A gestão de incidentes

A NBR ISO 22320 de 06/2020 – Segurança e resiliência — Gestão de emergências — Diretrizes para gestão de incidentes fornece as diretrizes para a gestão de incidentes, incluindo os princípios que comuniquem o valor e expliquem a finalidade da gestão de incidentes, os componentes básicos da gestão de incidentes, incluindo processo e estrutura, com foco em papéis e responsabilidades, tarefas e gestão de recursos, e o trabalho conjunto por meio de direção e cooperação conjuntas. Este documento é aplicável a qualquer organização envolvida em responder a incidentes de qualquer tipo e escala. É aplicável a qualquer organização com uma estrutura organizacional, bem como a duas ou mais organizações que optem por trabalhar em conjunto enquanto continuam a usar a sua própria estrutura organizacional ou usam uma estrutura organizacional combinada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Por que definir claramente os papéis e responsabilidades de todo o pessoal?

O que é um quadro operacional comum (common operational picture)?

Por que a organização deve estabelecer acordos de cooperação?

Como fazer o desenvolvimento e a implementação de métodos para trabalhar em conjunto?

Nos últimos anos, houve muitos desastres, tanto naturais quanto provocados pelo homem, e outros grandes incidentes, que mostraram a importância da gestão de incidentes para salvar vidas, reduzir danos e prejuízos, e assegurar um nível adequado de continuidade de funções sociais essenciais. Tais funções incluem saúde, telecomunicações, abastecimento de água e alimentos e acesso à eletricidade e combustível. Embora no passado o foco da gestão de incidentes tenha sido nacional, regional ou dentro de organizações individuais, hoje e no futuro há uma necessidade de uma abordagem multinacional e multiorganizacional.

Esta necessidade é motivada por relacionamentos e interdependências entre governos, organizações não governamentais (ONG), organizações da sociedade civil (OSC) e o setor privado internacionalmente. Fatores como aumento da urbanização, dependências e interdependências de infraestruturas críticas, dinâmica socioeconômica, mudança ambiental, doenças animais e humanas, e aumento do movimento de pessoas e bens em todo o mundo aumentaram o potencial de disrupções e desastres que transcendem as fronteiras geográficas e políticas, impactando na capacidade de gestão de incidentes.

Este documento fornece orientação para as organizações melhorarem o tratamento de todos os tipos de incidentes (por exemplo, emergências, crises, disrupções e desastres). As múltiplas atividades de gestão de incidentes geralmente são compartilhadas entre organizações e agências, com o setor privado, organizações regionais e governos, com diferentes níveis de jurisdição. Portanto, é necessário orientar todas as partes envolvidas em como preparar e implementar a gestão de incidentes.

Espera-se que a assistência entre regiões ou fronteiras entre organizações durante a gestão de incidentes seja apropriada às necessidades da população afetada e que seja culturalmente sensível. Portanto, a participação de múltiplas partes interessadas, que foca no envolvimento da comunidade no desenvolvimento e implementação da gestão de incidentes, é desejável, quando apropriado. As organizações envolvidas requerem a capacidade de compartilhar uma abordagem comum entre fronteiras geográficas, políticas e organizacionais.

Este documento é aplicável a qualquer organização responsável pela preparação ou resposta a incidentes nos níveis local, regional, nacional e, possivelmente, internacional, incluindo aqueles que são responsáveis e participam da preparação para incidentes, oferecem orientação e direção na gestão de incidentes, são responsáveis pela comunicação e interação com o público, e realizam pesquisas no campo da gestão de incidentes. As organizações se beneficiam do uso de uma abordagem comum para a gestão de incidentes, por isto permitem um trabalho colaborativo e garantem ações mais coerentes e complementares entre as organizações.

A maioria dos incidentes é de natureza local e é gerenciada nos níveis local, municipal, regional, estadual ou provincial. A gestão de incidentes respeita a primazia da vida humana e da dignidade humana por meio da neutralidade e imparcialidade. A gestão de incidentes requer que todas as pessoas, a qualquer momento, se reportem a apenas um supervisor. A gestão de incidentes requer que as organizações trabalhem em conjunto. A gestão de incidentes considera incidentes naturais e humanos, incluindo aqueles que a organização ainda não enfrentou.

A gestão de incidentes é baseada na gestão de riscos. A gestão de incidentes requer preparação e requer o compartilhamento de informações e perspectivas. Enfatiza a importância da segurança para os respondedores e para os impactados, é flexível (por exemplo, adaptabilidade, escalabilidade e subsidiariedade) e leva em consideração fatores humanos e culturais. Enfatiza a melhoria contínua para aprimorar o desempenho organizacional.

Convém que a gestão de incidentes considere uma combinação de instalações, equipamentos, pessoal, estrutura organizacional, procedimentos e comunicações. A gestão de incidentes tem base no entendimento de que, em todo e qualquer incidente, existem determinadas funções de gestão que convém que sejam executadas, independentemente do número de pessoas disponíveis ou envolvidas na resposta ao incidente. Convém que a organização implemente a gestão de incidentes, incluindo um processo de gestão de incidentes (5.2), e uma estrutura de gestão de incidentes, que identifique papéis e responsabilidades, tarefas e alocação de recursos da gestão de incidentes (5.3).

Convém que a organização documente o processo e a estrutura de gestão de incidentes. O processo de gestão de incidentes tem base em objetivos que são desenvolvidos por meio da coleta e compartilhamento proativo de informações, a fim de avaliar a situação e identificar as contingências. Convém que a organização se engaje em atividades de planejamento como parte da preparação e resposta, que considerem o seguinte: segurança, objetivos da gestão de incidentes, informações sobre a situação, monitoramento e avaliação da situação, função de planejamento, que determina um plano de ação para incidentes, alocação, rastreabilidade e liberação de recursos, comunicações, relacionamento com outras organizações, quadro operacional comum (common operational picture), desmobilização e rescisão, diretrizes de documentação.

O Anexo D fornece recomendações sobre o planejamento de gestão de incidentes. Um plano de ação para incidentes (verbal ou escrito) inclui metas, objetivos, estratégias, táticas, segurança, comunicações e informações sobre gestão de recursos. Desmobilizar significa devolver recursos ao seu uso e status originais. Rescisão significa uma transferência formal das responsabilidades de gestão de incidentes para outra organização. Convém que as decisões tomadas entre as organizações sejam compartilhadas conforme apropriado. O processo de gestão de incidentes se aplica a qualquer escala de incidente (curto/longo prazos) e convém que seja aplicado conforme apropriado a todos os níveis de responsabilidade.

A figura abaixo fornece um exemplo simples do processo de gestão de incidentes. Convém que a organização estabeleça um processo de gestão de incidentes que seja contínuo e inclua as seguintes atividades: observação; coleta, processamento e compartilhamento de informações; avaliação da situação, incluindo previsão; planejamento; tomada de decisão e comunicação das decisões tomadas; implementação de decisões; coleta de feedback e medidas de controle. Não convém que o processo de gestão de incidentes se limite às ações do comandante do incidente, mas que também seja aplicável a todas as pessoas envolvidas na equipe de comando do incidente, em todos os níveis de responsabilidade.

Convém que a organização se esforce para entender outras perspectivas, como dentro e fora da organização, vários cenários de resposta, necessidades diferentes, várias ações necessárias, e diferentes culturas e objetivos organizacionais. Convém que a organização antecipe efeitos em cascata, tome a iniciativa de fazer algo mais cedo, em vez de tardiamente, considere os cronogramas de outras organizações, determine o impacto de diferentes cronogramas, e modifique o seu cronograma adequadamente.

Convém que a organização considere as necessidades e os efeitos a curto e longo prazos. Isto inclui antecipar como o incidente se desenvolverá, quando surgirão necessidades diferentes, e quanto tempo levará para atender a estas necessidades. Convém que a organização tome a iniciativa de avaliar riscos e alinhar a resposta para aumentar a sua eficácia, antecipar como os incidentes podem mudar e usar os recursos de maneira eficaz, tomar decisões sobre várias medidas com antecedência suficiente para que as decisões sejam eficazes quando forem realmente necessárias, gerenciar o incidente depressa, iniciar uma resposta conjunta em vez de esperar que alguém o faça, descobrir quais informações compartilhadas são necessárias e informar e instruir as partes envolvidas, por exemplo, para criar novos recursos.

Convém que a organização implemente uma estrutura de gestão de incidentes para executar as tarefas pertinentes aos objetivos do incidente. Convém que uma estrutura de gestão de incidentes inclua as seguintes funções básicas. Comando: autoridade e controle do incidente; estrutura e responsabilidades dos objetivos da gestão de incidentes; ordenação e liberação de recursos. Planejamento: coleta, avaliação e compartilhamento oportuno de informações de inteligência e sobre incidentes; relatórios de status, incluindo recursos atribuídos e equipe; desenvolvimento e documentação do plano de ação para incidentes; coleta, compartilhamento e documentação de informações.

Operações: objetivos táticos; redução de perigos; proteção de pessoas, propriedades e meio ambiente; controle de incidentes e transição para a fase de recuperação. Logística: suporte e recursos a incidentes; instalações, transporte, suprimentos, manutenção de equipamentos, combustível, serviço de alimentação e serviços médicos para o pessoal do incidente; suporte de comunicações e tecnologia da informação. Finanças e administração: indenizações e reclamações; compras; custos e tempo. (Dependendo da escala de um incidente, uma função financeira e administrativa separada pode não ser necessária.)

A identificação dos bornes de equipamentos

Deve-se ter conhecimento da identificação e marcação dos bornes de equipamentos elétricos, como resistências, fusíveis, relés, contatores, transformadores, máquinas rotativas e, sempre que aplicável, às combinações destes equipamentos (por exemplo, conjuntos), e também é aplicável à identificação das extremidades de certos condutores denominados.

A NBR IEC 60445 de 06/2020 – Princípios básicos e de segurança para as interfaces homem-máquina, marcação e identificação — Identificação dos bornes de equipamentos, das extremidades dos condutores é aplicável à identificação e marcação dos bornes de equipamentos elétricos, como resistências, fusíveis, relés, contatores, transformadores, máquinas rotativas e, sempre que aplicável, às combinações destes equipamentos (por exemplo, conjuntos), e também é aplicável à identificação das extremidades de certos condutores denominados. Ele também fornece as regras gerais para a utilização de certas cores ou caracteres alfanuméricos para identificar os condutores, a fim de evitar ambiguidade e garantir a segurança de funcionamento. Estas cores ou caracteres alfanuméricos destinados aos condutores devem ser aplicados aos cabos ou aos seus condutores isolados, barramentos, equipamentos e instalações elétricas.

Esta publicação básica de segurança é principalmente destinada a ser utilizada pelas Comissões de Estudo quando da elaboração das normas de acordo com os princípios estabelecidos nos Guias IEC 104 e ISO/IEC 51. Esta publicação básica de segurança não é destinada a ser utilizada pelos fabricantes ou pelos organismos de certificação. Uma das responsabilidades de uma Comissão de Estudo é, quando apropriado, utilizar as publicações básicas relacionadas à segurança ao elaborar as suas publicações. Os requisitos desta publicação básica de segurança não serão aplicados, a menos que mencionados em publicações pertinentes.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser marcado um condutor PEN?

Como fazer a identificação por caracteres alfanuméricos?

Como deve ser feita a identificação do elemento simples com dois bornes?

Como deve ser executada a interconexão dos bornes de equipamentos e de certos condutores designados?

No caso em que a identificação dos bornes dos equipamentos e das extremidades de certos condutores denominados é considerada necessária, ela deve ser realizada por um ou mais dos seguintes métodos: a posição física ou relativa dos bornes dos equipamentos ou das extremidades de certos condutores denominados; um código de cores para os bornes dos equipamentos e das extremidades de certos condutores denominados de acordo com a Seção 6; símbolos gráficos de acordo com a IEC 60417. Se símbolos adicionais forem necessários, eles devem ser consistentes com a IEC 60617. Deve-se, ainda, realizar uma anotação alfanumérica de acordo com o sistema descrito na Seção 7.

Para manter a consistência com a documentação e a designação dos bornes de equipamentos, a anotação alfanumérica é recomendada. A identificação dos condutores por cores deve ser conforme os requisitos da Seção 6. A identificação dos condutores por caracteres alfanuméricos deve ser de acordo com os requisitos da Seção 7. É reconhecido que, para os sistemas e as instalações complexas, uma marcação e uma etiquetagem adicionais são utilizadas por outras razões que não a de segurança; ver, por exemplo, a IEC 62491.

A identificação por cor, símbolo gráfico ou anotação alfanumérica de identificação deve estar no, ou próximo do, borne correspondente. Quando vários métodos de identificação forem utilizados, a correlação entre estes métodos deve, sempre que existir risco de confusão, ser esclarecida na documentação associada. Quando nenhuma confusão for possível, as justaposições de uma anotação numérica e de uma anotação alfanumérica podem ser aplicadas.

Os bornes e os condutores utilizados para aterramento são divididos de acordo com a sua finalidade de aterramento em dois conceitos básicos: aterramento de proteção e aterramento funcional. Se um borne ou um condutor estiver de acordo com os requisitos de aterramento de proteção e de aterramento funcional, ele deve ser denominado como borne ou condutor de aterramento de proteção. Se os requisitos relativos ao aterramento de proteção não forem atendidos por um borne ou condutor de aterramento funcional, este não pode ser marcado como um borne ou condutor de aterramento de proteção.

Convém que os requisitos relativos ao aterramento funcional sejam definidos pelo fabricante ou pela Comissão de Estudo do produto em questão e convém que eles sejam especificados na documentação do equipamento. Por exemplo, os requisitos relativos ao gerenciamento de problemas de compatibilidade eletromagnética. Para a identificação dos condutores, as seguintes cores são permitidas: PRETA, MARROM, VERMELHA, LARANJA, AMARELA, VERDE, AZUL, VIOLETA, CINZA, BRANCA, ROSA, TURQUESA. Esta lista de cores tem origem na IEC 60757.

A identificação por cor deve ser utilizada nas extremidades e, de preferência, em todo o comprimento do condutor, seja pela cor da isolação, seja pela cor das marcações, exceto para os condutores nus, onde a identificação por cor deve ser realizada nos pontos de extremidade e de conexão. A identificação por cor ou por marcação não é necessária para os condutores concêntricos de cabos, a blindagem ou a armadura metálica dos cabos, no caso de utilização como condutor de proteção, os condutores nus, quando uma identificação permanente for impossível, os elementos condutores externos utilizados como condutor de proteção, as partes condutivas acessíveis utilizadas como condutor de proteção.

As marcações adicionais, por exemplo, uma marcação alfanumérica, são permitidas, desde que a identificação por cor permaneça sem ambiguidade. As cores VERDE e AMARELA são as únicas permitidas quando nenhuma confusão com o código de cores dos condutores de acordo com o especificado nessa norma. Quando um circuito compreende um condutor de neutro ou de ponto médio identificado por uma cor, a cor utilizada para este fim deve ser a AZUL. Para evitar qualquer confusão com outras cores, convém utilizar cor AZUL não saturada, muitas vezes chamada de “azul-claro”. A cor AZUL não pode ser utilizada para identificar outro condutor quando uma confusão for possível.

Na ausência de um condutor de neutro ou de ponto médio, um condutor identificado pela cor AZUL no interior de linhas elétricas pode ser utilizado para qualquer outra finalidade, exceto como um condutor de proteção. Em caso de utilização de uma identificação por cor, os condutores nus utilizados como os condutores de neutro ou de ponto médio devem ser marcados com uma faixa AZUL com 15 mm a 100 mm de largura em cada unidade ou invólucro, e cada parte acessível, ou colorida de AZUL ao longo de todo o seu comprimento. Na  NBR IEC 60079-11, a cor AZUL é utilizada para marcação por cor de bornes, caixas de bornes, plugues e tomadas de circuito de segurança intrínseca.

Para os condutores de linha nos sistemas de corrente alternada, as cores preferenciais são CINZA, MARROM e PRETA. A sequência dos códigos de cores indicados é alfabética e não indica preferência alguma na ordem das fases ou sentido de rotação. Para os condutores de linha em sistemas de corrente contínua, as cores preferenciais são: a VERMELHA para o condutor de linha positivo, a BRANCA para o condutor de linha negativo.

Para a marcação por cor de um condutor de aterramento funcional, a cor preferencial é a ROSA. A aplicação da cor é necessária somente nas extremidades e nos pontos de conexão. As combinações de duas das cores listadas são permitidas, desde que qualquer risco de confusão seja impossível. Para evitar qualquer confusão, a cor VERDE e a cor AMARELA não podem ser utilizadas nas combinações de cores diferentes da combinação VERDE/AMARELA. A utilização da combinação das cores VERDE/AMARELA é restrita aos casos listados na norma. O condutor de proteção deve ser identificado pela combinação bicolor VERDE E AMARELA. As cores VERDE E AMARELA são a única combinação de cores reconhecida para identificar o condutor de proteção.

A combinação de cores VERDE/AMARELA deve ser de maneira que, ao longo de 15 mm de comprimento do condutor ao qual o código de cor é aplicado, uma destas cores cubra pelo menos 30% e não mais de 70% da superfície do condutor, e a outra cor cubra o resto desta mesma superfície. Se os condutores nus, utilizados como condutores de proteção, forem munidos de um código de cor, eles devem ser coloridos nas cores VERDE/AMARELA, sobre a totalidade do comprimento de cada condutor, ou em cada compartimento ou unidade, ou em cada local acessível. Em caso de utilização de fita adesiva, somente uma fita bicolor VERDE/AMARELA deve ser aplicada.

Quando o condutor de proteção puder ser facilmente identificado por sua forma, sua construção ou sua posição, por exemplo um condutor concêntrico, o código de cor não é necessário em todo o seu comprimento, mas convém que as extremidades ou os locais acessíveis sejam claramente identificados pelo símbolo gráfico IEC 60417-5019 (2006-08) “Terra de proteção”, , ou pela combinação bicolor VERDE E AMARELA ou pela anotação alfanumérica PE. Em caso de utilização de elementos condutores estranhos, como um condutor PE, a identificação por cores não é necessária.

Um condutor PEN, quando for isolado, deve ser marcado por um dos seguintes métodos: cores VERDE E AMARELA em todo o seu comprimento, com, adicionalmente, as marcações de cor AZUL nas extremidades e nos pontos de conexão; ou cor AZUL em todo o seu comprimento, com, adicionalmente, as marcações VERDE E AMARELA nas extremidades e nos pontos de conexão. Convém que o método a ser aplicado em um país seja objeto de uma decisão da Comissão de Estudo e não de uma escolha individual. As marcações AZUIS adicionais na extremidade e nos pontos de conexão podem ser omitidas, desde que uma das duas condições a seguir seja atendida: nos equipamentos elétricos, se os requisitos em questão estiverem incluídos nas normas de produtos específicos ou se forem aplicados em um país; no caso de linhas elétricas, por exemplo, aquelas utilizadas na indústria, se isto for decidido pela Comissão pertinente. Os bornes de equipamento destinados a serem conectados direta ou indiretamente a certos condutores designados, e as extremidades de certos condutores designados devem ser marcados por letras de referência ou pelos símbolos gráficos, ou por ambas as letras de referência e símbolos gráficos, de acordo com a tabela abaixo.

Um condutor PEL, quando for isolado, deve ser marcado nas cores VERDE e AMARELA em todo o seu comprimento, com, adicionalmente, as marcações de cor AZUL em suas extremidades e nos pontos de conexão do condutor PEL. As marcações AZUIS adicionais no ponto de extremidade e nos pontos de conexão podem ser omitidas, desde que uma das duas condições a seguir seja atendida: nos equipamentos elétricos, se os requisitos em questão estiverem incluídos nas normas de produtos específicos ou se forem aplicados em um país; no caso de linhas elétricas, por exemplo, aquelas utilizadas na indústria, se isto for decidido pela Comissão pertinente. Em caso de possível confusão com um condutor PEN ou PEM, a designação alfanumérica deve ser indicada em suas extremidades e nos pontos de conexão.

Um condutor PEM, quando for isolado, deve ser marcado nas cores VERDE e AMARELA em todo o seu comprimento com, adicionalmente, as marcações de cor AZUL nas extremidades e nos pontos de conexão do condutor PEM. As marcações AZUIS adicionais na extremidade e nos pontos de conexão podem ser omitidas, desde que uma das duas condições a seguir seja atendida: nos equipamentos elétricos, se os requisitos em questão estiverem incluídos nas normas de produtos específicos ou se forem aplicados em um país; no caso de linhas elétricas, por exemplo aquelas utilizadas na indústria, se isto for decidido pela comissão pertinente. Em caso de possível confusão com um condutor PEN ou PEL, a designação alfanumérica deve ser indicada nas suas extremidades. Um condutor de ligação de proteção deve ser identificado pela combinação bicolor VERDE E AMARELA.

Se as letras e/ou os números forem utilizados para identificação, as letras devem ser somente as maiúsculas latinas e os números devem ser os algarismos arábicos. É recomendado escolher as letras de referência para os elementos em corrente contínua na primeira parte do alfabeto e as letras de referência para os elementos em corrente alternada na segunda parte. Para evitar confusão com os números “1” e “0”, as letras “I” e “O” não podem ser utilizadas para identificação; os sinais alfanuméricos “+” e “-” podem ser utilizados. Para evitar confusão, os números não relacionados 6 e 9 devem ser sublinhados.

Todos os caracteres alfanuméricos devem contrastar fortemente em relação à cor da isolação. A identificação alfanumérica deve ser claramente legível e durável. Para avaliação da durabilidade, ver a IEC 60227-2. O sistema alfanumérico é aplicável à identificação dos condutores e dos condutores de um grupo de condutores. Os condutores com isolação de cor VERDE/AMARELA somente devem ser identificados como um determinado condutor denominado de acordo com a norma.

As identificações alfanuméricas especificadas em 7.3 não podem ser utilizadas para finalidades diferentes das especificadas. Quando nenhuma confusão for possível, é permitido omitir um ou mais grupos de elementos da anotação alfanumérica completa, estabelecidos nos princípios de marcação seguintes. A marcação dos bornes de equipamentos é (ou convém que seja) baseada nos princípios fornecidos nessa norma. As duas extremidades de um elemento são distinguidas por números de referência consecutivos, sendo o número ímpar inferior ao número par, por exemplo, 1 e 2.

A atenuação passiva de ruído de protetores auditivos

Saiba quais os dois métodos para medir, analisar e relatar a capacidade de atenuação passiva de ruído de protetores auditivos, com colocação pelo ouvinte treinado (Método A) e com colocação pelo ouvinte inexperiente (Método B). 

A NBR 16076 de 05/2020 – Equipamento de proteção individual – Protetores auditivos – Medição de atenuação de ruído com métodos de orelha real especifica dois métodos para medir, analisar e relatar a capacidade de atenuação passiva de ruído de protetores auditivos, com colocação pelo ouvinte treinado (Método A) e com colocação pelo ouvinte inexperiente (Método B). Os métodos consistem em ensaios psicofísicos realizados em grupos de seres humanos para determinar a atenuação de ruído na orelha real no limiar de audição. Os Métodos A e B são correspondentes em todos os aspectos eletroacústicos e psicofísicos, diferindo na escolha do ouvinte, treinamento, procedimento de colocação do protetor auditivo e envolvimento do experimentador.

A seleção do método de ensaio, ouvinte treinado ou colocação pelo ouvinte inexperiente, baseia-se na aplicação pretendida. Esta norma se aplica aos protetores auditivos passivos não dependentes do nível de ruído. Os protetores auditivos ativos ou dependentes de nível de ruído podem ser ensaiados apenas quando os componentes eletrônicos estão desligados. Os dispositivos podem ser utilizados em combinação um com o outro, como protetores auditivos de inserção utilizados em conjunto com protetores auditivos tipo concha ou capacetes com proteção auditiva.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como devem ser realizadas as medições do tamanho do canal auditivo e das dimensões da cabeça?

Qual deve ser o número de ouvintes nos ensaios em protetores auditivos?

Qual deve ser o número de medições de limiar aberto e fechado?

Como deve ser feito o treinamento em colocação de protetores auditivos?

Esta norma descreve os métodos de ensaio de atenuação na orelha real no limiar de audição (REAT) para a medição da atenuação de ruído dos protetores auditivos. Os dados REAT geralmente são reconhecidos por produzir a melhor medida da atenuação de ruído fornecida pelos protetores auditivos passivos e incluem os efeitos da transmissão de ruído por outros caminhos, como os transmitidos por condução ósseas e tecidos.

Os valores de atenuação no limiar auditivo, pelo método de orelha real nas baixas frequências (abaixo de 500 Hz) obtidas por esta norma podem ser falsamente elevados em alguns decibéis, com o erro aumentando à medida que a frequência diminui. Esse resultado acontece devido ao mascaramento dos limiares auditivos ocluídos causados pelo ruído fisiológico durante o ensaio. Os erros são maiores para os protetores auditivos tipo capa de canal, protetores auditivos tipo concha de menor volume e para protetores auditivos do tipo inserção inseridos superficialmente. Os erros são menores para protetores auditivos tipo concha de grandes volumes e protetores auditivos do tipo inserção mais profundamente inseridos.

Os principais fatores que influenciam os valores de atenuação medidos são a seleção, o treinamento e a colocação do protetor auditivo pelo ouvinte durante o ensaio. Por esse motivo, essa norma inclui dois métodos distintos com diferentes abordagens para lidar com esses fatores. O Método A, anteriormente chamado de “colocação supervisionada pelo experimentador” e agora designado como “ouvinte treinado”, descreve algo próximo de um cenário de colocação ideal que pode ser obtida por usuário motivado e proficiente. Esse método permite o treinamento completo e a intervenção do experimentador antes das medições de atenuação.

Entretanto, durante a medição de atenuação, o próprio ouvinte faz a colocação do protetor auditivo por ele próprio, sem assistência do experimentador. O raciocínio é que por permitir o treinamento do ouvinte individualizado e intensivo, imediatamente antes do ouvinte colocar o protetor auditivo, obtém-se valores aproximados da melhor atenuação que pode ser obtida na prática. O motivo de impedir que o experimentador auxilie na colocação do protetor auditivo foi a constatação de que há uma variação nas formas de interpretar a norma e colocar os protetores auditivos, o que pode aumentar a variabilidade de ensaios interlaboratorial.

Até certo ponto, isolar os experimentadores durante a medição de atenuação reduz este problema. Além disso, em uso real, sendo treinado ou não, os trabalhadores e outros usuários realizam a colocação de protetores auditivos sem a assistência de outra pessoa. O Método B, anteriormente denominado “colocação pelo ouvinte” e agora designado como “ colocação pelo ouvinte inexperiente” para claramente indicar a característica-chave do procedimento, pretende aproximar resultados “alcançáveis” para grupos de trabalhadores participantes de programas de conservação auditiva.

Tudo isso porque no procedimento de colocação pelo ouvinte inexperiente a interação do experimentador é limitada e depende muito da habilidade dos ouvintes em ler e interpretar as instruções de colocação, que, por sua vez, são substancialmente afetadas pelas experiências anteriores de uso ou por quaisquer treinamentos recebidos. Por causa disso, é importante selecionar ouvintes com alguma prática e treinamento anterior no uso de protetores auditivos. Caso contrário, o desempenho nos ensaios provavelmente será influenciado por seus preconceitos e nível de habilidade adquirido.

O Método B foi desenvolvido avaliando vários protocolos de ensaio por meio de um estudo-piloto e um estudo de comparação interlaboratorial inicial. Posteriormente, um estudo interlaboratorial adicional foi realizado avaliando seis protetores auditivos em seis laboratórios diferentes, e os resultados levaram aos refinamentos dos métodos apresentados nesta norma. Independentemente do método de ensaio selecionado, ouvintes treinados, ou colocação pelo ouvinte inexperiente, os valores de atenuação serão aplicáveis apenas na medida em que os protetores auditivos que, na prática, são utilizados da mesma maneira que durante o ensaio laboratorial; os protetores auditivos são mantidos, conservados e acondicionados adequadamente; e as características anatômicas da população de usuários reais possuem uma boa correspondência com os ouvintes dos ensaios laboratoriais.

Os usuários de protetores auditivos altamente interessados e/ou motivados podem obter valores de atenuação em campo significativamente superiores aos obtidos pelo Método B, e até mesmo superando os resultados obtidos pelo Método A. Entretanto, para a maioria das populações de usuários ocupacionais, a estimativa obtida pelo Método B proporciona um melhor indicador de avaliação de dados médio de um grupo do que pelo Método A. A validade das estimativas foi aferida ao comparar os valores medidos em laboratório, que utilizaram procedimentos semelhantes ao protocolo de ensaio de colocação pelo ouvinte inexperiente apresentado nesta Norma, com valores obtidos em grupos de usuários derivados de mais de 20 estudos disponíveis.

O Método A produz valores de atenuação média mais elevados e valores de desvio-padrão mais baixos do que o ensaio pelo Método B, com o efeito de serem substancialmente maiores para os protetores auditivos do tipo inserção do que para os do tipo concha devido à maior dificuldade de colocação. Consultar o Anexo A para obter informações sobre como estimar a incerteza desses métodos. Os sinais de ensaio devem ser de ruído rosa ou ruído branco, filtrados em bandas de terço de oitava.

As frequências centrais devem incluir no mínimo 125 Hz, 250 Hz, 500 Hz, 1.000 Hz, 2.000 Hz, 4.000 Hz e 8.000 Hz. Os requisitos do local de ensaio estabelecidos em 4.2.1 a 4.2.4 devem ser atendidos. O nível de pressão sonora medido usando um microfone omnidirecional em seis posições relativas ao ponto de referência, sem o ouvinte e sua cadeira, ± 15 cm nos eixos frontal-traseiro, acima-baixo e esquerdo-direito, deve permanecer dentro de uma faixa de ± 2,5 dB para cada sinal de ensaio no ponto de referência.

A diferença entre os níveis de pressão sonora nas posições esquerda e direita não pode exceder 3 dB. A orientação do microfone deve permanecer a mesma em cada posição de medida. A cadeira do ouvinte deve estar fora, no momento da medição. A direcionalidade do campo sonoro deve ser avaliada no ponto de referência para cada banda de ensaio, com frequências centrais maiores ou iguais a 500 Hz, sem o ouvinte e sua cadeira.

As medições devem ser realizadas com um microfone direcional que exiba, na sua resposta polar de campo livre, em bandas de ensaio de um terço de oitava, as características descritas a seguir. No caso de microfone bidirecional (figure-eight microfone), a medição da incidência de som frontal deve ser pelo menos 10 dB a mais que a incidência de som lateral (90°). No caso de microfone cardioidal a medição da incidência de som frontal deve ser pelo menos 10 dB a mais que a incidência de som por trás (180°).

O campo sonoro pode ser considerado próximo de um campo de incidência aleatória quando o microfone for girado em torno do centro do ponto de referência em 360° em cada um dos três planos perpendiculares definidos pelos eixos frontal-traseiro, acima-baixo e esquerdo-direito, que devem coincidir com o ponto de referência, e o nível de pressão sonora observado em cada banda de frequência e em cada plano permanece dentro de uma variação permitida (tabela abaixo) quando a medição é avaliada separadamente para cada plano. Os níveis de pressão sonora também podem ser obtidos por medições com o microfone em posição fixa, com incrementos de 15° dentro da rotação de 360° em cada plano.

O ruído de fundo deve ser medido com um sistema de instrumentação que atenda aos requisitos da ANSI/ASA S1.4/Parte 1/IEC 61672-1 classe 1 e os filtros devem atender aos requisitos da ANSI/ ASA S1.11/Parte 1/IEC. 61260-1 tipo 1. O ruído de fundo, no ponto de referência, sem o ouvinte, com todos os equipamentos de geração de sinal ligados não pode exceder os níveis de banda de oitava listados na tabela abaixo. Para sistemas com atenuadores analógicos, deve se ajustar o ganho para 20 dB acima dos níveis necessários para induzir a média do limiar aberto de audição do grupo de ouvintes em todas as frequências de ensaio, mas sem o sinal de ensaio presente.

Para sistemas com atenuadores digitais deve estabelecer o ganho para o valor mínimo possível para que o sinal de ensaio seja ativado. O ruído de fundo deve ser medido no mínimo mensalmente durante os horários que ocorrem os ensaios, ou mais vezes caso o local de ensaio não assegure as condições exigidas. Todo sistema de ventilação e iluminação e qualquer outro equipamento que produza ruído próximo ao local do ensaio deve estar ligado na sua condição de operação normal durante os ensaios.

Os níveis máximos de ruído admissíveis na tabela abaixo são baseados em um ouvinte com limiares de audição acima de 0 dB. Se o laboratório desejar utilizar ouvintes com melhor audição (limiar de audição abaixo de 0 dB), os níveis de ruído de fundo devem ser reduzidos proporcionalmente, isto é, se os níveis do limiar de audição forem -10 dB em uma ou mais frequências, os níveis de ruído de fundo também devem ser reduzidos em 10 dB nessas frequências. Caso qualquer ruído inesperado seja ouvido na sala de ensaio durante o ensaio, o ouvinte deve sinalizar ao experimentador para interromper o ensaio. Uma vez que o ruído tenha cessado, o ensaio pode continuar a partir da última frequência de ensaio antes do distúrbio notado.

Os equipamentos de ensaio devem incluir um gerador de ruído, um conjunto de filtros de banda de um terço de oitava, circuitos de controle (botão liga e desliga e atenuadores calibrados), amplificador (es) de potência, caixa (s) acústica (s), e um dispositivo de posicionamento da cabeça. Também é aceitável utilizar um computador para gerar, filtrar e controlar o ruído. Os sinais de ensaio, medidos eletricamente nos terminais da (s) caixa (s) acústica (s), devem consistir em um ruído branco ou rosa em bandas de 1/3 de oitava, cujo espectro tem a curva equivalente a um filtro que atenda às especificações da ANSI/ASA S1.11/Part 1/IEC 61260-1, Classe 1.

O modo de operação para mudança de uma banda para outra deve ser uma função degrau discreta; o modo de troca gradual continuamente ajustável não é aceitável. O equipamento de ensaio deve ser capaz de gerar níveis de pressão sonora no ponto de referência, em qualquer banda de ensaio, que variam de no mínimo 10 dB acima do limiar fechado de audição do ouvinte até 10 dB abaixo do limiar aberto de audição.

Para a maioria dos protetores auditivos, isto é equivalente a um intervalo de 60 dB que se inicia em 10 dB abaixo do limiar de audição aberto. O nível de 10 dB abaixo do limiar de audição aberto pode ser calculado baseado na calibração elétrica. Quando o equipamento de ensaio gera sinais em bandas de um terço de oitava no ponto de referência, a níveis de pressão sonora conformes com os níveis máximos especificados em 4.3.2, os níveis de pressão sonora em bandas de um terço de oitava devem ser de pelo menos 40 dB abaixo do nível máximo a partir de uma oitava abaixo da frequência de ensaio até 31,5 Hz, e a partir de uma oitava acima da frequência de ensaio até 16 kHz.

Durante o ensaio, os sons devem ser reproduzidos sem nenhuma interferência de ruído audível. Os atenuadores devem ter uma faixa de ajuste de no mínimo 90 dB para cada sinal de ensaio, com um passo ≤ 3 dB. A diferença na configuração de saída entre dois atenuadores, o sinal de ensaio medido em uma única banda de um terço de oitava (Ver 4.1), não pode ser maior que a diferença indicada em mais de 2 dB na faixa total do atenuador e não mais de 1 dB em qualquer faixa intervalada de 80 dB.

As correções para o desvio da linearidade devem ser aplicadas aos dados quando este requisito não for atendido. Sempre que possível, este ensaio deve ser realizado acusticamente com um sinal reproduzido em todos os canais simultaneamente, para que a linearidade possa ser medida em condições próximas das do ensaio real e de modo a incluir todas as partes do sistema de medição potencialmente não lineares. Quando a relação entre o nível de pressão sonora medido acusticamente e o ruído de fundo for inferior a 20 dB, que pode ocorrer para os sinais de ensaio de nível mais baixo, a linearidade da tensão do sinal deve ser medida nos terminais da (s) caixa (s) acústica (s) usando sinais de ensaios de tons puros ou de banda de um terço de oitava.

Para assegurar que a resposta de frequência do sistema permaneça constante em sua faixa dinâmica, as bandas-padrão de ensaio em um terço de oitava (Ver 4.1) ou um sinal de ruído rosa de 80 Hz a 10 kHz devem ser usados como estímulo de ensaio para avaliar a faixa utilizável do sistema a partir dos níveis máximos que o sistema pode reproduzir até o nível de ruído de fundo com decrementos de 10 dB. A família de curvas de resposta de frequência geradas não pode demonstrar desvios de linearidade superiores a 2 dB para qualquer uma das frequências de ensaio de banda de um terço de oitava.

Sinais de ensaio devem ser pulsados entre 2 vezes e 2,5 vezes por segundo, com uma taxa de 50% do ciclo e sem ruídos audíveis ou outros transientes. Quando se excita o sistema com tons puros nas frequências centrais de ensaio, a duração do estado em que o sinal é considerado ligado (tempo que o sinal permanece dentro de 1 dB do seu nível máximo) deve ser maior que 150 ms, e a saída durante o estado em que o sinal é considerado desligado deve ser de no mínimo 20 dB inferior do nível máximo, medido eletricamente nos terminais da(s) caixa(s) acústica(s).

O ruído de ajuste deve ser um ruído aleatório em banda larga cujo nível de pressão sonora no ponto de referência é de aproximadamente 70 dB (valor de referência 20 μPa), ponderado na escala A. Um maior nível de ruído de ajuste pode ser utilizado para protetores auditivos ou sistemas que possuam alta atenuação.

IEC 60050-426: os termos relacionados com as atmosferas explosivas

Essa norma internacional, editada pela (IEC) em 2020, fornece os termos especificamente relevantes para as atmosferas explosivas. Esta nova edição analisa e complementa a anterior. Essa terminologia é consistente com a terminologia desenvolvida nas outras partes especializadas do IEV. Possui o status de um padrão horizontal, de acordo com o IEC Guide 108.

A IEC 60050-426:2020 – International Electrotechnical Vocabulary (IEV) – Part 426: Explosive atmospheres fornece os termos especificamente relevantes para as atmosferas explosivas. Esta nova edição analisa e complementa a anterior. Essa terminologia é consistente com a terminologia desenvolvida nas outras partes especializadas do IEV. Possui o status de um padrão horizontal, de acordo com o IEC Guide 108 que define as regras para lidar com funções horizontais e publicações horizontais.

Este guia 108 deve ser usado em conjunto com as diretivas ISO/IEC e com os guias específicos do aspecto. O seu conceito fundamental é o de uma publicação horizontal é que é uma publicação internacional (não um TS ou um PAS) que é amplamente aplicável e deve ser usada por todos os comitês relevantes e que passou por um processo de aprovação aprimorado, conforme descrito neste documento.

Conteúdo da IEC 60050-426

PREFÁCIO………………….. II

INTRODUÇÃO…………… IV

1 Escopo……………………. 1

2 Referências normativas… ….. 1

3 Termos e definições…… …… 1

Seção 426-01 – Termos gerais………… 3

Seção 426-02 – Fenômenos físicos e químicos….. 17

Seção 426-03 – Áreas e zonas……………………… 37

Seção 426-04 – Aparelhos elétricos (geral)…….. 49

Seção 426-06 – Gabinete à prova de chama “d”…………….. 89

Seção 426-07 – Enchimento em pó “q”…………….. 96

Seção 426-08 – Maior segurança “e”……………….. 98

Seção 426-09 – Pressurização “p”……………… 110

Seção 426-10 – Imersão em óleo “o”…………… 123

Seção 426-11 – Elétrica intrinsecamente segura e associada intrinsecamente segura do aparelho “i” ………… 126

Seção 426-12 – Encapsulamento “m”……………… 150

Seção 426-13 – Tipo de proteção “n” …………… 154

Seção 426-14 – Inspeção e manutenção …………… 163

Seção 426-15 – Reparo e revisão ………………… 169

Seção 426-16 – Proteção por invólucro (poeira) “t” …….. 178

Seção 426-20 – Rastrear aquecimento……………. 180

Seção 426-21 – Instalações em atmosferas explosivas….. 207

Seção 426-22 – Luzes……………….. … 209

Seção 426-23 – Radiação óptica em atmosferas explosivas…11

Seção 426-24 – Detecção de gás combustível.. 221

Seção 426-25 – Eletrostática……………………. 261

Seção 426-26 – Proteção especial “s”………………….. 273

Seção 426-27 – Atmosferas explosivas – Aplicação de sistemas de qualidade……….. 275

Seção 426-28 – Equipamento não elétrico (geral)………….. 280

Seção 426-29 – Equipamento não elétrico – Mineração…… 293

ÍNDICE…………. ……………………….. 295

A IEC 60050 – International Electrotechnical Vocabulary é um vocabulário multilíngue de uso geral que abrange o campo da eletrotecnologia, eletrônica e telecomunicações (disponível em http://www.electropedia.org). Compreende cerca de 22 000 entradas terminológicas, cada uma correspondendo a um conceito. Essas entradas terminológicas são distribuídas entre cerca de 90 partes, cada parte correspondente a um determinado campo. EXEMPLO: Parte 161 (IEC 60050-161): Compatibilidade eletromagnética; Parte 411 (IEC 60050-411): Máquinas rotativas.

As entradas terminológicas seguem um esquema/classificação hierárquica parte/seção/conceito; dentro das seções, as entradas terminológicas são organizadas em uma ordem sistemática. Os termos e definições (e possivelmente representações não verbais, exemplos, notas para entrada e fontes) nas entradas são dados em dois ou mais dos três idiomas da IEC, que são francês, inglês e russo (principais línguas do IEV).

Em cada entrada terminológica, os termos são também fornecidos em vários idiomas adicionais do IEV [árabe (ar), tcheco (cs), alemão (de), espanhol (es), finlandês (fi), italiano (it), japonês (ja), coreano (ko), norueguês [Bokmål (nb) e Nynorsk (nn)], polonês (pl), português (pt), esloveno (sl), sérvio (sr), sueco (sv) e chinês (zh) )]. As informações sobre o IEV e a redação e apresentação das entradas terminológicas são fornecidas no suplemento IEC das diretivas ISO/IEC, anexo SK. O texto a seguir constitui um resumo dessas regras.

Organização de uma entrada terminológica

Cada uma das entradas terminológicas corresponde a um conceito e compreende: um número IEV, possivelmente um símbolo de letra para a quantidade ou unidade e, em seguida, para os principais idiomas IEV presentes na parte: o termo que designa o conceito, chamado termo preferido , possivelmente acompanhada de sinônimos e abreviações, a definição do conceito, possivelmente representações não verbais, exemplos e notas de entrada, possivelmente a fonte e, finalmente, para os idiomas adicionais do IEV, apenas os termos.

número da peça: 3 dígitos, número da seção: 2 dígitos, número da entrada: sequência de dígitos decimais nos quais os zeros à esquerda são permitidos, mas redundantes (por exemplo, 1 a 113, 01 a 99, 001 a 127).

EXEMPLO 845-27-003: Símbolos de letras para quantidades e unidades. Esses símbolos, que são independentes do idioma, são fornecidos em uma linha separada após o número IEV.

EXEMPLO: 131-12-04 resistência R Termo e sinônimos preferidos. O termo preferido é o termo que encabeça uma entrada terminológica em um determinado idioma; pode ser seguido por sinônimos. É impresso em negrito.

Sinônimos: os sinônimos são impressos em linhas separadas sob o termo preferido: sinônimos preferidos são impressos em negrito, sinônimos admitidos e obsoletos são impressos na fonte lightface. Sinônimos preteridos são prefixados pelo texto “DEPRECATED: Ausência de um termo apropriado: quando não existe um termo apropriado em um determinado idioma, o termo preferido é substituído por cinco pontos, da seguinte forma: “…..” (e é claro que não há sinônimos).

Atributos

Cada termo (e sinônimo) pode ser seguido por atributos que fornecem informações adicionais e impressos em lightface na mesma linha do termo correspondente, seguindo esse termo. EXEMPLO: uso específico do termo: linha de transmissão, <em sistemas de energia elétrica> variante nacional: lift, GB. informação gramatical: quantizar, verbo transitório, substantivo AC, adj. Fonte.

Em alguns casos, foi necessário incluir em uma parte do IEV um conceito retirado de outra parte do IEV ou de outro documento de terminologia oficial (ISO/IEC Guide 99, ISO/IEC 2382, etc.), com ou sem modificação para a definição (e possivelmente para o prazo).

Isso é indicado pela menção desta fonte, impressa em face da luz e colocada no final da entrada terminológica em cada uma das principais línguas IEV presentes. EXEMPLO FONTE: IEC 60050-131: 2002, 131-03-13, Termos modificados em outros idiomas IEV. Esses termos são colocados seguindo as entradas terminológicas nos principais idiomas do IEV, em linhas separadas (uma única linha para cada idioma), precedidas pelo código alfa-2 para o idioma definido na ISO 639-1 e na ordem alfabética deste código.

A segurança das lingas de cabos de fibra para operação de içamento

Os pontos de contato da linga ou a linga como um todo podem ser cobertos por uma capa protetora/manga. A capa protetora/manga não foi projetada para suportar a carga, uma vez que se destina apenas à proteção e contenção da alma.

A NBR ISO 18264 de 03/2020 – Lingas têxteis – Lingas de cabos de fibra para operação de içamento de utilização geral – Polietileno de alto módulo (HMPE) especifica os requisitos relacionados à segurança, incluindo métodos de ensaio e de determinação da carga máxima de trabalho (rating) das lingas com construções olhal-olhal e laço sem fim com uma (1), duas (2), três (3) ou quatro (4) pernas (com ou sem acessórios). Estas pernas de lingas são confeccionadas a partir de cabos trançados de oito pernas (tipo L), cabos trançados de 12 pernas (tipo T) e cabo com capa (tipo C), de acordo com a NBR ISO 10325. Alternativamente, outras construções de cabos torcidos e trançados diferentes da NBR ISO 10325, porém ensaiadas de acordo NBR ISO 2307, podem ser utilizadas.

Essa norma é aplicável às construções de cabos confeccionadas a partir de fibras de polietileno de alto módulo [HMPE, também conhecidas como polietileno de ultraalto peso molecular (UHMWPE)], com número de referência mínimo de 12 e máximo de 72, apesar de não haver uma ligação direta entre os números de referências de cabos e o tipo das operações de içamento, tanto em operações de içamento de utilização geral como operações de içamento especiais. Os pontos de contato da linga ou a linga como um todo podem ser cobertos por uma capa protetora/manga. A capa protetora/manga não foi projetada para suportar a carga, uma vez que se destina apenas à proteção e contenção da alma. O termo capa protetora, em inglês protective cover, é também conhecido como jacket.

As lingas de cabo de fibras cobertas por esta norma são apenas para operações de içamento para utilização geral, isto é, quando utilizadas para içar objetos, materiais ou bens, que não requeiram desvio dos requisitos, fatores de segurança, também referente a fatores de projeto ou carga máxima de trabalho especificada. Operações de içamento que não estão cobertas por esta norma incluem o içamento de pessoas; de materiais potencialmente perigosos, como metais derretidos e ácidos, chapas de vidro, materiais radioativos, reatores nucleares e operações de içamento especiais. Essa norma trata de requisitos técnicos a fim de minimizar os perigos listados na Seção 4, que podem surgir durante a utilização das lingas de cabos de fibra, quando realizados de acordo com as instruções e especificações dadas pelo fabricante, seu representante autorizado e/ou pessoa qualificada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os fatores de segurança (FS) regionais para pernas de linga de cabo de fibra?

Quais são as equações para redução da carga máxima de trabalho (CMT) de uma perna de linga?

Qual o procedimento básico para ensaio de tipo/verificação da carga de ruptura mínima (CRM)?

Qual deve ser o ensaio de tipo para verificar a interação de uma perna de linga com acessórios?

O desengate por acidente de uma carga suspensa ou o desengate de uma carga suspensa devido à falha de um componente coloca sob risco, diretamente ou indiretamente, a segurança e a saúde das pessoas que se encontram na zona de perigo. A fim de proporcionar a resistência e a durabilidade necessárias dos acessórios de içamento, esta norma especifica requisitos para o projeto, a fabricação, o ensaio, a utilização e a manutenção, para assegurar que os níveis especificados de desempenho sejam atingidos.

A resistência/durabilidade não é identificada como risco quando as lingas de cabo de fibra são projetadas e fabricadas corretamente, compreendendo com fibras de HMPE de alta tenacidade, tendo os níveis especificados de desempenho, de acordo com esta norma, se adequadamente utilizadas e inspecionadas para operações de içamento de utilização geral. Como a falha pode ser causada por sobrecarga, ou seleção incorreta da carga máxima de trabalho (CMT) e especificações dos acessórios de içamento, esta norma também fornece requisitos para a marcação e a declaração do fabricante. Os aspectos de seleção e de utilização segura associados com boa prática são fornecidos no Anexo A e no Anexo B.

A tabela abaixo lista perigos, citados na NBR ISO 12100:2013, conforme são tratados nesta norma, que requerem ação para reduzir estes perigos identificados como sendo específicos e significativos para lingas de cabo de fibra de HMPE. É conhecido que as fibras de HMPE são suscetíveis à fluência, assim como a maioria das fibras sintéticas, que, sob certas condições, pode ocasionar uma ruptura. Sob carregamento constante, fibras e cabos de HMPE mostram um comportamento de deformação irreversível (fluência) que é fortemente dependente da carga e da temperatura, assim como da especificação da fibra de HMPE.

As fibras de HMPE diferentes apresentam diferentes comportamentos de fluência sob condições idênticas. Dependendo das condições às quais as lingas são destinadas, o usuário deve consultar o fabricante de lingas a fim de selecionar o projeto apropriado.

Os materiais de cabos de fibra abrangidos por esta Norma para a utilização de conjuntos de lingas são fibras de Polietileno de Alto Módulo (HMPE) de acordo com o definido pela ISO 2076. As construções de cabos de HMPE abrangidos por esta norma são as seguintes: cabos trançados de 8 pernas (tipo L), cabos trançados de 12 pernas (tipo T) e construções de cabos com capa (tipo C) fabricados e ensaiados de acordo com as NBR ISO 2307 e NBR ISO 10325; construções de cabos trançados e torcidos não cobertos pela  NBR ISO 10325, fabricadas e ensaiadas de acordo com a NBR ISO 2307.

Os acabamentos e revestimentos não podem prejudicar o desempenho da perna de linga. Um óleo de encimagem da fibra é normalmente aplicado nas fibras dos filamentos individuais depois da extrusão, mas antes dos processos de bobinagem ou durante a torção ou acoplamento. Um revestimento pode ser aplicado durante a produção do cabo ou da linga ou, posteriormente na linga pronta em uma etapa separada.

Os revestimentos podem ser aplicados a fim de melhorar o desempenho em quatro áreas principais: o aprimoramento estrutural como, mas não limitado a resistência (variabilidade), rigidez da forma, proteção ambiental (por exemplo, produtos químicos) e escorregamento da capa; otimização de costura (como na fricção); fadiga/abrasão (como, mas não limitado a, fadiga de tração e fadiga de dobramento); aditivos funcionais (como, mas não limitado a, cor, resistência a raios UV, retardamento de fogo e aumento da aderência). Partes diferentes da perna de linga podem requerer diferentes propriedades friccionais e características de revestimento.

Quando aplicadas em perna (s) de linga, capas ou revestimentos de proteção, cobrindo o cabo de fibra parcialmente ou integralmente, as capas devem fornecer proteção apropriada contra abrasão e corte durante o armazenamento, manuseio e utilização pernas de lingas/conjunto de lingas durante a operação de içamento. As extremidades da capa devem ser acabadas de forma que não possam se desfazer, nem prejudicar o desempenho do cabo de fibra que suporta a carga da linga.

O (s) tipo (s) de material (is) de fibra utilizado (s) na capa dependem dos requisitos de desempenho e dos riscos em potencial (abrasão, corte, perfuração, exposição a produtos químicos etc.) a serem mitigados. Os componentes mecânicos, como sapatilhos, manilhas, pinos, acessórios e anéis de carga, utilizados como partes da construção da linga de cabo de fibra devem ser selecionados de modo que sejam compatíveis com a perna da linga de cabo de fibra, que atendam aos requisitos e que não prejudiquem o desempenho da perna de linga.

A fabricação da perna de linga, incluindo desvios de métodos de fabricação, deve ser verificada e documentada por um fabricante de linga de acordo com esta norma. Pernas de linga, utilizadas na montagem de lingas de múltiplas pernas, devem ser construídas de forma que todos os componentes correspondentes sejam idênticos quanto à construção, tamanho, material, acessórios e anéis.

A costura é o método utilizado comumente para fabricar pernas de lingas olhal-olhal ou laço sem fim. Todas as costuras devem ser feitas por um profissional de confecção de emenda treinado e qualificado e de acordo com as instruções de costura fornecidas pelo fabricante de lingas, seu representante autorizado ou pessoa qualificada. Amostras destas costuras devem ter sido fabricadas previamente de acordo com os requisitos da aplicação e devem ter sido verificadas de maneira eficaz de acordo com ensaios da Seção 7.

Adicionalmente, o seguinte deve ser observado: em uma construção olhal-olhal típica, nenhuma outra costura além daquelas necessárias para criar um olhal devem ser permitidas; uma perna de linga de laço sem fim deve, preferencialmente, ter apenas uma costura; onde as partes salientes das pernas em uma costura de uma linga são contidas, por exemplo, mediante amarração, colagem ou ao se passar uma fita para melhorar a aparência da costura, este acabamento não pode afetar o desempenho da costura; pernas de lingas olhal-olhal devem ter um comprimento mínimo intacto do cabo de dez vezes o número de referência do cabo entre as extremidades das costuras; desvios devem ser verificados e documentados de acordo com a Seção 7 desta norma; nós ou grampos não podem ser utilizados para fabricar lingas; se sapatilhos não tiverem orelhas para prevenir uma rotação, devem ser amarrados ao cabo.

Os sapatilhos devem ser utilizados em lingas sempre que requerido e instalados de uma maneira que impeça o sapatilho de girar dentro do olhal ou de sair do olhal. A metodologia de costura para qualquer perna de linga é para ser definida e documentada pelo fabricante da linga. Como regra de projeto, o comprimento interno mínimo (LOLHAL) de um olhal sem sapatilho para uma perna de linga olhal-olhal, medido com uma fita de aço ou régua medida em incrementos de 1 mm, é dado a seguir. Desvios devem ser documentados e verificados de acordo com a Seção 7.

Para os propósitos de verificação da qualidade de uma perna de linga de cabo de fibra de HMPE, é necessário prestar atenção para a determinação da carga de ruptura e do comprimento efetivo de trabalho, na verificação da (s) costura (s) e na carga de prova. Estes aspectos são descritos nesta subseção e representam apenas os requisitos mínimos quanto ao ensaio de tração. O fabricante de linga pode decidir fazer qualquer ensaio adicional, ou ser solicitado a fazer, e deve fornecer uma documentação correspondente.

Todo ensaio de carga e inspeção deve ser feito utilizando-se uma máquina de ensaio de tração de acordo com a NBR NM ISO 7500-1, classe 1, e, onde aplicável, uma fita de aço ou régua graduada com incrementos de 1 mm. O ensaio de carga e inspeção do comprimento efetivo de trabalho, de acordo com o descrito em 7.3 a 7.5, deve ser realizado de acordo com a NBR ISO 2307.

No caso de as pernas de lingas serem modificadas, como mudanças de projeto ou de matéria-prima, é necessário prestar atenção para o descrito em 7.5. Durante o ensaio de carga, uma quantidade de energia considerável é armazenada no cabo sob tração. Se a amostra romper, esta energia será, repentinamente, liberada. Convém que precauções apropriadas sejam tomadas, para de garantir a segurança das pessoas na zona de perigo. Todo ensaio e inspeção deve ser feito por pessoa qualificada.

Os ensaios de tipo devem demonstrar a carga de ruptura mínima (CRM) certificada de pernas de lingas fabricadas de acordo com os requisitos estabelecidos nesta norma para cada fabricante. Uma perna de linga é caracterizada pelo seu projeto específico, especificação e tipo da matéria-prima, número de referência do cabo, método de fabricação (incluindo revestimento, costura, acabamento) e os acessórios conectados a ela. Pernas de lingas que se diferenciam em um desses aspectos devem passar por um ensaio de tipo separadamente.

Qualquer mudança de projeto, especificação e tipo da matéria-prima, método de fabricação e/ou em qualquer dimensão fora das tolerâncias normais de fabricação que possa gerar modificação das propriedades mecânicas requer que os ensaios de tipo especificados nesta subseção sejam realizados na perna de linga modificada. Todas as pernas de linga a serem ensaiadas devem estar de acordo com todos os outros requisitos desta norma. Todo ensaio de carga e inspeção deve ser realizado utilizando-se uma máquina de ensaio de tração em conformidade com a NBR NM ISO 7500-1, classe 1. Ao se ensaiar um laço sem fim, a costura deve ser posicionada a meio comprimento entre os dois pontos de apoio.

O ensaio de tipo deve ser válido por no máximo cinco anos. Como os resultados do ensaio de tipo e de fabricação de conjuntos de lingas, de acordo com 7.3 a 7.5, também dependem da DHW/dCABO e de outras condições de ensaio, o fabricante da linga, ou seu representante autorizado, deve garantir que um DHW/dCABO consistente e de outras condições de ensaio sejam aplicados. Uma mudança de DHW/dCABO e outras condições de ensaio durante o ensaio de tipo e de fabricação de conjuntos de lingas devem ser aliadas à documentação correspondente.

Os equipamentos para emergências no transporte terrestre de produtos perigosos

Deve-se dispor de um conjunto mínimo de equipamentos para situações de emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual (EPI), a ser utilizado pelo condutor e pelos auxiliares envolvidos (se houver) no transporte nas ações iniciais, equipamentos para sinalização da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para carga.

A NBR 9735 de 03/2020 – Conjunto de equipamentos para emergências no transporte terrestre de produtos perigosos estabelece o conjunto mínimo de equipamentos para situações de emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual (EPI), a ser utilizado pelo condutor e pelos auxiliares envolvidos (se houver) no transporte nas ações iniciais, equipamentos para sinalização da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para carga. Não é aplicável aos equipamentos de proteção individual exigidos para as operações de manuseio, carga, descarga e transbordo, bem como aos equipamentos de proteção para o atendimento emergencial a serem utilizados pelas equipes de emergência pública ou privada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as exigências para os extintores de incêndio no transporte rodoviário?

Qual é o agente extintor e capacidade extintora?

Qual deve ser o conjunto de equipamentos para situações de emergência para o transporte ferroviário?

Para o transporte ferroviário, quais os tipos de extintores e capacidade extintora mínima?

Essa norma teve como base os conhecimentos e a consulta realizada no mercado, porém se sugere que os fabricantes ou importadores do produto perigoso para o transporte terrestre verifiquem se o conjunto de equipamento de proteção individual (EPI) mínimo necessário à proteção do condutor e auxiliares, para avaliar a emergência (avarias no equipamento de transporte, veículo e embalagens) e as ações iniciais, bem como o extintor de incêndio são os indicados nesta norma. Caso estes equipamentos sejam inadequados ou insuficientes para o fim a que destina esta norma, qualquer parte interessada pode solicitar uma revisão para reavaliação, inclusive do grupo do EPI e/ou do extintor.

O transportador deve fornecer o conjunto de equipamentos de proteção individual e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em condições de uso e funcionamento, além de propiciar o treinamento adequado ao condutor e aos auxiliares (se houver) envolvidos no transporte, sobre o uso, guarda e conservação destes equipamentos. Cabe ao expedidor fornecer o conjunto de equipamentos de proteção individual e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em condições de uso e funcionamento, juntamente com as devidas instruções para sua utilização, caso o transportador não os possua.

As condições de uso não implicam necessariamente em equipamentos novos e sem uso. Para a realização do treinamento, o transportador deve atender às orientações dos fabricantes do produto perigoso e do EPI. Para efetuar a avaliação da emergência e ações iniciais, o condutor e os auxiliares (se houver) devem utilizar o EPI indicado nesta norma, além do traje mínimo obrigatório, que é composto por calça comprida, camisa ou camiseta, com mangas curtas ou compridas, e calçados fechados.

As ações inicias do condutor estão discriminadas na NBR 14064, A.1. O traje mínimo obrigatório não é considerado EPI, portanto não necessita atender ao descrito abaixo. Durante o transporte, o condutor e os auxiliares (se houver) devem utilizar o traje mínimo obrigatório. Recomenda-se o uso de vestimenta com material refletivo para o condutor e auxiliares (se houver) envolvidos no transporte realizado no período noturno (do pôr do sol ao amanhecer).

Todo o EPI deve atender à legislação vigente. Para fins de utilização do EPI, desde que adquirido dentro do prazo de validade do CA, devem ser observados a vida útil indicada pelo fabricante, de acordo com as características dos materiais usados na sua composição, o uso ao qual se destina, as limitações de utilização, as condições de armazenamento e a própria utilização. A observação desta validade de uso é do empregador que fornece o EPI aos seus trabalhadores.

Os EPI devem estar em condições de uso, não comprometendo a função do EPI, e acondicionados na cabine do veículo ou do caminhão-trator. No veículo (simples ou combinado), deve haver conjuntos de EPI para todas as pessoas envolvidas (condutor e auxiliares) no transporte. O filtro do equipamento de proteção respiratória deve ser substituído conforme especificação do fabricante (saturação pelo uso ou esgotamento da vida útil) ou em caso de danos que comprometam a eficácia do equipamento.

Os filtros podem estar lacrados e não acoplados às peças faciais inteiras ou às peças semifaciais durante o transporte, devendo o condutor e os auxiliares ter sido treinados para realizarem o devido acoplamento destes filtros. Os tipos de filtros químicos citados nesta norma são: amônia – indicada por NH3; dióxido de enxofre – indicado por SO2; gases ácidos – indicados por GA; monóxido de carbono – indicado por CO; vapores orgânicos – indicados por VO; polivalente ou multigases (destinado à retenção simultânea das substâncias citadas.

Podem ser utilizados equipamentos de proteção respiratória com filtros polivalentes (PV) em substituição ao filtro especificado para cada grupo, exceto no caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono e chumbo tetraetila. Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes onde é exigido o filtro, podem ser utilizados filtros polivalentes (PV) em substituição aos filtros especificados para os grupos, exceto para o caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono (nº ONU 1016) e chumbo tetraetila (nº ONU 1649).

Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes, prevalece o grupo do EPI de maior proteção, por exemplo, a peça facial inteira prevalece sobre a peça semifacial e/ou óculos de segurança tipo ampla visão. Para o transporte de produtos da classe de risco 7 (material radioativo), deve ser adotado o EPI previsto no grupo 11, conforme 4.2.12-k), além do previsto pela legislação vigente. Para os produtos de nºs ONU 2908, 2909, 2910 e 2911 (volumes exceptivos), não é exigido portar EPI.

Para o transporte de produtos da classe de risco 1 (explosivos), deve ser adotado o EPI previsto no grupo 10, além do previsto pelo órgão governamental. O Ministério da Defesa também regulamenta o EPI para transporte de produtos da classe de risco 1.

Os produtos perigosos relacionados pelos nºs ONU e os grupos de EPI correspondentes estão listados no Anexo A. A composição dos conjuntos de equipamento de proteção deve ser a descrita a seguir. O grupo 1: capacete de segurança; luvas de segurança de material compatível com o(s) produto(s) transportado(s); óculos de segurança tipo ampla visão. O grupo 2: capacete de segurança; luvas de segurança de material compatível com o(s) produto(s) transportado(s); peça facial inteira com filtro VO/GA combinado com filtro mecânico.

O grupo 3: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro NH3. O grupo 4: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro CO combinado com filtro mecânico.

O grupo 5: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro SO2 combinado com filtro mecânico. O grupo 6: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão; peça semifacial com filtro VO/GA combinado com filtro mecânico.

O grupo 7: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão; peça semifacial com filtro NH3 combinado com filtro mecânico. O grupo 8 no transporte a granel: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão. No transporte fracionado em botijões e cilindros envasados: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s).

O grupo 9: capacete de segurança com protetor facial; luvas de segurança de material compatível com o (s) produto (s) transportado (s). O grupo 10 para os produtos da classe 1 (explosivos): capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro polivalente ou multigases combinado com filtro mecânico (P2). O grupo 11 para os produtos da classe 7 (material radioativo): capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s).

Os materiais de fabricação dos componentes dos equipamentos do conjunto para situações de emergência devem ser compatíveis e apropriados aos produtos perigosos transportados. Os equipamentos do conjunto para situações de emergência devem estar em qualquer local no veículo fora do compartimento de carga, podendo estar lacrados e/ou acondicionados em locais com chave, cadeado ou outro dispositivo de trava, a fim de evitar roubo ou furto dos equipamentos de emergência, exceto o (s) extintor (es) de incêndio.

Somente em veículos com peso bruto total até 3,5 t, os equipamentos do conjunto para situações de emergência podem ser colocados no compartimento de carga, desde que estejam localizados próximos a uma das portas ou tampa, não podendo ser obstruídos pela carga. As regras de localização e acondicionamento dos extintores estão previstas nas exigências para os extintores de incêndio no transporte rodoviário.

Para o transporte de produtos da classe de risco 7 (material radioativo) de nºs ONU 2908, 2909, 2910 e 2911 (volumes exceptivos), não é exigido portar o conjunto para situação de emergência. Os veículos e combinações de veículos utilizados no transporte rodoviário de produtos perigosos, exceto os que transportam produtos perigosos na quantidade limitada por veículo conforme legislação em vigor, devem portar no mínimo os equipamentos relacionados a seguir.

A quantidade limitada de produtos perigosos por veículo é citada na coluna 8 do Anexo da Resolução ANTT nº 5232/2016 e suas atualizações. Devem portar os calços, na quantidade descrita na tabela abaixo, com dimensões mínimas de 150 mm × 200 mm × 150 mm (conforme a figura abaixo). No caso de produtos cujo risco principal ou subsidiário seja inflamável, os calços devem ser de material antifaiscante.

Devem possuir um jogo de ferramentas adequado para reparos em situações de emergência durante a viagem, contendo no mínimo: um alicate universal; uma chave de fenda ou chave Philips (conforme a necessidade); e uma chave apropriada para a desconexão do cabo da bateria. Devem portar quatro cones para sinalização da via, que atendam à NBR 15071; extintor (es) de incêndio para a carga; para os materiais radioativos (classe 7), além dos equipamentos citados nas alíneas anteriores, o supervisor de proteção radiológica (SPR) deve determinar, com base nas características do material radioativo a ser transportado, os eventuais itens a serem adicionados ao conjunto de equipamento para situação de emergência.

Quando um reboque ou semirreboque for desatrelado e, desta forma, forem usados os equipamentos de emergência no veículo imobilizado, devem ser providenciados novos equipamentos de emergência, antes de prosseguir a viagem. Os extintores devem atender à legislação vigente e estar com identificação legível. Os extintores devem ter a certificação do Inmetro e as empresas responsáveis pela manutenção e recarga dos extintores são acreditadas pelo Inmetro.

Os dispositivos de fixação do extintor devem possuir mecanismos de liberação, de forma a simplificar esta operação, que exijam movimentos manuais mínimos. Os dispositivos de fixação do extintor não podem possuir mecanismos que impeçam a sua liberação imediata, como chaves, cadeados ou ferramentas. A cada viagem devem ser verificados o estado de conservação do extintor, a pressão de operação e a sua carga, considerando que o indicador de pressão não pode estar na faixa vermelha, bem como os seus dispositivos de fixação.

No transporte a granel, os extintores não podem estar junto às válvulas de carregamento e/ou descarregamento. Para produtos perigosos inflamáveis ou produtos com risco subsidiário de inflamabilidade, os extintores devem estar localizados um do lado esquerdo e outro do lado direito do veículo e, no caso de combinação de veículos, cada semirreboque ou reboque deve ter os extintores localizados um do lado esquerdo e o outro do lado direito. No caso de reboque ou semirreboque, carregado ou contaminado com produto perigoso e desatrelado do caminhão-trator, pelo menos um extintor de incêndio deve estar no reboque ou semirreboque.

O trabalho seguro em serviços com eletricidade

Esses requisitos podem ser aplicáveis aos seguintes serviços: operação do sistema e instalações elétricas; realização de quaisquer serviços nas instalações elétricas, incluindo construção e montagem, manutenção e ensaios elétrico; serviços em instalações elétricas que operam em níveis de tensão, desde extrabaixa tensão até a alta-tensão. Este último termo inclui os níveis que podem ser conhecidos como média tensão até extra-alta-tensão.

A NBR 16384 de 03/2020 – Segurança em eletricidade — Recomendações e orientações para trabalho seguro em serviços com eletricidade fornece recomendações e orientações para a operação segura e atividades em instalações e equipamentos elétricos, de forma a estabelecer um programa de segurança em eletricidade. É aplicável aos seguintes serviços: operação do sistema e instalações elétricas; realização de quaisquer serviços nas instalações elétricas, incluindo construção e montagem, manutenção e ensaios elétrico; serviços em instalações elétricas que operam em níveis de tensão, desde extrabaixa tensão até a alta-tensão. Este último termo inclui os níveis que podem ser conhecidos como média tensão até extra-alta-tensão. Inclui, ainda as instalações elétricas que são necessárias para geração, transmissão, transformação, distribuição e utilização de energia elétrica; as instalações fixas e permanentes, como industriais e linhas de transmissão; as instalações temporárias como canteiros de obras, feiras e exposições; as instalações móveis como subestações transportáveis; os equipamentos capazes de serem transladados, como escavadeiras elétricas.

Esta norma também pode ser aplicável aos serviços em instalações elétricas de outras naturezas, complementando a legislação e normas técnicas específicas: as instalações elétricas de aeronaves (sujeitas às legislações da Aviação Civil Internacional); as instalações elétricas de embarcações marítimas (sujeitas às legislações das Classificadoras Navais); os sistemas eletrônicos de telecomunicação e de informação; as minas de qualquer natureza; as instalações terrestres e marítimas, pois tratam de instalações elétricas comuns a todas as atividades industriais. As informações contidas nestas recomendações e orientações não substituem as normas técnicas ou regulamentos específicos, porém podem ser aplicados de forma complementar.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser os requisitos para as ferramentas, equipamentos e dispositivos?

Quais devem ser os documentos do sistema elétrico?

Qual deve ser a sinalização e a advertência para os serviços com eletricidade?

Quais são os riscos com eletricidade a serem considerados?

O objetivo desta norma é fornecer orientações adicionais para a operação e realização de serviços em eletricidade, visando à segurança das pessoas, trabalhadores e instalações , além de fornecer as informações adicionais para a elaboração de um programa eficiente de segurança em eletricidade para a execução dos serviços, bem como organizar os aspectos humanos na intervenção destas instalações por meio de um sistema de gerenciamento. Não tem como objetivo especificar os requisitos técnicos para a execução da instalação elétrica, ou para a fabricação de equipamentos e componentes. Para estes casos é necessário consultar as normas técnicas específicas.

Esta norma tem como foco principal os trabalhadores e profissionais autônomos que podem realizar intervenções em instalações elétricas, como operar, realizar manutenção e ensaios. Inclui as informações para administrar a segurança dos trabalhadores e profissionais autônomos que podem realizar serviços não elétricos na zona livre, ou instalações totalmente desenergizadas, com a certeza de que estas estão e continuarão seguras, como, por exemplo, limpezas, reparos nas infraestruturas não relacionadas com a instalação elétrica, e para aqueles que podem operar dispositivos de comando encontrados nas instalações e equipamentos elétricos, como interruptores e botões de comando, com a finalidade de acionar equipamentos de utilização para outros fins não elétricos.

A proteção das pessoas e trabalhadores deve ser assegurada por meio de instalações seguras, seguindo as normas técnicas e regulamentos devidamente executados por profissionais habilitados e, quando aplicável, complementado com as informações adicionais desta norma, que cobrem o sistema de gerenciamento para evitar a exposição das pessoas e dos trabalhadores aos riscos térmicos e físicos gerados pela eletricidade. Os equipamentos e instalações elétricas, quando projetados e instalados de acordo com as normas técnicas, em princípio, se tornam seguros para utilização, operação e intervenção.

Dessa forma, é de extrema importância que estas intervenções respeitem e mantenham a integridade dos equipamentos e instalações, conforme projetados. Esta norma de segurança em serviços com eletricidade fornece as informações para a elaboração de: um memorial descritivo do projeto e das intervenções; de procedimentos de serviço de operação ou manutenção, reparo e substituições; de requisitos de qualificação e experiência na aprovação dos serviços com riscos e técnicas de análise de riscos nas operações; e de procedimentos para intervenções nas instalações elétricas.

As investigações de incidentes e acidentes de trabalho envolvendo eletricidade têm demonstrado que a maioria dos acidentes ocorre durante as intervenções nos equipamentos ou instalações, quando é necessário remover ou alterar temporariamente as proteções dos equipamentos ou instalações concebidas para prover a segurança durante o seu funcionamento normal. As técnicas de investigações de acidentes utilizadas pelos profissionais de segurança do trabalho sugerem basicamente a identificação dos seguintes fatores: fatores físicos – falha nos equipamentos, componentes ou instalação; fatores humanos – falha nas ações ou intervenções humanas por falta de conhecimento ou despreparo dos profissionais envolvidos no acidente; fatores sistêmicos ou gerenciais – falha da gestão dos fatores físicos e humanos; e fatores ambientais que são os que podem influenciar nos fatores físicos caso não seja objeto de planejamento, como iluminação, sol chuva e animais, peçonhentos ou não.

Estes fatores necessitam ser analisados e as ações corretivas implementadas para evitar recorrências. Esta norma visa orientar as ações para proteção em relação aos fatores humanos, sistêmicos, gerenciais e ambientais, enquanto que outras normas técnicas visam atender tanto aos aspectos técnicos quanto aos fatores físicos. Antes de realizar qualquer atividade relacionada à operação de um sistema elétrico ou serviço, com ou na proximidade de uma instalação elétrica, é necessário avaliar os riscos que podem ser gera- dos pela instalação elétrica.

Convém que as operações sejam avaliadas por ferramentas de análise de risco, considerando a complexidade da instalação. Convém que esta avaliação seja registrada no procedimento que descreve a forma de realizar a operação ou os serviços, para assegurar a segurança dos trabalhados e das pessoas. A zona de risco de arco elétrico é estabelecida de acordo com o cálculo da energia incidente, acima da energia incidente de 1,2 cal/cm2 (4 J/cm²). Convém que seja indicado no local o nível de energia que pode ser gerado pelo equipamento, quando abertas as suas proteções, conforme tabela abaixo.

Recomenda-se que as responsabilidades sobre a segurança das pessoas que participam das atividades de execução dos serviços e daqueles que estão ou possam estar envolvidos nos serviços estejam de acordo com a autorização dada aos profissionais, conforme a legislação brasileira. Recomenda-se que todos que realizem intervenções ou serviços em, com ou na proximidade de uma instalação elétrica estejam formalmente autorizados e tenham recebido as instruções referentes aos requisitos de segurança e as instruções da empresa aplicáveis ao seu serviço.

Convém que estas instruções sejam repetidas durante o transcurso dos serviços, quando estes tiverem uma longa duração (mais de um dia de duração) ou forem de natureza complexa (envolvendo diversos grupos ou intervenções simultâneas em diferentes sistemas). Convém que sejam utilizados os equipamentos de proteção individual (EPI) adequados aos locais, riscos e condições em que os trabalhadores necessitem, com vestimentas de proteção adequadas ao tamanho do corpo e equipamento de proteção adicional conforme registrado no procedimento de execução do serviço. Antes de começar qualquer serviço e durante a execução deste, convém que o responsável pelo serviço zele para que todos compreendam e respeitem as instruções, regras e requisitos estabelecidos no procedimento.

Convém que o profissional não seja autorizado a executar uma atividade elétrica sem que estejam registrados em sua ficha funcional a sua qualificação profissional, os treinamentos e a demonstração de conhecimentos técnicos que embasem as experiências comprovadas de prevenção contra os riscos elétricos. Recomenda-se que a supervisão considere o nível de conhecimento e a experiência dos trabalhadores para determinar os serviços que podem ser realizados.

Convém que sejam utilizados os seguintes critérios de avaliação do trabalhador: comprovante de conclusão de curso específico na área elétrica reconhecido pelo Sistema Oficial de Ensino; comprovante da realização e demonstração da compreensão do treinamento de segurança básica em eletricidade, com conteúdo e duração mínima conforme estabelecido na legislação brasileira; caso julgado necessário, comprovação da experiência em serviços elétricos similares ao que será designado com demonstração sobre a percepção dos perigos e riscos que possam aparecer durante o serviço e a respectiva medida de proteção a ser adotada; compreensão dos procedimentos a serem seguidos para a execução do serviço.

Convém que a complexidade dos serviços seja avaliada durante a fase de planejamento, a fim de definir a composição da equipe executora, considerando quantos trabalhadores necessitam ser capacitados, qualificados e habilitados, todos devidamente autorizados. Recomenda-se que a instalação elétrica de um sistema elétrico esteja sob a responsabilidade de um profissional habilitado, conforme determina a legislação brasileira.

Quando duas ou mais instalações ou equipamentos forem compartilhados, por exemplo, conjunto de manobra de distribuição que alimenta diferentes instalações em uma mesma sala, convém que sejam elaborados acordos ou protocolos formais e haja cooperação entre os responsáveis de cada instalação para determinar as medidas necessárias, de modo a assegurar a segurança e o controle das atividades que venham a se desenvolver em cada uma dessas instalações. Neste caso podem ser necessários sistemas de intertravamento com sequência lógica, para garantir a operação de forma segura.

Convém que o controle de acesso das pessoas não autorizadas aos locais em que estejam expostas aos riscos elétricos esteja definido em procedimento específico. A elaboração de padrões, normas ou procedimentos relacionados com a eletricidade, específicos ou não, pode ser realizado pelo responsável, ou não, da instalação elétrica, porém a responsabilidade pela sua aprovação é do responsável pela instalação elétrica, conforme a legislação brasileira e necessitam atender no mínimo as normas técnicas nacionais e, na ausência destas, normas estrangeiras ou internacionais.

Recomenda-se que seja designado um responsável para cada serviço. Quando o serviço for subdividido, convém nomear supervisores para assegurar a segurança em cada uma das subdivisões, estando todos eles sob a responsabilidade de uma só pessoa de coordenação, responsável por todo o serviço. Convém que o responsável pelo serviço e o responsável pela instalação atendam aos requisitos estabelecidos nos padrões, normas ou procedimentos de segurança, para permitir a execução segura do serviço, além de detalhar atividades a serem realizadas na instalação elétrica e suas proximidades, antes do início das atividades ou modificação da instalação elétrica. O responsável pelo serviço e o responsável pela instalação elétrica podem ser a mesma pessoa.

Convém que todos os serviços, sejam simples ou complexos (que envolvem diversos grupos ou intervenções simultâneas em diferentes sistemas) e de longa duração (mais de um dia de duração), atendam a procedimento escrito contendo o planejamento das atividades, com a descrição das etapas, análise de risco, medidas de controle e um plano de ação para contingência conforme orientações contidas na Seção 8 (medidas a serem adotadas em caso de acidente), com ciência e aprovação de todos os envolvidos, em especial, os trabalhadores.

Uma pessoa qualificada, habilitada e autorizada pode estabelecer a forma de executar o serviço com segurança nas seguintes situações: nas instalações não complexas (quando envolvem um único sistema ou circuito elétrico segregado) ou nas suas subpartes, em circunstâncias claramente compreendidas e previamente estabelecidas em procedimentos aprovados; quando os serviços forem repetitivos, de rotina e estabelecidos em procedimentos específicos efetivamente implantados; para serviços de manutenção, realizados segundo procedimentos específicos efetivamente implantados. Recomenda-se que no local de realização de serviços, elétricos ou não elétricos, em, ou nas proximidades de uma instalação elétrica energizada, os trabalhadores sejam treinados, informados das atividades e capazes de solicitar socorro e prestar os primeiros socorros para acidentes de origem elétrica, como choque elétrico ou queimaduras por arco elétrico.

Convém que as informações de como solicitar socorro e as orientações de primeiros socorros estejam disponíveis em placas ou pôsteres afixados no local de serviço e em folhetos ou documentos de segurança entregues aos trabalhadores, conforme definido em avaliação prévia e apropriado à complexidade do serviço ou ambiente de trabalho. Quanto à comunicação (transmissão da informação), pode-se dizer que, nessa norma, o termo comunicação significa toda e qualquer forma de transmitir ou receber informação entre as pessoas e trabalhadores: verbal, escrita, sonora e visual, por exemplo, display de visualização, painéis anunciadores e luzes.

Antes do início de qualquer atividade, recomenda-se que o responsável pelo serviço notifique o responsável pela instalação sobre a natureza, o local e os potenciais riscos devido à realização do serviço, e o procedimento do trabalho planejado. Esta notificação necessita ser documentada. O responsável pela instalação e o responsável pelo serviço a ser realizado necessitam assegurar que as instruções específicas foram transmitidas e detalhadas a todos os trabalhadores sob sua supervisão e pessoas envolvidas para permitir a realização dos serviços em segurança antes do início das atividades. Recomenda-se que todas as informações necessárias para a segurança durante a operação de uma instalação elétrica, como a configuração da rede, o estado das chaves seccionadoras (fechada, aberta ou aterrada) e a posição dos dispositivos de segurança para operação segura da instalação elétrica, estejam registradas em um documento específico e que sejam formalmente transmitidas.

Convém que os meios de transmissão da informação somente sejam utilizados após serem adotadas as medidas de precauções adequadas para assegurar que a informação seja confiável, verdadeiras, não cause mal-entendidos ou sinais falsos. Convém que nas transmissões das informações sejam incluídos o nome e os meios de contato para dirimir dúvidas ou obter maiores esclarecimentos.

É recomendado que não seja permitido o funcionamento ou reenergização de uma instalação elétrica, após a conclusão de serviço, cujo sistema de controle seja unicamente por sinais, como etiquetas, ou determinação do intervalo de tempo necessário para a realização do serviço. Convém que o funcionamento ou reenergização somente seja realizado após a verificação física e inspeção final, assegurando que a instalação esteja adequada e segura para operar.

Durante a realização dos serviços em que as informações sejam transmitidas verbalmente, incluindo comunicação por rádio, para evitar enganos, é recomendado que o receptor repita as informações ao transmissor, que confirmará que foram recebidas e compreendidas corretamente. Caso seja utilizado rádio, convém assegurar que interferências externas não interfiram na clareza e entendimento das mensagens.

Após o término do trabalho, convém que o responsável pelo serviço realize as verificações, inspeções e limpeza da área, e comunique ao responsável pela instalação sobre o resultado da verificação e conclusão do serviço. Convém que o local de trabalho esteja totalmente livre e desimpedido para movimentação das cargas e dos trabalhadores, definido, delimitado e identificado. Convém que sejam providenciados os espaços para movimentação adequada, meios de acesso e iluminação em todas as partes do serviço ou da instalação elétrica. Recomenda-se que o acesso ao local de trabalho e as rotas de fuga estejam definidas, sinalizadas, livres, desimpedidas e identificadas.

Os riscos eletrostáticos em atmosferas explosivas

Conheça as orientações sobre os equipamentos, produtos e propriedades de processos necessárias para evitar os riscos de ignição e de choques eletrostáticos que podem surgir da eletricidade estática, bem como requisitos operacionais necessários para assegurar a utilização segura do equipamento, produto ou processo.

A ABNT IEC/TS 60079-32-1 de 01/2020 – Atmosferas explosivas – Parte 32-1: Riscos eletrostáticos, orientações apresenta as orientações sobre os equipamentos, produtos e propriedades de processos necessárias para evitar os riscos de ignição e de choques eletrostáticos que podem surgir da eletricidade estática, bem como requisitos operacionais necessários para assegurar a utilização segura do equipamento, produto ou processo. Este documento é destinado principalmente aos projetistas e usuários de processos e equipamentos, fabricantes e laboratórios de ensaios. Também pode ser utilizado por fornecedores de equipamentos (por exemplo, máquinas), materiais de piso e vestimentas, quando nenhuma norma sobre família de produtos ou normas de produtos específicas existirem, ou quando as normas existentes não tratarem dos riscos da eletrostática.

Os riscos associados à eletricidade estática em processos e ambientes industriais que mais comumente apresentam problemas são considerados nessa norma. Estes processos incluem a manipulação de sólidos, líquidos, poeiras, gases, sprays e explosivos. Em cada caso, a fonte e a natureza dos riscos da eletrostática são identificadas, e recomendações específicas são apresentadas, de forma a se lidar com tais riscos.

O principal objetivo deste documento é apresentar recomendações padronizadas para o controle da eletricidade estática, como o aterramento de partes condutoras, redução de carregamento eletrostático e restrição de áreas de superfície de materiais isolantes que possam ser carregadas eletrostaticamente. Em alguns casos, a eletricidade estática representa uma parte integrante de um processo, por exemplo, no revestimento por pintura eletrostática, o que frequentemente, é um efeito colateral indesejado, sendo as orientações relacionadas a isso apresentadas.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como utilizar os materiais sólidos dissipativos?

Qual é a capacitância isolada máxima permitida em zonas com atmosferas explosivas?

Quais são as restrições sobre as dimensões de superfícies isolantes carregáveis eletrostaticamente?

Como evitar as descargas ramificadas?

Se as recomendações padronizadas apresentadas forem atendidas, pode ser previsto que o risco de descargas eletrostáticas em uma atmosfera explosiva se mantenha em um nível baixo aceitável. Se os requisitos deste documento não puderem ser atendidos, as abordagens alternativas podem ser aplicadas, desde que pelo menos o mesmo nível de segurança seja alcançado.

As informações básicas sobre a geração de eletricidade estática indesejada em sólidos, líquidos, gases, explosivos e também em pessoas, juntamente com descrições de como as cargas eletrostáticas geradas causam ignições ou choques, são apresentadas nos Anexos e na IEC/TR 61340-1. Não é aplicável aos riscos da eletricidade estática relacionados às descargas atmosféricas ou aos respectivos danos aos equipamentos eletrônicos. Não tem a intenção de substituir outras normas que abranjam produtos e aplicações industriais específicas.

Os regulamentos de segurança eletrostática utilizam diversos adjetivos para classificar a capacidade de condução de materiais e objetos. Diferentes regulamentos e diferentes indústrias utilizam diferentes termos e, mesmo quando os mesmos termos são utilizados, suas definições podem variar. A nomenclatura que é seguida de forma padronizada neste documento procura evitar confusão e auxiliar no entendimento.

A eletricidade estática ocorre comumente na indústria e na vida diária. Muitos dos efeitos são inofensivos e passam despercebidos, ou são apenas um incômodo, mas a eletricidade estática também pode dar origem a uma situação de risco. Em tais situações, o risco pode ser, em geral, reduzido pelo relaxamento de carga (ver Anexo A).

Os riscos causados por carga eletrostática incluem: ignição ou explosão de atmosferas inflamáveis; ver NBR IEC 60079-0 e EN 13463-1; o choque eletrostático em combinação com outro risco (por exemplo, queda, desligamento); ver ISO 12100-1; o choque eletrostático dando origem a ferimentos ou morte; ver ISO 12100-1; os danos a componentes eletrônicos (não cobertos por este documento). Além disso, a eletricidade estática pode apresentar problemas operacionais durante os processos de fabricação e manuseio, por exemplo, provocando aderência dos materiais uns aos outros, ou atraindo poeiras ou materiais particulados.

A eletricidade estática é gerada por: contato e separação de sólidos, por exemplo, movimento das correias transportadoras ou filmes plásticos sobre rolos, e movimento de pessoas; o fluxo de líquidos ou poeiras, e produção de aerossóis; o fenômeno de indução, ou seja, objetos atingem um potencial elevado ou ficam carregados por estarem em um campo elétrico. O acúmulo de carga eletrostática pode dar origem a riscos e problemas em uma ampla gama de indústrias e ambientes de trabalho, e provocar a ignição e explosão em indústrias de processos químicos, farmacêuticos, petrolíferos e de processamento de alimentos.

Devido ao grande número de processos industriais que podem estar envolvidos, não é possível dar informações detalhadas relevantes para todos eles. Em vez disso, este documento procura descrever os problemas associados a cada processo e dar conselhos sobre como evitá-los. Convém que estas informações permitam que o operador responsável pela planta tome as precauções que podem ser necessárias para evitar ignições de atmosferas inflamáveis e descargas eletrostáticas.

Para facilidade de entendimento, este documento é dividido em seções. Estas citam os problemas associados, como o seguinte: manuseio de sólidos; armazenamento e manuseio de líquidos; manipulação de gases e vapores; armazenamento e manuseio de poeiras; armazenamento e manuseio de explosivos; problemas eletrostáticos causados por pessoas; evitar choque eletrostático; aterramento e ligação de máquinas e instalações; métodos de medição. Este documento também contém algumas informações fundamentais relativas à carga eletrostática e seus problemas.

Isso está contido nos Anexos A a G e convém que seja permitido que o leitor compreenda melhor as informações dadas e também que sejam orientados processos que não tenham sido tratados neste documento. Como este documento é muito extenso, avaliar corretamente os riscos eletrostáticos de produtos e processos pode não ser fácil para os novos leitores. Por esta razão, o Anexo F apresenta um informativo universalmente aplicável, que faz referência às seções pertinentes deste documento na ordem correta.

É muito raro que um risco eletrostático possa ser tratado de uma forma isolada. É recomendado que precauções contra riscos eletrostáticos sejam consideradas em conjunto de outras precauções, como, por exemplo, proteção contra a ocorrência de explosões. Convém que estas ações também sejam consistentes com as precauções tomadas para evitar outros riscos que podem estar presentes, como ignição devido a outras causas e toxicidade. É importante que todas as fontes de risco em um sistema de trabalho sejam consideradas e que uma abordagem equilibrada para a segurança, que abranja todos os riscos, seja adotada.

Em particular, é recomendado que sejam adotadas medidas de precaução no fornecimento de sistemas de aterramento, onde eles possam interferir com outros sistemas de proteção, por exemplo, proteção catódica ou equipamento elétrico de segurança intrínseca. Os materiais sólidos são normalmente caracterizados como isolantes, dissipativos ou condutivos, de acordo com os seus valores de resistividade. Invólucros são normalmente classificados de acordo com a sua resistência superficial ou resistividade (medidos de acordo com as NBR IEC 60079-0, IEC 60167, IEC 60093, IEC 61340-2-3 ou métodos equivalentes).

Os detalhes de medição também são apresentados na IEC 60079-32-22. As duas caracterizações são equivalentes, porque a resistividade superficial é dez vezes maior do que a resistência superficial para uma determinada geometria de eletrodos. Para outras aplicações específicas, diferentes definições podem ser aplicáveis (por exemplo, resistência de fuga para os casos de pisos). As referências mais comuns utilizadas para este propósito são mostradas na tabela abaixo.

Inserir eletrostática3

Os critérios de fechamento de invólucros são determinados para evitar concentrações de cargas eletrostáticas e não necessariamente para dissipar as cargas eletrostáticas acumuladas provenientes de processos não especificados no interior do invólucro. Diferentes valores medidos a 50% UR foram aceitos no passado, devido à ausência de ensaio em câmaras de desumidificação, e são considerados conservativos pelo lado da segurança. Esta abordagem foi agora descontinuada, e limites de 50% UR são, com exceção de mangueiras, fornecidos somente em outros documentos.

Convém que aqueles valores somente sejam utilizados se uma câmara climática apropriada não for disponível. Como o carregamento eletrostático dos materiais é maior que 20% UR, se comparado a 30% UR, o valor anterior de 30% UR tem que ser reduzido para (25 ±5) % UR. Convém que um valor mais baixo da umidade relativa no intervalo do ensaio seja aplicado durante as medições, sempre que possível. Quando da caracterização de materiais não homogêneos, os valores medidos necessitam ser obtidos pela média e aproximados para a ordem de grandeza mais próxima a menos que especificado por um método de ensaios. Materiais não homogêneos podem exibir diferentes resistividades pelas diferentes direções.

A segurança na operação de caçamba basculante

O basculante é o compartimento funcional para o transporte de cargas com sistema de movimento no sentido lateral ou traseiro, para o escoamento da carga.

A NBR 16141 de 10/2019 – Implementos rodoviários – Sistema de segurança para operação de caçamba basculante – Requisitos estabelece os requisitos mínimos para segurança do sistema hidráulico utilizado em implementos rodoviários do tipo caçamba basculante com peso bruto total (PBT) acima de 3.500 kg, com o objetivo de evitar falha operacional e/ou falha mecânica. Pode-se definir o basculamento como o movimento vertical ou lateral da caixa de carga, visando a carga ou descarga dos produtos transportados. O basculante é o compartimento funcional para o transporte de cargas com sistema de movimento no sentido lateral ou traseiro, para o escoamento da carga. O dispositivo de segurança secundário é um aviso visual e sonoro instalado na cabine, com intuito de alertar o operador sobre o acionamento da tomada de força e se a caixa de carga está fora da posição inicial, com os avisos visual e sonoro emitindo respectivamente, luz e som característicos. O dispositivo de segurança terciário é eletrônico para o controle do acionamento da tomada de força, com o objetivo de garantir que o caminhão não passe de 10 km/h com a tomada de força ligada. A falha mecânica é a movimentação da caçamba sem o consentimento do operador e a operacional é o acionamento acidental ou involuntário da tomada de força ou da basculante ou distração do operador.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que é a rotação máxima livre?

Como deve ser feita a ligação das tomadas?

Como deve ser projetada a visão interna (cabine)?

É obrigatório o uso dos dispositivos de segurança primário e secundário para os veículos tipo caminhão com carroceria basculante e caminhão-trator. O caminhão-trator não destinado à movimentação e operação de veículos rebocados com carroceria tipo basculante, sem sistema hidráulico, não necessita dos sistemas de segurança citados nesta norma. É facultativa a inclusão do dispositivo de segurança terciário. O sistema hidráulico deve ser dotado de retorno de óleo para o reservatório e não pode permitir que a caixa de carga suba quando o comando estiver na posição de retorno ou neutro, com a tomada de força acionada, independentemente da rotação do motor do caminhão.

O manual de operação do sistema de basculamento deve ser fornecido junto com o implemento, e deve conter o funcionamento dos sistemas de segurança. O porte do manual de operação é obrigatório na versão física ou digital. O fornecimento deve ser de responsabilidade do fabricante do implemento e/ou do instalador dos dispositivos de segurança. O aviso de segurança deve ser fixado no para-brisa. O circuito hidráulico do sistema de basculamento deve conter pelo menos uma válvula hidráulica de três vias/três posições, com acionamento pneumático, eletropneumático ou elétrico, sendo que ela pode ser fixada diretamente na bomba ou em outro ponto do circuito hidráulico.

A válvula deve ter a posição neutra descarregando o óleo diretamente para o reservatório. Não atendem aos requisitos desta norma e devem ser reprovados na inspeção veicular os circuitos hidráulicos que possuam bombas hidráulicas ou tomadas de força acionadas via: cabo de aço ou outra forma de acionamento mecânico; válvulas hidráulicas de duas posições; cilindro pneumático de simples ação e retorno por mola ligado diretamente à bomba; cilindro pneumático de dupla ação ligado diretamente à bomba.

O informativo gráfico permanente deve conter informações objetivas sobre a operação e os dispositivos de segurança, contendo no mínimo o seguinte: a operação detalhada e a forma de acionamento; a advertência para que sempre seja desligada a tomada de força após a operação de basculamento; a advertência para verificar se a caixa de carga está na posição inicial antes de movimentar o veículo; a seguinte frase, no rodapé: “Deve ser fixado no para-brisa”.

O primeiro ensaio deve ser realizado pelo fabricante do basculante, instalador de equipamento veicular ou fabricante do veículo, ou pelo instalador do conjunto hidráulico, no caso de caminhão-trator. O ensaio em caminhão-trator deve ser realizado com um semirreboque tipo basculante acoplado. O semirreboque pode ser substituído por uma bancada de ensaio que simule o semirreboque.

Os ensaios sobre os veículos tipo caminhão, caminhão-trator e reboques devem ser executados com periodicidade máxima de um ano. A avaliação deve ser realizada em estações de inspeção, com o veículo apresentando-se em condições de limpeza que possibilitem a observação da estrutura, sistemas e componentes e da identificação. Na inspeção, o veículo não pode transportar ninguém além do condutor e deve estar com o seu peso em ordem de marcha.

Toda a inspeção deve ser realizada por inspetores qualificados e habilitados e com equipamentos calibrados. Durante a inspeção, não pode ser desmontado componente algum do veículo. Como procedimentos operacionais, verificar se o acionamento da tomada de força foi feito por um comando de dois estágios ou dois comandos. Garantir que o acionamento dos comandos seja realizado com as mãos.

Verificar se o sistema hidráulico possui, claramente definidas, três posições de comando (neutra, retorno/descida e subida). Com a caixa de carga vazia e na posição inicial, garantir que o comando se encontre na posição neutra, ligar a tomada de força e manter o motor no mínimo a 1.750 r/min ou no máximo a 1.800 r/min, por 10 s, certificando-se quanto ao devido acionamento dos avisos de segurança (visual e sonoro) durante o ensaio.

Para veículos cuja máxima rotação esteja parametrizada abaixo de 1.800 r/min, considerar a rotação mais próxima à máxima livre parametrizada. É considerado aprovado o implemento que não movimentar a caixa de carga. O ensaio deve ser realizado duas vezes. Com a caixa de carga na posição inicial e a tomada de força ligada, dispor o comando em posição de descida e manter o motor no mínimo a 1.750 r/min ou no máximo a 1.800 r/min, por 10 s.

Para veículos cuja máxima rotação esteja parametrizada abaixo de 1.800 r/min, considerar a rotação mais próxima à máxima livre parametrizada. É considerado aprovado o implemento que não movimentar a caixa de carga. O ensaio deve ser realizado duas vezes. Este ensaio deve ser realizado mesmo que a tomada de força desligue automaticamente.

Para assegurar o pleno atendimento a esta norma no que se refere ao sistema de segurança secundário, especificamente na garantia do acionamento dos sinais visual e sonoro enquanto a caixa de carga estiver fora da posição inicial, os veículos rebocadores e os rebocáveis devem ser dotados de conectores-padrão, de modo a garantir a intercambiabilidade entre os diferentes tipos e modelos de veículos.

Os conectores elétricos tratados nesta norma devem ser independentes dos conectores já existentes nos veículos rebocadores e rebocáveis. Os conectores para conexão elétrica dos veículos rebocadores e rebocados devem ser compostos por um conector de sete polos do tipo 24 N, com tensão de alimentação nominal de 12/24 V. As dimensões devem estar de acordo com a figura abaixo.

Além de todos os riscos nas rodovias, alguns tipos de caminhões basculantes pedem cuidados especiais no carregamento e descarregamento, como no transporte de produtos perigosos, silos de cimento, etc. Esse tipo de situação pode ser agravada porque boa parte da frota de basculantes trafega com a manutenção precária, e como são praticamente veículos urbanos, ou seja, não passam pelos controles de pesos das rodovias, acabam exagerando na carga, aumentando ainda mais os riscos de acidentes.

Mas há uma característica extremamente perigosa nesse tipo de equipamento: podem tombar paradas, durante o descarregamento. E isso é muito fácil de acontecer. Uma vez descarregada, o condutor deve se certificar que a caçamba está abaixada antes de retornar a viagem. Por incrível que pareça são frequentes as batidas em passarelas e viadutos por basculantes andando com a caçamba levantada.

Dessa forma, para realizar com segurança o basculamento da caçamba do caminhão, além de um equipamento hidráulico adequado e da qualidade, deve-se realizar a manutenção mecânica rigorosa e o treinamento ao motorista e o ideal é que se tome mais algumas medidas preventivas. Verificar para que a carga esteja distribuída de maneira uniforme em todo o cumprimento e largura da caçamba e verificar se a carga é úmida e propensa a grudar, por isso aumenta os riscos e exige maior cuidado.

Os ensaios de poeiras combustíveis

Os incêndios e as explosões industriais são um perigo para as pessoas e edificações. A cada ano, muitas pessoas são feridas em incêndios industriais e explosões em diferentes países e muitas delas acabam perdendo a vidas nesses acidentes.

Além disso, os incêndios industriais e explosões causam bilhões de dólares em danos materiais e, todos os dias, milhares de trabalhadores correm o risco de se ferir em incêndios industriais e explosões. No entanto, muitos ainda não estão cientes dos perigos que enfrentam em seus locais de trabalho e quais são as principais causas desses incêndios e explosões.

Embora existam várias causas de incêndios industriais e explosões, a poeira combustível está entre os materiais mais perigosos e, infelizmente, inevitáveis, usados em muitas indústrias. Ela é produzida em uma ampla gama de indústrias e pode ser derivada de produtos sintéticos e naturais.

Igualmente, pode ser derivada de produtos naturais, como farinha, leite e ovos e de produtos feitos pelo homem, como cloreto de vinila e epóxi. Portanto, é um equívoco achar que apenas as fábricas de confecções, roupas e de madeira produzam pó que possa incendiar-se. É importante notar que, em seu estado natural, alguns produtos podem ser inflamáveis, mas podem se tornar explosivos na forma de poeira.

Existem vários medidas importantes que podem ser tomadas para evitar incêndios ou explosões de poeira combustível. Por exemplo, os empregadores devem colocar em prática procedimentos de arrumação adequados que devem ser inspecionados e mantidos.

Os trabalhos que exigem o uso de ferramentas como ferro de solda, soldador ou cortador de tocha devem ser realizados muito longe de locais onde possa haver poeira combustível. Isto é importante porque as faíscas do trabalho a quente podem viajar até vários pés e fazer com que a pilha de pó se incendeie.

Os dispositivos de limpeza de alta potência e dutos de ventilação devem ser usados para manter o pó combustível a um mínimo possível. As áreas de trabalho devem ser inspecionadas regularmente para garantir que não haja camadas visíveis de poeira combustível se acumulando durante cada turno.

Os trabalhadores devem estar cientes dos perigos e devem ser treinados em procedimentos de emergência no caso de ocorrer um incêndio ou explosão de pó combustível. Grandes equipamentos e caixas elétricas devem ser varridos regularmente com aspiradores de mão ou mangueiras de alta potência para evitar que a poeira combustível se acumule em áreas escondidas.

A NBR ISO/IEC 80079-20-2 de 05/2018 – Atmosferas explosivas – Parte 20-2: Características dos materiais – Métodos de ensaio de poeiras combustíveis descreve os métodos de ensaios para a identificação de poeiras combustíveis e camadas de poeiras combustíveis, de a forma a permitir a classificação de áreas onde tais materiais possam estar presentes, para a finalidade da adequada seleção e instalação de equipamentos elétricos e mecânicos para utilização na presença de poeiras combustíveis. As condições atmosféricas normais para a determinação das características das poeiras combustíveis são: temperatura: –20 °C a +60 °C, pressão: 80 kPa (0,8 bar) a 110 kPa (1,1 bar), e ar com conteúdo normal de oxigênio, tipicamente 21 % v/v. Os métodos de ensaios definidos não são aplicáveis para: materiais explosivos reconhecidos, propelentes (por exemplo, pólvora, dinamite) ou substâncias ou misturas de substâncias que, sob determinadas circunstâncias, se comportam de forma similar, ou poeiras de explosivos e propelentes que não requerem a presença do oxigênio da atmosfera para a combustão, ou substâncias pirofóricas.

Pode-se definir a poeira combustível como as partículas sólidas finamente divididas, com diâmetro nominal de 500 μm ou menor, as quais podem formar misturas explosivas com o ar, nas condições normais de temperatura e pressão. Isto inclui poeiras e partículas combustíveis em suspensão, de acordo com o definido na ISO 4225. O termo “partículas sólidas” é destinado a se referir a partículas na fase sólida, embora não exclua uma partícula oca.

Para a receita da amostra para ensaio, deve-se ter uma ficha de dados de segurança ou equivalente com a amostra. O material de ensaio deve ser fornecido em uma embalagem adequada, etiquetada de acordo com as regras de etiquetagem aplicáveis, sendo apropriado para transporte. É usual o fornecimento de uma quantidade de no mínimo 0,5 kg para ensaios.

Se a preparação da amostra requerer uma quantidade maior, esta quantidade pode ser insuficiente. Se somente um pequeno volume do material for disponível, então pode não ser possível a execução de todos os ensaios. A amostra deve ser representativa do material, da forma como ele se apresenta na forma geral no processo que estiver sendo operado.

Muitas operações unitárias, como sistemas de extração, separam a poeira em frações mais finas que são presentes nos principais equipamentos de processo, e recomenda-se que seja levado em consideração quando da seleção da amostra. Se a amostra não for representativa do material como ele é encontrado no processo, então a preparação da amostra deve ser realizada de forma a considerar as condições de pior caso.

No mínimo as seguintes informações sobre a amostra devem ser fornecidas: tamanho mínimo da partícula, tamanho médio da partícula, tamanho máximo da partícula, distribuição da partícula, conteúdo de umidade, e método de determinação (por exemplo, métodos ópticos ou peneiramento). Se não for possível o fornecedor da amostra fornecer estes dados, então estes dados devem ser determinados separadamente.

Quanto à preparação da amostra, se não for possível ensaiar a amostra da forma como foi recebida, ou se a amostra não for mais representativa do material do processo, então pode ser necessário condicionar ou alterar a amostra para ensaio. Isto pode incluir: trituração e peneiramento, secagem, e umidificação.

Qualquer alteração aparente verificada nas propriedades da poeira durante a preparação da amostra, por exemplo, devido ao peneiramento ou nas condições de temperatura ou umidade, deve ser relatada no relatório de ensaio. Na preparação da amostra, como durante as atividades de trituração, peneiramento ou secagem, as características do material podem ser alteradas.

Quando frações finas estão presentes em uma instalação, é apropriado captar amostras de partículas com diâmetros menores que 63 μm, de forma a possibilitar as misturas mais facilmente capazes de causar ignição. Quando a amostra é uma mistura de substâncias, a preparação da amostra pode resultar em uma alteração da composição da amostra. A presença de solventes pode se alterar durante o processo de preparação da amostra.

Os ensaios devem ser realizados a uma temperatura atmosférica padronizada de 20 +10-10  °C e a uma pressão atmosférica padronizada de 80 kPa a 110 kPa (0,8 bar a 1,1 bar), a menos que especificado em contrário. A sequência seguida para a determinação das propriedades dos poeiras combustíveis e das partículas combustíveis em suspensão é apresentada em 5.2, Seção 6 e Figura 1, Figura 2 e Figura 3 (disponíveis na norma). Consultar também as informações indicadas no Anexo G. 2 O ensaio no tubo de Hartmann é um método fechado. O procedimento pode ser diretamente iniciado com uma esfera de 20 L ou com um forno do tipo GG.

Os ensaios para determinar se um material é uma poeira combustível ou um material particulado combustível podem ser feitos com uma inspeção visual. Fazer uma inspeção visual do material de ensaio (por meio de microscópio, se necessário), para determinar se o material consiste em material particulado combustível. Se o material consistir em material particulado combustível com poeira combustível, então continuar o procedimento de ensaio em um tubo de Hartmann (ver 5.2.3), para determinar se a combinação das duas é uma poeira combustível.

Se o material consistir somente em material particulado combustível, então continuar o procedimento de ensaio em um tubo de Hartmann (ver 5.2.3), para determinar que se trata de partículas combustíveis em suspensão. A determinação da distribuição da partícula, para materiais que não contenham partículas combustíveis em suspensão, verificar a distribuição do tamanho da partícula deve ser executada segundo algumas regras. Se não existirem partículas menores que 500 μm em tamanho, então o material não é uma poeira combustível. Se existirem partículas menores que 500 μm em tamanho, continuar o procedimento de ensaio em um tubo de Hartmann, para determinar se o material é uma poeira combustível.

Para o ensaio em um tubo de Hartmann com uma centelha (ver 7.1), se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível (prosseguir para o procedimento de caracterização de poeira combustível ou material particulado combustível (ver Seção 6)). Se nenhuma ignição ocorrer: prosseguir para o ensaio em um tubo de Hartmann, com uma fonte de ignição por espira aquecida (ver 7.1); pode ser assumido, neste caso, que a energia mínima de ignição é maior que 1 J e que o material de ensaio é difícil de entrar em ignição.

Para o ensaio em um tubo de Hartmann com uma fonte de ignição por espira aquecida (ver 7.1), se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível, (prosseguir para a caracterização de poeira combustível ou material particulado combustível (ver Seção 6)). Se nenhuma ignição ocorrer: prosseguir para o ensaio na esfera de 20 L (ver 7.2); pode ser assumido que a energia mínima de ignição é maior que 10 J.

Para o ensaio de ignição em uma esfera de 20 L, se a ignição ocorrer, o material é uma poeira combustível ou um material particulado combustível (prosseguir para a caracterização de poeira combustível ou material particulado combustível (ver Seção 6). Se nenhuma ignição ocorrer, então o material não é uma poeira combustível ou um material particulado combustível, e o procedimento de ensaio está concluído.

Embora o material não forme misturas explosivas com o ar, ele pode ainda causar a ignição de uma camada de poeira combustível. Se existir material insuficiente disponível para o ensaio em uma esfera de 20 L, então o ensaio de um forno do tipo Godbert-Greenwald (GG), a 1 000 °C, é uma alternativa aceitável (ver 7.3). Se nenhuma ignição ocorrer a 1 000 °C, então o material não é uma poeira combustível ou um material particulado combustível.

Se ocorrer uma ignição a 1.000 °C, então é recomendado que o material seja submetido a verificação adicional em uma esfera de 20 L antes deste material ser considerado combustível ou não combustível. O procedimento indicado a seguir é o procedimento para a caracterização de poeira combustível ou material particulado combustível: ensaio para temperatura mínima de ignição de uma nuvem de poeira (MIT – minimum ignition temperature) (ver Seção 8): forno do tipo GG (ver 8.1.2), ou forno do tipo BAM (ver 8.1.3) ensaio para temperatura mínima de ignição (MIT) da camada de poeira (ver 8.2); o ensaio para a energia mínima de ignição (MIE) da nuvem de poeira (ver 8.3); e o ensaio para a resistividade de poeira a granel (ver 8.4).

Os dados das características das poeiras são conhecidos e variam muito de acordo com as propriedades da amostra, por exemplo, umidade e tamanho da partícula. Os dados apresentados neste banco de dados representam uma grande coleção de informações que podem ser utilizadas quando forem cuidadosamente avaliados para a devida aplicação para o material combustível em consideração disponível existente.