IEC TS 63081: a caracterização dos materiais ultrassônicos

Essa especificação técnica, editada em 2019 pela International Electrotechnical Commission (IEC), define as principais quantidades relevantes para a caracterização de materiais ultrassônicos e especifica os métodos para medição direta de muitos parâmetros importantes desses materiais. Aplicável a todas as medições de propriedades de materiais acústicos passivos sob condições de acionamento que não estão sujeitas a propagação acústica não linear.

A IEC TS 63081:2019 – Ultrasonics – Methods for the characterization of the ultrasonic properties of materials define as principais quantidades relevantes para a caracterização de materiais ultrassônicos e especifica os métodos para medição direta de muitos parâmetros importantes desses materiais. Este documento é aplicável a todas as medições de propriedades de materiais acústicos passivos sob condições de acionamento que não estão sujeitas a propagação acústica não linear. Embora existam propriedades de materiais que possam ser de interesse em um regime de tração não linear, elas estão atualmente fora do escopo deste documento.

Conteúdo da norma

PREFÁCIO……………………….. 4

INTRODUÇÃO….. ……………… 6

1 Escopo… ………………………. 7

2 Referências normativas…………. ….. 7

3 Termos e definições…………….. …… 7

4 Lista de símbolos………. ………….. 10

5 Visão geral………… ………………… 12

5.1 Princípios gerais……………….. 12

5.2 Preparação da amostra………………. 12

5.2.1 Amostras de fluidos…………….. .12

5.2.2 Amostras sólidas………………… .13

5.2.3 Geometria da amostra…………. 13

5.2.4 Estabilização da amostra………….. 13

5.3 Transdutores fonte e receptor………………. 14

5.4 Medições de transmissão versus reflexão… ……… 14

5.5 Sinal de excitação do transdutor………………………. 15

5.5.1 Dependência de frequência de quantidades…………. 15

5.5.2 Métodos CW e quase-CW…………………………… 15

5.5.3 Pulsos modulados em frequência e espectrometria de retardo de tempo…………… 16

5.5.4 Métodos de impulso…………………… 18

6 Medição de perda de inserção…………….. 19

7 Medições longitudinais da velocidade das ondas…………………… 22

7.1 Geral…………….. …………… 22

7.2 Transdutores imersos em material fluido…………… 22

7.3 Transdutores e amostra imersos em um fluido de acoplamento……… .23

8 Medições do coeficiente de absorção……………. 24

8.1 Amostra única através do método de transmissão…………. 24

8.2 Amostra dupla através do método de transmissão……….. 26

9 Medição de redução de eco (ER)………………………. 27

9.1 Incidência normal…………………………….. .27

9.2 Incidência oblíqua………………………. 29

10 Medição do coeficiente de retrodispersão……………………. 29

Bibliografia……………… ………………….. 31

Figura 1 – Esquema mostrando o espalhamento difrativo entre a fonte e o receptor dos transdutores……………… ………………….. 14

Figura 2 – Ilustração de um sistema TDS típico………………….. 17

Figura 3 – Desenvolvimento e processamento de sinal para uma frequência compensada de um sinal modulado…………….. 17

Figura 4 – Dispersão do pulso nos meios absorventes…………………. 19

Figura 5 – O espalhamento difrativo adicional encontrado nas medidas da transmissão direta………………. 21

Figura 6 – Transdutores de origem e recebimento imersos em um meio fluido a ser caracterizado………………… 22

Figura 7 – Fonte, receptor e amostra, todos imersos em um fluido de acoplamento…………….. 24

Figura 8 – Vários ecos claramente separados no tempo……… 25

Figura 9 – Fenômenos múltiplos de reflexão e transmissão que ocorrem nas superfícies de uma amostra……………………….. 26

Figura 10 – Apresentação esquemática de uma configuração de medição usada para determinar a redução de eco de um material de ensaio…….. 27

Muitas normas de medição ultrassônica contêm requisitos para as propriedades dos materiais acústicos a serem usados na construção dos equipamentos de medição contidos nesses documentos. A seguir, exemplos de tais padrões. A IEC 61161 especifica o fator de reflexão de amplitude e a absorção de energia acústica para alvos refletores e alvos absorventes e especifica o coeficiente de transmissão de amplitude para películas antifluxo. A IEC 61391-1 discute o coeficiente de reflexão. A IEC 61689 define redução de eco e especifica limites para seus valores. Os termos reflexão e perda de transmissão também são usadas, e valores especificados. A IEC TS 62306 especifica a perda de transmissão e a redução da amplitude de reflexão. A IEC 62359 especifica o coeficiente de reflexão e absorção. A IEC 60601-2-37 especifica o coeficiente de refletância e absorção.

Como a lista acima sugere, uma ampla variedade de termos é usada para especificar as propriedades de um material acústico, e esses termos não são usados consistentemente nos documentos IEC. Além disso, existe um grau de duplicação com vários nomes para a mesma quantidade. Isso é ainda mais confuso, pois não há documento no portfólio de ultrassom IEC que defina os métodos pelos quais essas propriedades são medidas.

Este documento procura solucionar as deficiências, fornecendo: uma definição clara e inequívoca das principais quantidades de interesse durante a caracterização dos materiais; uma discussão de termos semelhantes e como eles podem se relacionar com as principais quantidades; métodos experimentais recomendados para determinar os valores das principais quantidades.

 

BS EN ISO 20789: os umidificadores passivos

Essa norma europeia, editada pelo BSI em 2019, especifica os requisitos para o chamado equipamento de umidificação de passagem de bolhas a frio ou de passagem a frio, a seguir denominado umidificador passivo. A Figura 1 – Umidificador passivo para passagem a frio e a Figura 2 – Umidificador passivo com bolhas de ar frio ilustram esses umidificadores passivos.

A BS EN ISO 20789:2019 – Anaesthetic and respiratory equipment – Passive humidifiers especifica os requisitos para o chamado equipamento de umidificação de passagem de bolhas a frio ou de passagem a frio, a seguir denominado umidificador passivo. A Figura 1 – Umidificador passivo para passagem a frio e a Figura 2 – Umidificador passivo com bolhas de ar frio (disponíveis na norma) ilustram esses umidificadores passivos. As câmaras de umidificação passivas do umidificador estão em temperatura ambiente, de forma que elas produzem uma saída de umidificação menor do que os umidificadores ativos.

Este documento especifica os requisitos para os chamados umidificadores passivos do trato respiratório com passagem de bolhas de ar ou passagem fria, destinados ao uso em pacientes em atendimento domiciliar e em unidades de saúde. Os umidificadores passivos são usados para aumentar o teor de água dos gases entregues aos pacientes. Os gases disponíveis para uso médico não contêm umidade suficiente e podem danificar ou irritar o trato respiratório ou secar as secreções de pacientes cujas vias aéreas superiores estão com problemas.

A umidade inadequada na porta de conexão do paciente pode causar secagem das vias aéreas superiores ou dessecação de secreções traqueobrônquicas no tubo traqueal ou de traqueostomia, o que pode causar estreitamento ou até obstrução das vias aéreas. Os umidificadores passivos dependem da umidade ser transferida de um reservatório de líquido para o gás em temperatura ambiente, sem aquecimento da câmara de umidificação ou dos tubos de respiração, para aumentar o teor de água dos gases entregues aos pacientes.

Portanto, esses umidificadores passivos do trato respiratório têm uma saída em mg/l menor que os umidificadores ativos. Deve-se consultar a ISO 80601-2-74 para obter a segurança básica e o desempenho essencial de umidificadores ativos.

Como o uso seguro de um umidificador passivo depende da interação do umidificador passivo com seus acessórios, este documento define os requisitos de desempenho total do sistema até a porta de conexão do paciente. Esses requisitos são aplicáveis aos acessórios como os tubos de respiração. Este documento também constitui uma importante revisão técnica de uma parte da ISO 8185: 2007, que substitui em combinação com a ISO 80601-2-74.

As alterações mais significativas em relação à ISO 8185: 2007 para os umidificadores passivos são as descritas a seguir. Houve a ampliação do escopo para incluir o umidificador passivo e seus acessórios, onde as características desses acessórios podem afetar a segurança básica ou o desempenho essencial do umidificador passivo e, portanto, não apenas o umidificador passivo. Foi feita a modificação do procedimento de ensaio de umidificação e a divulgação do desempenho da umidificação.

Ocorreram as seguintes adições: requisitos de resistência mecânica (via IEC 60601-1-11); novos símbolos; requisitos para um umidificador passivo como componente de um sistema; requisitos para procedimentos de limpeza e desinfecção; requisitos de biocompatibilidade; requisitos para prevenção de incêndio; e requisitos de usabilidade. Os umidificadores passivos são comumente usados com misturas de ar e oxigênio-ar e um umidificador passivo deve poder operar com esses gases.

Deve-se tomar cuidado se o uso de outras misturas gasosas, como misturas de hélio/oxigênio, pois suas propriedades físicas forem diferentes das do ar e do oxigênio. Neste documento, os seguintes tipos de impressão são usados: requisitos e definições: tipo romano; especificações do ensaio: tipo itálico; material informativo que aparece fora das tabelas, como notas, exemplos e referências: em letras menores. O texto normativo das tabelas também está em um tipo menor; os termos definidos na Cláusula 3 deste documento ou conforme indicado: pequenas capitais .

Prefácio

Introdução

1 Escopo

2 Referências normativas

3 Termos e definições

4 Requisitos gerais para teste

4.1 Nível da água

4.2 Condições passivas de teste do umidificador

4.3 Especificações de vazão e vazamento de gás

4.4 Erros passivos de teste do umidificador

5 Requisitos gerais

5.1 Segurança mecânica básica para todos os umidificadores passivos

5.2 Requisito de compatibilidade

5.3 Requisitos gerais de resistência mecânica

6 Identificação, marcação e documentação anexa

6.1 Legibilidade e durabilidade das

6.2 Marcações na parte externa do umidificador passivo ou de suas partes

6.3 Unidades de medida

6.4 Instruções de uso

6.5 Descrição técnica

7 * saída de umidificação

8 Requisitos de sistema

9 Condições específicas de falha única

10 Limpeza e desinfecção

10.1 Geral

10.2 Ambiente de atendimento domiciliar

11 Conectores e portas do sistema de respiração

11.1 Geral

11.2 Conector de saída

11.3 Componentes sensíveis à direção do fluxo

11.4 Porta acessória

11.5 Porta de monitoramento

11.6 Porta de entrada de oxigênio

11.7 Porta de entrada de ar

11.8 Porta de enchimento

12 Requisitos para o sistema respiratório e acessórios

12.1 Geral

12.2 Documentação de acompanhamento

12.3 Tubos de respiração

12.4 Nível do recipiente de líquido

12.5 Tampa de enchimento

13 Compatibilidade com substâncias

14 Biocompatibilidade

15 Requisitos para prevenção de incêndio

16 Usabilidade

Anexo A Justificativa e orientação

A.1 Guia geral

A.2 Justificativa para cláusulas e subcláusulas específicas

Anexo B Símbolos na marcação

Anexo C Determinação da saída de umidificação

C.1 Geral

C.2 Princípio

C.3 Condições de teste

C.4 Aparelho

C.5 Procedimento

Anexo D Referência aos princípios essenciais

Anexo E Terminologia – Índice alfabético de termos definidos

Bibliografia

IEC 60335-2-95: a segurança de acionamentos elétricos de portas de garagem residenciais

Essa norma internacional, editada em 2019 pela International Electrotechnical Commission (IEC), especifica a segurança de acionamentos elétricos para portas de garagem para uso residencial que abrem e fecham na direção vertical, a tensão nominal dos acionamentos não sendo superior a 250 V para aparelhos monofásicos e 480 V para outros aparelhos. Também abrange os riscos associados ao movimento dessas portas de garagem acionadas eletricamente.

A IEC 60335-2-95:2019 – Household and similar electrical appliances – Safety – Part 2-95: Particular requirements for drives for vertically moving garage doors for residential use especifica a segurança de acionamentos elétricos para portas de garagem para uso residencial que abrem e fecham na direção vertical, a tensão nominal dos acionamentos não sendo superior a 250 V para aparelhos monofásicos e 480 V para outros aparelhos. Também abrange os riscos associados ao movimento dessas portas de garagem acionadas eletricamente.

A unidade pode ser fornecida com uma porta de garagem. Esta norma também se aplica a dispositivos de proteção de armadilha para uso com essas unidades. Não cobre os riscos relacionados aos mecanismos da própria porta. Na medida do possível, esta norma lida com os riscos comuns apresentados pelos aparelhos encontrados por todas as pessoas dentro e fora de casa.

No entanto, em geral, não leva em consideração o uso do aparelho por crianças pequenas, mas reconhece que as crianças podem estar nas proximidades da porta da garagem. Chama-se atenção para o fato de que em muitos países requisitos adicionais são especificados pelas autoridades nacionais responsáveis pela proteção do trabalho e autoridades similares.

Esta norma não se aplica a guias para persianas, toldos, persianas e equipamentos similares (IEC 60335-2-97); para portões, portas e janelas (IEC 60335-2-103); para fins comerciais e industriais; destinado a ser usado em locais onde prevalecem condições especiais, como a presença de uma atmosfera corrosiva ou explosiva (poeira, vapor ou gás). Esta quarta edição cancela e substitui a terceira edição publicada em 2011, a alteração 1: 2015 e a alteração 2: 2017.

Esta edição constitui uma revisão técnica e inclui algumas alterações técnicas significativas em relação à edição anterior. O texto foi alinhado com a edição 5.2 da Parte 1; a referência às normas IEC 60335-2-97 e IEC 60335-2-103 foi revisada para indicar corretamente seus títulos (Cláusula 1); as instruções específicas foram revisadas para separá-las das informações a serem fornecidas (7.12); os critérios de conformidade para os ensaios de 19.11.2 e 19.11.3 foram modificados (19.13); os ensaios para aparelhos da classe III e partes de construções da classe III foram modificados (25.8, 25.15). Esta parte 2 deve ser usada em conjunto com a última edição da IEC 60335-1 e suas emendas. Foi estabelecido com base na quinta edição (2010) dessa norma.

Conteúdo da norma

PREFÁCIO…………………….. 3

INTRODUÇÃO. ……………… 6

1 Escopo ………………………. 7

2 Referências normativas……….. ….. 7

3 Termos e definições…………… …… 7

4 Requisito geral………………….. ……. 8

5 Condições gerais para os ensaios………… 8

6 Classificação…………………… …………….. 9

7 Marcação e instruções……………………… .. 9

8 Proteção contra acesso a partes vivas…………. 11

9 Partida de aparelhos a motor…………………. 11

10 Entrada e corrente de energia……………….. .. 11

11 Aquecimento……………. ………………….. 12

12 Vazio…………. ……………………….. 12

13 Corrente de vazamento e força elétrica à temperatura operacional……………….. 12

14 Sobretensões transitórias………………. .12

15 Resistência à umidade………………………. …… 12

16 Corrente de fuga e força elétrica…………………. 12

17 Proteção contra sobrecarga de transformadores e circuitos associados……………… 13

18 Resistência……… ………………. 13

19 Operação anormal…………… …… 13

20 Estabilidade e riscos mecânicos……………….. 13

21 Resistência mecânica………………………… ….. 18

22 Construção…………………….. ……………. 18

23 Fiação interna……………………. …………… 19

24 Componentes………………. ……………. 19

25 Conexão de alimentação e cabos flexíveis externos…………….. 20

26 Terminais para condutores externos………………….. 20

27 Provisão para aterramento…………………… …. 20

28 Parafusos e conexões……………………………. 20

29 Folgas, distâncias de fluência e isolamento sólido.. ……….. 20

30 Resistência ao calor e ao fogo………………………………. 20

31 Resistência à ferrugem………………………….. ….. 20

32 Radiação, toxicidade e perigos similares…………….. 21

Anexos……………………….. ………………………. 24

Anexo R (normativo) Avaliação de software……………….. 25

Bibliografia…………………………. ………………….. 26

Figura 101 – Exemplos de tipos de portas de garagem………………….. 22

Figura 102 – Exemplo de aviso de pictograma contra aprisionamento de crianças………. 23

Foi assumido na redação desta norma que a execução de suas disposições é confiada a pessoas adequadamente qualificadas e experientes. Esta norma reconhece o nível internacionalmente aceito de proteção contra riscos como elétricos, mecânicos, térmicos, incêndio e radiação de aparelhos quando operados como em uso normal, levando em consideração as instruções do fabricante.

Também abrange situações anormais que podem ser esperadas na prática e leva em consideração a maneira pela qual os fenômenos eletromagnéticos podem afetar a operação segura dos aparelhos. Esta norma leva em consideração os requisitos da IEC 60364, tanto quanto possível, para que haja compatibilidade com as regras de fiação quando o aparelho está conectado à rede elétrica.

No entanto, as regras nacionais de fiação podem diferir. Se um dispositivo dentro do escopo desta norma também incorporar funções cobertas por outra parte 2 da IEC 60335, a parte relevante 2 será aplicada a cada função separadamente, na medida do razoável. Se aplicável, a influência de uma função na outra é levada em consideração. Quando um padrão da parte 2 não inclui requisitos adicionais para cobrir os riscos tratados na parte 1, a parte 1 se aplica.

Isso significa que os comitês técnicos responsáveis pelas normas da parte 2 determinaram que não é necessário especificar requisitos específicos para o aparelho em questão, além dos requisitos gerais. Essa norma é pertencente da família de produtos que trata da segurança de aparelhos e tem precedência sobre os padrões horizontais e genéricos que abrangem o mesmo assunto. Normas horizontais e genéricas que cobrem um risco não são aplicáveis, pois foram levadas em consideração no desenvolvimento dos requisitos gerais e particulares da série de normas IEC 60335.

Por exemplo, no caso de requisitos de temperatura para superfícies em muitos aparelhos, as normas genéricas, como a ISO 13732-1 para superfícies quentes, não são aplicáveis além dos padrões da Parte 1 ou da Parte 2. Um aparelho que esteja em conformidade com o texto desta norma não será necessariamente considerado em conformidade com os princípios de segurança da norma se, quando examinado e testado, for encontrado outros recursos que prejudiquem o nível de segurança coberto por esses requisitos. Um aparelho que utilize materiais ou possua formas de construção diferentes daquelas detalhadas nos requisitos desta norma pode ser examinado e ensaiado de acordo com a intenção dos requisitos e, se considerado substancialmente equivalente, pode ser considerado em conformidade com a norma.

 

As baterias chumbo-ácido para uso em veículos

Esses acumuladores são comumente chamados de baterias de arranque ou partida.

A NBR 15940 de 11/2019 – Baterias chumbo-ácido para uso em veículos rodoviários automotores de quatro ou mais rodas – Especificação e métodos de ensaio é aplicável aos acumuladores chumbo-ácido com tensão nominal de 12 V e 6 V, utilizados principalmente como fonte de energia para partida de iluminação, assim como aos equipamentos auxiliares de veículos com motor de combustão interna. Esses acumuladores são comumente chamados de baterias de arranque ou partida. É aplicável às baterias utilizadas em automóveis, utilitários, caminhões, ônibus, tratores, máquinas agrícolas, terraplenagem, entre outras, exceto trens. Aplica-se também às motocicletas, triciclos e quadriciclos que utilizam baterias com capacidade nominal superior a 30 Ah, em regime de 20 h (C20).

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser as características das amostras e amostragem das baterias?

Como deve ser executada a sequência de ensaios?

Como deve ser feito o ensaio do consumo de água na bateria regulada por válvula (VRLA)?

Como deve ser executado o ensaio de retenção de eletrólito em bateria ventilada ou inundada?

As baterias devem ser fornecidas novas e sem uso. As baterias seco-carregado devem ser fornecidas com eletrólito separados em recipiente apropriado. Para baterias fornecidas com eletrólito são consideradas como novas aquelas com tempo máximo de 90 dias a partir da data de fabricação, e para bateria seco-carregada aquelas com tempo máximo de 180 dias a partir da data de fabricação.

Para o produto de fabricação nacional, a bateria deve apresentar, em língua portuguesa e em áreas facilmente visíveis e legíveis, no mínimo as seguintes informações, gravadas em seu corpo ou impressas em rótulos indeléveis, com resistências mecânicas suficientes para suportar o manuseio e intempéries durante toda a sua vida útil: razão social do fabricante; CNPJ do fabricante; endereço do fabricante; denominação comercial (marca); data de fabricação (dia/mês/ano ou semana/ano); tensão nominal, expressa em volts (V); capacidade nominal, expressa em ampères-hora (Ah), a 25 °C, em regime de descarga de 20 h; reserva de capacidade, expressa em minutos (min), a 25°C; corrente de partida a frio (CCA), expressa em ampères (A), a –18 °C; classificação da tecnologia das baterias reguladas por válvulas ou, se for ventilada, usando os seguintes termos claramente expressos: livre de manutenção, baixa manutenção ou com manutenção; advertências sobre riscos à saúde humana e ao meio ambiente; peso líquido, expresso em quilogramas (kg), na forma como a bateria é comercializada, excetuando-se a sua embalagem. No caso de bateria seco-carregada, o peso deve ser verificado na forma como ela é comercializada, ou seja, não ativada e sem eletrólito;

Para o produto de fabricação estrangeira, a bateria deve apresentar, em língua portuguesa e em áreas facilmente visíveis e legíveis, no mínimo as seguintes informações, gravadas em seu corpo ou impressas em rótulos indeléveis, com resistências mecânicas suficientes para suportar o manuseio e intempéries durante toda a sua vida útil: razão social do importador; CNPJ do importador; país de origem; identificação do fabricante; endereço do fabricante; denominação comercial (marca); data de fabricação (dia/mês/ano ou semana/ano); tensão nominal, expressa em volts (V); capacidade nominal, expressa em ampères-hora (Ah), a 25 °C, no regime de descarga de 20 h; reserva de capacidade, expressa em minutos (min), a 25°C; corrente de partida a frio (CCA), expressa em ampères (A) a –18°C; classificação da tecnologia das baterias reguladas por válvulas ou, se for ventilada, usando os seguintes termos claramente expressos: livre de manutenção, baixa manutenção ou com manutenção; advertências sobre riscos à saúde humana e ao meio ambiente; peso líquido, expresso em quilogramas (kg), na forma como a bateria é comercializada, excetuando-se a sua embalagem. No caso de bateria seco-carregada, o peso deve ser verificado na forma como ela é comercializada, ou seja, não ativada e sem eletrólito.

A bateria deve apresentar em seu corpo, gravados de forma impressa ou em rótulos indeléveis em áreas facilmente visíveis, todos os símbolos de segurança citados na NBR 15914. O fabricante ou importador deve fornecer as seguintes informações: instruções de ativação, para o caso de baterias seco carregadas; densidade e volume do eletrólito a ser utilizado para a ativação, no caso de baterias seco carregadas; indicações de manuseio e cuidados especiais; tempo máximo de armazenamento; tensão mínima de circuito aberto para recarga; especificações de recarga.

As seguintes informações são opcionais: tensão-limite de recarga, expressa em volts (V); intervalo de tensão de operação, expressa em volts (V); corrente e tempo de recarga, expressa em ampères (A) e horas (h). As baterias devem ser armazenadas em condições de uso, em local coberto, devidamente protegidas dos raios solares. É recomendado que, no período de armazenamento da bateria, a temperatura média não seja superior a 35°C.

As baterias devem ser dispostas no local de armazenamento de tal forma que não sofram danos ou irregularidades que venham a afetar posteriormente seu desempenho e segurança. A rotatividade do estoque deve ser tal que as primeiras baterias que entrem sejam as primeiras a saírem. A tensão da bateria em estoque deve ser verificada mensalmente.

Em fábrica, a tensão deve ser verificada em uma amostragem previamente determinada. A periodicidade da checagem da tensão da bateria, ou de sua amostragem, e os seus valores devem ser de acordo com o recomendado pelo fabricante. Na ausência das informações acima, a bateria ou amostragem que apresentar tensão inferior a 12,40 V, para baterias ventiladas e 12,60 V, para baterias reguladas por válvulas (VRLA), deve ser considerada como não estando pronta para uso e não pode ser comercializada, devendo ser recarregada.

Para as baterias com tensão nominal de 6 V, os valores de tensão citados em qualquer trecho desta norma devem ser divididos por 2 para a correta adequação do ensaio ou requisito. A capacidade nominal da bateria no regime de 20 h é a quantidade de carga elétrica em ampères-hora (Ah) que a bateria pode fornecer com o seguinte valor de corrente até a tensão final de 10,5 V l20=C20/20, onde l20 é o valor da corrente, expresso em ampères (A); C20 é o valor da capacidade nominal, expresso em ampères-hora (Ah).

A reserva de capacidade é o tempo, expresso em minutos (min), que a bateria deve permanecer em uma descarga de 25 A, até uma tensão final de 10,5 V (ver 8.3). O valor da corrente de partida a frio é a corrente que a bateria deve fornecer a uma temperatura de –18°C por um tempo mínimo de 30 s até uma tensão maior ou igual a 7,2 V (ver 8.4). O consumo de água é determinado por uma razão entre a variação de peso da bateria e a sua capacidade, em gramas por ampères-hora (g/Ah), após a bateria ter sido submetida a um regime de carga, conforme especificado em 8.5.

As baterias devem ser designadas como seco-carregadas se elas ficarem prontas para uso após serem preenchidas com seu eletrólito apropriado, conforme especificado em 7.3 ou segundo o processo de ativação especificado pelo fabricante. Plena carga de bateria regulada por válvulas (VRLA) sob corrente e tensão constantes. A bateria deve ser carregada à tensão constante de (14,40 ± 0,05) V por 20 h, limitando o valor da corrente inicial a um máximo de cinco vezes o valor da corrente utilizada no ensaio de capacidade em regime de 20 h.

Após esta etapa, a bateria deve continuar sendo carregada com um valor de corrente constante igual à metade do valor utilizado no ensaio de capacidade em regime de 20 h por um período de 4 h. A temperatura da bateria deve ser mantida a (25 ± 10) °C. A medição da temperatura deve ser efetuada o mais próximo possível da região central de uma das superfícies laterais externas da caixa.

Se a quantidade de carga elétrica retirada em ampères-hora (Ah) for conhecida, é permitida a recarga de 120% a 130% do valor de carga retirada sob o mesmo regime de carga especificado. O processo de ativação deve ser feito de acordo com o especificado pelo fabricante. O fabricante deve fornecer a solução ou especificar o valor da sua densidade a uma dada temperatura. Cada vaso da bateria deve ser preenchido com o eletrólito que acompanha o produto ou que seja recomendado pelo fabricante.

Frente a nenhuma destas opções, recomenda-se utilizar uma solução de ácido sulfúrico com densidade de (1,28 ± 0,01) kg/L, a 25°C. Deve-se aguardar um período mínimo de 20 min para o uso da bateria, certificando-se que a temperatura esteja abaixo de 30°C. O intervalo de medição para os instrumentos utilizados deve ser apropriado para a magnitude dos parâmetros a serem medidos. A precisão mínima dos equipamentos é aquela especificada na tabela abaixo.

Para o ensaio de consumo de água em bateria ventilada ou inundada, que não se aplica às baterias de tecnologias ventiladas ou inundadas convencionais designadas pelo termo com manutenção. A bateria deve estar à plena carga, conforme 7.2 e com conhecimento prévio do valor de capacidade real em regime de 20 h. A bateria, após ter sido levada à plena carga, deve ser limpa, seca e pesada, registrando seu peso inicial (P1).

O instrumento a ser utilizado neste ensaio deve ter precisão de ± 0,05 % do peso da bateria, ou melhor. A bateria deve ser colocada durante toda a duração do ensaio em um dispositivo que permita manter a temperatura de (40 ± 2) °C. Se a bateria for colocada em um banho de água com temperatura controlada, o nível da água deve estar no mínimo a 15 mm e no máximo a 25 mm abaixo da base dos terminais. Se várias baterias forem colocadas no mesmo banho, a distância entre elas e a parede do banho deve ser no mínimo de 25 mm.

IEC 60118-13: a compatibilidade eletromagnética dos aparelhos auditivos

Essa norma internacional, publicada em 2019 pela International Electrotechnical Commission (IEC), abrange os fenômenos de compatibilidade eletromagnética (electromagnetic compatibility – EMC) relevantes para aparelhos auditivos. A imunidade dos aparelhos auditivos a campos de alta frequência originados de dispositivos digitais sem fio, como telefones celulares, foi identificada como um dos fenômenos EMC mais relevantes para esses equipamentos.

A IEC 60118-13:2019 – Electroacoustics – Hearing aids – Part 13: Requirements and methods of measurement for electromagnetic immunity to mobile digital wireless devices abrange os fenômenos de compatibilidade eletromagnética (electromagnetic compatibility – EMC) relevantes para aparelhos auditivos. A imunidade dos aparelhos auditivos a campos de alta frequência originados de dispositivos digitais sem fio, como telefones celulares, foi identificada como um dos fenômenos EMC mais relevantes para esses equipamentos.

A IEC 60118-13: 2019 cancela e substitui a quarta edição publicada em 2016 e constitui uma revisão técnica. Esta edição inclui as seguintes alterações técnicas significativas em relação à edição anterior: introduz um novo método de medição e um conjunto de requisitos EMC para imunidade de aparelhos auditivos a dispositivos móveis digitais sem fio; e os requisitos genéricos da EMC para aparelhos auditivos não estão mais incluído, devendo ser cobertos por outras normas, conforme apropriado.

CONTEÚDO

PREFÁCIO ………………………. 3

INTRODUÇÃO….. ……………… 5

1 Escopo…………………….. 6

2 Referências normativas ….. 6

3 Termos e definições……. …… 6

4 Operação e função do aparelho auditivo……………… 8

5 Requisitos para imunidade eletromagnética…………… 8

5.1 Geral…………………………………….. …………….. 8

5.2 Critérios de conformidade……………………………. 9

6 Procedimentos de ensaio para imunidade a campos eletromagnéticos de RF irradiados……………. 11

6.1 Geral………. …………… 11

6.2 Configuração do ensaio………….. ……….. 11

6.3 Configuração do ensaio do aparelho auditivo………………. 11

6.4 Determinação do ganho………………………. 12

6.5 Medição do ruído ambiente relacionado à entrada (input related ambient noise – IRAN)………. 12

6.6 Acoplamento de saída do aparelho auditivo durante o ensaio de imunidade.. …….. 13

6.7 Posição do aparelho auditivo durante o ensaio de imunidade…………… ……….. 13

6.8 Medição do nível de interferência relacionado à saída (output related interference level – ORIL)……………… 14

6.9 Cálculo do nível de interferência relacionado à entrada (input related interference level – IRIL) ………………………………… 15

6.10 Relatório…….. …………….. 15

7 Incerteza de medição para imunidade a campos eletromagnéticos de RF irradiados ……….. 16

Anexo A (informativo) Antecedentes para o estabelecimento de métodos de ensaio, critérios de desempenho e níveis de ensaio………………. 17

A.1 Geral……… …………….. 17

A.2 Campos eletromagnéticos de RF irradiados – História do método de ensaio…………….. 17

A.3 Critérios de desempenho…………………… 19

A.4 Pontos fortes do campo de ensaio – Compatibilidade do espectador…………. 19

A.5 Pontos fortes do campo de teste – Compatibilidade do usuário…………………. 20

Bibliografia…………………. 21

Figura 1 – Exemplo de um arranjo de ensaio para medições de imunidade de aparelhos auditivos usando uma célula GTEM……….. 11

Figura 2 – Exemplos de curvas de resposta de entrada e saída a 1 kHz e a determinação de ganho em um SPL de entrada de 55 dB…………………………… 12

Figura 3 – Posições de ensaio do aparelho auditivo para BTE (superior) e ITE (inferior)…………………….. 14

Figura A.1 – Razão de 1: 2 entre a intensidade do campo e o nível de interferência em dB…………………. 18

Figura A.2 – Exemplo de arranjo de ensaio para medições de imunidade de aparelhos auditivos usando antena dipolo………… 20

Tabela 1 – Intensidades de campo dos sinais de ensaio de RF a serem usados para estabelecer imunidade a aparelhos auditivos compatíveis com o usuário………. ……….. 10

Esta parte da IEC 60118 especifica os métodos de medição e requisitos para os aparelhos auditivos quanto à imunidade a dispositivos sem fio digitais. A maioria dos aparelhos auditivos contém processadores de sinais digitais e alguns podem conter transceptores sem fio. A experiência relacionada ao uso de aparelhos auditivos nos últimos tempos identificou dispositivos sem fio, como telefones sem fio e telefones celulares GSM, como fontes potenciais de distúrbios nos aparelhos auditivos.

A interferência nos aparelhos auditivos depende da potência emitida pelo dispositivo digital sem fio, bem como a imunidade do aparelho auditivo. O desempenho dos critérios deste documento não garantirão totalmente a interferência e o ruído dos usuários de aparelhos auditivos, mas estabelecerá as condições úteis na maioria das situações.

Na prática, um usuário de aparelho auditivo, ao usar um telefone sem fio, procurará, se possível, encontrar uma posição na orelha, que ofereça mínima ou nenhuma interferência no aparelho auditivo. Vários ensaios foram considerados para determinar a imunidade dos aparelhos auditivos. Quando um dispositivo digital sem fio for usado próximo a um aparelho auditivo, há uma iluminação de campo próximo RF do aparelho auditivo. Entretanto, as investigações de validação na preparação deste documento mostraram que é possível estabelecer uma correlação entre o nível de imunidade medido em campo e o nível de imunidade experimentado por um aparelho auditivo real usado em conjunto com um dispositivo digital sem fio.

O uso de um ensaio de campo distante mostrou alta reprodutibilidade e é considerado suficiente para verificar e expressar a imunidade de aparelhos auditivos. Iluminação de campo próximo do aparelho auditivo (ou seja, gerando um campo de RF usando uma antena dipolo) poderia, no entanto, fornecer informações valiosas informações durante o projeto e desenvolvimento de aparelhos auditivos.

Reconhece-se que os novos produtos sem fio introduzidos devem coexistir com os existentes espectros, redes em potencial e outros produtos sem fio (médicos e não médicos). Essa revisão não trata da questão da coexistência e o usuário deste documento deve consultar as normas aplicáveis para obter orientação.

Nesta quinta edição da IEC 60118-13, os pontos fortes e o posicionamento do aparelho auditivo durante as medições foram atualizadas para consistência com a IEEE C63.19 e ANSI C63.19. Os níveis de força de campo usados desde a primeira edição da IEC 60118-13 foram publicados em 1997 e demonstraram, através de medições de mais de 1.000 aparelhos auditivos, (ref. European Hearing Instrument Manufacturers Association – EHIMA), ser suficientemente alto para garantir um bom funcionamento dos aparelhos auditivos no uso diário, com apenas uma pequena expectativa de algumas reclamações sobre interferência de dispositivos digitais sem fio. Os aparelhos auditivos em que as saídas não são acústicas, por exemplo, aparelhos auditivos por condução óssea, não estão diretamente incluídos neste documento, mas ele pode ser usado se necessário quanto às descrições das configurações de medição para esses tipos de aparelhos auditivos e são fornecidas pelo fabricante.

As lentes para óculos montadas

As lentes montadas e acabadas são classificadas da seguinte forma: lentes acabadas de visão simples; lentes acabadas multifocais; lentes acabadas de potência variável.

A NBR ISO 21987 de 08/2019 – Óptica oftálmica — Lentes para óculos montadas especifica os requisitos e métodos de ensaio para lentes para óculos montadas, em relação à prescrição solicitada.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as tolerâncias do desequilíbrio do prisma (erro relativo de prisma) para lentes de visão simples (excluindo lentes de visão simples de posição específica) e lentes multifocais?

Qual deve ser a posição horizontal dos segmentos?

Qual é o método para verificação da potência de adição para lentes multifocais?

Qual é o método de verificação para planos de transmissão de lentes polarizadoras?

Como deve ser avaliada a qualidade do material e da superfície?

As lentes montadas e acabadas são classificadas da seguinte forma: lentes acabadas de visão simples; lentes acabadas multifocais; lentes acabadas de potência variável. As tolerâncias devem ser aplicadas a uma temperatura de 23 °C ± 5 °C. As lentes acabadas não cortadas, utilizadas na fabricação de óculos completos, devem atender aos requisitos da ISO 14889.

As lentes para óculos montados também devem atender aos outros requisitos solicitados na prescrição, não incluídos neste documento. As características ópticas devem ser verificadas utilizando um lensômetro, conforme os requisitos da ISO 8598-1. As tolerâncias ópticas devem ser aplicadas no (s) ponto (s) de referência das lentes em um dos comprimentos de onda de referência especificados na NBR ISO 7944.

Se o fabricante indicar uma potência de verificação, as faixas e tolerâncias nas tabelas na norma devem estar de acordo com e aplicadas à potência de verificação. Neste caso, a potência de verificação pode ser declarada pelo fabricante em um documento anexo. Para as potências do vértice posterior, quando verificadas de acordo com 5.3.1, as lentes para óculos devem estar de acordo com as tolerâncias da potência de cada meridiano principal (ver tabela abaixo, segunda coluna) e com as tolerâncias da potência cilíndrica (ver tabela abaixo, terceira a sexta coluna), usando o método especificado em 6.2: a potência do vértice posterior no ponto de referência de todas as lentes de visão simples e o ponto de referência da distância das lentes multifocais, incluindo aqueles com superfícies asféricas ou atoroidais, devem atender às tolerâncias constantes na tabela abaixo; a potência do vértice posterior no ponto de referência primário das lentes de potência variável deve atender às tolerâncias constantes na tabela abaixo.

Quando verificado de acordo com 5.3.1 e usando o método especificado em 6.6, o desequilíbrio do prisma (erro relativo de prisma), depois de neutralizar ou permitir que qualquer prisma prescrito, para lentes de visão simples (excluindo visão simples de posição específica) e multifocais, deve atender às tolerâncias da Tabela 5 (na norma). Lentes sem prisma prescrito também são inclusas. Para determinar as tolerâncias de desequilíbrio do prisma: se for prescrito como um prisma oblíquo, calcular qualquer prisma prescrito em suas componentes vertical e horizontal; determinar o maior valor da componente horizontal prescrita e o maior valor da componente vertical prescrita; encontrar as quatro potências principais (duas em cada lente); identificar a maior potência absoluta das quatro potências principais; horizontal: se o valor absoluto da potência encontrada for ≤ 3,37 D, usar os valores de tolerância da segunda coluna da Tabela 5 na norma.

A linha é determinada usando o maior valor da componente horizontal prescrita. Se o valor absoluto da potência for > 3,37 D, usar os valores de tolerância da terceira coluna. A Figura 1 na norma pode ser usada para determinar a tolerância do desequilíbrio horizontal do prisma ao invés de usar a Tabela 5. Encontrar a tolerância do desequilíbrio horizontal do prisma no eixo y, usando a potência no eixo x, acima em 4), e a curva representando a faixa pertinente do prisma, isto é, que contém o maior valor da componente horizontal do prisma prescrito.

Na vertical: se o valor absoluto da potência encontrada for ≤ 5,00 D, usar os valores de tolerância na quarta coluna da Tabela 5. A linha é determinada usando o maior valor da componente vertical prescrita. Se o valor absoluto da potência for > 5,00 D, usar os valores de tolerância na quinta coluna.

Como recomendações na montagem, convém que as duas lentes de um par sejam razoavelmente combinadas em formato, tamanho, forma e massa e, exceto quando necessário para fins de combinação, não convém que sejam substancialmente mais espessas do que o requerido, para dar estabilidade mecânica. Em determinadas circunstâncias, uma correspondência satisfatória pode requerer que as lentes sejam especialmente trabalhadas. Convém que o tom, incluindo a refletância residual de revestimentos antirreflexo e a refletância de revestimentos espelhados, das duas lentes de um par não seja obviamente diferente.

Como recomendações sobre a montagem, no tamanho e forma das lentes, convém que o tamanho e a forma de uma lente sejam substancialmente iguais ao tamanho e forma da abertura correspondente na armação. Convém tomar cuidado para assegurar que as dimensões do frontal dos óculos, após a montagem, não difiram substancialmente das dimensões correspondentes antes da montagem. Convém ter em mente que alterações significativas na forma do aro, tamanho da abertura ou dimensões da ponte podem diminuir consideravelmente a vida útil dos óculos acabados.

Ao montar lentes em armações de metal, convém tomar cuidado para não danificar qualquer revestimento protetor no metal. Para as lentes com bordas biseladas, convém que o bisel seja liso, regular, livre de cavacos e estrelado, e razoavelmente livre de facetas, com um chanfro de segurança no pico e em cada borda, quando necessário. Para lentes para montagens de óculos sem aro e semiaro, convém que as lentes de borda plana apresentem um acabamento suave com um chanfro de segurança em cada borda, quando necessário.

Convém que os furos para conexões sem aro sejam perfurados na distância correta da borda de acordo com o tipo de montagem. Slots e ranhuras, quando requeridos, convém que sejam posicionados com exatidão. Convém que a barra frontal de suportes semiaro seja cuidadosamente ajustada para seguir a extremidade da lente, desde que o modelo de estrutura permita isto. Convém que as extremidades dos parafusos estejam bem acabadas.

Para a montagem, convém que as lentes sejam retidas com segurança na armação, para que o movimento ou a rotação não possam ocorrer sob qualquer condição normal de uso. Convém que nenhum espaço esteja visível entre a borda da lente e o aro. Convém que as metades das juntas do bloco de fechamento fechem adequadamente sem força indevida ou sem deixar uma lacuna visível na junta. Convém que as lentes em suportes sem aro e semiaro sejam montadas de forma habilidosa e cuidadosa para assegurar que estejam seguras na posição. Convém que todas as lentes montadas não apresentem tensão significativa, quando examinadas em um polariscópio ou tensiômetro.

Para o ajuste de lentes redondas, convém que a posição de ajuste das lentes redondas (exceto as de vidro temperado termicamente) seja indicada por uma marca permanente colocada ao lado da junta na superfície posterior da lente, como a seguir: na lente direita, uma marca na linha central horizontal no lado temporal; na lente esquerda, duas marcas colocadas simetricamente, uma acima e outra abaixo da linha central horizontal no lado temporal.

A qualidade dos eletrodos descartáveis usados em eletrocardiografia (ECG)

O coração possui atividade elétrica própria que consiste na geração e transmissão de estímulos. Os distúrbios destas propriedades resultam em alterações do ritmo cardíaco ou arritmia cardíaca. Assim, o sistema de condução elétrica do coração inicia, os impulsos, no nodo sinoatrial (S-A) onde os átrios são despolarizados e o impulso se espalha através do nodo atrioventricular e do feixe de His para os ramos direito e esquerdo seguindo para o músculo ventricular resultando a despolarização ventricular.

Porém em alguns casos, por diversos motivos, esse estímulo não é gerado na frequência correta (podendo ser para mais ou para menos) ou nasce em locais não habituais. As arritmias cardíacas representam esse grupo de distúrbios do ritmo cardíaco, causando ou não sintomas e podem levar à morte.

Para medir e detectar os biopotenciais e também correntes pelo corpo, é necessária uma interface entre o corpo e o sistema eletrônico de medida. Os eletrodos usados para isso podem ser classificados pelo método de aquisição.

Os invasivos são utilizados internamente no corpo para a detecção de biopotenciais. Eles podem ser colocados abaixo da pele, conhecidos como subcutâneos, ou podem ser inseridos no corpo. Os não evasivos são utilizados para detectar biopotenciais a partir da superfície do corpo, não ocorrendo danos físicos durante a detecção dos biopotenciais.

A NBR 16628 de 09/2017 – Eletrodos descartáveis de ECG – Requisitos estabelece os requisitos mínimos para rotulagem, segurança e desempenho para eletrodos descartáveis usados para a eletrocardiografia (ECG) diagnóstica ou no monitoramento por ECG. Aplica-se a todos os sistemas de eletrodos (ver 2.9) de ECG descartáveis. Esta norma não se aplica a eletrodos ativos, eletrodos de agulha, eletrodos reutilizáveis (não descartáveis), eletrodos destinados a entregar energia terapêutica e eletrodos projetados primariamente para a medição de sinais fisiológicos diferentes do eletrocardiograma (por exemplo, eletrodos usados com monitores de apneia, se o eletrodo for utilizado para objetivos não relacionados ao ECG, por exemplo, pletismografia por impedância).

Além disso, os requisitos para a composição do eletrólito não estão abordados nesta norma. O Anexo A (informativo) apresenta as justificativas para o desenvolvimento e disposições desta norma. O Anexo B (informativo) apresenta um resumo dos requisitos de rotulagem e desempenho.

A rotulagem para os eletrodos descartáveis de ECG deve estar em conformidade com as disposições desta Seção. A rotulagem que acompanha o produto deve incluir no mínimo as seguintes informações: declaração indicando a data-limite na qual a conformidade do produto com os requisitos desta norma não pode ser assegurada (por exemplo, “utilizar antes de ______”) e o número do lote, ou uma declaração indicando a data de fabricação, a data de validade e o número de lote; precauções e advertências adequadas, incluindo os limites de duração da aplicação do eletrodo e uma indicação da vida útil fora da bolsa do produto; se o eletrodo deve ser utilizado imediatamente após a abertura da bolsa, então um aviso apropriado deve ser indicado; instruções adequadas para utilização, incluindo os procedimentos para preparação da pele e para a preparação do eletrodo se ele não for pré-gelatinizado (por exemplo, tipo e quantidade do gel); instruções para os requisitos de armazenamento, se aplicável.

Devido às limitações de espaço, particularmente nas menores embalagens/bolsas dos eletrodos de ECG, e devido à NBR ISO 15223-1 ser nacionalmente aceita, convém que os símbolos da NBR ISO 15223-1 sejam utilizados na rotulagem quando apropriados.

Os requisitos de rotulagem complementam aqueles que são obrigatórios para todos os produtos para saúde, de acordo com o Código de Regulamentações Federais, Título 21, Capítulo 1, Subcapítulo H, Seção 801 dos Estados Unidos. Os requisitos adicionais de rotulagem fornecidos pela ANSI/AAMI EC 12, conforme descritos a seguir, abordam as informações específicas necessárias na utilização segura dos eletrodos de ECG.

Requer que a rotulagem inclua as informações necessárias para identificar e rastrear adequadamente o produto, para segregar os problemas do produto e para garantir que o usuário esteja ciente do tempo pelo qual o produto pode ser armazenado e ainda manter o desempenho satisfatório. Foi desenvolvido para minimizar a possibilidade do paciente se lesionar com o uso prolongado do eletrodo.

Houve muitos aperfeiçoamentos no produto e na embalagem ao longo dos últimos dez anos que aumentaram a vida útil fora da bolsa dos eletrodos. Por exemplo, existem sacos resseláveis que são utilizados para manter o alimento fresco após a abertura da embalagem. Se o usuário final seguir as instruções do fabricante sobre a resselagem, a vida útil do produto pode ser prolongada.

Sobre os eletrodos em si, novos projetos e aperfeiçoamentos tornam possível manter as características de desempenho por um intervalo de tempo após a abertura da embalagem (em alguns casos, de até semanas). Isto é especialmente verdadeiro para algumas das chamadas embalagens a granel, em que o fabricante pode ter 25, 30 ou até mesmo 50 eletrodos em uma embalagem unitária (ou bolsa).

Se o fabricante fizer o ensaio adequado e satisfizer aos requisitos que possam existir (por exemplo, BPF ou FDA), será um benefício ao usuário final saber que ele não tem que usar o produto “imediatamente” após a abertura da embalagem unitária. Verificar as justificativas para os requisitos da ANSI/AAMI EC12 descritas.

O produto deve ser fabricado e embalado de modo que todos os requisitos desta norma sejam atendidos até a data de validade especificada pelo fabricante de acordo com 3.1 a), nas condições de armazenamento recomendadas pelo fabricante de acordo com 3.1 d). O valor médio da impedância de 10 Hz para pelo menos 12 pares de eletrodos conectados gel a gel, em um nível de corrente impressa de até 100 μA de pico a pico (p-p), não pode exceder 2 kΩ.

Nenhuma das impedâncias dos pares individuais pode exceder 3 kΩ. Após um intervalo de estabilização de 1 min, um par de eletrodos conectados gel a gel não pode exibir uma tensão de offset cc maior que 100 mV. Instabilidade da tensão de offset cc e ruído interno combinados. Após um intervalo de estabilização de 1 min, um par de eletrodos conectados gel a gel não pode gerar uma tensão maior que 150 μV p-p na banda de passagem (resposta em frequência de primeira ordem) de 0,15 Hz a 100 Hz, por um intervalo de 5 min seguinte ao intervalo de estabilização.

Cinco segundos após as descargas de cada um dos quatro capacitores, o valor absoluto do potencial de polarização de um par de eletrodos conectados gel a gel não pode exceder 100 mV. A sobrecarga do capacitor de descarga deve consistir de um capacitor de 10 μF carregado a 200 V e descarregado através do par de eletrodos com 100 Ω em série. Durante o intervalo de 30 s após cada medição do potencial de polarização, a taxa de mudança do potencial de polarização residual não pode ser maior que +/- 1 mV/s.

Após o par de eletrodos ter sido ensaiado para conformidade com este requisito, a impedância de 10 Hz do par de eletrodos não pode exceder 3 kΩ. A mudança observada na tensão de offset cc através de um par de eletrodos conectados gel a gel não pode exceder 100 mV quando o par de eletrodos estiver sujeito a uma corrente contínua cc de 200 nA pelo intervalo de tempo recomendado pelo fabricante para a utilização clínica dos eletrodos. Em nenhum caso, este intervalo de tempo deve ser menor que 8 h.

O produto deve ser biocompatível. Para esta aplicação (isto é, um eletrodo em contato com a pele), a biocompatibilidade requer a avaliação da citotoxicidade, da irritação da pele, além da sensibilização da pele ou reatividade intracutânea. Eletrodos com fios condutores pré-conectados (conectados permanentemente) devem ser construídos de maneira que o conector do fio condutor utilizado para fixá-lo ao cabo-tronco do instrumento não possa entrar em contato com o aterramento ou com um potencial possivelmente perigoso.

Em particular, este conector deve ser construído para prevenir o contato condutivo com uma tomada de rede elétrica ou com um cabo de energia destacável. Convém que a ANSI/AAMI EC53 seja analisada e considerada no processo do projeto e fabricação dos eletrodos de ECG com fios condutores pré-conectados. Convém que o desempenho adesivo do eletrodo atenda às alegações ou aplicações indicadas pelo fabricante, já que ele tem impacto sobre a duração do uso.

Por exemplo, para um eletrocardiograma em repouso de curta duração, convém que o adesivo seja capaz de manter o contato com o corpo pelo intervalo de tempo normalmente associado com este procedimento; uma projeção seria entre 5 min e 30 min. Por outro lado, monitorações de longa duração podem requerer que o eletrodo permaneça no paciente por um intervalo de dias, dependendo do protocolo do hospital.

Portanto, convém que um adesivo a ser utilizado em um eletrodo de ECG tenha características de desempenho que atendam ao uso pretendido do produto. Uma corrente cc de 200 nA deve ser aplicada a um par de eletrodos conectados gel a gel, utilizando-se uma fonte de corrente que consista de uma fonte de tensão de pelo menos 2 V conectada em série com um resistor de ajuste de corrente adequado.

Convém que o potencial através do par de eletrodos seja monitorado com um voltímetro cc com uma impedância mínima de entrada de 10 MΩ, uma resolução de 5 mV ou melhor, e uma corrente de polarização de entrada menor que 10 nA. Convém que a tensão diferencial através dos eletrodos seja medida pelo menos uma vez por hora ao longo do intervalo de observação. Convém que a tensão de offset cc inicial seja medida dentro de 1 min a 5 min após juntarem-se os eletrodos e antes da corrente de polarização ser aplicada.

A mudança na tensão de offset cc causada pela corrente de polarização aplicada deve ser então medida com relação à tensão de offset cc inicial. Convém que o desempenho do adesivo seja tal que o eletrodo permaneça preso à pele pela aplicação/duração indicada pelo fabricante fornecendo, ao mesmo tempo, um eletrocardiograma aceitável. O ensaio vai requerer um grupo mínimo de voluntários de cinco mulheres e cinco homens.

Para avaliar o desempenho do adesivo de um eletrodo, convém que cada voluntário tenha quatro eletrodos colocados sobre o corpo e convém que o posicionamento dos eletrodos permita que um eletrocardiograma seja obtido. Convém que a pele de cada voluntário seja preparada de acordo com as instruções do fabricante, conforme descrito no rótulo. Convém que os eletrodos sejam mantidos pela duração do uso divulgado pelo fabricante. Por exemplo, se o fabricante declarar uma duração de uso de cinco dias, os voluntários devem usar o produto por no mínimo cinco dias. Convém que seja obtido um traço de ECG na colocação inicial e no término do estudo. Convém que os traços sejam documentados de forma apropriada.

Em geral, devido aos diferentes tipos de pele, condições da pele e fatores ambientais, convém que o desempenho geral aceitável de um sistema adesivo seja determinado pela média dos dez voluntários. Por exemplo, se dois voluntários tiverem queda de eletrodos após cinco dias, três voluntários tiverem queda de eletrodos após seis dias e os demais voluntários tiverem queda de eletrodos após sete dias, o tempo médio de uso seria de 6,3 dias para o grupo de voluntários. O fabricante seria capaz de indicar que o tempo de uso, em média, é de seis dias. Este método de ensaio não é aplicável aos eletrodos projetados para utilização em pacientes neonatos e pediátricos.