As propriedades normativas do processo de microfusão

A microfusão gera uma peça fabricada a partir de um modelo feito em cera que foi injetado em um molde metálico. Esse modelo é colado junto com outros em um canal de cera, formando uma árvore de cera. Essa árvore é revestida com cerâmica, formando uma casca, um molde cerâmico. Quando esse molde está seco, a cera é derretida, o molde é calcinado em alta temperatura e depois preenchido com metal líquido. Após o esfriamento, a cerâmica é fragmentada e tem se uma réplica em metal da árvore de cera, da qual as peças são cortadas, limpas e o canal lixado, gerando uma cópia em metal do modelo de cera.

Assim, pode-se dizer que a microfusão é um processo de fundição que utiliza modelos de cera e moldes cerâmicos, permitindo fabricar peças com formas complexas, tolerâncias dimensionais estreitas e ótimo acabamento superficial. O rechupe visual é a porosidade de contração na forma de defeitos negativos observados na superfície da peça, originados por insuficiência de alimentação líquida durante a solidificação do metal em pontos quentes. Os defeitos positivos são os em alto relevo e os defeitos negativos são em baixo relevo (poros, vazios, bolhas de gás, etc.).

As propriedades mecânicas das ligas não são normalmente testadas, a não ser que seja especificamente exigido pelo cliente e considerado na cotação inicial. A medição de dureza nas peças é normalmente utilizada para controle dos tratamentos térmicos. Quando houver exigência de certificação de propriedades mecânicas, em cada corrida do forno de fusão em que foram fundidas as peças devem ser fundidos corpos de prova para ensaios mecânicos. Esses corpos de prova devem ser microfundidos em modelos de cera e devem ser tratados termicamente junto com as peças que eles representam. O desenho do corpo de prova segue o da ASTM A 985/A.

Não havendo especificação de tratamentos térmicos, as peças devem ser fornecidas no estado bruto de fusão. Os tratamentos requeridos devem ser efetuados de acordo com o que for negociado com o cliente. Havendo exigências com respeito ao nível de descarbonetação superficial, isso também deve ser objeto de acordo entre o cliente e o fornecedor.

As durezas possíveis de serem obtidas nas ligas microfundidas estão descritas na norma e a faixa de tolerância mínima de dureza aceitável para peças microfundidas em aço, temperadas e revenidas é de 5 pontos Rockwell C. Quando a utilização da peça exigir dureza superficial ou interna, deve ser considerado um tratamento térmico para garanti-la, mesmo que o desenho não mencione a necessidade de tratamentos.

Para peças com tratamento de normalização ou de recozimento, a especificação deve ser de dureza máxima e não de faixa. No caso de exigência de uma microestrutura determinada, ela deve ser definida entre cliente e fornecedor. A microestrutura deve ser definida em termos de: profundidade de descarbonetação admissível; profundidade de camada cementada, quando for o caso; fases constituintes, com indicação de predominância, quando for o caso; morfologia: continuidade, orientação, distribuição, forma e tamanho das fases ou dos eventuais defeitos que podem aparecer na microestrutura; dureza com determinação dos locais de medição, método e das faixas admissíveis.

As peças microfundidas devem apresentar menos de 10% de porosidade interna de contração (vazios internos) em qualquer seção transversal. Esta verificação deve ser feita por inspeção radiográfica. Estes vazios de contração não devem estar presentes em áreas onde alguma usinagem subsequente conhecida revele visualmente os defeitos.

Alguma quantidade limitada de outros tipos de defeitos internos, incluindo bolhas de gás, partículas de escória, inclusões não metálicas ou porosidade, pode ser encontrada. Se estes defeitos tornarem a peça inutilizável, métodos de inspeção e limites de aceitação para excluir tais produtos defeituosos devem ser estabelecidos em comum acordo entre o cliente e o microfundidor.

As peças obtidas pelo processo de fundição de precisão não devem conter juntas frias, emendas e trincas visuais. Mesmo quando não exigido pelo cliente, no caso de peças fabricadas em ligas magnetizáveis, um exame por partículas magnéticas deve ser feito no estágio de produção de amostras, para assegurar que o processo de fundição seja capaz de produzir peças isentas de trintas, mesmo não visuais.

Devido à natureza do processo de fundição de precisão (microfusão), defeitos positivos podem ser encontrados aleatoriamente. A menos que seja acordado de outra forma entre o cliente e o fornecedor, a ocorrência dos defeitos positivos estará limitada a não mais do que um defeito com no máximo 0,8 mm de altura e medindo até 3 × 3 mm, por área de 25 mm × 25 mm, mas não em locais onde interfiram com alguma função conhecida da peça.

Os defeitos que serão removidos por usinagem posterior devem ser considerados aceitáveis. Outras exigências quanto aos defeitos positivos devem ser acordadas entre o fornecedor e o cliente. Os defeitos negativos podem ocorrer aleatoriamente. A não ser que seja acordado de outra forma entre o cliente e o fornecedor, a ocorrência de defeitos negativos está limitada a não mais do que um com tamanho máximo de 0,8 mm a 1,5 mm por 0,8 mm de profundidade, por área de 25 mm × 25 mm, desde que eles não interfiram com alguma função conhecida da peça.

A NBR 15990 de 12/2011 – Peças fundidas pelo processo de microfusão – Requisitos de fabricação, características e propriedades estabelece as características das peças fabricadas pelo processo de microfusão, de tal modo que elas possam atender a todos os requisitos de qualidade e funcionalidade exigidos pelo cliente, ao mínimo custo. Pode-se dizer que a microfusão é o processo de fundição que utiliza modelos de cera e moldes cerâmicos, permitindo fabricar peças com formas complexas, tolerâncias dimensionais estreitas e ótimo acabamento superficial.

O tamanho e a forma da peça fundida determinam os graus de tolerâncias que serão adotados. Entretanto, a seleção do grau de exatidão deve considerar a existência de variações inerentes ao processo de obtenção de peças fundidas por fundição de precisão. Os principais fatores que influenciam diretamente as tolerâncias durante o processo de obtenção das peças são: a temperatura da cera; a pressão aplicada ao injetar a cera na matriz; a composição dos refratários adotados para a produção do molde cerâmico; a temperatura de calcinação do molde cerâmico; composição química do metal; a temperatura de fusão e a solidificação do metal; e as variações de características das matérias-primas no decorrer dos lotes.

Na fabricação de uma peça pelo processo de fundição de precisão, as diferentes propriedades dos materiais influenciam a amplitude de dispersão dos campos de tolerância. A tabela abaixo indica os grupos de materiais e suas respectivas tolerâncias, de acordo com o grau de exatidão, sendo que: o Grupo D: ligas à base de ferro, níquel, cobalto e cobre – Grau de exatidão: D1 até D3; Grupo A: ligas a base de alumínio – Grau de exatidão: A1 até A3. A seleção do grau de exatidão deve ser definida de acordo com o tipo do material adotado para o projeto e a aplicação do produto acabado.

Assim, nos grupos de materiais “D” e “A” são indicados três graus de exatidão cada: Grau de exatidão 1: válido para todas as dimensões que não possuem tolerância; Grau de exatidão 2: válido para todas as dimensões que receberem tolerância; Grau de exatidão 3: somente deve ser selecionado em dimensões isoladas e deve ser previamente combinado com o fundidor de precisão, pois o atendimento a tais tolerâncias exige adequações significativas no ferramental e no processo produtivo.

A exatidão alcançável das dimensões normais de um fundido de precisão é influenciada pela maior dimensão e forma do fundido. Se a maior dimensão do fundido exceder o âmbito normal de um grau de exatidão, todas as tolerâncias devem ser toleradas com menor grau de exatidão (maior campo de tolerâncias).

Os desvios externos aos graus de exatidão devem ser combinados entre o cliente e o fornecedor do fundido. O projeto de uma peça fundida fabricada pelo processo de fundição de precisão deve considerar as tolerâncias lineares indicadas na tabela abaixo. Essas tolerâncias referem-se ao campo total de variação, mas podem também ser apresentadas como + ou –. Exemplo: tolerância 0,3 mm é o mesmo que + ou – 0,15 mm.

A espessura mínima da parede de um fundido depende do tipo de material adotado para o projeto e da distância que o metal fundido deve percorrer no interior do molde cerâmico. O metal fundido é vazado com a temperatura mais elevada do que a adotada para o molde, assim durante o vazamento o metal fundido constantemente perde temperatura.

Se o metal fundido perder a temperatura suficiente para atingir seu ponto de solidificação, ele solidifica antes de preencher todos os detalhes do molde. Como a temperatura do metal fundido em comparação com a temperatura do molde cerâmico é maior, ao entrar em uma parede de seção fina, ele pode não preencher corretamente tal seção.

Esta falha não ocorre em seções de paredes mais espessas, pois por possuir maior massa o metal sofre menor perda de temperatura e apresenta melhores resultados de preenchimento. As tolerâncias angulares nas peças brutas de fusão dependem de sua localização na peça. Elas variam de ± 0,5 ° para posições bem amarradas até ± 2 °, onde deformações são esperadas.

As composições químicas das ligas metálicas mais comuns em microfusão estão descritas nos Anexos A a C. A análise da composição química pode variar conforme ASTM A 703. Os corpos de prova utilizados para análise química devem ser conservados por um período mínimo de dois anos ou conforme requisito específico do cliente.

No caso de o cliente especificar no desenho ligas produzidas por outros processos, o microfundidor pode fornecer a peça na liga microfundida com propriedades mecânicas as mais próximas das da liga original. Os limites para elementos não especificados no Anexo A, que possam ser solicitados pelo cliente, devem ser acordados com o fornecedor. O limite de resistência, limite de escoamento e alongamento das ligas microfundidas estão descritos nos Anexos D e E.

As propriedades mecânicas das ligas não são normalmente testadas, a não ser que seja especificamente exigido pelo cliente e considerado na cotação inicial. A medição de dureza nas peças é normalmente utilizada para controle dos tratamentos térmicos. Quando houver exigência de certificação de propriedades mecânicas, em cada corrida do forno de fusão em que foram fundidas as peças devem ser fundidos corpos de prova para ensaios mecânicos.

Esses corpos de prova devem ser microfundidos em modelos de cera e devem ser tratados termicamente junto com as peças que eles representam. O desenho do corpo de prova segue o da ASTM A 985/A. Não havendo especificação de tratamentos térmicos, as peças devem ser fornecidas no estado bruto de fusão.

Os tratamentos requeridos devem ser efetuados de acordo com o que for negociado com o cliente. Havendo exigências com respeito ao nível de descarbonetação superficial, isso também deve ser objeto de acordo entre o cliente e o fornecedor. As durezas possíveis de serem obtidas nas ligas microfundidas estão descritas nos Anexos D a F.

A faixa de tolerância mínima de dureza aceitável para peças microfundidas em aço, temperadas e revenidas é de 5 pontos Rockwell C. Quando a utilização da peça exigir dureza superficial ou interna, deve ser considerado um tratamento térmico para garanti-la, mesmo que o desenho não mencione a necessidade de tratamentos. Para peças com tratamento de normalização ou de recozimento, a especificação deve ser de dureza máxima e não de faixa.

No caso de exigência de uma microestrutura determinada, ela deve ser definida entre cliente e fornecedor. A microestrutura deve ser definida em termos de: profundidade de descarbonetação admissível; profundidade de camada cementada, quando for o caso; fases constituintes, com indicação de predominância, quando for o caso; morfologia: continuidade, orientação, distribuição, forma e tamanho das fases ou dos eventuais defeitos que podem aparecer na microestrutura; e dureza com determinação dos locais de medição, método e das faixas admissíveis.

As peças microfundidas devem apresentar menos de 10% de porosidade interna de contração (vazios internos) em qualquer seção transversal. Esta verificação deve ser feita por inspeção radiográfica. Estes vazios de contração não devem estar presentes em áreas onde alguma usinagem subsequente conhecida revele visualmente os defeitos.

Alguma quantidade limitada de outros tipos de defeitos internos, incluindo bolhas de gás, partículas de escória, inclusões não metálicas ou porosidade, pode ser encontrada. Se estes defeitos tornarem a peça inutilizável, métodos de inspeção e limites de aceitação para excluir tais produtos defeituosos devem ser estabelecidos em comum acordo entre o cliente e o microfundidor.

A caracterização metalúrgica do material metálico de implantes para a cirurgia

A NBR 16672-3 de 10/2021 – Implantes para cirurgia – Projeto de implantes absorvíveis – Parte 3: Orientações para a caracterização metalúrgica de material metálico absorvível fornece as orientações para a caracterização metalúrgica do material metálico absorvível, forjado ou fundido, a ser empregado na fabricação de implantes para cirurgia. Também identifica os ensaios não destrutivos destinados à qualificação do material metálico absorvível empregado na fabricação dos implantes para cirurgia.

Não abrange as avaliações da degradação do material a serem conduzidas em um produto acabado e para avaliação biológica de materiais e implantes. As diretrizes e os requisitos gerais para a avaliação de implantes absorvíveis estão disponíveis na ISO/TS 20721. As orientações para a avaliação da degradação de implantes metálicos absorvíveis estão disponíveis na NBR 16672-4.

Este documento não é aplicável a outras classes de materiais absorvíveis, como polímeros, cerâmicas, compósitos e materiais produzidos por engenharia de tecidos. Neste Documento, quando não especificado de outra forma, o termo implante se refere ao implante metálico absorvível ou ao componente do implante metálico absorvível.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que deve abranger as inspeções do material por ensaios não destrutivos?

Quando fazer uso do termo absorvível?

Quais são as normas relacionadas com as propriedades químicas dos materiais metálicos absorvíveis?

Quais são as normas que podem ser usadas para a inspeção dos materiais metálicos absorvíveis?

A investigação de materiais absorvíveis para uso em implantes para cirurgia – cardiovasculares, ortopédicos, etc. – é uma área de bastante interesse. Neste contexto, é esperado que a liberação de subprodutos oriundos do processo gradual de degradação in vivo apresente uma resposta biológica apropriada no paciente. Assim, a análise da aplicabilidade de um metal absorvível envolve, preliminarmente, as identificações do processo de degradação (por exemplo, corrosão, dissolução, etc.), dos subprodutos de degradação e do trato orgânico destes produtos, de modo a ser possível estabelecer a avaliação biológica deste metal.

As propriedades dos materiais utilizados na fabricação de implantes metálicos absorvíveis estão associadas a reações biológicas e a respostas de interações mecânicas com tecidos moles e duros do corpo humano. Este documento estabelece as orientações para a caracterização metalúrgica do material metálico absorvível, a fim de assegurar a reprodutibilidade das suas propriedades como matéria prima do processo de fabricação, e que objetivam auxiliar o fabricante a estabelecer a segurança e a eficácia do implante metálico absorvível.

Este documento se aplica à caracterização metalúrgica do material metálico forjado ou fundido, destinado a ser absorvido pelo corpo humano após um determinado período de tempo. Esta caracterização abrange aspectos associados às propriedades químicas, físicas, mecânicas e de degradação dos materiais, bem como à compatibilidade no ambiente de ressonância magnética.

É basicamente aplicável ao material destinado à fabricação do implante para cirurgia, no entanto, direciona as avaliações concernentes ao impacto dos processamentos a que pode ser submetido para esta fabricação. Como material destinado à fabricação, incluem-se as diversas formas de fornecimento, como fios, barras, chapas, placas, tiras e tubos, bem como os pós para processamento por metalurgia ou por manufatura aditiva.

Sempre que um material metálico absorvível é misturado ou revestido com outras substâncias (bioativa, polimérica ou outras), as propriedades físicas e de degradação dos subprodutos podem diferir significativamente daquelas do metal original, o que requer a condução de caracterizações próprias de desempenho, a menos que uma experiência anterior possa justificar o contrário. Como as alterações estruturais e de superfície do implante compreendem as etapas do processo de fabricação, demais caracterizações do material do produto acabado, incluindo o potencial impacto da esterilização, se inserem em uma etapa complementar de avaliação do implante, abrangendo diversos outros aspectos, como os relacionados à configuração geométrica, à massa, ao local anatômico de implantação e ao uso a que o implante se destina, e não tratadas neste documento.

Neste documento são descritos vários meios para avaliar as propriedades do material, que se aplicam tanto ao material destinado à fabricação do implante como do próprio material do implante, de modo que o usuário precisa consultar os métodos de ensaio específicos para obter detalhes adicionais. Este conjunto de métodos de avaliação pode também ser utilizado para auxiliar no estabelecimento de equivalência essencial a um implante comercializado.

No entanto, as diretrizes sobre os materiais não necessariamente abrangem todos os requisitos para uma aplicação particular de implantes (por exemplo, ortopedia, cardiovascular), o que pode exigir avaliações adicionais para aplicações específicas. Além disso, alguns dos métodos de ensaio podem requerer modificação para abranger as propriedades de um determinado implante.

A aderência aos aspectos abordados pode não ser mandatória, pois as avaliações e ensaios listados não são, necessariamente, relevantes para todos os sistemas e aplicações de implantes absorvíveis. Nenhum material utilizado na fabricação de implantes para cirurgia mostra ser completamente livre de reações adversas no corpo humano.

Entretanto, pode ser esperado um nível de resposta biológica aceitável de um implante, quando uma matéria prima biologicamente compatível for trabalhada e empregada em aplicações apropriadas. A caracterização metalúrgica estabelecida neste documento é aplicável às ligas à base de magnésio, de ferro e de zinco, pois são os principais materiais metálicos documentados na literatura para aplicações em implantes absorvíveis.

Contudo, as orientações apresentadas podem ser aplicáveis a outras ligas absorvíveis. A menos que justificado de outra forma, convém que o pó metálico a ser empregado na fabricação por metalurgia ou por manufatura aditiva atenda às especificações químicas indicadas para materiais fundidos, estabelecidas nas ISO 16468, ASTM B86, ASTM B199 ou ASTM B403. A caracterização metalúrgica do material metálico absorvível abrange a determinação das propriedades que são necessárias para a avaliação da qualidade e uniformidade do material empregado na fabricação do implante.

Uma seleção de normas que podem ser úteis para a avaliação de materiais metálicos absorvíveis empregados na fabricação de implantes encontra-se disponível no Anexo B. As avaliações das propriedades descritas em nessa norma são de caráter geral. As avaliações complementares podem ser necessárias para a caracterização de propriedades associadas tanto a outros materiais, como a requisitos de desempenho da aplicação específica do implante.

Uma compilação de parâmetros e métodos de ensaio para as caracterizações de propriedades físico-químicas, morfológicas e topográficas de materiais, que são pertinentes na avaliação biológica de implantes, encontra-se estabelecida na ISO/TS 10993-19. Alguns exemplos de materiais metálicos absorvíveis já investigados incluem: os materiais à base de magnésio, como o magnésio puro, ligas convencionais e ligas experimentais contendo combinações de alumínio, cálcio, lítio, manganês, neodímio, terras raras, prata, ítrio, zinco ou zircônio. As terras raras compreendem os lantanídeos (elementos com número atômico entre 57 e 71), além dos metais de transição escândio e do ítrio.

Outros materiais que são exemplo à base de ferro, como o ferro puro, uma gama de ligas com manganês, com ou sem silício ou paládio, e novos compostos binários de ferro com alumínio, boro, carbono, cobalto, enxofre ou tungstênio; e os materiais à base de zinco, como o zinco puro, ligas de zinco comerciais e compostos binários de zinco com magnésio. Qualquer condição metalúrgica oriunda de trabalho a frio, recozimento ou envelhecimento térmico deve ser documentada, já que são aspectos que influenciam nas propriedades mecânicas, físicas e de degradação iniciais.

A biocompatibilidade de qualquer material destinado à fabricação do implante absorvível está diretamente associada à sua constituição química, uma vez que seus elementos-base, elementos-traço e impurezas, metálicas e não metálicas, passam a integrar os produtos de degradação do material. Portanto, convém que tantos estes constituintes como suas transformações químicas, associadas aos processos de degradação e de absorção, sejam previamente determinados para possibilitar a avaliação do impacto biológico do material no uso pretendido do implante.

Neste contexto, a classificação como elemento-traço não inclui os elementos que estão especificados como componentes de uma liga, independentemente de suas concentrações. Convém que as análises químicas sejam realizadas de acordo com os seguintes métodos de ensaio: ASTM E354, para materiais à base de ferro; ASTM B954, para materiais à base de magnésio; e ASTM E536, para materiais à base de zinco.

Os limites de tolerância para análise química de materiais à base de ferro encontram-se estabelecidos na AMS 2248. Convém que qualquer aditivo utilizado na metalurgia do pó seja documentado, de forma que possa ser avaliada a composição residual do aditivo no implante, após a sinterização e tratamento térmico. A permeabilidade magnética de um implante é uma função do material, tamanho final, dimensões e colocação in situ do implante, de acordo com sua aplicação pretendida.

Convém que a permeabilidade magnética do material destinado à fabricação do implante seja avaliada para determinação do potencial para uma resposta magnética. A possibilidade de perdas seletivas de elementos-liga pode ocorrer durante a degradação do material, de modo que medidas periódicas da permeabilidade magnética, durante ensaios de absorção in vitro, podem ser necessárias para determinar as propriedades de retenção não magnética.

A resposta magnética de materiais de baixa permeabilidade pode ser determinada de acordo com a ASTM A342/A342M. O implante fabricado por nanoprocessamento, moldagem por injeção de metais, sinterização, prensagem isostática a quente ou processos de manufatura aditiva pode requerer a determinação da compatibilidade do material em ambientes de ressonância magnética. As avaliações de compatibilidade do implante em ambiente de ressonância magnética podem ser estabelecidas de acordo com as NBR 16499-1, NBR 16499-2, NBR 16499-3 e NBR 16499-4.

Convém que o material seja avaliado quanto à potencial presença de radioatividade no implante, em função dos elementos presentes nos minerais de origem e dos processos de extração e refino aos quais são submetidos. Se a avaliação conduzida determinar que existe risco potencial de radioatividade no implante, convém que a radioatividade no material, definida como a soma da massa atômica de U238, Ra226 e Th232, seja determinada por espectroscopia γ e, a menos que seja justificado de outra forma, convém que os valores estejam de acordo com os limites estabelecidos na NBR 15720-1. Convém que as medições de radioatividade sejam conduzidas de acordo com a ASTM D3648.

As características microestruturais de um metal dependem da composição química, do processo metalúrgico de fabricação (como forjamento, fundição, sinterização, etc.) e do histórico de processamentos a que é submetido, e são basicamente estabelecidas pelas avaliações das fases presentes, do tamanho de grão e da presença de inclusões não metálicas. Convém que a microestrutura e o tamanho de grão do material do implante sejam avaliados de acordo com a ISO 643, e que o grão seja reportado como equiaxial, uniforme, misto ou dúplex.

Se apropriado, convém que seja considerada uma determinação de contorno de grão mais precisa, por meio de um dos métodos de difração de elétrons retroespalhados (EBSD) descritos nas ISO 13067, ASTM E1382 e ASTM E2627, aplicáveis tanto às ligas forjadas como às ligas fundidas. Os materiais fundidos, usualmente materiais granulados, barras ou lingotes, podem exibir características de microestrutura lamelar, dendrítica ou equiaxial, após vertidos em molde e submetidos a tratamento térmico.

As ligas forjadas podem exibir uma microestrutura refinada equiaxial, uniforme, mista ou dúplex.

A presença de fases martensíticas metaestáveis, como a transformação de fase (γFe, γMn → α’) que pode ocorrer em compostos específicos de Fe-Mn durante o trabalho a frio, pode requerer a determinação da permeabilidade magnética do material do implante, para a verificação da estabilidade não magnética. Em ligas com alto teor de manganês, a oxidação térmica do manganês durante o trabalho a quente ou durante operações de recozimento pode promover a formação de uma camada superficial magnética e, consequentemente, aumentar a permeabilidade magnética do material.

Convém que esta camada superficial seja removida do implante previamente à sua liberação para uso. Os aços inoxidáveis fortalecidos por nitrogênio, com teores de manganês superiores a 11%, como aqueles estabelecidos nas NBR 15893-1 e NBR 15893-3, são suscetíveis à formação de camada superficial ferrítica magnética. A presença de inclusões não metálicas do tipo sulfeto, aluminato, silicato e óxidos globulares na microestrutura de materiais à base de ferro pode afetar a resistência à corrosão localizada, a taxa de degradação do material e, consequentemente, a taxa de absorção pelo organismo. Convém que as inclusões não metálicas sejam classificadas e avaliadas de acordo com as ISO 4967, ASTM E45 ou ASTM E1245, de modo a estabelecer o efeito potencial na resistência à corrosão e na taxa de degradação do material.

Convém que métodos de ataques metalográficos, como os estabelecidos nas ASTM E407 ou ASTM E340, sejam empregados para detectar a descarbonetação superficial (oxidação do carbono superficial) decorrente do processamento em alta temperatura, de forma a permitir a avaliação da uniformidade da composição e a redução da dureza superficial inicial. A presença de uma rede de carbonetos na microestrutura pode afetar a taxa de degradação localizada.

Convém que a rede de carbonetos seja avaliada de acordo com a ASTM A262. Os materiais metálicos absorvíveis podem ser projetados de forma a proporcionar certo nível de porosidade superficial ou interna ao produto acabado, a fim de influenciar a taxa de degradação do material. Convém que todos os métodos de análise utilizados sejam reportados, incluindo a taxa de absorção pelo organismo e outros métodos utilizados para a análise de determinadas características do material do implante em circunstâncias específicas.

Convém que outros tipos de microestrutura, como as obtidas por nanoprocessamento, moldagem por injeção de metais, sinterização, prensagem isostática quente ou processos de manufatura aditiva, que podem influenciar a taxa de degradação do material resultante, sejam especificados apropriadamente. Convém que a avaliação das propriedades para a caracterização metalúrgica do material do implante abranja pelo menos os procedimentos indicados na tabela abaixo.

Convém que as propriedades mecânicas do material fundido, forjado ou trabalhado, empregado na fabricação do implante, sejam determinadas. Convém que as propriedades de tração de barras, fios, placas, tiras, chapas e tubos ou de materiais forjados e de componentes fundidos produzidos a partir de ligas fundidas, empregados na fabricação do implante, sejam determinadas de acordo com as ISO 6892-1 ou ASTM B557M.

Os ensaios de dureza podem ser necessários para caracterizar as propriedades do material do implante relacionadas à resistência ao desgaste ou abrasão. Os procedimentos para determinação de dureza de materiais são encontrados nas NBR ISO 6508-1, NBR ISO 6507-1 ou NBR ISO 6506-1. Os ensaios de dobramento com mandril de chapas, tiras e tubos podem ser necessários para avaliar a propriedade de determinados materiais, empregados na fabricação do implante, que requeiram a conformação do material durante a etapa de fabricação do implante.

Os procedimentos para ensaio de dobramento são estabelecidos na ASTM E290. Os ensaios de torção podem ser necessários para caracterizar a resposta de fios implantáveis. Os procedimentos para ensaio de torção são estabelecidos na ISO 7800.

A Qualidade dos maçaricos de soldagem a gás, aquecimento e corte de metais

A NBR ISO 5172 de 07/2021 – Equipamento de soldagem a gás – Maçaricos para solda, aquecimento e corte – Especificações e métodos de ensaios estabelece as especificações e métodos de ensaios para maçaricos de soldagem a gás, aquecimento e corte de metais. Aplica-se a maçaricos manuais para soldagem e aquecimento com potência térmica nominal de até 32.000 kcal/h, e maçaricos de corte manual e corte a máquina com faixa de corte de até 300 mm. Não se aplica a maçaricos de aspiração de ar cobertos pela ISO 9012.

Os maçaricos com maior potência térmica nominal ou faixa de corte também podem ser ensaiados de acordo com esta norma, se os requisitos de ensaios este forem adequados. Para os gases combustíveis mais comuns, as taxas de fluxo correspondentes são fornecidas na Tabela A.1, disponível na norma. Exemplos de maçaricos são mostrados no Anexo B, que também fornece a terminologia relativa a estes maçaricos.

Além dos termos usados em duas das três línguas oficiais da ISO (inglês e francês), o anexo fornece os termos equivalentes em português; estes são publicados sob a responsabilidade do organismo membro do Brasil (ABNT) e são fornecidos apenas para informação. Somente os termos e definições fornecidos nos idiomas oficiais podem ser considerados termos ISO.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o ensaio de retorno de chama contínuo?

Como deve ser executado o ajuste das condições?

Qual deve ser o equipamento necessário para o ensaio de superaquecimento?

Quais são os princípios do ensaio de retorno de chama contínua?

Pode-se dizer que o maçarico de baixa pressão é aquele no qual a pressão do gás combustível, medida imediatamente antes da câmara de mistura, é menor que a pressão da mistura de gás, medida entre a câmara de mistura e o bico de solda ou pf < pm. O gás combustível e o oxigênio/ar comprimido são misturados pela ação do oxigênio/ar comprimido que, sendo descarregado do orifício do injetor, gera sucção no ponto “A” do sistema de mistura, arrastando o gás combustível. Ver exemplos de misturador injetor, fixos ou ajustáveis, nas figuras abaixo.

Os materiais devem estar de acordo com a ISO 9539. Os componentes em contato com o oxigênio devem estar livres de óleo, graxa ou outros contaminantes. As marcações devem ser legíveis e duráveis e devem estar de acordo com o descrito a seguir. Além do fabricante podem ser incluídos distribuidores e fornecedores.

O cabo do maçarico deve ostentar o nome ou a marca registrada do fabricante (o termo fabricante inclui distribuidores, fornecedores ou importadores) e o número de referência desta norma. A marcação deve estar de acordo com o descrito abaixo. A conexão adjacente à entrada de oxigênio nos maçaricos deve ser identificada pela letra O e a conexão adjacente à entrada de gás combustível deve ser identificada com a letra apropriada da tabela abaixo.

O registro de oxigênio (corpo ou botão) deve ser identificado pela letra O, ou a cor azul, ou ambas, a letra O e a cor azul. No caso de um país ter uma identificação de cor diferente do azul em seus requisitos, serão aplicadas as cores detalhadas no Anexo I.

A válvula de controle do gás combustível (corpo ou botão) deve ser identificada pela letra apropriada na tabela abaixo, ou pela cor vermelha, ou pela letra apropriada na tabela abaixo e pela cor vermelha. A válvula de corte de oxigênio, se instalada, deve ser identificada de maneira semelhante. Os requisitos mínimos de marcação para todos os bicos são apresentados no Anexo J.

Onde pode ocorrer incompatibilidade de componentes intercambiáveis (por exemplo, misturador e injetor), um código de identificação, a marca do fabricante e o símbolo que identificar o gás combustível deve ser marcada e mostrada nos dados operacionais. Se for separável, a extensão de corte deve ser marcada com o nome, a marca registrada ou a marca de identificação do fabricante (o termo fabricante inclui distribuidores, fornecedores ou importadores).

É recomendável que o usuário consulte as instruções de operação fornecidas pelo fabricante (ver Seção 10). Se as pressões de operação estiverem marcadas em qualquer parte do maçarico, elas devem ser indicadas em quilo pascal (kPa). Quando o nome completo do símbolo químico do gás não pode ser marcado, o código literal do gás deve ser usado de acordo com a ISO 10225 para marcação do equipamento, conforme a tabela abaixo.

Para maçaricos, bicos e componentes intercambiáveis capazes de serem utilizados com mais de um gás combustível, deve ser utilizada a abreviatura F. Os dados operacionais devem fornecer detalhes sobre os gases combustíveis para os quais esses componentes são adequados.

O ensaio de estanqueidade do gás deve ser de acordo com o descrito nessa norma, conforme a seguir: em novos maçaricos; após o ensaio de resistência da válvula; após o ensaio de contrapressão sustentada; após o ensaio de superaquecimento. Cada linha de gás deve ser fechada separadamente com um registro. A estanqueidade do gás deve ser alcançada na posição fechada. Os elementos da válvula devem permanecer estanques em todas as posições.

Para a resistência dos maçaricos ao retorno de chama contínuo, resistência ao superaquecimento, o maçarico deve ser ensaiado de acordo com essa norma. O maçarico e o bico devem ser resistentes ao retorno contínuo de chama quando a (s) saída (s) do bico está (ão) parcial (is) ou totalmente obstruído (os). Um ensaio alternativo (ensaio simples de tijolo) é apresentado no Anexo G. Os bicos, de aquecimento sem frente plana, devem ser ensaiados em conformidade com o Anexo G.

Para os misturadores marcados com o símbolo mostrado nessa norma, o refluxo não pode ocorrer entre 0,5 e duas vezes às pressões nominais de operação do gás. Se uma válvula de retenção estiver incorporada no maçarico, ela deve estar em conformidade com a ISO 5175.

Os seguintes requisitos operacionais devem ser atendidos para as taxas de fluxo de gás e pressões especificadas pelo fabricante nas instruções de operação. As taxas de vazão de gás e as pressões de gás devem ser as especificadas pelo fabricante nas instruções de operação. Deve ser verificado se os fluxos e as pressões de gás são atingidos. Deve ser possível ajustar a chama continuamente dos fluxos estabelecidos pelo fabricante para uma chama carburante aumentando o fluxo de combustível em 10% e para uma chama oxidante aumentando o fluxo de oxigênio em 10%.

A inspeção de sistemas de amostragem mecânica de cobre, chumbo, zinco e níquel

A NBR ISO 11790 de 05/2021 – Concentrados de cobre, chumbo, zinco e níquel – Diretrizes para inspeção em sistemas mecânicos de amostragem estabelece práticas recomendadas para a inspeção de sistemas de amostragem mecânica. Ele serve como referência para a conformidade com as normas internacionais aplicáveis para concentrados de cobre, chumbo, zinco e níquel. Abrange as considerações gerais, incluindo precisão, variação de qualidade, vício, estabelecimento de sistemas de inspeção e procedimentos de inspeção.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como devem ser feitas as inspeções mecânicas?

Qual deve ser a razão de amostragem?

Como pode ser feito um resumo de inspeção cobrindo a massa de cada amostra parcial coletada?

O que devem conter os registros da amostragem?

As verificações de precisão são recomendadas para cada tipo de material amostrado pelo sistema. Se houver uma mudança significativa no tipo de material ou se um novo tipo de material for introduzido, recomenda-se realizar uma verificação de precisão. Convém que o teste descreva a precisão da amostragem, a preparação e a análise de cada tipo de material amostrado pelo sistema. Esses ensaios devem estar em conformidade com a ISO 12744.

A variação da qualidade entre incrementos, 2sb, é uma medida da heterogeneidade do lote e é a variação das características de qualidade dos incrementos retirados do lote. O valor de 2sb deve ser medido experimentalmente para cada tipo de material, para cada instalação de manuseio em condições operacionais normais, de acordo com a NBR ISO 12743.

Convém que todo o sistema de manuseio do material até o sistema de amostragem mecânica seja examinado para determinar se algum procedimento de descarregamento, armazenamento ou recuperação produz um padrão cíclico que poderia fazer com que a coleta de incremento entrasse em fase com a sequência de variabilidade do material. As variações nas características físicas, como distribuição de tamanho de partícula, umidade da superfície, matéria estranha e material superdimensionado, poderiam se tornar cíclicas e até estar em fase com a coleta de incremento baseada em massa ou no tempo.

Quando tais variações cíclicas ocorrerem no fluxo de material, convém que a fonte das variações seja investigada para determinar a praticabilidade de eliminar as variações. Se não houver uma maneira prática de eliminar as variações, convém que o intervalo entre os cortes primários seja ajustado para que a coleta de incrementos não esteja em fase com a variação cíclica. Alternativamente, a amostragem aleatória estratificada pode ser usada.

Após o comissionamento e a auditoria de um novo sistema ou qualquer modificação significativa de engenharia de um sistema existente, convém que um teste de vício seja realizado de acordo com a ISO 13292, para confirmar a operação correta do sistema. Em instalações do tipo multimateriais, é recomendado que o material com maior variabilidade seja escolhido para o teste de vício.

Recomenda-se que, regularmente, futuros pares de amostras para teste de vício sejam tomados para confirmar se o resultado inicial do vício é ainda relevante. Se uma mudança significativa for feita no sistema de amostragem, ou se for introduzido um novo material com características mais difíceis de amostragem, convém considerar a necessidade de um novo teste de vício.

Desde que o sistema de amostragem mecânica atenda aos critérios descritos na NBR ISO 12743, os testes de vício não são mandatórios. No entanto, os princípios de garantia da qualidade em instalações individuais poderiam exigir testes de vício.

O sistema de amostragem mecânica deve ser iniciado em algum momento antes do início do transporte do material a ser amostrado, de tal forma que quaisquer substâncias estranhas (incluindo a água) sejam purgadas. Quando sistemas de acionamentos hidráulicos forem usados, convém permitir tempo suficiente para que o óleo hidráulico e o sistema associado atinjam a temperatura de equilíbrio.

Recomenda-se, particularmente em sistemas de amostragem do tipo multimateriais, que seja permitido passar um corte primário pelo sistema mecânico, para ambientá-lo antes do início da amostragem. É recomendável que o operador analise os registros do sistema de amostragem mantidos pelo operador anterior. Convém que estes registros incluam itens como quantidades de material manipulado e amostrado, e anotações sobre mau funcionamento do sistema, interrupções/paradas, bloqueios ou outras deficiências.

Convém que o operador use uma lista de verificação adequada, como o exemplo no Anexo A. Recomenda-se que o operador complete todos os itens de uma lista de verificação adequada, projetada para o sistema específico. Para grandes sistemas multiusuários, convém que um relatório de inspeção do operador, como o exemplo no Anexo B, seja desenvolvido.

Convém que estejam disponíveis pontos de inspeção adequadamente projetados para observar se os cortadores em fluxo em queda e os cortadores do tipo cross-belt cortam a totalidade do fluxo de material, e as aberturas do cortador podem ser inspecionadas quanto a bloqueios e cegamentos. Para garantir uma operação confiável, é recomendável que uma lista de verificação de amostragem (Anexo A) e o registro de amostragem do operador (Anexo B) sejam desenvolvidos com entrada para as seguintes informações: os critérios originais do projeto e registros de quaisquer mudanças ou melhoramentos subsequentes; os manuais de operação do equipamento de amostragem e de manutenção; a gerência responsável pelo sistema; o pessoal que opera ou faz a manutenção do sistema; para um novo sistema, o pessoal responsável pelo projeto e comissionamento.

Um método geral para o estabelecimento destes procedimentos está descrito a seguir. Fazer referência à NBR ISO 12743 para garantir um correto esquema de amostragem. Fazer referência aos manuais de operação e manutenção do fornecedor do equipamento para determinar os procedimentos corretos de operação e os intervalos para manutenção de rotina.

Os manuais podem fornecer informações úteis com base no projeto do sistema. Informações como as vazões, velocidades do transportador e parâmetros do material (particularmente, o tamanho de partícula e a variabilidade) são dados significativos, e convém que sejam sempre considerados quando mudanças forem contempladas.

Examinar os registros existentes de amostragem e manutenção de um longo período. Essa informação fornecerá diretrizes aos operadores para garantir que o nível requerido de inspeção e manutenção seja realizado, assegurando uma operação confiável e possivelmente alertando os operadores sobre qualquer manutenção ou modificação inadequada que possa ter sido feita no equipamento.

Levantar a experiência pessoal da equipe de manutenção, operacional e de amostragem em relação ao sistema de amostragem. Essa informação, juntamente com aquela obtida acima, permitirá a preparação de um manual do operador apropriado, registro de amostragem do operador e lista de verificação do sistema.

Um esquema para auditorias regulares do sistema de amostragem deve ser estabelecido. Recomenda-se fazer referência aos parâmetros operacionais originais e aos dados do fornecedor do projeto do equipamento, bem como a quaisquer registros de alterações ou melhorias subsequentes, a fim de estabelecer a conformidade com as normas internacionais aplicáveis. O Anexo A fornece uma lista de referência típica.

A operação correta para todos os novos sistemas precisa ser confirmada por uma auditoria, em seguida ao estágio de comissionamento, antes de ser aceita como operacional. O projeto e a operação do sistema precisam ser confirmados por uma auditoria antes de qualquer teste de vício.

Convém estabelecer um esquema para as inspeções de rotina do sistema de amostragem por parte dos operadores, semelhantemente ao exemplo do Anexo A. A frequência e o detalhe das inspeções serão determinados por fatores como, mas não limitados, a confiabilidade do sistema, características de manuseio do material amostrado, frequência de uso do sistema e propósito da amostragem (por exemplo, controle de processo, comparado às grandes instalações portuárias multiusuários).

Convém que os procedimentos e as inspeções operacionais sejam estabelecidos e realizados imediatamente antes, durante e imediatamente após a operação do sistema de amostragem para um dado lote ou sublote, semelhantemente ao exemplo do Anexo A. Estes procedimentos e inspeções serão menos extensos do que os realizados como auditorias ou inspeções mecânicas, respectivamente.

Convém que eles sejam projetados para serem simples inspeções da integridade do processo de amostragem. Para grandes instalações multiusuários, recomenda-se que um sistema de relatórios operacionais seja desenvolvido, e um exemplo desse relatório é fornecido no Anexo B.

As características dos refinadores de grãos do alumínio e suas ligas

A NBR 15698 de 05/2021 – Alumínio e suas ligas – Refinadores de grãos AlTi e AlTiB, nas formas de vergalhões, lingotes e barras – Composição química, tamanho de grão e microestrutura estabelece a composição química, o tamanho de grão e a microestrutura dos refinadores de grãos AlTi e AlTiB, nas formas de vergalhões, lingotes e barras, utilizados no refino de grão do alumínio e suas ligas.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Para o ensaio de refino de grão, como deve ser feita a amostragem?

Quais são os reagentes e materiais usados no ensaio de refino de grão?

Como deve ser o molde para o ensaio de refino de grão?

Para a análise metalográfica, como deve ser feita a amostragem?

A composição química para os refinadores de grãos, bem como os seus respectivos códigos de cores para identificação, de acordo com o escopo desta norma, está especificada no Documento International Designations and Chemical Composition Limits for Aluminum Hardeners – North American and International Registration Record, publicado pela Aluminum Association [1400 Crystal Drive, Suite 430 – Arlington, VA 22202, EUA], também conhecido como Gray Sheets. Os refinadores de grãos com limites de composição química não listados no referido documento podem ser utilizados, desde que seja acordado previamente entre o fornecedor e o comprador.

O tamanho médio dos grãos, ensaiados de acordo com o Anexo A, deve ser menor ou igual a 140 μm. Outros tamanhos de grãos podem ser aceitos, desde que acordado entre o fabricante e o consumidor. As amostras para análise de microestruturas devem ser preparadas de acordo com o Anexo B.

Os requisitos de microestrutura podem ser acordados entre o fabricante e o consumidor em função da criticidade do processo de produção. Na ausência deste acordo, são aplicáveis os requisitos estabelecidos nessa norma. A análise do TiB2 deve ser realizada com aumento de 1.000 vezes, e o tamanho da partícula individual do TiB2 deve ser de no máximo 50,0 μm, sendo a maioria no mínimo de 90 %, entre 0,5 μm e 2,0 μm. As partículas devem estar dispersas e distribuídas na matriz de alumínio, e os aglomerados de TiB2 devem atender aos limites sugeridos na tabela abaixo.

A fase titânio-alumínio (TiAl3) deve estar presente na forma de finas plaquetas, cujo tamanho máximo depende da concentração e do tipo de Ti utilizado como matéria prima. As partículas devem estar dispersas e distribuídas na matriz de alumínio e não podem conter aglomerados de TiAl3 e titânio não dissolvido.

As características microestruturais desses refinadores devem ser determinadas previamente entre o fabricante e o consumidor. A presença de TiB2 é aceitável, desde que atenda aos valores especificados na tabela acima. O tamanho máximo das plaquetas deve ser acordado entre o fabricante e o consumidor.

Na ausência deste acordo, deve-se atender ao seguinte: para o refinador TiAl 6%, as plaquetas não podem exceder 100 μm na largura e 300 μm no comprimento; para o refinador TiAl 10%, as plaquetas não podem exceder 1.000 μm na largura e 3.000 μm no comprimento. A microestrutura do refinador de grãos deve estar isenta de grafite, sais não dissolvidos de Ti-B, escória e refratário.

A presença de outras inclusões na microestrutura do refinador, como carbetos, óxido de alumínio (α-Al2O3) e boreto de alumínio (AlB12), deve ser controlada, sendo que os limites aceitáveis devem ser acordados entre o fornecedor e o comprador. A análise dos filmes óxidos deve ser realizada com 100 vezes de aumento.

O comprimento dos filmes deve ser somado e dividido pela área total analisada, obtendo o comprimento médio em micrômetros por centímetro quadrado (μm/cm²), cujo número não pode ser superior a 3.000 μm/cm². Além disso, o comprimento individual deve ser menor que 5 000 μm. Estes limites de comprimento devem ser acordados entre o fabricante e o consumidor.

A qualificação dos profissionais de proteção catódica

Deve-se entender os requisitos e a sistemática para qualificação e certificação de profissionais de proteção catódica no nível 1 (ênfase em sistemas terrestres ou ênfase em sistemas marítimos) e nível 2 (especialista), bem como descreve as atribuições para os níveis de qualificação estabelecidos.

A NBR 15653 de 11/2020 – Critérios para qualificação e certificação de profissionais de proteção catódica estabelece os requisitos e a sistemática para qualificação e certificação de profissionais de proteção catódica no nível 1 (ênfase em sistemas terrestres ou ênfase em sistemas marítimos) e nível 2 (especialista), bem como descreve as atribuições para os níveis de qualificação estabelecidos.

Confira algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o processo de certificação?

Quais são os fundamentos do programa do exame de qualificação teórico?

Qual o conteúdo sobre proteção catódica no programa do exame de qualificação teórico?

Quais os tópicos sobre a instalação de componentes de proteção catódica?

Os profissionais que atuam na área de proteção catódica (PC) são classificados em dois níveis crescentes de qualificação e certificação, designados N1, com ênfase em sistemas terrestres ou com ênfase em sistemas marítimos), e N2, especialista. As atribuições e responsabilidade básicas inerentes a cada um dos níveis do profissional de proteção catódica são descritas abaixo.

Os profissionais de proteção catódica – Nível 1, com ênfase em sistemas terrestres, devem estar capacitados para realizar serviços de campo relacionados a sistemas de proteção catódica terrestres: levantamento de dados destinados à elaboração de projetos e pesquisa de interferências, orientação da instalação e montagem, execução de inspeção e de manutenção preventiva e corretiva de sistemas de proteção catódica. Este profissional deve conhecer os fundamentos básicos da corrosão e da técnica de proteção catódica e estar capacitado para executar os serviços descritos a seguir.

Conhecer e utilizar instrumentos de medição, como multímetros, alicates, amperímetro, terrômetros, registradores, detectores de cabos e de tubos metálicos e demais instrumentos utilizados nos serviços de campo. Medir a resistividade elétrica em solos, levantar potencial estrutura/solo ON e ON/OFF, realizar pesquisa de corrente de interferência, levantar parâmetros elétricos de fontes de corrente contínua e drenagens (tensão, corrente, horímetro, entre outros) e testar a continuidade de circuito elétrico.

Orientar a instalação dos componentes do sistema (pontos de ensaio, cupons de proteção catódica, retificadores ou outras fontes de corrente contínua, drenagens, leitos de anodos, eletrodos de referência permanentes, juntas isolantes e seus dispositivos de proteção elétrica, desacopladores cc, cabos elétricos, etc.) e a realização de conexões elétricas entre cabos ou entre cabos e estruturas. Identificar e eliminar defeitos em componentes do sistema.

Os profissionais de proteção catódica – Nível 1, com ênfase em sistemas marítimos, devem estar capacitados para realizar serviços relacionados a sistemas de proteção catódica marítimos: levantamento de dados de campo e elaboração de projetos, orientação da instalação e montagem, avaliação de relatório de inspeção, ajuste de sistemas de corrente impressa em funcionamento, execução de inspeção e de manutenção preventiva e corretiva de sistemas de proteção catódica. Este profissional deve conhecer os fundamentos básicos da corrosão e da técnica de proteção catódica e estar capacitado para executar os serviços descritos a seguir.

Conhecer e utilizar instrumentos de medição, como multímetros, alicates, amperímetro, terrômetros, condutivímetros e demais instrumentos utilizados nos serviços de campo. Medir resistividade elétrica em líquidos, levantar potencial estrutura/solo ON, inspeção de sistemas, levantar parâmetros elétricos de fontes de corrente contínua (tensão, corrente, horímetro, entre outros) e testar continuidade de circuito elétrico.

Orientar a instalação dos componentes do sistema (fontes de corrente contínua, anodos, eletrodos de referência permanentes, juntas isolantes e seus dispositivos de proteção elétrica, cabos elétricos etc.) e a realização de conexões elétricas entre cabos, entre cabos e estruturas, e entre anodos e estruturas. Identificar e eliminar defeitos em componentes do sistema.

Os profissionais de proteção catódica – Nível 2 devem estar capacitados para realizar as atividades atribuídas ao profissional nível 1 e devem ainda: coordenar a execução do projeto e a pré-operação de sistemas de proteção catódica, ajustar sistemas em funcionamento, analisar dados de levantamentos de campo e pesquisa de interferências, solucionar problemas, avaliar relatório de inspeção de revestimento anticorrosivo, emitir ou avaliar documentos de projeto e de inspeção. Este profissional deve conhecer os princípios da corrosão, polarização, métodos de combate à corrosão e de técnica de proteção catódica, métodos de avaliação de revestimento anticorrosivo e de sistema de proteção catódica, e estar capacitado para executar os serviços descritos a seguir.

Realizar as atividades atribuídas ao profissional nível 1, descritas nessa norma. Coordenar todas as etapas de um projeto executivo de proteção catódica, inclusive a pré-operação e a inspeção de revestimento anticorrosivo e emissão de documentos. Ajustar o sistema de proteção catódica em operação. Interpretar relatórios de levantamentos de campo (potenciais passo a passo – CIS ou CIPS – e leitura de potencial ON/OFF) e de técnicas especiais de inspeção de revestimento anticorrosivo (método de Pearson, atenuação de corrente e gradiente de potencial em corrente contínua – DCVG – e alternada – ACVG).

Emitir ou avaliar relatório e recomendação de inspeção. Elaborar e cumprir o procedimento de controle de calibração de instrumentos e equipamentos de medição. O profissional nível 1 (ênfase em sistemas terrestres ou marítimos) deve comprovar, mediante documentos, o atendimento à legislação vigente e aos requisitos mínimos definidos nas alíneas abaixo, devendo ser respeitadas as exigências curriculares das legislações estaduais pertinentes.

Ele deve ter 60 meses de experiência comprovada em serviços de proteção catódica e ensino fundamental ou equivalente completos, por meio de cursos reconhecidos pelo Ministério da Educação e Cultura (MEC); ou 36 meses de experiência comprovada em serviços de proteção catódica e ensino médio ou equivalente completos, por meio de cursos reconhecidos pelo Ministério da Educação e Cultura (MEC); ou 24 meses de experiência comprovada em serviços de proteção catódica e ensino técnico completo (mecânica, eletrônica, eletrotécnica, química, edificações ou telecomunicações), através de cursos reconhecidos pelo Ministério da Educação e Cultura (MEC).

Deve ter 12 meses de experiência comprovada em serviços de proteção catódica e ensino superior completo em engenharia, tecnologia, física ou química, através de cursos reconhecidos pelo Ministério da Educação e Cultura (MEC). O profissional nível 2 deve comprovar, mediante documentos, o atendimento à legislação vigente e aos requisitos mínimos definidos nas alíneas abaixo, devendo ser respeitadas as exigências curriculares das legislações estaduais pertinentes.

Ele deve possuir 36 meses de experiência comprovada em serviços de proteção catódica e ensino médio ou equivalente completos, por meio de cursos reconhecidos pelo Ministério da Educação e Cultura (MEC); ou 24 meses de experiência comprovada em serviços de proteção catódica e ensino técnico completo (mecânica, eletrônica, eletrotécnica, química, edificações ou telecomunicações), por meio de cursos reconhecidos pelo Ministério da Educação e Cultura (MEC).

Deve ter 12 meses de experiência comprovada em serviços de proteção catódica e ensino superior completo em engenharia, tecnologia, física ou química, por meio de cursos reconhecidos pelo Ministério da Educação e Cultura (MEC). Os candidatos a profissionais de proteção catódica, níveis 1 e 2, devem ser submetidos aos seguintes exames de qualificação, em um centro de exames de qualificação: exame teórico geral, abrangendo os princípios fundamentais de corrosão e proteção catódica, com base no programa de conhecimentos técnicos estabelecidos nos Anexos A, B, e C, composto de uma avaliação com 50 questões; exame prático, onde o candidato deve demonstrar seus conhecimentos em proteção catódica, com base no programa de conhecimentos técnicos estabelecidos no Anexo D, composto por seis avaliações.

O candidato ao nível 2 com certificado nível 1, com ênfase em sistemas terrestres dentro do prazo de validade, está dispensado do prático. O candidato ao nível 2 com certificado nível 1, com ênfase em sistemas marítimos dentro do prazo de validade, deve realizar as avaliações D.4 e D.5, específicas para sistemas terrestres. Para aprovação nos exames teóricos e práticos de qualificação, os candidatos devem ter pontuação igual ou superior a 70 % do valor total de cada prova.

O candidato reprovado em qualquer dos exames pode requerer por até duas vezes outro exame, realizando somente as provas em que não obteve grau suficiente. O profissional reprovado no 2° reexame deve realizar o exame de qualificação completo.

 

API RP 577: os processos de soldagem, inspeção e metalurgia

Essa recommended practice (RP), editada em 2020 pela American Petroleum Institute (API), fornece orientação para o inspetor autorizado da API na inspeção de soldagem encontrada com a fabricação e reparo de equipamentos de refinaria e planta química e tubulação. Os processos de soldagem comuns, procedimentos de soldagem mais sofisticados, as qualificações do soldador, os efeitos metalúrgicos de soldagem e as técnicas de inspeção são descritos para ajudar o inspetor a cumprir seu papel na implementação das API 510, API 570, API Std 653 e API RP 582.

A API RP 577:2020 – Welding Processes, Inspection, and Metallurgy é uma prática recomendada desenvolvida e publicada pelo American Petroleum Institute (API) que fornece a orientação para o inspetor autorizado da API na inspeção de soldagem encontrada com a fabricação e reparo de equipamentos de refinaria e planta química e tubulação. Os processos de soldagem comuns, procedimentos de soldagem mais sofisticados, as qualificações do soldador, os efeitos metalúrgicos de soldagem e as técnicas de inspeção são descritos para ajudar o inspetor a cumprir seu papel na implementação das API 510, API 570, API Std 653 e API RP 582. O nível de aprendizagem e o treinamento obtido a partir deste documento não substitui o treinamento e a experiência necessários para ser um inspetor de soldagem certificado em um dos programas de certificação de soldagem estabelecidos, como o inspetor de soldagem certificado da American Welding Society (AWS) (CWI).

Esta RP não exige que todas as soldas sejam inspecionadas, nem exige que as soldas sejam inspecionadas de acordo com técnicas e extensão específicas. As soldas selecionadas para inspeção e as técnicas de inspeção apropriadas devem ser determinadas pelos inspetores de soldagem, engenheiros ou outro pessoal responsável usando o código ou padrão aplicável. A importância, a dificuldade e os problemas que podem ser encontrados durante a soldagem devem ser considerados por todos os envolvidos. Um engenheiro de soldagem deve ser consultado sobre quaisquer problemas de soldagem críticos, especializados ou complexos.

Conteúdo da norma

Escopo. . . . . . . . . . . . . . . . . . . . .. 1

2 Referências normativas.  . . . . . . . . . 1

3 Termos, definições e acrônimos. . . . . ..  .. 3

3.1 Termos e definições. . . . . . . . .. 3

3.2 Acrônimos. . . . . . . . . . . . . . .. 12

4 Processos de soldagem. . . . . . . . . 12

4.1 Geral. . . . . . . . . 12

4.2 Soldagem por arco de metal blindado (SMAW). . . . . 12

4.3 Soldagem a arco de gás tungstênio (GTAW). ……….. 15

4.4 Soldagem a arco de gás metálico (GMAW)…………… 18

4.5 Soldagem por arco elétrico (FCAW). . …………. 21

4.6 Soldagem por Arco Submerso (SAW)…………. . . 24

4.7 Soldagem de Arco de Stud (SW). . .. . . . . . . . . 26

4.8 Soldagem a arco de plasma (PAW)… . . … 26

4.9 Soldagem por eletrogás (EGW)… . . . . . . 28

5 Materiais de Soldagem. . .. . . . . . . . . . . . 30

5.1 Geral. . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Atribuição de número P a metais básicos. . .. . . 30

5.3 Atribuição de número F a metais de enchimento. . .. 31

5.4 Classificação AWS de metais de enchimento. . ………. 31

5.5 Número A…. . . . . . . . . . . . . . . . . . . 31

5.6 Seleção de metal de adição. . .. . . . . . . . … 31

5.7 Armazenamento e manuseio de consumíveis. …………. . 32

6 Procedimento de soldagem… . . . . . . . . . . . . 32

6.1 Geral…. . . . . . . . . . . . . . . . . . . . . 32

6.2 Especificação do procedimento de soldagem (WPS). . . 33

6.3 Registro de qualificação do procedimento (PQR)… . . .. 45

6.4 Revisão do WPS e PQR…. . . . . .. 45

6.5 Procedimentos de soldagem tubo-a-folha de tubo. . … 45

7 Qualificação do soldador. . .. . . . . . . . … 47

7.1 Geral. . .. . . . . . . . . . . . . . . . . . . . .. 47

7.2 Soldadores e Operadores de Soldagem. . .. 47

7.3 Falha no exame de uma solda de produção. . .. . . 47

7.4 Ensaio para qualificação… . . . . . … 47

7.5 Vencimento, revogação e renovação da qualificação de soldador ou operador de solda..  . . . . . . . . 47

7.6 Qualificação de desempenho do soldador. …….. 47

7.7 Revisando um WPQ. . . . . . . . . . . … 48

7.8 Limitações para qualificações de soldador… . . . 49

8 Exame não destrutivo. . . . . … 50

8.1 Descontinuidades/imperfeições… . . .. 50

8.2 Identificação de materiais. . . . . . . . . . . .. 54

8.3 Exame Visual (VT)… . . . . . … 55

8.4 Exame de Partículas Magnéticas (MT). . . . . .. 62

8.5 Medição de campo de corrente alternada. . . . . … 66

8.6 Exame de líquido penetrante (PT). . .. 67

8.7 Exame de corrente parasita (ET). . .. . … 69

8.8 Exame radiográfico (RT). . … 69

8.9 Exame ultrassônico (UT). . . . . … 83

8.10 Ensaio de dureza. . . . . . . . . . . . . . .. 95

8.11 Ensaio Exame de Pressão e Vazamento (LT). . … 96

9 Inspeção de soldagem. . .. . . . . . . . . . . .. 97

9.1 Geral. . .. . . . . . . . . . . . . . . . . . . . .. 97

9.2 Tarefas antes da soldagem. . . . . . . . . . . . 97

9.3 Tarefas durante as operações de soldagem. . .. 101

9.4 Tarefas após a conclusão da soldagem. ….. . . . 103

9.5 Não conformidades e defeitos. . ………….. 105

9.6 Certificação do examinador NDE… . . . . . … 105

9.7 Registro de dados de inspeção de soldagem. . . . . . 106

10 Metalurgia. . .. . . . . . . . . . . . . . . . . .. 109

10.1 Geral. . .. . . . . . . . . . . . . . . . . .. 109

10.2 Estrutura de metais e ligas….. 109

10.3 Propriedades físicas. . .. . . . . . . . … 111

10.4 Propriedades mecânicas. . .. . . . . .. 113

10.5 Pré-aquecimento. . .. . . . . . . . . . . . . . … 116

10.6 Tratamento térmico. . .. . . . . . . . . . . … 116

10.7 Relatórios de ensaio de material…. . . . . . … 119

10.8 Soldabilidade de metais. . .. . . . . . . . .. 120

10.9 Soldabilidade de altas ligas . . . . . . . . … 122

11 Questões de Soldagem de Refinaria e Planta Petroquímica…………….24

11.1 Geral. . .. . . . . . . . . . . . . . . . . . . . . 124

11.2 Rosqueamento a quente e soldagem em serviço. . … 124

11.3 Falta de fusão com o processo de soldagem GMAW-S………. 127

11.4 Serviço de cáustica… . . . . . . . . . . . .. 128

11.5 Soldagem por deposição controlada….. 128

12 Precauções de segurança. . . . . . . . . . . . . . . 130

Anexo A (normativo) Tecnologia e símbolos. . … 131

Anexo B (normativo) Ações para lidar com soldas de produção feitas incorretamente. . . . . . . . . . . … 137

Anexo C (informativo) Revisão WPS / PQR. …… . 139

Anexo D (normativo) Guia para seleção comum de metais de adição. . . . . . . . . . . . . . . . . .. 174

Anexo E (informativo) Exemplo de relatório de resultados de RT. . . . . . . . . . . . . . . . . . . . … 178

Anexo F (informativo) Considerações sobre inspeção…………179

Anexo G (informativo) Segurança de Soldagem….. ……. . . 181

Bibliografia. . . . . . . . . . . … 182

A determinação da resistência de aderência à tração em textura

Conheça o método de ensaio para determinação da resistência de aderência à tração em textura na direção perpendicular ao substrato, antes e após o ensaio de intemperismo acelerado, utilizando a placa de policarbonato como substrato.

A NBR 16912 de 11/2020 – Textura – Determinação da resistência de aderência à tração especifica o método de ensaio para determinação da resistência de aderência à tração em textura na direção perpendicular ao substrato, antes e após o ensaio de intemperismo acelerado, utilizando a placa de policarbonato como substrato.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido o substrato?

Como deve ser feita a cola homogeneizada e aplicada na pastilha dolly?

Como executar o encaixe do equipamento abrindo o engate inferior para encaixe na pastilha dolly?

Qual seria um exemplo de tabela para inserção dos resultados do ensaio de determinação da resistência de aderência à tração de textura?

Pode-se definir a aderência como a capacidade do revestimento de resistir às tensões atuantes na interface com o substrato e a resistência de aderência à tração como a tensão máxima suportada por uma área limitada de revestimento (corpo de prova), na interface de avaliação, quando submetida a um esforço normal de tração. A aparelhagem para o ensaio deve incluir um molde de aço inoxidável vazado, com medidas externas de 152 mm × 76 mm, espessura de (1,5 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm, para grãos finos e médios.

Um molde de aço inoxidável vazado, com medidas externas de 152 mm × 76 mm, espessura de (3,0 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm, para grãos grossos. Incluir um cronômetro, balança semianalítica com sensibilidade de contagem de 0,1 g, um dinamômetro de tração que permita a aplicação contínua de carga, de fácil manuseio, baixo peso, dotado de dispositivo para leitura de carga que apresente um erro máximo de 2%.

O equipamento deve garantir a aplicação da carga centrada e ortogonal ao plano do revestimento. Deve-se ter um aparelho de ensaio de intemperismo acelerado com sistema de radiação e condensação, com controle de temperatura do painel negro, provido de oito lâmpadas UVB-313 – 40 W, uma máquina fotográfica, uma furadeira de bancada ou dispositivo similar, com controle de velocidade para corte dos corpos de prova e que promova estabilidade durante o corte, de modo a evitar vibrações prejudiciais à integridade do corpo de prova.

Incluir os materiais como uma pastilha dolly: peça metálica circular não deformável sob a carga do ensaio, de seção circular, com 50 mm de diâmetro e com dispositivo no centro para o acoplamento do equipamento de tração; um dispositivo de corte (serra copo): consiste em um copo cilíndrico de altura superior à espessura do sistema de revestimento ensaiado, com borda diamantada com diâmetro de 55 mm, provida de um dispositivo que garanta a estabilidade do copo durante o corte, de modo a evitar vibrações prejudiciais à integridade do corpo de prova.

Deve-se dispor de cola: à base de resina epóxi, poliéster ou similar, com secagem de 90 min ao toque, destinada à colagem da pastilha na superfície do corpo de prova. A cola deve apresentar propriedades mecânicas compatíveis com o sistema em ensaio e atender às condições de umidade do revestimento. Recomenda-se o uso de um adesivo de alta viscosidade para evita r problemas de escorrimento. Incorporar uma placa lisa e rígida de policarbonato, não absorvente e não oxidável, com dimensões de 152 mm × 76 mm e espessura de (4 ± 1) mm, uma espátula para pintura, com largura superior à janela; uma lixa para metal número 240.

Além disso, deve incluir uma fita adesiva tipo crepe. pano macio, papel absorvente, pincel de pelos macios e largura de 6,3 cm a 7,6 cm (2 ½ pol. a 3 pol.). Incluir também os reagentes: água destilada e álcool etílico. Deve-se preparar os corpos de prova em triplicata, lixar de forma cruzada as placas de policarbonato com a lixa para metal, até o fosqueamento total da placa, limpar as placas com pano umedecido com álcool etílico, diluir o produto conforme a diluição informada pelo fabricante. Caso seja informada uma faixa de diluição, o valor a ser considerado é o valor médio.

Deve-se homogeneizar o produto, pesar as placas de policarbonato e anotar as suas respectivas massas. Colocar a placa rígida em uma superfície plana e firme. Colocar o molde sobre a placa rígida, fixando o conjunto com auxílio da fita adesiva. Para texturas com grãos finos e médios, utilizar o molde de aço inoxidável vazado com medidas externas de 152 mm × 76 mm, espessura de (1,5 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm.

Para texturas com grãos grossos, utilizar o molde de aço inoxidável vazado com medidas externas de 152 mm × 76 mm, espessura de (3,0 ± 0,05) mm e janela com medidas de (90 ± 0,5) mm × (58 ± 0,5) mm. Aplicar o produto com o auxílio da espátula, de maneira a não formar bolhas, deixando a superfície o mais uniforme possível. Se, durante a aplicação, houver risco ocasionado pelo grão, deve-se repetir o procedimento até que a aplicação fique uniforme. Cuidar para que não haja excesso de textura sobre o molde durante a puxada.

Remover o molde cuidadosamente. Remover eventuais resíduos formados na retirada do molde, na placa de policarbonato, em torno do produto aplicado. Com a textura ainda úmida, pesar os corpos de prova e anotar as suas respectivas massas. Verificar se a variação entre as massas dos corpos de prova é de no máximo ± 10%. Caso a variação da massa entre corpos de prova seja maior do que a tolerância, repetir a aplicação.

Deixar curar por 14 dias, na horizontal, em ambiente com troca de ar à temperatura de (25 ± 2) °C e umidade de (60 ± 5) %. O tempo de secagem dos corpos de prova pode ter uma tolerância de 1 h. Apresentar registros a cada 30 min. Para colagens das pastilhas, seguir o descrito em seguida. Aguardar os 14 dias de cura. Lixar a pastilha dolly de forma cruzada para a remoção de resíduos de cola. A superfície da pastilha dolly deve estar isenta de qualquer resíduo de ensaios anteriores (ver figura abaixo).

Recomenda-se, para a preparação de três corpos de prova, utilizar 2,5 g de cola do componente A e 2 g de cola do componente B. Preparando a cola nessa quantidade, mantêm-se as características da cola em todas as amostras. Pesar 2,5 g do componente A, tarar a balança e adicionar 2 g do componente B. O ensaio deve ser realizado em triplicata, para avaliação sem envelhecimento (0 h de exposição à radiação UVB) e para avaliação com envelhecimento acordado entre as partes.

A exposição em aparelho de ensaio de intemperismo acelerado com sistema de radiação e condensação, com controle de temperatura do painel negro, deve obedecer à NBR 15380:2015, Ciclo 2. As amostras que vão passar por envelhecimento acelerado devem ser colocadas na câmara com os corpos de prova voltados para as lâmpadas.

Programar a câmara para manter 4 h de exposição ao UV a (60 ± 3) °C e 4 h de condensação de umidade a (50 ± 3) %, conforme à NBR 15380:2015, Ciclo 2. O início de funcionamento da câmara, com data, hora e horímetro total para cada amostra, deve ser registrado na planilha de controle de tempo de ensaio do aparelho de ensaio de intemperismo acelerado com sistema de radiação e condensação, com controle de temperatura do painel negro.

Realizar a colagem das pastilhas tanto para os ensaios sem envelhecimento como para os com envelhecimento. O relatório deve conter as seguintes informações: identificação do produto; data da realização do ensaio; período de realização do ensaio; registro do controle de temperatura do período de secagem descrito em 5.14.9; resultados individuais de carga e tensão de ruptura e suas médias associadas a: período de envelhecimento; percentuais de coesão dos tipos de ruptura obtidos; registro fotográfico de cada corpo de prova após a ruptura, identificando-os; condições ambiente do ensaio.

AWWA C229: os revestimentos de polietileno em tubos de aço para água

Essa norma, editada em 2020 pela American Water Works Association (AWWA), descreve os materiais e os requisitos de aplicação para revestimento de polietileno ligado por fusão (fusion-bonded polyethylene – FBPE) aplicado em fábrica no exterior de tubos e conexões de água de aço. As normas de revestimento de tubos de aço da AWWA são descritas e baseadas na temperatura de serviço da água potável.

A AWWA C229:2020 – Fusion-Bonded Polyethylene Coatings for Steel Water Pipe and Fittings descreve os materiais e os requisitos de aplicação para revestimento de polietileno ligado por fusão (fusion-bonded polyethylene – FBPE) aplicado em fábrica no exterior de tubos e conexões de água de aço. As normas de revestimento de tubos de aço da AWWA são descritas e baseadas na temperatura de serviço da água potável. Deve-se consultar os fabricantes para condições e limitações.

O objetivo desta norma é fornecer os requisitos mínimos para o revestimento FBPE para tubos e conexões de aço para água, incluindo material, aplicação, inspeção, ensaio, marcação, manuseio e requisitos de embalagem. Esta norma pode ser referenciada em documentos usados como guia para aplicação, inspeção e ensaio de revestimento FBPE. Os requisitos desta norma aplicam-se quando este documento for referenciado e, então, apenas ao revestimento FBPE usado para tubos de aço para água.

Conteúdo da norma

Prefácio

I Introdução ………………………………. ix

I.A Conhecimento……………………………….. ix

I.B História ……………………………………… ix

Aceitação I.C ………………………………… ix

II Edições especiais ……………………………… x

II.A Informações consultivas sobre o produto

Aplicativo ………………………….. x

III Uso desta norma…………………… xi

III.A opções do comprador e alternativas………… xi

IV Revisões principais ………………………….. xi

V Comentários ………………………………… xii

Norma

1 Geral

1.1 Escopo ……………………………………….. 1

1.2 Objetivo …………………………………….. 1

1.3 Aplicação ………………………………… 2

2 Referências ………………………………… 2

3 Definições ……………………………….. 3

4 Requisitos

4.1 Equipamento ………………………………… 4

4.2 Materiais e mão de obra …………. 4

4.3 Sistema de revestimento ………………………….. 4

4.4 Preparação da superfície ……………………… 5

4.5 Aplicação do revestimento ……………………. 6

4.6 Acessórios de revestimento e especiais ………… 7

4.7 Reparo do revestimento …………………………… 8

4.8 Juntas de campo – soldadas e não soldadas…………8

4.9 Procedimentos de campo …………………………. 9

5 Verificação

5.1 Pré-qualificação de materiais de revestimento … 9

5.2 Requisitos do sistema de revestimento …… 9

5.3 Garantia de qualidade e registros …….. 12

5.4 Inspeção e ensaio pelo comprador………………… 12

5.5 Requisitos de controle de qualidade do sistema de revestimento aplicado …………. 12

5,6 Rejeição …………………………………… 14

6 Entrega

6.1 Marcação ……………………………………. 14

6.2 Embalagem e envio ………………. 14

6.3 Declaração de conformidade ………………. 15

Tabelas

1 Propriedades do material de revestimento ………. 5

2 Requisitos de pré-qualificação do sistema de revestimento……………….. 5

3 Requisitos de controle de qualidade do sistema de revestimento aplicado …………. 7

BS EN 10217-1: os tubos de aço soldados para pressão

Essa norma europeia, editada em 2019 pelo BSI, abrange os tubos e tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais.

A BS EN 10217-1:2019 – Welded steel tubes for pressure purposes – Technical delivery conditions. Part 1: Electric welded and submerged arc welded non-alloy steel tubes with specified room temperature properties abrange os tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais. Os usuários dessa norma podem ser os projetistas e produtores de tiras de aço, chapas, tubos e tubulações; especificadores, acionistas e distribuidores de tubos de aço; fornecedores de instalações de ensaio e avaliação; e organismos notificados no âmbito do Pressure Equipment Directive (PED).

Conteúdo da norma

Prefácio europeu……………………. 5

1 Escopo……… ……………………. 6

2 Referências normativas…………… 6

3 Termos e definições……………….. 7

4 Símbolos…………. ……………….. 8

5 Classificação e designação……….. 8

5.1 Classificação…………….. ………. 8

5.2 Designação…………….. …………. 8

6 Informações a serem fornecidas pelo comprador……………. …. 9

6.1 Informação obrigatória………………………………… 9

6.2 Opções…………………………….. ………………… 9

6.3 Exemplo de um pedido……………………………….. 10

7 Processo de fabricação………………………………… 10

7.1 Processo siderúrgico………………………………. 10

7.2 Condições de fabricação e entrega do tubo……………. 10

7.3 Requisitos do pessoal de ensaio não destrutivo………….. 12

8 Requisitos………………………….. 12

8.1 Geral……………… 12

8.2 Composição química……………… 12

8.2.1 Análise do fundido…………… 12

8.2.2 Análise do produto……………. 14

8.3 Propriedades mecânicas……………. 14

8.4 Aparência e solidez interna …………… 15

8.4.1 Junção da solda……… …………… 15

8.4.2 Superfície do tubo……….. ……….. 16

8.4.3 Solidez interna…………………….. 16

8.5 Confiabilidade……………. ……… 16

8.6 Preparação dos fins……………………… 16

8.7 Dimensões, massas e tolerâncias… …………….. 17

8.7.1 Diâmetro e espessura da parede………………….. 17

8.7.2 Massa……………………….. …………………….. 17

8.7.3 Comprimentos………………….. ……………….. 17

8.7.4 Tolerâncias………………………. …………. 22

9 Inspeção………………………….. …………. 24

9.1 Tipos e documentos de inspeção …………….. 24

9.2 Conteúdo dos documentos de inspeção…………. 25

9.3 Resumo da inspeção e ensaios. ……………… 26

10 Amostragem…………………. …………… 28

10.1 Frequência dos ensaios…………………. 28

10.1.1 Unidade de ensaio…… ………………. 28

10.1.2 Número de tubos de amostra por unidade de ensaio…………….. 28

10.2 Preparação de amostras e provetes……………. ……….. 28

10.2.1 Seleção e preparação de amostras para análise do produto…………. 28

10.2.2 Localização, orientação e preparação de amostras e provetes para ensaios mecânicos…………………… ………………….. 28

11 Verificação dos métodos de ensaio…………………….. 30

11.1 Análise química……………………………………. 30

11.2 Ensaio de tração no corpo do tubo…………………. 30

11.3 Ensaio de tração transversal na solda…………… 30

11.4 Ensaio de nivelamento………………………… …… 30

11.5 Ensaio de expansão da derivação…………………. 31

11.6 Ensaio de dobra de solda……………………. …… 31

11.7 Ensaio de impacto…………………. ……….. 31

11.8 Ensaio de estanqueidade………………………. 32

11.8.1 Ensaio hidrostático………………………. ….. 32

11.8.2 Ensaio eletromagnético……………………….. 33

11.9 Inspeção dimensional……………………………. 33

11.10 Exame visual…………………………………… 33

11.11 Ensaios não destrutivos……………………. 33

11.11.1 Geral………………………… ………… 33

11.11.2 Tubos EW e HFW…………………………. 33

11.11.3 Tubos SERRA……………………….. ……. 33

11.11.4 Soldas de extremidade de tira em tubos SAWH………………… 34

11.12 Ensaio, classificação e reprocessamento………………….. 34

12 Marcação………………………………………. …………….. 34

12.1 Marcação a ser aplicada……………………………. 34

12.2 Marcação adicional………………………………….. 35

13 Proteção………………………………….. …………. 35

Anexo A (normativo) Qualificação do procedimento de soldagem para tubo de serra TR2 para produção com qualidade………….. 36

A.1 Geral…………………………. ……………….. 36

A.2 Especificação do procedimento de soldagem…………….. 36

A.2.1 Geral………………………….. ……………….. 36

A.2.2 Metal principal…………………… ……….. 36

A.2.3 Preparação da solda…………………………. 36

A.2.4 Fios e fluxos de enchimento…………………. 36

A.2.5 Parâmetros elétricos………………………………….. 37

A.2.6 Parâmetros mecânicos……………………………….. 37

A.2.7 Entrada de calor (kJ/mm) ……………………………. 37

A.2.8 Temperatura de pré-aquecimento …………………..37

A.2.9 Temperatura de interpasse……………………………… 37

A.2.10 Tratamento térmico pós-soldagem………………………. 37

A.2.11 Exemplo de formulário de especificação do procedimento de soldagem………………………. 37

A.3 Preparação do tubo de amostra e avaliação da amostra……….. 38

A.3.1 Tubo para amostra……………………………… ………… 38

A.3.2 Avaliação da amostra………………………………………. 38

A.4 Inspeção e ensaio da solda………. ………………….. 38

A.5 Provas de solda…………………………………… …… 39

A.5.1 Provas de dobra de solda………………….. 39

A.5.2 Macroexame……………………………………….. 39

A.5.3 Ensaio de tração de solda transversal……………. 39

A.5.4 Ensaio de impacto da solda………………….. …. 39

A.6 Métodos de ensaio……………………… ………. 39

A.6.1 Exame visual………………………………….. 39

A.6.2 Ensaio não destrutivo (END)…. ………………. 39

A.6.3 Ensaio de dobra de solda……………… …….. 39

A.6.4 Macroexame………………………………….. 39

A.6.5 Ensaio de tração de solda transversal………… 40

A.6.6 Ensaio de impacto da solda…………………….. 40

A.7 Níveis de aceitação do ensaio…………………….. 40

A.7.1 Exame visual……………………………………. 40

A.7.2 END……………………… ………………. 40

A.7.3 Ensaio de dobra de solda………. …….. 40

A.7.4 Macroexame………………………………… 40

A.7.5 Ensaio de tração de solda transversal………………… 40

A.7.6 Ensaio de impacto da solda………………………. …. 40

A.7.7 Exemplo de documento de resultado do ensaio…………….. 40

A.8 Gama de uso de procedimentos qualificados………… 42

A.8.1 Grupos de materiais…………………………….. … 42

A.8.2 Espessura dos materiais………………………. 42

A.8.3 Classificação do fio de enchimento……………… 42

A.8.4 Fluxo de soldagem………………….. ……….. 42

A.8.5 Outros parâmetros…………………………. 42

A.9 Registro de qualificação………………………..42

Anexo B (informativo) Alterações técnicas da edição anterior……. 43

B.1 Introdução………………………………………. 43

B.2 Alterações técnicas……………………………….. 43

Anexo ZA (informativo) Relação entre esta norma europeia e os requisitos das normas essenciais de 2014/68/UE………………….. 45

Bibliografia………………………… ………………… 46

Essa ajudará os especificadores, designers e outros, definindo as notas para uso nas condições especificadas. Foi preparada sob um mandato conferido ao CEN pela Comissão Europeia e pela Associação Europeia de Comércio Livre para alinhar-se com os requisitos essenciais da Diretiva Equipamentos de Pressão (PED) (2014/68 / UE). As classes de aço e as propriedades das classes de aço carbono e de baixa liga estão alinhadas com as dos tubos sem costura da série BS EN 10216, permitindo que tubos sem costura ou soldados sejam usados em muitos casos.

Os tubos de aço soldados de alta frequência (HFW), às vezes chamados de tubos de aço soldados por resistência elétrica (ERW), e soldados por arco submerso (SAW), estão são cobertos por essa norma. Os tubos HFW são produzidos a partir de tiras de aço e são soldados eletricamente sem o uso de metal de adição. Os tubos SAW são produzidos a partir de chapa de aço e são soldados por fusão usando consumíveis de soldagem apropriados. Em geral, os tubos HFW são produzidos com até 610 mm de diâmetro externo, enquanto os tubos SAW normalmente não são produzidos em diâmetros abaixo de 406,4 mm.

Os tubos e canos de aço BS EN 10217 podem ser usados para uma ampla gama de aplicações, desde serviços de construção a requisitos industriais críticos que envolvam gás ou produtos químicos ou produção de válvulas ou conexões. Portanto, é muito importante que o especificador, projetista ou usuário selecione o tipo e a classe de tubo mais adequados para atender aos seus requisitos das sete partes dessa série dessa norma. A atualização de 2019 buscou refletir as práticas atuais do setor, buscou atualizar as referências, em particular no que diz respeito aos requisitos de ensaio e avaliação. Além das classes TR1, está alinhado com os requisitos essenciais do PED (2014/68/EU).