Ponto crítico na Amazônia

Queimada em Cujubim, em Rondônia | Foto: de Rogério Assis - Greenpeace

Luís Marques

​Amazon Tipping Point é o título do editorial da revista Science Advances de 21 de fevereiro de 2018, assinado por dois dos mais eminentes estudiosos do clima e do bioma amazônico: Thomas E. Lovejoy e Carlos Nobre (I). O tema desse editorial é um novo alerta sobre a situação limite a que 50 anos de intenso desmatamento reduziram a floresta amazônica. Antes de entrar no vivo da questão, convém recordar brevemente o significado de tipping point, conceito central desse editorial e da análise das dinâmicas de mudança sistêmica, que se pode traduzir em português por ponto crítico, ponto de inflexão, de virada, de não retorno ou de basculamento.

A persistência e o caráter cumulativo de perturbações (preponderantemente antropogênicas, em nossos dias) num dado sistema natural e sua amplificação por interações sinérgicas e por alças de retroalimentação inerentes a esse sistema causam anomalias crescentes em intensidade, duração, extensão ou frequência, parâmetros que não raro se associam, reforçando-se reciprocamente. Sendo crescentes, essas anomalias afastam-se sempre mais da variabilidade natural do sistema, até que ultrapassam sua capacidade de resiliência. O ponto de ultrapassagem da capacidade de resiliência de um sistema é seu ponto crítico, isto é, o ponto de ruptura do equilíbrio desse sistema. Atingido esse ponto, aumentam exponencialmente as probabilidades de uma transição muito mais rápida ou mesmo abrupta para outro estado de equilíbrio, provavelmente adverso ou inviável para a maioria das espécies adaptadas ao equilíbrio anterior.

Nossa capacidade de prever o cruzamento de um ponto crítico é muito limitada. Como já observado por Glenn Scherer, o problema dos pontos críticos é que eles só podem ser de fato percebidos pelo espelho retrovisor (II). Num processo de perturbações cumulativas, o ponto crítico pode ser dado por uma mudança quantitativa suplementar muito pequena, não raro imperceptível, mas capaz de disparar uma mudança qualitativa e estrutural. É bem compreensível que, tendo feito do problema do devir o objeto mesmo da filosofia, Hegel seja o primeiro filósofo moderno a elaborar a lógica em que se insere o ponto crítico num sistema dinâmico. Na Enciclopédia, ele afirma que “o aumento ou a diminuição de quantidade, em relação ao qual o objeto é inicialmente indiferente, tem um limite. Ultrapassado esse limite, a qualidade muda” (III). E Marx fará sua essa “lei” da dialética, em sua análise da gênese do capitalismo industrial: “Aqui se confirma, tal como nas ciências da natureza, a exatidão da lei descoberta e exposta por Hegel em sua Lógica, segundo a qual mudanças puramente quantitativas, tendo atingido certo ponto, transformam-se em diferenças qualitativas” (IV). A ciência contemporânea acolhe esse princípio de descontinuidade qualitativa como resolução de um acúmulo de perturbações quantitativas. Por exemplo, Carlos Duarte e colegas afirmam, num trabalho publicado na Nature Communications, acerca das possibilidades de mudanças climáticas abruptas no Ártico: “Tipping points foram definidos como pontos críticos na forçante ou outra característica de um sistema, nos quais uma pequena perturbação pode alterar qualitativamente seu estado futuro” (V). Por definição, alterações qualitativas no sistema climático, nos ecossistemas ou, em geral, no sistema Terra são irreversíveis, ao menos na escala de tempo histórica.

A ideia de ponto crítico está na base de uma mais adequada compreensão das interfaces e analogias entre processos dinâmicos naturais e sociais, bem analisadas por Georges Canguilhem (VI) e também pelo grande paleontólogo e historiador da ciência que foi Stephen Jay Gould (1941-2002) (VII): “Essa ideia sugere que a mudança ocorre em grandes saltos, após uma lenta acumulação de estresses, aos quais o sistema resiste até atingir um ponto de ruptura (breaking point). Aqueça a água e ela finalmente ferve. Oprima os trabalhadores mais e mais, e desencadeie a revolução. (…) Confesso uma crença pessoal de que uma visão pontualista pode mapear os ritmos de mudança biológica e geológica mais acuradamente e mais frequentemente que as filosofias rivais (…) Como escreve meu colega, o geólogo britânico Derek V. Ager, em favor de uma visão pontualista das mudanças geológicas: ‘A história de qualquer região da Terra é como a vida de um soldado. Ela consiste em longos períodos de tédio e curtos períodos de terror’”.

Para a floresta amazônica, quanto estresse é estresse demais?

Um “curto período de terror” é a expressão que melhor descreve não apenas as guerras entre homens, mas também a guerra movida contra as florestas pelo agronegócio, cuja ação devastadora é indissociável da rede corporativa global, com destaque para o Big Food, a indústria madeireira, a agroquímica, a produção de energia fóssil e hidrelétrica, a mineração e o sistema financeiro. Atingida certa escala, duração, extensão e/ou frequência, o estresse produzido nas florestas por seus agressores deixa de ser apenas local. Ele repercute sistemicamente na biodiversidade e no tecido florestal sempre mais esgarçado, ao alterar as condições climáticas, o ciclo hidrológico, a umidade do ar e do solo e a abundância da fauna, imprescindíveis para a funcionalidade da floresta e, finalmente, para a sua sobrevivência.

Dada a recente aceleração da remoção e fragmentação das florestas, surge a questão típica do século XXI, o século que liquidará, a se manter a atual trajetória, as florestas tropicais: para as florestas, quanto estresse é estresse demais? “A preocupação real” de Susan Trumbore, do Max Planck Institute for Biogeochemistry, e demais autores de um trabalho publicado na revista Science em julho de 2015 (VIII), “é como definir o ponto em que ocorre a transição entre estresse ‘normal’ e estresse ‘demais’ e como determinar se essa transição gera um declínio abrupto ou alinear”. Estudos sobre a iminência de cruzamentos de pontos críticos na resiliência das florestas e sobre seu day after disseminam-se na literatura científica, com resultados convergentes, embora nem sempre idênticos, dado que as florestas observadas podem reagir de modo diverso às pressões cumulativas. Há agora, em todo o caso, várias linhas de evidência a sugerir que amplas regiões da floresta amazônica estão na iminência de cruzar um ponto crítico que as conduzirá sucessivamente à sua rápida conversão em uma vegetação do tipo savana.

Em 2014, Antonio Donato Nobre publicou The Future Climate of Amazon. Scientific Assessment Report (IX), um trabalho de imensa latitude científica, mas importante também politicamente, pois escrito numa linguagem acessível ao público não especializado. O trabalho mostra que o futuro sombrio da floresta amazônica começa a emprestar suas feições ao presente, pois as secas de 2005 e de 2010 podiam já ser indícios de “fadiga” (p. 24) desse imenso sistema florestal. Citando em apoio de sua tese um trabalho publicado em 2001 (X), Antônio Donato Nobre advertia (p. 25): “Sob condições estáveis de oceano verde, a floresta tem um amplo repertório de respostas ecofisiológicas que a habilitam a absorver os efeitos de tais secas, regenerando-se completamente em alguns anos. Mas em áreas extensas, especialmente ao longo do Arco do Desmatamento, pode-se já perceber a ‘falência múltipla dos órgãos’ dos remanescentes da floresta fragmentada e mesmo de áreas florestais menos fragmentadas. (…) Quando a floresta cairá para sempre? Vários estudos sugerem uma resposta: quando ela cruzar o ponto de não retorno. O ponto de não retorno é o começo de uma reação em cadeia, como uma fileira de peças levantadas de dominó. Quando a primeira cai, todas as outras também caem. Uma vez brutal e irreparavelmente desestabilizado, o sistema de vida na floresta saltará, em última instância, para outro estado de equilíbrio”.

O editorial

A trágica questão da iminência do ponto crítico na floresta amazônica ressurge agora justamente como tema do acima citado editorial de fevereiro de 2018 da Science Advances. Eis seus parágrafos mais importantes:

“Onde poderia se situar o ponto de inflexão do ciclo hidrológico [da floresta amazônica] na degradação gerada pelo desmatamento? O primeiro modelo a examinar essa questão (XI) mostrava que atingidos cerca de 40% de desmatamento, as regiões central, sul e leste da Amazônia sofreriam redução de chuvas e uma estação seca mais longa, prevendo uma mudança para a vegetação de savana no leste.

A umidade da Amazônia é importante para a precipitação e o bem-estar humano porque contribui para as chuvas de inverno em partes da bacia do rio da Prata, especialmente no sul do Paraguai, no sul do Brasil, no Uruguai e no centro-leste da Argentina. Em outras regiões, a umidade passa sobre a área, mas não se precipita. Embora a contribuição dessa umidade para as chuvas no sudeste do Brasil seja menor que em outras áreas, mesmo pequenas quantidades de chuva podem ser um acréscimo bem-vindo aos reservatórios urbanos.

A importância da umidade da Amazônia para a agricultura brasileira ao sul da Amazônia é complexa, mas não trivial. Mais importante, talvez, é a contribuição parcial da evapotranspiração da Amazônia, na estação seca, para as chuvas no Sudeste da América do Sul. As florestas mantêm uma taxa de evapotranspiração ao longo do ano todo, enquanto a evapotranspiração nas pastagens é dramaticamente mais baixa na estação seca. Em consequência, os modelos sugerem uma estação seca mais longa após o desmatamento.

Nas últimas décadas, novas forçantes influenciaram o ciclo hidrológico, entre as quais as mudanças climáticas e o uso generalizado do fogo para eliminar as árvores derrubadas e remover as ervas daninhas (weedy vegetation). Muitos estudos mostram que, mesmo na ausência de outros fatores, um aquecimento médio global de 4 °C [acima do período pré-industrial] seria o ponto de inflexão para uma transição da floresta em direção a savanas degradadas na maior parte da Amazônia central, sul e leste. O uso generalizado do fogo leva à secagem da floresta circundante e maior vulnerabilidade no ano seguinte.

Acreditamos que sinergias negativas entre o desmatamento, as mudanças climáticas e o uso generalizado de incêndios indicam um ponto de inflexão no sistema amazônico em direção a ecossistemas não florestais, nas regiões leste, sul e central da Amazônia, tão logo atingidos 20% a 25% de desmatamento. A gravidade das secas de 2005, 2010 e 2015-2016 poderia representar as primeiras manifestações desse ponto de inflexão ecológico. Esses eventos, juntamente com as graves inundações de 2009, 2012 (e 2014 no Sudoeste da Amazônia), sugerem que todo o sistema está oscilando. Nas últimas duas décadas, a estação seca no sul e no leste da Amazônia vem aumentando. Fatores de grande escala, tais como temperaturas superficiais mais elevadas no Atlântico Norte tropical, também parecem estar associados às mudanças na terra”.

Quatro ideias fundamentais desse editorial devem ser frisadas:

(1) O ponto crítico no processo de desestabilização do bioma amazônico, susceptível de fazê-lo transitar para uma vegetação não florestal, não é atingido, como antes se supunha, com um nível de desmatamento de 40% da área da floresta, mas com um desmatamento de apenas 20% a 25% dessa área, ou seja, uma extensão muito próxima da que já foi desmatada por corte raso nos últimos cinquenta anos. Segundo dados do Instituto de Pesquisa Ambiental sobre a Amazônia (IPAM), “só na Amazônia, 780 mil km2 de vegetação nativa já se perderam. (…) Cerca de 20% da floresta original já foi colocada abaixo” (XII). Devemos ultrapassar em breve os próximos 5% pois, como lembra o mesmo documento do IPAM, “a taxa média [de desmatamento da Amazônia] entre 2013 e 2017 foi 38% maior do que em 2012, ano com a menor taxa registrada. (…) Sem controle, a taxa de desmatamento poderá atingir patamares anuais entre 9.391 km2 e 13.789 km2 até 2027, se mantida a mesma relação histórica entre rebanho bovino e área total desmatada – considerando que a pecuária é um dos principais vetores de desmatamento”. Entre agosto de 2011 e julho de 2017, data dos últimos dados disponíveis, a remoção da floresta amazônica avançou a uma taxa média anual de 6.049 km2. Imaginemo-nos percorrendo os 100 km da Rodovia dos Bandeirantes que levam de Campinas a São Paulo. Imaginemos agora que essa autoestrada tenha 60 km de largura, formando um retângulo de 6.000 km2. Essa área imensa equivale à área da floresta amazônica completamente suprimida em média por ano nos últimos seis anos. Apenas nos últimos dez anos – de agosto de 2008 a julho de 2017 –, mais de 70 mil km2, de floresta amazônica desapareceram, uma área equivalente a quase 30% da área do estado de São Paulo.

(2) O segundo elemento destacado pelo editorial é que as secas crescentes de 2005, 2010 e 2015-2016 na Amazônia podem ser os sintomas iniciais desse “ponto de inflexão ecológico”. Essas secas, conjugadas às inundações de 2009, 2012 e 2014, “sugerem que todo o sistema está oscilando”. Sobre a seca de 2015-2016, mais forte que as de 2005 e 2010, Amir Erfanian, Guiling Wang e Lori Fomenko fazem notar que ela não pode ser explicada apenas pelo efeito El Niño, mas supõe provavelmente a contribuição do desmatamento (XIII): “Temperaturas superficiais do mar anormalmente mais quentes no Pacífico tropical (incluindo eventos El Niño) e no Atlântico foram as principais causas de secas extremas na América do Sul, mas são incapazes de explicar a severidade dos déficits de chuva em 2016 numa porção substancial das regiões da Amazônia e do Nordeste. Este fato sugere fortemente uma contribuição potencial de fatores não oceânicos (por exemplo, desmatamento e aquecimento induzido por emissões de CO2) para a seca de 2016”.

(3) O editorial faz notar também que “o uso generalizado do fogo leva à secagem da floresta circundante e maior vulnerabilidade no ano seguinte”. O ano de 2017 bateu o recorde de incêndios na Amazônia. Isso se explica, em parte, porque esses incêndios são em geral criminosos e a impunidade no massacre da floresta tornou-se ainda maior sob o governo Temer. Mas esse recorde se explica em parte também porque a secagem progressiva da Amazônia causada pelos incêndios permite, na estação seca sucessiva, que o fogo adentre regiões ainda intocadas da floresta. Os números crescentes da tabela abaixo refletem esse duplo processo político e ecológico.

Reprodução
Fonte: Graça Portela, Estudos analisam as queimadas e seu impacto no clima e na saúde”, Revista IHU Unisinos, 18/I/2018, baseada em dados do INPE.

Focos de incêndios no Brasil e na Amazônia entre 2012 e 2017

Houve em 2017, como se vê, um salto no recorde de incêndios no Brasil e na Amazônia, que atingem, no caso da Amazônia, o dobro do número de incêndios de 2012. Mas por assombroso que seja o salto no recorde de queimadas de 2017 na Amazônia, ele já está sendo batido por outro salto em 2018, ao menos em Roraima, onde até 14 de fevereiro haviam-se registrado 718 focos de incêndios, isto é, 2,6 vezes mais que nos primeiros 45 dias de 2017 (XIV).

As emissões de GEE geradas por esses incêndios foram analisadas num trabalho coordenado por Luiz Aragão, do INPE, publicado no mês passado na Nature Communications (XV). Essas emissões, como lembram os autores, “não são usualmente incluídas nos inventários das emissões de carbono em nível nacional”. O artigo examina os impactos das secas sobre esses incêndios florestais na Amazônia e as emissões de carbono a eles associadas no período 2003 – 2015. Durante a seca de 2015, os incêndios florestais na Amazônia alastraram-se por uma área de 799.293 km2, o que representa um aumento de 36% em relação ao período precedente de 12 anos. O trabalho chama a atenção para as seguintes observações e projeções:

“As emissões brutas causadas tão somente por incêndios florestais na Amazônia durante os anos de seca (989 +/- 504 TgCO2 por ano [1 Teragrama (Tg) = 1 Milhão de toneladas]) representam mais da metade das emissões causadas pelo desmatamento de florestas maduras. (…) A maior parte dos Modelos do Sistema Terra (ESMs) predizem um aumento da intensidade da estação seca na Amazônia no século XXI. (…) A se confirmar essa nova configuração climática, a Amazônia deve-se tornar um sistema mais amplamente propenso a incêndios, sendo que emissões decorrentes de incêndios induzidos por secas, e não associados a desmatamento, devem assumir um peso crescente e muito maior que o desmatamento”. Os autores reconstituem passo a passo a dinâmica de retroalimentação no binômio secas – incêndios:

“O previsto aumento de intensidade da estação seca na Amazônia durante o século XXI tende a causar mudanças em larga escala nos padrões de circulação atmosférica, o que resulta em precipitações abaixo da média sobre a Amazônia. (…) O estresse hídrico nas florestas age negativamente sobre a capacidade geral de fotossíntese do sistema, causando ampla mortalidade nas florestas e queda de folhas, o que incrementa o combustível dos incêndios. Consequentemente, o dossel florestal torna-se mais aberto, aumentando os níveis de radiação incidente e as temperaturas. A disponibilidade acrescida de combustível e a exposição a microclimas mais secos e mais quentes convertem as florestas naturais em sistemas mais propensos a incêndios”. Esses incêndios têm impacto direto sobre as mudanças climáticas ao aumentar as concentrações atmosféricas de carbono e de aerossóis. A presença na atmosfera de aerossóis gerados por incêndios pode reduzir as chuvas, completando assim, segundo os autores, o círculo vicioso, no qual maiores incêndios são induzidos por maiores secas que são, por sua vez, induzidas por maiores incêndios.

(4) O quarto elemento, enfim, evidenciado por esse editorial diz respeito às consequências do declínio acentuado ou abrupto da floresta amazônica. Duas consequências são destacadas pelos dois cientistas: (1) impactos na agricultura, dado que a contribuição da umidade da floresta para “a agricultura brasileira ao sul da Amazônia é complexa, mas não trivial”; (2) diminuição da contribuição da umidade proveniente da Amazônia para os “reservatórios urbanos” do Sudeste do Brasil, que desceram a níveis críticos em 2014-2015. No que se refere ao Sudeste, por modesta que seja a contribuição da floresta amazônica para as chuvas nessa região do país, preservá-la pode ser decisivo para evitar o colapso do sistema Cantareira no próximo período de estiagem. O declínio da grande floresta causado pela associação entre agronegócio amazônico e capitalismo global não significa, portanto, “apenas” o empobrecimento e a fragilização da vida no planeta. Ele significa também uma precarização (no limite, uma inviabilização) socioeconômica das diversas regiões do país beneficiárias da umidade dos “rios voadores” lançados à atmosfera pela evapotranspiração da floresta.

Conclusão

Amputada e degradada por 50 anos de desmatamentos e incêndios criminosos, a Amazônia está em vias de cruzar um ponto crítico, após o qual ela deverá transitar rápida ou abruptamente para algum tipo de vegetação não florestal. Essa transição trará desequilíbrios brutais nos recursos hídricos, no clima e na agricultura do país e do continente. Ela significa provavelmente não apenas a maior, mas também a mais iminente ameaça de colapso socioambiental das sociedades da América do Sul, sem contar suas reverberações possíveis no planeta como um todo. Nada há nessa afirmação de “catastrofismo” ou de “mero achismo”, como declarou há pouco o Ministro Gilmar Mendes a respeito das posições da comunidade científica contrárias à redução das Áreas de Proteção Permanente (APPs) (XVI). Trata-se de um fato estabelecido pelo melhor conhecimento científico disponível em nossos dias.

São muitos e bem conhecidos os responsáveis por essa situação limite a que foi reduzida a grande floresta, a começar pelos militares, que desencadearam e comandaram sua devastação durante os primeiros vinte anos dessa longa e estúpida guerra contra a natureza, vale dizer, contra nós mesmos. Mas os militares (esperemos) são o passado. Nos dias de hoje, o principal responsável pelo declínio da Amazônia é o agronegócio, o elo local de uma rede corporativa global que lucra com a destruição dos remanescentes das florestas tropicais.

Nós, o povo brasileiro, temos muito pouco tempo para deter os ecocidas, recentemente confortados e encorajados pelo STF. E três condições são imprescindíveis para detê-los ou ao menos debilitá-los:

(1) Reconhecer que nada, hoje, é politicamente mais importante que salvar e restaurar a floresta amazônica e as demais formações florestais do país, pois da sobrevivência delas depende a sobrevivência de nossa sociedade. Sem florestas, não há água, não há agricultura, não há freio ao aquecimento global, não haverá, em breve, sociedade organizada. Reconhecer a gravidade extrema dessa crise ambiental e o alcance de suas consequências não é apenas o primeiro passo para a conservação das florestas; é mais de meio caminho andado, pois o resto virá como implicação inevitável dessa tomada de consciência.

(2) Não comer ou comer muito menos carne, pois a causa principal do desmatamento da Amazônia é sabidamente a pecuária bovina e “mais de 90% da carne produzida na Amazônia é consumida nacionalmente, sendo que, desse total, mais de 70% é consumida nas regiões de maior poder econômico: Sul e Sudeste” (XVII). Questões éticas a parte (mas elas são ineludíveis: “se os matadouros tivessem paredes de vidro, todos seriam vegetarianos”), cada bife a menos representa uma contribuição tangível para diminuir a motivação econômica do desmatamento e dos incêndios. É preciso – e é factível, basta um pouco de esforço de cada um de nós! – asfixiar os ecocidas pela diminuição do consumo.

(3) Lançar uma campanha nacional para não eleger ou reeleger em outubro próximo os candidatos da “bancada do boi”, autodenominada Frente Parlamentar da Agropecuária (FPA), diminuindo assim sua influência sobre o Congresso Nacional e sobre os demais Poderes da República.

Referências

[I] Cf. Thomas E. Lovejoy, Carlos Nobre, “Amazon Tipping Point” (Editorial). Science Advances, vol. 4, 2, 21/II/2018.

[II] Cf. Glenn Scherer, “Climate change prediction: Erring on the side of least drama?”. Global Environmental Change, 23, 1, Fevereiro de 2013, pp. 327-337; Glenn Scherer, “Climate Science Predictions Prove Too Conservative”. Scientific American, 6/XII/2012: “The trouble with tipping points is they are hard to spot until you have passed one”; Annelies J. Veraart et al., “Recovery rates reflect distance to a tipping point in a living system”. Nature, 481, 7381, 19/I/2012.

[III] G.W.F Hegel, Enciclopédia. Parte I, páragrafo 108, verbete: “Medida”.

[IV] K. Marx, O Capital, I, cap. IX – Taxa e massa da mais-valia. Tradução francesa,  Jean-Pierre Lefebvre, Paris, 1993, p. 346.

[V] Carlos Duarte et al., “Abrupt Climate Change in the Arctic”. Nature. Climate Change. 27/I/2012, 2, 60-62: “Tipping points have been defined as critical points in forcing or some feature of a system, at which a small perturbation can qualitatively alter its future state”.

[VI] Georges Canguilhem, “El problema de las regulaciones en el organismo y la sociedad”. Écrits sur la médecine. Paris, PUF, 1989; Buenos Aires, Sables, 1990, pp. 99-122.

[VII] Cf. Stephen Jay Gould, Panda’s thumb. More reflections in natural history, (Cap. 17: The episodic nature of evolutionary change), Nova York, 1980.

[VIII] Cf. S. Trumbore, P. Brando & H. Hartmann, “Forest health and global change”. Science, 349, 6.250, 21/VIII/2015, pp. 814-818.

[IX] Cf. Antônio Donato Nobre, The Future Climate of Amazon. Scientific Assessment Report São Jose dos Campos, Articulación Regional Amazônica (ARA), CCST-INPE e INPA, 2014

[X] Cf. William F. Laurance & G. Bruce Williamson, “Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon”. Conservation Biology, 14/XII/2001.

[XI] Cf. G. Sampaio, C. A. Nobre, M. H. Costa, P. Satyamurty, B. S. Soares-Filho, M. Cardoso, “Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion”. Geophysical Research Letters, 34, 2007.

[XII] Cf. IPAM, Desmatamento Zero na Amazônia: como e por que chegar lá, 2017, 33 p. (em rede).

[XIII] Cf. Amir Erfanian, Guiling Wang, Lori Fomenko, “Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST”. Scientific Reports 7, 5811, 2017.

[XIV] Cf. Inaê Brandão, “Focos de incêndios em Roraima cresceram 257% em relação a 2017, diz INPE”. Globo, 15/II/2018.

[XV] Cf. Luiz E. O. C. Aragão et al., “Century drought-related fires counteract the decline of Amazon deforestation carbon emissions”. Nature Communications, 9, 536, 13/II/2018. Marcelo Leite repercute esse trabalho em sua coluna da Folha de São Paulo de 18/II/2018, “A Amazônia está secando, mas o Brasil só quer farra”.

[XVI] Cf. Sabrina Rodrigues, “Cientistas rebatem declaração de Gilmar Mendes sobre Código Florestal”. ((o)) eco, 28/II/2018.

[XVII] Cf. Gabriel Cardoso Carrero Gabriela Albuja Pedro Frizo Evandro Konrad Hoffman Cristiano Alves Caroline de Souza Bezerra, A cadeia produtiva da carne bovina no Amazonas, Manaus: Instituto de Conservação e Desenvolvimento Sustentável da Amazônia (IDESAM), outubro de 2015 (em rede). Ver também o histórico e sempre atual texto de João Meirelles, diretor do Instituto Peabiru, “Você já comeu a Amazônia hoje?” (em rede).

Luiz Marques é professor livre-docente do Departamento de História do IFCH /Unicamp. Pela editora da Unicamp, publicou Giorgio Vasari, Vida de Michelangelo (1568), 2011 e Capitalismo e Colapso ambiental, 2015, 2a edição, 2016. Coordena a coleção Palavra da Arte, dedicada às fontes da historiografia artística, e participa com outros colegas do coletivo Crisálida, Crises Socioambientais Labor Interdisciplinar Debate & Atualização (crisalida.eco.br) – Publicado originalmente no Jornal da Unicamp.

Anúncios

Um aplicativo para saber quanto você emite de CO2

app_carbon

Já existe um aplicativo para celular que permite de uma forma prática, simples e segura, realizar o cálculo da pegada ecológica da emissão de CO2 de pessoas, empresas/indústrias e eventos, bem como realizar a sua neutralização através do plantio de árvores nativas em áreas degradadas. Ao realizar o cálculo da pegada ecológica e neutralizá-la, o usuário receberá um certificado de “Compensação de Carbono” contendo as coordenadas geográficas do local acessível que foram plantadas as árvores e receberá periodicamente atualizações da evolução do crescimento de suas árvores, além de poder visitar o local de plantio e poder caçar suas árvores por meio da câmera de seu celular, que indicará suas mudas no local com seu respectivo nome, data, espécie e outras informações.

Os usuários do CarbonZ podem utilizar os índices para consulta ou pagar para que o pesquisador e sua equipe plantem as mudas. Após baixar o app, o usuário preenche um formulário com dados sobre sua rotina, como tipo de veículo utilizado para chegar ao trabalho e a quantidade de água e energia elétrica consumida por mês.

Com a informação gerada pela ferramenta, o usuário tem a opção de realizar o plantio, caso queira, ou pagar online para que a CarbonZ faça o serviço. Em caso de adesão, o usuário recebe no prazo de uma semana as coordenadas geográficas de onde as mudas estão plantadas, de quais espécies são e uma foto do local.

Além disso, cada muda recebe um chip e o usuário tem a possibilidade de ir ao local e identificar a planta com a câmera do celular, de modo similar àquele realizado na caça de pokémons. O aplicativo foi criado por Gabriel Estevam Domingos. “A ideia surgiu da tendência seguida pelos grandes eventos de neutralizar o carbono gerado nas construções por meio do plantio. É uma ação voluntária de responsabilidade socioambiental baseada no Protocolo de Kyoto. Isso foi feito pelos organizadores do Rock in Rio e da Olimpíada do Rio, por exemplo”, explica.

Ele é diretor executivo da GED – Inovação, Engenharia e Tecnologia, empresa fundada em 2011 e que já é considerada um exemplo de empreendedorismo de sucesso, graças ao seu histórico de crescimento, sua velocidade de expansão e seu modelo de gestão. Nesses quatro anos, ela construiu um renomado histórico de 25 prêmios ,nove projetos de pesquisa e desenvolvimento concluídos, seis patentes nacionais e internacionais, e diversas ações socioambientais renomadas.

Pode-se dizer que o carbon footprint ou pegada de carbono é a pegada ambiental no mundo, ou seja, mede a quantidade de dióxido de carbono que se produz diariamente e a forma como essas emissões de gás influenciam o meio ambiente.

Todos os dias, através das atividades e rotinas habituais, o ser humano produz dióxido de carbono que é libertado para a atmosfera – a pegada de carbono. Esses gases de efeito estufa detêm o calor na atmosfera do planeta o que, por sua vez, contribui para o aquecimento global que tem efeitos prejudiciais sobre o meio ambiente, a vida humana e animal.

Em média, cada cidadão do mundo tem uma pegada de carbono de 4 toneladas por ano, ou seja, todos produzem cerca de 4 toneladas de dióxido de carbono anualmente. Curiosamente, na América do Norte, cada cidadão produz cinco vezes mais – até 20 toneladas de dióxido de carbono por ano. Na Europa, esses valores são significativamente menores: por exemplo, no Reino Unido a pegada de carbono de cada pessoa é, em média, 10 toneladas por ano; e em França, esse valor baixa para as 6 toneladas anuais.

Uma vez que a pegada de carbono está diretamente relacionada com os hábitos diários, é natural que a sua medição incida em fatores tão diversos como: a idade, o local onde vive e o tamanho da sua habitação, os seus custos energéticos mensais (água, luz, gás), a quantidade de lixo que produz em casa e os hábitos de reciclagem, os seus hábitos de compra, que tipo de alimentos consome e como é que esses alimentos são produzidos, se viaja muito e quais os meios de transporte que privilegia. Numa escala maior, os governos e as empresas também estão cada vez mais atentos às suas próprias pegadas de carbono no mundo.

Existem inúmeras maneiras de reduzir a pegada de carbono, contribuindo assim paraum planeta mais verde e mais saudável. Reduzir a quantidade de dióxido de carbono que se manda para a atmosfera diariamente passa pela alteração de hábitos como andar mais a pé ou de transportes públicos, em vez de carro; consumir menos e, sempre que possível, localmente; poupar recursos energéticos e investir em energias alternativas. Um passo de cada vez para reduzir uma pegada de carbono que não tem de ser tão prejudicial para o meio ambiente.

Estudo do INPE quantifica o papel do desmatamento e da degradação florestal nas emissões de CO2 até 2050

deforestation

O Instituto Nacional de Pesquisas Espaciais (INPE) fez um estudo apresentando os cenários de uso da terra e emissões de gases do efeito estufa atualizados para a Amazônia brasileira. O trabalho ajuda a elucidar o potencial e as limitações das metas propostas pelo Brasil na intended Nationally Determined Contribution (iNDC), subsidiando as discussões para a COP21 em Paris.

Ana Paula Aguiar, pesquisadora do CCST/INPE e uma das líderes do estudo, explica que a necessidade de elaboração de novos cenários surgiu das mudanças observadas na região na última década. “Muitos estudos discutiram o futuro da Amazônia nos anos 2000, com foco principal na questão do desmatamento. Porém, aqueles estudos foram desenvolvidos com base num contexto socioeconômico e institucional de total falta de controle do desmatamento – e mesmo seus cenários mais otimistas seriam considerados hoje muito pessimistas. A situação mudou e com ela houve a necessidade de atualizar os cenários. Porém, o futuro da região continua muito incerto. Por exemplo, embora as taxas de desmatamento na Amazônia tenham caído desde 2004, elas estabilizaram em torno de 6.000 km²/ano nos últimos cinco anos. As taxas vão cair mais, estabilizar ou subir novamente? O Código florestal será cumprido? Como o passivo ambiental será regularizado? Os altos índices de degradação florestal atuais serão revertidos? As respostas dependem de uma série de fatores, externos e internos – em especial, do modo como os governos e a sociedade irão lidar com a demanda por terra e commodities nas próximas décadas. Mas os novos cenários que propomos não se limitam às questões de recursos naturais e uso da terra. Eles são abrangentes, incluindo explicitamente a dimensão social como eixo de discussão. Temas bastante importantes, tais como a urbanização caótica e a desigualdade de acesso aos recursos na região também foram abordados”, ressalta a pesquisadora.

Neste contexto, narrativas contrastantes sobre o futuro foram construídas de modo participativo, através de workshops com representantes da sociedade civil e governo, no âmbito do projeto Amazalert, em parceria com a Embrapa, Museu Emilio Goeldi e diversas outras organizações. Os elementos destas narrativas, relativos ao uso dos recursos naturais, foram quantificados através de modelos computacionais capazes de estimar o balanço regional de CO2, considerando trajetórias alternativas de desmatamento, da dinâmica da vegetação secundária e também da degradação florestal.

“É o primeiro trabalho que inclui esses três processos no balanço de carbono da região de modo espacialmente explícito. Os cenários representam histórias contrastantes, porém factíveis, e incluem uma série de premissas sobre políticas para região – em especial sobre o cumprimento ou não do Código Florestal”, diz Jean Ometto, chefe do CCST/INPE e um dos líderes da pesquisa. Este estudo integra dados produzidos pelos sistemas de monitoramento do INPE (PRODES, DEGRAD e TerraClass) e utiliza as ferramentas de modelagem de código aberto LuccME e INPE-EM, também desenvolvidas pelo INPE.

O cenário mais otimista (Cenário A – Sustentabilidade) representa um futuro com avanços significativos nas dimensões socioeconômica e ambiental. Neste cenário, as medidas de Restauração e Conservação previstas no Código Florestal são, não apenas cumpridas, mas superadas. A região se tornaria um sumidouro de carbono após 2020, devido ao fim do desmatamento por corte raso e do processo de degradação florestal, aliado a um aumento da área de vegetação secundária (e do seu tempo de permanência), levando a um processo de Transição Florestal.

O cenário oposto, bastante pessimista (Cenário C – Fragmentação), parte da premissa de um retrocesso nos avanços ambientais e sociais da última década, com uma volta a maiores taxas de desmatamento e desrespeito ao Código Florestal, aliados a um processo de urbanização caótico e acirramento dos problemas sociais. Finalmente, um cenário intermediário (Cenário B, Meio do Caminho), combina premissas dos dois cenários mais extremos.

Este cenário também considera o cumprimento do Código Florestal, com taxas de desmatamento legais em torno de 4.000 km²/ano após 2020. As reservas legais são regularizadas principalmente através do mecanismo de compensação no mesmo bioma e a vegetação secundária mantém a mesma dinâmica atual, de abandono e corte cíclico nas áreas menos consolidadas. Neste cenário, talvez o mais plausível, a região continua sendo emissora de CO2.

Sobre a plausibilidade dos cenários, os autores do trabalho advertem: “Cenários não são previsões. Afirmar que a Amazônia vai virar um sumidouro de carbono, como no cenário A, sem esclarecer todas as premissas subjacentes, seria equivocado. Cenários são apenas histórias internamente consistentes sobre como o futuro pode se desenvolver. Técnicas de cenários são aplicadas justamente quando as incertezas sobre o futuro são muito grandes. Por outro lado, o futuro depende das nossas ações hoje. Se ele será mais próximo do cenário A ou C irá depender da organização da sociedade em uma direção ou outra. Fomentar esta discussão é o objetivo principal do método proposto”.

No setor florestal e de mudança do uso da terra, a iNDC prevê, entre outros pontos: “fortalecer políticas e medidas com vistas a alcançar, na Amazônia brasileira, o desmatamento ilegal zero até 2030 e a compensação das emissões de gases de efeito de estufa provenientes da supressão legal da vegetação até 2030”. Ou seja, o Brasil está propondo zerar as emissões líquidas por desmatamento até 2030 – numa situação entre os cenários A e B descritos acima. Alguns aspectos do trabalho do CCST/INPE podem ajudar na análise dos desafios destas metas.

Desmatamento ilegal zero – O que significa? Diversos trabalhos recentes publicados na literatura científica estimaram a área passível de ser desmatada legalmente de acordo com o Código Florestal, obtendo valores de 86.000 km² a 290.000 km² (Martini et al., 2015; Soares-Filho et al., 2014; Sparovek et al., 2015). O cenário B em Aguiar et al. (2015) considera uma taxa de desmatamento (legal) em torno de 4.000 km²/ano após 2020 (isto é, uma perda de aproximadamente 140.000 km² no período 2015 a 2050). Uma fonte importante de incerteza consiste em como estes estudos consideraram as terras públicas sem destinação, sobretudo, no Estado do Amazonas. As opções em relação à estas áreas são (i) a criação de áreas protegidas ou (ii) destinar para produção agrícola. A criação de áreas protegidas nestas áreas poderia diminuir substancialmente o potencial de desmatamento legal. Por outro lado, a literatura indica (o que também foi sido bastante discutido no processo participativo de construção dos cenários) a fragilidade das áreas protegidas existentes, incluindo unidades de conservação não consolidadas e a pressão sobre terras indígenas (Ferreira et al., 2014). Por fim, cabe ressaltar ainda que as taxas de desmatamento caíram significativamente após 2004, mas estabilizaram em 6,000 km² nos últimos anos. Logo, a manutenção e aprimoramento do conjunto de ações dos PPCDAM (Plano de Prevenção e Controle do Desmatamento na Amazônia Legal) e o fortalecimento dos arcabouços institucionais (para evitar retrocessos) são essenciais para que, no máximo, as taxas permaneçam dentro dos limites legais – e não voltem a subir na direção do Cenário C (a Tabela S1.1 do material suplementar do artigo apresenta uma síntese de ações necessárias, resultante do processo participativo de construção dos cenários).
Compensação das emissões provenientes do desmatamento legal: (a) Papel da vegetação secundária no balanço de carbono: Uma das formas de compensar as emissões por desmatamento legal na Amazônia seria a absorção de CO2 através da regeneração da vegetação secundária. De acordo com o sistema TerraClass, em 2008 foram observados cerca de 150,000 km² de vegetação secundária em áreas previamente desmatadas. Esta área vem aumentando nos levantamentos mais recentes do sistema. O processo de crescimento da vegetação secundária poderia, potencialmente, compensar as emissões por corte raso. Porém, os dados da literatura e do próprio TerraClass mostram que parte considerável desta vegetação é ciclicamente cortada (por exemplo, cerca de 25% da área identificada em 2008 havia sido cortada em 2012). Os novos cenários discutem o papel potencial da vegetação secundária no balanço de carbono no futuro, através de modelos que representam a dinâmica de abandono, crescimento e corte cíclico nas áreas desmatadas. Os resultados do cenário B mostram que, mantida a dinâmica atual, as emissões continuariam positivas. É importante notar que a vegetação secundária existente na região foi produzida pelo processo histórico de ocupação da região (pecuária extensiva, falta de assistência técnica, agricultura itinerante, especulação fundiária, etc.), inicialmente dissociado da questão mais recente da regularização do passivo ambiental pelo Código Florestal. Medidas que visem utilizar estas áreas para fim de regularização das reservas legais deverão incluir – além de sistemas de monitoramento adequados e de legislação específica que norteie a necessidade de sua supressão cíclica – a disponibilização de alternativas tecnológicas para que a vegetação secundária possa fazer parte do sistema produtivo aos agricultores da região, como por exemplo, sistemas que integram pastagem/agricultura e floresta. (b) Regularização das Reservas Legais (RL). Os trabalhos mencionados acima (Martini et al., 2015; Soares-Filho et al., 2014; Sparovek et al., 2015) também estimam a área de Reserva Legal a ser restaurada (passivo ambiental) caso as regras do novo Código Florestal venham a ser cumpridas de fato. O trabalho de Soares-Filho et al. (2014), por exemplo, estima cerca de 80.000 km² de passivo ambiental. O Código Florestal oferece dois mecanismos principais de regularização: efetiva restauração da reserva legal dentro da propriedade rural ou compensação em outra área do bioma (através de Cotas de Reserva Ambiental – CRA). Existe muita incerteza em relação a qual mecanismo será adotado por diferentes atores. Em todos estes trabalhos a área de passivo ambiental é consideravelmente menor do que o ativo (área legalmente disponível para conversão), em muitos casos, menos da metade. O mecanismo de compensação pode proteger áreas de floresta primária (diminuindo o ativo), enquanto o mecanismo de restauração pode favorecer o aumento das áreas de florestas secundárias. Existe, portanto, a necessidade de uma ampla discussão sobre os mecanismos de regularização das RL mais apropriados em diferentes contextos – considerando não apenas as emissões líquidas de carbono, mas a perda de biodiversidade, a provisão de serviços ecossistêmicos e os impactos nos atores envolvidos. Os resultados em Aguiar et al (2015) indicam que, em termos de emissões, mesmo no caso de que a regularização dos 80.000 km² de passivo viesse a ocorrer pelo mecanismo de restauração (pouco provável no entender dos autores, pois implicaria, em muitos casos, no abandono de áreas em produção), as emissões continuariam positivas – devido ao balanço entre as áreas passiveis a serem legalmente desmatadas (ativo) e à curva de crescimento da vegetação nas áreas de restauração. Por outro lado, os resultados da simulação B mostram que seria necessária a regeneração de uma área superior a 150 mil km² para zerar as emissões líquidas em 2030. Portanto, apenas o cumprimento do código dificilmente será capaz de zerar as emissões na Amazônia em 2030, independente do mecanismo de regularização das RL utilizado pelos diferentes atores. Serão necessárias medidas complementares que mantenham as taxas de desmatamento por corte-raso abaixo dos níveis “legais”.

Outros pontos relevantes: (a) Emissões por degradação florestal. O trabalho apresenta a quantificação das emissões provenientes do processo de degradação florestal – um componente importante do balanço regional de carbono não considerado na elaboração das metas. Utilizando dados do Sistema DEGRAD do INPE, o trabalho estima que as emissões brutas por degradação no período foram, em média, cerca de 47% das emissões por desmatamento tipo corte raso. Por outro lado, o processo de regeneração pós-distúrbio pode compensar, em parte, essas emissões. (b) Emissões nos outros biomas. A iNDC se refere apenas ao bioma Amazônia. Porém, tanto trabalhos de modelagem econômica (Dalla-Nora 2014), quanto a estimativa da área passível de ser legalmente desmatada de acordo com o Código Florestal no Cerrado (cerca de 400.000 km² de acordo com Soares-Filho et al. 2014) apontam para altas taxas de desmatamento neste bioma nas próximas décadas, devido ao seu potencial produtivo para a agricultura e menor grau de proteção. Caso apenas o cumprimento do Código Florestal seja o balizador de ações para proteger o Cerrado, podemos antever impactos consideráveis nas emissões nacionais e em termos de perda de biodiversidade. Já o bioma Caatinga, embora também apresente um ativo elevado (cerca de 258.000 km², de acordo com Soares-Filho et al. (2014)), não apresenta condições edafoclimáticas para a expansão da agricultura de grãos. Este bioma está, no entanto, sujeito a outros vetores de desmatamento, em especial a exploração predatória para satisfazer demandas por carvão vegetal e lenha para fins energéticos.

O trabalho completo em inglês está no link http://onlinelibrary.wiley.com/doi/10.1111/gcb.13134/abstract

O desmatamento na Amazônia influencia o nível de chuvas no Brasil

clima_capa

A falta de água no Sudeste pode estar relacionada com o desmatamento na Amazônia. Assinado por Antonio Donato Nobre, o relatório O Futuro Climático da Amazônia fez uma revisão e síntese da literatura científica, articulada com análises interpretativas das questões mais importantes relacionadas ao assunto. Sem perder o foco na ciência, trata dos temas com linguagem acessível e aspiração holística, isto é, busca ligar fontes e muitas análises de especialistas em uma imagem coerente do ecossistema amazônico.

Suas linhas mestras são o potencial climático da grande floresta – fator critico para todas sociedades humanas –, sua destruição com o desmatamento e o fogo e o que precisa ser feito para frear o trem desgovernado em que se transformaram os efeitos da ocupação humana sobre o clima em áreas de floresta. Deve-se saber a potência climática da floresta. Quanta energia do Sol é consumida para evaporar 20 trilhões de litros de água ao dia? Para dar uma noção da grandeza de energia envolvida na transpiração amazônica, basta fazer uma comparação com as hidrelétricas.

Evaporar um grama de água líquida consome 2,3 quilojoules de energia solar. Para converter isso em energia hidráulica/elétrica, imagine uma chaleira gigante que comporte esse volume d’água, daquelas que se liga na tomada elétrica. Quanta eletricidade seria necessária para ferver e evaporar toda essa água?

A usina de Itaipu, com 14 mil MW de potência, precisaria gerar eletricidade em sua capacidade máxima por 145 anos para que a chaleira evaporasse a água equivalente àquela transpirada em apenas um dia amazônico. Ou, para rivalizar com as árvores amazônicas e fazer o trabalho em um dia, seria preciso somar a eletricidade de 50 mil usinas hidrelétricas como Itaipu (ou 200 mil como Belo Monte).

Esta comparação deixa claro que, diante da potência climática da floresta, as maiores estruturas humanas se mostram microscópicas. Como se pode entender a circulação da água pela paisagem? A água irriga e drena os solos de forma análoga ao sangue, que irriga e drena os tecidos do corpo. Se os familiares rios são análogos às veias, que drenam a água usada e a retornam para a origem no oceano, onde ficam as artérias do sistema natural?

São os rios aéreos, que trazem a água fresca, renovada na evaporação do oceano. Para completar o sistema circulatório faltava somente o coração, a bomba que impulsiona os fluxos nas artérias aéreas. A teoria da bomba biótica veio explicar que a potência que propele os ventos canalizados nos rios aéreos deve ser atribuída à grande floresta, que funciona, então, como coração do ciclo hidrológico.

clima1O estudo revela alguns segredos. O primeiro é que a floresta mantém úmido o ar em movimento, o que leva chuvas para áreas continente adentro, distantes dos oceanos. Isso se dá pela capacidade inata das árvores de transferir grandes volumes de água do solo para a atmosfera através da transpiração.

O segundo segredo é a formação de chuvas abundantes em ar limpo. As árvores emitem substâncias voláteis precursoras de sementes de condensação do vapor d’água, cuja eficiência na nucleação de nuvens resulta em chuvas fartas e benignas.

O terceiro segredo é a sobrevivência da floresta Amazônica a cataclismos climáticos e sua formidável competência em sustentar um ciclo hidrológico benéfico, mesmo em condições externas desfavoráveis. Segundo a nova teoria da bomba biótica, a transpiração abundante das árvores, junto com uma condensação fortíssima na formação das nuvens e chuvas – condensação essa maior que aquela nos oceanos contíguos –, leva a um rebaixamento da pressão atmosférica sobre a floresta, que suga o ar úmido sobre o oceano para dentro do continente, mantendo as chuvas em quaisquer circunstâncias.

O quarto segredo indica a razão de a porção meridional da América do Sul, a leste dos Andes, não ser desértica, como áreas na mesma latitude, a oeste dos Andes e em outros continentes. A floresta amazônica não somente mantém o ar úmido para si mesma, mas exporta rios aéreos de vapor que, transportam a água para as chuvas fartas que irrigam regiões distantes no verão hemisférico.

O quinto segredo desvendado é o motivo pelo qual a região amazônica e oceanos próximos não fomentam a ocorrência de fenômenos atmosféricos como furacões e outros eventos climáticos extremos. A atenuação da violência atmosférica tem explicação no efeito dosador, distribuidor e dissipador da energia nos ventos, exercido pelo rugoso dossel florestal, e da aceleração lateral de larga escala dos ventos na baixa atmosfera, promovida pela bomba biótica, o que impede a organização de furacões e similares. A condensação espacialmente uniforme sobre o dossel florestal impede concentração de energia dos ventos em vórtices destrutivos, enquanto o esgotamento de umidade atmosférica pela remoção lateral de cima do oceano, priva as tempestades do seu alimento energético (vapor de água) nas regiões oceânicas adjacentes a grandes florestas.

clima2Todos esses efeitos em conjunto fazem da majestosa floresta Amazônica a melhor e mais valiosa parceira de todas as atividades humanas que requerem chuva na medida certa, um clima ameno e proteção de eventos extremos. Houve um desmatamento acumulado de 762.979 km². Esse valor é maior que a soma das áreas de três estados de São Paulo, ou que as áreas somadas de duas Alemanhas ou de dois Japões. Uma unidade de área mais próxima do brasileiro, o campo de futebol (4.136 m²), dá uma noção da magnitude da devastação: 184 milhões de unidades – quase um campo de futebol desmatado na Amazônia para cada brasileiro.

Colocado na perspectiva temporal, teriam sido, em média, 12.635 campos desmatados por dia; 526 campos por hora; 8,8 campos – ou 36.291 m² por minuto; 605 m² por segundo, ininterruptamente, nos últimos 40 anos. Para caber na compreensão o gigantismo destes números é preciso estender a imaginação para além destas analogias. Um trator ficcional, operando uma lâmina frontal com 3 m de largura, precisaria acelerar quase à velocidade de um avião a jato (726 km/h) para desmatar a área raspada na Amazônia no ritmo registrado do espaço, em imagens.

Como um trator desmata muito mais lentamente (0,24 – 0,36 ha/h66, ou ~0,8 km/h se essa área estivesse contida em uma faixa com 3 m de largura), com a mesma lâmina de 3 m, seriam necessários mais de 900 tratores simultaneamente derrubando a floresta, lado a lado, formando uma frente destrutiva com quase 3 km de largura. Uma comparação ainda mais impressionante é uma “estrada de desmatamento,” com 2 km de largura, que daria para cobrir a distância da Terra até a Lua (380 mil km).

Além disso, a falta de chuva é uma ameaça mortal para a Amazônia. Em 2000, Peter Cox e colaboradores do Hadley Center publicaram um impactante artigo na revista Nature. Pela primeira vez haviam unido um modelo geral de circulação da atmosfera com um modelo interativo de vegetação em que o ciclo do carbono era bem detalhado. Entre os resultados, o modelo projetava uma redução acentuada, progressiva e permanente da chuva na Amazônia, o que levaria à sua morte gradual.

clima 3

Com a floresta seca, entraria o fogo e seriam liberadas vastas quantidades de carbono, o que resultaria em piora acentuada do aquecimento global. Ou seja, pela primeira vez um modelo climático gerava um vaticínio terrível para a grande floresta. Catorze anos depois, o novo modelo do Hadley Center está similar aos demais. Já não suprime a floresta por efeito externo como antes. Não obstante, os efeitos do modelo original do Hadley Center afetavam a floresta pela redução de chuvas, como decorrência do excesso de CO2 na atmosfera e seu resultante aquecimento.

Mas os erros na previsão de chuvas podem ocorrer nos modelos climáticos. E é justamente na redução de chuvas que está a maior ameaça à floresta. Se esses modelos não preveem corretamente a redução de chuvas, não colocarão a floresta em perigo. Como nenhum modelo climático atual incorpora os mecanismos e os efeitos previstos pela teoria da bomba biótica de umidade, principalmente nos potenciais efeitos das mudanças na circulação do vento (convergência de grande escala suprimida sobre a terra seca), suas projeções podem ser incertas.

Pode-se vir a descobrir no futuro que o modelo original do Hadley Center foi o único a prever – talvez não pelas razões certas– o futuro climático da Amazônia. Estima-se que o bioma amazônico tenha sustentado 400 ou mais bilhões de árvores com diâmetro à altura do peito, acima de 10 cm. Distribuindo essa população de árvores por área, infere-se que o desmatamento corte raso tenha destruído, somente no Brasil, mais de 42 bilhões de árvores nos últimos 40 anos.

Enfileirados e considerando uma altura média de 15 m, os troncos destas árvores cobririam 635 milhões de km, ou quase 1700 vezes a distância Terra Lua. Esse ritmo de destruição significa mais de 1 bilhão de árvores cortadas ao ano; quase 3 milhões ao dia; mais de 120 mil por hora; mais de 2000 por minuto; e 34 por segundo!

E isso sem contar um número talvez ainda maior das árvores decepadas nas chamadas florestas degradadas. Nestas quatro décadas foram destruídas quase 6 árvores por cada habitante da Terra, mais de 200 por cada brasileiro. São essas árvores ausentes que são percebidas pelo clima, já que cada árvore dizimada representa, entre muitos serviços ceifados, menor evaporação da superfície.

O relatório continua com a descrição dos efeitos do desmatamento e do fogo sobre o clima: a devastação da floresta oceano verde gera um clima dramaticamente inóspito. Os modelos climáticos anteciparam, há mais de 20 anos, variados efeitos danosos do desmatamento sobre o clima, já confirmados por observações. Entre eles estão a redução drástica da transpiração, a modificação na dinâmica de nuvens e chuvas e o prolongamento da estação seca. Outros efeitos não previstos, como o dano por fumaça e fuligem à dinâmica de chuvas, mesmo sobre áreas de floresta não perturbada, também estão sendo observados.

O dano do desmatamento, assim como os danos do fogo, da fumaça e da fuligem, ao clima, são candentemente evidentes nas observações cientificas de campo. As análises baseadas em modelos atualizados e em nova teoria física projetam um futuro ainda pior. Emerge como fator principal a afetar o clima a grave extensão acumulada do desmatamento amazônico, até 2013 no Brasil em quase 763.000 km² (área equivalente a 184 milhões de campos de futebol ou três estados de São Paulo).

Tal superfície precisa ainda ser somada à fração de impacto da extensão acumulada da menos falada e menos estudada degradação florestal (estimada em mais de 1,2 milhão de km²). O relatório prossegue relacionando os dois itens anteriores, floresta oceano verde e desmatamento, no contexto temporal mais estendido: o equilíbrio vegetação clima, que balança na beira do abismo.

Os modelos climáticos ligados interativamente a modelos de vegetação exploram quais são as extensões de tipos de vegetação e as condições climáticas capazes de gerar estáveis equilíbrios vegetação clima. Para a Amazônia, esses modelos projetam a possibilidade de dois pontos possíveis e alternativos de equilíbrio: um que favorece a floresta (úmido, atual para a bacia amazônica e histórico) e outro que favorece a savana (mais seco, atual para o Cerrado, futuro para a bacia amazônica).

O ponto preocupante desses exercícios de modelagem é a indicação de que aproximadamente 40% de remoção da floresta oceano verde poderá deflagrar a transição de larga escala para o equilíbrio da savana, liquidando, com o tempo, até as florestas que não tenham sido desmatadas. O desmatamento por corte raso atual beira os 20% da cobertura original na Amazônia brasileira, e a degradação florestal, estima-se, já teria perturbado a floresta remanescente em variados graus, afetando adicionalmente mais de 20% da cobertura original.

A seção final do relatório recomenda um plano de mitigação baseado na reversão radical tanto dos danos passados quanto a das expectativas de danos futuros: um esforço de guerra. As florestas da Amazônia são essenciais para a manutenção do clima, e com ele a segurança das gerações futuras. Felizmente, os avanços nas ciências fazem desta guerra um desafio que pode ser bem sucedido.

Apesar da dificuldade em separar precisamente os efeitos de fundo das mudanças climáticas globais daquelas locais e regionais, não resta a menor dúvida de que os impactos do desmatamento, da degradação florestal e dos efeitos associados já afetam o clima próximo e distante da Amazônia. Já afetam em alto grau hoje em dia e prometem afetar ainda mais seriamente no futuro, a ponto de que a única opção responsável que se coloca é agir vigorosamente no combate às causas.

Como primeira ação, impõe-se a universalização e facilitação de acesso às descobertas científicas, que podem reduzir a pressão da principal causa do desmatamento: a ignorância. Em segundo lugar, é preciso estancar a sangria da floresta, ou seja, zerar o desmatamento, a degradação florestal e o fogo já, com todos e quaisquer recursos e meios éticos possíveis, no interesse da vida. Ao mesmo tempo, em vista do diagnóstico de que desmatamento e degradação acumulados constituem-se no mais grave fator de dano ao clima, torna-se necessário e inevitável desenvolver um amplo esforço para replantar e restaurar a floresta destruída. Tal esforço precisa ter perspectiva de médio e longo prazos para culminar com a regeneração da floresta oceano verde original.

Diante disso, as elites governantes podem, devem e precisam tomar a dianteira na orquestração da grande mobilização de pessoas, recursos e estratégias que possibilitem recuperar o tempo perdido. Na conclusão, ao apontar para a urgência de ações de proteção e restauro da grande floresta, acena com oportunidades reais na viabilidade de se trilhar um novo caminho, onde a floresta protegida e recomposta seja a principal aliada das atividades humanas, dentro e fora da Amazônia.

O autor conclui escrevendo que, na grande floresta da Amazônia, a Terra guarda um de seus mais espetaculares tesouros: a profusão de vida que inala gás carbônico e exala oxigênio, transpira água, emite odores mágicos, remove gases tóxicos, pulsa e regula, umedece e faz chover, propele ventos e alimenta rios aéreos, acalmando a fúria dos elementos, tornando amigo o clima próximo e também o mais distante. As sociedades abrigadas sob seu hálito doador de vida têm nela um cordão umbilical que sustém suas economias e lhes dá bem estar.

Por tudo isso, é necessário, desejável, viável e até lucrativo alterar o modus operandi da ocupação humana na Amazônia. Há muitas alternativas para reviver a competência de convívio respeitoso com a floresta das civilizações ancestrais. Embora as ações de salvação propostas sejam todas requeridas para lograr o restabelecimento funcional da regulação climática pela floresta, a novidade está em enfrentar o passivo de desmatamento com reflorestamento e restauração ecológica.

“Há muitas e excelentes alternativas para reviver a competência de convívio respeitoso (e tecnológico) com a floresta das civilizações ancestrais. O esforço de guerra contra a ignorância e pela consciência da necessidade vital das florestas é a melhor estratégia para harmonizar a sociedade – começando pelos governantes – em torno do objetivo comum de recuperar o tempo perdido, criando chances reais de evitarmos o pior dos desastres climáticos. Entretanto, se a despeito da montanha de evidências científicas ainda não formos capazes de agir, ou se formos lentos demais, então é provável que tenhamos de lidar com prejuízos incompreensíveis para quem sempre teve sombra e água fresca providos graciosamente pela grande floresta”.

Catálogo de Madeiras Brasileiras para a Construção Civil

NR 10 – Atendendo às exigências do Ministério do Trabalho – Reciclagem Obrigatória – A partir de 3 x R$ 264,00 (56% de desconto)

Instalações Elétricas em Atmosferas Explosivas – A partir de 3 x R$ 257,81 (56% de desconto)

catálogo_ipt

A exaustão de florestas nativas das Regiões Sul e Sudeste do Brasil provocou uma transferência para a Região Amazônica das fontes de suprimentos à construção civil de madeiras tropicais, muitas delas desconhecidas pelos consumidores e inadequadas ao uso pretendido. Para ampliar as alternativas de escolha e colaborar para o uso sustentável da madeira, vinte espécies de volumes conhecidos, disponíveis no mercado e provenientes de operações florestais sustentáveis estão relacionadas no Catálogo de Madeiras Brasileiras para a Construção Civil.

A publicação do Instituto de Pesquisas Tecnológicas (IPT) foi elaborada sob a coordenação do engenheiro florestal Márcio Nahuz, do Centro de Tecnologia de Recursos Florestais do IPT, com o patrocínio do WWF-Brasil e o apoio do Sindicato da Indústria da Construção Civil do Estado de São Paulo (SindusCon-SP). “A demanda da madeira cresce nos usos tradicionais e também está se expandindo em direção a nichos mais sofisticados, como pórticos, guias laminadas e painéis engenheirados”, afirma Nahuz. “Vários fatores negativos incidem nas fontes tradicionais de matérias-primas, como baixa disponibilidade e sazonalidade de estoque, o que resulta em altos preços; novas áreas de suprimento ou a substituição de madeiras tradicionais por outras menos conhecidas são necessários para a expansão do uso, e essa é a proposta do catálogo”.

Segundo o pesquisador do IPT, um dos mais aspectos mais importantes a considerar na substituição de madeiras tradicionais por espécies menos conhecidas é compatibilizar os recursos técnicos que o uso apresenta com as propriedades presentes na madeira, especialmente o nível de desempenho: “Pisos requerem madeiras de alta dureza e com baixa contração, por exemplo, e esse conjunto de propriedades deve estar também presente na madeira que será escolhida como alternativa”, completa Nahuz.

Para a elaboração do catálogo, uma equipe multidisciplinar do IPT fez a alocação de madeiras em grupos de uso pela identificação das propriedades físicas e mecânicas necessárias para o bom desempenho de cada espécie no uso especificado. Para cada propriedade identificada foram fixados valores mínimos e máximos, tendo como base os valores de madeiras tradicionalmente empregadas nos usos considerados.

A compatibilização das propriedades das madeiras em níveis apropriados de desempenho com os requisitos técnicos dos componentes de construção foi feita em seguida, levando-se em consideração também as dimensões, as formas e os defeitos aceitáveis ou proibidos. Madeiras como angelim-amargoso, jatobá e pau-roxo, em um total de vinte espécies, foram classificadas para emprego em construção civil pesada externa; pesada interna; leve externa e uso temporário; leve interna decorativa; leve interna de utilidade geral; leve para esquadrias e assoalhos domésticos. “Estas madeiras podem substituir, por similaridade de propriedade e usos, uma série de outras difundidas no mercado, como andiroba, cedro, ipê e peroba-rosa”, afirma Nahuz.

Quem quiser acessar a publicação, clique no link http://www.ipt.br/download.php?filename=980-Catalogo_de_Madeiras_Brasileiras_para_a_Construcao_Civil.PDF

Desmatamento na Amazônia em 2013

O Instituto Nacional de Pesquisas Espaciais (Inpe) concluiu o mapeamento e o cálculo da taxa de desmatamento na Amazônia Legal para o período agosto/2012 a julho/2013, atividades realizadas no âmbito do Projeto de Monitoramento do Desmatamento na Amazônia Legal (Prodes). O resultado final do estudo computou uma taxa de 5.891 km2/ano.

Este valor representa a segunda menor taxa de desmatamento registrado na Amazônia Legal desde que o Inpe começou a medi-la, em 1988. O Prodes computa como desmatamento as áreas maiores que 6,25 hectares onde ocorreu remoção completa da cobertura florestal – o corte raso.

O valor da taxa consolidada, obtida após o mapeamento de 216 cenas do satélite americano Landsat 8/OLI, é aproximadamente 1% acima do estimado pelo Inpe em dezembro de 2013, que foi de 5.843 km2, cálculo gerado com base em 86 imagens do mesmo satélite e que cobriram a área em que foram registrados mais de 90% do desmatamento no período anterior (agosto/2011 a julho/2012) e também os 43 municípios referidos no Decreto Federal 6.321/2007 e atualizado em 2009.

O resultado corrente aponta existir eficácia no combate ao desmatamento, particularmente a partir da criação, em 2004, do Plano de Ação para Prevenção e Controle do Desmatamento na Amazônia Legal (PPCDAm), coordenado pelo Ministério do Meio Ambiente e pela Casa Civil da Presidência da República, com uma redução de 79% desde 2004, conforme indica a série histórica apresentada a seguir.

A tabela abaixo apresenta a distribuição da taxa de desmatamento nos estados que compõem a Amazônia Legal:

ESTADO DESMATAMENTO (km2)
ACRE 221
AMAZONAS 583
AMAPÁ 23
MARANHÃO 403
MATO GROSSO 1.139
PARÁ 2.346
RONDÔNIA 932
RORAIMA 170
TOCANTINS 74
AMAZÔNIA LEGAL 5.891

Confira abaixo a evolução da taxa desde 2004 por estado e para toda Amazônia Legal:

desmatamento2

(Clique na imagem para visualizar a tabela em tamanho maior)

O gráfico abaixo mostra a evolução da série do Prodes para a Amazônia Legal desde 1988, quando iniciou a medição:

desmatamento

(a) Média entre 1977 e 1988, (b) Média entre 1993 e 1994

Não há nada para comemorar!

desmatamento

Desde que os portugueses aportaram na Amazônia, em 1550, e até 1970 o desmatamento não passava de 1% de toda a floresta. De lá para cá, em apenas 40 anos, foram desmatados cerca de 18% da Amazônia brasileira  – uma área equivalente aos territórios do Rio Grande do Sul, Santa Catarina, Paraná, Rio de Janeiro e Espírito Santo.

A governança e a fiscalização deram alguns passos. Mas em boa parte da Amazônia, os limites das propriedades e seus respectivos donos ainda são uma incógnita. Isso pode mudar com a consolidação do Cadastro Ambiental Rural, ferramenta de regularização ambiental prevista no Código Florestal, mas que ainda está em processo de implementação. Os órgãos ambientais correm atrás de recursos para enquadrar os que ignoram a lei, mas o orçamento para a pasta não costuma ser generoso. O resultado, visto do alto, do solo ou das águas, é impactante, principalmente por meio dos satélites do Inpe.

O Greenpeace tem ideias interessantes sobre o problema:

– Desmatamento zero: Ao zerar o desmatamento na Amazônia até 2020, o Brasil estará fazendo sua parte para diminuir o ritmo do aquecimento global, assegurar a biodiversidade e o uso responsável deste patrimônio para beneficiar a população local. Atualmente, o Projeto de Lei de Iniciativa Popular pelo Desmatamento Zero no Brasil já conquistou o apoio de 1 milhão de brasileiros. Não é preciso derrubar mais florestas para que o país continue produzindo. Ações contra o desmatamento e alternativas econômicas que estimulem os habitantes da floresta a mantê-la de pé devem caminhar juntas.

– Áreas protegidas: Uma parte do bioma é protegida legalmente por unidades de conservação, terras indígenas ou áreas militares. Mas a falta de implementação das leis faz com que mesmo essas áreas continuem à mercê dos criminosos.

– Regularização fundiária: É a definição, pelo Estado, de quem tem direito à posse de terra. O primeiro passo é o mapeamento das propriedades privadas para possibilitar o monitoramento de novos desmatamentos e a responsabilização de toda a cadeia produtiva pelos crimes ambientais ocorridos.

– Governança: Para todas essas medidas se tornarem efetivas, o governo precisa estar na Amazônia, com recursos e infraestrutura para fazer valer as leis de preservação. A proteção da Amazônia e a criação de um modelo de desenvolvimento sustentável e justo para a região pode gerar oportunidades para os povos que dependem da floresta.

Estratégias para reduzir as queimadas no Brasil

Coletânea Série Sistema de Gestão Ambiental

Coletânea Digital Target com as Normas Técnicas, Regulamentos, etc, relacionadas à Sistema de Gestão Ambiental!

Saiba Mais…

cerradoElas podem ser criminosas, planejadas ou acidentais. As queimadas não naturais são hoje um risco para o equilíbrio ambiental do país, mas também à saúde humana e à própria economia nacional. Nesta época do ano, auge do período de seca (agosto – outubro) no Cerrado – bioma que se estende por onze estados brasileiros e no qual vivem 20 milhões de pessoas, os focos de incêndio se alastram e ameaçam a biodiversidade e a população. Na luta contra o fogo, unidades de conservação têm investido com êxito em parcerias público-privadas, na geração de conhecimento para a população e em treinamentos de capacitação para funcionários e a comunidade de seus entornos.

Com área correspondente a 23,92% do território nacional, o Cerrado possui o maior índice de queimadas do país, de acordo com o Instituto Nacional de Pesquisas Espaciais (Inpe). Neste ano, até agosto, foram registrados 73 mil focos de queimadas no Brasil, sendo 60% delas no Cerrado. O desafio da conservação do bioma, que garante qualidade de vida à população por meio dos serviços ambientais que presta, é uma verdadeira batalha contra o fogo.

Há quem pense que o problema das queimadas não naturais seja apenas ambiental. O impacto para a economia das cidades e a saúde das pessoas também é grande: diminuição da qualidade do ar, provocando doenças respiratórias; problemas com infraestrutura, como a queda no fornecimento de energia elétrica; perdas em propriedades rurais e péssima visibilidade em rodovias são alguns exemplos de como as queimadas afetam diretamente a população. “Os problemas relacionados ao fogo afetam as vidas das pessoas, estejam elas morando nas cidades ou em áreas rurais. Por isso, é importante entender que a ameaça vai além do impacto direto na natureza”, pontua o analista ambiental do Parque Nacional Chapada dos Veadeiros, Fernando Rebello.

A prática, comum no Cerrado, de utilização do fogo como manejo da terra, principalmente por agricultores e na época de seca, oferece grande risco à biodiversidade e às pessoas. “O uso do fogo é bastante perigoso, principalmente, se a utilização de manejo acontece próximo às áreas urbanas. Além da destruição ambiental, as queimadas podem se alastrar para áreas próximas, atingindo casas, áreas naturais e danificando as redes de transmissão elétrica”, explica Rebello.

Com cerca de 9.000 hectares e fazendo limite com diversas propriedades rurais, a Reserva Natural Serra do Tombador, em Cavalcante (GO), a 420 km de Brasília, é um exemplo de como o combate ao fogo depende da união de diversos setores da sociedade. Mantida pela Fundação Grupo Boticário de Proteção à Natureza, a Reserva fica próxima ao Parque Nacional da Chapada dos Veadeiros e teve cerca de 60% de sua área queimada em 2011, por conta de um grande incêndio. “Diante desse cenário, passamos a investir fortemente em duas dimensões: especialização das estratégias de combate ao fogo e intensificação das ações de prevenção”, explica a diretora executiva da Fundação Grupo Boticário, Malu Nunes, que completa: “em ambos os casos, a parceria com a comunidade do entorno e o poder público ampliaram nossos resultados”.

Em termos práticos, para o combate a possíveis focos de queimada foram construídos aceiros (retirada de vegetação rasteira em linhas para evitar a passagem do fogo durante um incêndio) e também houve a instalação de 11 caixas d’água em diversos pontos estratégicos da reserva, além de outras iniciativas. O investimento em prevenção aconteceu por meio da criação de uma brigada comunitária voluntária de combate a incêndio, em 2012. Apesar de ter como objetivo final o combate a incêndios já estabelecidos, o treinamento dos participantes incluía noções de uso correto do fogo, seus impactos para a biodiversidade entre outros temas relacionados à educação ambiental focada na problemática do fogo.

A brigada voluntária foi uma das soluções encontradas para ressaltar a importância da proteção dos ambientes naturais e compartilhar o conhecimento em relação ao fogo, com a comunidade do entorno da Reserva. “Oferecer capacitação de combate para a população é uma solução para que os moradores tenham conhecimento e saibam como agir de forma preventiva, além de identificarem as formas corretas de uso do fogo, bem como outras opções para manejo da terra”, explica Malu Nunes.

A brigada comunitária voluntária, como aponta Malu, contribuiu para diminuição dos índices de queimadas dentro da Reserva. O monitoramento realizado no local identificou que houve queda de aproximadamente 95% nos focos de incêndios entre 2011 e 2014. Além da capacitação, que serve como serviço de educação ambiental, os voluntários da comunidade, que integram as brigadas, recebem equipamentos básicos como bota, máscara, capacetes e até as bombas costais (utensílio utilizado para esguichar água, com capacidade de até 22 litros).

Siga o blog no TWITTER

Mais notícias, artigos e informações sobre qualidade, meio ambiente, normalização e metrologia.

Linkedin: http://br.linkedin.com/pub/hayrton-prado/2/740/27a

Facebook: http://www.facebook.com/#!/hayrton.prado

Skype: hayrton.prado1