A iluminação pública deve obrigatoriamente obedecer à norma técnica

Hayrton Rodrigues do Prado Filho, jornalista profissional registrado no Ministério do Trabalho e Previdência Social sob o nº 12.113 e no Sindicato dos Jornalistas Profissionais do Estado de São Paulo sob o nº 6.008

Pode-se definir a iluminação pública como um serviço que tem por objetivo prover de luz, ou claridade artificial, os logradouros públicos no período noturno ou nos escurecimentos diurnos ocasionais, inclusive aqueles que necessitam de iluminação permanente no período diurno. Para cumprir com o seu papel deve seguir a norma técnica e só assim irá proporcionar visibilidade para a segurança do tráfego de veículos e pedestres, de forma rápida, precisa e confortável. A NBR 5101 (NB429) de 04/2012 – Iluminação pública — Procedimento estabelece os requisitos para iluminação de vias públicas, propiciando segurança aos tráfegos de pedestres e de veículos.

Dessa forma, os projetos de iluminação pública devem atender aos requisitos específicos do usuário, provendo benefícios econômicos e sociais para os cidadãos, incluindo: a redução de acidentes noturnos; a melhoria das condições de vida, principalmente nas comunidades carentes; o auxílio à proteção policial, com ênfase na segurança dos indivíduos e propriedades; a facilidade do fluxo do tráfego; o destaque a edifícios e obras públicas durante à noite; e a eficiência energética.

A aplicação da norma irá produzir iluminação adequada e utilização racional da energia, se o projetista e o usuário utilizarem: lâmpadas, reatores e luminárias eficientes, com distribuições apropriadas para cada tipo de instalação; luminárias com posicionamento e alturas de montagem adequadas; um bom programa de manutenção, para assegurar a integridade do sistema e a preservação do nível de iluminação considerado no projeto.

Deve-se ressaltar que uma via é uma superfície por onde transitam veículos, pessoas e animais, compreendendo pista, calçada, acostamento, ilha e canteiro central. A classificação de vias deve seguir as disposições previstas no Código de Trânsito Brasileiro, classificadas como: vias urbanas: via de trânsito rápido; via arterial; via coletora; via local; vias rurais: rodovias; estradas.

Para o projeto de iluminação pública deve ser avaliada a característica da via e se esta possui características de volume de tráfego ou de classificação de velocidade diferente (superior ou inferior) daquelas estabelecidas para cada tipo de via, conforme estabelecido no Código de Trânsito Brasileiro. De acordo com o Código de Trânsito Brasileiro, o órgão ou entidade de trânsito ou rodoviário com circunscrição sobre a via poderá regulamentar, por meio de sinalização, velocidades superiores ou inferiores àquelas estabelecidas.

Assim, a via urbana é aquela caracterizada pela existência de construções às suas margens, com presença de tráfego motorizado e de pedestres em maior ou menor escala. Ruas, avenidas, vielas ou caminhos e similares abertos à circulação pública, situados na área urbana, caracterizados principalmente por possuírem imóveis edificados ao longo de sua extensão.

A via de trânsito rápido inclui as avenidas e ruas asfaltadas, exclusivas para tráfego motorizado, onde não há predominância de construções. Baixo trânsito de pedestres e alto trânsito de veículos. É aquela caracterizada por acessos especiais com trânsito livre, sem interseções em nível, sem acessibilidade direta aos lotes lindeiros e sem travessia de pedestres em nível, com velocidade máxima de 80 km/h.

A via arterial é exclusiva para tráfego motorizado, que se caracteriza por grande volume e pouco acesso de tráfego, várias pistas, cruzamentos em dois planos, escoamento contínuo, elevada velocidade de operação e estacionamento proibido na pista. Geralmente, não existe o ofuscamento pelo tráfego oposto nem construções ao longo da via. O sistema arterial serve mais especificamente a grandes geradores de tráfego e viagens de longas distâncias, mas, ocasionalmente, pode servir de tráfego local. É aquela caracterizada por interseções em nível, geralmente controlada por semáforo, com acessibilidade aos lotes lindeiros e às vias secundárias e locais, possibilitando o trânsito entre as regiões da cidade, com velocidade máxima de 60 km/h.

A via coletora é exclusivamente para tráfego motorizado, que se caracteriza por um volume de tráfego inferior e por um acesso de tráfego superior àqueles das vias arteriais. É aquela destinada a coletar e distribuir o trânsito que tenha necessidade de entrar ou sair das vias de trânsito rápido ou arteriais, possibilitando o trânsito dentro das regiões da cidade, com velocidade máxima de 40 km/h.

A via local permite acesso às edificações e a outras vias urbanas, com grande acesso e pequeno volume de tráfego, sendo aquela caracterizada por interseções em nível não semaforizadas, destinada apenas ao acesso local ou a áreas restritas, com velocidade máxima de 30 km/h.

A via rural é mais conhecida como estradas de rodagem, que nem sempre apresenta, exclusivamente, tráfego motorizado. As rodovias servem para tráfego motorizado, pavimentadas, com ou sem acostamento, com tráfego de pedestres. Este tipo de via pode ter trechos classificados como urbanos, com as seguintes velocidades máximas: 110 km/h para automóveis e camionetas; 90 km/h para ônibus e micro-ônibus; 80 km/h para os demais veículos.

As estradas são usadas para tráfego motorizado, com ou sem acostamento, com tráfego de pedestres. Este tipo de via pode ter trechos classificados como urbanos. Trata-se de via rural não pavimentada, com velocidade máxima de 60 km/h. As vias de áreas de pedestres são vias ou conjunto de vias destinadas à circulação prioritária de pedestres. Não obstante se forem apresentados outros aspectos além da intensidade de tráfego com a devida influência nas características de iluminação, tal intensidade é o fator preponderante e serve como base desta classificação.

Para a classificação do volume de tráfego em vias públicas, deve-se dividir os valores de tráfego, tanto para veículos como para pedestres, conforme tabelas. A distribuição apropriada das intensidades luminosas das luminárias é um dos fatores essenciais de iluminação eficiente em vias.

As intensidades emitidas pelas luminárias são controladas direcionalmente e distribuídas de acordo com a necessidade para visibilidade adequada (rápida, precisa e confortável). Distribuições de intensidades são geralmente projetadas para uma faixa típica de condições, as quais incluem altura de montagem de luminárias, posição transversal de luminárias (avanço), espaçamento, posicionamento, largura das vias a serem efetivamente iluminadas, porcentagem do fluxo luminoso na pista e áreas adjacentes, mantida a eficiência do sistema.

A distribuição das intensidades luminosas da luminária em relação à via é classificada de acordo com três critérios: distribuição longitudinal (em plano vertical); distribuição transversal; controle de distribuição de intensidade luminosa no espaço acima dos cones de 80° e 90°, cujo vértice coincide com o centro óptico da luminária (distribuição de intensidade luminosa no espaço acima de 80° e 90° em relação à linha vertical que contém o centro óptico da luminária).

A classificação de distribuição de intensidade luminosa longitudinal e transversal deve ser feita na base do diagrama de isocandela, traçada sobre um sistema retangular de coordenadas contendo uma série de linhas longitudinais da via (LLV) em múltiplos da altura de montagem (AM) e uma série de linhas transversais da via (LTV) também em múltiplos da altura de montagem. As informações essenciais que devem aparecer nos diagramas de isocandelas são as seguintes: linhas LLV de 1,0 AM; 1,75 AM; 2,75 AM; linhas LTV de 1,0 AM; 2,25 AM; 3,75 AM; 6,0 AM; e 8,0 AM; e posição das linhas de máxima intensidade e de meia máxima intensidade.

As distribuições longitudinais verticais de intensidade luminosa dividem-se em três grupos. A distribuição curta existe quando o seu ponto de máxima intensidade luminosa se encontra na região ‘C’ do sistema de coordenadas, isto é, entre 1,0 AM LTV e 2,25 AM LTV. A distribuição média é quando o seu ponto de máxima intensidade luminosa se encontra na região ‘M’ do sistema de coordenadas, isto é, entre 2,25 AM LTV e 3,75 AM LTV. A distribuição longa é quando o seu ponto de máxima intensidade luminosa se encontra na região do ‘L’ do sistema de coordenadas, isto é, entre 3,75 AM LTV e 6,0 AM LTV.

Quanto à classificação das luminárias quanto às distribuições transversais de intensidade, a transversal ou lateral é definida pela área cortada por segmento da linha de meia intensidade máxima. O tipo I é quando a linha de meia intensidade máxima não ultrapassa as linhas LLV 1,0 AM, tanto do “lado das casas” como do “lado da via”, caindo em ambos os lados da linha de referência na área dos três tipos de distribuição vertical (curta, média e longa. O tipo II é quando a linha de meia intensidade máxima fica compreendida entre a LLV 1,75 AM e a linha de referência na área dos três tipos de distribuição vertical (curta, média e longa). O tipo III é quando a linha de meia intensidade máxima ultrapassa parcial ou totalmente a LLV 1,75 AM, porém não ultrapassa a LLV 2,75 AM na área dos três tipos de distribuição vertical (curta, média e longa. O tipo IV é quando parte da linha de meia intensidade máxima ultrapassa parcial ou totalmente a LLV 2,75 AM.

O controle de distribuição de intensidade luminosa no espaço acima dos cones de 80° e 90°, (cujo vértice coincide com o centro óptico da luminária) é dividido em quatro categorias. A distribuição totalmente limitada (full cut-off) é quando a intensidade luminosa acima de 90° é nula e a intensidade luminosa acima de 80° não excede 10 % dos lúmens nominais da fonte luminosa empregada. Isto se aplica a todos os ângulos verticais em torno da luminária.

A distribuição limitada (cut-off) ocorre quando a intensidade luminosa acima de 90° não excede 2,5 % e a intensidade luminosa acima de 80° não excede 10 % dos lúmens nominais da fonte luminosa empregada. Isto se aplica a todos os ângulos verticais em torno da luminária.

A distribuição semilimitada (semi cut-off) é quando a intensidade luminosa acima de 90° não excede 5 % e a intensidade luminosa acima de 80° não excede 20 % dos lúmens nominais da fonte luminosa empregada. Isto se aplica a todos os ângulos verticais em torno da luminária. A distribuição não limitada (non cut-off) ocorre quando não há limitação de intensidade luminosa na zona acima da máxima intensidade luminosa.

Não se pode esquecer que, para permitir uma melhor convivência entre a iluminação pública e a arborização, é apresentada uma equação que pode ser utilizada para desobstruir a iluminação na via. A equação considera os ângulos de máxima incidência de luz das luminárias nos sentidos longitudinal e transversal à via, a sua altura de montagem e a distância da árvore.

A equação apresentada deve ser utilizada para auxiliar os planejadores municipais, as empresas de iluminação pública e os órgãos gestores da arborização urbana nas seguintes situações: na adequação dos sistemas existentes onde a postes e as árvores já existam, permitindo definir a linha de poda dos ramos que comprometam a iluminação; na implantação de novos sistemas de iluminação em praças, vias e calçadões, auxiliando na definição da posição dos postes e sua distância às árvores existentes; na implantação de novas árvores em praças, vias e calçadões, auxiliando na definição das árvores em relação aos postes existentes.

A fórmula para o cálculo para desobstrução da iluminação em árvores no sentido longitudinal e transversal da via: Z = H – (A × D), onde Z é a altura mínima de um galho; H é a altura de montagem da luminária; AL é igual a cotang 75°, igual a 0,26 (ângulo de máxima incidência de luz para o sentido longitudinal); AT é igual a cotang 60°, igual a 0,57 (ângulo de máxima incidência de luz para o sentido transversal); D é a distância mínima do galho de menor altura.

Em vias urbanas com tráfego intenso, onde existirem travessias sinalizadas para pedestres fora das esquinas, uma iluminação adicional pode ser utilizada, sempre em conjunto à sinalização vertical e horizontal, para alertar os condutores de veículos com antecedência sufi ciente da presença de pedestres que cruzam a via, bem como para permitir que os pedestres reconheçam com facilidade os limites da passagem e se posicionem dentro destes.

Para garantir que a passagem de pedestre esteja bem destacada na via, recomenda-se que as lâmpadas utilizadas na iluminação da passagem tenham uma “temperatura de cor” diferente das lâmpadas que iluminam a pista de rolamento. Esta alternativa também pode ser utilizada em cruzamentos de centros urbanos com grande movimentação de pedestres, mas deve ser cuidadosamente estudada para não prejudicar ou gerar confusão visual com a sinalização viária.

De uma forma geral as praças, parques, calçadões e equivalentes podem ser considerados espaços públicos com predominância de pedestres. A iluminação destes espaços deve permitir no mínimo a orientação, o reconhecimento mútuo entre as pessoas, a segurança para o tráfego de pedestres e a identificação correta de obstáculos, assim como deve proporcionar, a uma distância segura, informação visual sufi ciente a respeito do movimento das pessoas.

Segundo estudos realizados, a distância mínima necessária para uma pessoa reconhecer qualquer sinal de hostilidade e tomar as ações evasivas apropriadas é de 4 m. A esta distância, o nível de iluminância médio mínimo necessário para reconhecimento facial é de 3 lux, sendo que sobre a superfície da via não pode haver valores inferiores a 1 lux.

Este nível de iluminância média pode variar até 40 lux, em função do tipo de utilização, característica e requisitos de segurança pública da praça ou calçadão que está sendo iluminado. Considerando a necessidade de identificação de obstáculos na superfície da via e a velocidade com que as pessoas ou eventualmente ciclistas trafegam, o fator de uniformidade deve ser Emín/Emáx ≥ 1:40.

A disposição dos equipamentos de iluminação não pode obstruir o acesso dos veículos de emergência, de entrega ou de manutenção, nem competir com a arquitetura local. Nas praças ou espaços públicos de pedestres, onde os acessos e saídas possuírem escadas e rampas, a iluminação nestes pontos deve assegurar que estas mudanças de nível sejam bem visíveis aos pedestres.

Sempre que necessário ao realizar a locação dos postes, estes acessos devem ser considerados prioritários. Alguns espaços em função de sua concepção arquitetônica podem apresentar áreas distintas de utilização como jardins, brinquedos, jogos de mesa, quadras etc. Nestes casos, podem ser aplicados critérios de projetos diferenciados para cada área, utilizando arranjos de luminárias, iluminações decorativas ou projetores.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital Banas Qualidade e editor do blog https://qualidadeonline.wordpress.com/hayrton@hayrtonprado.jor.br

Anúncios

Manutenção dos sistemas de climatização: já era obrigatório o cumprimento das normas técnicas, agora lei federal reforça essa imposição

A falta de uma manutenção correta e constante dos sistemas de climatização ou ar condicionado não apenas diminui a renovação do ar, mas provoca um acúmulo de sujeira. Também, durante o processo de refrigeração ocorre a condensação de água que, líquida, acaba por se acumular no interior do sistema, favorecendo o surgimento de muitos fungos e bactérias. Esses fatores costumam agravar os quadros de moléstias respiratórias como asma, rinite, sinusite e doença pulmonar obstrutiva crônica dos ocupantes das edificações.

Hayrton Rodrigues do Prado Filho, jornalista profissional registrado no Ministério do Trabalho e Previdência Social sob o nº 12.113 e no Sindicato dos Jornalistas Profissionais do Estado de São Paulo sob o nº 6.008

O governo sancionou a Lei nº 13.589, de 4 de janeiro de 2018, que dispõe sobre a manutenção de instalações e equipamentos de sistemas de climatização de ambientes. Se antes já era obrigatório o cumprimento das normas técnicas pelo Código de Defesa do Consumidor (CDC – Lei 8.078 de 1990), agora uma lei federal específica vem reforçar essa obrigatoriedade. Assim, todos os edifícios de uso público e coletivo que possuem ambientes de ar interior climatizado artificialmente devem dispor de um Plano de Manutenção, Operação e Controle (PMOC) dos respectivos sistemas de climatização, visando à eliminação ou minimização de riscos potenciais à saúde dos ocupantes.

A lei traz algumas definições importantes. Por exemplo, os ambientes climatizados artificialmente são os espaços fisicamente delimitados, com dimensões e instalações próprias, submetidos ao processo de climatização por meio de equipamentos.

Os sistemas de climatização são o conjunto de instalações e processos empregados para se obter, por meio de equipamentos em recintos fechados, condições específicas de conforto e boa qualidade do ar, adequadas ao bem-estar dos ocupantes.

Já a manutenção inclui as atividades de natureza técnica ou administrativa destinadas a preservar as características do desempenho técnico dos componentes dos sistemas de climatização, garantindo as condições de boa qualidade do ar interior.

Fundamental na lei é a especificação de que os padrões, valores, parâmetros, normas e procedimentos necessários à garantia da boa qualidade do ar interior, inclusive de temperatura, umidade, velocidade, taxa de renovação e grau de pureza, são os regulamentados pela Resolução n  9, de 16 de janeiro de 2003, da Agência Nacional de Vigilância Sanitária (Anvisa), e posteriores alterações, assim como as normas técnicas da Associação Brasileira de Normas Técnicas (ABNT).

Ou seja, a ABNT, dentro do contexto do Estado, é uma sociedade civil, sem fins lucrativos, que exerce uma função delegada pelo Estado brasileiro como organismo de normalização no Brasil. Nasceu como associação civil sem fins lucrativos, todavia, posteriormente foi declarada de utilidade pública por exercer função delegada do Estado, por meio do Conselho Nacional de Metrologia, Normalização e Qualidade Industrial (Conmetro).

Igualmente, o Código de Defesa do Consumidor define como prática abusiva e explicitamente vedada colocar, no mercado de consumo, qualquer produto ou serviço em desacordo com as normas da ABNT. A própria administração pública, por força de dispositivo expresso na Lei de Licitações Públicas, se obriga à obediência da norma brasileira (NBR). Assim, se ela é vinculante e se sua homologação está afeta à ABNT, fica evidente que essa instituição age como agente público que é.

Ou seja, sujeitam seus gestores ao arcabouço de deveres dos demais agentes públicos. Reconhecendo o inteiro teor de um texto de norma brasileira como um documento normativo, uma vez que se trata de norma de padronização brasileira, caberia aos administradores da entidade zelar para que seu conteúdo não contivesse declaração falsa de reserva de direitos autorais no intuito de prejudicar o direito do consumidor em dispor livremente do conteúdo, criar obrigação ilegal e ao mesmo tempo alterar a verdade sobre fato juridicamente relevante – a inexistência de direitos autorais.

As normas técnicas brasileiras, que alcançam todo o território nacional e se impõem aos órgãos públicos e privados por expressa disposição legal ou regulamentar, podem impor comportamentos – imperativas em seu cumprimento e acarretam, também por expressa determinação legal ou regulamentar, em caso de descumprimento, a aplicação de penalidades administrativas – e eventualmente até de natureza criminal.

Assim, as NBR são regras de conduta impositivas para os setores produtivos em geral, tendo em vista que, além de seu fundamento em lei ou atos regulamentares, tem em vista o cumprimento da função estatal de disciplinar o mercado com vistas ao desenvolvimento nacional e à proteção de direitos fundamentais tais como os direitos relativos à vida, à saúde, à segurança, ao meio ambiente.

Quanto às normas técnicas referenciadas e obrigatórias na lei, a NBR 15848 de 06/2010 – Sistemas de ar condicionado e ventilação – Procedimentos e requisitos relativos às atividades de construção, reformas, operação e manutenção das instalações que afetam a qualidade do ar interior (QAI) estipula procedimentos e requisitos relativos às atividades de operação e manutenção, para melhoria dos padrões higiênicos das instalações de ar-condicionado e ventilação, contribuindo desta forma para a qualidade do ar (QAI).

A NBR 16401-3 de 08/2008 – Instalações de ar-condicionado – Sistemas centrais e unitários – Parte 3: Qualidade do ar interior especifica os parâmetros básicos e os requisitos mínimos para sistemas de ar-condicionado, visando à obtenção de qualidade aceitável de ar interior para conforto.

A NBR 14679 de 06/2012 – Sistemas de condicionamento de ar e ventilação — Execução de serviços de higienização estabelece os procedimentos e diretrizes mínimas para execução dos serviços de higienização corretiva de sistemas de tratamento e distribuição de ar caracterizados como contaminados por agentes microbiológicos, físicos ou químicos.

Enfim, a norma técnica brasileira tem uma natureza jurídica, de caráter secundário, impositiva de condutas porque fundada em atribuição estatal, sempre que sinalizada para a limitação ou restrição de atividades para o fim de proteção de direitos fundamentais e do desenvolvimento nacional, que são funções do Estado. Pode ser equiparada, por força do documento que embasa sua expedição, à lei em sentido material, vez que obriga o seu cumprimento. Mesmo que muitas instituições e especialistas afirmem o contrário. Mas, a Justiça brasileira vem reconhecendo isso como uma verdade fundamentada.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital Banas Qualidade e editor do blog https://qualidadeonline.wordpress.com/hayrton@hayrtonprado.jor.br 

Os veículos para atendimento a emergências médicas e resgate devem ser fabricados conforme a norma técnica

Pode-se definir um veículo para atendimento a emergências médicas e resgate como aquele que incorpora um compartimento para motorista, um compartimento para paciente que acomode um socorrista (médico, paramédico, enfermeiro ou técnico em emergências médicas) e dois pacientes em maca (um paciente localizado na maca primária e um paciente secundário em maca dobrável localizada sobre o assento da tripulação), posicionados de forma que o paciente primário receba suporte intensivo de vida durante o transporte; equipamentos e materiais para atendimento a emergências no local assim como durante o transporte; rádio comunicação de duas vias e, quando necessário, equipamento para resgate leve/desencarcerador.

A NBR 14561 de 07/2000 – Veículos para atendimento a emergências médicas e resgate fixa as condições mínimas exigíveis para o projeto, construção e desempenho de veículos para atendimento a emergências médicas e resgate, descrevendo veículos que estão autorizados a ostentar o símbolo “ESTRELA DA VIDA” e a palavra “RESGATE”, estabelecendo especificações mínimas, parâmetros para ensaio e critérios essenciais para desempenho, aparência e acessórios, visando propiciar um grau de padronização para estes veículos. É objetivo também tornar estes veículos nacionalmente conhecidos, adequadamente construídos, de fácil manutenção e, quando contando com equipe profissional adequada, funcionando eficientemente no atendimento a emergências médicas e resgate ou em outros serviços móveis de emergência médica.

Este veículo deverá ser montado em chassi adequado para esta aplicação. Estes veículos serão de tração traseira ou dianteira (4×2) ou tração nas quatro rodas (4×4). Essa norma serve de subsídio para uma especificação técnica de aquisição e recebimento de veículos para atendimento a emergências médicas e resgate. Os contratantes podem avaliar suas necessidades individuais e o propósito de uso do veículo, usando os requisitos básicos desta norma para elaborar uma especificação completa e atender as condições operacionais locais.

O veículo deve ser projetado e construído para propiciar segurança, conforto e evitar agravamento do estado do paciente. Os veículos autorizados “ESTRELA DA VIDA” são dos seguintes tipos: tipo I – chassi convencional tipo caminhão leve com cabina e carroçaria modular; tipo II – furgão standard, com integração cabina e carroçaria unificados; tipo III – furgão cortado, cabina e chassi integrado a uma carroçaria modular. É responsabilidade do contratante especificar os detalhes do veículo, seus requisitos de desempenho, o número máximo de vítimas e tripulantes a serem transportados e os equipamentos necessários que não excedam o número requerido nessa norma.

A proposta deve ser acompanhada por uma descrição detalhada do veículo, com a relação do equipamento a ser fornecido e outros detalhes de construção e de desempenho que este veículo deve atender, incluindo-se, mas não se limitando a: PBTC, PBT, PMED, PMET, relação peso/potência, distância entre eixos, dimensões principais, relação de eixo de transmissão e desenho técnico-dimensional. A finalidade dessas especificações do fornecedor é definir o que o contratado pretende fornecer e entregar ao contratante.

O contratado deve fornecer no momento da entrega pelo menos duas cópias de um manual completo de operação e manutenção, com cobertura completa do veículo, conforme entregue e aceite, incluindo-se, mas não se limitando a: chassi, diagramas elétricos, mapas de lubrificação e equipamentos acessórios incorporados aos veículos. A responsabilidade pelo veículo e equipamento deve permanecer com o fornecedor até que sejam aceitos pelo contratante.

Um representante indicado e qualificado pelo fornecedor deve instruir pessoal especificado do contratante nas operações de: cuidados de operação e manutenção do veículo e seus equipamentos entregues. Quando houver ferramentas especiais fabricadas ou projetadas pelo fornecedor, necessárias para serviços rotineiros em qualquer componente instalado no veículo ou fornecido pelo contratado, tais ferramentas devem ser entregues no veículo.

O veículo deve ser construído levando-se em consideração a natureza e a distribuição da carga a ser transportada e as características gerais do serviço ao qual o veículo estará sujeito quando colocado em operação. Todos os componentes do veículo devem ser suficientemente resistentes para atender o serviço sob carga máxima. O veículo deve ser projetado de forma que seus vários componentes sejam facilmente acessíveis para lubrificação, inspeção, ajustes e reparos.

Detalhes menores de construção e materiais que não foram especificados devem ser deixados a critério do contratado, que é o único responsável pelo projeto e construção de todos os detalhes. O veículo deve estar em conformidade com as leis federais e estaduais aplicáveis a veículos motorizados. O veículo e acessórios incorporados de acordo com esta norma contemplam veículos comerciais do tipo, classe e configurações especificadas. O veículo deve ser completo com todos os acessórios operacionais, com as modificações necessárias para permitir que o veículo atenda suas funções de forma eficiente e confiável.

O projeto do veículo e os acessórios incorporados devem permitir fácil acesso para manutenção, reposição e ajuste de componentes e acessórios, com o mínimo de deslocamento de outros componentes ou sistemas. O termo: “SERVIÇO PESADO”, como usado para descrever um item, deve ser entendido como excedente a um padrão de qualidade, quantidade ou capacidade e que represente o melhor, mais durável, mais forte, etc., seja como componente, parte ou sistema, que seja comercialmente disponível no chassi do fabricante original.

O veículo tipo I deve ter um chassi fornecido com cabina fechada de duas portas. O chassi/cabina deve permitir a montagem subsequente de uma carroçaria modular e transferível (não ligadas mecanicamente, podendo haver passagem ou não entre os ambientes), de acordo com os requisitos aqui especificados (ver figura A.1 – disponível na norma).

O veículo tipo II utiliza um chassi original de fábrica, comercial, distância entre eixos, longa, conhecido como furgão integral. Este veículo deve permitir a conversão subsequente em veículo de emergências médicas de acordo com os requisitos aqui especificados (podendo haver passagem ou não entre os ambientes) (ver figura A.2 – disponível na norma).

O veículo tipo III deve ser montado sobre um chassi de furgão “cortado” ou chassi de caminhão leve com carroçaria modular unificada com a cabina. O chassi unificado cabina/carroçaria deve permitir a subsequente conversão ou modificação para veículo de emergências médicas, incorporando os requisitos aqui especificados (podendo haver passagem ou não entre os ambientes) (ver figura A.3 – disponível na norma).

Quando não houver especificação contrária, o compartimento do paciente deve ser conforme a configuração “B” (ver 6.2-c), Suporte Básico da Vida (SBV). Todas as macas devem ser posicionadas com a cabeça do paciente voltada para a frente do veículo. Quando os veículos tipo I ou III (ver 6.2-b) forem especificados para utilização como Suporte Avançado da Vida (SAV), deve haver previsão para um paciente primário acomodado sobre uma maca articulada sobre rodas e um paciente secundário sobre uma maca dobrável/portátil sobre o assento da tripulação.

Pode também acomodar um paciente primário e três pacientes secundários sentados sobre o assento da tripulação (ver 5.10.4) e um médico ou TEM (técnico em emergências médicas) sentado. A maca primária deve ser montada centralizada ou, quando especificado, com dupla posição de montagem. Quando especificado pelo contratante, deve ser fornecido um assento para RCP (ressuscitação cardiopulmonar) (ver 5.14.3-28) que atenda a todos requisitos especificados, montado do lado esquerdo do corpo de frente à região torácica do paciente, incluindo um cinto de segurança e forração para a região da cabeça do TEM.

Deve haver um espaço na área de atendimento para a colocação de um monitor cardíaco/desfibrilador. Quando especificado (ver 5.14.4-M.25), deve ser fornecido um suporte à prova de impactos para fixação do monitor cardíaco/desfibrilador. Também deve ser fornecido um compartimento com fechadura para medicamentos conforme 5.14.3-14 e luzes de alta intensidade conforme 5.14.3-8. Devem ser colocados dois ganchos para soro intravenoso (ver 5.10.9) para o paciente primário, sendo um em sua cabeça e outro em suas extremidades inferiores.

A menos que especificado em contrário (ver 8.2-c), deve ser fornecida a configuração “B” como Suporte Básico de Vida (SBV), para um paciente primário sobre maca articulada sobre rodas e um paciente secundário sobre maca dobrável/portátil sobre o assento da tripulação, o qual deve ser capaz de acomodar três pacientes sentados (ver 5.10.5) e um TEM sentado (ver 5.9.3).

Quando for especificado em chassi 4×4 (ver 8.2-b), peso adicional do chassi 4×4 em relação ao chassi 4×2 deve reduzir a capacidade de carga proporcionalmente. Quando disponível, uma ambulância classe 2 deve ser construída sobre um chassi original de fábrica 4×4 para ambulância tipo I ou um modelo 4×2 original de fábrica com uma transformação homologada pelo fabricante do chassi para tração nas quatro rodas (4×4), atendendo a todos os requisitos aplicáveis.

Toda a mão-de-obra, soldagem, ajuste mecânico e qualidade dos componentes e materiais usados na conversão deve ser de qualidade igual ou superior às do fabricante original de unidades 4×4. Os componentes da conversão não podem interferir com qualquer parte da carroçaria, chassi ou componentes mecânicos em todo o curso da suspensão ou ângulos de giro, permitindo perfeito alinhamento dos eixos. As bitolas dos eixos dianteiros e traseiros devem ser idênticas à original de fábrica.

Quando disponível, devem ser fornecidos componentes de chassi originais de fábrica, incluindo-se, mas não se limitando a: molas, suportes, grampos, eixos, caixas de transferência, elementos de transmissão, juntas universais, pivôs, barras estabilizadoras, pinças de freio, discos, sapatas, amortecedores e demais acessórios. Quando possível, devem ser seguidos os parâmetros do chassi original nas conversões 4×4. O projeto da conversão 4×4 deve minimizar a altura do chassi do veículo.

A empresa responsável pela transformação para 4×4 deve apresentar uma homologação oficial para a modificação do chassi. A empresa transformadora para 4×4 deve fornecer ao contratante garantia específica para todas peças e mão-de-obra acrescentadas na transformação. A garantia deve cobrir também os conjuntos originais de fábrica afetados ou modificados pelo processo de transformação.

Esta garantia deve ser no mínimo equivalente em tempo e quilometragem à garantia oferecida pelo fabricante original do chassi. O veículo deve ser entregue acompanhado de manuais completos mostrando operação, manutenção, procedimentos de reparo, número de peças originais, desenhos dos componentes usados na transformação, desenhos dos componentes explodidos com suas respectivas listas de peças, procedimento de alinhamento e especificações gerais.

Os veículos de atendimento a emergências médicas, incluindo chassi, carroçaria da ambulância, equipamentos, dispositivos, acessórios médicos e equipamentos eletrônicos, devem atender as normas técnicas nacionais ou, na falta delas, as estrangeiras, ensaiadas e certificadas para atender ou exceder os requisitos desta norma. O veículo deve atender a regulamentação do Código Nacional de Trânsito e outras regulamentações estaduais e municipais aplicáveis.

O chassi, seus componentes e itens opcionais devem fazer parte da relação original do fabricante do chassi. A carroçaria da ambulância, equipamentos e acessórios da conversão devem seguir as especificações técnicas de cada fabricante respectivo. Para cada contrato o fornecedor deve proporcionar total padronização e intercambiabilidade entre veículos iguais para todos os equipamentos, itens e acessórios especificados.

A menos que especificado em contrário, todos os requisitos de 5.3 devem ser atendidos com o veículo de resgate carregado de acordo com a tara especificada, incluindo-se todos os dispositivos e acessórios instalados e operando em condições de máximo consumo, tais como: ar-condicionado, luzes, rádios e demais componentes e com o chassi desempenhando de acordo com os dados técnicos do fabricante. O veículo deve ser capaz de operar com segurança e eficiência nas condições ambientais aqui definidas ou conforme as especificações dos editais de concorrência, contratos ou pedidos.

Quando especificado pelo contratante que as ambulâncias requeiram pequenas cargas adicionais à sua capacidade, devido a equipamentos especiais tais como aparelhos médicos, desencarceradores e incubadoras neonatais, devem ser aceitáveis níveis de desempenho inferiores ao constante em 5.3.6 a 5.3.8.2. O veículo, incluindo-se todos os sistemas requeridos, equipamentos e dispositivos médicos fornecidos, deve suportar temperaturas ambientes de – 15°C até + 45°C sem danos ou deterioração. Os veículos destinados à exportação devem estar adequados a uma faixa de temperatura de acordo com os países a que se destinam.

O veículo e seus equipamentos devem ser submetidos por 6 h à temperatura de – 15°C, seguida por 1 h em – 10°C. Todos os equipamentos não acionados pelo motor do veículo devem ser ensaiados e operados a temperatura de – 10°C. O motor deve então ser acionado e todos os sistemas do veículo devem ser ensaiados. O veículo de resgate e seus equipamentos devem ser submetidos por 6 h a um calor de 46°C, seguido de 1 h a 36°C.

Todos os sistemas não acionados pelo motor do veículo devem ser ensaiados e operados a 36°C de temperatura. O motor deve então ser acionado e todos os sistemas e equipamentos do veículo ensaiados. Os aparelhos médicos, tais como unidades de sucção e ressuscitadores, devem ser ensaiados a frio para verificação de seu desempenho com a fonte de 12 V do veículo e com a fonte de 110 V ca. A certificação do fabricante do aparelho médico é aceitável.

A menos que haja regulamentação específica pelos estados ou municípios onde o veículo for registrado, o nível exterior de ruído produzido pelo veículo, exceto sirene, não deve exceder as normas federais. O veículo deve proporcionar um rodar macio e estável com um mínimo de ruído e vibração. No caso de serem necessárias alterações na suspensão, estas devem ser autorizadas pelo fabricante do chassi. O ensaio deve ser conforme 6.4.4.

Os sistemas de freio do veículo devem atender os valores requeridos pela Resolução CONTRAN nº 777/93 e suas posteriores alterações. O veículo deve ser capaz de sustentar uma velocidade constante não inferior a 105 km/h sobre superfície nivelada, seca, firme e ao nível do mar. Deve ser capaz de sustentar velocidades de ultrapassagem de 113 km/h quando ensaiada em condições ambientais normais.

O veículo deve ser capaz de sustentar uma aceleração média mínima ao nível do mar de 0 a 88 km/h em 25 s. O ensaio deve ser realizado em condições ambientais normais. Os ensaios devem ser conforme 6.4.4.

Sob carga máxima, o veículo deve ser capaz de atender os requisitos seguintes. A determinação deve ser feita por ensaios reais ou por simulação de computador certificados pelo fabricante do chassi ou por laboratório independente aceito pelo contratante. A rampa em velocidade deve ser a 89 km/h em rampa de 3% (1,72°).

A mínima velocidade em rampa em primeira marcha deve ser de 20 km/h em rampa de 30% (17,2°) para veículos classe 1 (4×2). O veículo deve demonstrar capacidade de partir em rampa de 25%. Para veículos classe 2 (4×4), a velocidade deve ser de 8 km/h em rampa de 45% (24,2°). A menos que especificado em contrário (ver 8.2-e), o veículo deve ter uma autonomia de combustível suficiente para 400 km sem necessidade de reabastecimento, sob as condições estabelecidas em 6.4.4.

O veículo deve ser capaz de realizar três passagens a vau, sem a entrada de água no compartimento do paciente. Estas passagens devem ser realizadas em lâmina de 25 cm de água, em velocidade de 20 km/h, em uma distância mínima de 100 m. O ensaio obedecerá ao critério estabelecido em 6.4.4. O comprimento total do veículo não pode exceder 700 cm, incluindo-se para-choques, mas excluindo-se degrau traseiro e garras protetoras de para-choques. O contratante pode especificar (ver 8.2-f) comprimento adicional, se for necessário, para acomodar equipamento especial, porém deve consultar o fabricante para certificar-se que todas as características de desempenho e segurança não sejam afetadas.

A menos que especificado em contrário (ver 8.2-g), a largura total do veículo com rodagem simples traseira deve estar entre 190 cm e 220 cm, excluindo-se espelhos e luzes. As laterais do compartimento do paciente de um veículo de resgate com rodagem dupla traseira devem estar dentro de uma tolerância de ± 5 cm da largura total dos pneus (paredes externas) (ver 5.4.6, 5.5.5.6 e 5.8.7). Os pneus não devem sobressair dos para-lamas. A máxima largura da carroçaria do veículo não pode exceder 245 cm, excluindo-se espelhos e luzes.

Em veículos de rodagem dupla deve ser fornecido o de bitola mais larga, a menos que o contratante especifique carroçaria mais estreita (ver 8.2-g). A menos que especificado em contrário (ver 8.2-h), a altura total do veículo sem tripulantes e pacientes não pode exceder 280 cm, incluindo-se equipamentos montados no teto, mas excluindo-se antena de rádio. A parte mais baixa do veículo, quando carregado com carga total, deve manter uma distância mínima do solo de 160 mm. Os componentes da carroçaria devem manter uma distância superior a 200 mm.

O veículo de resgate, com sua carga máxima (incluindo-se o estabelecido em 5.4.2) com para-choques e degrau traseiro (abaixado, se for rebatível), deve atender os seguintes parâmetros, medidos de acordo com a NBR 5924: ângulo mínimo de entrada: 20°; ângulo mínimo de saída: 12°; ângulo de lombada: 15°. O raio de giro não deve ser superior ao raio de giro do chassi original.

A altura do piso acabado não pode exceder 84 cm nos veículos classe 1 (4×2) e 97 cm para os veículos classe 2 (4×4). A altura deve ser medida com carga máxima, menos pacientes e tripulação. O peso em condições de atendimento é o peso do veículo completo com pacientes e tripulantes, definido como: chassi (incluindo baterias, pneu sobressalente, macaco e chave de roda), cabina, carroçaria, equipamentos mínimos requeridos por esta norma, e complemento total de combustível, lubrificantes, líquido de arrefecimento.

A carga máxima permitida em cada veículo deve ser determinada pelo contratado, devidamente etiquetada por meio de um adesivo com os dados de peso bruto total, peso em condições de atendimento e carga extra utilizável conforme modelo a seguir. O adesivo deve ser colocado em lugar visível no veículo. O peso em condições de atendimento deve incluir opções especificadas, equipamentos médicos variados e equipamentos de comunicação que estejam adequadamente distribuídos no veículo.

Devido aos riscos potenciais e danos ao chassi do veículo, este não deve ser sobrecarregado. O contratante deve consultar o contratado ou o fabricante do chassi para determinar a reserva de capacidade real acima da especificação mínima requerida por esta norma. Os sistemas de luzes de emergência estroboscópica ou halógena ou incandescente deverão proporcionar visibilidade do veículo em 360° para segurança de suas missões. O sistema deve proporcionar sinais altamente perceptíveis e fixadores de atenção com funcionamento em um sistema modal e transmitindo a mensagem no seu modo primário: “CEDER O DIREITO DE PASSAGEM” e no modo secundário: “RISCO – VEÍCULO PARADO NA VIA”.

O sistema padrão de “luzes sinalizadoras para o veículo de resgate não deve impor uma carga elétrica contínua maior que 35 A. O contratante não deve especificar luzes de advertência além daquelas aqui requeridas. Iluminação adicional deve utilizar a reserva da capacidade do alternador e pode resultar em sobrecarga do sistema elétrico (ver notas de 5.6.1 e advertência 1 de 5.6.6). Luzes de emergência adicionais não são requeridas, porém, se especificadas (ver 8.2-v), não devem obstruir a luminosidade do sistema padrão de luzes de emergência.

As luzes de emergência adicionalmente fornecidas devem possuir interruptores separados. Qualquer dispositivo de sinalização fornecido adicionalmente ao sistema especificado deve ser compensado por uma reserva ou capacidade adicional de geração conforme requerido em 5.6.5. A configuração do sistema de luzes de emergência pode ser vista nas figuras. O sistema de luzes de advertência para emergências padrão deve conter 12 luzes fixas vermelha, uma luz fixa branca e uma luz fixa âmbar.

Estas luzes devem funcionar em um modo duplo conforme mostrado na tabela e devem atender aos requisitos físicos e fotométricos de 5.7.2.2. As luzes de advertência superiores devem ser montadas na extremidade do canto superior da carroçaria do veículo de resgate, abaixo da linha horizontal do teto. A luz branca deve estar centralizada entre as duas luzes frontais, vermelhas, nos cantos superiores (ver figuras). As luzes de advertência padrão não podem ser obstruídas por portas ou outros equipamentos auxiliares.

A luz âmbar deve estar centralizada entre as duas luzes vermelhas colocadas à ré. As luzes vermelhas da grade devem estar localizadas a pelo menos 76 cm acima do piso e abaixo da borda inferior do para-brisas e estar lateralmente separado por pelo menos 46 cm medidos a partir da linha de centro de cada lanterna. As luzes de interseção laterais devem ser montadas o mais próximo possível da borda superior frontal de cada para-lama.

Todas as luzes de emergência fornecidas devem ser montadas de forma a projetar a sua melhor intensidade efetiva de faixo luminoso no eixo horizontal (ver 5.7.2.4). Cada luz de emergência deve piscar 75 a 80 vezes por minuto, com cada luz possuindo uma área mínima iluminada e visível de 129 cm2. Todas as luzes de advertência devem projetar um facho aberto com pelo menos 5° para cima e 5° para baixo e pelo menos 45° à direita e esquerda do eixo H-V.

Cada luz deve produzir uma intensidade efetiva e gradual em um gradiente a partir do eixo H-V para todos os pontos de teste extremos conforme mostrado abaixo, quando ensaiados em 13.6 V. A intensidade efetiva deve ser determinada de acordo com o guia para cálculo de intensidade efetiva de luzes intermitentes da Illumination Engineering Society’s (IES).

Os interruptores das luzes de emergência devem possuir fiação e montagem que admitam os modos e combinações de sinais das luzes de advertência conforme especificado. Todos os interruptores das luzes de emergência devem ser identificados (ver 5.6.11) e cada interruptor do modo primário/secundário deve possuir uma luz indicadora âmbar ou vermelha que indique ao motorista qual modo está ligado. Quando fornecidas luzes estroboscópicas ou quando especificado luzes incandescentes (ver 8.2-w), deve ser colocado um interruptor dia-noite.

Quando especificado pelo fabricante do sistema de iluminação (ver 8.2-w), deve ser fornecido um interruptor automático, no modo secundário para a posição “PARK” (para câmbios automáticos) com preferência manual sobre o modo primário. Adicionalmente, quando especificado (ver 8.2-w) pelo fabricante do sistema de iluminação, este deve possuir um circuito sensor de luz ambiente, que automaticamente transfere para a posição “noite” quando operando no modo secundário.

Deve ser colocado um sistema manual de sobreposição ao modo “dia” (brilho). O manual de operação deve incluir instruções sugeridas para o gerenciamento dos sistemas de advertência. O sistema de iluminação de emergência deverá conter componentes e dispositivos que atendam aos requisitos gerais e respectivos testes das SAE J575g, SAE J576d, SAE J578 e SAE J551, onde aplicável para o veículo de resgate.

As luzes sinalizadoras devem ser firmemente fixadas em áreas reforçadas da carroçaria, incluindo-se bordas que compensem superfícies angulares, ou moldes compensadores de ângulos no teto. As luzes devem ter foco dirigido, mecânica ou opticamente no eixo horizontal com uma tolerância de + 0° a – 3°.

Todos interruptores, conectores e fiação devem ser dimensionados para uma capacidade mínima de 125% de sua máxima carga em ampères. Quando forem utilizadas lâmpadas halógenas, o ciclo de trabalho intermitente de qualquer lâmpada não deve exceder 50%. Quando forem utilizadas luzes estroboscópicas, todos os terminais e conectores de alta voltagem devem ser isolados e encapsulados.

Os fabricantes das luzes que compõem o sistema de iluminação de advertência devem fornecer e certificar, ou o fabricante do veículo de resgate deve medir e registrar o valor total médio da carga elétrica consumida pelo sistema padrão de luzes de emergência instalado no veículo e operando no modo de máximo consumo de corrente. Este ensaio de carga consumida deve ser realizado durante o ensaio do sistema elétrico do veículo de resgate (ver 5.6.6).

O sistema de iluminação de advertência e seus componentes e dispositivos devem atender as condições de temperatura descritas em 5.3.2 e devem ser ensaiados e aprovados por laboratório ou entidade de certificação credenciado pelo Inmetro. As luzes de cena e embarque devem estar colocadas no mínimo a 191 cm acima do solo e não podem ser obstruídas por portas abertas. A luzes de cena devem estar localizadas nas laterais esquerda e direita do veículo de resgate e firmemente fixadas em superfícies reforçadas da carroçaria, abaixo da linha do teto.

As luzes devem projetar um facho do tipo aberto dirigido ao solo, por meios óticos ou mecânico, em um ângulo entre 12° e 18° a partir do plano horizontal e devem proporcionar uma iluminação de 800 cd no solo, produzindo área de abrangência semelhante à de uma lâmpada do tipo sealed beam. Os interruptores das luzes de cena devem estar localizados no console da cabina e devem controlar cada lado independentemente.

As luzes de embarque devem ser ativadas automaticamente quando as portas traseiras forem abertas e que poderão estar conectadas com o sistema de iluminação da luz de ré original do veículo. As luzes de embarque devem proporcionar uma iluminação mínima de 500 cd, produzindo área de abrangência semelhante à de uma lâmpada do tipo sealed beam, e devem iluminar a área em torno das portas traseiras.

Deve ser fornecida uma lanterna manual de facho concentrado com capacidade de iluminação de 100 000 cd em corpo à prova de corrosão com interruptor e cabo espiralado com no mínimo 2,4 m. Deve ser conectado de forma permanente ao sistema 12 V cc do veículo (por razões antifurto) e acondicionado em suporte apropriado em área acessível ao motorista e passageiro.

Quando especificado (ver 5.14.3-26), deve ser fornecida uma lanterna por controle remoto, possuindo um interruptor de painel “liga-desliga” e controle de giro por tecla ou botão. Esta luz de busca deve possuir um diâmetro mínimo de 13 cm e potência de 100 000 cd. As luzes devem ser operacionais em ângulos de 360° na horizontal e 90° na vertical. O corpo exterior da lanterna e seu controle remoto devem ser cromados, em bronze ou latão.

A configuração básica do veículo de resgate deve ser projetada para minimizar as cargas elétricas e deve incluir: uma luz de domo no compartimento do motorista, luzes no painel de instrumentos, no painel do interruptor-mestre e no painel de interruptores de luzes. Quando especificado (ver 5.14.3-34), deve ser fornecida uma luz de mapa operável pelo passageiro. A iluminação deve ser projetada e localizada de forma a não refletir nos olhos do motorista ou em sua linha de visão, seja do painel de interruptores ou de outras áreas que sejam iluminadas com o veículo em movimento.

As luzes de domo do compartimento do paciente (ver 5.7.5.1) devem ser suficientes para iluminar o degrau (ver 5.9.12). O painel de controle do TEM deverá possuir iluminação em separado. Todas as luzes devem possuir o corpo do refletor devidamente aterrados.

A iluminação branca normal no compartimento do paciente (luzes de domo e do painel de interruptores do TEM) não pode ter intensidade inferior a 50 cd/m, medidas ao longo da linha de centro do piso totalmente desobstruído e sem qualquer luz ambiente externa. A maca primária deve receber no mínimo 115 cd/m de iluminação medida em pelo menos 90% da superfície da maca. Luzes ou lentes azuis não podem ser utilizadas.

As luzes do compartimento do paciente não podem estar conectadas ao sistema ca de 110 V do veículo. A luzes de domo do compartimento do paciente (em seu ajuste de baixa iluminação) e luzes de embarque devem acender automaticamente quando as portas do compartimento do paciente forem abertas.

Toda iluminação de domo interior, inclusive luzes de “exame”, devem possuir uma montagem o mais nivelado possível, não sobressaindo mais que 3,8 cm em relação ao teto. O uso de iluminação fluorescente operando em cc de 12 V deve atender ao desempenho acima e aos requisitos de interferência de 5.6.12; esta pode ser usada no lugar da iluminação incandescente.

A fixação das luzes incandescentes deve possuir uma cobertura removível que as trave firmemente no lugar. O tubo luz fluorescente deve ser firmemente fixado no lugar, de forma a prevenir soltura devido as vibrações provenientes do movimento do veículo. A iluminação de domo não deve consumir mais que 15 A no ajuste mais brilhante e deve possuir dois circuitos separados de proteção e controle. Podem ser utilizados para controle da iluminação, interruptores, controles eletrônicos ou reostatos à prova de fogo.

Quando especificado (ver 5.14.3-9), devem ser fornecidas duas luzes de exame no compartimento do paciente com lâmpadas de 6 cd, ou equivalentes e conectadas a um temporizador de 5 min ligado diretamente ao shunt do amperímetro (ver figura A.5 – disponível na norma). Uma das fixações de luz deve ter sua localização voltada para a frente do compartimento do paciente e outra voltada para a traseira.

As luzes de exame poderão estar integradas à iluminação do compartimento do paciente, sendo ativadas no circuito de baixa intensidade. O uso de luzes para exame diminui o consumo de energia da bateria, prevenindo a necessidade de ativar as baterias e do uso de luzes de alto consumo do compartimento.

Todo o compartimento da cabina deve possuir tamanho suficiente para acomodar um motorista e um assistente, com espaço adequado para dirigir e controlar as atividades inerentes a um veículo de resgate. A cabina (tipo I) ou a cabina integrada (tipos II e III), deve ser organizada e projetada com os equipamentos especificados e requeridos, assim como acessórios objetivando facilidade de operação e segurança.

Quando existir abertura e a porta de comunicação entre a cabina e o compartimento do paciente nos veículos tipo II e tipo III, estas não devem interferir ou restringir os movimentos de ajuste originais dos assentos. A cabina e a cabina integrada devem atender integralmente os requisitos de segurança estabelecidos pelo Conselho Nacional de Trânsito.

Os veículos dos tipos II e III, com projeto de cabina integrada, devem estar equipados com portas dianteiras e janelas iguais às da cabina dos caminhões convencionais tipo I, em conformidade com 5.8.2 a 5.8.8. Todos os tipos de veículo de resgate devem estar providos de uma divisão entre a cabina ou compartimento do motorista e o compartimento do paciente (ver 5.9.2 e 5.9.15).

A construção da cabina deve ser à prova de intempéries e deve incorporar portas com dobradiças e janelas operadas manualmente ou por acionamento energizado; batentes, fechaduras externas com dois jogos de chaves, acabamentos internos em material lavável ou impermeável; cobertura do piso com materiais originais do fabricante do chassi contra calor e ruído, com acabamento de boa qualidade; painel com instrumentos montados e assentos. Todas as superfícies interiores expostas devem ser pintadas.

Toda ferragem e metais de acabamento exterior expostos devem ser cromados, em aço inoxidável ou alumínio anodizado. Quando especificado pelo contratante (ver 5.9.15.2 e 5.14.3-30), deve ser fornecido um console que possa acomodar um guia de ruas, prancheta, rádio portátil, além de outros, quando especificado. O console deve ser fornecido de acordo com as especificações do contratante.

A qualidade dos blocos e tijolos cerâmicos de acordo com as normas técnicas

Os blocos cerâmicos são um dos componentes básicos de qualquer construção de alvenaria, seja ela de vedação ou estrutural. São produzidos a partir da argila, geralmente sob a forma de paralelepípedo, possuem coloração avermelhada e apresentam canais/furos ao longo de seu comprimento.

Os blocos de vedação são aqueles destinados à execução de paredes que suportarão o peso próprio e pequenas cargas de ocupação (armários, pias, lavatórios) e geralmente são utilizados com os furos na posição horizontal. Os estruturais ou portantes, além de exercerem a função da vedação, também são destinados à execução de paredes que constituirão a estrutura resistente da edificação, podendo substituir pilares e vigas de concreto. Esses blocos são utilizados com os furos sempre na vertical.

Podem ser utilizados em alvenaria estrutural, em que as paredes também têm a função de sustentar a construção. Pode dispensar estruturas de concreto armado, suportando vários pavimentos.

Este tipo de bloco não pode ser cortado ou serrado e as paredes estruturais não podem ser removidas ou alteradas depois de prontas. Por isso, há uma diversificada família de blocos estruturais (que inclui peças como blocos inteiros, meios-blocos, blocos compensadores, blocos 45° e canaletas, entre outros) que tornam possível a execução de paredes com encaixes adequados.

O sistema também permite a execução de projetos racionalizados – com a redução de perdas de materiais, a diminuição de entulho e maior agilidade na obra. O fundamental é que esses materiais obedeçam às normas técnicas em sua fabricação.

A NBR 15270-1 de 11/2017 – Componentes cerâmicos – Blocos e tijolos para alvenaria – Parte 1: Requisitos especifica os requisitos dimensionais, propriedades físicas e mecânicas de blocos e tijolos cerâmicos a serem utilizados em obras de alvenaria com ou sem função estrutural e executadas de forma racionalizada ou não. Estabelece os critérios para verificação e aceitação dos blocos e tijolos cerâmicos fornecidos para a execução das obras de alvenaria. A NBR 15270-2 de 11/2017 – Componentes cerâmicos – Blocos e tijolos para alvenaria – Parte 2: Métodos de ensaios especifica métodos para a execução dos ensaios dos blocos e tijolos cerâmicos estruturais e de vedação.

O bloco/tijolo cerâmico deve ser fabricado por conformação plástica de matéria-prima argilosa, contendo ou não aditivos, e queimado a temperaturas elevadas. Os blocos e tijolos devem trazer gravada, em uma das suas faces externas, a identificação do fabricante e do bloco ou tijolo em baixo relevo ou reentrância, com caracteres de no mínimo 5 mm de altura, sem que prejudique o seu uso, com no mínimo as seguintes informações: identificação do fabricante com CNPJ e a razão social ou nome fantasia; dimensões nominais, em centímetros, na sequência largura (L), altura (H) e comprimento (C), na forma (L × H × C), podendo ser suprimida a inscrição da unidade de medida, em centímetros; indicação de rastreabilidade: lote ou data de fabricação; telefone do serviço de atendimento ao cliente ou correio eletrônico ou endereço do fabricante, importador ou revendedor/distribuidor; para blocos/tijolos da classe EST, as letras EST (indicativas de sua condição estrutural) após a indicação das dimensões nominais.

Os blocos e tijolos são comercializados conforme sua aplicação, vedação (VED) ou estrutural (EST), e de acordo com os requisitos estabelecidos nas Tabelas 1 e 2 (disponíveis na norma). A classificação VED indica uso exclusivo para vedação, podendo ser VED15 ou VED30. A classificação EST indica uso estrutural e uso como vedação racionalizada, podendo ser EST40, EST60, EST80 e outras.

As denominações 15, 30, 40, e assim por diante, indicam a resistência característica mínima do bloco ou tijolo em quilograma-força por centímetro quadrado (kgf/cm²), aproximando 1 kgf/cm² igual a 0,1 MPa. Os blocos ou tijolos não gravados com as letras EST são considerados classe VED. Para fins de comercialização, o padrão é a unidade. O bloco ou tijolo cerâmico não pode apresentar defeitos sistemáticos, como quebras, superfícies irregulares ou deformações que impeçam o seu emprego na função especificada.

As características visuais do bloco ou tijolo cerâmico com face à vista devem atender aos critérios de avaliação da aparência especificados em comum acordo entre fabricante e comprador. As determinações das características geométricas dos blocos e tijolos devem seguir os ensaios da NBR 15270-2:2017, Anexo A.

As características geométricas dos blocos de vedação e estruturais são as seguintes: medidas das faces (largura, altura e comprimento) – dimensões efetivas ou reais; espessura dos septos e paredes externas dos blocos; desvio em relação ao esquadro (D); planeza das faces (F); área bruta (Ab); e área líquida (Aliq), para blocos estruturais.

As características geométricas dos tijolos de vedação e estruturais são as seguintes: medidas das faces (largura, altura e comprimento) – dimensões efetivas ou reais; desvio em relação ao esquadro (D); planeza das faces (F); área bruta (Ab), para tijolos perfurados; e área líquida (Aliq), para tijolos perfurados estruturais.

As propriedades físicas dos blocos e tijolos cerâmicos de vedação e estruturais são as seguintes: massa seca (ms); índice de absorção d’água (AA). As determinações das características físicas dos blocos e tijolos devem seguir os ensaios da NBR 15270-2:2017, Anexo B.

A característica mecânica dos blocos e tijolos cerâmicos de vedação (classe VED) é a resistência à compressão individual (fb). A característica mecânica dos blocos e tijolos cerâmicos estruturais e de vedação racionalizada (classe EST) é a resistência à compressão característica (fbk). Para execução da inspeção geral, adotar amostragem simples para 4.2 (identificação) e dupla amostragem para 4.5 (características visuais), conforme a tabela abaixo, sendo os lotes de fornecimento constituídos de acordo com o disposto em 7.2.

Na primeira amostragem, para que o lote seja aceito na primeira amostragem, é necessário que o número de unidades não conformes para os ensaios ou verificações consideradas seja igual ou inferior ao indicado na coluna de aceitação. Para que o lote seja rejeitado na primeira amostragem, é necessário que o número de unidades não conformes para os ensaios ou verificações consideradas seja igual ou superior ao indicado na coluna de rejeição.

Caso o número de unidades não conformes para os ensaios ou verificações consideradas resulte acima do indicado na coluna de aceitação e menor que o indicado na coluna de rejeição, devem ser repetidos os ensaios ou verificações que impossibilitaram a aprovação do lote, empregando-se as unidades constituintes da segunda amostragem.

Então, na segunda amostragem, para que o lote seja aceito na segunda amostragem, é necessário que a soma das unidades não conformes da primeira e da segunda amostragens para os ensaios ou verificações consideradas seja igual ou inferior ao indicado na coluna de aceitação. Para que o lote seja definitivamente rejeitado, é necessário que a soma do número de unidades não conformes da primeira e segunda amostragens para os ensaios ou verificações consideradas seja igual ou superior ao indicado na coluna de rejeição. As tabelas abaixo indicam o sumário dos ensaios para a avaliação da conformidade dos blocos e tijolos, com a finalidade de caracterização, aceitação ou rejeição, conforme a NBR 15270-1.

Eventuais dúvidas com relação a resultados de ensaios devem ser dirimidas em laboratórios pertencentes à Rede Brasileira de Laboratórios de Ensaios (RBLE). Os blocos ou tijolos que constituem as contraprovas devem ser mantidos em condições adequadas para ensaios pelo seu proprietário, fabricante ou construtor.

Os métodos de ensaio para blocos e tijolos cerâmicos previstos nesta norma são os relacionados a seguir: determinação das características geométricas (ver Anexo A); determinação das características físicas (ver Anexo B); determinação da resistência à compressão dos blocos cerâmicos estruturais e de vedação (ver Anexo C); determinação do índice de absorção inicial (ver Anexo D); determinação de eflorescência (ver Anexo E); determinação de massa específica aparente de amostra de blocos e tijolos cerâmicos, com emprego da balança hidrostática (ver Anexo F).

Revestimentos cerâmicos devem obrigatoriamente ser fabricados conforme a norma técnica

Para a construção de um empreendimento, há um elevado número de especialistas envolvidos em todo o seu processo, desde o planejamento até o acabamento final. O projetista tem a função de conhecer e avaliar todas as etapas envolvidas no complexo sistema estrutural de uma edificação.

A elaboração dos projetos, onde nasce a edificação, pode resultar um produto de qualidade e possibilitar um planejamento eficiente com redução de custos e prazos. No que se refere ao projeto de especificação do sistema de revestimento cerâmico, a falta de conhecimento e informação sobre o sistema de revestimento cerâmico entre os profissionais da construção civil, entre eles os engenheiros, arquitetos e os assentadores, pode ser a causa principal dos problemas.

O desempenho do processo de revestimento cerâmico de um empreendimento depende da relação de todos os materiais e suas técnicas de aplicação específica, para aquela situação de projeto. Sobre a eficiência do sistema de revestimento cerâmico, precisamos considerar vários fatores para garantir um bom resultado, a apropriação dos materiais ao tipo de uso, a qualidade e o planejamento dos serviços de assentamento e a manutenção após a aplicação de acordo com o uso a que se destina.

O mais importante é que os revestimentos cerâmicos a ser utilizados na edificação cumpram, de forma obrigatória, a norma técnica. A NBR 13755 de 11/2017 – Revestimentos cerâmicos de fachadas e paredes externas com utilização de argamassa colante – Projeto, execução, inspeção e aceitação – Procedimento estabelece as condições exigíveis para projeto, execução, inspeção e aceitação de revestimentos de paredes externas e fachadas com placas cerâmicas ou pastilhas assentadas com argamassa colante. Aplica-se a paredes constituídas pelos materiais relacionados a seguir e revestidas com chapisco seguido de uma ou múltiplas camadas de argamassa (figura): concreto moldado in loco; concreto pré-moldado; alvenaria de tijolos maciços; alvenaria de blocos cerâmicos; alvenaria de blocos de concreto; alvenaria de blocos de concreto celular; e alvenaria de blocos sílico-calcáreos. Os revestimentos cerâmicos que não são contemplados neste escopo podem utilizar a NBR 15575 como orientação para avaliação de desempenho, mesmo quando não aplicados em edificações habitacionais. Não se aplica a revestimentos já existentes, ou seja, aqueles sob análise após a conclusão da obra, pois necessitam de detalhamento específico de acordo com sua idade e condições atuais de desempenho.

Esta edição da NBR 13755 foi completamente reformulada em relação à de 1996, tanto em termos de conteúdo como de abordagem. Foi consenso do comitê de revisão que este texto deveria possuir um caráter orientativo, semelhante a um guia, onde o leitor pudesse encontrar informações e conhecimento para sanar suas dúvidas e tomar decisões frente à enorme variabilidade dos projetos de revestimento.

Esta postura tornou o texto mais agradável de ler, mais acessível e ao mesmo tempo com maior espectro de aplicação, uma vez que é inviável contemplar todos os casos existentes em uma única norma. Outros aspectos importantes e consagrados no meio técnico encontram-se alocados no texto de forma prescritiva, limitando soluções reconhecidamente de maior risco. Por exemplo, a execução do painel teste foi padronizada, dado que representa valiosa fonte de informações para a confecção do projeto.

Ao mesmo tempo, o projeto precisa declarar quais variáveis foram levadas em consideração, motivo pelo qual uma lista mínima é requerida e deve ser explicitada por escrito. Foram também criados mais três anexos relevantes, um normativo e dois informativos. O Anexo B (normativo) contempla o ensaio de resistência superficial, há anos solicitado pelo meio técnico e já extensivamente utilizado nas obras.

O Anexo C (informativo) trata de explicações detalhadas da teoria das juntas de movimentação, onde o leitor pode encontrar as informações que embasaram o item sobre juntas no corpo do texto, inclusive sobre as juntas estruturais. Por fim, o Anexo D (informativo) apresenta algumas sugestões sobre técnicas de preparo da base com o objetivo de melhorar a aderência dos revestimentos.

O texto foi montado de forma que os projetos resultantes apresentem certa homogeneidade e possam ser comparados e compilados no futuro, o que proporcionará a evolução do conhecimento técnico, aumento da vida útil das fachadas cerâmicas e a elaboração de uma nova versão deste texto, paulatinamente mais precisa e completa. O recebimento de todos os insumos deve ser planejado de modo a minimizar o manuseio no canteiro de obras. Cada material deve ser armazenado segundo seu tipo (respeitando exigências ergonômicas) em locais secos, limpos, cobertos, sem contato com o piso, devidamente identificados e com controle de acesso. O cimento utilizado deve estar de acordo com as Normas Brasileiras específicas. Os agregados devem estar conforme a NBR 7211. A água potável de abastecimento público é adequada para uso como água de amassamento. Maiores detalhes podem ser encontrados na NBR 15900-1.

Tanto o chapisco como a argamassa para emboço podem ser industrializados ou preparados em obra. Manuseio, preparo e requisitos dos produtos devem estar de acordo com as prescrições da NBR 7200 e NBR 13281. As argamassas cimentícias para rejuntamento devem estar de acordo ou superar as prescrições da NBR 14992. Caso sejam utilizados outros produtos, como misturas preparadas em obra, argamassas cimentícias aditivadas (bicomponentes) ou argamassas não cimentícias, as respectivas especificações devem constar no projeto de revestimento de fachada (PRF).

Os rejuntes cimentícios, embora tenham a capacidade de atenuar a penetração de água, não são impermeáveis; assim, quando juntas impermeáveis são necessárias, outros tipos de produtos devem ser considerados, desde que compatíveis com o local de aplicação. Ainda assim, os revestimentos cerâmicos com placas e rejuntes impermeáveis não podem ser considerados sistemas de acabamento impermeável.

A argamassa colante deve estar em conformidade com a NBR 14081-1, quando aplicável, e deve estar indicada em projeto em todos os casos. O termo argamassa colante engloba não somente os produtos descritos pela NBR 14081-1, mas contempla também produtos cimentícios bicomponentes ou mesmo produtos não cimentícios. Para os produtos não contemplados pela NBR 14081-1, como os bicomponentes ou não cimentícios, as propriedades específicas devem estar indicadas em projeto desde que não inferiores às mencionadas nesta subseção.

Para o assentamento de placas cerâmicas ou pastilhas, a argamassa deve ser, no mínimo, do tipo AC III. Exceções, que permitam o uso de produtos tipo AC II, devem estar indicadas em projeto e apenas podem ser utilizadas em edifícios de altura total (computada do nível do solo ao ponto mais alto do sistema estrutural) de no máximo 15 m.

As placas cerâmicas devem atender às NBR 13818 e ABNT NBR 15463 (para porcelanatos) e devem apresentar absorção máxima de 6 %. Para regiões onde a temperatura atinja 0 °C, a absorção máxima não pode ser superior a 3 %. Também devem estar secas por ocasião do seu assentamento e a EPU (expansão por umidade), como especificado na NBR 13818:1997, Anexo J, deve ser indicada em projeto e estar limitada ao valor máximo de 0,6 mm/m.

Em casos específicos, a EPU de 0,6mm/m pode ser excessiva; então, recomenda-se o uso de placas com valores inferiores. Devem estar armazenadas na obra por lote, tonalidade, acabamento, etc., de acordo com o especificado nas embalagens e não podem apresentar engobe de muratura pulverulento em quantidade superior a 30 % (a avaliação da quantidade deve ser feita visualmente) da área do tardoz da placa.

As pastilhas devem atender aos mesmos itens indicados para placas cerâmicas (quando aplicáveis) e, além disso, caso sejam montadas em placas com auxílio de malhas, telas, pontos de cola ou outro processo que as mantenha unidas pelo tardoz, estes produtos não podem comprometer o desempenho da argamassa colante e argamassa para rejuntamento. Podem ser incorporadas ao chapisco, emboço, rejunte ou à argamassa colante para aumentar o desempenho destes materiais em alguns requisitos, como, por exemplo aderência, capacidade de deformação, impermeabilidade, etc.

O emprego destes produtos deve respeitar as especificações de uso do fabricante do rejunte ou argamassa colante, tanto em termos de tipo de aditivo como em quantidade adicionada. O desempenho final da argamassa não pode ser inferior aos requisitos mínimos do produto puro quando avaliado segundo sua norma específica. Na vedação das juntas de movimentação devem ser empregados selantes elastoméricos e as recomendações do fabricante devem ser estritamente seguidas, uma vez que suas propriedades podem variar significativamente.

Cuidados devem ser tomados, entretanto, com juntas estruturais, pois seu movimento previsto aliado à sua largura pode ultrapassar os limites de trabalho mesmo dos selantes de alta capacidade de movimento, culminando com a deterioração precoce da junta. Na etapa de aplicação, os selantes devem ser capazes de acomodar pequenas variações dimensionais toleradas em projeto; devem apresentar comportamento adequado para aplicações verticais, sem escorrimentos; devem apresentar tempo adequado de trabalhabilidade, secagem e cura (polimerização) em função das condições de utilização.

Além disto, os selantes devem apresentar uma série de propriedades que lhes garantam bom desempenho pelo tempo previsto em projeto, não sendo este menor que cinco anos. Devem ser impermeáveis à passagem de fluidos e apresentar resistência aos agentes químicos, intempéries, ação ultravioleta, temperatura, maresia (se necessário) e a demais agentes deletérios a que podem estar expostos.

Devem se manter íntegros, elásticos e coesos, sem perder a capacidade de absorver deformações; não podem causar manchas no emboço ou nas placas por exsudação de produtos químicos, como solventes e plastificantes; não podem formar gases e ondulações na superfície provenientes de materiais voláteis em sua composição; devem absorver as deformações cíclicas de contração e expansão previstas no projeto da junta sem se romper, fissurar ou perder aderência; e não podem induzir esforços deletérios nas bordas da junta.

Em caso de dúvida sobre a qualidade dos selantes, esta deve ser avaliada por laboratório especializado. A NBR 5674 apresenta diretrizes para a manutenção das fachadas com vistas a manter seu desempenho e vida útil. Alguns requisitos de desempenho dos selantes podem ser avaliados segundo a ISO 11600. Antes do início do assentamento das placas, o projeto de revestimento de fachada deve estar concluído e as equipes de obra – produção, controle e apoio logístico (almoxarifado, transporte) devem estar treinadas em todos os detalhes técnicos e estéticos envolvidos na produção.

A logística de execução e controle para aceitação do revestimento cerâmico deve estar acordada entre os envolvidos e as planilhas de verificação de serviços devem estar disponíveis. As equipes de inspeção e produção devem estar cientes dos detalhes do processo de aceitação: o que será inspecionado, como e quando, bem como as soluções a serem adotadas em caso de não conformidades.

Além da disponibilidade de equipamentos, materiais e ferramentas em quantidade suficiente e com a qualidade adequada. Uma vez que o revestimento de argamassa é afetado diretamente pelo comportamento da base, não convém que sua execução seja iniciada antes que a estrutura-suporte já esteja solicitada pelo seu peso próprio e sobrecarga de todas as alvenarias, prevenindo-se assim tensões advindas da deformação imediata, parte da deformação lenta, recalque admissível das fundações e retração das argamassas utilizadas nas alvenarias.

Dentro do contexto geral do sistema de revestimento de fachada, é apresentada na figura abaixo uma sugestão das etapas a serem seguidas no processo de assentamento, sendo estas uma sequência de subidas e descidas consecutivas dos serviços.

Após a finalização das camadas de argamassa, o assentamento das placas cerâmicas na fachada pode ser realizado de maneiras diversas, como por exemplo da cobertura ao térreo do prédio em uma visão geral do processo de assentamento; entretanto, cada pavimento, de baixo para cima; do térreo para a cobertura (pouco usual). O assentamento das placas cerâmicas só pode ocorrer após um período mínimo de 14 dias de cura do emboço.

No caso da ocorrência de chuvas, o assentamento pode ser executado desde que o emboço esteja na condição saturado superfície seca. Na fase de subida da etapa 2 pode ser executada uma primeira cheia de argamassa; porém, a verificação da qualidade do chapisco pode ser comprometida. Caso o emboço seja executado apenas na fase de descida e o mapeamento denuncie locais com espessura excessiva, especial atenção deve ser dedicada ao posicionamento de reforços.

Só há uma saída para o país: educação, educação e educação

Em 2016, cerca de 66,3 milhões de pessoas de 25 anos ou mais de idade (ou 51% da população adulta) tinham concluído apenas o ensino fundamental. Além disso, menos de 20 milhões (ou 15,3% dessa população) haviam concluído o ensino superior.

A desigualdade na instrução da população tem caráter regional: no Nordeste, 52,6% sequer haviam concluído o ensino fundamental. No Sudeste, 51,1% tinham pelo menos o ensino médio completo.

Ainda entre a população com 25 anos ou mais, no Brasil, apenas 8,8% de pretos ou pardos tinham nível superior, enquanto para os brancos esse percentual era de 22,2%. O nível superior completo era mais frequente entre as mulheres (16,9%) do que entre os homens (13,5%).

A taxa de analfabetismo no país foi de 7,2% em 2016 (o que correspondia a 11,8 milhões de analfabetos), variando de 14,8% no Nordeste a 3,6% no Sul. Para pessoas pretas ou pardas, essa taxa (9,9%) era mais que duas vezes a das brancas (4,2%).

Entre as pessoas de 60 anos ou mais de idade, a taxa de analfabetismo chegou a 20,4%, sendo 11,7% para os idosos brancos e 30,7% para os idosos pretos ou pardos. Em média, a população do país tinha 8,0 anos de estudo e as menores médias regionais eram do Norte (7,4 anos) e do Nordeste (6,7 anos). As pessoas brancas mostraram-se mais escolarizadas (9 anos) em relação às pretas ou pardas (7,1 anos).

Cerca de 3,1 milhões de crianças com até 3 anos de idade (ou 30,4% desse grupo etário) frequentavam creche. O Norte apresentou a menor taxa de escolarização para essas crianças (14,4%) e o Sul, a maior (38,0%). Já entre as crianças de 4 e 5 anos, a taxa de escolarização era de 90,2%, ou seja, 4,8 milhões de estudantes.

Para as pessoas de 6 a 14 anos as taxas de escolarização chegaram a 99,2%, e para as pessoas de 15 a 17 anos, 87,9%. Entre os jovens de 18 a 24 anos, 32,8% estavam frequentando escola e 23,8% cursavam o ensino superior.

A frequência de estudantes à rede pública predominava na educação básica: 73% na educação infantil, 83,4% no ensino fundamental e 85,8% no médio. Já no ensino superior de graduação, 74,3% dos estudantes frequentavam a rede privada.

Em 2016, a educação profissional era realizada por 842 mil estudantes de graduação tecnológica, 2,1 milhões em cursos técnico de nível médio e 568 mil pessoas estavam frequentando algum curso de qualificação profissional. No Brasil, 24,8 milhões de pessoas de 14 a 29 anos não frequentavam escola e não haviam passado por todo ciclo educacional até a conclusão do ensino superior. Desse grupo, 52,3% eram homens e mais da metade deles declararam não estar estudando por conta do trabalho, além de 24,1% não terem interesse em continuar os estudos. Entre as mulheres, 30,5% não estudavam por conta de trabalho, 26,1% por causa de afazeres domésticos ou do cuidado de pessoas e 14,9% por não terem interesse.

Atlas do envenenamento alimentar no Brasil

Luiz Marques

No âmbito da expansão global do capitalismo comercial e industrial desde o século XVI, três aspectos indissociáveis conferem ao Brasil posições de indisputada proeminência. Somos o país que, durante quase quatro séculos, mais indivíduos escravizou em toda a história da escravidão humana. A destruição e degradação conjuntas das coberturas vegetais do país constituem, em rapidez e em escala, a mais fulminante destruição da biosfera cometida por uma nação ou império em toda a história da espécie humana. Levamos mais de quatro séculos para remover cerca de 1,2 milhão de km2 dos 1,3 milhão de km2 que compunham originariamente a Mata Atlântica (a destruição ganhou escala apenas a partir do século XIX e ainda continua) (1). Mas apenas nos últimos 50 anos mais de 3,3 milhões de km2 de cobertura vegetal nativa foram suprimidos ou degradados na Amazônia, no Cerrado e na Caatinga (2), sendo que mais quase 1 milhão de km2 podem ser legalmentedesmatados em todo o Brasil segundo o antigo e o novo Código Florestal (3).

O terceiro aspecto, enfim, diz respeito ao uso de agrotóxicos. “O Brasil é o campeão mundial no uso de produtos químicos na agricultura”, afirma José Roberto Postali Parra, ex-diretor da Escola Superior de Agricultura Luiz de Queiroz (Esalq/USP) (4). Nos últimos dez anos, de fato, o Brasil arrebatou dos EUA a posição de maior consumidor mundial de pesticidas (5).

Como bem diz seu nome, um pesticida industrial é um composto químico que visa atacar uma “peste”, termo que designa no jargão produtivista toda espécie que compita com a humana pelos mesmos alimentos ou tenha algum potencial de ameaça à produtividade ou saúde humana ou de espécies que servem de alimentação aos homens. O termo pesticida abrange herbicidas, inseticidas e fungicidas, aplicados os dois últimos em plantas e em animais. Pesticidas são usados também contra pássaros (corbicidas, por exemplo), vermes (nematicidas), mamíferos roedores (rodenticidas), microorganismos, etc. Para entender como e por que o Brasil galgou essa posição de maior consumidor desses compostos, dispomos agora de uma referência fundamental. Trata-se de Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia, de Larissa Mies Bombardi, do Departamento de Geografia da FFLCH/USP (6).  Coroando intervenções já dedicadas pela estudiosa ao problema desde 2011 (7), esse trabalho de maior fôlego eleva nosso conhecimento a outro patamar, inclusive por comparar sistematicamente o uso dos pesticidas e as legislações vigentes a esse respeito no Brasil e na União Europeia. Ele culmina num Atlas do uso de agrotóxicos no país, por estado, cultura agrícola e tipo de pesticida, além de uma distribuição geográfica, etária e étnica de suas principais vítimas diretas. Sobretudo, as análises de Bombardi lançam luz sobre os nexos entre o uso crescente de agrotóxicos no país e a liderança nacional, política e econômica, do agronegócio, em fina sintonia com as megacorporações agroquímicas oligopolizadas que controlam toda a cadeia alimentar: das sementes, agrotóxicos, fertilizantes e demais insumos à distribuição e negociação nos mercados futuros das commodities agrícolas. Após as fusões ou absorções ocorridas nos últimos anos, quase 95% desse mercado global é agora comandado por cinco megacorporações agroquímicas, sendo que apenas três delas controlam 72,6% dele, como mostra a Figura 1.

Figura 1 – As fusões e incorporações da Bayer/Monsanto, ChemChina/Syngenta e Dow/DuPont criam um controle quase total por apenas cinco megacorporações de todo o ciclo agroquímico | Fonte: Bloomberg, citado por Dani Bancroft, “Bayer offers Big Buy out for the infamous Monsanto”.  23/V/2016

Concentração fundiária e agronegócio

Talvez nenhum outro aspecto expresse com tanta crueza a desigualdade da sociedade brasileira quanto a concentração da propriedade fundiária. Embora os governos do PT exibam alguns resultados sociais muito positivos quando comparados a governos de outras siglas (8), no item propriedade fundiária seu pacto com o agronegócio apenas aprofundou o abismo histórico da desigualdade no país. Os governos do PT não apenas perpetuaram a tolerância à grilagem e à concentração da propriedade fundiária, mas acrescentaram a esse quadro de apropriação violenta da terra a participação direta do Estado no agronegócio e a quase inexistente carga tributária incidente sobre os imóveis rurais. Em 2015, apenas 0,1% de todos os recursos arrecadados pela Receita Federal veio do Imposto Territorial Rural (9). Assim, o traço mais saliente das mudanças na estrutura da propriedade fundiária na história recente do Brasil foi sua rápida e extrema concentração entre 2003 e 2014, como mostra a Figura 2.

Fig. 2 – Evolução da estrutura fundiária no Brasil entre 2003 e 2014. | Fonte: Incra, citado por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Tabela 1, p. 30

Em 2003, as 983 propriedades com mais de 10 mil hectares somavam 7% da área dos imóveis rurais no país. Em 2014, elas passaram a ser 3.057 e acumulavam 28% dessa área. Nesse universo do latifúndio, destaca-se a multiplicação dos megalatifúndios com mais de 100 mil hectares. Em 2003, eles eram apenas 22 e representavam 2% da área dos imóveis rurais do país. Em 2014, eles passaram a ser 365 e ocupavam 19% dessa área. No outro extremo da balança, as pequenas propriedades de até 10 hectares, que ocupavam 2% dessa área em 2003, representavam em 2014 apenas 1%.

Esse processo de concentração fundiária foi uma condição de possibilidade da consolidação de um novo modelo de economia rural, o agronegócio, adequado à globalização e à conversão dos alimentos agrícolas em soft commodities (soja, milho, café, cacau, gado etc), cujo valor é negociado na CME (Chicago Mercantile Exchange) e cuja destinação é, sobretudo, a China e, em segundo lugar, a Europa e os EUA. Como bem mostra Bombardi, o crescimento do agronegócio brasileiro apoia-se mais na expansão da área cultivada, frequentemente em detrimento das florestas, que em ganhos de produtividade e no manejo sustentável do solo e no respeito à biodiversidade, como mostra a Figura 3, que compara área, produto e produtividade (kg/ha) no cultivo da soja.

Fig. 3 – Comparação entre área (mil ha), produtividade (Kg/ha) e produto (em mil toneladas) da soja entre as safras de 2002/2003 e de 2015/2016 | Fonte: Companhia Nacional de Abastecimento, 2016, citado por por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Gráfico 2, p. 25.

Como se vê, a área de cultivo da soja aumentou de 18,5 milhões de hectares em 2002/2003 para 33 milhões em 2015/2016, um salto de 79% em 13 anos para um aumento equivalente de 84% da produção de soja no mesmo período, com incremento quase irrelevante da produtividade. Para o agronegócio é mais barato avançar sobre a floresta, processo que pode inclusive gerar lucro pela venda da madeira, que investir numa cultura de longo prazo. Seu lema é considerar a devastação ambiental como uma externalidade e aniquilar tudo o que ameace a máxima rentabilização imediata de sua mercadoria.

“A monocultura causa desequilíbrios”

Além de desmatamento, esse modelo monocultor e destrutivo de agricultura “causa desequilíbrios”, como reitera José Roberto Postali Parra, da Esalq/USP (10). Para o agronegócio, esses desequilíbrios têm uma solução simples: a supressão ou tentativa de supressão das espécies animais e vegetais (as espécies insensatamente chamadas “daninhas”) por meio do uso intensivo de agrotóxicos. Detentora dos prêmios Miss Desmatamento e Motosserra de Ouro, além de presidente da Confederação da Agricultura e Pecuária do Brasil (CNA) e Ministra da Agricultura durante o governo de Dilma Rousseff, Kátia Abreu definiu com rara felicidade o ideal da classe que ela representa: “Quanto mais defensivos melhor, porque a tendência é os preços caírem em função do aumento da oferta” (11). A Figura 4, abaixo, mostra os saltos sucessivos no uso de agrotóxicos a partir de 2006, de resto a taxas muito superiores às do aumento da área cultivada e do produto. Observe-se que entre 2002 e 2014, o consumo de agrotóxicos, medido por peso do ingrediente ativo, aumentou cerca de 340%, de cerca de 150 mil toneladas para mais de 500 mil toneladas de ingrediente ativo, uma taxa muito maior que os 84% de aumento do produto entre 2002/2003 e 2015/2016, no caso acima ilustrado da soja (de 52 para 97 milhões de toneladas nesse período).

Fig. 4 – Consumo de agrotóxicos no Brasil em toneladas do ingrediente ativo, 2000 –  2014 | Fonte: Ibama, citado por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Gráfico 10, p. 33

 

O Brasil participa com apenas 4% do comércio mundial do agronegócio (12), mas consome hoje cerca de 20% de todo agrotóxico comercializado no mundo todo. Mais importantes, entretanto, que esse desbalanço são:

(1) a nocividade, constatada ou potencial, para a saúde humana e para o meio ambiente dos ingredientes ativos utilizados;

(2) o uso de ingredientes proibidos no exterior;

(3) o Limite Máximo de Resíduos (LMR) permitido pela legislação brasileira para cada um desses ingredientes nas amostras de alimentos e de água. Como se verá abaixo, esses limites são muito superiores aos permitidos pela legislação europeia, a qual é, de resto, frequentemente acusada de ceder às pressões das megacorporações da agroquímica;

(4) o uso corrente de ingredientes proibidos no Brasil;

(5) as doses excessivas utilizadas;

(6) os resíduos desses compostos encontrados pela Anvisa nos alimentos, que, via de regra, excedem os limites estabelecidos pela legislação brasileira.

Exemplos dos problemas aqui elencados nos itens 4 a 6 abundam na imprensa e nos estudos científicos. A Agência Nacional de Vigilância Sanitária (Anvisa) “aponta que quase 30% dos principais alimentos da cesta brasileira apresentaram irregularidades no uso de defensivos agrícolas” (13). No ano passado, a revista Examenoticiou que a Anvisa “encontrou níveis elevados de resíduos agrotóxicos em um terço das frutas, vegetais e hortaliças analisadas entre 2011 e 2012. Pior, um a cada três exemplares avaliados apresenta ingredientes ativos não autorizados, entre eles dois agrotóxicos que nunca foram registrados no Brasil: o azaconazol e o tebufempirade (14) ”. Segundo a já citada reportagem da CBN, “em São Paulo, por exemplo, desde 2002, nenhuma multa por irregularidades foi aplicada, nem mesmo em casos de repetidas reincidências”. Baseando-se em pesquisas de Karen Friedrich, da Associação Brasileira de Saúde Coletiva (Abrasco) e da Fundação Oswaldo Cruz (Fiocruz), Marina Rossi afirma: “Segundo o Dossiê Abrasco (…), 70% dos alimentos in natura consumidos no país estão contaminados por agrotóxicos. Desses, segundo a Anvisa, 28% contêm substâncias não autorizadas. Isso sem contar os alimentos processados, que são feitos a partir de grãos geneticamente modificados e cheios dessas substâncias químicas (…). Mais da metade dos agrotóxicos usados no Brasil hoje são banidos em países da União Europeia e nos Estados Unidos” (15).

Sobre a nocividade dos ingredientes utilizados, muitos deles já proibidos no exterior, e sobre as brutais discrepâncias entre as legislações europeia e brasileira no tocante ao Limite Máximo de Resíduos (LMR) permitido de cada um desses ingredientes nas amostras de alimentos e de água (os itens 1 a 3, acima), os dados são igualmente estarrecedores. Em 6 de abril de 2015, o Instituto Nacional do Câncer José Alencar Gomes da Silva (INCA), órgão do Ministério da Saúde, divulgou um documento em que afirma: “Dentre os efeitos associados à exposição crônica a ingredientes ativos de agrotóxicos podem ser citados infertilidade, impotência, abortos, malformações, neurotoxicidade, desregulação hormonal, efeitos sobre o sistema imunológico e câncer. (…) Vale ressaltar que a presença de resíduos de agrotóxicos não ocorre apenas em alimentos in natura, mas também em muitos produtos alimentícios processados pela indústria, como biscoitos, salgadinhos, pães, cereais matinais, lasanhas, pizzas e outros que têm como ingredientes o trigo, o milho e a soja, por exemplo. Ainda podem estar presentes nas carnes e leites de animais que se alimentam de ração com traços de agrotóxicos, devido ao processo de bioacumulação” (16).

O aumento da variedade dos ingredientes ativos impulsionado pelas pesquisas agroquímicas é impressionante. Segundo a Agência de Proteção Ambiental dos EUA (EPA), havia em 2007 “mais de 1055 ingredientes ativos registrados como pesticidas, formulados em milhares de produtos disponíveis no mercado” (17). A Figura 5, abaixo, elenca os 10 ingredientes ativos mais utilizados na agricultura brasileira.

Fig. 5 – Os 10 ingredientes ativos mais vendidos no Brasil em 2014, em ordem decrescente | Fonte: Ibama, citado por Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia. FFLCH – USP, Novembro, 2017, Gráfico 10, p. 35

Perturbadores endócrinos, carcinogênicos, mutagênicos, teratogênicos

Por motivos de espaço, reportamos abaixo a toxicidade de apenas cinco desses compostos para os humanos, não humanos e para o meio ambiente, bem como o Limite Máximo de Resíduos (LMR) permitido no produto e na água segundo a legislação europeia e a brasileira (18):

1º – Glifosato (glicina + fosfato). As sementes geneticamente modificadas, chamadas Roundup Ready (RR), da Monsanto, são capazes de resistir ao herbicida Roundup, o mais vendido no Brasil e no mundo, produzido à base de glifosato. Trata-se de um herbicida sistêmico, isto é, desenhado para matar quaisquer plantas, exceto as geneticamente modificadas para resistir a ele. Seu uso tem sido associado a maior incidência de câncer, à redução da progesterona em células de mamíferos, a abortos e a alterações teratogênicas por via placentária. Em 15 de março de 2015, o Centro Internacional de Pesquisas sobre o Câncer (IARC) considerou que havia “evidência suficiente” de que o composto causava câncer em animais e “evidência limitada” de que o causava em humanos, classificando assim o glifosato no Grupo 2A, isto é, como cancerígeno “provável no homem” (ao lado de quatro outros pesticidas) (19). O Limite Máximo de Resíduos (LMR) de glifosato permitido na soja na UE é de 0,05 mg/kg, no Brasil é de 10 mg/kg, portanto um limite 200 vezes maior.

2º – 2,4-D (ácido diclorofenóxiacético). Mais de 1.500 herbicidas contêm esse ingrediente ativo. A OMS coloca-o no grupo II, isto é, “moderadamente tóxico” (moderately hazardous) e o IARC afirma: “o herbicida 2,4-D foi classificado como possivelmente carcinogênico para humanos (Grupo 2B). (…) Há forte evidência de que 2,4-D induz estresse oxidativo, um mecanismo que pode ocorrer em humanos, e evidência moderada de que 2,4-D causa imunossupressão, a partir de estudos in vivo in vitro” (20). Para o National Resource Defense Council (NRDC), há provas conclusivas de que o 2,4-D é um perturbador endócrino, isto é, um composto que interfere no funcionamento normal do sistema hormonal dos organismos: “Estudos em laboratório sugerem que o 2,4-D pode impedir a ação normal de hormônios estrógenos, andrógenos e, mais conclusivamente, da tireoide (21). Dezenas de estudos epidemiológicos, animais e de laboratório mostraram uma associação entre 2,4-D (22) e perturbações da tireoide”. Luiz Leonardo Foloni (FEAGRI/Unicamp) assegura numa entrevista a irrestrita aceitação internacional do 2,4-D. Na realidade, esse composto foi banido no estado de Ontário, no Canadá, em 2009, na Austrália em 2013 e no Vietnã em 2017 (23). E há reiteradas demandas de proibição do 2,4-D nos EUA, não atendidas pelas autoridades desse país (24). O Limite Máximo de Resíduos (LMR) de 2,4-D permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama), no Brasil é de 30 μg, portanto um limite 300 vezes maior.

3º – Acefato. Pertencente à classe dos organofosforados, o acefato é o inseticida mais usado no Brasil (25). A OMS coloca-o no grupo II, isto é, “moderadamente tóxico” (moderately hazardous). O Limite Máximo de Resíduos (LMR) de acefato permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama); no Brasil, ele não tem limite estabelecido.

5º – Clorpirifós. Inseticida da classe dos organofosforados, que altera o funcionamento de neurotransmissores (acetilcolina) no sistema nervoso central. Em 2009, a Organização Mundial da Saúde (OMS) classifica o clorpirifós como “moderadamente tóxico” (II – Moderately hazardous). Mas em 2012, esse produto foi associado a potenciais riscos ao desenvolvimento neurológico e o editorial da revista Environmental Health Perspectives, de 25 de abril de 2012, intitulado “A Research Strategy to Discover the Environmental Causes of Autism and Neurodevelopmental Disabilities” (26), afirma que: “Estudos prospectivos (…) associaram comportamentos autistas a exposições pré-natais a inseticidas organofosforados clorpirifós”. Já em 2001, seu uso doméstico fora banido dos EUA e ao final da administração Obama, a Agência de Proteção Ambiental desse país (EPA) recomendou seu banimento total, recomendação anulada por Donald Trump, beneficiário durante a campanha eleitoral de doações da Dow Chemical, produtora desse composto (27). Na União Europeia (UE), a avaliação da toxicidade do cloropirifós está em curso de revisão. O Limite Máximo de Resíduos (LMR) de clorpirifós permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama), no Brasil é de 30 μg, portanto um limite 300 vezes maior.

7º – Atrazina. Produzido pela Syngenta, a atrazina é um herbicida que afeta a fotossíntese e atua em sinergia com outros herbicidas. Tyrone B. Hayes, da Universidade de Berkeley, e colegas mostraram que esse composto pode mudar o sexo da rã-de-unha africana (Xenopus laevis) e que “a atrazina e outros pesticidas perturbadores endócrinos são prováveis fatores em ação nos declínios globais dos anfíbios” (28). Em 2015, Andrea Vogel e colegas mostraram que a atrazina é um perturbador endócrino em invertebrados (29). A Itália e a Alemanha baniram a atrazina em 1991, e em 2004 a atrazina foi proibida em toda a UE (3). O Limite Máximo de Resíduos (LMR) de atrazina permitido na água potável na UE é de 0,1 μg (micrograma = 1/1000 miligrama), no Brasil é de 2 μg, portanto um limite 20 vezes maior.

A guerra química insensata e de antemão perdida contra a natureza

Há pelo menos 55 anos, desde o célebre livro de Rachel Carson, Primavera Silenciosa (1962), sabemos que os pesticidas industriais lançaram a espécie humana numa guerra biocida, suicida e de antemão perdida. A ideia mesma de um pesticida sintético usado sistematicamente contra outras espécies no fito de aniquilá-las dá prova cabal da insanidade da agricultura industrial: envenenam-se nossos alimentos para matar outras espécies ou impedi-las de comê-los. As doses do veneno, pequenas em relação à massa corpórea humana, não nos matam. Mas, ao atirarem numa espécie com uma metralhadora giratória, os pesticidas provocam “danos colaterais”: matam ou debilitam espécies não visadas, provocando desequilíbrios sistêmicos que promovem seleções artificiais capazes de reforçar a tolerância das espécies visadas, ou a invasão de espécies oportunistas, por vezes tão ou mais ameaçadoras para as plantações e para os homens que as espécies visadas pelos pesticidas. Além disso, a médio e longo prazo os pesticidas intoxicam e adoecem o próprio homem, tanto mais porque somos obrigados a aumentar as doses dos pesticidas e a combiná-los com outros em coquetéis cada vez mais tóxicos, à medida que as espécies visadas se tornam tolerantes à dose ou ao princípio ativo anterior. Uma suma de pesquisas científicas (31) mostra o caráter contraproducente dos agrotóxicos, seja do ponto de vista de seus efeitos sobre outras espécies – por exemplo, as abelhas e demais polinizadores –, seja do ponto de vista da saúde humana e de outras espécies não visadas, seja ainda da própria produtividade agrícola. Citemos apenas três desses estudos. Um documento da FAO de 2003 mostra que o uso crescente de pesticidas desde os anos 1960 não aumenta, mas, ao contrário, diminui relativamente as colheitas, sendo que as perdas de safra por causa de pestes eram em 1998 já da ordem de 25% a 50%, dependendo da cultura. O documento assim comenta esse fato: “É perturbador que ao longo dos últimos três ou quatro decênios, as perdas de colheitas em todas as maiores culturas aumentaram em termos relativos. (…) É interessante notar que o aumento das perdas de colheitas é acompanhado por um crescimento na taxa de uso de pesticidas” (32). Em 2013, um artigo publicado na revista Proceedings of the National Academy of Sciences refere-se ao morticínio de diversas espécies causado por pesticidas, mesmo utilizados em concentrações consideradas seguras pela legislação europeia: “Pesticidas causam efeitos estatisticamente significantes em espécies em ambas as regiões [Europa e Austrália], com perdas de até 42% nas populações taxonômicas registradas. Além disso, os efeitos na Europa foram detectados em concentrações que a atual legislação considera ambientalmente protetiva. Portanto, a atual avaliação de risco ecológico de pesticidas falha em proteger a biodiversidade, tornando necessárias novas abordagens envolvendo ecologia e ecotoxicologia” (33). Enfim, em 2014, um grupo internacional de trabalho de quatro anos sobre os pesticidas sistêmicos, o Task Force on Systemic Pesticides (TFSP), reunindo 29 pesquisadores, declara em seus resultados que os pesticidas sistêmicos (os neonicotinoides, por exemplo) constituem uma inequívoca e crescente ameaça tanto à agricultura quanto aos ecossistemas. Jean-Marc Bonmatin, um pesquisador do CNRS francês, pertencente a esse grupo de trabalho, assim resumiu esses resultados: “A evidência é clara. Estamos testemunhando uma ameaça à produtividade de nosso ambiente natural e agrícola, uma ameaça equivalente à dos organofosfatados ou DDT [denunciados em 1962 por Rachel Carson]. Longe de proteger a produção de alimentos, o uso de inseticidas neonicotinoides está ameaçando a própria infraestrutura que permite essa produção” (34).

Pesticidas, o outro lado da moeda das armas químicas de destruição em massa

Entre os pesticidas industriais e as guerras químicas há uma íntima interação, passada e presente. Ambos impõem-se como um fato absolutamente novo na história da destruição do meio ambiente pelo homem e de sua autointoxicação. Os inseticidas organoclorados e organofosforados, e os herbicidas baseados em hormônios sintéticos nascem nos anos 1920-1940 como resultado das pesquisas sobre armas químicas usadas durante a I Grande Guerra pelos dois campos beligerantes. Essa interação continua no período entre-guerras, em especial na Alemanha, então em busca de recuperar sua supremacia na indústria química. Em seu quadro de cientistas, a Degesh (Deutsche Gesellschaft für Schädlingsbekämpfung – Sociedade Alemã para o Controle de Pragas), criada em 1919, contava químicos como Fritz Haber (Prêmio Nobel) e Ferdinand Flury, que desenvolveu em 1920 o Zyklon A, um pesticida à base de cianureto, precedente imediato de outro inseticida, o Zyklon B, patenteado em 1926 por Walter Heerdt eusado sucessivamente nas câmaras de gás dos campos de extermínio de Auschwitz-Birkenau e Majdanek. Outro exemplo é o da IG Farben, de cujo desmembramento após 1945 resultou a Agfa, a BASF, a Hoechst e a Bayer. Para esse conglomerado industrial alemão, trabalhavam químicos como Gerhard Schrader (1903-1990), funcionário da Bayer e responsável pela descoberta e viabilização industrial dos compostos de organofosforados que agem sobre o sistema nervoso central. De tais compostos derivam pesticidas como o bladan e o parathion (E 605) e armas químicas como o Tabun (1936), o Sarin (1938), o Soman (1944) e o Cyclosarin (1949), as três primeiras desenvolvidas, ainda que não usadas, pelo exército alemão na II Grande Guerra. Após a guerra, Schrader foi por dois anos mantido prisioneiro dos Aliados, que o obrigaram a comunicar-lhes os resultados de suas pesquisas sobre ésteres de fosfato orgânicos, em seguida desenvolvidos na fabricação de novos pesticidas.

Essa interação entre pesticidas e armas químicas, hoje melhor denominadas químico-genéticas, continua em nossos dias. O Defense Advanced Research Projects Agency (Darpa), do Pentágono, está investindo US$ 100 milhões em projetos, potencialmente catastróficos, de “extinção genética” de espécies consideradas nocivas ao homem, sem esconder, contudo, seu interesse em possíveis desdobramentos militares dessas pesquisas (35). Um especialista da Convenção sobre Diversidade Biológica (CBD) da ONU declarou ao The Guardian: “Pode-se ser capaz de erradicar um vírus ou a inteira população de um mosquito, mas isso pode ter efeitos ecológicos em cascata”. O potencial militar das pesquisas em edição genética (o chamado “gene drive”) manifesta-se já no fato de que seu principal patrocinador é o Pentágono. Entre 2008 e 2014, o governo dos EUA investiu US$ 820 milhões em biologia sintética, sendo que desde 2012 a maior parte desse investimento veio do Darpa e de outras agências militares. Referindo-se ao risco de que armas baseadas em tecnologias químico-genéticas sejam usadas por “hostile or rogue actors”, um porta-voz do Darpa afirmou que essas pesquisas são de “crítica importância para permitir ao Departamento de Defesa defender seu pessoal e preservar sua prontidão militar. (….) É de responsabilidade do Darpa desenvolver tais pesquisas e tecnologias que podem proteger contra seu mau-uso, acidental ou intencional”. É preciso uma boa dose de amnésia para não perceber nessa interação “defensiva” entre o Pentágono e a pesquisa químico-genética de aniquilação biológica um revival das interações entre “defensivos agrícolas” e a guerra química e de extermínio humano, durante e após a I Grande Guerra (36).

Referências
[1] Segundo o Instituto Brasileiro de Florestas, a área original da Mata Atlântica era originalmente 1.315.460 km², 15% do território brasileiro. Atualmente o remanescente é 102.012 km², 7,91% da área original. Entre 1985 e 2013, a Mata Atlântica perdeu mais 18.509 km2. “A cada 2 dias, um Ibirapuera de Mata Atlântica desaparece”. Cf. SOS Mata Atlântica. “Divulgados novos dados sobre o desmatamento da Mata Atlântica”, 27/V/2014.

[2] Na Amazônia brasileira, a área de corte raso da floresta (1970-2017) chega a 790 mil km2, sendo 421.775 km2 de corte raso no acumulado de 1988-2016 (INPE). Mas “a área de corte raso e a de degradação representam juntas cerca de dois milhões de km2, ou seja 40% da floresta amazônica brasileira” (dados de 2013). Cf. A. D. Nobre, “Il faut un effort de guerre pour reboiser l’Amazonie”. Le Monde, 24/XI/2014. No Cerrado, um bioma de cerca de 2 milhões de km2, a devastação em 35 anos [1980-2015] foi da ordem de 1 milhão de km2. “Entre 2002 e 2011, as taxas de desmatamento nesse bioma (1% ao ano) foram 2,5 vezes maior que na Amazônia. (…) Mantidas as tendências atuais, 31% a 34% da área restante da cobertura vegetal do Cerrado deve ser suprimida até 2050 (…), levando à extinção ~480 espécies de plantas endêmicas – três vezes mais que todas as extinções documentadas desde 1500”. Cf. Bernardo B.N. Strassburg et al., “Moment of truth for the Cerrado hotspot”. Nature Ecology & Evolution, 23/III/2017. Segundo o INPE, a Caatinga já perdeu cerca de 45% dos 734.478 km² originais de sua vegetação natural.

[3] Mais precisamente, 957 mil km2, segundo Gerd Sparovek (Esalq/USP), Observatório do Código Florestal . Para Britaldo Soares Filho e colegas, “tanto o antigo quanto o novo Código Florestal permitem um desmatamento legal de ainda mais 88 (+/-6) milhões de hectares [880 mil km2] em propriedades privadas. Essa área de vegetação nativa, ao abrigo das exigências de Reserva Legal e Entornos de Cursos de Água, constituem um ‘excedente ambiental’ (“environmental surplus) com potencial de emissão de 18 Gt de CO2-eq”. Cf. Britaldo Soares-Filho et al.“Cracking Brazil’s Forest Code”. Science, 344, 6182, 25/IV2014, pp. 363-364.

[4] Entrevista concedida a Marcos Pivetta e Marcos de Oliveira, “Agricultor de insetos”. Pesquisa Fapesp, 18, 261, novembro de 2017, pp. 32-37.

[5] Cf. Michelle Moreira, “Brasil é o maior consumidor de agrotóxicos do mundo”. Agência Brasil, 3/XII/2015; Flávia Milhorance, “Brasil lidera o ranking de consumo de agrotóxicos”. O Globo, 8/IV/2015.

[6] Cf. Larissa Mies Bombardi, Geografia do Uso de Agrotóxicos no Brasil e Conexões com a União Europeia, Laboratório de Geografia Agrária, FFLCH/USP, Novembro, 2017, 296 p.

[7] Para a bibliografia anterior de Bombardi, veja-se <https://www.larissabombardi.blog.br/blog-geo>, em particular, “Intoxicação e morte por agrotóxicos no Brasil: a nova versão do capitalismo oligopolizado”. Boletim Dataluta, setembro de 2011 (em rede).

[8] Veja-se Sérgio Lírio, “O abismo não é intransponível”. Carta Capital, 29/XI/2017, pp. 26-28.

[9] Cf. Pedro Durán, “Desde 2009, o Brasil é o maior consumidor de agrotóxicos do mundo”. CBN, 3/V/2016.

[10] Pivetta & Oliveira, “Agricultor de insetos” (cit): “a monocultura causa desequilíbrios”.

[11] “Kátia Abreu quer liberação mais rápida de agrotóxicos pela ANVISA”. Viomundo, 19/X/2011.

[12] Cf. Dante D. G. Scolari, “Produção agrícola mundial: o potencial do Brasil”. Embrapa, 2007.

[13] Cf. Michelle Moreira, “Brasil é o maior consumidor de agrotóxicos do mundo”. Agência Brasil, 3/XII/2015.

[14] Cf. Vanessa Barbosa, “Anvisa aponta 13 alimentos que pecam no uso de agrotóxicos”. Exame, 13/IX/2016.

[15] Cf. Marina Rossi, “O ‘alarmante’ uso de agrotóxicos no Basil atinge 70% dos alimentos”. El País, edição em português, 30/IV/2015.

[16] Veja-se “Posicionamento do Insituto Nacional de Câncer José Alencar Gomes da Silva acerca dos Agrotóxicos”. 

[17] Cf. EPA, “Assessing Health Risks from Pesticides” (em rede).

[18] Os dados comparativos sobre os LMR no Brasil e na União Europeia (UE) são retirados do já citado trabalho de Bombardi.

[19] Cf. Daniel Cressey, « Widely used herbicide linked to cancer ». Nature, 24/III/2015: “Two of the pesticides — tetrachlorvinphos and parathion — were rated as “possibly carcinogenic to humans”, or category 2B. Three — malathion, diazinon and glyphosate — were rated as “probably carcinogenic to humans”, labelled category 2A”.

[20] Cf. IARC Monographs evaluate DDT, lindane, and 2,4-D. Press release n. 236, 23/VI/2015. Veja-se também OMS.

[21] Cf. Danielle Sedbrook, “2,4-D: The Most Dangerous Pesticide You’ve Never Heard Of”. NRDC, 15/III/2016.

[22] Veja-se sua entrevista | L. L. Foloni, O Herbicida 2,4-D: Uma Visão Geral, 2016.

[23] Cf. “APVMA [Australian Pesticides and Veterinary Medicines Authority]: Australia Bans Toxic Herbicide 2,4-D Products”. Sustainable Pulse, 24/VIII/2013; “Govt bans 2,4-D, paraquat in Vietnam”. Vietnamnet, 16/II/2017.

[24] Veja-se, por exemplo, Andrew Pollack, “E.P.A. Denies an Environmental Group’s Request to Ban a Widely Used Weed Killer”. The New York Times, 9/IV/2012.

[25] Cf. Idiana Tomazelli & Mariana Sallowicz, “Uso de agrotóxicos no País mais que dobra entre 2000 e 2012”. O Estado de São Paulo,19/VI/2015. “O agrotóxico mais empregado foi o glifosato, um herbicida apontado por pesquisadores como nocivo à saúde. Entre os inseticidas, o mais usado foi o acefato”.

[26] Cf. Philip J. Landrigan, Luca Lambertini, Linda S. Birnbaum, “A Research Strategy to Discover the Environmental Causes of Autism and Neurodevelopmental Disabilities” (Editorial). Environmental Health Perspectives, 25/IV/2012..

[27] Cf. “Don’t let feds make pesticide call”, Daily Record (USA Today), Editorial, 27/XI/2017.

[28] Cf. Tyrone B. Hayes et al., “Atrazine induces complete feminization and chemical castration in male African clawed frogs (Xenopus laevis)”. Proceedings of the National Academy of Sciences, 107, 10, 9/III/2010, pp. 4612-4617: “The present findings exemplify the role that atrazine and other endocrine-disrupting pesticides likely play in global amphibian declines”.

[29] Cf. Andrea Vogel et al., “Effects of atrazine exposure on male reproductive performance in Drosophila melangaster”. Journal of Insect Physiology, 72, janeiro, 2015, pp. 14-21.

[30] Cf. Franck Akerman, “The Economics of Atrazine”, International Journal of Occupational and Environmental Health, 13, 4, outubro-dezembro de 2007, pp. 441-449.

[31] Veja-se, por exemplo, Jan Dich et al., “Pesticides and Cancer”. Cancer, causes & control, maio, 1997, 8, 3, pp. 420-443. IDEM, “Pesticide and prostate cancer. Again”. Pesticide Action Network, 23/I/2013.(1997, 8, pp. 420-443); Idem (23/I/2013).

[32] Report of the First External Review of the Systemwide Programme on Integrated Pest Management (SP-IPM). Interim Science Council Secretariat – FAO, agosto de 2003.

[33] Cf. Mikhail A. Beketov et al., “Pesticides reduce regional biodiversity of stream invertebrates”. PNAS, online, 17/VI/2013.Também Sharon Oosthoek, “Pesticides spark broad biodiversity loss”. Nature, 17/VI/2013.

[34] Citado por Damian Carrington, “Insecticides put world food supplies at risk, say scientists”. TG, 24/VI/2014.

[35] Cf. Arthur Neslen, “Us military agency invests $ 100m in genetic extinction technologies”. The Guardian, 4/XII/2017.

[36] No período entreguerras, armas químicas continuaram a ser utilizadas pela aviação inglesa, por exemplo, em 1919 contra os bolcheviques e em 1925 contra a cidade de Sulaimaniya, capital do Kurdistão iraquiano; a aviação italiana utilizou-as em 1935 e 1936 em sua tentativa de exterminar a população da Etiópia, e o exército bolchevique, segundo uma documentação aparentemente confiável, dizimou com armas químicas os revoltosos de Tambov, uma das 118 revoltas camponesas contra o exército vermelho reportadas pela Cheka, em fevereiro de 1921. Cf. Eric Croddy, Clarisa Perez-Armendaruz & John Hart, Chemical and Biological Warfare. A comprehensive survey for the concerned citizen. Nova York, Springer-Verlag, 2002.

Luiz Marques é professor livre-docente do Departamento de História do IFCH /Unicamp. Pela editora da Unicamp, publicou Giorgio Vasari, Vida de Michelangelo (1568), 2011 e Capitalismo e Colapso ambiental, 2015, 2a edição, 2016. Coordena a coleção Palavra da Arte, dedicada às fontes da historiografia artística, e participa com outros colegas do coletivo Crisálida, Crises Socioambientais Labor Interdisciplinar Debate & Atualização (crisalida.eco.br) – Publicado originalmente no Jornal da Unicamp.