A conformidade das cordas têxteis para operações de acesso por corda

Na verdade, as cordas estáticas não são projetadas para esticar sob carga, ao contrário das cordas dinâmicas que possuem um certo grau de elasticidade. Uma escalada guiada sempre deve ser feita com uma corda dinâmica, pois o uso de uma corda estática pode levar a lesões graves. As cordas estáticas têm muitas aplicações, incluindo o rapel, os salvamentos em incêndio e a espeleologia. As propriedades de baixo alongamento das cordas estáticas permitem uma descida controlada e livre de ressaltos. Por exemplo, as cordas de rapel normalmente têm cerca de 2% quando estão sob uma carga de peso corporal padrão.

Já as cordas utilizadas em acesso por corda, ascensão, descensão, deslocamento horizontal, resgate e espeleologia são empregadas de forma análoga, portanto devem ter as mesmas características. Elas são utilizadas em combinação com equipamentos de ascensão e descensão, no acesso por meio de corda para o posicionamento no ponto ou posto de trabalho; em operações de resgate, para movimentar pessoas; e para facilitar o deslocamento horizontal, ascendente ou descendente.

Estas cordas devem ter um coeficiente de alongamento baixo, durante sua utilização normal, e a capacidade de resistir às forças geradas em uma queda. Também devem ter capacidade de absorção da energia desenvolvida por esta força de choque, propriedade requerida que deve guardar um compromisso em relação ao alongamento aceitável durante o uso ou trabalho normal.

Assim, o interior, conhecido como kern, é protegido por uma bainha tecida ou o manto). A resistência da corda é atribuída ao núcleo, enquanto a bainha externa fornece proteção contra abrasão. As cordas kernmantle são particularmente úteis em escalada, espeleologia e na indústria naval, onde um alto grau de abrasão pode ser esperado. A construção de kernmantle pode ser usada em linhas dinâmicas e estáticas.

Elas são fabricadas em poliéster e poliamida (corda de alma e capa trançada de baixo coeficiente de alongamento). Entretanto, a menos que a poliamida ou poliéster sejam classificações específicas, as recomendações aplicam-se às cordas de capa e alma de baixo alongamento de qualquer material permitido em conformidade com a norma. As cordas feitas de qualquer material são sensíveis ao desgaste, uso e deterioração mecânica, e podem consequentemente tornar-se mais frágeis sobre a ação de determinados agentes, como produtos químicos, calor, luz, etc.

Por este motivo é essencial efetuar inspeções regulares para garantir que a corda continue sendo utilizada. É também enfático que qualquer que seja o agente que origine a deterioração, o efeito seja mais grave em cordas de menores diâmetros do que nas de diâmetros maiores. É conveniente ter em conta a consequência da relação entre a superfície da corda e o diâmetro da seção transversal.

Deve-se examinar a corda em seções de 300 mm e girar a corda para examinar toda a sua superfície antes de continuar com o próximo segmento. Os fios ou cordões podem ser destorcidos suavemente para permitir o exame entre as zonas internas entre elas. Deve-se definir o padrão de aceitação ou rejeição é muito mais difícil que descrever o método de controle. Podem existir limites bem definidos entre cordas seguras e cordas que não são, já que isto depende da qualidade da corda que será submetida a uma ação de uso.

Na prática a decisão entre utilizar uma corda ou descartá-la deve estar fundamentada na avaliação de seu estado geral. Muitas das condições que guiarão o examinador não podem ser exatamente descritas, mas podem apenas ser estabelecidas em termos gerais. Após o exame, permanecendo a dúvida quanto à segurança da corda, esta deve ser descartada, lembrando-se que os efeitos de desgaste pelo uso e pela deterioração mecânica são comparativamente maiores em cordas mais finas e que, portanto, requerem padrões mais rigorosos de aceitação.

Pode-se definir uma corda de alma e capa trançada de baixo coeficiente de alongamento como um produto têxtil, composto por uma alma ou núcleo, envolvida por uma capa (camisa ou bainha), projetada para ser utilizada por pessoas no acesso mediante corda, e todos os tipos de posicionamento e retenção em pontos de trabalho, assim como na ascensão, descensão, deslocamento horizontal, operações de resgate e espeleologia. As do tipo A possuem uma alma e capa trançada de baixo coeficiente de alongamento, projetada para uso por pessoas, incluindo todos os tipos de posicionamento e retenção, na posição de trabalho, assim como em técnicas de ascensão, descensão, deslocamento horizontal, operações de resgate e espeleologia.

As cordas do tipo B são as de alma e capa trançada de baixo coeficiente de alongamento, de comportamento inferior ao das cordas do tipo A, e que requer maior grau de atenção e cuidado durante seu uso. Nos ensaios desses produtos, o relatório deve conter as seguintes informações: descrição da amostra em ensaio; número da norma; eventuais desvios da norma; e uma tabela comparativa conforme abaixo.

As extremidades da corda de alma e capa trançada de baixo coeficiente de alongamento devem ter rótulo envoltório ou outra forma de marcação, de maneira permanente, legível e indelével, com as seguintes marcações: letra A para cordas tipo A e letra B para cordas tipo B, seguida da indicação do seu diâmetro, em milímetros, de acordo com as especificações, citando como exemplo: “A 11,0 mm; B 9,2 mm”; número e ano desta norma; e o nome do material de fabricação da corda conforme NBR 12744. A corda de alma e a capa trançada de baixo coeficiente de alongamento devem conter uma marcação interna, de material plástico indelével (de maneira que a marcação interna permaneça legível, apesar das sujeiras, umidades e uso) ou outra forma de marcação que se apresente igualmente indelével, repetida continuamente ao longo de seu comprimento, no mínimo uma vez a cada 1.000 mm.

A NBR 15986 de 10/2011 – Cordas de alma e capa de baixo coeficiente de alongamento para acesso por cordas — Requisitos e métodos de ensaio especifica os requisitos mínimos para fabricação de cordas têxteis de alma e capa trançada e de baixo coeficiente de alongamento, compostas, de 8,5 mm a 16 mm de diâmetro, utilizadas por pessoas em operações de acesso por corda, assim como em todo tipo de posicionamento e retenção no ponto de trabalho e igualmente em operações de resgate, bem como especifica os métodos de ensaio para verificação destes requisitos. Os trabalhos com equipamento de proteção individual (EPI) que utilizem cordas de fibra sintética são objeto da legislação trabalhista vigente e esta deve ser observada na aplicação desta norma.

Os materiais, utilizados na fabricação das cordas de alma e capa trançada de baixo coeficiente de alongamento, devem ser constituídos por fibras sintéticas virgens, multifilamentadas e contínuas. Os materiais utilizados para a construção da alma e da capa devem ter o ponto de fusão > 195 °C. O diâmetro (D) da corda deve ser determinado de acordo com a norma e deve estar compreendido entre o diâmetro mínimo de 8,5 mm e máximo de 16 mm.

A rigidez da corda de alma e capa trançada de baixo coeficiente de alongamento deve ter índice de flexibilidade (K) determinado mediante o ensaio do nó especificado na norma e ser inferior a 1,2. O deslizamento longitudinal Ss da capa em relação à alma deve ser determinado conforme a norma. O deslizamento da capa para as cordas tipo A não pode ultrapassar 20 mm + 10(D – 9 mm), se o diâmetro D da corda for menor ou igual a 12 mm.

O deslizamento da capa para as cordas tipo A não pode ultrapassar 20 mm + 5(D − 12 mm), se o diâmetro D da corda estiver compreendido entre 12,1 mm e 16 mm. O deslizamento da capa para as cordas tipo B não pode ultrapassar 15 mm. As medições devem ser conforme o valor V, devendo ser expressas em porcentagem de acordo com a norma. O alongamento (E) deve ser determinado conforme a norma e não pode ser maior que 5%.

A massa por unidade de comprimento (m), de 1.000 mm de corda de alma e capa trançada de baixo coeficiente de alongamento, deve ser determinada conforme a norma e corresponder à massa combinada da alma e da capa. A corda de alma e capa trançada de baixo coeficiente de alongamento, quando ensaiada conforme a NBR 9790, deve suportar uma força no mínimo de 22 kN para corda tipo A e de no mínimo 18 kN para corda tipo B.

Quando ensaiadas conforme a norma, as cordas de alma e a capa trançada de baixo coeficiente de alongamento, incluindo os terminais preparados, devem resistir a uma força de 15 kN a 15,5 kN para a corda tipo A e de 12 kN a 12,5 kN para corda tipo B, para cada caso, por um período de 3 min. O número e o comprimento dos corpos de prova de cordas a serem submetidas ao ensaio devem ser identificados em cada tipo de ensaio.

Os corpos de prova devem incluir todos os aspectos das cordas de alma e capa trançada de baixo coeficiente de alongamento comercializadas, exceto a cor, para a qual não existe nenhum requisito. Todos os corpos de prova de cordas devem ser condicionados, durante 24 h no mínimo, em uma atmosfera de umidade relativa inferior a 10%. Em seguida, os corpos de prova de cordas devem ser mantidos a uma temperatura de (20 ± 2) °C e a uma umidade de (65 ± 5) %, segundo a NBR ISO 139, durante 72 h, no mínimo. Os ensaios devem ser realizados a uma temperatura de (23 ± 5) °C.

O ensaio do diâmetro da corda D deve ser feito em um corpo de prova que deve ser uma corda nova, sem uso, de 3.000 mm de comprimento mínimo. Fixar uma das extremidades do corpo de prova a um ponto fixo que permita sua extensão no sentido vertical. Fixar em um ponto do corpo de prova, com no mínimo 1.300 mm de distância do ponto fixo, uma massa de (10 ± 0,1) kg, ou aplicar uma força equivalente, evitando impactos.

Continuar o procedimento durante (60 ± 15) s. Transcorrido este período, medir o diâmetro do corpo de prova nos dois sentidos perpendiculares, em três pontos diferentes distanciados entre si em 300 mm aproximadamente. O contato entre o instrumento de medida e o corpo de prova deve ser de (50 ± 1) mm de comprimento. Durante a medição a seção do corpo de prova da corda de alma e capa trançada de baixo coeficiente de alongamento não pode sofrer nenhuma deformação.

Os ensaios dinâmicos devem ser realizados por dois tipos em uma mesma amostra de ensaio (força de frenagem e ensaio de queda). A estrutura rígida de ancoragem deve ser construída de forma que a aplicação de uma força de 20 kN no ponto de ancoragem não provoque uma flecha superior a 1 mm. O ponto rígido de ancoragem deve ser um aro de (20 ± 1) mm de diâmetro interno e (15 ± 1) mm de diâmetro de seção transversal, ou um cilindro do mesmo diâmetro de seção transversal.

A altura do ponto rígido de ancoragem deve ser tal que nenhuma parte do componente ou sistema submetido a ensaio golpeie o solo durante o ensaio. A massa rígida de aço de (100 ± 1) kg ou (80 ± 1) kg, respectivamente para corda do tipo A e corda do tipo B, deve ser conectada de maneira rígida a um aro de levantamento para ser obtida uma conexão segura.

A massa rígida de aço deve ter um diâmetro nominal de 200 mm. O aro de levantamento deve estar situado no centro de uma de suas extremidades, permitindo uma posição deslocada a um mínimo de 25 mm da borda por causa das restrições na distância horizontal impostas por determinados equipamentos e procedimentos de ensaio.

O dispositivo de desacoplamento rápido deve ser compatível com os aros de levantamento das massas rígidas de aço descritas e deve permitir um desacoplamento da massa rígida de aço sem velocidade inicial. A massa pode ter sua queda dirigida, para evitar desvios, pêndulos ou oscilações. Neste caso, sua velocidade deve ser entre 9,7 m/s a 9,9 m/s, medida sobre uma distância de (100 ± 0,1) mm, a uma altura compreendida entre 4,95 m a 5,05 m, medida a partir da base da massa, que é o ponto de partida do início da queda.

As extremidades da corda de alma e capa trançada de baixo coeficiente de alongamento devem ter rótulo envoltório ou outra forma de marcação, de maneira permanente, legível e indelével, com as seguintes marcações: letra A para cordas tipo A e letra B para cordas tipo B, seguida da indicação do seu diâmetro, em milímetros, de acordo com as especificações. Exemplo: A 11,0 mm; B 9,2 mm; o número e ano desta norma; o nome do material de fabricação da corda conforme a NBR 12744.

A corda de alma e a capa trançada de baixo coeficiente de alongamento devem conter uma marcação interna, de material plástico indelével (de maneira que a marcação interna permaneça legível, apesar das sujeiras, umidades e uso) ou outra forma de marcação que se apresente igualmente indelével, repetida continuamente ao longo de seu comprimento, no mínimo uma vez a cada 1.000 mm, com as seguintes informações: o nome e marca comercial do fabricante, CNPJ ou, no caso de cordas importadas, informações conforme EN 1891; o número e ano desta norma e o tipo da corda (A ou B); o ano de fabricação ou outra sistemática de rastreabilidade que identifique a data de fabricação; o nome do material de fabricação da corda conforme a NBR 12744.

Advertisement

A operação dos vasos de pressão para ocupação humana

Também denominados câmaras hiperbáricas, os vasos de pressão para ocupação humana (VPOH) ou simplesmente câmaras hiperbáricas são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. São projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Durante a fase de elaboração do projeto de instalação do serviço de medicina hiperbárica (SMH), o fabricante deve fornecer: o peso do equipamento em ordem de operação e para efeito de ensaio hidrostático no local, quando aplicável, para o dimensionamento das fundações do piso onde será instalado; as condições de acesso da câmara hiperbárica multipaciente ao ambiente onde será instalada, inclusive as necessárias para o descarregamento e o transporte ao seu local definitivo; o projeto sugerido de instalação (leiaute) da câmara hiperbárica multipaciente, incluindo a disposição recomendada para os equipamentos auxiliares; os documentos e projetos de instalação elétrica de todos os equipamentos, com as informações necessárias para o dimensionamento da (s) rede (s) elétrica (s) de alimentação; os documentos e projetos para as tubulações hidráulicas e pneumáticas de alimentação da câmara hiperbárica; e os projetos sugeridos de instalação dos sistemas de suprimento do oxigênio medicinal e do ar comprimido respirável e das respectivas redes de distribuição.

Na entrega da câmara hiperbárica multipaciente e dos equipamentos auxiliares, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido respirável e de oxigênio; as instruções para os procedimentos de limpeza e assepsia do equipamento e das unidades de respiração; as advertências sobre dos riscos de fogo ou explosão e a descrição dos sistemas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica multipaciente e das janelas de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica multipaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica multipaciente e de seus equipamentos auxiliares.

Na entrega da câmara hiperbárica monopaciente, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido e de oxigênio e dos procedimentos de emergência; as instruções sobre a correta utilização da pulseira de aterramento do paciente e os riscos da não utilização; as instruções para os procedimentos de limpeza e assepsia do equipamento e da unidade de respiração, quando aplicável; as advertências sobre dos riscos de fogo ou explosão e medidas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica monopaciente e dos componentes de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e de combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica monopaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica monopaciente.

Para a câmara hiperbárica monopaciente equipada com um sistema de reaproveitamento do oxigênio medicinal por meio de um processo de absorção do dióxido de carbono, as instruções detalhadas sobre o uso deste sistema devem constar do manual de instruções, assim como no treinamento operacional. A NBR 15949 de 08/2022 – Vaso de pressão para ocupação humana (VPOH) para fins terapêuticos – Requisitos para fabricação, instalação e operação estabelece os requisitos de projeto, fabricação, instalação, manutenção, operação, sistema de suprimento de gases e de segurança para vasos de pressão para ocupação humana (VPOH) multipacientes e monopacientes, projetados para operar a pressões superiores à pressão atmosférica ambiente e empregados em procedimentos terapêuticos de oxigenoterapia hiperbárica e no tratamento de doenças descompressivas, em instalações médicas independentes ou agregadas aos serviços de saúde.

Esta norma não se aplica aos requisitos relativos à ergonomia para o projeto dos VPOH para fins terapêuticos. Os VPOH são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. Estes equipamentos são projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Estes equipamentos permitem o tratamento de um ou mais pacientes em vários níveis de atendimento, inclusive aqueles sob cuidados intensivos, com todos os aparatos necessários, além de oferecer condições ambientais confortáveis e seguras aos pacientes, operadores e atendentes. Os níveis de oxigênio da atmosfera interna requerem monitoramento e controle para evitar hipóxia, toxicidade por oxigênio e riscos de incêndio. Os vasos de pressão destinados exclusivamente aos procedimentos terapêuticos de oxigenoterapia hiperbárica operam tipicamente a uma pressão operacional de até 180 kPa acima da pressão atmosférica.

Também destinados ao tratamento de doenças descompressivas, operam com pressões mais elevadas, que podem chegar a 700 kPa ou mais. Os tempos de tratamento dentro dos vasos de pressão estão tipicamente entre 1,5 h e 3 h para procedimentos terapêuticos de oxigenoterapia hiperbárica, enquanto o tratamento de doenças descompressivas pode durar 8,5 h ou mais.

Esta norma é destinada à utilização por pessoas envolvidas no projeto, fabricação, instalação, manutenção e operação de vasos de pressão para ocupação humana (VPOH). Convém que as pessoas envolvidas na montagem e na instalação dos sistemas de suprimento de gases medicinais e do próprio serviço de medicina hiperbárica também estejam cientes do conteúdo desta norma.

As câmaras hiperbáricas são classificadas segundo o número de ocupantes em seu interior. A multipaciente é um equipamento de maior porte, normalmente de forma cilíndrica, capaz de acomodar simultaneamente de 2 pacientes a 15 pacientes, além do pessoal operacional. O casco é tipicamente em aço-carbono, dotado de janelas ou vigias de acrílico transparente, bancos ou poltronas para acomodação dos ocupantes, unidades de respiração individual com sistema de exalação para o meio externo e pelo menos uma maca de tamanho padrão.

Dotado de iluminação externa ou interna, portas herméticas, sistema de comunicação com o exterior, sistema de climatização e sistemas de combate a incêndio. A monopaciente é um equipamento de menor porte, normalmente de forma cilíndrica, capaz de acomodar apenas um paciente, que permanece deitado em uma maca durante o tratamento.

A estrutura da base pode ser em aço carbono ou alumínio e o casco cilíndrico dotado de janelas ou na forma de um tubo de acrílico transparente. Pode ser equipado com uma unidade de respiração individual. As pressões indicadas nesta norma são expressas como manométricas (isto é, a pressão atmosférica é determinada como zero), salvo quando mencionado de outra forma.

A câmara hiperbárica multipaciente e monopaciente, seus sistemas acessórios e componentes em acrílico devem ser projetados, fabricados, inspecionados e ter sua conformidade avaliada conforme estabelecido no código ANSI/ASME PVHO-1 por fabricantes com sistema de qualidade reconhecido e pessoal qualificado na produção de vasos de pressão. Exemplo de sistema de qualidade reconhecido: pode ser a NBR ISO 9000.

As marcações na placa de identificação, a ser afixada na câmara hiperbárica multipaciente e na monopaciente, devem seguir o disposto no código ANSI/ASME PVHO-1 e constar o nome, o símbolo e a marca da entidade ou sociedade certificadora. A câmara hiperbárica multipaciente e monopaciente e seus sistemas e acessórios devem estar em conformidade com o estabelecido na série NBR IEC 60601 e as respectivas emendas e normas colaterais cabíveis, por seus fabricantes. A câmara hiperbárica multipaciente e monopaciente deve ser projetada para trabalhar a uma pressão de operação de pelo menos 180 kPa e atender às relações entre as pressões especificadas na tabela abaixo.

A câmara hiperbárica multipaciente e monopaciente deve ser equipada com pelo menos duas válvulas de alívio de pressão, ajustadas para serem acionadas quando a pressão interna chegar a 10% acima da pressão máxima de operação. A vazão de descarga de cada válvula de alívio de pressão deve ser equivalente à soma das vazões máximas de pressurização dos gases oxigênio medicinal e ar comprimido respirável.

A câmara hiperbárica multipaciente deve ser construída com pelo menos três compartimentos interligados entre si: a antecâmara, a câmara principal e um compartimento de passagem (medica lock), dotados de portas herméticas para acesso ao exterior e entre a antecâmara e a câmara principal. Cada compartimento, incluindo as janelas de acrílico transparente e penetradores, deve ser capaz de suportar a pressão de ensaio, conforme especificado na tabela acima.

As portas de acesso a pessoas da antecâmara e da câmara principal devem ter altura mínima de 1,40 m e largura mínima de 0,70 m e devem permitir a passagem de um paciente deitado em uma maca de dimensões-padrão e/ou de uma cadeira de rodas. A antecâmara deve ter pelo menos uma janela de acrílico transparente que permita a observação de seu interior, pelo lado de fora.

A câmara principal deve ter mais de uma janela de acrílico transparente para permitir a observação de todos os assentos instalados, pelo lado de fora. Os meios devem ser previstos para evitar que o nível de ruído dentro da câmara hiperbárica multipaciente ultrapasse 70 dB(A) durante o tratamento. Nos procedimentos de compressão e descompressão, o ruído máximo não pode ultrapassar 90 dB(A).

O microfone do dispositivo de medição de ruídos para ensaio é tipicamente colocado no centro da câmara principal, na altura da cabeça de uma pessoa sentada. Os procedimentos de compressão, descompressão e de ventilação da câmara hiperbárica multipaciente devem ser executados pelo operador externo.

Dentro da antecâmara e da câmara principal também devem ser instalados controles que permitam ao operador interno a compressão e a descompressão de cada compartimento, em emergências. Dentro da antecâmara e da câmara principal deve ser instalado um manômetro analógico do tipo Bourdon, para a indicação das respectivas pressões internas. Ambos os manômetros devem atender no mínimo à classe B, conforme especificado na NBR 14105-1.

Os manômetros são normalmente instalados em caixas-estanque, para não sofrerem interferência da pressão interna da câmara hiperbárica. Os meios devem ser previstos para evitar a obstrução das aberturas internas de exaustão da antecâmara e da câmara principal. Exemplo de obstrução das aberturas internas de exaustão: objetos soltos, tecidos, pés e mãos de pacientes.

A câmara hiperbárica multipaciente equipada com um sistema de controle automático ou semiautomático de compressão, descompressão e manutenção da pressão deve dispor de meios que permitam a retomada do controle manual pelo operador externo ou interno, em caso de falha no suprimento de energia elétrica ou do próprio sistema de controle ou em emergências. Exemplo de controle automático ou semiautomático: por meio pneumático e/ou eletro/eletrônico.

As luminárias externas destinadas à iluminação do interior da câmara hiperbárica multipaciente através das janelas de acrílico ou de penetradores devem se alimentadas por um circuito elétrico de baixa tensão, conforme especificado na NBR 5410. As luminárias internas destinadas à iluminação do interior da câmara hiperbárica multipaciente devem ser fabricadas em LED (light-emitting diode), alimentadas por cabos de fibra ótica e alimentadas por um circuito de baixa tensão.

A utilização de um sistema de iluminação externa ou interna na câmara hiperbárica é uma opção do fabricante. Convém que a tensão de alimentação do sistema de iluminação não seja superior a 24V. Um sistema de alimentação de emergência, independentemente do suprimento principal de energia elétrica, deve estar disponível para continuar a suprir o sistema de iluminação, para permitir o término do tratamento ou sua interrupção, em caso de incêndio ou falha no suprimento principal. Exemplo de sistema de alimentação de emergência: nobreak.

A câmara hiperbárica multipaciente deve dispor de um sistema intercomunicador na antecâmara e na câmara principal que permita a captação dos sons internos e a comunicação entre os operadores interno e externo. Esse sistema deve permanecer ativado durante todo o tratamento e ser alimentado por um circuito de baixa tensão, conforme especificado na NBR 5410.

Convém que a tensão de alimentação do sistema de comunicação não seja superior a 24V. Convém que a antecâmara e a câmara principal disponham de um sistema de monitoramento por câmeras de vídeo, controlado pelo operador externo, com capacidade de gravação de todo o tratamento.

A prontidão de TIC para a continuidade dos negócios

A prontidão de tecnologia da informação e comunicação (TIC) para e prontidão de continuidade de negócios (PTCN) é a capacidade de uma organização de suportar as suas operações de negócio por meio da prevenção, detecção e resposta a uma disrupção e a recuperar os serviços de TIC. O plano de continuidade de negócios (PCN) envolve os procedimentos documentados que guiam as organizações para responder, recuperar e restaurar para um nível de operação predefinido, após um disrupção. Tipicamente, isto abrange recursos, serviços e atividades necessárias para assegurar a continuidade das funções de negócios críticos e a recuperação de desastre de TIC seria a capacidade de recuperação dos elementos da TIC em uma organização para suportar as funções críticas em um nível aceitável dentro de um período de tempo predeterminado após a ocorrência de uma disrupção.

O tempo de recuperação objetivo (recovery time objectiv – RTO) é o período de tempo dentro do qual os níveis mínimos dos produtos e/ou serviços e sistemas de suporte relacionados, aplicações ou funções devem ser recuperados após uma disrupção. Ele diz respeito à quantidade de dados que são perdidos e irrecuperáveis devido à disrupção. Isto é representado na linha de tempo como a quantidade de tempo entre o último backrup confiável e o momento em que ocorre a disrupção.

O RPO varia de acordo com a estratégia de recuperação de serviços de TIC empregada, particularmente no arranjo do backup. No tempo zero, o sistema crítico de TIC foi invadido por hackers e serviços foram derrubados. A primeira etapa após a ocorrência da disrupção do serviço de TIC é a detecção direta do incidente de segurança, ou seja, o evento de intrusão ou a detecção indireta da perda de serviço (ou degradação), para o qual haverá um tempo decorrido antes da notificação, por exemplo, em alguns casos, a notificação pode vir por meio de uma chamada para o helpdesk de TI a partir de um usuário.

Além disso, o tempo poderia passar enquanto a disrupção do serviço de TIC é investigada, analisada, comunicada e uma decisão adotada para invocar a PTCN. Isso pode levar várias horas desde o início da disrupção do serviço de TIC até que seja tomada uma decisão de invocar a PTCN, uma vez que o tempo de comunicação e de tomada de decisões é contabilizado.

A decisão de invocar pode exigir uma análise cuidadosa em algumas situações, por exemplo, onde o serviço ainda não foi totalmente perdido ou parece haver uma forte perspectiva de uma iminente recuperação do serviço, porque invocar a PTCN frequentemente tem impacto sobre operações normais de negócios. Uma vez invocada a PTCN, a recuperação de serviços de TIC pode começar. Este pode ser dividido em infraestrutura (rede, hardware, sistema operacional, software de backup etc.) e de recuperação de aplicativos (bancos de dados, aplicações, processos batch, interfaces, etc.).

Uma vez que o serviço de TIC foi recuperado e testes do sistema tenham sido conduzidos por uma equipe de TIC, o serviço pode ser disponibilizado para teste de aceitação do usuário antes que ele seja liberado para o pessoal para uso em operações de continuidade de negócios. Da perspectiva de continuidade de negócios há um RTO por produto, serviço ou atividade. O RTO se inicia do ponto no qual a disrupção ocorre e transcorre até que o produto, serviço ou atividade esteja recuperado, mas pode haver um número de serviços de TIC requeridos para habilitar cada um deste serviços, o qual pode compreender um número de sistemas de TIC ou aplicações.

Cada um destes sistemas de TIC componentes ou aplicações terão o seu próprio RTO como um subconjunto do RTO global do serviço de TIC e convém que este seja menor que RTO para a continuidade de negócio considerando o tempo de detecção e tomada de decisão e o tempo do teste de aceitação de usuário (a menos que o produto, serviço ou atividade em continuidade de negócios possa ser suportado sem TIC por um período, por exemplo, usando procedimentos manuais).

Os serviços de TIC recuperados tipicamente operam por um período de tempo suportando atividade de continuidade de negócios, e se este é um período de tempo extenso, então os serviços de TIC podem necessitar ser escalados para suportar um volume crescente de atividade, potencialmente até o ponto no qual o produto, serviço ou atividade seja totalmente recuperado aos volumes transacionais normais. Na sequência, em algum ponto na linha de tempo, a restauração será factível e desejável, e as operações em RD (recuperação de desastre) ocorrerão até a de volta às operações normais.

Essas operações normais retornadas podem ou ser no estado ou ambiente original antes da disrupção, ou em um novo arranjo operacional (especialmente, quando a disrupção tenha forçado uma mudança permanente no negócio). Embora a equipe de TIC tenha a oportunidade de planejar cuidadosamente a restauração e programá-lo para ser implantado durante um período de baixa atividade natural, esta é, todavia, uma tarefa substancial em si mesma.

Deve-se entender que na tecnologia de informação e comunicação, alta disponibilidade se refere a sistemas ou componentes que se mantêm continuamente operacionais por um longo período de tempo. A disponibilidade pode ser medida em relação a 100% operacional ou nunca falha. Existe um padrão muito generalizado de disponibilidade, mas difícil de alcançar para um sistema ou produto que é conhecido como disponibilidade cinco 9s (99,999%).

Um sistema de computador ou uma rede é composta de muitos componentes, os quais geralmente precisam estar presentes e funcionais para que o todo seja operacional, e, durante o planejamento para alta disponibilidade, frequentemente foca-se em backups e redundância de processamento, acesso e armazenamento de dados. Outros componentes de infraestrutura, como energia e refrigeração, são igualmente importantes. A disponibilidade de energia, por exemplo, pode ser assegurada por medidas como uma fonte de alimentação ininterrupta (UPS); a capacidade de geração de energia de emergência; e as fontes de energia a partir de duas redes.

O backup e a disponibilidade de dados podem ser alcançados usando uma variedade de tecnologias de armazenamento, como matriz redundante de discos (RAID), storage area network (SAN), etc. A disponibilidade de aplicativos também precisa ser considerada e, muitas vezes, é conseguida por meio de clusterização. Essas tecnologias só serão realmente eficazes no fornecimento de alta disponibilidade por meio da implementação simultânea em mais de um local.

Por exemplo, tendo apenas um servidor redundante no mesmo local como um servidor primário ou de produção não se vai fornecer os níveis necessários de resiliência se esse site é afetado por uma disrupção grave. Ambos os servidores serão atingidos pela mesma ruptura. O servidor redundante e outras tecnologias de apoio teriam de ser localizados em outro local para os níveis necessários de disponibilidade a serem alcançados. Para muitas organizações, o custo e o esforço envolvido, na obtenção de tais níveis de alta disponibilidade, podem ser assustadores e, nos últimos anos, tem havido um enorme crescimento no uso de prestadores de serviços terceirizados, que são capazes de oferecer as competências, os recursos e as tecnologias resilientes a um preço acessível, quer por meio da disponibilização de gestão ou por serviços em nuvem.

A NBR ISO/IEC 27031 de 01/2023 – Tecnologia da informação — Técnicas de segurança — Diretrizes para a prontidão para a continuidade de negócios da tecnologia da informação e comunicação descreve os conceitos e princípios da prontidão esperada para a tecnologia de comunicação e informação (TIC) na continuidade de negócios e fornece uma estrutura de métodos e processos para identificar e especificar todos os aspectos (como critérios de desempenho, projeto e implementação) para fornecer esta premissa nas organizações e assegurar a continuidade de negócios É aplicável para qualquer organização (privada, governamental e não governamental, independentemente do tamanho) desenvolvendo um programa de prontidão de TIC para a continuidade de negócios (PTCN), requerendo que os serviços e componentes de infraestrutura relacionados estejam prontos para suportar as operações de negócio na ocorrência de eventos e incidentes e seus impactos na continuidade (incluindo segurança) das funções críticas de negócio.

Também assegura que a organização estabeleça parâmetros para medir o desempenho que está correlacionado à PTCN de forma consistente e organizada. O escopo desta norma inclui todos os eventos e incidentes (incluindo os relacionados com segurança) que podem impactar a infraestrutura de TIC e sistemas, incluindo e estendendo às práticas de gestão de incidentes em segurança da informação e a prontidão esperada para o planejamento e serviços de TIC.

Através dos anos, as tecnologias da informação e comunicação (TIC) tornaram-se uma parte integrante de muitas atividades fundamentais para suportar a infraestrutura crítica em organizações de todos os setores, sejam públicas, privadas ou voluntárias. A proliferação da internet e de outros serviços de comunicação digital, somada à capacidade dos sistemas e aplicações utilizados hoje, resultaram em um cenário onde as organizações tornaram-se mais dependentes de uma infraestrutura de TIC confiável e segura.

Enquanto isso, a necessidade da gestão de continuidade de negócios (GCN), incluindo a preparação para incidentes, planejamento para recuperação de desastres e gestão de respostas emergenciais, tem sido reconhecida e suportada por meio de domínios específicos de conhecimento, expertise e normas desenvolvidas e promulgadas recentemente, incluindo a norma de GCN, desenvolvida pelo ISO/TC 223. As falhas nos serviços de TIC, incluindo a ocorrência de questões na segurança, como invasão de sistemas e infecções por códigos maliciosos, impactam a continuidade das operações de negócio.

Dessa forma, a gestão da TIC e dos aspectos relacionados à continuidade e segurança, integra os processos-chave para estabelecer os requisitos na continuidade de negócios. Além disso, na maioria dos casos, as funções críticas de negócio que demandam ser providas de estratégias para a continuidade são geralmente dependentes da TIC. Esta dependência resulta em um cenário onde qualquer disrupção na TIC pode resultar em riscos estratégicos para a reputação da organização e sua capacidade de operar.

A prontidão da TIC é um componente essencial para muitas organizações na implementação da gestão para a continuidade de negócios e segurança da informação. Como parte da implementação e operação de um sistema de gestão de segurança da informação (SGSI) especificado na NBR ISO/IEC 27001 e de um sistema de gestão de continuidade de negócios (SGCN), é uma questão crítica desenvolver e implementar um plano para a prontidão dos serviços de TIC que suportem a continuidade de processos de negócio.

Como resultado, um SGCN efetivo é frequentemente dependente da efetividade da prontidão de TIC em assegurar que os objetivos organizacionais continuem a ser atendidos durante a ocorrência de uma disrupção. Isso é especialmente importante, uma vez que as consequências de disrupções na TIC têm a complicação adicional de não serem facilmente detectadas. Para que uma organização alcance a prontidão de TIC para a continuidade de negócios (PTCN), é necessário prover um processo sistemático de prevenção e gestão de incidentes e disrupções no funcionamento da TIC que tenham o potencial de gerar impactos para o funcionamento esperado dos serviços e sistemas.

Isso pode ser alcançado aplicando os passos cíclicos estabelecidos em um Plan-Do-Check-Act (PDCA) como parte da gestão da PTCN. Dessa forma, a PTCN suporta o GCN ao garantir que os serviços de TIC são resilientes como esperado e podem ser recuperados em níveis assegurar em tempos de resposta requeridos e acordados com a organização. Em consequência, a gestão da continuidade de negócios (GCN) é um processo holístico de gestão que identifica os impactos potenciais que ameaçam a continuidade das operações de negócio de uma organização e fornecesse uma estrutura para construir a resiliência e capacidade de resposta eficaz que protegem os interesses organizacionais de disrupções.

Como parte de um processo de GCN, a PTCN refere-se à gestão de um sistema que complementa e suporta a GCN e/ou um programa de SGSI, promovendo a prontidão organizacional para: responder as mudanças constantes dos riscos do ambiente; assegurar a continuidade das operações críticas de negócio suportadas pelos serviços de TIC; estar pronta a responder antes que uma interrupção ocorra em um serviço de TIC, por meio da detecção de um ou mais eventos que podem tornar-se incidentes; e responder e recuperar frente à ocorrência de incidentes, desastres e falhas. A figura abaixo ilustra os resultados esperados da TIC para suportar as atividades da gestão da continuidade de negócios.

A NBR ISO 22301 sumariza a abordagem da GCN para prevenir, reagir e recuperar de incidentes. As atividades envolvendo a GCN incluem a preparação para incidentes, gestão da continuidade operacional (GCO), plano para recuperação de desastres (PRD) e mitigação de riscos com foco em incrementar a resiliência da organização, preparando-a para reagir efetivamente a incidentes e recuperar dentro de escalas temporais predeterminadas.

Entretanto, cada organização estabelece as suas prioridades para a GCN, e estas são utilizadas como base para direcionar as atividades da PTCN. Dessa forma, a GCN depende da garantia provida pela PTCN de que a organização pode alcançar seus objetivos de continuidade sempre que necessário, especialmente durante períodos de disrupção. A PTCN é baseada nos seguintes princípios fundamentais: prevenção de incidentes: proteger os serviços de TIC de ameaças, como as geradas pelo ambiente, falhas em hardware, erros operacionais, ataques maliciosos e desastres naturais, é uma questão crítica para manter os níveis desejados de disponibilidade dos sistemas de uma organização; detecção de incidentes: detectar incidentes o mais cedo possível minimiza os impactos para os serviços, reduzindo o esforço de recuperação e preservando a qualidade dos serviços.

Além disso, existe o princípio da resposta: responder a um incidente da maneira mais apropriada possível irá resultar em uma recuperação mais eficiente e minimizar as paradas. Uma reação inadequada pode resultar no escalonamento de um incidente pequeno para algo muito mais grave. Recuperação: identificar e implementar a estratégia de recuperação apropriada irá garantir a recuperação dos serviços dentro de um tempo aceitável e manter a integridade dos dados.

O entendimento das prioridades de recuperação permite que os serviços mais críticos possam ser reinstalados primeiro. Serviços de natureza menos crítica podem ser reinstalados posteriormente ou, em algumas circunstâncias, não ser recuperados. Melhoria: convém que lições aprendidas de incidentes de variadas intensidades sejam documentadas, analisadas e analisadas criticamente. O entendimento dessas lições irá permitir que a organização esteja melhor preparada, estabeleça um controle adequado e evite a ocorrência de incidentes ou disrupções.

Os elementos da PTCN suportam uma linha de tempo para a recuperação de um desastre que afete a TIC e suportam a continuidade das atividades de negócio. A implementação da PTCN permite que a organização responda efetivamente a ameaças novas e emergentes, assim como esteja pronta para reagir e se recuperar dos efeitos de disrupções.

Os elementos fundamentais da PTCN podem ser resumidos como apresentados: pessoas: os especialistas com o conhecimento e habilidade apropriados, e equipe de reposição competente; instalações: o ambiente físico onde os recursos de TIC estão localizados; tecnologia: hardware (incluindo racks, servidores, equipamentos de armazenamento de dados, unidades de fita e similares); rede de dados (incluindo a conectividade de dados e serviços de voz), switches, roteadores; e software: incluindo sistema operacional, software de aplicação, links ou interfaces entre aplicações e rotinas de processamento batch; dados: dados de aplicações, voz e outros tipos; processos: incluindo a documentação de suporte que descreve a configuração dos recursos de TIC e suporta uma operação efetiva, recuperação e manutenção dos serviços de TIC; e os fornecedores: outros componentes de serviços nos quais os serviços providos pela TIC dependem de um fornecedor externo ou outra organização dentro da cadeia de suprimentos, como provedores de dados do mercado financeiro, empresas de telecomunicações e provedores de serviços para acesso à internet.

Os benefícios de uma PTCN efetiva para a organização são: entender os riscos para a continuidade de serviços de TIC e suas vulnerabilidades; identificar os impactos potenciais das disrupções dos serviços de TIC; encorajar a colaboração entre os gestores das áreas de negócio e seus provedores de serviços de TIC (internos e externos); desenvolver e melhorar as competências da equipe de TIC ao demonstrar credibilidade nas respostas providas por meio do exercício dos planos para a continuidade de TIC e testes dos arranjos mantidos para a PTCN; assegurar para a Alta Direção que ela pode contar com determinados níveis de serviços para TIC, assim como o suporte e as comunicações adequados, mesmo diante dos impactos gerados por uma disrupção; assegurar para a Alta Direção que a segurança da informação (confidencialidade, integridade e disponibilidade) está sendo adequadamente preservada, estabelecendo a aderência esperada para as políticas de segurança da informação; fornecer confiança adicional na estratégia para continuidade de negócios, relacionando os investimentos feitos em tecnologia da informação para atender às necessidades organizacionais e assegurar que os serviços de TIC estão protegidos em um nível apropriado de acordo com a sua importância para os processos de negócio.

Além disso, deve-se ter os serviços de TIC dentro de uma relação custo/benefício aceitável e não subestimada ou superestimada, benefício este alcançado por meio de um entendimento dos níveis de dependência dos serviços providos, natureza, localização, interdependência e uso dos componentes que estabelecem os serviços esperados; poder incrementar a reputação organizacional pela prudência e eficiência estabelecidas; potencializar os ganhos em vantagens competitivas por meio da demonstração da habilidade para entregar serviços de continuidade e manter o fornecimento de produtos e serviços mesmo em períodos de disrupção; e entender e documentar as expectativas das partes interessadas, os relacionamentos suportados e uso dos serviços providos pela TIC.

A PTCN fornece uma forma clara de determinar o status dos serviços de TIC de uma organização em suportar os objetivos para a continuidade de negócios ao endereçar a questão nossa TIC tem a capacidade de resposta adequada em vez de nossa TIC é segura. A PTCN é geralmente mais eficiente e tem uma melhor relação custo/benefício quando desenhada e construída nos serviços de TIC, desde o começo como parte de uma estratégia que suporta os objetivos para a continuidade de negócios da organização. Isso assegura que os serviços de TIC são melhor construídos, melhores entendidos e mais resilientes.

Construir a PTCN de outra forma pode ser complexo, gerar impactos para o funcionamento dos serviços e ter um custo elevado. Convém que a organização desenvolva, implemente, mantenha e continuamente melhore um conjunto de processos documentados que suportam a PTCN. Convém que estes processos garantam que: os objetivos da PTCN estão claramente definidos, entendidos e comunicados e a alta direção demonstra estar comprometida com a PTCN.

As características normativas obrigatórias dos cabos de fibra

Nos cabos de fibra, a sobreposição de pernas é a continuação sobreposta, em um cabo trançado, de apenas uma perna interrompida (ou de múltiplas pernas) com outra perna idêntica que segue um caminho idêntico na trança. A resistência à ruptura mínima (minimum breaking strength – MBS) é a força que o cabo de fibra deve atingir no mínimo ao ser ensaiado conforme um procedimento ou método de ensaio reconhecido. O MBS é estabelecido por cada fabricante, pelos seus próprios métodos estatísticos baseados em ensaios de ruptura.

Os fabricantes devem fornecer as informações detalhadas sobre o uso e manutenção de cabos. Recomenda-se que eles forneçam uma etiqueta de advertência, sempre que razoável, para alertar os usuários sobre práticas perigosas. Por exemplo, Ao se remover um cabo de uma bobina, recomenda-se que se inicie com a ponta a partir da parte interna.

O cabo deve ser seja desenrolado no sentido anti-horário. Se o cabo for puxado no sentido horário, ocorrerão dobras. Se isso acontecer, colocar o trecho do cabo de volta na bobina, virá-la para o outro lado e puxar o trecho do cabo a partir do centro novamente. O cabo deve ser desenrolado no sentido anti-horário a fim de ficar livre de dobras.

Uma maneira melhor ainda de desenrolar o cabo é o uso de uma mesa rotativa. O cabo pode ser então desenrolado a partir da ponta externa. Um pequeno comprimento do cabo também pode ser desenrolado no piso.

Recomenda-se que a relação D/d, onde D é o diâmetro das polias e d é o diâmetro do cabo, exceda 5 em todos os casos, mas possa chegar a 20 para certas fibras de alta performance. Muitas aplicações ou tipos de cabos exigem uma alta relação D/d, especialmente para operações de içamento, sendo que fatores de segurança maiores são apropriados. Independentemente do diâmetro da polia, a vida útil do cabo também depende do projeto e das dimensões do canal.

Se o canal da polia for demasiadamente estreito, o cabo pode travar e as pernas e as fibras podem não flexionar adequadamente, prejudicando a vida útil do cabo. Por outro lado, o canal da polia largo demais também é prejudicial à vida útil do cabo devido ao achatamento das pernas e dos fios.

Para cabos sintéticos, recomenda-se que o diâmetro do canal seja de 10% a 15% superior ao diâmetro nominal do cabo. O cabo será apoiado da melhor forma possível se o arco de contato com o contorno do canal for de 150°. A altura dos canais deve ser no mínimo 1,5 vez o diâmetro do cabo, a fim de impedir que o cabo saia da polia. As voltas excessivas podem causar dobras8 em qualquer cabo, mas os encabritamentos só ocorrem em cabos torcidos básicos.

Os cabos trançados podem não se encabritar, pois sua construção de pernas intertravadas impede que sejam destorcidos. As pernas são dispostas em ambos os sentidos criando um equilíbrio livre de torque, eliminando, assim, qualquer tendência inerente de torção ou rotação. Deve-se remover as voltas excessivas (dobras) em um cabo por meio da rotação em seu sentido contrário em uma condição de relaxamento assim que possível.

Uma vez formados os encabritamentos, o cabo terá perdido a resistência à ruptura, até mesmo quando o encabritamento for desfeito. O dano é irreversível e a perda da resistência pode chegar a 30%. Não se deve permitir a formação de dobras no cabo. Caso isso ocorra, é sinal de que a torção foi adquirida ou perdida no cabo e se recomenda que as dobras sejam retiradas do cabo a partir de uma ponta.

Essa recomendação se aplica tanto a cabos torcidos quanto aos trançados. As dobras são especialmente graves no caso de cabos torcidos, pois podem ocorrer danos graves caso não se preste atenção a este problema. Recomenda-se que as tentativas de eliminar as dobras jamais envolvam o puxamento do cabo em uma tentativa de forçar o desdobramento. Isso pode provocar a destorção das pernas,

Ocorrerá uma situação de perigo se o pessoal estiver próximo a um cabo sob tensão excessiva. Caso ocorra a falha do cabo, ele provavelmente se enrolará novamente com uma força considerável (efeito chicote), podendo ser fatal. As pessoas devem ser advertidas a não se posicionarem próximas ao eixo do cabo ou em sua parte do meio.

Os requisitos de utilização precisam ser considerados durante o projeto, a fabricação e o uso dos cabos de fibra. Os aspectos a serem observados são aspectos como a resistência a produtos químicos; as restrições devidas à temperatura; a suscetibilidade ao corte e à abrasão; a degradação devida à radiação ultravioleta; o dobramento estático sobre, por exemplo, uma ferragem disponível; os dobramentos repetidos sobre polias; a compressão axial; fatiga à tração; e o alongamento irreversível durante o tempo induzido por carregamento constante (fluência).

Os seguintes aspectos são para serem considerados em relação a inspeção e manutenção: critérios para descarte, incluindo ausência/danos de etiqueta e marcação ilegível; e os registros de inspeção. Assim, antes do trecho de um cabo ser colocado em uso, todo o comprimento, incluindo os olhais trançados e a emenda de topo, deve ser inspecionado por uma pessoa qualificada. Recomenda-se que essa inspeção seja realizada para a detecção dos tipos de danos descritos na norma. Recomenda-se que os detalhes de toda inspeção sejam registrados incluindo a data, o dano, o local e as conclusões.

Alguns tipos de cabos desenvolverão uma aparência felpuda ou aveludada como resultado do atrito sobre uma superfície rugosa. Isso é perfeitamente normal e não causará uma perda de resistência significativa no cabo. O desgaste excessivo é indicado pela remoção de uma grande parte das seções transversais dos fios na parte externa do cabo. Tal desgaste é geralmente visto mais claramente nas cristas das pernas e na parte interna das costuras dos olhais, particularmente sob o sapatilho de um cabo.

Quando os cabos tiverem sido usados em um ambiente abrasivo, as partículas abrasivas podem penetrar em seu centro. É importante abrir o cabo e inspecioná-lo entre as pernas para se definir se tal dano está ocorrendo e deve-se fazer esse exame com muito cuidado para evitar o empenamento e a distorção das pernas que, por sua vez, podem causar problemas posteriormente.

A presença de grandes quantidades de materiais particulados nas fibras do centro do cabo indica que a substituição pode ser necessária. Os cabos podem estar sujeitos à compressão axial, especialmente os que tenham uma capa trançada ou extrudada sobre uma alma interna que carregue uma carga sujeita a compressão axial, conforme manifestado pelos vincos de filamentos (fibrilas). Isto ocorre principalmente em cabos com almas com passo longo (trançadas) em uma capa muito apertada quando estão sujeitas ao curvamento enquanto estão sob tração (como ocorre em cabeços e guias de cabos – fairleads).

Em casos graves, o cabo terá protuberâncias em áreas nas quais os vincos estiverem concentrados (protuberâncias frequentemente se repetem em um comprimento de ciclo uniforme). Se a alma interna puder ser inspecionada, vincos de filamentos de fibras dobradas ou fios que tiverem uma aparência de um Z podem ser vistos. Se o dano for grave, os filamentos nos pontos Z podem ser cortados com uma faca.

Se a capa não puder ser aberta para inspeção interna, ou ensaios destrutivos podem ser as únicas formas de avaliação. Os danos mecânicos sempre reduzem a resistência de um cabo. A perda de resistência dependerá da gravidade do dano. Deve-se lembrar que os danos mecânicos, especialmente o desgaste por atrito, sempre terão um efeito mais pronunciado em um cabo de menor diâmetro do que em um cabo de maior diâmetro.

Os cortes requerem um exame cuidadoso para verificar a sua profundidade, e, dessa forma, a extensão da seção transversal danificada. Para cabos com capa, em que esta não suporte a carga, um corte que não danifica a alma provavelmente não afetará a resistência. Porém, uma deformação na alma ou alma saltada poderia ocorrer com o uso subsequente se a capa não for reparada.

As almas podem se deslocar para a capa e se recomenda que uma maior inspeção quanto à proximidade dos danos seja realizada a fim de assegurar a integridade da alma. Os cortes para almas podem causar outros efeitos adversos como dificuldades em manusear, inabilidade em deslizar pelos acessórios suavemente, expondo a alma a partículas abrasivas.

Sugere-se que sejam adotadas as diretrizes descritas a seguir para a estimativa de danos e da degradação da resistência ocasionada pelo desgaste normal. É importante entender que um cabo perderá a sua resistência durante o uso em qualquer aplicação. Os cabos são ferramentas de trabalho importantes e, se usados devidamente, prestarão serviço consistentes e confiáveis.

O custo da reposição de um cabo é extremamente limitado quando comparado aos danos físicos ou lesões pessoais que podem ser provocados por um cabo desgastado. Antes da inspeção, identificar o cabo por sua etiqueta ou marcação permanente, consultando

quaisquer registros de inspeção anteriores. Inspecionar visualmente o cabo em toda a sua extensão, identificando quaisquer áreas que exijam uma investigação mais aprofundada.

Deve-se inspecionar também as terminações trançadas para assegurar que estejam na condição conforme fabricada. Em cabos de fibra sintética, o grau da perda de resistência devida à abrasão e/ou ao dobramento está diretamente relacionado com a quantidade de fibra rompida na seção transversal do cabo. Após cada uso, observar e apalpar todo o comprimento do cabo à procura de áreas de abrasão, brilhantes ou vitrificadas, diâmetros inconsistentes, descoloração, inconsistências na textura e rigidez.

É importante compreender as características construtivas do cabo em uso. A maioria dos cabos é projetada para ter características especificamente destinadas à sua aplicação. Estas características podem gerar equívocos durante as inspeções visuais. Quando um cabo tem uma capa trançada, é possível apenas inspecionar visualmente a capa.

Em construções de cabos trançados e de oito pernas, as partes de superfícies proeminentes de cada perna são expostas de maneira intermitente. Assim, essas zonas, que normalmente são conhecidas como as cristas, estão sujeitas a danos. Os cabos trançados de 12 pernas são semelhantes ao cabo de oito pernas mencionado anteriormente.

Contudo, as cristas das pernas são menos proeminentes e, portanto, menos suscetíveis a danos superficiais. A construção de cabos de dupla trança possui uma alma interna independente, apresentando aproximadamente 50% da resistência total do cabo. Como essa alma não está sujeita à abrasão da superfície e ao desgaste, tende a reter um grande percentual de sua resistência original durante um período de tempo mais longo. Assim, o desgaste nas pernas da superfície não constitui um percentual de perda de resistência tão grande quanto em outras construções.

A NBR ISO 9554 de 08/2022 – Cabos de fibra – Especificações gerais especifica as características gerais de cabos de fibra e seus materiais constituintes. Pretende-se que seja usada em conjunto com as normas dos tipos individuais de cabo de fibra, que tratam das propriedades físicas e dos requisitos específicos desses tipos de produtos. Este documento também fornece algumas informações sobre o uso de cabos de fibra, bem como sobre sua inspeção e critérios de descarte. Este documento não pretende abordar todas as questões de segurança associadas à sua utilização.

Os seguintes materiais são considerados neste documento: fibras naturais: sisal; manilha; cânhamo; algodão. Fibras sintéticas: poliamida, PA; poliéster, PES; polipropileno, PP; polietileno, PE; poliolefina mista, PP/PE; fibras combinadas de poliéster e poliolefina; polietileno de alto módulo, HMPE; para-aramida, AR; poliarilato, LCP; e polioxazol, PBO. As características típicas destes materiais são apresentadas no Anexo A. Recomenda-se, para as aplicações específicas, que sejam realizadas discussões técnicas com os fabricantes do cabo.

A menos que especificado em contrário, os cabos torcidos de três, quatro e seis pernas devem ter torção Z (torção à direita), sendo suas pernas construídas com torção S e seus fios com torção Z. Os cabos trançados de oito pernas devem ser constituídos de quatro pernas com torção S e quatro pernas com torção Z, dispostas de modo que as pernas com torção S alternem (individualmente ou em pares) com as pernas com torção Z (individualmente ou em pares).

Os cabos trançados de 12 pernas devem ser constituídos de seis pernas com torção S e seis pernas com torção Z, dispostas de modo que as pernas com torção S alternem (individualmente ou em pares) com as pernas com torção Z (individualmente ou em pares). Um cabo de dupla trança deve ser constituído de várias pernas que são trançadas para formar uma alma, em torno da qual pernas adicionais são trançadas para formar uma capa.

A alma se situa coaxialmente dentro da capa. O número de pernas varia em função do tamanho do cabo. Um cabo com capa consiste em uma alma protegida por uma cobertura sem contribuição para suportar cargas. Uma construção de cabos paralelos é um cabo com capa cuja alma consiste em um número de subcabos.

Cada perna deve ser composta do mesmo número de fios de cabo suficientes para assegurar as características especificadas na norma internacional para o produto em questão. Para cabos com número de referência igual ou superior a 36, o número de fios em cada perna pode variar em um fio ou ± 2,5% em relação ao número previsto de fios na perna.

Os cabos e suas pernas devem ser contínuos, sem emendas para comprimentos fornecidos padronizados ou comprimentos menores. Porém, alguns comprimentos ou métodos de fabricação impõem limitações. A fim de superar essas limitações, sobreposições de pernas podem ser utilizadas, sendo que estas devem estar de acordo com essa norma. Os fios podem ser emendados conforme necessário. As pernas podem ser formadas por fios emendados.

O fabricante deve determinar o passo do cordão ou o paço de trança do cabo de acordo com a aplicação à qual se destina ou conforme o especificado pelo comprador. Para um determinado número de referência do cabo, quanto menor for o passo de torção ou o passo de trança, maior a dureza do cabo. A dureza pode afetar a resistência à ruptura estimada do cabo.

Os cabos torcidos de poliamida e poliéster que necessitam de termofixação para assegurar a estabilidade do passo e das dimensões são designados como cabos do tipo 1 na norma do produto pertinente. Em outros casos, os cabos torcidos em poliamida e poliéster para os quais a termofixação não é requerida são designados como cabos do tipo 2 na norma do produto pertinente.

Se o tipo 1 ou 2 não for especificado em uma norma de um produto em particular, deve ser entendido que a termofixação não foi considerada para o respectivo produto. O produtor da fibra ou o fabricante do cabo pode aplicar um acabamento à fibra a fim de controlar a fricção e a tração da fibra, além de reduzir o dano à fibra durante a fabricação.

A quantidade total de aditivos ou materiais extraíveis não pode ultrapassar 2,5% em massa. Um cabo com torção à direita seja sempre enrolado no sentido horário e que um cabo com torção à esquerda seja sempre enrolado no sentido anti-horário, ou seja, com a torção do cabo. ((ver a figura abaixo)

Em vez de colocar todas as camadas umas sobre as outras, recomenda-se colocar o cabo em formato espiral, movendo cada camada em alguns centímetros. Mediante a solicitação do comprador, o fabricante pode utilizar um revestimento ou a impregnação do produto para aplicações especiais.

Os cabos de polipropileno e polietileno devem ser protegidos contra a deterioração devida à luz solar (UV). Recomenda-se que o sistema de inibição usado assegure, durante o uso, o desempenho correspondente às zonas geográficas previstas para as aplicações, desde que o fabricante seja mantido informado pelo usuário.

Os cabos de polietileno de alto módulo são tipicamente impregnados. Os cabos de polietileno de alto módulo podem estar sujeitos ao processo de termofixação. A termofixação de cabos de HMPE são designados cabos de tipo 1 na norma do produto pertinente.

Os cabos de polietileno de alto módulo que não tiverem passado por termofixação são designados como cabos de tipo 2 na norma do produto pertinente. A termofixação geralmente melhora a resistência à ruptura de um cabo de polietileno de alto módulo. Porém, a vida útil geral do cabo pode ser reduzida.

Todos os cabos de manilha e de sisal devem ser feitos exclusivamente de fibras novas. Na manilha, deve-se aplicar um óleo lubrificante para cabos de qualidade adequada. O lubrificante não pode conferir ao cabo acabado um odor ofensivo. O percentual de material extraível baseado no peso seco do cabo não pode ser inferior a 11,5% nem superior a 16,5%.

Quando especificado, o cabo deve ser submetido a um tratamento resistente a mofo. Sempre que solicitado pelo comprador, podem ser acrescentados aditivos bactericidas para manilha para ampliar o desempenho da fibra natural. No sisal, deve-se aplicar um óleo lubrificante para cabos de qualidade adequada. Este lubrificante não pode conferir ao cabo acabado um odor ofensivo.

O percentual de material extraível baseado no peso seco do cabo não pode ser superior a 11,5% para um produto não lubrificado nem superior a 16,5% para um produto lubrificado. Quando especificado, o cabo deve estar livre de quaisquer óleos e ser vendido como um cabo não lubrificado. Quando solicitado pelo comprador, podem ser adicionados aditivos bactericidas para sisal para ampliar o desempenho da fibra natural.

O cabo acabado não pode conter cortes, dobras ou pontos com amolecimento causados por passos irregulares, deformações, trechos desgastados por atrito ou danificados, ou pontas rompidas, soltas ou salientes no cabo ou nas pernas. As extremidades não emendadas de todos os cabos devem ser cortadas em ângulo reto e firmemente amarradas, fixadas com fita ou vedadas termicamente.

As sobreposições de pernas, quando presentes em cabos ou subcabos de 12 pernas, devem ser distribuídas ao longo do comprimento do cabo e a uma distância suficiente. As pernas interrompidas e recolocadas são organizadas paralelamente a uma distância e são embutidas ou enfiadas na trança a fim de fixá-las na trança.

A fim de manter a resistência, as pernas devem se sobrepor uma à outra a uma distância suficiente. Uma amostra de ensaio incluindo uma sobreposição de pernas em uma perna deve atingir 100% da carga de ruptura mínima (MBS) especificada quando ensaiada conforme a NBR ISO 2307.

Para sobreposições de pernas em cabos de dupla trança, ver a noma do produto pertinente. O processo de intercâmbio de pernas deve ser completamente documentado. A documentação deve conter pelo menos as informações seguintes e devem ser disponibilizadas a um inspetor caso solicitado: o comprimento de uma sobreposição de pernas; a distância mínima entre duas sobreposições de pernas; o comprimento total da sobreposição de pernas; e as posições das sobreposições de pernas do início ao fim do cabo.

Se necessário, toda a emenda de perna ou parte deve ser permanentemente marcada (por exemplo, com tinta) no cabo a fim de possibilitar uma detecção preventiva de uma sobreposição de perna que esteja deslizando para fora e a fim de distinguir uma sobreposição de pernas de um defeito. As sobreposições de perna são permitidas apenas em cabos trançados de 12 pernas.

Os cabos de diferentes tamanhos podem ser considerados do mesmo projeto, quando os seguintes parâmetros permanecerem inalterados independentemente da escala: fio do cabo; relação entre passo de torção da perna com o diâmetro é fixo (= passo da perna dividido pelo diâmetro da perna); relação entre passo de torção ou passo de trança do cabo com o diâmetro é fixo (= passo do cabo dividido pelo diâmetro do cabo); tipo de equipamento utilizado; tipo de acabamento, percentual de impregnação, e penetração (quando aplicável); controle de qualidade e emenda. Recomenda-se que o projeto seja reportado em uma folha de especificação de projeto contendo as informações gerais quanto à empresa, ao inspetor independente, ao projeto do cabo e a ensaios de protótipos realizados a fim de validar o projeto.

Essa especificação deve ser seja disponibilizada para as partes quando requerido. Convém que os detalhes do projeto do cabo e de ensaios de protótipos sejam apresentados em uma segunda folha. Detalhes da fibra utilizada no projeto devem ser especificados e convém que estas duas últimas folhas sejam disponibilizadas para inspeção por inspetores independentes quando solicitado pelas partes interessadas.

Os principais requisitos devem ser aqueles especificados na norma do produto pertinente e devem incluir o seguinte: número de referência; densidade linear; e carga de ruptura mínima. Os métodos de ensaios estão especificados na NBR ISO 2307. Outros requisitos, por exemplo, o comprimento do passo, o passo de trança, o diâmetro do círculo circunscrito e o alongamento do cabo sob condições de tração específicas podem ser especificados, sujeitos a acordos entre o fabricante e o comprador.

A identificação do material, da qualidade e da origem de um cabo de fibra de acordo com este documento deve ser marcada usando-se uma fita colocada dentro do produto de maneira a permanecer reconhecível apesar da sujeira, imersão ou descoloração durante o uso. A fita deve ter uma largura de no mínimo 3 mm, e deve conter o número da norma pertinente devidamente impresso e uma referência identificando o fabricante. A distância máxima entre duas marcações consecutivas deve ser de 0,5 m. Os cabos com número de referência inferior a 14 não precisam ser marcados, a menos que especificado na norma do produto.

As vestimentas de proteção contra os perigos de um arco elétrico

A proteção térmica ao arco elétrico é o ensaio de arco elétrico> grau de proteção térmica oferecido contra o arco elétrico em condições específicas de ensaio de arco elétrico indicadas pela resistência ao arco elétrico ou pela classe de proteção ao arco elétrico. Para materiais, a proteção térmica ao arco elétrico é obtida a partir da medição da energia transmitida e pela avaliação de outros parâmetros térmicos (tempo de queima, formação de furos, derretimento). Para peças de vestuário, a proteção térmica ao arco elétrico é obtida pela avaliação dos parâmetros térmicos (tempo de queima, formação de furos, derretimento) do (s) material (ais) dos quais a peça de vestuário é fabricada e do funcionamento de fechos e acessórios.

O perigo de arco elétrico é o dano potencial proveniente da liberação de energia de um arco elétrico, normalmente causado por um curto-circuito ou falha de equipamento em trabalho eletrotécnico. Um perigo de arco elétrico existe quando condutores elétricos ou partes energizadas são expostos e quando estão dentro de uma parte de um equipamento, mesmo quando protegidos ou fechados, se um trabalhador estiver interagindo com o equipamento de forma que possa causar um arco elétrico. Em condições normais de operação, o equipamento energizado fechado que tenha sido projetado, instalado e mantido de forma apropriada não é passível de causar um perigo de arco elétrico.

Os perigos podem incluir efeitos térmicos, ruído, efeitos de onda de pressão, efeitos de partes ejetadas, metal fundido, efeitos ópticos, entre outros. Diferentes equipamentos de proteção individual (EPI) podem ser requeridos para proteger contra efeitos diferentes. É importante que a avaliação de risco considere todos os efeitos potenciais.

Cada peça de vestuário ou sistema de peça de vestuário em conformidade com a norma deve ter uma etiqueta de marcação que deve conter no mínimo os seguintes itens de marcação: nome, marca comercial ou outros meios de identificação do fabricante ou de seu representante autorizado; designação do tipo de produto, nome ou código comercial; designação de tamanho, de acordo com a NBR ISO 13688:2017, Seção 6; etiquetagem sobre cuidados, de acordo com a NBR NM ISO 3758 e/ou ISO 30023; símbolo da IEC 60417-6353:2016-02 – Proteção contra efeitos térmicos do arco elétrico e, adjacentemente ao símbolo, o número da norma IEC aplicável (IEC 61482-2) e a proteção térmica ao arco elétrico na forma de resistência ao arco elétrico (ELIM e/outro valor menor de ATPV ou EBT) ou classe de proteção ao arco elétrico (APC 1 ou APC 2).

Se uma peça de vestuário for fabricada em materiais diferentes ou em números diferentes de camadas (por exemplo, somente a parte frontal da peça de vestuário consiste em camadas múltiplas), a etiqueta da peça de vestuário deve indicar as resistências ao arco elétrico e/ou a classe de proteção ao arco elétrico mais baixas. Se um fabricante de peça de vestuário declarar proteção por um conjunto de peças de vestuário (por exemplo, jaqueta com uma camisa, forro removível de uma jaqueta), a marcação deve tornar claro o uso correto para o usuário final. A marcação de um conjunto de peças de vestuário deve mencionar cada item do conjunto, identificado por um código de referência claro, e, se determinado, a proteção térmica ao arco elétrico obtida, bem como as resistências ao arco elétrico e/ou a classe de proteção ao arco elétrico de todo o conjunto de peças de vestuário.

Apesar de todos os cuidados, um grande número de acidentes com arco elétrico ocorre todos os anos. A proteção contra arco elétrico tem tudo a ver com proteção contra energia, medida em calorias (cal/cm²). Para medir o nível de proteção do produto, a vestimenta é submetida a dois métodos de teste diferentes: teste de arco aberto e teste de caixa. Os métodos de teste usam diferentes configurações de teste, configurações de arco, parâmetros de teste, procedimentos de teste e parâmetros de resultado. Os resultados dos métodos de teste não podem ser comparados fisicamente nem transformados matematicamente uns nos outros. A classificação do arco deve ser testada e avaliada para um ou outro método.

Se aplicável, a construção da peça de vestuário ou do sistema de peça de vestuário deve ser inspecionada visualmente quanto às seguintes propriedades de projeto: mangas longas que se estendam para fornecer cobertura completa para os pulsos; cobertura completa da cintura aos tornozelos; cobertura até o pescoço; nenhuma peça metálica externa descoberta; nenhuma peça de aviamentos e acessórios que penetre do lado externo até a superfície interna; e proteção térmica ao arco elétrico idêntica da frente e mangas completas. Se a peça de vestuário ou o sistema de peça de vestuário forem fabricados em materiais diferentes, isto deve ser verificado por inspeção, se as instruções de uso claramente indicarem a área mais fraca (desenho, indicação de advertência).

A conformidade relacionada à designação de tamanho deve ser verificada por medição. A conformidade relacionada à ergonomia (projeto apropriado para não dificultar a realização do trabalho pelo usuário) deve ser verificada por inspeção, vestindo o usuário com o tamanho apropriado de vestimenta (ensaio no corpo humano). Quando as instruções de uso do fabricante fornecerem um número máximo de ciclos de limpeza, os requisitos para propagação limitada de chama devem ser atendidos após o número máximo de ciclos de limpeza indicado pelo fabricante.

Se o número máximo de ciclos de limpeza não for especificado, o ensaio deve ser realizado após cinco ciclos de limpeza. O número de ciclos utilizado deve ser indicado nas instruções de uso do fabricante. O processo de limpeza deve estar de acordo com as instruções do fabricante, com base em processos normalizados. A linha de costura utilizada na construção de peças de vestuário deve ser ensaiada de acordo com a ISO 3146 Método B, a uma temperatura de 260 °C ± 5 °C. O funcionamento dos fechamentos deve ser ensaiado por ensaio de desempenho prático, após a conclusão do ensaio térmico de arco elétrico indicado em 5.4. Deve ser considerado o atendimento ao requisito se o tempo de abertura do fechamento da peça de vestuário por uma pessoa não for maior do que 30 s.

Em sua nova edição, a NBR IEC 61482-2 de 01/2023 – Trabalho sob tensão — Vestimenta de proteção contra perigos térmicos de um arco elétrico Parte 2: Requisitos é aplicável à vestimenta de proteção utilizada em trabalho em que haja risco de exposição a um perigo de um arco elétrico. Especifica os requisitos e métodos de ensaio aplicáveis aos materiais e às peças de vestuário para vestimenta de proteção para trabalhadores do setor elétrico contra perigos térmicos de um arco elétrico. O perigo de choque elétrico não é abrangido por esta parte, a qual é aplicável em combinação com normas que abrangem tais perigos.

Outros efeitos térmicos que não os de um arco elétrico, como ruído, emissões de luz, aumento de pressão, óleo quente, choque elétrico, consequências de impacto físico e mental ou influências tóxicas, não são abrangidos por esta parte. As proteções ocular, facial, de cabeça, mãos e pés contra perigo de arco elétrico não são abrangidas por esta parte. Os requisitos e ensaios que abrangem perigos de arco elétrico a estas partes do corpo estão em desenvolvimento. A vestimenta de proteção para trabalho com uso intencional de um arco elétrico, por exemplo, soldagem por arco, tocha de plasma, não é abrangida por esta parte da NBR IEC 61482.

Este documento foi elaborado de acordo com os requisitos da IEC 61477. Os produtos projetados e fabricados de acordo com este documento contribuem para a segurança dos usuários, desde que sejam utilizados por pessoas habilitadas, de acordo com os métodos de segurança do trabalho e com as instruções de uso.

O produto abrangido por este documento pode possuir um impacto no meio ambiente durante alguns ou todos os estágios da sua vida útil. Esses impactos podem variar de reduzidos a significativos, ser de curta ou longa duração, e ocorrer em nível global, regional ou local.

Este documento não inclui requisitos e disposições de ensaio para os fabricantes do produto, ou recomendações aos usuários do produto para melhoria ambiental. Entretanto, todas as partes intervenientes em seu projeto, fabricação, embalagem, distribuição, uso, manutenção, reparo, reutilização, recuperação e descarte são convidadas a levar em conta as considerações ambientais.

O arco elétrico é a condução de gás autossustentável para a qual a maior parte dos portadores de carga é formada por elétrons fornecidos pela emissão de elétrons primários. Durante o trabalho sob tensão, o arco elétrico é gerado por ionização de gás proveniente de uma conexão ou interrupção involuntária da condução elétrica entre as partes energizadas e o caminho do terra de uma instalação elétrica ou um dispositivo elétrico.

Durante o ensaio, o arco elétrico é iniciado pela queima de um fio de fusível. Os requisitos gerais para a vestimenta de proteção contra perigo térmico de um arco elétrico que não são especificamente abrangidos nesta parte da NBR IEC 61482 devem estar de acordo com a NBR ISO 13688.

As peças de vestuário que protegem a parte superior do corpo devem possuir mangas com comprimento suficiente para fornecer cobertura completa dos pulsos, e devem fornecer também cobertura até o pescoço. As peças de vestuário que protegem a parte inferior do corpo devem fornecer cobertura completa da cintura até os tornozelos.

Os fechos da peça de vestuário devem ser projetados de forma que a função de abertura esteja ainda presente após esta ser exposta a um arco elétrico, quando ensaiada de acordo com essa norma. Os acessórios (por exemplo, etiquetas, emblemas, material retrorrefletivo) e fechos utilizados na construção da peça de vestuário não podem contribuir para o agravamento das lesões ao usuário no caso de um arco elétrico e exposição térmica relacionada, quando a vestimenta for ensaiada de acordo com o ensaio da peça de vestuário. A separação do fecho não pode ocorrer.

O fio de costura utilizado na construção das peças de vestuário deve ser fabricado em uma fibra inerentemente resistente à chama e não pode derreter quando ensaiado de acordo com essa norma. Os fios em costuras que não tenham influência na proteção, por exemplo, bainhas e costuras de bolso, não precisam ser resistentes à chama.

Não pode ser permitida na vestimenta qualquer peça metálica externa descoberta. Os aviamentos e acessórios que penetram no material externo da peça de vestuário não podem estar expostos à superfície mais interna da peça de vestuário. Todas as partes expostas de uma peça de vestuário devem ser fabricadas em materiais de proteção térmica ao arco elétrico.

No caso de materiais diferentes serem utilizados na frente e na parte de trás da peça de vestuário, a informação exata deve ser fornecida, nas instruções de uso, sobre a localização da área mais fraca, como, por exemplo, por meio de um desenho da peça de vestuário que inclua as dimensões e indicação de advertência. O usuário pode realizar uma avaliação de risco de perigo para determinar o nível de proteção necessário. Documentos como NFPA 70E, IEEE 1584, Guia ISSA e DGUV-I 203-77 auxiliam a avaliar os perigos de forma prática.

Para peças de vestuário que cobrem o tronco e os braços, o lado frontal e as mangas ao redor dos braços e sobre o seu comprimento completo devem fornecer a mesma proteção térmica ao arco elétrico. Para peças de vestuário que cobrem as pernas, a frente sobre o comprimento completo deve atender à mesma proteção térmica ao arco elétrico. Para macacões, devem ser atendidos os requisitos para peças de vestuário que cobrem o tronco e braços e para peças de vestuário que cobrem as pernas.

Quando a proteção for fornecida por um conjunto de duas peças, deve ser determinado que, quando corretamente dimensionado para o usuário, uma sobreposição entre a jaqueta e as calças seja mantida, quando um usuário em pé primeiramente estende plenamente os dois braços acima da cabeça e, em seguida, se curva até que as pontas dos dedos das mãos toquem o solo, quando ensaiado de acordo essa norma. Se um fabricante declarar um sistema de peça de vestuário como uma vestimenta de proteção térmica ao arco elétrico, então esse sistema de peça de vestuário deve ser ensaiado e atender aos requisitos desta parte da NBR IEC 61482.

Se o usuário estiver utilizando peças de vestuário de fabricantes diferentes como vestimenta de proteção térmica ao arco elétrico, ele é responsável por avaliar como o conjunto atende aos requisitos desta parte da NBR IEC 61482. Os materiais não podem entrar em ignição, derreter ou encolher mais do que 5%, quando ensaiados de acordo com essa norma. Os materiais da peça de vestuário que utilizam fibras eletricamente condutoras, exceto as peças de vestuário que atendam à IEC 60895, quando ensaiados de acordo com essa norma, devem possuir uma resistência elétrica de no mínimo 105 Ω.

Todos os materiais devem atingir um índice de propagação limitada de chama especificado, quando ensaiados de acordo com essa norma e devem ser classificados de acordo com as especificações dessa norma. Se um material de camada única for utilizado na peça de vestuário, este material deve atender aos requisitos fornecidos na tabela abaixo.

O material externo, tecido ou laminado, deve ter uma resistência ao rasgo de no mínimo 15 N para gramatura superior a 220 g/m² ou de no mínimo 10 N para gramatura de 220 g/m² ou inferior, nas direções de trama e urdume, quando ensaiado de acordo com essa norma. O material externo, tecido e laminado, deve ter uma resistência à tração de no mínimo 400 N para gramatura superior a 220 g/m² ou de no mínimo 250 N para gramatura de 220 g/m² ou inferior, nas direções de trama e urdume, quando ensaiado de acordo com essa norma.

O material externo em malha deve ter uma resistência à ruptura de no mínimo 100 kPa durante a utilização de uma área de ensaio de 50 cm², ou de no mínimo 200 kPa durante a utilização de uma área de ensaio de 7,3 cm², quando ensaiado de acordo com essa norma. O material, tecido e laminado, externo e interno, deve ter uma alteração dimensional que não exceda a ±3% em qualquer direção de comprimento ou largura, quando ensaiado de acordo com essa norma.

Os materiais em malha interno e externo devem ter uma alteração dimensional de no máximo ±5%, quando ensaiados de acordo com essa norma. Para verificar o encolhimento de cada camada única em um conjunto de camadas múltiplas, pode ser útil ensaiar o conjunto fechado por costura ao redor das bordas.

A vestimenta de proteção deve ter propriedades de proteção contra os efeitos térmicos de um arco elétrico. Dois métodos de ensaio foram desenvolvidos para fornecer informação sobre a proteção da vestimenta contra os efeitos térmicos de arcos elétricos. Cada método fornece informação diferente.

O ensaio deve ser realizado sobre o material e a peça de vestuário acabada, utilizando os métodos de ensaio da IEC 61482-1-1 e/ou da IEC 61482-1-2, e tanto o material quanto a peça de vestuário devem atender aos requisitos. Dependendo das necessidades, uma ou ambas as normas podem ser especificadas.

Dependendo das características do sistema elétrico e do equipamento (por exemplo, média tensão ou baixa tensão, corrente de curto-circuito disponível, características de proteção) e do local no sistema onde o trabalho sob tensão é realizado (por exemplo, próximo de subestação ou não), a energia possível no arco elétrico é diferente.

Esses elementos influenciam as necessidades em termos de resistência térmica ao arco elétrico requerida. Se outro (s) material (ais) for(em) utilizado (s) para a parte de trás (traseira ou dorso), ele (s) deve (m) atender pelo menos a uma resistência ao arco elétrico mínima, de acordo com a IEC 61482-1-1, ou aos requisitos mínimos da Classe 1, de acordo com a IEC 61482-1-2. A etiqueta da peça de vestuário deve refletir a mais baixa dessas classificações.

Quando ensaiada de acordo com a IEC 61482-1-1, a vestimenta de proteção fabricada do material ensaiado deve ter uma resistência ao arco elétrico. Um fabricante pode atribuir um valor de resistência ao arco elétrico a um material ou vestimenta de proteção inferior ao valor resultante do ensaio. A vestimenta de proteção deve ter uma proteção térmica ao arco elétrico mínima, onde o limite máximo de energia incidente (ELIM) seja no mínimo de 130 kJ/m² (3,2 cal/cm²) e onde o valor inferior do valor de desempenho térmico ao arco elétrico (ATPV) e a energia-limite de rompimento (EBT) seja no mínimo de 167 kJ/m²2 (4 cal/cm²). Caso somente o ATPV ou EBT possam ser determinados, este valor deve ser no mínimo de 167 kJ/m² (4 cal/cm²).

Devido às limitações do arranjo de ensaio em arcos elétricos de energia muito alta, nenhuma resistência ao arco elétrico acima de 4 186 kJ/m² (100 cal/cm²) deve ser atribuída às peças de vestuário. Quanto maior a resistência ao arco elétrico, melhor a proteção térmica ao arco elétrico sob maior energia incidente do arco elétrico (maior valor de corrente, maior tempo de exposição).

De acordo com os regulamentos de segurança, a resistência ao arco elétrico necessária é determinada por análise de risco. Uma orientação para a seleção apropriada de uma resistência ao arco elétrico é fornecida em outras normas separadas, por exemplo, nas IEEE 1584 e NFPA 70E.

Ao ensaiar de acordo com a IEC 61482-1-2, deve ser atribuído um APC 1 ou um APC 2 à vestimenta de proteção fabricada de material ensaiado, dependendo das condições de ensaio e da proteção térmica ao arco elétrico resultante. A vestimenta de proteção deve demonstrar uma proteção térmica ao arco elétrico mínima de APC 1. Um APC 2 indica uma maior proteção térmica ao arco elétrico. A classe de proteção térmica ao arco elétrico necessária é determinada por análise de risco. Uma orientação para a seleção apropriada da classe de proteção ao arco elétrico é fornecida em outras diretrizes separadas.

A falta da iniciativa e de gestão da atual administração do Inmetro

Galdino Guttmann Bicho

Aos 68 anos, aposentado no Serviço Público Federal, engenheiro mecânico com uma experiência profissional de 44 anos, tomei conhecimento das ações da Abrac (https://abrac-ac.org.br), o que me revoltou muito por causa da falta de iniciativa da administração do Inmetro em permitir o esvaziamento das suas atividades metrológicas, de gestão da qualidade e da metrologia. Falo com propriedade, essa afirmativa, sem falsa modéstia, evidencia-se porque eu contribuí, como outros servidores, para implementar a certificação e o credenciamento de laboratórios no Brasil quando ingressei no Inmetro em 1984, oriundo da área nuclear, Nuclen Engenharia, e da empresa alemã Siemens – UBMED.

Com a minha participação e conhecimento técnico–científico, adquirido no Inmetro, contribuí nas atividades da certificação e do credenciamento de laboratórios, inclusive no reconhecimento perante   fóruns internacionais, Ilac e Aplac, das redes de ensaios. Sob a minha liderança profissional, o Inmetro obteve esses reconhecimentos internacionais.

Atual superintendente da Abrac, o ex-presidente do Inmetro, Massao Ito, conhece muito bem o meu conhecimento técnico, utilizado, por exemplo, na coordenação da certificação das bolsas de sangue para evitar contaminação por formol e outros tipos de agentes biológicos. A fabricação desse produto não atendia nenhum parâmetro técnico de controle de fabricação e de qualidade, preconizado pelas Boas Práticas de Fabricação e Farmacopeias internacionais, o que se tornou um escândalo nacional, noticiado na mídia brasileira durante dois meses em todos os meios de comunicação (basta consultar a primeira página da revista Veja da época) do Oiapoque ao Chuí. Antes, o Inmetro não exercia essa atividade na área da Saúde Pública, porém com a minha iniciativa, participação técnica, conhecimento profissional técnico e expertise, obtidos na empresa Siemens na área eletromédica da Alemanha UB -Med, despertou-se na instituição a importância da certificação na Saúde Pública. Requisitado pelo Ministério da Saúde para implantar Rede Brasileira de Laboratórios de Saúde Pública (REBLAS-Anvisa), durante sete anos atuei na Anvisa-GGLAS.

Cabe ao Inmetro consultar a sociedade brasileira e o parlamento brasileiro da verdadeira necessidade da descentralização ou da delegação dessas atividades obtidas e atribuídas a ele por lei federal. A Asmetro -Associação dos Servidores do Inmetro deve entrar nesta discussão com brevidade. Para finalizar os meus argumentos rebeldes, também considero que o Inmetro deve rever e intervir nas atividades de normalização brasileira, feita pela Associação Brasileira de Normas Técnicas (ABNT), não bastando somente colocar recursos para o pagamento da ISO.

Na verdade, em um Estado democrático de direito, caso do Brasil, a função de normalização técnica das atividades de produção, fornecimento e comercialização de bens, produtos e serviços, tem caráter principal, porque o seu balizamento é essencial para a vida em comunidade, tanto no que diz respeito ao usufruto adequado e seguro pelos cidadãos dos bens e serviços, como no que concerne ao desenvolvimento nacional, ambas atividades inseridas no âmbito do poder-dever do Estado. Dessa maneira, a normalização das atividades de produção, fornecimento e comercialização de bens, produtos e serviços, destinados à comunidade em geral, é função necessariamente estatal, porque pressupõe a imposição obrigatória de normas de conduta restritivas de direitos e liberdades consagradas pela Constituição brasileira.

Isso envolve a liberdade de iniciativa, de concorrência, de indústria e de comércio, dentre outras, com a finalidade de assegurar o exercício de outros direitos fundamentais, também positivados na Constituição, cujo exercício, concretização e efetivação cabem ao Estado garantir, promover, defender e proteger, principalmente, o direito à vida, à segurança, à saúde e ao meio ambiente. Após essa publicação e com muita revolta na alma, tenciono projetar uma organização não governamental (ONG), suprapartidária, para o controle social das atividades do Inmetro, da ABNT e das atividades de certificação e de credenciamento.

Galdino Guttmann Bicho: http://lattes.cnpq.br/8522448154261381 – ID Lattes: 8522448154261381 – Última atualização do currículo em 29/06/2022guttmannbicho63@gmail.com

A conformidade dos projetos de válvulas para cilindros recarregáveis de cloro

A corrosão é apenas um fato da vida quando se trata de válvulas de cloro, pois elas sofrem corrosão, por isso é importante sempre fazer uma inspeção visual periódica das válvulas. Embora as válvulas sejam feitas com materiais da mais alta qualidade, a corrosão pode ocorrer devido à natureza do gás cloro e aos ambientes onde o cilindro e as válvulas estão sendo usados e armazenados.

Uma preocupação comum é que os operadores na planta tenham medo de serem expostos ao gás cloro. O gás cloro é altamente tóxico e pode ser muito perigoso quando os materiais de armazenamento não são mantidos. Alguns operadores tendem a ser cautelosos demais e acreditam que é melhor apertar demais as válvulas.

Embora isso possa parecer uma ideia lógica, não é. Quando se aperta demais (torque) uma válvula, pode-se colocar pressão excessiva na válvula. A tensão excessiva ao longo do tempo fará com que a porca da gaxeta rache. O aperto excessivo da válvula também pode sobrecarregar o corpo da válvula, causando rachaduras e liberando gás cloro.

Deve-se apertar a válvula de acordo com as especificações fornecidas pelo fabricante. Algumas pessoas tendem a borrifar amônia na válvula para testar se há vazamentos. O problema com este método é que a amônia também é corrosiva e é por isso que às vezes se vê válvulas de cor esverdeada. Nas conexões de entrada da válvula, os orifícios nos cilindros pequenos e grandes destinados às válvulas possuem originalmente a rosca padrão 3/4” 14NGT (CL)-0.

Com o tempo, a rosca dos cilindros se desgasta devido às constantes retiradas e recolocações das válvulas. Para aumentar o tempo de vida do cilindro, é necessário o alargamento dos orifícios e das roscas com outras dimensões. Com isto, nos cilindros pequenos, as válvulas da série 3/4” 14NGT (CL)-1 a 3/4” 14NGT (CL)-4 podem ser utilizadas.

Nos cilindros grandes, além destas, as válvulas da série 1–11½” NGT (CL)-4 também podem ser utilizadas. O padrão NGT é um padrão americano para roscas cônicas. Quando empregado em válvulas para cilindros de cloro, elas são denominadas NGT (CL). Estas roscas podem ser fabricadas em diversos tamanhos padronizados para uso com cloro.

Historicamente, o padrão NGT (CL) tem sido utilizado no Brasil para as válvulas de cloro. Tomando como exemplo a rosca 3/4” 14 NGT (CL)-0, é possível descrever o significado da expressão que caracteriza estas roscas: 3/4” – É a dimensão nominal da conexão de entrada da válvula para cilindro de cloro; 14 – Significa a quantidade de fios de rosca por polegada; NGT – National Gas Taper (rosca cônica de entrada das válvulas para cilindros de gás); (CL) – Significa o uso em cilindros de cloro; (CL) – 0 Corresponde à válvula padrão com a quantidade mínima de roscas para uso nos cilindros novos.

As demais roscas (CL)-1 a (CL)-4 possuem maior quantidade de roscas para emprego em cilindros em uso com roscas alargadas. Os aspectos da modificação de um projeto, que podem afetar a válvula, devem ser identificados pelo responsável do projeto.

Quando forem realizadas mudanças em um projeto de válvula aprovado e documentado conforme os requisitos da norma técnica, é necessário aplicar os seguintes critérios: as conexões de entrada e saída: o emprego de outro tipo de conexão CGA, ISO ou outras de diferentes tamanhos de roscas conforme 5.5.1 não configura alteração de projeto; corpo da válvula: as mudanças nas dimensões internas ou externas e/ou as mudanças nos materiais construtivos do corpo da válvula exigem que todos os ensaios atendam aos demais requisitos da norma.

Este tipo de mudança deve ser tratado como um novo projeto. Outras modificações, por exemplo, na concepção de outros componentes (anéis, gaxetas, hastes, entre outros) exigem a verificação de conformidade com os requisitos da norma e a realização de novos ensaios de desempenho que podem ser afetados pela mudança. Todas as modificações no projeto devem ser documentadas, incluindo os registros dos ensaios de qualificação.

Todas as variantes de projeto de válvula e/ou modificações introduzidas no projeto devem ser registradas e anexadas à documentação do projeto. Um projeto aprovado de válvula, para uso em cilindros contendo outros gases, somente pode ser utilizado para uso em cilindros de cloro se for objeto de um projeto variante que atenda aos requisitos da norma. Um projeto de válvula aprovado para uso em cilindros pequenos de cloro, mas ainda não aprovado de acordo com a norma para uso em cilindros grandes de cloro (ou vice-versa), também deve ter um projeto variante que atenda aos requisitos da norma.

A NBR 17016 de 03/2022 – Válvulas para cilindros de cloro – Especificação e ensaio de protótipo se aplica às válvulas empregadas em cilindros recarregáveis de cloro, aos tubos coletores (manifolds) e às válvulas empregadas nos kits de emergência dos tipos A, B e C. Estabelece os requisitos para o projeto de válvulas para cilindros recarregáveis de cloro, incluindo dimensões, materiais de construção, conexões, qualificação do projeto e documentação. O cloro líquido é o cloro gás liquefeito por aplicação de pressão, caracterizado como um líquido claro, de cor âmbar e aproximadamente 1,5 vez mais pesado que a água.

Os cilindros pequenos e grandes de cloro são utilizados por estações de tratamento de água, nas indústrias e outros consumidores do produto. As válvulas destes cilindros são peças de engenharia que precisam ser de alta confiabilidade, visto que sua falha pode levar a vazamentos significativos de cloro durante seu carregamento, uso e transporte.

O cloro é um produto tóxico, oxidante e corrosivo. No Brasil, ele é transportado como um produto da classe 2.3 (gás tóxico), com riscos subsidiários 5.1 (oxidante) e 8 (corrosivo), conforme a ANTT N° 5.232/2016. As válvulas em cilindros recarregáveis para cloro devem ter a qualidade e a resistência requeridas nessa norma para assegurar tanto o desempenho adequado como a segurança nas operações de envasamento, armazenamento, movimentação, transporte e esvaziamento dos cilindros.

As válvulas nacionais devem ser projetadas e manufaturadas em conformidade com esta norma. As válvulas importadas devem atender aos requisitos de desempenho, construção, qualificação e manufatura equivalentes aos desta norma, por exemplo, as válvulas manufaturadas conforme os requisitos da CGA V-9. Todas as marcações nas válvulas devem ser indeléveis.

As válvulas para cilindros de cloro devem ter um projeto elaborado e aprovado conforme os requisitos dessa norma. O projeto deve ser elaborado considerando os seguintes aspectos: as propriedades químicas e físicas e os perigos do cloro; as operações a que habitualmente os cilindros de cloro são submetidos, como preparação para o enchimento, armazenamento, transporte, esvaziamento e uso.

O projeto da válvula para cilindro de cloro deve atender aos requisitos específicos relacionados a: dimensões; materiais de construção e lubrificantes; corpo da válvula, mecanismo operacional e dispositivo operacional; conexão de entrada e saída da válvula; bujão fusível (somente na válvula para cilindro pequeno de cloro); e tampa (cap) da saída da válvula. O projeto deve prever as marcações mínimas requeridas na válvula e nos componentes, de acordo com essa norma.

Os protótipos do projeto da válvula devem ser submetidos aos ensaios relacionados nessa norma e atender aos requisitos descritos. O projeto deve ser documentado, incluindo as informações necessárias para a manufatura da válvula, de acordo com o projeto qualificado (aprovado), conforme os requisitos dessa norma. A documentação do projeto, incluindo as suas modificações, deve ser conservada por até dez anos após o encerramento da manufatura da válvula.

As dimensões externas máximas da válvula devem estar de acordo com as figuras abaixo, para assegurar a sua compatibilidade com: a fixação do capacete de proteção da válvula colocado no cilindro pequeno ou grande; a operação dos equipamentos e a operação de enchimento e de esvaziamento dos cilindros; e a fixação dos dispositivos do kit de emergência do tipo A ou B nos cilindros pequenos ou grandes. O kit de emergência é um conjunto de peças, ferramentas e acessórios, destinado a conter vazamentos de cloro que podem ocorrer nas válvulas ou no corpo do cilindro de cloro líquido.

O orifício de passagem do fluxo de gás da válvula deve ter dimensões adequadas para atender à vazão requerida sem que haja comprometimento da resistência mecânica da válvula. A seleção de materiais construtivos deve ser conforme os critérios estabelecidos nas ISO 11114-1 (materiais metálicos) e ISO 11114-2 (materiais não metálicos), demonstrando sua compatibilidade química com o cloro.

Isto inclui, no caso de materiais metálicos, a resistência à corrosão em condições secas e úmidas, a corrosão por impurezas, as reações violentas e de trincas devido à corrosão sob tensão (stress corrosion cracking), e, no caso de materiais não metálicos, as condições relacionadas a reações violentas, a perda de massa por extração ou por ataque químico, o inchaço, a perda das propriedades mecânicas, a reação de formação de substâncias indesejáveis e o envelhecimento. Para a determinação da suscetibilidade da formação de trinca devido à corrosão sob tensão (stress corrosion cracking) de ligas de cobre, podem ser utilizados os métodos das ISO 6957, ASTM B858, e ASTM B154.

Os materiais metálicos já ensaiados e aprovados, que habitualmente são utilizados na manufatura de válvulas para cilindros de cloro, estão relacionados no Anexo C. Os lubrificantes não podem ser empregados nas válvulas para cilindros de cloro. Os materiais metálicos e não metálicos devem atender aos requisitos dos ensaios requeridos, conforme descritos nessa norma. O material do corpo da válvula deve ser forjado ou laminado.

O material do corpo da válvula deve atender às especificações de dureza, resistência à tração, escoamento e alongamento, comprovadas por ensaios estabelecidos na ASTM B16. No descritivo e/ou nos desenhos de projeto, devem estar claramente relacionados e especificados os materiais construtivos do corpo e os demais componentes da válvula.

O fechamento da válvula deve ocorrer no sentido horário. As válvulas para cilindros de cloro não podem empregar volantes. Para sua abertura e seu fechamento, deve ser empregada uma chave especial com um comprimento não superior a 20 cm e com bocal quadrado na extremidade que se encaixe na haste da válvula.

A haste da válvula deve ter, na sua extremidade superior, uma seção quadrada de 9,525 mm (3/8”), para encaixar a chave utilizada para a abertura e o fechamento da válvula. A abertura e o fechamento da válvula devem ser possíveis na pressão de projeto de 3 450 kPa (500 psig). O mecanismo de operação da válvula deve ser projetado de modo que seja evitada a alteração inadvertida na sua montagem.

A elevação da extremidade da haste deve estar limitada a 3,175 mm (1/8”) para 360º de rotação. Não podem ser utilizados lubrificantes no mecanismo de operação da válvula. A conexão de entrada das válvulas de cilindros novos pequenos e grandes, em uso no Brasil, deve ser uma conexão 3/4” – NGT(CL)-0 (ver o Anexo D).

A conexão de entrada das válvulas de cilindros pequenos e grandes, em uso no Brasil, deve ser uma das conexões da série 3/4” – NGT(CL)-0 à série 3/4” – NGT(CL)-4 (ver o Anexo D). As medidas de construção das conexões 3/4” – NGT(CL) devem estar de acordo com essa norma. A válvula também pode ser projetada com a conexão de entrada no padrão 25E da ISO 11363-1, para fins de exportação.

O uso da conexão 25E (ISO 11363-1) também é possível, porém podem ocorrer vazamentos de cloro, caso ocorra troca de válvulas na conexão com os cilindros, como, por exemplo, válvula com conexão 3/4” – NGT (CL) conectada em cilindros com conexão 25E. O projeto de uma válvula para uso em cilindro de cloro deve ser documentado, incluindo as suas eventuais modificações e revisões.

A documentação do projeto deve referenciar essa norma. O projeto deve possuir um número e/ou uma denominação para distingui-lo de outros projetos. A documentação deve ser suficiente para a reprodução fidedigna do protótipo de válvula aprovada conforme os requisitos dessa norma, contendo: um desenho da válvula com suas partes, suas dimensões relevantes e suas modificações, se for o caso, ver o exemplo no Anexo A; um desenho das partes com as medidas e suas tolerâncias, bem como as marcações na válvula e na haste.

Também, devem constar, na documentação, no desenho ou em uma lista separada, as especificações dos materiais utilizados em cada parte da válvula (ver o exemplo no Anexo B) e o nome do responsável pela aprovação do projeto da válvula para uso em cilindros de cloro, ou do responsável pela aprovação da variante da válvula para este uso. A documentação do projeto deve permitir a rastreabilidade do processo empregado para sua qualificação, incluindo: a seleção de materiais que atendam aos requisitos dessa norma, ou aqueles listados no Anexo C, sejam novos materiais que foram ensaiados e aprovados; os registros de todos os ensaios de qualificação da válvula para uso em cilindros de cloro, incluindo o nome do executante dos ensaios, os resultados e a avaliação e aprovação da válvula pelo responsável do projeto.

A conformidade dos cabos de aço em equipamentos de içamento

O cabo de aço para elevar carga é importante para as grandes cargas e deve ser fabricado por fios e arames que são enrolados em um torno de núcleo central. Existem os mais diversos tipos de cabo de aço para elevar carga para as mais diversas aplicações.

A instalação do cabo de aço para elevar carga tem que ser feita para trazer maior conforto, comodidade, segurança e suporte que a carga a precisa. Sabendo que cargas são elevadas diariamente é necessário a aplicação do cabo de aço correto para elevar carga.

Assim, antes de adquirir o cabo de aço para elevar carga deve-se verificar o diâmetro do cabo; conferir se o seu comprimento é o ideal; analisar se a sua aplicação é a indicada para a elevação que vai realizar; e analisar o acabamento que é necessário, pois ele pode ser galvanizado, polido ou inox. Outras características são necessárias ser analisadas para que se tenha o cabo de aço para elevar carga ideal para a necessidade, porém independente disso tudo o cabo de aço para elevar carga precisa ter qualidade para que se suporte a carga exigida e o ritmo de utilização que é solicitado.

A NBR ISO 4309 de 03/2022 – Equipamentos de movimentação de carga – Cabos de aço – Cuidados e manutenção, inspeção e descarte estabelece princípios gerais para cuidados, manutenção, inspeção e descarte de cabos de aço em serviço em dispositivos de içamento, como equipamentos de movimentação de carga e guinchos. Além das instruções sobre armazenamento, manuseio, instalação e manutenção, este documento relaciona os critérios de descarte para os cabos usados que estão sujeitos ao enrolamento com muitas camadas, onde a experiência de campo como também ensaios demonstram que a deterioração é significativamente maior nas zonas de cruzamento no tambor do que outras seções do cabo no sistema.

Ela fornece também critérios de descarte aplicáveis cobrindo corrosão e redução do diâmetro, e apresenta um método para avaliar o efeito combinado de deterioração em qualquer posição do cabo. A NBR ISO 4309 é aplicável aos seguintes tipos de equipamento de movimentação de carga, a maioria dos quais são definidos na ISO 4306-1: pórticos de cabo; equipamentos de movimentação de carga em balanço (equipamento de movimentação de carga de coluna, equipamento de movimentação de carga móvel de parede e equipamento de movimentação de carga velocípede); equipamentos de movimentação de carga de convés; equipamentos estacionários de movimentação de carga estacionárias; equipamentos estacionários de movimentação de carga estacionárias com suporte rígido; equipamentos de movimentação de carga flutuante; equipamentos de movimentação de carga móvel; pontes rolantes; pórticos e semipórticos rolantes; equipamentos de movimentação de cargas com pórtico ou com semipórtico; equipamentos de movimentação de carga locomotiva; gruas; equipamentos de movimentação de carga oceânicos, por exemplo, equipamento de movimentação de cargas montado em uma estrutura fixa apoiada no leito marinho ou em uma unidade flutuante sustentada por forças de empuxo.

É aplicável a cabos de equipamentos de movimentação de carga, guinchos e talhas que utilizam gancho, garra, eletroímã e caçamba, assim como para escavação ou empilhamento, podendo ser operados manual, mecânica, elétrica ou hidraulicamente. Também é aplicável em talhas e moitões que utilizam cabos de aço. O uso exclusivo de roldanas sintéticas ou roldanas metálicas com revestimentos sintéticos não é recomendado para cabos enrolados em camada única no tambor, devido à inevitabilidade de rupturas de arame ocorrendo internamente em grande número antes que haja qualquer evidência visível de qualquer ruptura de arame ou sinais de desgaste substancial na parte externa do cabo, nenhum critério de descarte é dado para esta combinação.

Um cabo de aço em um equipamento de movimentação de carga é considerado como um componente descartável, exigindo substituição quando os resultados da inspeção indicam que sua condição atingiu o ponto em que o uso posterior pode ser inseguro. Por isso, deve-se seguir alguns princípios bem estabelecidos, como os detalhados neste documento, juntamente com quaisquer instruções específicas adicionais fornecidas pelo fabricante do equipamento de movimentação de carga ou guincho e/ou pelo fabricante do cabo, convém que este ponto nunca seja excedido.

Quando corretamente aplicados, os critérios de descarte de cabos neste documento visam reter uma margem de segurança adequada. Não os reconhecer pode ser extremamente prejudicial, perigoso e causar danos. Para auxiliar aqueles que são responsáveis pelo cuidado e manutenção, distintos daqueles que são responsáveis pela inspeção e descarte, os procedimentos são convenientemente separados.

Para a manutenção e cuidados, na ausência de quaisquer instruções fornecidas pelo fabricante do equipamento de movimentação de carga em seu manual de operação ou pelo fabricante ou fornecedor do cabo, os princípios gerais descritos a seguir devem ser seguidos. Para a substituição do cabo, a menos que um cabo alternativo tenha sido aprovado pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, apenas um cabo com o comprimento, o diâmetro, a construção, a torção e a resistência (ou seja, carga de ruptura mínima), conforme especificado pelo fabricante do equipamento deve ser instalado no equipamento. Um registro da substituição do cabo deve ser arquivado.

No caso de cabos resistentes à rotação de grande diâmetro, pode ser necessário aplicar meios adicionais para fixar as extremidades do cabo, por exemplo, através da utilização de braçadeiras ou amarrilhos de arames, em especial quando se preparam as amostras de ensaio. Se o comprimento de cabo requerido para uso for removido de uma bobina com cabo de comprimento maior, amarrilhos devem ser aplicados em ambos os lados do ponto de corte com o objetivo de impedir o destorcimento do cabo após o corte.

A figura abaixo é um exemplo de recomendação de aplicação de amarrilho em um cabo de aço de uma camada de pernas, antes do corte. Para cabos resistentes à rotação e cabos de pernas paralelas, múltiplos amarrilhos podem ser necessários. Um método alternativo para cabos de grande diâmetro e cabos resistentes à rotação é apresentado na figura 3 da norma. Os cabos que são apenas ligeiramente pré-formados são mais propensos ao destorcimento após o corte, se o amarrilho for inadequado ou insuficiente.

Deve-se observar que a amarração é às vezes referida como amarrilho. A menos que uma terminação de cabo alternativa tenha sido aprovada pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, somente o mesmo tipo de terminal, conforme especificado pelo fabricante do equipamento no manual de operação, deve ser utilizado para prender um cabo a um tambor, moitão ou ponto de ancoragem na estrutura da máquina. É recomendável fazer um registro-base de inspeção eletromagnética (MRT) antes da instalação ou logo que possível após a instalação.

Para evitar acidentes, o cabo deve ser descarregado com cuidado. As bobinas ou rolos não podem sofrer quedas, nem os cabos podem ser atingidos por ganchos metálicos, garfos de empilhadeiras ou qualquer outro agente externo que possa deformar o cabo. Convém que os cabos sejam armazenados em local arejado, seco e não podem ficar em contato com o piso.

Não convém que os cabos sejam armazenados onde possam ser afetados por agentes químicos, vapor ou outros agentes corrosivos. Se o armazenamento ao ar livre não puder ser evitado, convém que os cabos sejam cobertos para que a umidade não provoque corrosão. Os cabos armazenados devem ser inspecionados periodicamente para detectar quaisquer sinais de deterioração, como corrosão e, se for considerado necessário pela pessoa qualificada, revestido com uma capa de preservação ou lubrificante adequado, compatível com o lubrificante utilizado pelo fabricante do cabo.

Em ambientes quentes, convém que a bobina seja periodicamente rotacionada em meia volta para prevenir a drenagem do lubrificante do cabo. Convém que antes da instalação do cabo, e de preferência no recebimento, o cabo e seu certificado sejam verificados para assegurar que este está de acordo com o especificado no pedido. A carga de ruptura mínima do cabo não pode ser menor do que a especificada pelo fabricante do equipamento de movimentação de carga.

O diâmetro do cabo novo deve ser medido com o cabo livre de tensões e este valor (dm) registrado. Quando um cabo de aço é armazenado por um período de tempo, durante o qual possa ter ocorrido corrosão, pode ser vantajoso realizar inspeção visual e inspeção eletromagnética. Verificar a condição de todos os canais das roldanas e do tambor para assegurar que eles são capazes de receber o diâmetro do cabo novo, que não contêm quaisquer irregularidades, como ondulações ou marcas de cabo, e tem espessura suficiente para suportar a carga com segurança.

Convém que o diâmetro dos canais da roldana esteja entre 5% e 10% maior que o diâmetro nominal do cabo. Para um desempenho ideal, convém que o diâmetro dos canais seja pelo menos 1% maior que o diâmetro real do novo cabo. Ao desenrolar e/ou instalar um cabo, toda a precaução deve ser tomada para evitar a torção ou destorção do cabo. Esta condição pode resultar na formação de laçadas, nós ou dobras, tornando-o impróprio para o uso.

Para evitar que algum destes se desenvolva, o cabo deve ser desenrolado em linha reta com um mínimo de folga permitido. O cabo acondicionado em bobina deve ser desenrolado utilizando uma mesa giratória, em linha reta. Entretanto, quando o comprimento da bobina é curto, a extremidade externa do cabo pode ficar livre e o restante do cabo desenrolado ao longo do solo.

Um cabo nunca pode ser desenrolado retirando as voltas com o rolo ou o flange da bobina posicionado sobre o piso ou pelo rolamento da bobina sobre o piso. Para os comprimentos de cabos fornecidos em bobinas, colocar a bobina de alimentação e sua base de apoio ou suporte, o mais longe possível do equipamento de movimentação de carga ou guincho, a fim de limitar os efeitos da variação do ângulo de enrolamento, evitando assim quaisquer efeitos de torção indesejáveis.

Deve-se proteger o cabo de potenciais fontes de contaminação manuseando-o em superfícies com revestimento adequado (por exemplo, esteira transportadora), em vez de permitir a movimentação direta no solo. Uma bobina girando pode ter uma grande inércia, que nesse caso deve ser controlada por um desenrolamento em uma velocidade baixa e uniforme.

Para bobinas menores isto é conseguido com um freio simples. Bobinas maiores têm inércias significativamente maiores e uma vez que comecem a girar pode ser necessário um dispositivo de frenagem maior. Tanto quanto possível, certificar-se de que o cabo sempre enrole na mesma direção durante a instalação, ou seja, remover o cabo da parte superior bobina de suprimento até a parte superior do tambor no equipamento de movimentação de carga ou guincho (conhecido como de cima para cima), ou desde a parte de baixo da bobina de suprimento até a parte de baixo do tambor no equipamento de movimentação de carga ou guincho (conhecido como de baixo para baixo).

Para a inspeção visual diária, pelo menos o trecho do cabo a ser utilizado para aquele dia específico deve ser observado com o objetivo de detectar sinais de deterioração ou dano mecânico. Isso deve incluir os pontos de fixação do cabo no equipamento de movimentação de carga. O cabo deve também ser verificado para assegurar que ele está corretamente enrolado no tambor e sobre a (s) roldana (s) e não foi deslocado de sua posição normal de trabalho.

Qualquer mudança perceptível na sua condição deve ser registrada e o cabo deve ser examinado por uma pessoa qualificada. Se, em qualquer instante, a condição de trabalho for alterada, tal quando o equipamento de movimentação de carga é deslocado para um novo local e reestabelecido, o cabo deve ser submetido a uma inspeção visual como descrito nesta subseção. O operador do equipamento de movimentação de carga pode ser designado para realizar verificações diárias na medida em que o operador seja suficientemente treinado e considerado competente para realizar essa ação.

Fraude em licitação pública: mais um crime cometido pela atual diretoria da ABNT

Ao informar mentiras aos órgãos públicos, induzindo-os a não fazerem a chamada licitação, para contratação de software para busca e acesso de normas técnicas, dizendo que o produto dela é exclusivo e só tem ele no mercado, a diretoria da Associação das Normas Técnicas (ABNT) comete mais dois crimes objetivos: fraude em licitação e improbidade administrativa. Isso sem falar em concorrência desleal e desvio de finalidade de órgão de utilidade pública. Felizmente quando o poder público fica sabendo dessa irregularidade, rescinde contratos com a ABNT, formalizando essa criminosa prática.
Fraude em licitação pública mais um crime cometido pela atual diretoria da ABNT

Hayrton Rodrigues do Prado Filho

Com o nome de ABNT Coleção, o produto vem sendo comercializado pelo pessoal da ABNT para os órgãos públicos como único produto no mercado, sem concorrente. Isso é mentira (veja justificação da anulação da contratação). Não há como a direção da ABNT não saber que existe concorrente para exatamente o mesmo produto, considerando que a própria ABNT contratou, por quase 11 anos, a empresa que já possuía o produto oferecido.

Com isso, fica claro que a atuação da direção da ABNT, atualmente, se baseia no tripé: não prestam conta para ninguém do dinheiro público recebido por meio de convênios, fazem o diabo para ganhar ilegalmente dinheiro através de uma entidade de utilidade pública que publica normas brasileiras através do trabalho gratuito de normalizadores da sociedade e não cansam de desvirtuar os reais objetivos que a ABNT deve ter: fomentar a observância e o uso das normas técnicas brasileiras, dar publicidade às referidas normas, etc. Isso sem falar nos desmandos que a diretoria comete no âmbito da certificação ABNT, mas isso é um capítulo à parte.

Na nova lei de licitações e contratos administrativos, Lei nº 14.133/2021, o artigo 75 traz a as possibilidades de que o gestor dispõe para dispensar a licitação, seja em razão de valor, seja de acordo com o objeto, seja no caso de licitação deserta ou fracassada. Já o licitante é pessoa física ou jurídica, ou consórcio de pessoas jurídicas, que participa ou manifesta a intenção de participar de processo licitatório, sendo-lhe equiparável, para os fins desta lei, o fornecedor ou o prestador de serviço que, em atendimento à solicitação da administração, oferece proposta.

Apenas em dois casos a licitação não é realizada: na hipótese de ser dispensada e na hipótese de ser inexigível. A licitação dispensada ocorre nos casos em que não é realizada a licitação por razões de interesse público devidamente justificado, mesmo que haja possibilidade de competição entre os fornecedores. O que o pessoal da ABNT está fazendo é enganar os agentes públicos e os induzindo a fazer licitação inexigível que ocorre nos casos em que não existe a possibilidade de competição entre os fornecedores, vez que existe apenas um objeto ou uma pessoa que o forneça.

O gestor público, que decidir pela dispensa de licitação, deverá iniciar o processo com um documento que apresente a necessidade da contratação para que, se for o caso, seja realizado um estudo técnico preliminar para definir a melhor solução para atendimento da necessidade, analisando-se, inclusive, os riscos daquelas soluções possíveis, para, ao final, se indicar qual a solução mais viável a ser contratada. Deve-se entender que o artigo 191, da Lei n º14.133/2021, prevê que, durante os próximos dois anos, a administração poderá optar por licitar ou contratar diretamente de acordo com a nova lei ou de acordo com a antiga legislação ou a Lei nº 8.666/93, a Lei nº 10.520/02, das regras do Regime Diferenciado de Contratação (RDC), constantes na Lei nº 12.462/2011.

Conforme o inciso II, do art. 193, a antiga legislação será revogada, apenas após dois anos da publicação da Lei nº 14.133/2021. Logo, pela literalidade do art. 191, não existe dúvida de interpretação quanto à existência e utilização, durante os próximos dois anos, da antiga legislação e da Lei nº 14.133/2021, seja para procedimentos licitatórios, seja para as situações relativas às dispensas de licitação e inexigibilidade de licitação. Mas, aquele que dispensar ou inexigir licitação fora das hipóteses previstas em lei, ou deixar de observar as formalidades pertinentes à dispensa ou à inexigibilidade, incorre em crime. Este é o mais comum dos crimes de licitação. Possui como sujeito ativo o (s) servidor (es) público (s) responsável (is) pela licitação e/ou terceiro que tenha concorrido para a consumação da ilegalidade e que tenha se beneficiado com esta. A pena é de detenção de 3 (três) a 5 (cinco) anos, e multa.

Deve ser ressaltado que a ABNT, apesar de ser uma entidade privada, tem fins eminentemente públicos. É sem fins lucrativos, foi reconhecida como de utilidade pública pela Lei 4.150 em 1962 como o foro nacional único de normalização, tendo sido reconhecida pelo Conmetro em 1992 pela Resolução de nº.7. Ou seja, esse tipo de conduta não pode ser tolerada.

Enfim, a direção da ABNT com Mario William Esper (sem reputação ilibada) e Ricardo Fragoso (que recebe salário ilegal) possui uma conduta altamente questionável e, sendo assim, a falta de probidade de gestores de entidade de utilidade pública, reconhecida pelo Estado brasileiro por Lei, deve ser investigada pelo poder executivo e, caso comprovado desvio de conduta ou de finalidade, deve ser punida pela justiça na forma das Leis que regem sobre entidades de utilidade pública.

Com a palavra, a Polícia Federal, a Receita Federal, o Ministério Público Federal, o Estado e a sociedade em geral. Deve-se, igualmente, se manifestarem, os membros do Conselho Deliberativo e do Conselho Fiscal da ABNT, os associados da ABNT e os novos membros eleitos para o conselho.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital AdNormas https://revistaadnormas.com.br e membro da Academia Brasileira da Qualidade (ABQ) e editor do blog — https://qualidadeonline.wordpress.com/ — hayrton@hayrtonprado.jor.br

As ilegalidades do novo modelo regulatório do Inmetro (I)

O Inmetro disponibilizou a proposta do seu novo modelo regulatório. Deve-se louvar o empenho da instituição em querer acompanhar e incorporar as inovações e as tecnologias decorrentes da transformação digital na sociedade, em particular a denominada indústria 4.0, nas suas atividades regulatórias. A ideia central do documento é fortalecimento da atividade regulatória assegurando o acompanhamento da indústria e do mercado face às inovações tecnológicas, com um maior engajamento, informação e participação das partes interessadas, incentivando e promovendo as práticas de monitoramento e avaliação dos resultados, objetivando que a atuação regulatória se mantenha adequada à finalidade e relevância pretendidas, e permaneça efetiva e proporcional aos problemas enfrentados. Mas, não precisava propor tantas ilegalidades no texto.

Hayrton Rodrigues do Prado Filho

Uma das muitas ilegalidades inseridas no modelo regulatório é a definição de norma técnica: documento estabelecido por consenso e emitido por um organismo reconhecido, que fornece, para uso comum e repetido, regras, diretrizes ou características para produtos, serviços, bens, pessoas, processos ou métodos de produção, cujo cumprimento não é obrigatório. Pode também tratar de terminologia, símbolos, requisitos de embalagem, marcação ou rotulagem aplicáveis a um produto. Isso é ilegal, pois a própria autarquia Inmetro é obrigada a cumprir as normas técnicas, já que a Lei nº 4.150, de 21 de novembro de 1962, em vigor, instituiu o regime obrigatório de preparo e observância das normas técnicas nos contratos de obras e compras do serviço público de execução direta, concedida, autárquica ou de economia mista, através da Associação Brasileira de Normas Técnicas e dá outras providências. Nos serviços públicos concedidos pelo governo federal, assim como nos de natureza estadual e municipal por ele subvencionados ou executados em regime de convênio, nas obras e serviços executados, dirigidos ou fiscalizados por quaisquer repartições federais ou órgãos paraestatais, em todas as compras de materiais por eles feitas, bem como nos respectivos editais de concorrência, contratos ajustes e pedidos de preços será obrigatória a exigência e aplicação dos requisitos mínimos de qualidade, utilidade, resistência e segurança usualmente chamados de normas técnicas e elaboradas pela Associação Brasileira de Normas Técnicas, nesta lei mencionada pela sua sigla ABNT.

Essa nova proposta de definição de norma técnica, também, contraria o ABNT ISO/IEC GUIA 2:2006 que define a norma como o documento estabelecido por consenso e aprovado por um organismo reconhecido, que fornece, para uso comum e repetitivo, regras, diretrizes ou características para atividades ou seus resultados, visando à obtenção de um grau ótimo de ordenação em um dado contexto. Acrescenta que as normas devem ser baseadas em resultados consolidados da ciência, tecnologia e da experiência acumulada, visando à otimização de benefícios para a comunidade. Já, de acordo com o referido guia, a norma nacional é aquela adotada por um organismo nacional de normalização e colocada à disposição do público e uma norma mandatória é aquela cuja aplicação é obrigatória em virtude de uma lei geral, ou de uma referência exclusiva em um regulamento. Também vai contra uma lei federal, o Código de Defesa do Consumidor que é claro sobre as práticas abusivas: Art. 39. É vedado ao fornecedor de produtos ou serviços, dentre outras práticas abusivas: … VIII – colocar, no mercado de consumo, qualquer produto ou serviço em desacordo com as normas expedidas pelos órgãos oficiais competentes ou, se normas específicas não existirem, pela Associação Brasileira de Normas Técnicas ou outra entidade credenciada pelo Conselho Nacional de Metrologia, Normalização e Qualidade Industrial (Conmetro).

Classificar a norma técnica como de cumprimento não obrigatório, como quer o Inmetro com o apoio explícito do diretor geral da ABNT Ricardo Fragoso, é cuspir ilegalidade para cima de pessoas sérias e comprometidas com qualidade nesse país. Não se pode sob o pretexto da liberdade econômica, destruir o sistema brasileiro de normalização e as garantias mínimas dos consumidores e das empresas que trabalham de forma responsável. O Inmetro deveria ter a preocupação de priorizar a normalização e determinar que as agências do governo priorizassem o cumprimento da legislação brasileira no uso das normas técnicas, desestimulando a elaboração e utilização de regulamentos técnicos nos casos em que as normas oferecem os insumos técnicos necessários. O acesso democrático e o compromisso de cumprimento das normas técnicas nacionais são ainda excelentes argumentos para vendas ao mercado internacional como, também, para regular a importação de produtos que não estejam em conformidade com os requisitos mínimos de segurança, desempenho e padronização com as normas do país importador. É importante observar também que os acidentes de consumo, tão propalado pelo Inmetro, desde que o equipamento não cumpra os princípios de fabricação de acordo com uma norma técnica, são de responsabilidade dos fabricantes, bastando o consumidor acionar os órgãos de defesa do consumidor, a Justiça, ou diretamente o Ministério Público. Isso também vale para um prestador de serviço que não segue as normas brasileiras.

A diretoria do Inmetro precisa entender que a norma técnica brasileira tem a natureza de norma jurídica, de caráter secundário, impositiva de condutas porque fundada em atribuição estatal, sempre que sinalizada para a limitação ou restrição de atividades para o fim de proteção de direitos fundamentais e do desenvolvimento nacional, funções, como já se afirmou, eminentemente estatais. Pode ser equiparada, por força do documento que embasa sua expedição, à lei em sentido material, vez que obriga o seu cumprimento. As NBR que são regras de conduta impositivas são obrigatórias para os setores produtivos e de serviços em geral, tendo em vista que, além de seu fundamento em lei ou atos regulamentares, tem em vista o cumprimento da função estatal de disciplinar o mercado com vistas ao desenvolvimento nacional e à proteção de direitos fundamentais tais como os direitos relativos à vida, à saúde, à segurança, ao meio ambiente etc.

O Inmetro precisa entender que existem duas ABNT: uma, a normalizadora formada por mais 15.000 pessoas ou profissionais que prestam um trabalho gratuito dentro das comissões de estudo, correspondendo aos seus membros, coordenadores e secretários de reuniões, etc. que elaboram, com seu trabalho voluntário, as normas técnicas brasileiras (NBR). E a outra ABNT (carimbadora, veja meus textos sobre essa outra) formada por uma diretoria executiva remunerada (sem transparência) que não presta contas à sociedade (razão de sua existência) e obtêm várias vantagens indevidas ao arrepio das leis que regem as entidades de utilidade pública (sobre isso tratarei em novos textos).

Essa ABNT (carimbadora) cobra preços abusivos de acesso às normas técnicas brasileiras (NBR) e ainda impede a sua disseminação, proibindo, ilegalmente, o compartilhamento gratuito dessas normas, recebe os documentos normativos dos normalizadores e, caso o processo de feitura dos referidos documentos tenha seguido as diretrizes estabelecidas pelo Conmetro, carimba o número da norma. Deve-se ressaltar que é aí que existe a diretoria executiva, a qual estabelece seus próprios salários e custos da entidade carimbadora, os quais, de acordo com a estratégia deles, precisam ser bancados pelos preços das normas.

O Inmetro não deve propagar que a norma técnica brasileira (ABNT NBR) não é de observância obrigatória, muito menos em um documento oficial, pois além de ser uma fake news e uma ilegalidade, como provado acima, só irá beneficiar as empresas inescrupulosas que, para aumentarem seus lucros, irão alegar que não precisam cumprir os requisitos mínimos de desempenho, segurança etc. constantes nas normas, pois o próprio Inmetro não reconhece que são de observância obrigatória. Isso é uma aberração.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital AdNormas https://revistaadnormas.com.br/, membro da Academia Brasileira da Qualidade (ABQ) e editor do blog – https://qualidadeonline.wordpress.com/hayrton@hayrtonprado.jor.br