica a arquivos cadastrais (municipais, estaduais ou federais), incluindo os seguintes dados mínimos: vizinhança regional da urbanização (estudos, impactos socioambientais no território urbano); síntese das leis municipais, estaduais e federais para projetos urbanísticos, disponibilidade e cadastros de redes de serviços públicos existentes; estudos sobre geomorfologia e características ambientais do terreno destinado à urbanização; orientação norte-sul; direção e sentido dos ventos predominantes; conforto climático e sombreamento; estudos de vizinhança e verificação de possíveis impactos; outras informações relevantes.

Os documentos técnicos a serem apresentados: documentos gráficos (cadastrais da vizinhança, do terreno e das edificações existentes): plantas, cortes e elevações (escalas existentes ou convenientes); documentos escritos: relatórios específicos; fotografias: preferencialmente coloridas, com indicação esquemática dos pontos de vista e com textos explicativos; outros meios de representação (por exemplo, vídeos, etc.). O programa de necessidades para o projeto urbanístico (PN-PROJURB) pode ser produzido pelo contratante e fornecida ao profissional responsável pelo projeto urbanístico, conforme descrito a seguir. As informações de referência a serem utilizadas: programa geral de necessidades; levantamento de dados técnicos para o projeto urbanístico (LV-PROJURB); outras informações.

As informações técnicas a serem produzidas envolvem as informações necessárias à concepção urbanística (novo ambiente construído ou artificial) e aos serviços de obra, como nomes, números e dimensões (gabaritos, relações entre as áreas livres e as áreas construídas) e seus graus de mobilidade e acessibilidade, de acordo com regramentos e normas vigentes, com a distinção entre os diversos ambientes antrópicos a ampliar, a reduzir e a recuperar, demonstrando as características, de acordo com os requisitos, número, idade e permanência dos usuários do projeto, as características funcionais ou das atividades em cada ambiente urbanizado (ocupação, capacidade, movimentos, fluxos e períodos); características, dimensões e serviços dos equipamentos e mobiliário, requisitos ambientais, níveis de desempenho e instalações especiais.

ASME B46.1: a textura das superfícies

Essa norma, editada em 2019 pela American Society of Mechanical Engineers (ASME), refere-se às irregularidades geométricas das superfícies. Ela define a textura da superfície e seus constituintes: rugosidade, ondulação e postura. Também estabelece os parâmetros para especificar a textura de uma superfície. Os termos e as classificações desta norma referem-se a superfícies produzidas por meios como abrasão, fundição, revestimento, corte, gravação, deformação plástica, sinterização, desgaste, erosão, etc.

A ASME B46.1:2019 – Surface Texture (Surface Roughness, Waviness, and Lay) refere-se às irregularidades geométricas das superfícies. Ela define a textura da superfície e seus constituintes: rugosidade, ondulação e postura. Também estabelece os parâmetros para especificar a textura de uma superfície. Os termos e as classificações desta norma referem-se a superfícies produzidas por meios como abrasão, fundição, revestimento, corte, gravação, deformação plástica, sinterização, desgaste, erosão, etc.

Destina-se a engenheiros de projeto, desenhistas, técnicos do setor mecânico, de manufatura, produção, ferramentas/instrumentos, qualidade, processos e projetos, especialistas em CAD/CAM/CAE, inspetores e educadores em uma ampla gama de manufatura global. Dá ênfase especial às indústrias aeroespacial, automotiva, médica, instrumentação de precisão e indústrias relacionadas.

Conteúdo da norma

Prefácio . . . . . . . . . . . . . . . . . . . . . ix

Lista do Comitê . . . . . . . . . . . . . … xi

Correspondência com o Comitê B46. . . . . . . . . . . xii

Sumário executivo. . . . . . . . . . . . . . . . . . . xiv

Sumário de mudanças . . . . . . . . . . . . . . . . . . xv

Seção 1 Termos relacionados à textura da superfície. . . . . . . 1

1-1 Geral . . . . . . . . . . . . . . . . . . . . . . . 1

1-2 Definições relacionadas às superfícies. . . . . . . . . . . 1

1-3 Definições relacionadas à medição da textura da superfície por métodos de perfil. . . . 3

1-4 Definições dos parâmetros de superfície para métodos de criação de perfil.. . . . . . . . . . 6

1-5 Definições relacionadas à medição da textura da superfície por perfil de área e métodos. . . . . . . . . . . . . . . . 15

1-6 Definições dos parâmetros de superfície para os perfis de área e métodos……… 16

Seção 2 Classificação de instrumentos para medição de textura de superfície. . . . . . . . . . 21

2-1 Escopo.. . . . . . . . . . . . . . . . . . 21

2-2 Recomendação. . . . . . . . . . . . . . . . 21

2-3 Esquema de classificação. . . . . . . . . . . . . . 22

Seção 3 Terminologia e procedimentos de medição para criação de perfil, contato e instrumentos sem skid . . . . . . . . 24

3-1 Escopo. . . . . . . . . . . . . . . . . . 24

3-2 Referências.  . . . . . . . . . . . . . . 24

3-3 Terminologia. . . . . . . . . . . . . . . . . 24

3-4 Procedimento de medição. . . . . . . . 29

Seção 4 Procedimentos de medição para contato, instrumentos com skid . . . . . . . . . . . . . 31

4-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . . . 31

4-2 Referências. . . . . . . . . . . . . . . . . . . . 31

4-3 Finalidade. . . . . . . . . . . . . . . . . . . . . . 31

4-4 Instrumentação. . . . . . . . . . . . . . . . . . . . 31

Seção 5 Técnicas de medição para o perfil de área. . . . . . 36

5-1 Escopo. .. . . . . . . . . . . . . . . . . . . . . . . . . 36

5-2 Referências. .. . . . . . . . . . . . . . . . . . . . 36

5-3 Recomendações . . . . . . . . . . . . . . . . . . . 36

5-4 Métodos de imagem. . . . . . . . . . . . . . . . . 36

5-5 Métodos de digitalização.  . . . . . . . . . . . . . 36

Seção 6 Técnicas de medição para a média da área. . . . . . . 37

6-1 Escopo..  . . . . . . . . . . . . . . . . . . . . . . . 37

6-2 Exemplos de métodos de média de área. . . . . . . 37

Seção 7 Textura da superfície do nanômetro e medidas da altura do degrau por perfil de instrumentos com caneta . .  . 38

7-1 Escopo . . . . . . . . . . . . . . . . . 38

7-2 Documentos aplicáveis . . . . . . . . . . . . . . . 38

7-3 Definições. . . . . . . . . . . . . . . . . . . . . . . 38

7-4 Recomendações.. . . . . . . . . . . . . . . . . . . 39

7-5 Preparação para medição. . . . . . . . . . . . 40

7-6 Artefatos de calibração.. . . . . . . . . . . . . . . . 41

7-7 Relatórios. . . . . . . . . . . . . . . . . . . . . . . 42

Seção 8 Rugosidade da superfície do nanômetro da medida com a interferometria de medição de fase de microscopia….43

8-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . 43

8-2 Descrição e definições: Interferômetro de medição de fase sem contato. .  . . . . . 43

8-3 Principais fontes de incerteza. . . . . . . . . . . . . . 43

8-4 Requisitos do instrumento para interferômetro de medição de fase sem contato.  . . . . . . . 45

8-5 Métodos de ensaio. . . . . . . . . . . . . 45

8-6 Procedimentos de medição. .  . . . . . . . . . . . 45

8-7 Análise de dados e relatórios. . . . . . . . . . . . . 46

8-8 Referências. .. . . . . . . . . . . . . . . . . . . . . 46

Seção 9 Filtragem de perfis de superfície.. . . . . . 47

9-1 Escopo. . . . . . . . . . . . . . . . . . . . . . . . . . 47

9-2 Referências. . . . . . . . . . . . . . . . . . . . 47

9-3 Definições e especificações gerais.. . . . . . . . 47

9-4 Especificação do filtro 2RC para aspereza.  . . . . . . 48

9-5 Filtro gaussiano correto de fases para rugosidade. . . . . 50

9-6 Filtragem de ondulação. . . . . . . . . . . . . . . . . 53

9-7 Filtragem de superfícies com propriedades funcionais estratificadas. . .  . . . . . . . . . 55

Seção 10 Terminologia e procedimentos para avaliação de texturas de superfície usando a geometria fractal  . . . . . . 56

10-1 Geral. . . . . . . . . . . . . . . . . . . . . 56

10-2 Definições relativas à análise de superfícies com base em fractal.  . . . . . . . . . . 56

10-3 Relatando os resultados das análises fractais . . . . . . 59

10-4 Referências. . . . . . . . . . . . . . . . . 61

Seção 11 Especificações e procedimentos para amostras de referência de precisão… . . . . . . . 63

11-1 Escopo.  . . . . . . . . . . . . . . . . . . . . . 63

11-2 Referências. . . . . . . . . . . . . . . . . . .  63

11-3 Definições. . . . . . . . . . . . . . . . . . . . . 63

11-4 Amostras de referência: forma e aplicação do perfil.. . . 63

11-5 Requisitos físicos. . . . . . . . . . . . . . . . . 64

11-6 Cálculo do valor atribuído.. . . . . . . . . . . . . 64

11-7 Requisitos mecânicos.  . . . . . . . . . . . . . . . . 65

11-8 Marcação. . . . . . . . . . . . . . . . . . . . . . . . 66

11-9 Intervalo de calibração.  . . . . . . . . . . . . . . 66

Seção 12 Especificações e procedimentos para amostras de comparação de rugosidade. . . . . . . . . . 75

12-1 Escopo. . . . . . . . . . . . . . . . . 75

12-2 Referências. .. . . . . . . . . . . . . . . . . . 75

12-3 Definições. .  . . . . . . . . . . . . . . . . . 75

12-4 Amostras de comparação de rugosidade. . . . . . . 75

12-5 Características da superfície. .. . . . . . . . . . . . . 75

12-6 Graus de rugosidade nominal.. . . . . . . . . . . 75

12-7 Tamanho, forma e configuração da amostra.  . . . . . 75

12-8 Calibração de amostras de comparação . . . . . . . . 76

12-9 Marcação. .. . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Em casos de discordância quanto à interpretação das medições de textura da superfície, recomenda-se que as medições com instrumentos baseados em caneta sem skid e com filtro gaussiano sejam usadas como base para a interpretação. Alguns parâmetros-chave de medição devem ser estabelecidos para especificação e medição adequadas da textura da superfície.

Muitos parâmetros de altura do acabamento da superfície estão em uso em todo o mundo. Desde a especificação mais simples de um único parâmetro de rugosidade até várias especificações de parâmetro de rugosidade e ondulação de uma determinada superfície, os projetistas de produtos têm muitas opções para especificar a textura da superfície para controlar a função da superfície. Entre esses extremos, os projetistas devem considerar a necessidade de controlar a altura da rugosidade (por exemplo, Ra ou Rz), consistência da altura da rugosidade (por exemplo, Rmax) e altura da ondulação (por exemplo, Wt).

A ondulação é um recurso secundário de comprimento de onda mais longo, que apenas preocupa funções específicas da superfície e processos de acabamento. Uma descrição completa dos vários parâmetros de textura pode ser encontrada na Seção 1. Para os símbolos de textura de superfície, uma vez estabelecidos os vários parâmetros principais de medição, a ISO 1302: 2002 pode ser usada para estabelecer a indicação apropriada nos desenhos de engenharia relevantes.

API STD 6FA: o ensaio de válvulas em incêndio

Essa norma, publicada em 2020 pela American Petroleum Institute (API), estabelece os requisitos para ensaiar e avaliar o desempenho contendo pressão das válvulas API 6A e API 6D quando expostas ao fogo. Os requisitos de desempenho desta norma estabelecem critérios de qualificação para todos os tamanhos e classificações de pressão.

A API STD 6FA:2020 – Standard for Fire Test for Valves estabelece os requisitos para ensaiar e avaliar o desempenho contendo pressão das válvulas API 6A e API 6D quando expostas ao fogo. Os requisitos de desempenho desta norma estabelecem critérios de qualificação para todos os tamanhos e classificações de pressão. Esta norma pode ser aplicada a válvulas que não atendem aos requisitos da API 6A ou API 6D, a critério do usuário.

Esta norma se aplica a válvulas com um ou mais membros de fechamento. Estabelece níveis aceitáveis de vazamento através da válvula de ensaio e vazamento externo após exposição a um incêndio por um período de 30 minutos. O período de ensaio de exposição ao fogo foi estabelecido com base no tempo máximo necessário para extinguir a maioria dos incêndios.

Os incêndios de maior duração são considerados de grande magnitude, com consequências maiores do que as previstas neste ensaio. Esta norma não se destina a atender à qualificação de atuadores de válvulas (incluindo caixas de engrenagens operadas manualmente). Não cobre a penetração nos limites de pressão, conexões externas ou conexões finais.

Conteúdo da norma

1 Escopo…………………………… 1

2 Referências normativas………………………. 1

3 Termos, definições, acrônimos, abreviações, símbolos e unidades…………………. 1

3.1 Termos e definições………………………………… 1

3.2 Acrônimos, abreviações, símbolos e unidades……….. ……. 2

4 Ensaio de incêndio………………….. 3

4.1 Geral…………………………….. 3

4.2 Válvula de ensaio………………. ……. 4

4.3 Instalação do ensaio…………………… 4

4.4 Procedimento de ensaio………………………. 9

4.5 Marcação de produtos ensaiados…………………. 13

5 Dimensionamento…………………….. ……… 13

5.1 Ensaio de validação com base em outros projetos……….. 13

5.2 Permissões de escala por tamanho……………………. 14

5.3 Permissões de escala por classificação de pressão……… 15

5.4 Permissões de escala para materiais não metálicos………………. 15

5.5 Permissões de escala para materiais metálicos…………………….. 16

6 Certificado de conformidade…… ………………………… 17

Anexo A (informativo) Qualificação estendida de material não metálico…………………. 18

Figuras

1 Esquema dos sistemas sugeridos para ensaio de incêndio para válvulas……………….. 6

2 Localização dos calorímetros…………………………… 7

3 Localização das válvulas de retenção flangeadas com calorímetros…………….. 8

4 Localização das válvulas de retenção tipo calorímetro – wafer……………………………….. 8

5 Projeto dos calorímetros em cubos…………………… 9

A.1 Etapas para a qualificação de elastômeros, incluindo exemplos…………………….. 19

A.2 Etapas para a qualificação de plásticos, incluindo exemplos……………………….. 20

Tabelas

1 Pressão de ensaio da válvula API 6A durante o ensaio de incêndio……..11

2 Pressão de ensaio da válvula API 6D durante o ensaio de incêndio……. 11

3 Qualificação pelo tamanho da válvula no ensaio da válvula 6A….. 14

4 Qualificação pelo tamanho da válvula no ensaio da válvula 6D……. 14

5 Qualificação por classificação de pressão do ensaio da válvula 6A. 15

6 Qualificação por pressão nominal no ensaio da válvula 6D ……. 15

A.1 Etapas para a qualificação de elastômeros, incluindo exemplos……..19

A.2 Etapas para a qualificação de plásticos, incluindo exemplos…………..20

Tabelas

1 Pressão de ensaio da válvula API 6A durante o ensaio de incêndio……..11

2 Pressão de ensaio da válvula API 6D durante o ensaio de incêndio……… 11

3 Qualificação pelo tamanho da válvula no ensaio da válvula 6A…………. 14

4 Qualificação pelo tamanho da válvula no ensaio da válvula 6D………….. 14

5 Qualificação por classificação de pressão do ensaio da válvula 6A………. 15

6 Qualificação por pressão nominal no ensaio da válvula 6D………………..15

A.1 Qualificação pelo tamanho da válvula no ensaio da válvula 6A………. 20

A.2 Qualificação pelo tamanho da válvula no ensaio da válvula 6D………..21

A.4 Qualificação por pressão nominal no ensaio da válvula 6D……………..22

A.5 Exemplo de tabela DMA para material plástico na válvula de ensaio original…….24

A.6 Exemplo de tabela DMA para material plástico na segunda válvula de ensaio……. 24

Esta norma não se destina a impedir que um fabricante ofereça ou que o comprador aceite equipamentos alternativos ou soluções de engenharia para a aplicação individual. Isso pode ser particularmente aplicável quando houver tecnologia inovadora ou em desenvolvimento. Quando uma alternativa é oferecida, o fabricante deve identificar qualquer variação deste padrão e fornecer detalhes. Os Anexos informativos são apenas para fins informativos e não são requisitos obrigatórios. Os Anexos normativos são indispensáveis e obrigatórios para a aplicação deste documento.

Alterações da 4ª para a 5ª Edição

Essa norma é o resultado da atualização dos requisitos do API Standard 6FA, quarta edição, para incluir os requisitos da API 6FD – Fire Test for Check Valves, em sua totalidade. Com a publicação deste documento, o documento API 6FD foi cancelado.

Unidades de medida

Nessa norma, os dados são expressos em unidades usuais dos EUA (USC) e métricas (SI).

As competências dos especialistas em gestão da energia

Saiba quais são as recomendações de competências esperadas de especialistas em implementação do sistema de gestão da energia (SGE) por meio da aplicação da NBR ISO 50001:2018. 

A NBR 16883 de 06/2020 – Sistema de gestão da energia — Diretrizes para seleção de especialistas em implementação da NBR ISO 50001 estabelece as recomendações de competências esperadas de especialistas em implementação do sistema de gestão da energia (SGE) por meio da aplicação da NBR ISO 50001:2018. Esta norma aplica-se às pessoas que trabalham como especialistas em implementação do SGE em qualquer tipo de organização, independentemente do seu tamanho, tipo, localização e nível de maturidade. Tem caráter orientativo, para que as organizações selecionem os especialistas em implementação de SGE, cabendo às organizações decidirem se é desejável ou não a sua aplicação integral ou parcial, de acordo com as suas diretrizes internas.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como podem ser definidas a competência e a compreensão?

Qual seria o conceito de competência para o especialista?

Quais os conhecimentos e habilidades específicas que o especialista deve ter?

Por que o especialista em implementação de SGE deve entender dos usos da energia?

Vários princípios podem ser aplicados à atuação do especialista em implementação do SGE. O atendimento a estes princípios contribui para a eficácia e consistência do trabalho do implementador de sistemas de gestão da energia. A implementação do sistema de gestão da energia é antecedida pelo estabelecimento de um termo de confidencialidade relacionado à divulgação, manutenção e distribuição dos dados com os quais o especialista entrará em contato durante o serviço, conforme aplicável. A confidencialidade visa a proteger a organização da utilização não autorizada destes dados pelo especialista para interesses pessoais ou de terceiros, ou para prejudicar a organização.

Tendo a anuência da organização, o especialista pode usar os dados desta, de forma anônima, para, por exemplo, complementar bases de dados públicas. Convém que o especialista aja de maneira independente e imparcial para identificar com objetividade potenciais conflitos de interesse. Convém que o especialista esteja preparado para executar o serviço, de modo que todos os aspectos da implementação sejam transparentes, ao menos para a organização onde o SGE estiver sendo implementado.

Recomenda-se solicitar referências dos potenciais especialistas em implementação de SGE aos clientes ou empregadores anteriores. Recomendações sobre papéis e responsabilidades potencialmente assumidos pelo contratante do serviço e pelo especialista em implementação de SGE são apresentadas na tabela abaixo.

Além disso, a segurança e a confiança no processo de implementação de um SGE dependem da competência de quem lidera o processo. Esta competência pode ser verificada pela observação dos seguintes pontos: atributos pessoais; capacidade para aplicar conhecimentos e habilidades, adquiridos pela formação, experiência profissional, treinamento em sistema de gestão da energia e experiência na implementação de sistemas de gestão da energia. Convém que os especialistas em implementação de SGE desenvolvam, mantenham e aperfeiçoem as suas competências por meio de um contínuo desenvolvimento profissional e participação regular em processos de implementação, manutenção e melhoria de SGE.

Convém que um especialista em implementação de SGE possua as seguintes características: disposição a considerar ideias e pontos de vista alternativos; diplomacia, assertividade e respeito nas relações com as pessoas; perceptividade, atenção às pessoas e processos ocorrendo ao seu redor; versatilidade e adaptabilidade a diferentes situações; tenacidade, persistência e foco em alcançar objetivos; segurança e capacidade de trabalhar e atuar de forma independente e de interagir de forma eficaz com os outros profissionais; liderança na condução de processos e proatividade. Convém que os especialistas em implementação de SGE demonstrem conhecimentos e habilidades nas seguintes áreas: princípios, procedimentos e técnicas de implementação de sistemas de gestão, que o permitam executar a implementação de forma consistente e sistemática.

Convém que o especialista em implementação de SGE seja capaz de aplicar os seus conhecimentos em princípios, requisitos, procedimentos e técnicas para implementar um sistema de gestão; planejar e organizar com eficácia o seu trabalho; liderar as atividades e conduzir os membros da organização ao alcance dos resultados planejados; prever e solucionar conflitos; realizar a implementação de sistemas de gestão segundo o programa acordado; coletar informações por meio de entrevistas eficazes, escutar, observar e analisar criticamente documentos, registros e dados; compreender a conveniência e as consequências de usar técnicas de amostragem para monitorar a implementação; confirmar a suficiência e conveniência das evidências da implementação para apoiar os resultados e conclusões de seu trabalho; avaliar os fatores que podem afetar a confiabilidade dos resultados e as conclusões da implementação; desenvolver os documentos de trabalho para o planejamento das atividades de implementação; preparar informes dos avanços e progressos da implementação; manter a confidencialidade; comunicar-se eficazmente por meio das habilidades linguísticas pessoais ou de um intérprete; sistema de gestão documental de referência, que o permita compreender o alcance do trabalho de implementação do SGE.

Convém que os conhecimentos e habilidades nesta área incluam a aplicação de sistemas de gestão da energia para diferentes organizações; a interação entre os componentes do sistema de gestão da energia; as normas de sistemas de gestão, procedimentos aplicáveis e outros documentos do sistema de gestão usados como critério para a implementação; o reconhecimento de diferenças e prioridades entre os documentos de referência; a aplicação de documentos de referência em diferentes situações; os sistemas de informação e tecnologia para autorização, segurança, distribuição e controle de documentos, dados e registros; as situações organizacionais que permitam compreender o contexto operacional da organização.

Convém que o conhecimento e as habilidades nesta área incluam: o tamanho organizacional, estrutura, funções e relações; o processo hierárquico de negócio e terminologia relacionada; os costumes culturais e sociais da organização em que será realizada a implementação. Os costumes culturais e sociais da organização são normalmente de conhecimento dos especialistas da própria organização. No caso de especialistas externos à organização, está alínea pode ser excluída ou adaptada, tornando-se mais genérica.

Deve entender de leis, regulamentos e outros requisitos aplicáveis à organização. Convém que os conhecimentos e habilidades nesta área incluam: os códigos locais, regionais e nacionais, leis e regulamentos, particularmente os aplicáveis aos aspectos energéticos; os contratos e acordos; as leis e as normas relativas à segurança do trabalho; os tratados e convênios internacionais; outros requisitos legais.