Há uma permanente e inexorável degradação ambiental no Brasil, resultante de décadas de má administração na área ambiental, descaso de autoridades municipais e de muitos estados relativamente à poluição, e o avanço permanente de urbanização e de infraestrutura que alteram os ambientes naturais e contribuem para um crescimento dos problemas de poluição e contaminação.
A expansão de fronteira agrícola com o aumento do desmatamento; o uso intensivo do solo e das bacias hidrográficas, com práticas agrícolas defasadas, aplicações exageradas de fertilizantes e defensivos agrícolas; a crescente urbanização que trata somente 40% dos esgotos domésticos do Brasil; os inúmeros problemas resultantes da disposição de resíduos sólidos, que contribuem para uma poluição difusa persistente, do solo, da água e do ar; e um aumento da toxicidade em geral do solo, água e ar, que seguramente afetam a saúde humana, o funcionamento dos ecossistemas, reduzem a biodiversidade e comprometem os recursos naturais são todos causas efetivas.
A mineração é uma das atividades que mais causam problemas na deterioração da qualidade das águas superficiais e subterrâneas, na paisagem e na biodiversidade terrestre e aquática. Além dos acidentes, como o caso da Samarco no Vale do Rio Doce, que causam enormes impactos e grandes prejuízos em pouco tempo.
As áreas costeiras também são afetadas por estuários contaminados e com alto grau de poluentes, e por degradação gerada por sedimentos em suspensão e deterioração das regiões costeiras.
Dentre os principais problemas de contaminação e poluição do Brasil, está o da deterioração das águas superficiais e subterrâneas. Muitas reservas de águas doces que abastecem cidades e condomínios estão contaminadas, o que demanda um enorme investimento para o tratamento da água a fim de torná-la potável. Há poucas regiões do Brasil atualmente com águas naturais pristinas e sem contaminação.
Todo este conjunto de problemas, que resulta da intensificação das atividades humanas-urbanização, produção de alimentos, produção de energia, resulta em um impacto econômico certamente de grandes proporções ainda não mensurado adequadamente, mas certamente muito significativo (Tundisi et al., 2015).
Por exemplo, o tratamento de água para produção de água potável é extremamente dispendioso. São precisos de R$ 200,00 a R$ 300,00 reais para a produção de 1.000 m³ de água potável a partir de fontes degradadas. O custo para tratar águas pristinas e não contaminadas pode chegar, no máximo, a R$ 10,00 reais (Tundisi & Matsumura-Tundisi, 2010). Este é um exemplo.
Há outros custos não contabilizados: internações por doenças de veiculação hídrica; número de horas de trabalho perdidas por ausência devido a doenças com origem nas águas contaminadas; número de horas perdidas nas escolas por ausência devido a doenças de veiculação hídrica; intoxicações por substâncias tóxicas – não custa repetir.
Há, portanto, um enorme conjunto de danos à saúde pública, não contabilizados ou dimensionados, resultantes da poluição e contaminação. Em áreas metropolitanas a baixa qualidade do ar pode produzir inúmeras doenças respiratórias cujo impacto econômico deve ser mensurado.
A degradação ambiental no Brasil decorre de um quadro cada vez mais difícil de controlar: as leis existentes são adequadas, já a fiscalização é, no entanto, ineficiente e o treinamento e capacitação de agentes públicos são precários ou reduzidos. O monitoramento é pouco efetivo em escala nacional. Esta deveria prover um banco de dados competente e útil para promover políticas de recuperação e conservação.
Um dos problemas que mais afetam a população está relacionado com a qualidade das águas. Recreação, turismo e o abastecimento público ficam ameaçados pela eutrofização, que representa o impacto de nitrogênio e fósforo por esgotos não tratados. Sobre esse conjunto complexo deve-se ainda considerar o impacto das mudanças climáticas e o acúmulo dos POPs (Poluentes Orgânicos Persistentes) nas águas superficiais e subterrâneas.
Tais poluentes, uma inexorável e permanente contaminação, são resultado da adição de medicamentos, cosméticos, antibióticos, hormônios dissolvidos nas águas de rios, represas e águas subterrâneas e constituem a mais recente ameaça à saúde humana, à biodiversidade e ao funcionamento dos ecossistemas (Young et al., 2015).
O Brasil muito se beneficiaria se o custo agregado deste conjunto todo de degradações fosse contabilizado. Deve-se ainda considerar o investimento na recuperação de sistemas degradados, o que amplia a necessidade de investimentos nessa área. Quanto custa a poluição no Brasil? Com a palavra, os economistas para apresentarem os estudos com as ferramentas de que dispõem.
Investir em saneamento básico no Brasil para colocá-lo em um lugar mais privilegiado juntamente com os países desenvolvidos deve ser uma política de Estado de longa e permanente duração. Para tanto, é necessário calcular e dimensionar quanto se deve investir ao longo dos próximos 20 anos.
O país progrediu em modernização, mas não progrediu em desenvolvimento. Este é o dilema que precisa ser resolvido para ingressar o Brasil definitivamente no século 21. Ainda estamos longe. Existem tecnologia, conhecimento, informação. A execução é, no entanto, precária. (Tundisi & Matsumura-Tundisi, 2016).
Tundisi, J.G., Matsumura-Tundisi, T., Ciminelli, V.S., Barbosa, F.A.R., 2015a. Water availability, water quality water governance. In: Cudennec, C. et al. (Eds). Hydrological Sciences and Water Security: Past,Present and Future, vol. 366. PIAHS, pp. 75-79.
Tundisi, J.G. & Matsumura-Tundisi, T. Integrating ecohydrology, water management and watershed economy: case studies from Brazil. Ecohydrology & Hydrobiology. vol. 16, pp. 83-91, 2016.
Young, G., Demuth S., Mishra, A. & CUDENNEC C. Hydrological Sciences and Water Security: and overview. In: CUDENNEC, C. et al. (Editors). Hydrological Sciences and Water Security. Past, Present,Future. IAHS Publ. 366, pp. 1-6, 2015.
José Galizia Tundisi é professor titular aposentado da Escola de Engenharia de São Carlos da USP, professor titular da Universidade Feevale (RS) e membro titular da Academia Brasileira de Ciências.
O planeta está passando por uma série de processos de transformação muito fortes e rápidos, com o potencial de dificuldades importantes para as gerações futuras em termos de viabilidade como sociedade sustentável. Certamente estamos caminhando neste início de Antropoceno a um planeta com clima mais instável e violento, além da evidente escassez de recursos naturais. E somos nós que estamos promovendo tais mudanças, muitas das quais sequer nos demos conta.
Nosso planeta Terra tem uma história longa, de cerca de 4,5 bilhões de anos. O homem moderno só apareceu muito recentemente (200 mil anos atrás), e a civilização tal qual a conhecemos hoje existe há apenas 6 mil anos, minúsculo intervalo na vida de nosso planeta.
Foi, contudo, nesse último milênio, que o nosso planeta passou por mudanças significativas, estando hoje muito diferente do que era àquela época. Mudanças no uso do solo em larga escala tiveram início no desenvolvimento da agricultura, inicialmente em pequena escala, mas que hoje tomaram proporções planetárias.
A partir do século 19, o homem descobriu que queimar carvão, petróleo ou gás natural poderia produzir trabalho mecânico, e com esta descoberta na Inglaterra teve início a revolução industrial, que tantos progressos trouxe à humanidade. Porém, com o progresso vieram também os problemas, e um deles é o uso excessivo de recursos naturais como água, minerais, combustíveis fósseis e outros, que são finitos.
Com uma crescente população de 7 bilhões de pessoas em 2016, cuja estimativa é que tenhamos cerca de 10 bilhões de pessoas em algumas décadas, é fundamental pensarmos na sustentabilidade do planeta a longo prazo.
Entre as 9 milhões de espécies biológicas em nosso planeta, somos uma única, controlando a biosfera da Terra, a tal ponto que estamos alterando a composição da atmosfera e o clima de nosso planeta, com fortes consequências para todas as 9 milhões de espécies.
Áreas enormes das Américas, Europa e Ásia que eram florestas, há alguns séculos, hoje são áreas cultivadas ou com estradas e áreas urbanas, o que significa forte mudança no uso do solo, com reflexos em várias propriedades que regulam o clima do planeta, tais como o balanço radioativo.
Hoje, temos cerca de 1,3 bilhão de automóveis circulando na Terra; estima-se que podemos ter 2 bilhões de automóveis em algumas décadas. Parece claro que não se pode continuar dessa forma, pois estamos esgotando rapidamente os finitos recursos naturais de nosso planeta.
Para estudar essa questão, um grupo de cientistas mundiais fundou uma atividade chamada em inglês de Future Earth, ou Terra Futura (site: http://www.futureearth.org/). Essa iniciativa visa a entender como o desenvolvimento de nosso planeta pode se tornar sustentável a longo prazo.
O objetivo do Future Earth é produzir o conhecimento científico necessário para minimizar os riscos das mudanças climáticas globais e realizar a transição para a sustentabilidade global, se é que isso pode ser possível. Garantir a sustentabilidade de nossa sociedade vai envolver fortes mudanças de atitude de e para todos nós. A enorme desigualdade na distribuição das riquezas de nosso planeta traz instabilidade política, econômica e social, e é preciso minimizá-la para evitar conflitos ainda mais sérios.
Com estas preocupações em mente, as Nações Unidas estruturaram os chamados Objetivos de Desenvolvimento Sustentável (ODS) que consistem em um conjunto de metas acordadas pelos 193 países membros da ONU, visando ao desenvolvimento sustentável de nosso planeta a longo prazo.
Este é um dos resultados da Rio+20, e entraram em vigor em 1 de janeiro de 2016, com um prazo de realização até 31 de dezembro de 2030. Para cada ODS, são estruturados 169 metas e indicadores globais de acompanhamento da implementação dos ODS. Os 17 Objetivos de Desenvolvimento Sustentável são:
– Acabar com a pobreza em todas as suas formas, em todos os lugares;
– Acabar com a fome, alcançar a segurança alimentar, melhorar a nutrição;
– Assegurar uma vida saudável e promover o bem-estar para todos;
– Garantir educação inclusiva, equitativa e de qualidade;
– Alcançar a igualdade de gênero e empoderar todas as mulheres e meninas;
– Garantir disponibilidade e manejo sustentável da água;
– Garantir acesso à energia barata, confiável, sustentável;
– Promover o crescimento econômico sustentado, inclusivo e sustentável;
– Construir infraestrutura resiliente, promover a industrialização inclusiva;
– Reduzir a desigualdade entre os países e dentro deles;
– Tornar as cidades e os assentamentos humanos inclusivos, seguros, resilientes;
– Assegurar padrões de consumo e produção sustentáveis;
– Tomar medidas urgentes para combater a mudança do clima;
– Conservar e promover o uso sustentável dos oceanos;
– Proteger, recuperar e promover o uso sustentável das florestas;
– Promover sociedades pacíficas e inclusivas para o desenvolvimento sustentável;
– Fortalecer os mecanismos de implementação e revitalizar a parceria global.
A figura abaixo ilustra de modo pictórico estes ODS, que são abrangentes e visam a construir uma nova sociedade em nosso planeta.
Estes objetivos fazem parte da Agenda 2030 para o desenvolvimento sustentável, estruturado pela ONU, onde desenvolvimento sustentável é definido como o desenvolvimento que procura satisfazer às necessidades da geração atual, sem comprometer a capacidade das futuras gerações de satisfazerem as suas próprias necessidades.
Desenvolvimento sustentável demanda um esforço conjunto para a construção de um futuro inclusivo, resiliente e sustentável para todas as pessoas e todo o planeta. A questão das mudanças climáticas é um ponto central, onde se observa que a mudança do clima já impacta a saúde pública, segurança alimentar e hídrica, migração, paz e segurança.
A mudança do clima, se não for controlada, reduzirá os ganhos de desenvolvimento alcançados nas últimas décadas e impedirá possíveis ganhos futuros. As ações relacionadas à mudança do clima darão impulso ao desenvolvimento sustentável.
Se conseguirmos atingir a maior parte destes ODS, teremos um planeta mais igualitário, justo e sustentável. Os ODS, embora de natureza global e universalmente aplicáveis, dialogam com as políticas e ações nos âmbitos regional e local.
Na disseminação e no alcance das metas estabelecidas pelos ODS, é preciso promover a atuação dos governantes e gestores locais como protagonistas da conscientização e mobilização em torno dessa agenda global.
O Brasil ao longo dos últimos dez anos trabalhou em políticas de inclusão que tiraram milhões de pessoas da pobreza extrema. Este esforço deve continuar, com a intensificação de políticas sociais visando à integração de milhões de brasileiros na construção de uma sociedade mais justa e igualitária, trazendo desenvolvimento sustentável e justiça social. Essa é uma tarefa de todos os brasileiros.
Paulo Artaxo é professor do Instituto de Física da Universidade de São Paulo.
Em 1972, Barbara Ward e René Dubos escreveram, por encomenda de Maurice Strong, o documento preparatório para a Conferência das Nações Unidas sobre o Meio Ambiente Humano realizada naquele ano em Estocolmo. Esse documento foi publicado na forma de um livro, intitulado Only One Earth: The Care and Maintenance of a Small Planet. Seu primeiro capítulo concluía-se com essas palavras lapidares:
“Os dois mundos do homem – a biosfera de sua herança, a tecnosfera de sua criação – estão em desequilíbrio, na realidade, potencialmente em profundo conflito. E o homem está no meio. Esse é o ponto de inflexão da história, em que nos encontramos, com a porta do futuro abrindo-se para uma crise mais súbita, mais global, mais inescapável e mais desconcertante que qualquer outra jamais confrontada pela espécie humana. Uma crise que tomará sua forma decisiva no intervalo de vida das crianças já nascidas.”
Paralelamente a esse livro seminal de Ward e Dubos, e visando igualmente interagir com a Conferência de Estocolmo, um manifesto assinado por mais de 30 cientistas eminentes, entre os quais Julian Huxley, Frank Fraser Darling, Peter Medawar e Peter Scott, publicava em janeiro de 1972 A Blueprint for survival. O impacto desse documento foi então imenso, como o atestam as 750 mil cópias vendidas da revista The Ecologist de Edward Goldsmith, que o redigiu e publicou. Sua mensagem é idêntica à de Only one Earth, nomeadamente no que se refere ao prognóstico temporal de desfecho dessa crise ambiental: “no intervalo de vida das crianças já nascidas” (I):
“O principal defeito do modo de vida industrial, com seu ethos expansivo, é que ele não é sustentável. Seu término no intervalo de vida de alguém nascido hoje é inevitável – a menos que seja mantido ainda um pouco mais por uma minoria entrincheirada ao custo de impor grande sofrimento ao resto da humanidade”.
A ciência em que se baseava a assertividade e a projeção temporal pioneira desses dois documentos nada tinha de sua maturidade e robustez atuais. Também ela, por certo, era pouco mais que uma criança recém-nascida. De modo que ambos os documentos não avançavam projeções quantitativas sobre a evolução dessas crises. Podiam já prever, entretanto, que a Geração X, nascida entre a metade dos anos 1960 e a segunda metade do anos 1970, seria a primeira testemunha e vítima de uma crise ambiental “mais súbita, mais global, mais inescapável e mais desconcertante que qualquer outra jamais confrontada pela espécie humana”. Previam também o fim de nosso modelo insustentável de civilização, “a menos que [esse modelo] seja mantido ainda um pouco mais por uma minoria entrincheirada ao custo de impor grande sofrimento ao resto da humanidade”. Rupturas socioambientais maiores viriam a ocorrer, portanto, segundo esses dois documentos, no intervalo de vida das crianças nascidas nos anos 1960, vale dizer, grosso modo até os anos 2030, rupturas que uma “minoria entrincheirada” tentaria denegar e postergar ao máximo, impondo um sempre maior sofrimento ao resto da humanidade.
“Mais rápido que previsto”
A capacidade preditiva desses dois documentos é indubitável. Passados quase cinquenta anos, a ciência não cessa de se surpreender com a velocidade crescente com que os fenômenos se antecipam às projeções. Em 2007, o IPCC (AR4) afirmava:
“Segundo os resultados dos modelos atualmente disponíveis, a ocorrência de mudanças climáticas abruptas, tais como o colapso das geleiras da Antártica Ocidental, a rápida perda das geleiras da Groenlândia ou mudanças em larga escala nos sistemas de circulação oceânica, não é considerada provável no século XXI. Contudo, a ocorrência de tais mudanças torna-se crescentemente mais provável à medida que a perturbação do sistema climático progride” (II).
E é justamente essa sempre crescente probabilidade de descontinuidades fundamentais no sistema Terra, sobretudo no clima e na resiliência da biodiversidade, que dá o tom dos alertas da comunidade científica neste segundo decênio. Alguns poucos exemplos. Carlos Nobre e Thomas Lovejoy alertam, no editorial da revista Science Advances de 21 de fevereiro de 2018, já comentado nesta coluna (III), que o desmatamento da floresta amazônica pode estar em vias de atingir um ponto crítico, levando-a a uma rápida transição para um bioma de tipo savana (IV). A taxa de aquecimento dos oceanos dobrou desde 1992, em relação ao período precedente (1950 – 1990), algo não previsto pelos modelos (V). Desde 2007, um estudo mostrava que o declínio observado do gelo no Oceano Ártico era “mais rápido que previsto” pelos modelos então analisados pelo IPCC (VI).
Em seu quinto relatório, mesmo o IPCC, relativamente conservador, por força de seu estatuto intergovernamental e de outras circunstâncias que condicionam seu modus operandi, admite ao menos um cenário de verão sem gelo no Ártico já para 2050 (e não mais para 2100), mas há projeções que antecipam em muito esse novo estado do oceano (VII). A aceleração da perda de gelo da Groenlândia é um fato que vem surpreendendo a comunidade científica: “Ninguém esperava que as geleiras [da Groenlândia] perdessem tanta massa tão rapidamente. As coisas estão acontecendo muito mais rapidamente do que era nossa expectativa”, afirma Isabella Velicogna, num artigo publicado na Science no ano passado (VIII).
Estamos vendo agora na Groenlândia inclusive incêndios de suas turfeiras derretidas, com liberações maiores de metano e diminuição de sua reflexividade ou albedo, num típico, embora ainda incipiente, circulo vicioso: mais aquecimento, mais degelo, mais liberação de metano, mais aquecimento. Como observa Andreas Stohl, do Norwegian Institute for Air Research (NILU): “Esta é uma advertência de que algo assim pode acontecer nos pergelissolos, que se supunha estariam derretendo apenas no final do século” (IX). Enfim, por causa do aquecimento oceânico e do derretimento do gelo na Groenlândia e no Ártico, a poderosa corrente marítima que tem função crucial na manutenção do estado atual do sistema climático, a Circulação de Revolvimento do Atlântico, ou Circulação Termoalina do Atlântico (Atlantic Meridional Overturning Circulation ou AMOC), vem arrefecendo desde 2004. Esse arrefecimento, já advertido por vários cientistas (X), é objeto de recente editorial da Nature e de diversos artigos de divulgação científica que ecoam e analisam trabalhos recém-publicados (XI), mostrando justamente a ocorrência de “mudanças em larga escala nos sistemas de circulação oceânica”, fenômenos que em 2007, como visto acima, o IPCC, com base nos resultados então disponíveis, considerava improváveis no século XXI.
Os exemplos são inúmeros a ilustrar, em suma, o fato que a ciência vem hoje insistindo sobre a crescente probabilidade de cruzarmos pontos críticos no sistema Terra já nos próximos decênios, vale dizer, justamente nos anos 2030, previstos pelos dois documentos de 1972. Essa consciência hoje consensual de que os prazos fixados pelos dois documentos de 1972 estão se esgotando não deixou de crescer nesse último meio século. Ela se reflete nas declarações que sublinham a insuficiência dos resultados dos grandes encontros internacionais passados sobre o clima e o meio ambiente. Em 1992, vinte anos depois da Conferência de Estocolmo, Maurice Strong (1929-2015), presidindo as negociações da ECO-92, exortava a agir contra os interesses econômicos dominantes em face do agravamento das crises socioambientais desde 1972 (XII): “Não temos outros 20 anos para desperdiçar. Temos que tomar o caminho mais rápido a partir do Rio. (…) A principal mensagem dessa Conferência é que não se pode tratar de questões ambientais sem tratar de questões econômicas”.
Em 2012, passados os tais 20 anos e constatado o desperdício de tempo que foi o Protocolo de Kyoto e o fracasso da própria Rio+20, Ban Ki-moon, então secretário-geral da ONU, declarou: “Permitam-me ser franco. Nossos esforços não estiveram à altura do desafio. A natureza não espera. A natureza não negocia com os seres humanos” (XIII). E Pavan Sukhdev, ex-Conselheiro especial do PNUMA e chefe do projeto Green Economy Initiative da ONU, repetiu a mesma mensagem num tom ainda mais enfático: “Precisamos de ação urgente. Não podemos ter uma Rio+40. Não haverá tempo. Estamos nos comportando como idiotas. A questão do desenvolvimento sustentável não é para a próxima geração, é para a nossa” (XIV).
Não há tempo para uma Rio+40
Seis anos se passaram após a Rio+20 e estamos nos aproximando do aniversário de três anos do Acordo de Paris. E malgrado os esforços envidados para mitigar as crises ambientais – e eu seria o último a menosprezá-los –, é cada dia mais difícil tergiversar sobre o fato de que continuamos, ano a ano, a aumentar o que a Convenção-Quadro das Nações Unidas sobre as Mudanças Climáticas (UNFCCC) chamou de “Interferência Antropogênica Perigosa” (DAI) sobre o sistema Terra. Estamos nos distanciando a passos de gigante dos 17 Objetivos do Desenvolvimento Sustentável e apenas insistir em sua importância não fará nos aproximar deles. Sucessivos balanços negativos exibem o fracasso dos esforços para atingir as 20 Metas de Aichi (Aichi Biodiversity Targets) para a conservação da biodiversidade até 2020, sendo a perda de biodiversidade, como bem afirma Richard Gregory, “uma das maiores crises com que se defronta a humanidade” (XV).
No âmbito climático, continuar invocando como uma fórmula apotropaica as promessas (pledges) feitas pelos signatários do Acordo de Paris não pode e não deve mais ocultar o fato de que a tendência constatada revela o vazio dessas promessas. O Acordo de Paris não foi ainda ratificado por 13 países produtores de mais de um quarto da produção mundial de petróleo, aí incluídos a Rússia, o Iraque, o Irã e o Kuwait (XVI). Com a decisão dos EUA de abandonar o Acordo, mais de um terço da produção mundial de petróleo provém de países que não podem ser acusados, como os demais, de não cumprir o Acordo de Paris porque nem sequer o reconhecem. As emissões antropogênicas de gases de efeito estufa (GEE) montavam a cerca de 39 GtCO2-eq em 1990 e atingiram 53,4 GtCO2-eq em 2016, um aumento de 37% em apenas 26 anos, aumento que o Acordo de Paris não foi capaz de limitar em 2016, como mostra a Figura 1
Figura 1 – Emissões de GEE por tipo de gás e por fonte de emissão entre 1990 e 2016
Entre 2016 e 2017, as emissões antropogênicas de GEE aumentaram ainda cerca de 1,5%. Nada prenuncia sua diminuição e muito menos na velocidade requerida para evitar um aquecimento médio global superior a 2 oC. Dado o peso crescente das alças de retroalimentação na dinâmica das mudanças climáticas, é possível que esse nível “perigoso” de aquecimento seja atingido, ou mesmo ultrapassado, já no horizonte dos anos 2030 (e não mais no “longínquo” 2100), confirmando mais uma vez os prognósticos dos dois documentos de 1972 acima citados. Em todo o caso, evitar um aquecimento médio global dessa magnitude tornou-se uma impossibilidade “sociofísica”, pois suporia zerar o desmatamento e reduzir o consumo de combustíveis fósseis a uma velocidade incompatível com os paradigmas, a visão de mundo e os planos de negócios que as corporações impõem à humanidade e às demais espécies.
Duas condições de possibilidade para virar o jogo
Dissociar o Estado das corporações
Para estabelecermos uma premissa da qual partir é preciso entender que não há saída para as políticas efetivas de mitigação fora de um embate frontal e incontornável entre interesses conflitantes. É preciso, portanto, definir quem são os aliados e quem são os adversários dos esforços reais para mitigar as crises ambientais. As sociedades têm fracassado em confrontar a engrenagem devastadora do capitalismo global por causa, antes de mais nada, do crescente e sempre mais exorbitante poder das corporações sobre os Estados.
É preciso entender que esse poder é, hoje, de um novo tipo. Ele o é, antes de mais nada, em decorrência dos recursos imensos dessas corporações. Se consideradas as 28 “entidades” mais ricas do mundo – países com riquezas medidas pela renda nacional e corporações, medidas por seu faturamento –, dez dessas entidades são corporações, sendo que das 20 maiores corporações do mundo, com um faturamento total de 4,5 trilhões de dólares, nove são umbilicalmente ligadas ao petróleo e seis pertencem à esfera do Big Food (XVII). A atual interdependência entre Estado e as megacorporações – notadamente no que se refere à influência destas sobre os mercados, as finanças públicas, a informação, a energia, a mineração, a agropecuária, a agroquímica (fertilizantes e agrotóxicos), a comercialização e os preços das commodities em geral –, não se atém mais apenas às políticas econômicas, mas atinge a identidade mesma do Estado.
Esse novo Estado absorvido pela corporação, a que se pode dar o nome de Estado-Corporação, foi bem descrito em 2008 por Sheldon Wolin que cunhou o termo “Democracy Incorporated” (XVIII), caracterizada por: “uma relação simbiótica entre o governo tradicional e o sistema de governança ‘privada’ representado pela moderna corporação empresarial. O resultado é, não já um sistema de co-determinação por colaboradores que mantêm distintas identidades, mas um sistema que representa a passagem à maturidade política do poder corporativo”
Isso posto, a primeira condição de possibilidade para virar o jogo é a reconquista democrática do Estado numa perspectiva de superação do unilateralismo e de fortalecimento da governança global. Há aqui um longo caminho a trilhar, e que deve ser trilhado rapidamente, pois, como visto, não temos mais 20 anos para desperdiçar. Ele começa por abandonar de uma vez por todas o “pensamento mágico” de que uma mitigação significativa das crises ambientais pode ser capitaneada pelo mercado. Por melhores que sejam as intenções das corporações, publicitadas em Davos e em outros fóruns corporativos – a se admitir que sejam mais que simples greenwashing –, essas multinacionais não podem internalizar seus custos ambientais em seus planos de negócios. Elas estão condenadas a ser, na prática, as principais responsáveis pela destruição da biodiversidade e pela desestabilização do clima. Dado que, para elas, ser é expandir-se, sua ação inerentemente expansiva representa, objetivamente, a mais sistêmica e cumulativa ameaça à humanidade. Acreditar que as megacorporações podem ser parceiras da luta pela sustentabilidade equivale a acreditar que o agronegócio é nosso aliado nos esforços por uma agricultura orgânica e local, por uma agricultura de alimentos e não de commodities, e que a “bancada do boi” no Congresso nacional é nosso parceiro no combate ao desmatamento e na luta pela democratização da propriedade da terra.
Associar ciência e política
A própria sociedade, através de seus partidos e outras associações, é a protagonista desse processo de retomada democrática do Estado numa perspectiva de governança global. Mas esse processo passa, de qualquer modo, por uma convergência entre ciência e política porque é justamente da dissociação entre ambas que nascem hoje as maiores debilidades de cada uma.
Será talvez necessário repensar a história do último meio século como a história da progressiva dissociação entre ciência e política. Para ilustrar o abismo existente em nossos dias entre ambas, tomemos uma das reiteradas advertências de James Hansen (XIX): “A situação é que temos, na realidade, uma emergência, mas não estamos agindo como se tivéssemos entendido isso. Vamos ter que abandonar as emissões de carbono muito rapidamente. Isso é tecnicamente possível e faz sentido do ponto de vista econômico. Mas tal solução não está sendo perseguida e, de fato, não está sendo proposta por nenhum partido político”.
Essa advertência caracteriza à perfeição a situação política brasileira e mundial. De fato, a política permaneceu ancorada no embate ideológico entre as diversas formas (históricas ou imaginárias) de auto-organização da sociedade, ignorando que nossa civilização termo-fóssil está em vias de romper os equilíbrios ambientais imperantes no Holoceno, a época geológica cuja relativa estabilidade favoreceu toda a civilização. Continuar ignorando isso em nossa reflexão e prática políticas é ignorar que a história obedece, volente nolente, às leis da física e que essas, para relembrar a afirmação de Ban-ki-moon, não negociam com os seres humanos. Portanto, todo programa político, por mais progressista que se pretenda, será reacionário e irracional se não levar na devida conta os alertas lançados pela ciência sobre as crises ambientais contemporâneas.
Entendamos bem o quê na política tornou-se anacronicamente irracional. Tal como nos séculos passados, também em nossos dias a racionalidade política, le bon combat, continua sendo a luta pelo aprofundamento da democracia, pelas liberdades civis, pelo trabalho digno e bem remunerado, por um Estado capaz de assegurar educação, saúde, mobilidade e segurança, por equidade econômica, étnica e de gênero, pela laicidade, pela autonomia sobre o próprio corpo e pelo respeito aos direitos das outras espécies. Essa continuidade entre passado e presente é mais que nunca necessária, já que os últimos três ou quatro decênios vêm provocando, globalmente, retrocessos dramáticos em todas, ou quase todas, essas frentes de luta. Mas a política perde toda racionalidade e atualidade desde o momento em que ignora ou se recusa a agir em sintonia com o que se sabe sobre as leis bioquímicas e físicas que determinam o comportamento e os limites do sistema Terra, do qual as sociedades são parte e dependem existencialmente.
Se a política deve se repensar a partir da nova situação do planeta descrita pelas ciências da natureza, a situação histórica atual requer destas assumir responsabilidades políticas num nível sem precedentes. É fato que após Hiroshima, e mais ainda após 1968, os cientistas começaram a se sentir mais concernidos pelas implicações políticas de seu saber. Mas eles continuam ainda a excluir de seu job description toda dimensão político-prescritiva. Os grandes relatórios científicos, sejam eles do IPCC ou do IPBES, limitam-se a uma introdução destinada aos políticos, intitulada Summary for Policymakers. Essa postura de simples advertências e aconselhamentos é insuficiente. Como são insuficientes, ainda que importantíssimos, os sucessivos apelos e alertas dos cientistas à sociedade, como os de 1972, acima citados, seguidos pelos de 1992 e de 2017 (XX). A aceleração da degradação ambiental demonstra à saciedade essa insuficiência. É preciso que os cientistas tenham a audácia de reivindicar, doravante, um novo estatuto na sociedade, algo como um poder de veto em todas as decisões políticas que contrariem o consenso científico sobre os dossiês fundamentais das crises ambientais. O que pressupõe que a democracia entenda e institua a necessidade desse poder de veto. Essa nova simbiose entre ciência e política é o antídoto imprescindível para neutralizar os impactos nefastos da simbiose entre Estado e corporações.
Essa ideia foi esboçada num livro importante, intitulado Em direção a uma democracia ecológica. O cidadão, o cientista e o político (2010). Nele, Dominique Bourg e Kerry Whiteside enfrentam a tarefa de imaginar uma nova estrutura política capaz de conciliar democracia e esse novo poder da ciência (XXI). Essa nova estrutura supõe a superação de um governo representativo clássico, baseado na tradição liberal individualista, para a qual o indivíduo é a última instância do juízo sobre seus próprios interesses. Lembram os autores que:
“O sistema representativo clássico supõe que eu sou in fine o único juiz da minha condição. Quem pode, com efeito, melhor que eu julgar sobre meu bem- estar? Os representantes devem, portanto, retornar regularmente a seus eleitores para se assegurar do bem-fundado de suas políticas. Ora, a complexidade dos problemas ambientais, o fato de nos afetarem indiretamente ou de longe, impede-nos de apreciá-los por nós mesmos”.
De fato, porque as crises ambientais em que o mundo contemporâneo afunda não são apenas locais, mas transnacionais, porque são sistêmicas e cumulativas, e seus efeitos em cascata são, como afirma um comunicado de 5 de novembro de 2014 do IPCC, “severos, pervasivos e irreversíveis” (XXII), podendo produzir por retroalimentação positiva mudanças não lineares no sistema Terra susceptíveis de pôr em risco a própria sobrevivência das sociedades, os cidadãos não dispõem mais dos meios que lhes permitam ajuizar seus próprios interesses e, portanto, suas decisões políticas.
Assim como o capitalismo industrial significou a separação do trabalhador dos meios de produção, o capitalismo da era das grandes crises ambientais globais significa a separação do cidadão dos meios de seu próprio juízo político. Isso não implica a infantilização política do cidadão porque obviamente ninguém pode pretender tutelá-lo. Mas significa que os cidadãos globais que somos precisamos, doravante, convocar a ciência para entender onde está, de fato, o nosso próprio interesse político. As crises ambientais põem problemas para cuja resolução as instituições democráticas do passado não estão mais habilitadas, porque ciência e política, saber e interesse, eram ainda, no paradigma anterior, instâncias separadas. Elas não o são mais. De onde a necessidade da presença direta da ciência como instância inapelável de veto em todas as decisões econômicas e políticas estratégicas. Desde Hans Jonas, começamos a perceber que, hoje, o objeto central da ciência e da política é o mesmo. Não se trata mais para ambas de desejar a infinitude, mas de conseguir viabilizar nossa sobrevivência na finitude de nossa condição, o que pressupõe a convivência prudente e respeitosa com as demais formas de vida, nos limites cada vez menores desse “pequeno planeta”.
Todos os parâmetros do sistema Terra mensurados pela ciência mostram hoje, com crescente grau de confiabilidade, que as gerações nascidas nos anos 1960 e após deverão sofrer cruelmente as agruras de um mundo muito mais adverso para a vida do que o usufruído por nossos pais. Se o que estamos fazendo, politicamente, até agora resume o que somos capazes de fazer, essas gerações mais jovens serão lançadas – é a perspectiva mais provável – no abismo de um verdadeiro colapso ambiental. Sem uma nova aliança estratégica entre ciência e política que capacite as sociedades a saber para agir e a agir em sintonia com o que sabem, não resta muita esperança de que possamos evitar um futuro pior ou muito pior. A Universidade, “lugar natural” e possível de uma sinergia entre ciência e reflexão crítica, filosófica e sócio-política, só manterá sua relevância na atual situação histórica se entender e cumprir sua missão de fortalecer (e explicar à sociedade que a sustenta) a crucial importância estratégica dessa aliança.
Referências
[I] Cf. Edward Goldsmith, Peter Allen, “A Blueprint for survival”, The Ecologist, Londres, Janeiro de 1972.
[II] Cf. Climate Change 2007: Working Group I: The Physical Science Basis: “Abrupt climate changes, such as the collapse of the West Antarctic Ice Sheet, the rapid loss of the Greenland Ice Sheet or large-scale changes of ocean circulation systems, are not considered likely to occur in the 21st century, based on currently available model results. However, the occurrence of such changes becomes increasingly more likely as the perturbation of the climate system progresses”.
[IV] Cf. Thomas E. Lovejoy, Carlos Nobre, “Amazon Tipping Point” (Editorial). Science Advances, vol. 4, 2, 21/II/2018.
[V] Lijing Cheng et al., “Improved estimates of ocean heat content from 1960 to 2015”. Science Advances, 10/III/2017.
[VI] Cf. J. Stroeve et al., « Arctic sea ice decline: Faster than forecast ». Geophysical Research Letters, 34, 9, 2007: “All models participating in the IPCC AR4 show declining Arctic ice cover over this period. However, depending on the time window for analysis, none or very few individual model simulations show trends comparable to observations”.
[VII] Cf. Peter Wadham, A Farewell to ice. A Report from the Arctic. 2017. Londres, 2017. Para uma síntese do problema do degelo do Ártico e de suas consequências, cf. Claudio Angelo, A espiral da morte, São Paulo, 2017.
[VIII] Citada por Eli Kintish, “The great Greenland meltdown”. Science, 23/II/2017.
[IX] Cf. Megan Gannon, “Greenland’s biggest fire is a ‘warning’ for its future”. LiveScience, 13/IV/2018.
[X] Cf. M. A. Srokosz, & H.L. Bryden, “Observing the Atlantic Meridional Overturning Circulation yields a decade of inevitable surprises”. Science, 348, 19/VI/2015; James Hansen, “Ice melt, sea level rise and superstorms: evidence from paleoclimate data, climate modeling, and modern observations that 2 ◦C global warming could be dangerous”. Atmospheric Chemistry and Physics, 16, 2016, pp. 3761-3812.
[XI] David J.R. Thornalley et al., “Anomalously weak Labrador Sea convection and Atlantic overturning during the past 150 years”. Nature, 556, 11/IV/2018, pp. 227-230.
[XII] Citado por Anne Harrison, “Earth Summit makes political gains for environment”. UPI, 14/VI/1992: “We don’t have another 20 years to squander. We need to take the fast track out of Rio. (…) The main message of this conference is that you can’t deal with environment issues without dealing with the economic issues”. Veja-se também Tom Whipple, “There is no time to waste, they said 23 years ago”, The Times, 30/XI/2015.
[XIII] Citado pela Agência Reuters, em “Rio+20 summit begins under a cloud of criticism”, 20/VI/2012. Pressionado por Dilma Rousseff, Ban Ki-moon convocou em seguida apenas jornalistas brasileiros aos quais repetiu seis vezes, durante uma entrevista de 8 minutos, que a Conferência foi um “sucesso”. Cf. Denise Menchen, Fernando Rodrigues, “Pressionado, Secretário da ONU recua e elogia texto”. Folha de São Paulo, 22/VI/2012.
[XIV] Entrevista publicada em rede.
[XV] Citado por Adam Vaughan, “Global biodiversity targets won’t be met by 2020, scientists say”. The Guardian, 3/X/2014.
>[XVII] Veja-se a respeito a ONG inglesa Global Justice. São elas: 1. Walmart; 2. State Grid; 3. China National Petroleum; 4. Sinopec Group; 5. Shell ; 6. Exxon ; 7. Volkswagen; 8. Toyota; 9. Apple; 10. BP; 11. Berkshire Hathaway; 12. McKesson; 13. Samsung; 14. Glencore; 15. Ind. & Com. Bank of China; 16. Daimler; 17. UnitedHealth Group; 18. CVS Health; 19. General Motors e 20. Ford Motors.
[XVIII] Cf. Sheldon Wolin, Democracy Incorporated. Managed Democracy and the Specter of the Inverted Totalitarianism. Princeton University Press, 2008.
[XX] Veja-se “Advertência dos Cientistas do Mundo à Humanidade”, documento patrocinado em 1992 pela Union of Concerned Scientists do MIT, e World Scientists’ Warning to Humanity: A Second Notice, que retoma e atualiza em 2017 o apelo de 1992. Cf. L. Marques, “Por uma Universidade implicada na agenda de nosso tempo”. Jornal da Unicamp, 14/VIII/2017.
[XXI] Cf. Dominique Bourg & Kerry Whiteside, Vers une démocratie écologique. Le citoyen, le savant et le politique, Paris, Seuil, 2010.
Luiz Marques é professor livre-docente do Departamento de História do IFCH /Unicamp. Pela editora da Unicamp, publicou Giorgio Vasari, Vida de Michelangelo (1568), 2011 e Capitalismo e Colapso ambiental, 2015, 2a edição, 2016. Coordena a coleção Palavra da Arte, dedicada às fontes da historiografia artística, e participa com outros colegas do coletivo Crisálida, Crises Socioambientais Labor Interdisciplinar Debate & Atualização (crisalida.eco.br) – Publicado originalmente no Jornal da Unicamp.
Em um país onde 99% dos políticos não cumprem com as suas promessas depois de eleitos, a preocupação com a qualidade de vida urbana deveria ser de grande importância no debate político e científico, devido ao rápido e desordenado crescimento das cidades. Constata-se que, mesmo com o imenso progresso e avanço tecnológico alcançados pelos brasileiros, o modelo de desenvolvimento adotado gerou também ampliação da desigualdade na distribuição de bens e serviços e nas condições de vida da população, além de profunda degradação ambiental.
As grandes concentrações urbanas, os níveis alarmantes de poluição e a degradação socioambiental suscitam dúvidas acerca da real possibilidade de sobrevivência da espécie humana enquanto tal e das outras formas de vida no planeta. Desta forma, evidencia-se hoje a incapacidade de o modelo de desenvolvimento gerar mais e melhor qualidade de vida.
Assim, além de não se conseguir erradicar a ignorância, a violência e a pobreza, agravou-se a situação social e ambiental e consolidaram-se, especialmente nas grandes cidades, enormes disparidades socioespaciais em todos os aspectos. Neste contexto, a deterioração ambiental crescente assumiu uma importância que está levando à consciência dos limites ao crescimento, devido à finitude dos recursos naturais, abalando a utopia materialista de consumo de forma contínua.
Este quadro provocou a discussão de valores éticos essenciais, dentre eles a igualdade entre os homens, traduzida hoje como equidade na distribuição dos recursos e benefícios e no acesso de toda a população à satisfação de suas necessidades básicas fundamentais. Também se reafirmou e se consolidou o compromisso das gerações de hoje para com as gerações futuras de assegurar uma qualidade ambiental que possibilite a continuidade da reprodução da vida no país, em todas as suas manifestações. A partir disso, desenvolveu-se a noção de sustentabilidade do desenvolvimento humano e, a partir do final da década de 60, o conceito de qualidade de vida ganhou novo significado.
ANBR ISO 37101 de 08/2017 – Desenvolvimento sustentável de comunidades — Sistema de gestão para desenvolvimento sustentável — Requisitos com orientações para uso é um guia que estabelece requisitos para um sistema de gestão para desenvolvimento sustentável em comunidades, incluindo cidades, utilizando uma abordagem holística, visando assegurar a coerência com a política para desenvolvimento sustentável de comunidades. O guia adota uma abordagem holística para estabelecer requisitos para um sistema de gestão para desenvolvimento sustentável em comunidades, incluindo cidades, e fornece orientações que visam: a melhoria da contribuição de comunidades para o desenvolvimento sustentável; a promoção de inteligência e resiliência em comunidades, levando em conta os limites territoriais em que estas se aplicam; e a avaliação do desempenho de comunidades no progresso rumo ao desenvolvimento sustentável.
Estabelece um framework coerente para permitir que a comunidade desenvolva seus objetivos e visão. Estabelece requisitos e orientação para auxiliar comunidades a obter um framework para permitir que elas se tornem mais sustentáveis. Não estabelece valores de referência ou níveis esperados de desempenho.
Enquanto o desafio do desenvolvimento sustentável é global, as estratégias para alcançá-lo no espaço da comunidade são locais, em grande parte, portanto podem ser diferentes em contexto de país para país, e de região para região. Estratégias da comunidade precisam refletir o contexto, condições prévias, prioridades e necessidades, particularmente no ambiente social, por exemplo, igualdade social, identidade cultural e tradições, patrimônio, saúde pública, segurança e conforto, e infraestrutura social.
Para se tornarem mais sustentáveis, as comunidades também enfrentam o desafio de respeitar seus limites planetários e levar em conta as limitações que estes limites impõem. Dessa forma, o guia estimula o estabelecimento de um processo com diversos atores em comunidades, por meio de uma abordagem holística que facilita a cooperação de todas as partes interessadas e evita uma abordagem compartimentada. Pretende fornecer orientação para organizações que implementam outros sistemas de gestão compatíveis com esta norma, como NBR ISO 14001, ISO 45001, NBR ISO 50001, NBR ISO 20121, ISO 14046 e NBR ISO 26000, sejam envolvidas direta ou indiretamente com desenvolvimento sustentável em comunidades, em diferentes estágios de seus ciclos de vida.
O envolvimento de partes interessadas por meio de um processo de diversos atores pode tomar diferentes formas, como: parcerias participativas; participação popular; colaboração comunitária. Todas estas formas visam envolver as partes interessadas em um diálogo colaborativo para soluções mais sustentáveis.
A sua implementação bem-sucedida pode auxiliar comunidades a elaborar estratégias holísticas e integradas para o desenvolvimento sustentável, que deixam de lado a abordagem tradicional de negócios. Pode também auxiliar comunidades a mostrar às partes interessadas que está em vigor um sistema de gestão apropriado, estimulando-as a se tornarem proativas.
A sua implementação bem-sucedida pode: auxiliar a criar um consenso em desenvolvimento sustentável dentro das comunidades; aumentar a sustentabilidade, inteligência e resiliência de estratégias, programas, projetos, planos e serviços realizados sob a responsabilidade direta de comunidades, ou nos territórios relativos a elas; desenvolver abordagens interssetoriais, multidisciplinares, de valor de ciclo de vida e custo total; promover sinergias entre diversos atores por meio de uma abordagem holística; aumentar a eficiência e atratividade de comunidades. Como consequência, pretende estabelecer um framework coerente para permitir que comunidades desenvolvam seus objetivos e visão.
Utilizando indicadores e métricas relevantes, o resultado de estratégias, programas, projetos, planos e serviços pode ser mensurado em comunidades. Métricas e indicadores são conectados, mas geralmente desenvolvidos para diferentes motivos. Métricas possuem um foco mais técnico, por exemplo: um parâmetro de desempenho de um produto, de um processo ou de um elemento da infraestrutura.
O Anexo B fornece um mapeamento de temas, indicadores e métricas entre esta norma, a NBR ISO 37120:2017 e a ISO/TS 37151:2015. É baseada no modelo Plan-Do-Check-Act (PDCA), que pode ser resumidamente descrito: Planejar (Plan): estabelece objetivos e processos necessários para obter resultados de acordo com os propósitos da comunidade; Fazer (Do): implementar processos e alcançar metas; Checar (Check): monitorar e medir processos frente à política, objetivos e compromissos da comunidade, e relatar os resultados; —— Agir (Act): tomar medidas necessárias para melhorar o desempenho. A figura ilustra uma abordagem PDCA para a gestão de desenvolvimento sustentável em comunidades.
Importante que a organização deve identificar, revisar e documentar todos os propósitos e temas que contribuem para implementação desta norma. A organização deve considerar os propósitos de sustentabilidade apresentados na tabela.
A NBR ISO 37120 de 01/2017 – Desenvolvimento sustentável de comunidades — Indicadores para serviços urbanos e qualidade de vida define e estabelece metodologias para um conjunto de indicadores, a fim de orientar e medir o desempenho de serviços urbanos e qualidade de vida. Ela segue princípios estabelecidos e pode ser utilizada em conjunto com a ISO 37101, Sustainable development in communities – Management system for sustainable development – Requirements with guidance for use, quando publicada, e outras estruturas estratégicas. É aplicável a qualquer cidade, municipalidade ou governo local que intencione medir seu desempenho de uma forma comparável e verificável, independentemente do tamanho e da localização.
Uma cidade adaptada, a respeito de mensuração de indicadores para serviços urbanos e qualidade de vida, pode somente reivindicar conformidade neste sentido. Estes indicadores podem ser utilizados para rastrear e monitorar o progresso do desempenho da cidade. A fim de atingir o desenvolvimento sustentável, todo o sistema urbano necessita ser levado em consideração.
Planejar para as necessidades futuras deve levar em conta o atual consumo e eficiência de recursos, para o melhor planejamento do amanhã. Os indicadores e métodos de ensaio associados foram elaborados a fim de auxiliar as cidades a: medir a gestão de desempenho de serviços urbanos e qualidade de vida ao longo do tempo; aprender umas com as outras, pela possibilidade de comparação através de uma vasta gama de medidas de desempenho; e compartilhar melhores práticas.
Os indicadores foram selecionados para serem reportados da forma mais simples e econômica possível e, portanto, refletem uma plataforma inicial para divulgação. Os indicadores são estruturados em torno de temas. Reconhecendo as diferenças das cidades ao redor do mundo, em recursos e capacidades, o conjunto global de indicadores para desempenho de cidades foi dividido em indicadores “essenciais” (aqueles que devem ser seguidos) e indicadores “de apoio” (aqueles que convém que sejam seguidos).
Ambos os indicadores, essenciais e de apoio, estão relacionados no Anexo A, Tabela A.1. Adicionalmente, indicadores de perfil, que fornecem estatísticas básicas e informações do contexto para auxiliar a identificação de quais cidades são interessantes para comparações, estão incluídos no Anexo B, Tabela B.1, como referência.
Amazon Tipping Pointé o título do editorial da revista Science Advances de 21 de fevereiro de 2018, assinado por dois dos mais eminentes estudiosos do clima e do bioma amazônico: Thomas E. Lovejoy e Carlos Nobre (I). O tema desse editorial é um novo alerta sobre a situação limite a que 50 anos de intenso desmatamento reduziram a floresta amazônica. Antes de entrar no vivo da questão, convém recordar brevemente o significado de tipping point, conceito central desse editorial e da análise das dinâmicas de mudança sistêmica, que se pode traduzir em português por ponto crítico, ponto de inflexão, de virada, de não retorno ou de basculamento.
A persistência e o caráter cumulativo de perturbações (preponderantemente antropogênicas, em nossos dias) num dado sistema natural e sua amplificação por interações sinérgicas e por alças de retroalimentação inerentes a esse sistema causam anomalias crescentes em intensidade, duração, extensão ou frequência, parâmetros que não raro se associam, reforçando-se reciprocamente. Sendo crescentes, essas anomalias afastam-se sempre mais da variabilidade natural do sistema, até que ultrapassam sua capacidade de resiliência. O ponto de ultrapassagem da capacidade de resiliência de um sistema é seu ponto crítico, isto é, o ponto de ruptura do equilíbrio desse sistema. Atingido esse ponto, aumentam exponencialmente as probabilidades de uma transição muito mais rápida ou mesmo abrupta para outro estado de equilíbrio, provavelmente adverso ou inviável para a maioria das espécies adaptadas ao equilíbrio anterior.
Nossa capacidade de prever o cruzamento de um ponto crítico é muito limitada. Como já observado por Glenn Scherer, o problema dos pontos críticos é que eles só podem ser de fato percebidos pelo espelho retrovisor (II). Num processo de perturbações cumulativas, o ponto crítico pode ser dado por uma mudança quantitativa suplementar muito pequena, não raro imperceptível, mas capaz de disparar uma mudança qualitativa e estrutural. É bem compreensível que, tendo feito do problema do devir o objeto mesmo da filosofia, Hegel seja o primeiro filósofo moderno a elaborar a lógica em que se insere o ponto crítico num sistema dinâmico. Na Enciclopédia, ele afirma que “o aumento ou a diminuição de quantidade, em relação ao qual o objeto é inicialmente indiferente, tem um limite. Ultrapassado esse limite, a qualidade muda” (III). E Marx fará sua essa “lei” da dialética, em sua análise da gênese do capitalismo industrial: “Aqui se confirma, tal como nas ciências da natureza, a exatidão da lei descoberta e exposta por Hegel em sua Lógica, segundo a qual mudanças puramente quantitativas, tendo atingido certo ponto, transformam-se em diferenças qualitativas” (IV). A ciência contemporânea acolhe esse princípio de descontinuidade qualitativa como resolução de um acúmulo de perturbações quantitativas. Por exemplo, Carlos Duarte e colegas afirmam, num trabalho publicado na Nature Communications, acerca das possibilidades de mudanças climáticas abruptas no Ártico: “Tipping points foram definidos como pontos críticos na forçante ou outra característica de um sistema, nos quais uma pequena perturbação pode alterar qualitativamente seu estado futuro” (V). Por definição, alterações qualitativas no sistema climático, nos ecossistemas ou, em geral, no sistema Terra são irreversíveis, ao menos na escala de tempo histórica.
A ideia de ponto crítico está na base de uma mais adequada compreensão das interfaces e analogias entre processos dinâmicos naturais e sociais, bem analisadas por Georges Canguilhem (VI) e também pelo grande paleontólogo e historiador da ciência que foi Stephen Jay Gould (1941-2002) (VII): “Essa ideia sugere que a mudança ocorre em grandes saltos, após uma lenta acumulação de estresses, aos quais o sistema resiste até atingir um ponto de ruptura (breaking point). Aqueça a água e ela finalmente ferve. Oprima os trabalhadores mais e mais, e desencadeie a revolução. (…) Confesso uma crença pessoal de que uma visão pontualista pode mapear os ritmos de mudança biológica e geológica mais acuradamente e mais frequentemente que as filosofias rivais (…) Como escreve meu colega, o geólogo britânico Derek V. Ager, em favor de uma visão pontualista das mudanças geológicas: ‘A história de qualquer região da Terra é como a vida de um soldado. Ela consiste em longos períodos de tédio e curtos períodos de terror’”.
Para a floresta amazônica, quanto estresse é estresse demais?
Um “curto período de terror” é a expressão que melhor descreve não apenas as guerras entre homens, mas também a guerra movida contra as florestas pelo agronegócio, cuja ação devastadora é indissociável da rede corporativa global, com destaque para o Big Food, a indústria madeireira, a agroquímica, a produção de energia fóssil e hidrelétrica, a mineração e o sistema financeiro. Atingida certa escala, duração, extensão e/ou frequência, o estresse produzido nas florestas por seus agressores deixa de ser apenas local. Ele repercute sistemicamente na biodiversidade e no tecido florestal sempre mais esgarçado, ao alterar as condições climáticas, o ciclo hidrológico, a umidade do ar e do solo e a abundância da fauna, imprescindíveis para a funcionalidade da floresta e, finalmente, para a sua sobrevivência.
Dada a recente aceleração da remoção e fragmentação das florestas, surge a questão típica do século XXI, o século que liquidará, a se manter a atual trajetória, as florestas tropicais: para as florestas, quanto estresse é estresse demais? “A preocupação real” de Susan Trumbore, do Max Planck Institute for Biogeochemistry, e demais autores de um trabalho publicado na revista Science em julho de 2015 (VIII), “é como definir o ponto em que ocorre a transição entre estresse ‘normal’ e estresse ‘demais’ e como determinar se essa transição gera um declínio abrupto ou alinear”. Estudos sobre a iminência de cruzamentos de pontos críticos na resiliência das florestas e sobre seu day after disseminam-se na literatura científica, com resultados convergentes, embora nem sempre idênticos, dado que as florestas observadas podem reagir de modo diverso às pressões cumulativas. Há agora, em todo o caso, várias linhas de evidência a sugerir que amplas regiões da floresta amazônica estão na iminência de cruzar um ponto crítico que as conduzirá sucessivamente à sua rápida conversão em uma vegetação do tipo savana.
Em 2014, Antonio Donato Nobre publicou The Future Climate of Amazon. Scientific Assessment Report (IX), um trabalho de imensa latitude científica, mas importante também politicamente, pois escrito numa linguagem acessível ao público não especializado. O trabalho mostra que o futuro sombrio da floresta amazônica começa a emprestar suas feições ao presente, pois as secas de 2005 e de 2010 podiam já ser indícios de “fadiga” (p. 24) desse imenso sistema florestal. Citando em apoio de sua tese um trabalho publicado em 2001 (X), Antônio Donato Nobre advertia (p. 25): “Sob condições estáveis de oceano verde, a floresta tem um amplo repertório de respostas ecofisiológicas que a habilitam a absorver os efeitos de tais secas, regenerando-se completamente em alguns anos. Mas em áreas extensas, especialmente ao longo do Arco do Desmatamento, pode-se já perceber a ‘falência múltipla dos órgãos’ dos remanescentes da floresta fragmentada e mesmo de áreas florestais menos fragmentadas. (…) Quando a floresta cairá para sempre? Vários estudos sugerem uma resposta: quando ela cruzar o ponto de não retorno. O ponto de não retorno é o começo de uma reação em cadeia, como uma fileira de peças levantadas de dominó. Quando a primeira cai, todas as outras também caem. Uma vez brutal e irreparavelmente desestabilizado, o sistema de vida na floresta saltará, em última instância, para outro estado de equilíbrio”.
O editorial
A trágica questão da iminência do ponto crítico na floresta amazônica ressurge agora justamente como tema do acima citado editorial de fevereiro de 2018 da Science Advances. Eis seus parágrafos mais importantes:
“Onde poderia se situar o ponto de inflexão do ciclo hidrológico [da floresta amazônica] na degradação gerada pelo desmatamento? O primeiro modelo a examinar essa questão (XI) mostrava que atingidos cerca de 40% de desmatamento, as regiões central, sul e leste da Amazônia sofreriam redução de chuvas e uma estação seca mais longa, prevendo uma mudança para a vegetação de savana no leste.
A umidade da Amazônia é importante para a precipitação e o bem-estar humano porque contribui para as chuvas de inverno em partes da bacia do rio da Prata, especialmente no sul do Paraguai, no sul do Brasil, no Uruguai e no centro-leste da Argentina. Em outras regiões, a umidade passa sobre a área, mas não se precipita. Embora a contribuição dessa umidade para as chuvas no sudeste do Brasil seja menor que em outras áreas, mesmo pequenas quantidades de chuva podem ser um acréscimo bem-vindo aos reservatórios urbanos.
A importância da umidade da Amazônia para a agricultura brasileira ao sul da Amazônia é complexa, mas não trivial. Mais importante, talvez, é a contribuição parcial da evapotranspiração da Amazônia, na estação seca, para as chuvas no Sudeste da América do Sul. As florestas mantêm uma taxa de evapotranspiração ao longo do ano todo, enquanto a evapotranspiração nas pastagens é dramaticamente mais baixa na estação seca. Em consequência, os modelos sugerem uma estação seca mais longa após o desmatamento.
Nas últimas décadas, novas forçantes influenciaram o ciclo hidrológico, entre as quais as mudanças climáticas e o uso generalizado do fogo para eliminar as árvores derrubadas e remover as ervas daninhas (weedy vegetation). Muitos estudos mostram que, mesmo na ausência de outros fatores, um aquecimento médio global de 4 °C [acima do período pré-industrial] seria o ponto de inflexão para uma transição da floresta em direção a savanas degradadas na maior parte da Amazônia central, sul e leste. O uso generalizado do fogo leva à secagem da floresta circundante e maior vulnerabilidade no ano seguinte.
Acreditamos que sinergias negativas entre o desmatamento, as mudanças climáticas e o uso generalizado de incêndios indicam um ponto de inflexão no sistema amazônico em direção a ecossistemas não florestais, nas regiões leste, sul e central da Amazônia, tão logo atingidos 20% a 25% de desmatamento. A gravidade das secas de 2005, 2010 e 2015-2016 poderia representar as primeiras manifestações desse ponto de inflexão ecológico. Esses eventos, juntamente com as graves inundações de 2009, 2012 (e 2014 no Sudoeste da Amazônia), sugerem que todo o sistema está oscilando. Nas últimas duas décadas, a estação seca no sul e no leste da Amazônia vem aumentando. Fatores de grande escala, tais como temperaturas superficiais mais elevadas no Atlântico Norte tropical, também parecem estar associados às mudanças na terra”.
Quatro ideias fundamentais desse editorial devem ser frisadas:
(1) O ponto crítico no processo de desestabilização do bioma amazônico, susceptível de fazê-lo transitar para uma vegetação não florestal, não é atingido, como antes se supunha, com um nível de desmatamento de 40% da área da floresta, mas com um desmatamento de apenas 20% a 25% dessa área, ou seja, uma extensão muito próxima da que já foi desmatada por corte raso nos últimos cinquenta anos. Segundo dados do Instituto de Pesquisa Ambiental sobre a Amazônia (IPAM), “só na Amazônia, 780 mil km2 de vegetação nativa já se perderam. (…) Cerca de 20% da floresta original já foi colocada abaixo” (XII). Devemos ultrapassar em breve os próximos 5% pois, como lembra o mesmo documento do IPAM, “a taxa média [de desmatamento da Amazônia] entre 2013 e 2017 foi 38% maior do que em 2012, ano com a menor taxa registrada. (…) Sem controle, a taxa de desmatamento poderá atingir patamares anuais entre 9.391 km2 e 13.789 km2 até 2027, se mantida a mesma relação histórica entre rebanho bovino e área total desmatada – considerando que a pecuária é um dos principais vetores de desmatamento”. Entre agosto de 2011 e julho de 2017, data dos últimos dados disponíveis, a remoção da floresta amazônica avançou a uma taxa média anual de 6.049 km2. Imaginemo-nos percorrendo os 100 km da Rodovia dos Bandeirantes que levam de Campinas a São Paulo. Imaginemos agora que essa autoestrada tenha 60 km de largura, formando um retângulo de 6.000 km2. Essa área imensa equivale à área da floresta amazônica completamente suprimida em média por ano nos últimos seis anos. Apenas nos últimos dez anos – de agosto de 2008 a julho de 2017 –, mais de 70 mil km2, de floresta amazônica desapareceram, uma área equivalente a quase 30% da área do estado de São Paulo.
(2) O segundo elemento destacado pelo editorial é que as secas crescentes de 2005, 2010 e 2015-2016 na Amazônia podem ser os sintomas iniciais desse “ponto de inflexão ecológico”. Essas secas, conjugadas às inundações de 2009, 2012 e 2014, “sugerem que todo o sistema está oscilando”. Sobre a seca de 2015-2016, mais forte que as de 2005 e 2010, Amir Erfanian, Guiling Wang e Lori Fomenko fazem notar que ela não pode ser explicada apenas pelo efeito El Niño, mas supõe provavelmente a contribuição do desmatamento (XIII): “Temperaturas superficiais do mar anormalmente mais quentes no Pacífico tropical (incluindo eventos El Niño) e no Atlântico foram as principais causas de secas extremas na América do Sul, mas são incapazes de explicar a severidade dos déficits de chuva em 2016 numa porção substancial das regiões da Amazônia e do Nordeste. Este fato sugere fortemente uma contribuição potencial de fatores não oceânicos (por exemplo, desmatamento e aquecimento induzido por emissões de CO2) para a seca de 2016”.
(3) O editorial faz notar também que “o uso generalizado do fogo leva à secagem da floresta circundante e maior vulnerabilidade no ano seguinte”. O ano de 2017 bateu o recorde de incêndios na Amazônia. Isso se explica, em parte, porque esses incêndios são em geral criminosos e a impunidade no massacre da floresta tornou-se ainda maior sob o governo Temer. Mas esse recorde se explica em parte também porque a secagem progressiva da Amazônia causada pelos incêndios permite, na estação seca sucessiva, que o fogo adentre regiões ainda intocadas da floresta. Os números crescentes da tabela abaixo refletem esse duplo processo político e ecológico.
Fonte: Graça Portela, “Estudos analisam as queimadas e seu impacto no clima e na saúde”, Revista IHU Unisinos, 18/I/2018, baseada em dados do INPE.
Focos de incêndios no Brasil e na Amazônia entre 2012 e 2017
Houve em 2017, como se vê, um salto no recorde de incêndios no Brasil e na Amazônia, que atingem, no caso da Amazônia, o dobro do número de incêndios de 2012. Mas por assombroso que seja o salto no recorde de queimadas de 2017 na Amazônia, ele já está sendo batido por outro salto em 2018, ao menos em Roraima, onde até 14 de fevereiro haviam-se registrado 718 focos de incêndios, isto é, 2,6 vezes mais que nos primeiros 45 dias de 2017 (XIV).
As emissões de GEE geradas por esses incêndios foram analisadas num trabalho coordenado por Luiz Aragão, do INPE, publicado no mês passado na Nature Communications (XV). Essas emissões, como lembram os autores, “não são usualmente incluídas nos inventários das emissões de carbono em nível nacional”. O artigo examina os impactos das secas sobre esses incêndios florestais na Amazônia e as emissões de carbono a eles associadas no período 2003 – 2015. Durante a seca de 2015, os incêndios florestais na Amazônia alastraram-se por uma área de 799.293 km2, o que representa um aumento de 36% em relação ao período precedente de 12 anos. O trabalho chama a atenção para as seguintes observações e projeções:
“As emissões brutas causadas tão somente por incêndios florestais na Amazônia durante os anos de seca (989 +/- 504 TgCO2 por ano [1 Teragrama (Tg) = 1 Milhão de toneladas]) representam mais da metade das emissões causadas pelo desmatamento de florestas maduras. (…) A maior parte dos Modelos do Sistema Terra (ESMs) predizem um aumento da intensidade da estação seca na Amazônia no século XXI. (…) A se confirmar essa nova configuração climática, a Amazônia deve-se tornar um sistema mais amplamente propenso a incêndios, sendo que emissões decorrentes de incêndios induzidos por secas, e não associados a desmatamento, devem assumir um peso crescente e muito maior que o desmatamento”. Os autores reconstituem passo a passo a dinâmica de retroalimentação no binômio secas – incêndios:
“O previsto aumento de intensidade da estação seca na Amazônia durante o século XXI tende a causar mudanças em larga escala nos padrões de circulação atmosférica, o que resulta em precipitações abaixo da média sobre a Amazônia. (…) O estresse hídrico nas florestas age negativamente sobre a capacidade geral de fotossíntese do sistema, causando ampla mortalidade nas florestas e queda de folhas, o que incrementa o combustível dos incêndios. Consequentemente, o dossel florestal torna-se mais aberto, aumentando os níveis de radiação incidente e as temperaturas. A disponibilidade acrescida de combustível e a exposição a microclimas mais secos e mais quentes convertem as florestas naturais em sistemas mais propensos a incêndios”. Esses incêndios têm impacto direto sobre as mudanças climáticas ao aumentar as concentrações atmosféricas de carbono e de aerossóis. A presença na atmosfera de aerossóis gerados por incêndios pode reduzir as chuvas, completando assim, segundo os autores, o círculo vicioso, no qual maiores incêndios são induzidos por maiores secas que são, por sua vez, induzidas por maiores incêndios.
(4) O quarto elemento, enfim, evidenciado por esse editorial diz respeito às consequências do declínio acentuado ou abrupto da floresta amazônica. Duas consequências são destacadas pelos dois cientistas: (1) impactos na agricultura, dado que a contribuição da umidade da floresta para “a agricultura brasileira ao sul da Amazônia é complexa, mas não trivial”; (2) diminuição da contribuição da umidade proveniente da Amazônia para os “reservatórios urbanos” do Sudeste do Brasil, que desceram a níveis críticos em 2014-2015. No que se refere ao Sudeste, por modesta que seja a contribuição da floresta amazônica para as chuvas nessa região do país, preservá-la pode ser decisivo para evitar o colapso do sistema Cantareira no próximo período de estiagem. O declínio da grande floresta causado pela associação entre agronegócio amazônico e capitalismo global não significa, portanto, “apenas” o empobrecimento e a fragilização da vida no planeta. Ele significa também uma precarização (no limite, uma inviabilização) socioeconômica das diversas regiões do país beneficiárias da umidade dos “rios voadores” lançados à atmosfera pela evapotranspiração da floresta.
Conclusão
Amputada e degradada por 50 anos de desmatamentos e incêndios criminosos, a Amazônia está em vias de cruzar um ponto crítico, após o qual ela deverá transitar rápida ou abruptamente para algum tipo de vegetação não florestal. Essa transição trará desequilíbrios brutais nos recursos hídricos, no clima e na agricultura do país e do continente. Ela significa provavelmente não apenas a maior, mas também a mais iminente ameaça de colapso socioambiental das sociedades da América do Sul, sem contar suas reverberações possíveis no planeta como um todo. Nada há nessa afirmação de “catastrofismo” ou de “mero achismo”, como declarou há pouco o Ministro Gilmar Mendes a respeito das posições da comunidade científica contrárias à redução das Áreas de Proteção Permanente (APPs) (XVI). Trata-se de um fato estabelecido pelo melhor conhecimento científico disponível em nossos dias.
São muitos e bem conhecidos os responsáveis por essa situação limite a que foi reduzida a grande floresta, a começar pelos militares, que desencadearam e comandaram sua devastação durante os primeiros vinte anos dessa longa e estúpida guerra contra a natureza, vale dizer, contra nós mesmos. Mas os militares (esperemos) são o passado. Nos dias de hoje, o principal responsável pelo declínio da Amazônia é o agronegócio, o elo local de uma rede corporativa global que lucra com a destruição dos remanescentes das florestas tropicais.
Nós, o povo brasileiro, temos muito pouco tempo para deter os ecocidas, recentemente confortados e encorajados pelo STF. E três condições são imprescindíveis para detê-los ou ao menos debilitá-los:
(1) Reconhecer que nada, hoje, é politicamente mais importante que salvar e restaurar a floresta amazônica e as demais formações florestais do país, pois da sobrevivência delas depende a sobrevivência de nossa sociedade. Sem florestas, não há água, não há agricultura, não há freio ao aquecimento global, não haverá, em breve, sociedade organizada. Reconhecer a gravidade extrema dessa crise ambiental e o alcance de suas consequências não é apenas o primeiro passo para a conservação das florestas; é mais de meio caminho andado, pois o resto virá como implicação inevitável dessa tomada de consciência.
(2) Não comer ou comer muito menos carne, pois a causa principal do desmatamento da Amazônia é sabidamente a pecuária bovina e “mais de 90% da carne produzida na Amazônia é consumida nacionalmente, sendo que, desse total, mais de 70% é consumida nas regiões de maior poder econômico: Sul e Sudeste” (XVII). Questões éticas a parte (mas elas são ineludíveis: “se os matadouros tivessem paredes de vidro, todos seriam vegetarianos”), cada bife a menos representa uma contribuição tangível para diminuir a motivação econômica do desmatamento e dos incêndios. É preciso – e é factível, basta um pouco de esforço de cada um de nós! – asfixiar os ecocidas pela diminuição do consumo.
(3) Lançar uma campanha nacional para não eleger ou reeleger em outubro próximo os candidatos da “bancada do boi”, autodenominada Frente Parlamentar da Agropecuária (FPA), diminuindo assim sua influência sobre o Congresso Nacional e sobre os demais Poderes da República.
Referências
[I] Cf. Thomas E. Lovejoy, Carlos Nobre, “Amazon Tipping Point” (Editorial). Science Advances, vol. 4, 2, 21/II/2018.
[II] Cf. Glenn Scherer, “Climate change prediction: Erring on the side of least drama?”. Global Environmental Change, 23, 1, Fevereiro de 2013, pp. 327-337;Glenn Scherer, “Climate Science Predictions Prove Too Conservative”. Scientific American, 6/XII/2012: “The trouble with tipping points is they are hard to spot until you have passed one”; Annelies J. Veraart et al., “Recovery rates reflect distance to a tipping point in a living system”. Nature, 481, 7381, 19/I/2012.
[III] G.W.F Hegel, Enciclopédia. Parte I, páragrafo 108, verbete: “Medida”.
[IV] K. Marx, O Capital, I, cap. IX – Taxa e massa da mais-valia. Tradução francesa, Jean-Pierre Lefebvre, Paris, 1993, p. 346.
[V] Carlos Duarte et al., “Abrupt Climate Change in the Arctic”. Nature. Climate Change. 27/I/2012, 2, 60-62: “Tipping points have been defined as critical points in forcing or some feature of a system, at which a small perturbation can qualitatively alter its future state”.
[VI] Georges Canguilhem, “El problema de las regulaciones en el organismo y la sociedad”. Écrits sur la médecine. Paris, PUF, 1989; Buenos Aires, Sables, 1990, pp. 99-122.
[VII] Cf. Stephen Jay Gould, Panda’s thumb. More reflections in natural history, (Cap. 17: The episodic nature of evolutionary change), Nova York, 1980.
[VIII] Cf. S. Trumbore, P. Brando & H. Hartmann, “Forest health and global change”. Science, 349, 6.250, 21/VIII/2015, pp. 814-818.
[IX] Cf. Antônio Donato Nobre, The Future Climate of Amazon. Scientific Assessment Report São Jose dos Campos, Articulación Regional Amazônica (ARA), CCST-INPE e INPA, 2014
[X] Cf. William F. Laurance & G. Bruce Williamson, “Positive feedbacks among forest fragmentation, drought, and climate change in the Amazon”. Conservation Biology, 14/XII/2001.
[XI] Cf. G. Sampaio, C. A. Nobre, M. H. Costa, P. Satyamurty, B. S. Soares-Filho, M. Cardoso, “Regional climate change over eastern Amazonia caused by pasture and soybean cropland expansion”. Geophysical Research Letters, 34, 2007.
[XII] Cf. IPAM, Desmatamento Zero na Amazônia: como e por que chegar lá, 2017, 33 p. (em rede).
[XIII] Cf. Amir Erfanian, Guiling Wang, Lori Fomenko, “Unprecedented drought over tropical South America in 2016: significantly under-predicted by tropical SST”. Scientific Reports 7, 5811, 2017.
[XIV] Cf. Inaê Brandão, “Focos de incêndios em Roraima cresceram 257% em relação a 2017, diz INPE”. Globo, 15/II/2018.
[XV] Cf. Luiz E. O. C. Aragão et al., “Century drought-related fires counteract the decline of Amazon deforestation carbon emissions”. Nature Communications, 9, 536, 13/II/2018. Marcelo Leite repercute esse trabalho em sua coluna da Folha de São Paulo de 18/II/2018, “A Amazônia está secando, mas o Brasil só quer farra”.
[XVI] Cf. Sabrina Rodrigues, “Cientistas rebatem declaração de Gilmar Mendes sobre Código Florestal”. ((o)) eco, 28/II/2018.
[XVII] Cf. Gabriel Cardoso Carrero Gabriela Albuja Pedro Frizo Evandro Konrad Hoffman Cristiano Alves Caroline de Souza Bezerra, A cadeia produtiva da carne bovina no Amazonas, Manaus: Instituto de Conservação e Desenvolvimento Sustentável da Amazônia (IDESAM), outubro de 2015 (em rede). Ver também o histórico e sempre atual texto de João Meirelles, diretor do Instituto Peabiru, “Você já comeu a Amazônia hoje?” (em rede).
Luiz Marques é professor livre-docente do Departamento de História do IFCH /Unicamp. Pela editora da Unicamp, publicou Giorgio Vasari, Vida de Michelangelo (1568), 2011 e Capitalismo e Colapso ambiental, 2015, 2a edição, 2016. Coordena a coleção Palavra da Arte, dedicada às fontes da historiografia artística, e participa com outros colegas do coletivo Crisálida, Crises Socioambientais Labor Interdisciplinar Debate & Atualização (crisalida.eco.br) – Publicado originalmente no Jornal da Unicamp.
Em janeiro de cada ano, o MET Office, a agência britânica de pesquisas e previsões sobre meteorologia e mudanças climáticas, atualiza seu decadal forecast, isto é, sua previsão climática para os próximos dez anos. O título do último comunicado, “Previsão para os próximos cinco anos indica mais aquecimento” (1), nada tem de novo. Dada a dinâmica inercial do aquecimento global, sabemos que “mais aquecimento está em curso e ocorrerá mesmo sem mais gases de efeito estufa”, para dizê-lo nos termos de James Hansen (2).
O que é novo, ainda que não surpreendente, na declaração do MET Office é a possibilidade de estourarmos já nos próximos cinco anos a meta de aquecimento que o Acordo de Paris, em vigor desde novembro de 2016, almejava não ultrapassar neste século: “Há uma pequena chance (cerca de 10%) de que ao menos um ano no período [2018-2022] possa exceder 1,5º C acima dos níveis pré-industrais (1850-1900). É a primeira vez que tão altos valores vêm à baila nessas previsões”.
Para o novo relatório do IPCC, com publicação prevista para outubro de 2018, mas divulgado em seu estado de rascunho pela Agência Reuters em 18 de janeiro passado, “há um alto risco” desse limite de 1,5º C ser ultrapassado até 2040. O contraste de datas entre o MET e o IPCC é apenas aparente porque, como o MET esclarece, há um intervalo de alguns anos entre o aquecimento ultrapassar momentaneamente 1,5º C (2018-2022) e instalar-se acima desse patamar, o que deve ocorrer na segunda metade do próximo decênio. Da mesma maneira, antes de atingir em 2015 o nível agora irreversivelmente ultrapassado de 1º C, chegamos a “queimá-lo” pela primeira vez em 2010, como mostra a Figura 1.
Figura 1 – Evolução das anomalias de temperatura (ºC) no primeiro semestre de 2016 em relação ao período 1880-1899.
Fonte: “Record-Breaking Climate Trends Briefing”, 19/VII/2016. Goddard Institute for Spatial Studies (GISS), Nasa <https://svs.gsfc.nasa.gov/12305>.
Além disso, a preposição até na locução “até 2040” (by 2040) do IPCC indica um cauteloso termo limite, um terminus ante quem, e pode significar uma data qualquer nos próximos dois decênios. Na realidade, ela indica uma data provável já no próximo decênio, pois, segundo a Reuters, o texto ainda em revisão do IPCC afirma (3): “Estima-se que a humanidade poderia ainda emitir tão somente 580 bilhões de toneladas [Gigatoneladas ou Gt] de gases de efeito estufa [GEE] para ter uma chance maior que 50% de limitar o aquecimento a 1,5º C – o que equivale a um prazo de 12 a 16 anos mantido o nível atual das emissões desses gases”.
Se tomarmos por base o ano de 2016, quando, segundo o Emission Database for Global Atmospheric Research (EDGAR), as emissões globais de GEE atingiram 53,4 GtCO2-eq, ultrapassaremos esse limite de 580 Gt nos próximos 10 a 11 anos. Essas estimativas do MET e do IPCC são corroboradas por uma terceira e por uma quarta projeção.
Em 2016, o Climate Central, uma ONG nascida de um encontro de climatologistas na Yale University, afirmava que, “mantido o nível atual de emissões (RCP8,5), podemos cruzar o limiar de 1,5º C em 10 a 15 anos, isto é, em algum momento entre 2025 e 2030 (4). A quarta projeção, enfim, publicada em setembro de 2017 na Geophysical Research Letters, propõe que, se a Oscilação Interdecenal do Pacífico (IPO) (5) tornar-se positiva ou permanecer negativa, atingiremos +1,5º C em 2026 ou em 2031, conforme mostra a Figura 2.
Figura 2 – Projeções de ultrapassagem de +1,5º C nas temperaturas médias superficiais terrestres e marítimas combinadas acima da média das temperaturas pré-industriais (1850-1900), segundo a fase positiva (2026) ou negativa (2031) da Oscilação Interdecenal do Pacífico (IPO).
Fonte: Alvin Stone, “Paris 1.5º C target may be smashed by 2026” GeoSpace, 9/V/2017. Baseado em Benjamin J. Henley, Andrew D. King, “Trajectories toward the 1.5º C Paris target: Modulation by the Interdecadal Pacific Oscillation”. Geophys. Research Letters 8/V/2017.
2017 no contexto da aceleração das mudanças climáticas
Lembremos que os 20 anos mais quentes dos registros históricos, iniciados em 1880, ocorreram justamente nos 20 anos decorridos entre 1998 e 2017. E os 4 anos mais quentes dessa série de 137 anos incidem no quatriênio 2014-2017. Como se insere nessa aceleração o ano de 2017? Como seria de se esperar num quadro de aceleração das mudanças climáticas, 2017 quebrou vários recordes.
Mas, talvez nenhum ano dos registros históricos tenha se mostrado mais rico que o ano passado em número e variedade de sintomas de aceleração de nossa trajetória rumo a uma degradação socioambiental catastrófica. Em 18 de janeiro de 2018, a Organização Meteorológica Mundial (OMM) declarou que “2015, 2016 e 2017 foram confirmados como os três anos mais quentes dos registros globais, sendo que 2017 foi o ano mais quente sem um El Niño”. Isso se traduziu em ondas de calor sem precedentes. Queensland e New South Wales, na Austrália, bateram o recorde de calor, com temperaturas próximas de 50º C.
Na Europa, “Lúcifer”, como foi chamada a onda de calor europeu de 2017, bateu, na zona mediterrânea, o recorde de intensidade da onda de calor europeu de 2003 (6). Em junho de 2017, Las Vegas bateu seu recorde de temperatura, atingindo 47º C. Em julho, na cidade chinesa de Xi’an, o termômetro atingiu por oito dias temperaturas acima de 40º C. Em Xangai, ele subiu a 40,9º C, em Trupan, a 49º C, em Shaanxi, a 44,7º C, temperaturas todas que romperam novos recordes históricos no país. Em Jales, no estado de São Paulo, em 11 de setembro de 2017, a temperatura ainda invernal chegou a 37,2º C. Na capital, ela chegou nesse mesmo dia a 31,9º C, recorde batido apenas por 2016, quando chegou a 33º C< (7).
O ano de 2017 quebrou recordes também no que se refere a eventos meteorológicos extremos e inundações. Houve no ano passado 17 tempestades nomeadas, 10 furacões e seis furacões de categoria 3 ou mais alta, todos esses números acima da média histórica. Em agosto, o furacão Harvey que se abateu sobre Houston e região, no Texas (EUA), trouxe a maior quantidade de chuvas dos registros históricos (1.539 mm) ao longo de quatro dias nesse país, causando pela terceira vez, após 2001 e 2015, uma inundação supostamente esperada “a cada 500 anos”. Em setembro, o Irma devastou o Caribe, com ventos de até 297 km/h que se mantiveram por 37 horas, a mais longa duração registrada no mundo. Apenas nos EUA, enquanto tais eventos extremos, incêndios e inundações trouxeram prejuízos de US$ 144 bilhões em 2005, os piores até então, 2017 trouxe prejuízos de US$ 306 bilhões (8).
Níveis igualmente sem precedentes de incêndios florestais ocorreram nos EUA, Europa (Portugal, Espanha, França, Itália, Romênia), Austrália e na Ásia do Sudeste. O Brasil teve em 2017 um número recorde de incêndios florestais na série histórica, iniciada em 1999. “A análise dos locais onde os incêndios ocorreram mostra que, neste ano, o fogo aumentou em áreas de floresta natural, avançando em pontos onde antes não havia registro de chamas, e atingindo unidades de conservação e terras indígenas. Entre todos os biomas, o Cerrado foi o que teve mais unidades de conservação atingidas, contabilizando 75% de toda a destruição nas áreas protegidas”.
Até 18 de dezembro, haviam sido registrados “cerca de 272 mil focos de fogo, 46% a mais do que em 2016 e acima do recorde anterior, de 2004, quando foram detectados 270 mil pontos de calor. Incêndios criminosos destruíram 986 mil hectares de unidades de conservação (…). O número ficou próximo do registrado no ano passado, quando foram destruídos cerca de 1 milhão de hectares. Nas terras indígenas, os focos aumentaram 70% e ultrapassaram 7 mil” (9).
Quanto ao branqueamento de corais, o Coral Reef Watch da National Oceanic and Atmospheric Administration (NOAA) afirmou em seu boletim de janeiro de 2018 que o Terceiro Evento Global de Branqueamento de Corais, terminado em junho de 2017, é o primeiro a perdurar três anos consecutivos (10). Esse evento “permanece o mais longo, o mais amplo e possivelmente o mais danoso evento de branqueamento de corais jamais registrado. Ele afetou mais corais que qualquer outro evento de branqueamento anterior” (11).
Salto sem precedentes no aquecimento oceânico
A mais inequívoca assinatura do aquecimento médio global é a temperatura dos oceanos, pois sua faixa superficial absorve mais de 90% do calor excedente produzido pelas crescentes concentrações atmosféricas de gases de efeito estufa. Aqui, a aceleração é igualmente evidente. Sabemos que “metade do aumento do calor absorvido no oceano globalmente desde 1865 foi acumulado desde 1997” (12). Sabemos também que o aumento do calor contido no oceano entre 1992 e 2015 quase dobrou em relação ao aumento ocorrido nas três décadas anteriores (1960 – 1990) (13), como mostra a Figura 3.
Figura 3 – Calor contido nos oceanos (Ocean heat content, OHC) entre 1950 e 2015 (em 10²² Joules) (14).
Fonte: Paul Horn, Inside Climate News, baseado em Lijing Cheng et al., “Improved estimates of ocean heat content from 1960 to 2015”. Science Advances, 10/III/2017
Mais que aceleração, o ano de 2017 foi, em toda a série histórica, o ano do grande salto no aquecimento nos oceanos até a profundidade de dois mil metros (15). A Figura 4 mostra as anomalias crescentes na energia térmica em Joules do oceano em relação ao período de referência, 1981-2010.
Figura 4 – Anomalias nas temperaturas oceânicas (0 a 2000 m) em relação ao período de base 1981-2010 (em 10²² joules)
Fonte: Lijing Cheng & Jiang Zhu, “2017 was the Warmest Year on Record for the Global Ocean”. Advances in Atmospheric Sciences, 34, março, 2018, pp, 261-263, baseados em dados do Institute of Atmospheric Physics (IAP) da Academia de Ciências da China.
O que se vê aqui é outra demonstração da aceleração em curso do aquecimento global, e talvez a mais irrefutável porque as mudanças climáticas nos oceanos são livres de “ruídos” meteorológicos de curto prazo, típicos da atmosfera. Entre 1958 e 1995, todos os anos mostram um oceano mais frio que a temperatura oceânica do período 1981-2010. Mas a partir de 1998, todos os anos foram mais quentes em relação a esse período de referência. Segundo o Instituto de Física Atmosférica (IAP) da China, os últimos cinco anos foram os mais quentes das medições disponíveis, com 2017 ocupando o topo do pódio. Em 2017, afirmam Lijing Cheng e Jiang Zhu:
“A faixa superior de 2 mil metros dos oceanos foi 1,51 x 1022 Joules mais quente do que 2015, o segundo ano mais quente, e 19,19 x 1022Joules acima do período de referência climatológica, 1981 – 2010. Para se ter uma comparação, a geração total de energia elétrica na China em 2016 equivale a 0,00216 x 1022 Joules, ou seja, ela foi 699 vezes menor que o aumento líquido de calor no oceano em 2017”.
Eis a progressão do aquecimento oceânico nos últimos cinco anos, sempre em relação ao período de referência (1981-2010):
2017: 19,19 × 1022 J
2015: 17,68 × 1022 J
2016: 17,18 × 1022 J
2014: 16,74 × 1022 J
2013: 16,08 × 1022 J
Observe-se que 2017 registra um salto sem precedentes em relação a 2016 e em relação também a qualquer outro intervalo anual no período quinquenal em exame. Trata-se de um salto de 2,01 x 1022 J entre 2016 e 2017, quando o maior intervalo anterior (de 2015 em relação a 2014) foi de 0,94 x 1022. Como advertem ainda Cheng e Zhu, “o aumento na temperatura do oceano em 2017 resultou em uma elevação média de 1,7 milímetro do nível do oceano”, sendo que outro tanto se deveu ao degelo, numa elevação média total de 3,4 mm em 2017 (q6).
A aceleração das mudanças climáticas e o descumprimento do Acordo de Paris
As mensurações e as projeções acima citadas, em meio a uma profusão de dados convergentes, demonstram à saciedade que as mudanças climáticas estão se acelerando. Salvo para os que acreditam que a Terra é plana ou que o capitalismo pode-se tornar sustentável, essa evidência não está mais sujeita a discussão. Sua mais elementar demonstração encontra-se nas taxas de aumento médio anual das concentrações atmosféricas de gases de efeito estufa (GEE) desde 1991.
Concentrações atmosféricas de CO2-eq (GEE) em partes por milhão (ppm) e aumento médio anual em cada período (dois decênios e o quinquênio 2011-2016)
Fonte: NOAA Annual Greenhouse Gas Index (AGGI)
A aceleração das taxas de aumento das concentrações atmosféricas de GEE nos últimos 25 anos implica correlativa aceleração do aquecimento global (tal como mostra a tabela). E dado que o aquecimento atmosférico e marítimo afeta negativamente os ecossistemas, a biodiversidade, a economia, a segurança energética, hídrica e alimentar das sociedades, além de intensificar os eventos meteorológicos extremos, a ação de agentes patogênicos, a letalidade por ondas de calor extremo e a elevação do nível do mar, pode-se concluir com razoável segurança que, em termos socioambientais, o próximo decênio será pior que este que se aproxima de seu fim.
Quão capazes seremos de atenuar essa piora, eis algo que (ainda) depende da lucidez e da coragem política das sociedades de abandonar os combustíveis fósseis antes que eles nos destruam. Por enquanto, as sociedades deixam-se iludir por seus governos, que se comprometem a diminuir as emissões a cada COP, enquanto mantêm o pé bem fundo no acelerador dos combustíveis fósseis. O relatório de novembro de 2017 da PBL Netherlands Environmental Assessment Agency adverte que, dois anos após a assinatura do Acordo de Paris e um ano após sua entrada em vigor (4/11/2016), dois terços dos países mais emissores de GEE nem se colocaram em marcha na direção de atingir suas metas climáticas compromissadas em Paris (17).
O ano de 2017 foi também o ano em que Donald Trump decidiu abandonar explicitamente o Acordo, enquanto a Alemanha desistiu de suas metas de redução de emissões de GEE para 2020. Como declarou ao The Financial Times Tobias Austrup, do Greenpeace da Alemanha, “isso prejudica a credibilidade da Alemanha, mas prejudica também o inteiro processo internacional sobre o clima. Por que outros países deveriam manter suas metas climáticas se nós não as mantemos?” (18).
De fato, 25 dos 28 países da União Europeia não estão se movendo na direção de cumprir suas próprias metas. Para Femke de Jong, diretor do Carbon Market Watch, “os governantes da União Europeia, que se retratam como líderes climáticos, deveriam colocar seu dinheiro onde está sua boca, tratando de fechar as brechas na legislação climática europeia e pressionando por mais ambição” (19). O Brasil, sétimo maior emissor de GEE do mundo, realizou a proeza do desacoplamento negativo: o PIB diminuiu enquanto as emissões antropogênicas brasileiras de GEE aumentaram 8,9% em 2016 em relação a 2015, “com crescimento expressivo da contribuição do desmatamento na poluição climática gerada pelo país” (20).
Um esforço de guerra sem precedentes
Segundo o que reporta a Reuters do já citado relatório do IPCC, ainda inédito: “Não há precedentes históricos na escala de mudanças requeridas no uso de energia para transitar dos combustíveis fósseis a energias renováveis, e para as reformas na agropecuária e na indústria, de modo a que [o aquecimento médio global] permaneça abaixo do limite de 1,5º C. (…)”
Para desviarmos de nosso curso, seria hoje necessário, portanto, um esforço de guerra maior que qualquer outro já empreendido na história do capitalismo. O que está ocorrendo, contudo, é um esforço de guerra das petroleiras e da rede corporativa dela dependente no sentido de desinformar e manter paralisada nossa civilização termo-fóssil. Eis o último resultado desse esforço: em 2017, as emissões antropogênicas globais de CO2 aumentaram ainda cerca de 2% (entre 0,8% e 3%) e 3,5% na China, com novo incremento do consumo de carvão nesse país (21).
A que distância estamos de uma aceleração irreversível ou mesmo de uma transição abrupta das mudanças climáticas, capaz de condenar a civilização contemporânea a um colapso socioambiental? Não é ainda dado sabê-lo. Mas sabemos que em 2017 diminuíram ainda mais as chances já diminutas de evitar o perigo que motivou o Acordo de Paris, vale dizer, a catástrofe climática de um aquecimento médio global superior a 2º C acima do período pré-industrial, nível que pode desencadear e tornar inelutáveis aquecimentos sucessivos.
Segundo Michael Mann, Robert Jackson e um número crescente de cientistas, essa catástrofe pode-se tornar realidade dentro de dois decênios (22). Por aterrorizante e iminente que seja, tal perspectiva não tem suscitado as “mudanças requeridas no uso de energia” exortadas pelo IPCC. Ao contrário, segundo a Energy Information Administration (EIA), em 2017 o consumo mundial de petróleo ultrapassou 98,39 milhões de barris de petróleo por dia (MMbb/d), contra 96,95 MMbb/d em 2016.
Segundo a Agência Internacional de Energia (AIE), “a demanda por petróleo aumentará nos próximos cinco anos, superando em 2019 o marco simbólico dos 100 MMbb/d e atingindo 104 MMbb/d até 2022” (23)Nos cálculos da EIA, o marco dos 100 milhões de barris por dia será superado já em 2018 (24).
Os jovens, que sofrerão em breve as consequências brutais desse consumo, terão razão de desprezar a atual geração de adultos, a primeira que pode saber cientificamente o que o futuro nos reserva e a última que ainda pode fazer algo para evitá-lo, mas está preferindo deixar um legado de indiferença ou de retóricas tranquilizantes de “desenvolvimento sustentável”. 2017 é o retrato em miniatura desse legado.
[5] A Oscilação Interdecenal do Pacífico (IPO) é uma oscilação de longo prazo (15 a 30 anos) nas temperaturas superficiais do Oceano Pacífico. Embora suas interações com outras variáveis climáticas, tais como a Oscilação Sul do El Niño (ENSO) e a Oscilação Decadal do Pacífico (PDO), não sejam ainda bem entendidas, é sabido que as fases positiva e negativa do IPO afetam a força e a frequência dos fenômenos de El Niño e La Niña. Cf. M. J. Salinger, J.A. Renwick & A.B. Mullan, “Interdecadal Pacific Oscillation and South Pacific climate”. International Journal of Climatology, 30/XI/2001: “O IPO é uma fonte significativa de variação climática nas escalas decenais de tempo em toda região do SO do Pacífico, num contexto que inclui aumentos da temperatura média superficial do planeta”.
[6] Cf. Bob Berwyn, “Europe’s Hot, Fiery Summer Linked to Global Warming, Study Shows”. Inside Climate News, 27/IX/2017: “The summer of 2003 is still the hottest on record for the whole of Europe, although 2017 was hotter in the Mediterranean region”.
[7] Cf. Reinaldo José Lopes e Carlos Fioravanti, “Ondas de calor mais intensas, longas e frequentes”. Revista Pesquisa Fapesp, XII/2017, pp. 26-29.
[8] Cf. Chris Fawkes, “Is climate change making hurricanes worse?”. BBC, 30/XII/2017.
[9] Cf. Cleide Carvalho, “Brasil termina 2017 com número recorde de queimadas desde 1999”. O Globo, 18/XII/2017.
[11] Cf. NOAA, “Coral bleaching during & since the 2014-2017 Global Coral Bleaching Event. Status and an Appeal for Observations”. 16/I/2018.
[12] Cf. Peter J. Gleckler et al., “Industrial-era global ocean heat uptake doubles in recent decades”. Nature Climate Change, 6, 18/I/2016, pp. 394-398.
[13] Cf. Lijing Cheng et al., “Improved estimates of ocean heat content from 1960 to 2015”. Science Advances, 10/III/2017.
[14] O Joule (J) é, aqui, a unidade de energia dissipada como calor quando uma corrente elétrica de um ampere passa pela resistência de um ohm por um segundo. Em termos práticos, é a energia requerida para aumentar a temperatura de 1 ml de água até 0,24 oC.
[15] Cf. Lijing Cheng & Jiang Zhu, “2017 was the Warmest Year on Record for the Global Ocean”.
Advances in Atmospheric Sciences, 34, março, 2018, pp, 261-263.
[16] Cf. Rebecca Lindsey, “Climate Change: Global Sea Level, NOAA, 11/IX/2017: “Sea level continues to rise at a rate of just over one-eighth of an inch (3.4 mm) per year, due to a combination of melting glaciers and ice sheets, and thermal expansion of seawater as it warms”.
[17] Cf. “Two-thirds of major emitting countries not on track to reach Paris climate proposals”. PBL Netherlands Environmental Assessment Agency, 1/XI/2017.
[18] Cf. Akshat Rathi, “If Germany can’t hit its own climate goals to help the world, can anybody else?”. Quartz, 10/I/2018.
[19] Cf. Arthur Neslen, “Only Sweden, Germany and France among EU are pursuing Paris climate goals, says study”. The Guardian, 28/III/2017 e Carbon Market Watch, EU Climate Board. Policy Briefing, III/2017 (em rede).
[21] Cf. Corinne Le Quéré et al., “Global Carbon Budget 2017”. Earth System Science Data, 13/XI/2017: “For 2017, preliminary data indicate a renewed growth in EFF [Emissões de combustíveis fósseis] of +2.0 % (range of 0.8 % to 3.0 %)”. Veja-se também “Analysis: Global CO2 emissions set to rise 2% in 2017 after three-year ‘plateau’, CarbonBrief, 13/XI/2017.
[22] Vejam-se, entre outros, Michael E. Mann, “Earth Will Cross the Climate Danger Threshold by 2036”. Scientific American, 1/IV/2014; R. B. Jackson, P. Friedlingstein, J. G. Canadell, R.M. Andrew, “Two or three degrees: CO2 Emissions and Global Temperature Impacts”. The Bridge on Energy, the Environment, and Climate Change, 3/VII/2015.
[23] Cf. AIE, “Energy Snapshot”, 6/IV/2017.
[24] Cf. EIA, “Short-Term Energy Outlook”, 9/I/2018.
Luiz Marques é professor livre-docente do Departamento de História do IFCH /Unicamp. Pela editora da Unicamp, publicou Giorgio Vasari, Vida de Michelangelo (1568), 2011 e Capitalismo e Colapso ambiental, 2015, 2a edição, 2016. Coordena a coleção Palavra da Arte, dedicada às fontes da historiografia artística, e participa com outros colegas do coletivo Crisálida, Crises Socioambientais Labor Interdisciplinar Debate & Atualização (crisalida.eco.br) – Publicado originalmente no Jornal da Unicamp.
Estima-se que o planeta Terra tem, aproximadamente, 4 bilhões de anos. Durante esse período, ele passou por diferentes transformações que foram divididas em eras geológicas. Essas eras correspondem a grandes intervalos de tempo que foram divididos ainda, em períodos.
Evidências demonstram que, durante todos esses períodos, aconteceu extinção em massa, isto é, o decréscimo da biodiversidade devido à extinção de vários grupos de seres vivos ao mesmo tempo. As causas dessas extinções podem variar, porém, são fortes as evidências que indicam que elas não sejam resultado de um fato isolado, mas da combinação de vários fenômenos. Entre os principais acontecimentos podem ser citados choques de asteroides, erupções vulcânicas, alterações climáticas, entre outros.
A história do clima da Terra mostra que as eras do gelo vêm e vão e são causadas por mecanismos naturais que a humanidade é incapaz de controlar. E que, ao longo da história, a extinção de espécies e mudanças climáticas são comuns.
A raiz de muitos problemas ambientais, se não todos, coloca diante do problema “o tamanho da população humana”. Erroneamente, se diz que a população global tem crescido exponencialmente. No entanto, em uma população que cresce exponencialmente, a taxa de aumento por indivíduo é constante.
Mas, a população humana cresce a uma taxa em aceleração. Mais pessoas significa o aumento por demanda de energia e maior consumo de recursos não renováveis, como combustíveis fósseis, petróleo, carvão e gás natural. Esses combustíveis se originaram a partir de restos de seres vivos que foram se depositando ao longo de milhões de anos em camadas muito profundas da crosta terrestre e transformados pela ação da temperatura e pressão e, em curto prazo de tempo, o homem explora e os queima, liberando para a atmosfera grandes quantidades de carbono, quantidades estas que foram acumuladas há cerca de 65 milhões de anos.
Sem dúvida nenhuma, o uso de combustíveis fósseis tem fornecido energia para transformar grande parte do nosso planeta por meio do desenvolvimento industrial, da agricultura intensiva e da urbanização. Entretanto, é evidente a interferência das ações humanas sobre uma diversidade de problemas ambientais, entre eles, as mudanças climáticas.
A compreensão das mudanças climáticas envolve muitos fatos, a evidência é bastante clara a partir de observações e análises, mas os fatos não são suficientes. O papel dos cientistas é apresentar os fatos, as perspectivas e as consequências, mas a decisão sobre o que fazer com eles envolve todos.
Assim, os valores, a equidade entre nações e gerações, os interesses, o princípio da precaução, a ideologia e muitos outros fatores entram em jogo para decidir se não devemos fazer nada e sofrer as consequências, ou se devemos agir. O fato é que a mudança climática é um problema global com graves implicações: ambiental, social, econômica, política – e representa um dos principais desafios que a humanidade se depara nos dias atuais e, certamente, enfrentará em um futuro não muito distante. Os cientistas têm dois desafios urgentes: avançar no conhecimento científico e envolvê-lo integralmente nas políticas locais, nacionais e globais.
Leila Teresinha Maranho é bióloga, doutora em engenharia florestal e coordenadora do mestrado profissional em biotecnologia industrial da Universidade Positivo (UP).
A importância da água subterrânea pode ser medida por suas reservas em relação às das águas superficiais. Estima-se que, de toda a água existente no mundo, os oceanos e mares representam 97,218%, ficando 2,7861% para toda a água doce existente na Terra. Deste último total, 0,01% são as águas superficiais; 0,05% estão na umidade do solo, 0,62% representa as águas subterrâneas e 2,15% as geleiras. Isto é, a água subterrânea representa 98% de toda água doce disponível.
Pode-se definir a água subterrânea como uma fase do ciclo hidrológico em que a água em subsuperfície encontra-se na zona saturada, em um único ou em sistemas de reservatórios naturais – aquíferos – cuja capacidade e volume total dos poros ou interstícios das rochas estejam repletos de água com capacidade de suprir poços, rios e fontes. Já o revestimento simultâneo (overburden) é um método de perfuração no qual o avanço é acompanhado pelo revestimento simultâneo do poço com utilização de martelos pneumáticos com “bits” que se expandem ao perfurar e que podem ser retraídos, possibilitando sua extração pelo interior do revestimento. Este método é utilizado principalmente na perfuração de poços no aquífero cárstico.
Assim, um poço tubular ou artesiano é aquele onde a perfuração é feita por meio máquinas perfuratrizes à percussão, rotativas e rotopneumáticas. Possui alguns centímetros de abertura (no máximo 50 cm), revestido com canos de ferro ou de plástico. Seus projetos, para oferecer segurança, devem ser executados conforme a norma técnica.
A NBR 12212 (ABNT/NB 588) de 09/2017 – Projeto de poço tubular para captação de água subterrânea — Procedimento estabelece os requisitos para a elaboração de projeto de poço tubular para captação de água subterrânea. Para o desenvolvimento do projeto de captação de água subterrânea por meio de poço ou sistema de poços recomenda-se o conhecimento: do volume a ser explotado em um determinado período; do levantamento planialtimétrico da área de interesse, com a localização dos poços existentes; do potencial hidrogeológico da área.
Isso deve ser feito por meio do levantamento dos dados geológicos; pelo levantamento de dados de poços existentes com indicação de vazão, níveis d’agua e caracterização do (s) aquífero (s). Nos casos de surgência, definir solução técnica compatível dos mapas hidrogeológicos; da identificação e determinação dos locais para a execução da (s) perfuração (ões); da indicação da provável composição físico-química da água; e da caracterização das áreas de risco de contaminação, poluição, grau de vulnerabilidade dos aquíferos. Deve-se também fazer a estimativa do número de poços a constituir o sistema para viabilizar o atendimento.
Para o desenvolvimento do projeto de captação de água subterrânea por meio de poço ou sistema de poços, os elementos a considerar são: estudos, planejamentos e projetos existentes correlacionados (desnível geométrico a ser vencido, potência e porte do equipamento a ser instalado, distância do poço ao ponto de lançamento da água); estudo de disponibilidade de infraestrutura para viabilizar a utilização do poço (energia elétrica, adução, acesso à área do poço, urbanização da área do poço, segurança das instalações); legislação relativa ao uso e ocupação do solo na área de recarga dos aquíferos; condições mínimas de segurança e medicina do trabalho conforme legislação vigente; legislações pertinentes vigentes; e critérios, procedimentos e diretrizes da contratante complementares a esta norma.
O projeto de poço tubular para captação de água subterrânea deve compreender os seguintes itens: definir o método de perfuração; locação topográfica do poço (coordenadas georreferenciadas e cotas); previsão da coluna estratigráfica a ser perfurada; previsão do (s) aquífero (s) a ser (em) explotado (s), tipo e geometria, e do nível piezométrico; previsão da capacidade específica e expectativa da vazão do poço; avaliação da composição físico-química da (s) água (s) do (s) aquífero (s); definição das profundidades estimadas do poço; previsão de execução de perfilagem geofísica, que compreende a perfilagem elétrica, radioativa, acústica e mecânica em formações sedimentares, contribuindo para a determinação de camadas produtivas e improdutivas, indicando o correto posicionamento das seções de filtros na coluna de revestimento.
Tudo isso pode ser feito com a perfilagem elétrica – potencial espontâneo, resistividade, indução; a perfilagem radioativa – raios gama, neutrônico, gama-gama; a perfilagem acústica – sônico; a perfilagem mecânica – caliper. Deve-se fazer a definição dos métodos de aferição da verticalidade e alinhamento do poço e saber das recomendações de procedimentos para controle e monitoramento da explotação, para manter as condições projetadas para o poço e aquífero (s).
Os seguintes elementos devem compor o projeto. Um memorial descritivo e justificativo, contendo os estudos, levantamentos e cálculos realizados e as peças gráficas do projeto, em escalas adequadas, que devem apresentar o seguinte: o desenho do poço e o perfil geológico; planta planialtimétrica com a localização do (s) poço (s) com as informações levantadas, a locação do (s) poço (s) projetado (s), a indicação do ponto de lançamento da água captada.
Igualmente, deve ser feita uma relação e especificações técnicas dos tipos de materiais aplicados no revestimento com especificação dos diâmetros, espessuras de parede, conexões.
Para os filtros, indicar o material, a abertura e a porcentagem de área aberta, e estabelecer a resistência que terá que suportar; a relação e especificação dos serviços de perfuração, de cimentações, do fluido de perfuração, da perfilagem geofísica, da aplicação da coluna de revestimento, da aplicação do pré-filtro, do desenvolvimento do poço, do teste de verticalidade e alinhamento, do teste de bombeamento, da desinfecção e da laje de proteção sanitária.
Deve ser incluído o orçamento detalhado das obras, conforme etapas definidas à implantação. Quando o projeto abranger o bombeamento e a adução, devem ser atendidas as NBR 12214 e NBR 12215, respectivamente. O projeto de explotação do poço deve assegurar vazão contínua e constante sem prejuízo da qualidade e do volume da água. A vazão deve ser controlada e monitorada como parcela do recurso hídrico durante a vida útil do poço, pelo responsável pela captação, pela outorga, pelos recursos hídricos ou a quem for de responsabilidade.
O perímetro de proteção do poço deve ser definido considerando as características hidrogeológicas da região e particularidades locais, com o objetivo de proteger o aquífero. Deve ser emitido um laudo técnico fundamentado com as condições de proteção, quando necessário. A área de entorno do poço deve ser protegida com base em alvenaria e/ou concreto, tela, cerca ou outro dispositivo que impeça o acesso de pessoas não autorizadas, e com área mínima que permita acesso, operação, manutenção e/ou ampliação futura do poço.
Para o selo sanitário ou proteção sanitária, deve-se preencher o espaço anular entre a parede da perfuração e a coluna de revestimento com concreto, com espessura mínima de 75 mm, com a finalidade de preservar a qualidade das águas subterrâneas e de as proteger contra contaminantes e infiltrações de superfície. A profundidade mínima depende da geologia local, sendo recomendada no mínimo 20 m.
No caso de presença de rochas cristalinas inalteradas em profundidade inferior à recomendada, dependendo das características do local, esta profundidade pode ser diminuída. Para prevenir riscos de contaminação, o poço deve ser selado em toda a extensão necessária ao isolamento, utilizando mistura de água e cimento ou pellets de argila expansiva ou outra técnica que evite a percolação de águas superiores pela parede externa do revestimento.
O processo de selamento utilizado deve permitir o fechamento de espaço anular concêntrico ao revestimento. Para o selamento previsto com cimento ou argamassa, devem ser indicados a densidade da pasta nos trechos a serem cimentados e o tempo de pega adequada para a instalação. O selamento do espaço anular entre a perfuração e a coluna de revestimento com tubos deve ser realizado com o isolamento por meio do preenchimento do espaço anular entre a perfuração e a coluna de revestimento com tubos, com composto à base de cimento e/ou pellets de argila expansiva, ou outra técnica que evite a percolação de águas superiores pela parede externa do revestimento, quando necessário isolar um trecho da formação geológica perfurada.
O diâmetro e a profundidade da perfuração são determinados pela vazão de projeto, disponibilidade hídrica e geologia local. Para formação geológica em rocha sedimentar, o diâmetro da perfuração deve sempre levar em conta o diâmetro dos tubos e filtros a serem instalados, sendo recomendado um espaço anular mínimo de 75 mm, para possibilitar a livre descida da coluna de revestimento, aplicação do pré-filtro e um selamento seguro.
Na perfuração de poço, pode ser alternativa a realização de furo-guia e de seu alargamento. Para formação geológica em rocha cristalina, se faz necessário respeitar o diâmetro de perfuração somente na porção de cobertura e/ou de alteração destas rochas, conforme recomendado, não havendo a necessidade de se executar o furo considerando o espaço anular do revestimento ao atingir rocha inalterada. A perfuração pode ser realizada em diâmetro de poço mínimo de 4” e máximo de 22”.
A distância entre poços deve ser baseada na hidrogeologia local, levando em conta o raio de influência dos poços, para evitar interferência entre eles. No caso de projetos de sistemas de poços, são recomendáveis o planejamento e o gerenciamento das interferências. O diâmetro nominal do poço é determinado pelo diâmetro interno do revestimento.
Na definição do diâmetro devem ser consideradas as características do conjunto de bombeamento, dos cabos e das peças acessórias, e sua profundidade de instalação. É recomendado o diâmetro nominal mínimo de 150 mm, sendo tolerados, os diâmetros de 125 mm e 100 mm, em condições especiais, para poços de pequena vazão.
É recomendado o diâmetro nominal mínimo que permita a utilização dos equipamentos de bombeamento disponíveis e possibilite o bombeamento da vazão de projeto. A extensão da zona de captação deve ser dimensionada para atender à vazão de projeto. Para um aproveitamento eficiente de aquíferos livres, é recomendável a penetração total do poço e a aplicação de filtros no terço inferior da formação aquífera.
Para um aproveitamento eficiente de aquíferos confinados, é recomendável a penetração em toda a sua espessura, prevendo-se a colocação de filtros na máxima extensão, conforme o caso. Para um aproveitamento eficiente de aquíferos semiconfinados, devem ser aplicados os filtros apenas nos intervalos permoporosos, detectados pela descrição das amostras de calha, e é recomendável a realização da perfilagem geofísica.
O revestimento deve ser especificado quanto à natureza, resistência mecânica, corrosão, estanqueidade das juntas, facilidade de manuseio na colocação, resistência às manobras de operação e manutenção do poço. Na execução do revestimento pode ser aplicado o método do revestimento simultâneo (overburden). Em poços parcialmente revestidos, o revestimento deve avançar o suficiente para permitir a estanqueidade na transição da formação inconsolidada para a consolidada.
Devem ser aplicados centralizadores a intervalos regulares, de modo a permitir a centralização entre o diâmetro perfurado (parede do poço) e o revestimento. O tubo de revestimento deve ser especificado conforme as NBR 5590, NBR 6925, NBR 6943, NBR 13604, DIN 2440, DIN 2442, DIN 4925, API 5 A, API 5Ax, API 5 Ac, API 5B, API 5 L e ASTM A 53. O desenvolvimento deve ser realizado para se obter uma melhor eficiência hidráulica do poço. Deve possibilitar a remoção do reboco e do material mais fino da formação aquífera em seu entorno, recuperar a porosidade e permeabilidade do aquífero, permitir captar água isenta deste material. Os parâmetros constantes na tabela abaixo são indicadores usuais da ação corrosiva ou incrustante.
Os métodos de desenvolvimento utilizados em poços totalmente revestidos a serem aplicados são: métodos hidráulicos – superbombeamento, jateamento, bombeamento com ar comprimido, lavagem e retrolavagem; métodos mecânicos – pistoneamento, pistoneamento associado ao ar comprimido; outros métodos – produtos químicos, fraturamento hidráulico, gelo seco. O poço concluído deve ser mantido com tampa e lacrado até a instalação do equipamento de bombeamento. A emissão de relatório conclusivo sobre a potencialidade hidrogeológica do poço e da viabilidade de atendimento ao já especificado.
Quando do abandono de um poço, este deve ser tamponado e lacrado conforme legislação vigente ou procedimentos estabelecidos. Apresentar as análises físico-química e bacteriológica. Instalar o barrilete e o registro nos poços surgentes para impedir o desperdício de água. O nível zero de referência (0 m) adotado nas medições de nível estático, dinâmico, perfurações, revestimentos e perfilagens deve ser indicado em relação a que estrutura está referenciado.
Pode-se dizer que a mineração abrange todos os processos e atividades industriais que têm por finalidade a extração de substâncias minerais do solo, a partir da perfuração ou contato com áreas de depósitos ou massas minerais. A atividade se relaciona com todos os fenômenos sociais e estão ligadas com todas as questões de crescimento e desenvolvimento do país, entretanto, muito se debate e muitas são as críticas sobre esse tipo de atividade, já que seus impactos ambientais foram sempre problemáticos, bem como a exploração indiscriminada que culmina na queda do potencial de produção e acesso a alguns tipos de materiais, que tem seu desenvolvimento bastante lento e controlado.
Assim, a mineração no Brasil é a atividade responsável por quase 5% do PIB nacional e é capaz de oferecer produtos que são utilizados em indústrias bem diversificadas, tais como metalúrgicas, fertilizantes, siderúrgicas e, principalmente as petroquímicas. Acontece que os impactos ambientais desse segmento são tão fortes que grande parte dos investimentos são voltados para essa parte do mercado.
Os efeitos ambientais negativos da extração mineral (mineração e lavra garimpeira) estão associados às diversas fases de exploração dos bens minerais, desde a lavra até o transporte e beneficiamento do minério, podendo estender-se após o fechamento da mina ou o encerramento das atividades. A mineração altera de forma substancial o meio físico, provocando desmatamentos, erosão, contaminação dos corpos hídricos, aumento da dispersão de metais pesados, alterações da paisagem, do solo, além de comprometer a fauna e a flora. Afeta, também, o modo de viver e a qualidade de vida das populações estabelecidas na área minerada e em seu entorno.
Para diminuir esses problemas, as mineradoras devem obedecer às normas técnicas. Se não vai solucionar os impactos, pode pelo menos suavizar os aspectos negativos da mineração sobre a vida das populações para que eles não prevaleçam somente durante o tempo de vida útil de uma mina. A NBR 12649 de 09/1992 – Caracterização de cargas poluidoras na mineração fixa diretrizes exigíveis para a caracterização do potencial poluidor e modificador, das atividades da mineração, nas suas diferentes etapas, a partir da análise dos parâmetros de qualidade da água, para orientar no controle e na possível instalação da explotação mineral.
A NBR 13028 (ABNT/NB 1464) de 09/2006 – Mineração – Elaboração e apresentação de projeto de barragens para disposição de rejeitos, contenção de sedimentos e reservação de água especifica os requisitos mínimos para elaboração e apresentação de projeto de barragens para disposição de rejeitos de beneficiamento, contenção de sedimentos e reservação de água, em mineração, visando atender às condições de segurança, operacionalidade, economicidade e desativação, minimizando os impactos ao meio ambiente. Aborda todos os aspectos contidos nas legislações federal, estadual e local, associados a seu uso. É de responsabilidade do usuário desta norma, em caso de eventuais conflitos de procedimentos normativos, estabelecer as práticas apropriadas para cada caso, em conformidade com as legislações vigentes e com a boa prática da engenharia.
Deve-se fornecer informações básicas sobre: o empreendedor: identificação e endereço; o projeto: localização, acesso, finalidade, vida útil operacional da barragem e características do rejeito a ser disposto e volumes do maciço e reservatório; o sistema extravasor; e a forma de lançamento do rejeito no reservatório.
Informar as características físicas que definem a barragem projetada, incluindo: altura final, elevações de base e de crista, comprimento e largura da crista, ângulo de talude geral, altura das bancadas, largura de bermas, ângulos de taludes entre bermas, altura dos taludes entre bermas, volumes do maciço e reservatório, vida útil operacional, área ocupada pelo reservatório e área de desmatamento.
Importante fornecer os dados relativos ao maciço, tais como: elementos geométricos, materiais a serem utilizados na sua construção, dados de locação, sequência executiva, acessos provisórios para construção e definitivos para manutenção e acabamentos. Recomenda-se que sejam empregados revestimentos de proteção dos taludes e plataformas que possam se integrar ao meio ambiente, tendo em vista a futura desativação.
O projeto do maciço deve considerar os seguintes critérios: os taludes entre bermas devem ser construídos para inclinações que garantam os fatores de segurança recomendados; as bermas devem ter largura suficiente para atender às considerações de drenagem e instalação de instrumentos e garantir o acesso dos equipamentos de manutenção com segurança; para a seção considerada crítica, o ângulo geral da barragem deve ser tal que atenda aos fatores de segurança recomendados.
Os seguintes fatores de segurança devem ser considerados para análises de estabilidade, em termos de tensões efetivas: ruptura do talude geral de jusante: superfície freática normal: fator de segurança mínimo de 1,50; superfície freática crítica: fator de segurança mínimo de 1,30; ruptura do talude geral de montante: nível normal de operação da lâmina d’água normal: fator de segurança mínimo de 1,50; rebaixamento rápido da lâmina d’água, quando houver: fator de segurança mínimo de 1,10; ruptura do talude entre bermas: fator de segurança mínimo de 1,50.
Para análises de estabilidade em termos de tensões totais, os fatores de segurança devem ser estabelecidos no projeto. Deve-se ter os dados relativos às estruturas do sistema extravasor, tais como: os elementos geométricos, os materiais a serem utilizados na sua construção, os dados de locação, a sequência executiva e os acabamentos necessários.
Recomenda-se observar os seguintes critérios gerais quando do projeto do sistema extravasor: durante a operação das barragens ou sua construção por etapas, considerar vazão efluente calculada para tempo mínimo de recorrência de 500 anos, verificado para 1.000 anos, sem borda livre; para desativação, considerar a vazão efluente calculada com base na precipitação máxima provável (PMP), sem borda livre.
A NBR 13029 (ABNT/NB 1465) de 07/2017 – Mineração – Elaboração e apresentação de projeto de disposição de estéril em pilha especifica os requisitos mínimos para a elaboração e apresentação de projeto de pilha para disposição de estéril gerado por lavra de mina a céu aberto ou de mina subterrânea, visando atender às condições de segurança, operacionalidade, economia e desativação, minimizando os impactos ao meio ambiente. Não pretende abordar todos os aspectos das legislações federal, estadual e local, associados a seu uso. É de responsabilidade do usuário desta Norma, em caso de eventuais conflitos de procedimentos normativos, estabelecer as práticas apropriadas para cada caso, em conformidade com as legislações vigentes e com a boa prática da engenharia.
É importante conhecer algumas definições sobre o assunto. O estéril de mina é todo e qualquer material não aproveitável economicamente, cuja remoção se torna necessária para a lavra do minério; o rejeito é todo e qualquer material descartado durante o processo de beneficiamento de minérios; e a disposição de estéril em pilha é a formação de pilhas com o estéril de forma planejada, projetada e controlada. A ficha técnica da pilha deve informar as características físicas que definem a pilha de estéril projetada, incluindo altura final, elevações de base e de crista, ângulo de talude geral, altura das bancadas, largura de berma, ângulos de taludes entre bermas, capacidade volumétrica, vida útil operacional, área ocupada e área de supressão vegetal.
Os estudos locacionais devem descrever as opções locacionais estudadas, de forma comparativa, justificando a escolha feita para o projeto executivo. Para a caracterização química do estéril, deve-se descrever e analisar tecnicamente os resultados dos ensaios de caracterização química dos estéreis a serem dispostos. Os materiais devem ser amostrados, caracterizados e classificados segundo as NBR 10004, NBR 10005, NBR 10006 e NBR 10007. Recomenda-se ainda que seja avaliado o potencial de geração de drenagem ácida e lixiviação neutra.
Cabe destacar que a caracterização química do estéril também é elemento condicionante para o projeto de tratamento de fundação. Na ausência de legislação específica, as pilhas que armazenam estéreis classificados como perigosos demandam a implementação de revestimento de características impermeabilizante. Já os estéreis classificados como classe 2A (não perigosos e não inertes) demandam avaliações hidrogeológica e hidrogeoquímica integradas ao projeto da pilha (incluindo caracterização e definição dos valores de referência prévios à implantação do empreendimento), visando verificar as vulnerabilidades do aquífero e definir a necessidade e o tipo de revestimento e/ou controle a ser aplicado ao projeto.
Já os estéreis inertes, não são considerados contaminantes e, deste modo, não possuem potencial para afetar de forma negativa o meio ambiente nem a saúde humana, não demandando assim qualquer tipo de revestimento. As fundações devem apresentar os principais resultados das investigações e ensaios de campo e de laboratório realizados para se conhecerem as características geotécnicas dos materiais constituintes e das condições hidrogeológicas das fundações da pilha e para elaborar o projeto de tratamento das fundações e as análises estruturais da pilha, como estabilidade, adensamento e percolação.
Quanto ao estéril, deve-se descrever os materiais formadores da pilha e suas características geotécnicas, como procedência geológica, granulometrias, grau de alteração e de consistência, visando avaliar e estimar densidades dos materiais e determinar os parâmetros de resistência ao cisalhamento que devem ser utilizados nos cálculos de estabilidade do projeto. No projeto geométrico devem ser indicados todos os elementos geométricos do arranjo geral da pilha de estéril, informando os dados de locação necessários para sua implantação.
O projeto deve considerar os seguintes critérios: os taludes entre bermas devem ser conformados para inclinações que garantam os fatores de segurança recomendados; as bermas devem ter largura suficiente para atender às considerações de drenagem e garantir o acesso dos equipamentos de manutenção com segurança; para a seção considerada crítica, o ângulo geral da pilha deve ser tal que atenda aos fatores de segurança. Apresentar os critérios de dimensionamento da drenagem interna, assim como suas locações, geometria dos drenos e das transições, além das especificações dos materiais a serem utilizados.
O dimensionamento do sistema de drenagem interna deve considerar as características dos materiais de construção dos drenos, de fundação e dos materiais estéreis que irão compor a pilha. A drenagem interna deve ser dimensionada em função das vazões medidas ou calculadas na área de implantação da pilha. Essas vazões devem ser tomadas como referência, sendo recomendável aplicar um fator de segurança mínimo conforme tabela abaixo.
Clique na figura para uma melhor visualização
As análises de estabilidade devem ser realizadas nas seções críticas da pilha com relação à altura, características de fundação e condições de percolação, bem como os parâmetros de resistência obtidos com os estudos geológico-geotécnicos. Os seguintes fatores de segurança devem ser considerados: ruptura do talude geral: superfície freática normal: fator de segurança mínimo de 1,50; superfície freática crítica: fator de segurança mínimo de 1,30; ruptura do talude entre bermas: face predominante de solo: fator de segurança mínimo de 1,50; face predominante de rocha: fator de segurança mínimo de 1,30.
Os seguintes documentos devem estar anexados ao relatório: relatório das investigações geotécnicas de campo e de laboratório; todas as memórias de cálculo e critérios de projeto utilizados; planilha de quantidades e serviços das obras civis; especificações técnicas construtivas, incluindo os critérios de formação da pilha de estéril e definição das etapas marco de sequenciamento; manual de operação da estrutura, incluindo procedimentos de inspeção de campo e monitoramento (indicando os elementos a serem monitorados, a frequência da inspeção de campo e das leituras dos instrumentos e os critérios de análise dos dados obtidos) e atendimento a eventuais situações de emergência.
Em resumo, pode-se dizer que os rejeitos são materiais descartados provenientes das plantas de beneficiamento de minério, sendo que as estruturas para sua disposição são pensadas de modo a conter e depositar inúmeros tipos de resíduos. Por estéril entende-se os materiais que não podem ser aproveitados, com pouco ou nenhum mineral útil, e que são costumeiramente descartadas ainda nos processos de lavra. Por não possuírem qualquer valor ou benefício mineral, esse descarte pode até mesmo ser definitivo.
Todo e qualquer resíduo, seja rejeito ou estéril, deve ser disposto com planejamento. A escolha do local, por exemplo, deve ser feita seguindo dados comprobatórios de que o terreno é adequado e ideal para tal disposição. A disposição do material estéril e rejeitos leva em conta análises geotécnicas e deve prever ações corrosivas a fim de evitá-las.
Em geral, pilhas de rejeitos sólidos, lamas, resíduos e rejeitos da mineração artesanal ou voltada à construção civil, entre outros podem ser dispostos de diferentes formas. Cada uma delas, é claro, apresenta muitas vantagens e desvantagens entre si valendo a pena uma análise mais profunda e segura para uma decisão satisfatória.
O método de montante é menos custoso, possui uma alta velocidade de alteamento, facilitando assim a operação e podendo até mesmo ser construído em terrenos íngremes. Por outro lado, e infelizmente, este também é o método com menor segurança. Existem riscos associados a vibrações naturais ou causados por equipamentos e máquinas que podem vir a trazer prejuízo para a disposição. Uma característica marcante deste método que vale destacar ainda é a construção de diques ao redor do local destinado a receber as sedimentações.
O método de jusante possui dreno e dique e os rejeitos inseridos nele são ciclonados. Sua principal vantagem é a eficiência que possibilita um controle mais certeiro sobre as superfícies freáticas, além disso, é também uma operação bem simples. Outro ponto favorável a este método é que ele possibilita a compactação da barragem como um todo e tem uma maior segurança por seus controles mais pontuais. Entre as suas desvantagens estão a necessidade de altos níveis de rejeitos ainda nas fases iniciais de construção e é imprescindível a utilização de sistemas eficientes de drenagem.
O método da linha de centro é considerado como o método de solução intermediária para a disposição de rejeitos, até mesmo em termos de custos, mantém-se como um meio termo às alternativas anteriormente citadas. Suas vantagens são claras e bem objetivas, dentre elas destacam-se a facilidade na hora de construir o sistema, os eixos de alteamento que são constantes e a redução do volume que é necessário na técnica jusante. Dentre as desvantagens destaca-se o fato de que o método precisa de uma drenagem eficiente junto a um eficaz método de contenção, é uma operação um pouco mais completa e também exige bons investimentos.
A disposição subterrânea destina-se a rejeitos de cunho permeável, alta rigidez e pouca compressibilidade, a disposição subterrânea é indicada para minérios que não possuem potencial risco ao meio ambiente visto que estes, por sua vez, podem prejudicar ao contaminar águas e solos, por exemplo. Esse tipo de rejeito pode até mesmo ser injetado diretamente na cava da mina, a fim de ser reinserido ao processo.
Por fim, a disposição em pilhas controladas que retira a água dos rejeitos, sendo possível alocá-los em pilhas destinadas a locais mais adequados. Neste modelo de disposição, é essencial tomar o cuidado de separar toda a parte argilosa do material, a fim de reduzir qualquer tipo de erro ou acidente. A maior vantagem deste método é ambiental. Ao optar por esta técnica pouco se impacta diretamente na natureza.
O projeto de reabilitação de área degradada necessariamente deve exibir algumas características. Por exemplo, atender às exigências de qualidade ambiental da área após reabilitada, fixando previamente a qualidade, compondo o cenário comportamental da área reabilitada e, a seguir, concebendo e desenvolvendo soluções para alcançar tal resultado. Incluir sempre justificação fundamentada das ações e dispositivos integrantes do projeto. Utilizar amplamente as características constitutivas e comportamentais do sistema ambiental local, em todos os aspectos de que dependam a economicidade da reabilitação, sua eficácia quanto à estabilidade dos resultados e o desempenho futuro da área reabilitada.
Caso haja a construção de pilhas de estéril e/ou barragens de contenção de rejeitos, a orientação deve ser seguida de acordo com as NBR 13028 e NBR 13029, atendendo inclusive a aptidão, o uso futuro da área e a conformação topográfica e paisagística da área. Os itens para elaboração e apresentação de projeto de reabilitação de áreas degradadas constantes no anexo A devem contemplar atividades de controle ambiental nas fases de planejamento, implantação, lavra, suspensão temporária ou definitiva e abandono do empreendimento. Nos casos de empreendimentos em operação e sujeitos a licenciamento ambiental corretivo, nas minas com atividades paralisadas ou reservas exauridas, o projeto de reabilitação de áreas degradadas deverá ser elaborado em nível de projeto executivo fundamentado no anexo A.
Além dessas normas técnicas, existem outras: a NBR 13744 de 11/1996 – Cianetos – Processo de destruição em efluentes de mineraçãoespecifica características dos processos de destruição de cianetos, visando fornecer subsídios à elaboração de projetos de tratamento de efluentes de mineração, atendendo aos padrões legais vigentes, condições de saúde ocupacional e segurança, operacionalidade, economicidade, abandono e minimização dos impactos ao meio ambiente. A NBR 14062 de 04/1998 – Arsênio – Processos de remoção em efluentes de mineração específica as características dos processos de remoção de arsênio, visando fornecer subsídios à elaboração de projetos de tratamento de efluentes de mineração atendendo aos padrões legais vigentes, condições de saúde ocupacional, segurança, operacionalidade, economicidade, abandono e minimização dos impactos ao meio ambiente.
A NBR 14063 de 04/1998 – Óleos e graxas – Processos de tratamento em efluentes de mineração caracteriza processos de remoção de óleos e graxas, de origem mineral, visando fornecer subsídios à elaboração de projetos de tratamento de efluentes de mineração, atendendo aos padrões legais vigentes (máximo de 20 mg/L), às condições de saúde ocupacional e segurança, operacionalidade economicidade, abandono e minimização dos impactos ao meio ambiente. A NBR 14247 de 12/1998 – Sulfetos – Processos de tratamento em efluentes de mineração especifica as características dos processos de remoção de sulfetos, visando fornecer subsídios à elaboração de projetos de tratamento de efluentes de mineração, atendendo aos padrões legais vigentes, condições de saúde ocupacional, segurança, operacionalidade, economicidade, abandono e minimização dos impactos ao meio ambiente. Por fim, a NBR 14343 de 06/1999 – Bário solúvel – Processo de remoção em efluentes de mineraçãoespecifica as características de processo de remoção de bário solúvel em efluentes, visando fornecer subsídios à elaboração de projetos de tratamento de efluentes de mineração, atendendo aos padrões legais vigentes, condições de saúde ocupacional, segurança, operacionalidade, economicidade, abandono e minimização dos impactos ao meio ambiente.
Mineração na Amazônia
Exploração de minérios traz mais perdas que ganhos e enfraquece a conservação de áreas naturais, afirmam especialistas.
Em uma área equivalente ao Estado do Espírito Santo, com 46,5 mil km², a Reserva Nacional do Cobre e seus Associados (Renca) terá espaço suficiente para abrigar impactos que grande parte da população desconhece. Segundo o economista, membro da Rede de Especialistas em Conservação da Natureza e coordenador do Grupo de Economia do Meio Ambiente (GEMA) da UFRJ, Carlos Eduardo Young, o primeiro problema é a falta de debate com a sociedade, entre muitos outros. “A mineração pouco contribui para a inclusão social, pois são poucos os empregos locais gerados. Os trabalhadores que chegarem na região trarão junto problemas clássicos desse tipo de empreendimento: doenças, violência, alcoolismo, prostituição e ruptura de estruturas sociais nas comunidades estabelecidas”.
Outra questão levantada por Young é o modelo seguido pela economia brasileira, cada vez mais dependente da agropecuária e da mineração. “Estamos buscando matérias-primas e energia sem considerar os custos socioambientais. Isso reforça a exclusão social, pois os benefícios são concentrados em um pequeno grupo de pessoas, mas a degradação ambiental é deixada para todos nós, sem distinção”, ressalta o economista, que faz uma análise ampla do governo: “a visão (falaciosa) de que crescimento econômico e preservação ambiental são essencialmente antagônicos ainda prevalece junto aos tomadores de decisão”.
Junto a essas ações, o meio ambiente também será fortemente atingido, direta e indiretamente. A necessidade da construção de vias para escoamento mineral e rodovias para acesso aos locais de exploração poderão causar grande impacto em áreas de floresta hoje altamente preservadas.
De acordo com o engenheiro agrônomo, coordenador de Ciência e Informação da Fundação Grupo Boticário de Proteção à Natureza, Emerson Oliveira, por mais que exista a promessa de que as duas Terras Indígenas e as sete Unidades de Conservação localizadas na Renca não sejam exploradas, elas irão sentir, de alguma forma, as consequências dessa atividade. “Quando começarem os trabalhos de mineração, tanto a ocupação humana como o escoamento dos recursos vão, sim, afetar a biodiversidade local. O impacto ambiental será inevitável e significativo, não resta dúvida”, afirma.
A primeira ação, de acordo com o Governo, será de pesquisa e levantamento do potencial da região. Estudos geológicos preliminares indicam que a área é rica em ouro, manganês, ferro e outros minérios de alto valor econômico. Oliveira lembra que para a mineração do ouro, por exemplo, é utilizado mercúrio no processo do garimpo, elemento altamente tóxico e cancerígeno, cuja utilização pode comprometer toda a cadeia de organismos aquáticos que, por sua vez, acaba consumida por predadores e até mesmo pelas pessoas. Isto é, como o peixe é base da dieta na região, a sua contaminação coloca em risco a saúde dos ribeirinhos, dos indígenas e até mesmo da população urbana da região. “Não existe atividade de mineração como essa sem impacto, ainda mais no interior de formações florestais especialmente frágeis e complexas como as que ocorrem naquela região, variando desde áreas montanhosas até planícies e ecossistemas de várzeas e igapós”, analisa.
O Brasil e outros mais de 150 países ratificaram o Acordo de Paris de 2015 e se comprometeram a reduzir a emissão de gases que intensificam o aquecimento global. Uma das metas dos compromissos nacionais é zerar o desmatamento ilegal na Amazônia até 2030, objetivo que, na opinião de André Ferretti – gerente da Fundação Grupo Boticário, membro da Rede de Especialistas em Conservação da Natureza e coordenador geral do Observatório do Clima, é importante, mas não suficiente. Ele pontua dois principais motivos para essa insatisfação: “O primeiro é que não podemos esperar até 2030 e passar mais 13 anos perdendo a riqueza natural da Amazônia; só de agosto de 2015 a julho de 2016 foram 7.893 km² desmatados. Segundo, o melhor para a sociedade brasileira é acabar com a degradação de todos os biomas, incluindo o Cerrado que tem atualmente taxas de desmatamento acima das da Amazônia”, pontua André.
O ideal é que os países comprometidos promovam mudanças para que o aumento da temperatura na terra não supere 1,5°C. O Brasil foi protagonista nas negociações que concretizaram o Acordo de Paris e se comprometeu a reduzir em 37% as emissões de gases de efeito estufa até 2025; 43% até 2030, em relação às emissões de 2005; e zerar o desmatamento ilegal na Amazônia até 2030, meta essa que não parece estar sendo cumprida. De acordo com Ferretti, com as constantes reduções de áreas protegidas e o aumento do desflorestamento, o Brasil está longe dos objetivos assinados no Acordo de Paris. “A relação entre o desmatamento, a floresta e o clima é real e nos afeta diariamente. Não podemos perder o trem da história, pois o custo será o futuro de nossa e das próximas gerações”, analisa.
A busca por soluções na área de resíduos reflete a demanda da sociedade que pressiona por mudanças motivadas pelos elevados custos socioeconômicos e ambientais. Se manejados adequadamente, os resíduos sólidos adquirem valor comercial e podem ser utilizados em forma de novas matérias-primas ou novos insumos. A implantação de um plano de gestão pode trazer reflexos positivos no âmbito social, ambiental e econômico, pois não só tende a diminuir o consumo dos recursos naturais, como proporciona a abertura de novos mercados, gera trabalho, emprego e renda, conduz à inclusão social e diminui os impactos ambientais provocados pela disposição inadequada dos resíduos.
Por exemplo, a coleta seletiva é a diferenciada de resíduos que foram previamente separados segundo a sua constituição ou composição. Ou seja, resíduos com características similares são selecionados pelo gerador (que pode ser o cidadão, uma empresa ou outra instituição) e disponibilizados para a coleta separadamente. Cada tipo de resíduo tem um processo próprio de reciclagem. Na medida em que vários tipos de resíduos sólidos são misturados, sua reciclagem se torna mais cara ou mesmo inviável, pela dificuldade de separá-los de acordo com sua constituição ou composição. O processo industrial de reciclagem de uma lata de alumínio, por exemplo, é diferente da reciclagem de uma caixa de papelão.
A NBR 13221 de 04/2010 – Transporte terrestre de resíduos especifica os requisitos para o transporte terrestre de resíduos, de modo a minimizar danos ao meio ambiente e a proteger a saúde pública. Esta norma especifica os requisitos para o transporte terrestre de resíduos perigosos, conforme classificados nas instruções complementares do Regulamento para o Transporte Rodoviário de Produtos Perigosos (RTPP) aprovado pelo Decreto 96.044, inclusive aqueles que possam ser reaproveitados, reciclados e/ou reprocessados, e os provenientes de acidentes. Esta norma pode ser aplicada também aos resíduos perigosos segundo a definição da Convenção da Basiléia (Decreto 875:1993 e Resolução Conama 23:1996).
Pode-se definir a segregação como a separação total entre o compartimento da carga e o habitáculo do condutor, por meio de uma barreira física que impeça o contato/contaminação entre as pessoas e a carga. O transporte deve ser feito por meio de veículo e/ou equipamento adequado, obedecendo às regulamentações pertinentes. O estado de conservação do equipamento de transporte deve ser tal que, durante o transporte, não permita vazamento ou derramamento do resíduo. O resíduo, durante o transporte, deve estar protegido de intempéries, assim como deve estar devidamente acondicionado para evitar o seu espalhamento na via pública ou via férrea.
Os resíduos não podem ser transportados juntamente com alimentos, medicamentos ou objetos destinados ao uso e/ou consumo humano ou animal, ou com embalagens destinadas a estes fins. O transporte de resíduos deve atender à legislação ambiental específica (federal, estadual ou municipal), quando existente, bem como deve ser acompanhado de documento de controle ambiental previsto pelo órgão competente, devendo informar o tipo de acondicionamento, como exemplos do Anexo A. Caso seja usado o código E08-Outras Formas, deve ser especificada a forma utilizada de acondicionamento.
Para resíduos gerados em acidentes durante o transporte, a sua remoção do local do acidente até seu primeiro destino pode ser feita isentando-se das exigências, podendo continuar com a documentação original da carga. A descontaminação dos equipamentos de transporte, quando necessária, deve ser realizada em local (is) autorizado (s) pelo órgão competente.
No caso de manuseio e destinação adequada de resíduos, deve ser verificada a classificação discriminada na NBR 10004. No caso de armazenamento de resíduos perigosos, deve ser verificada a NBR 12235. Os resíduos de serviços de saúde devem atender também às NBR 12807, NBR 12808, NBR 12809 e NBR 12810. Esta Norma não se aplica aos materiais radioativos e aos transportes aéreo, hidroviário e marítimo, assim como ao transporte interno, numa mesma área, do gerador.
Todo o transporte por meio terrestre de resíduos perigosos deve obedecer às instruções complementares do Regulamento para o Transporte Rodoviário de Produtos Perigosos (RTPP) aprovado pelo Decreto 96.044 e às Normas Brasileiras referentes ao assunto. A classificação do resíduo deve atender às instruções complementares do Regulamento para o Transporte Rodoviário de Produtos Perigosos (RTPP) aprovado pelo Decreto 96.044, de acordo com as exigências prescritas para a classe ou subclasse apropriada, considerando os respectivos riscos e critérios.
Porém, se o resíduo não se enquadrar em nenhum dos critérios estabelecidos pelas classes de risco de 1 a 9, mas for resíduo classificado como perigoso pela Convenção da Basiléia e/ou classe I pela NBR 10004, pode ser transportado como pertencente à classe 9 (Números ONU 3082 ou 3077).
Clique na figura para uma melhor visualização
Os resíduos perigosos devem ser transportados em veículo onde haja segregação entre a carga e o pessoal envolvido durante o transporte. Os resíduos perigosos não podem ser transportados em motocicleta e/ou similares. Os resíduos perigosos devem ser transportados obedecendo aos critérios de compatibilidade, conforme a NBR 14619. Quando não houver legislação ambiental específica para o transporte de resíduos perigosos, o gerador do resíduo deve emitir documento de controle de resíduo com as seguintes informações: sobre o resíduo: nome apropriado para embarque, conforme Anexo da Resolução nº 420 da ANTT; estado físico (sólido, líquido ou gasoso); classificação (classe ou subclasse de risco) conforme Anexo da Resolução nº 420 da ANTT; quantidade; tipo de acondicionamento (anexo A); nº da ONU; nº de risco; grupo de embalagem; declaração do expedidor (conforme 5.4.1.1.11 da Resolução nº 420 da ANTT); sobre o gerador, receptor e transportador do resíduo: atividade; razão social; CNPJ; endereço; telefone; fax; e-mail; número(s) de telefone(s) da empresa para caso de emergência.
O documento citado deve acompanhar o resíduo juntamente com a ficha de emergência e envelope para o transporte até a destinação final. Os resíduos perigosos e suas embalagens devem obedecer ao disposto no Anexo da Resolução nº 420 da ANTT e suas atualizações. As embalagens devem estar identificadas com rótulos de segurança e rótulos de risco conforme previsto na NBR 7500. No caso do transporte de diversos resíduos perigosos acondicionados na mesma embalagem externa, esta deve ser marcada conforme exigido para cada resíduo perigoso.