A segurança dos elevadores de canteiros de obras para pessoas e materiais

Deve-se entender os parâmetros normativos dos elevadores elétricos novos instalados e operados temporariamente (designados como “elevadores” nesta norma), utilizados por pessoas autorizadas a entrar em locais de engenharia e construção, atendendo a níveis de pavimentos de serviços, contendo cabinas: projetadas para o transporte de pessoas ou materiais; guiadas; que se deslocam verticalmente ou em uma inclinação de no máximo 15° em relação à vertical; suportadas ou suspensas por meio de cabos de aço acionados por tambor, pinhão e cremalheira, pistão hidráulico (direto ou indireto), ou por um mecanismo articulado expansível; nas quais torres, após montadas, podem ou não necessitar de apoio de estruturas separadas.

A NBR 16200 de 11/2020 – Elevadores de canteiros de obras para pessoas e materiais com cabina guiada verticalmente — Requisitos de segurança para construção e instalação abrange os elevadores elétricos novos instalados e operados temporariamente (designados como “elevadores” nesta norma), utilizados por pessoas autorizadas a entrar em locais de engenharia e construção, atendendo a níveis de pavimentos de serviços, contendo cabinas: projetadas para o transporte de pessoas ou materiais; guiadas; que se deslocam verticalmente ou em uma inclinação de no máximo 15° em relação à vertical; suportadas ou suspensas por meio de cabos de aço acionados por tambor, pinhão e cremalheira, pistão hidráulico (direto ou indireto), ou por um mecanismo articulado expansível; nas quais torres, após montadas, podem ou não necessitar de apoio de estruturas separadas. Esta norma identifica os perigos relacionados na Tabela 1 (disponível na norma) que ocorrem durante as diversas fases na vida útil do equipamento e descreve os métodos para a eliminação ou redução desses perigos quando utilizado conforme pretendido pelo fabricante.

Esta Norma não especifica requisitos adicionais para a operação sob condições severas (por exemplo, climas extremos, campos magnéticos fortes); a proteção contra descargas atmosféricas; a operação sujeita a regras especiais (por exemplo, atmosferas potencialmente explosivas); a compatibilidade eletromagnética (emissão, imunidade); o manuseio de cargas que poderiam levar a situações perigosas (por exemplo, metal derretido, ácidos/bases, materiais radioativos, cargas frágeis); a utilização de motores a combustão; a utilização de controles remotos; os perigos que ocorrem durante a fabricação; os perigos que ocorrem devido à mobilidade; os perigos que ocorrem devido à montagem sobre via pública; terremotos.

Não se aplica a elevadores para o transporte somente de materiais; elevadores abrangidos pelas NBR NM 207, NBR NM 267, NBR 16042 e NBR 14712; cabinas de trabalho suspensas por aparelhos de içamento; plataformas de trabalho suspensas por empilhadeira manual ou empilhadeira motorizada; plataformas de trabalho abrangidas pela EN 1495:1997; funiculares; elevadores especialmente projetados para fins militares; elevadores de minas; elevadores de palco; elevadores para fins especiais. Abrange a instalação do elevador incluindo o seguinte: a armação da base e o fechamento da base; o projeto das estruturas de ancoragem da torre; as cancelas (portas de pavimentos), portas de altura plena e suas armações (batentes). Esta norma não especifica o leiaute da fundação de concreto, com estacas, com madeira ou qualquer outro material, nem o projeto de parafusos de fixação à estrutura de suporte.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os perigos específicos relacionados à mobilidade e/ou à habilidade de levantamento de carga de elevadores de pessoas e materiais?

Qual seria um exemplo de forças durante o carregamento e descarregamento da cabina?

Quais são os coeficientes de segurança para as estruturas de aço?

Quais são as combinações diferentes de cargas e forças a serem calculadas?

As listas de perigos apresentadas nas tabelas 1 a 3 (disponíveis na norma) são baseadas na NBR ISO 12100:2013. As Tabelas 1, 2 e 3 mostram os perigos que foram identificados e onde os requisitos correspondentes foram formulados nesta norma, de modo que o risco seja limitado ou que situações perigosas sejam reduzidas em cada caso. Perigos não aplicáveis ou relevantes, mas não significativos para os quais não há requisitos formulados são mostrados na coluna de subseções pertinentes como n.a. (não aplicável).

O projeto do elevador deve considerar a utilização, montagem, desmontagem e manutenção. Deve ser possível montar o elevador utilizando métodos de acesso seguro, como aqueles oferecidos pelo teto da cabina ou instalações equivalentes. O projeto de todos os componentes que precisam ser manipulados durante a montagem, por exemplo, das seções da torre, deve ser avaliado quanto ao manuseio.

Quando o peso permissível de peças instaladas manualmente for excedido, o fabricante deve fazer recomendações, em manuais de instruções, relativas a equipamentos adequados de levantamento. Todas as tampas removíveis e destacáveis devem ser retidas por fixadores do tipo prisioneiro. A estrutura do elevador deve ser projetada e construída de modo que sua resistência seja satisfatória sob todas as condições previstas de operação, incluindo montagem e desmontagem e, por exemplo, ambientes de baixa temperatura.

O projeto da estrutura como um todo e de cada parte dela deve ser baseado nos efeitos de qualquer combinação de cargas especificadas em 5.2. As combinações de carga devem ser consideradas nas posições menos favoráveis da cabina e da carga em relação à torre e suas estruturas de ancoragem, durante a passagem vertical e qualquer movimento horizontal da cabina. As estruturas de ancoragem entre a torre e a estrutura de suporte são consideradas parte integrante da estrutura do elevador. Todas as cargas mortas, com exceção da cabina e equipamentos que se movimentam juntamente com a cabina.

O efeito de cargas móveis deve ser determinado considerando os pesos de todas as cargas reais (cabina, carga nominal, contrapeso, cabos de aço, etc.) e multiplicando-os por um fator μ = (1,1+ 0,264 ×V), onde V é a velocidade nominal em metros por segundo (m/s). A utilização de fatores alternativos pode ser considerada quando estes fatores forem comprovadamente mais precisos. Para determinar as forças produzidas pela atuação do freio de segurança de sobrevelocidade, o total da soma da carga em movimento deve ser multiplicado pelo fator 2,5.

Pode ser utilizado um fator menor, porém não menor que 1,2, desde que verificado por ensaio sob todas as condições de aplicação de carga de até 1,3 vez a carga nominal, incluindo quaisquer efeitos de inércia do sistema de acionamento. O teto da cabina, se for previsto como acesso para montagem, desmontagem, manutenção ou fuga de emergência, deve ser projetado para suportar uma carga total de pelo menos 3,0 kN posicionada na área quadrada menos favorável de 1,0 m². O teto deve suportar uma carga de 1,2 kN aplicada em uma área de 0,1 m × 0,1 m.

O teto da cabina, quando instalado sem a finalidade de suportar pessoas, deve ser projetado para uma carga de 1,0 kN aplicada em uma área de 0,1 m × 0,1 m. A superfície do piso da cabina deve ser projetada para suportar, sem deformação permanente, uma força estática de 1,5 kN ou 25% da carga nominal, aquela que for maior, porém em nenhum caso maior que 3 kN, sendo a força aplicada na área quadrada menos favorável de 0,1 m × 0,1 m.

Ao calcular a pressão do vento na cabina, deve-se assumir que suas paredes sejam sólidas, aplicando um coeficiente aerodinâmico c = 1,2. O fator 1,2 abrange tanto o fator de forma quanto o de anteparo. Se o projeto da cabina permitir que materiais sejam transportados fora da cabina, então uma área adicional de serviço sujeita à ação do vento deve ser considerada sendo pelo menos equivalente a uma caixa sólida com o tamanho do plano do alçapão, estendendo-se 2 m acima do teto da cabina.

Quanto ao vento, três condições de projeto devem ser consideradas para o cálculo da pressão do vento sobre o elevador, de acordo com a NBR 6123. Independentemente da altura, o valor mínimo da pressão do vento deve ser igual a q = 550N m², o que corresponde a uma velocidade do vento de vk = 30m s. A pressão do vento com o elevador em posição fora de serviço a ser considerada no projeto deve ser calculada de acordo com a NBR 6123, em função da altura da cabina acima do solo e da região do país onde o elevador deve ser instalado.

Independentemente da altura, o valor mínimo da pressão do vento deve ser igual a q = 550N m², o que corresponde a uma velocidade do vento de vk = 30m s. O cálculo deve considerar erros de montagem de pelo menos 0,5°. Durante a montagem e a desmontagem, não é permitido considerar a vantagem proporcionada pelo contrapeso.

As forças criadas pela reação dos para-choques devem ser calculadas permitindo um retardamento de 1 g, a não ser que um valor inferior de retardamento possa ser verificado. A estrutura básica deve ser projetada para acomodar todas as forças geradas pelo elevador que atuam nela e ser capaz de transferi-las para a superfície de suporte. Os dispositivos de transferência de forças para a superfície de suporte não podem depender de quaisquer apoios com molas ou rodas com pneumáticos.

Quando forem disponibilizados meios de ajuste para a transferência de forças para a terra, as sapatas devem estar livres para servirem de pivô em todos os planos a um ângulo de pelo menos 15°em relação à horizontal, de modo a evitar tensões de flexão na estrutura. Se a sapata não atuar como pivô, o caso de pior tensão de flexão resultante deve ser considerado.

As guias podem fazer parte da torre ou podem ser um mecanismo articulado expansível. As guias devem ser rígidas. Elementos flexíveis, como cabos de aço ou correntes, não podem ser utilizados. A deflexão de qualquer parte da torre ou cabina deve ser limitada de modo a evitar colisões que possam ocorrer (por exemplo, com os pavimentos).

As guias ou torres devem ser projetadas de tal forma que possam suportar todos os casos de carga mencionados em 5.2. As conexões entre os comprimentos individuais da torre, guias ou braços de ligação devem proporcionar uma transferência de carga efetiva e manter o alinhamento. Desapertos somente devem ser possíveis por uma ação manual intencional.

Os pontos de pivô no mecanismo articulado expansível devem ser projetados para facilitar a verificação externa. As fixações de elementos de acionamento (por exemplo, cremalheira) à guia/torre devem garantir que o elemento de acionamento seja mantido na posição correta de modo que as cargas estipuladas possam ser transferidas para a torre, devendo ser assegurado que as fixações não se tornem frouxas, por exemplo, utilizando uma contraporca.

Um elevador, quando instalado para uso, deve ter fechamento da base; proteção da caixa de corrida; cancelas em cada ponto de acesso. Isso deve evitar que pessoas sejam atingidas por partes móveis e caiam na caixa de corrida.

O projeto desses elementos é abrangido em 5.5. As instruções para a aplicação correta dos elementos estão contidas na Seção 7 e a verificação da unidade é abrangida na Seção 6. O fechamento da base do elevador deve proteger todos os lados até uma altura de pelo menos 2,0 m e deve atender ao estabelecido em 5.5.4.

Qualquer contrapeso móvel deve ser posicionado dentro do fechamento da base do elevador. Quando, com o propósito de manutenção, o fechamento da base for acessado pela sua porta, ela deve permitir abertura pelo lado de dentro e ser intertravada com fecho eletromecânico ou mecânico. Quando o elevador estiver montado, ele deve estar provido de cancela de pavimento na proteção da caixa de corrida, em cada ponto de entrada, incluindo o fechamento da base. As cancelas não podem abrir para dentro da caixa de corrida.

A segurança dos sistemas motorizados na coleta de material em jardinagem

É importante compreender os requisitos de segurança e os meios específicos para a sua verificação para o projeto e a construção de sistemas motorizados para coleta de material, utilizados na agricultura, jardinagem e manutenção de áreas (por exemplo, paisagismo). 

A NBR ISO 21628 de 11/2020 – Máquinas de jardinagem – Sistemas motorizados para coleta de material – Segurança fornece os requisitos de segurança e os meios específicos para a sua verificação para o projeto e a construção de sistemas motorizados para coleta de material, utilizados na agricultura, jardinagem e manutenção de áreas (por exemplo, paisagismo). Esta norma é aplicável às máquinas montadas, semimontadas ou rebocadas, fabricadas após a data de sua publicação.

Especifica os meios para eliminar ou reduzir os perigos mecânicos, quando o sistema para coleta de material for utilizado conforme o previsto. Esta norma não trata dos perigos ambientais, segurança rodoviária, compatibilidade eletromagnética, tomada de potência (TDP), proteção do eixo de transmissão da TDP ou requisitos de controle. Esta Norma não é aplicável às máquinas dentro do escopo da NBR ISO 5395-2 ou NBR ISO 5395-3.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser definido um sistema para coleta de material?

O que deve conter o manual do operador?

O que é uma calha de descarga?

Quais os sinais de segurança e instrucionais que devem ser exibidos?

A estrutura das normas de segurança no campo de máquinas é a seguinte: as normas tipo A (normas de segurança básicas), que fornecem conceitos básicos, princípio para projeto e aspectos gerais que podem ser aplicados às máquinas; as normas tipo B (normas de segurança genéricas), que tratam de um ou vários aspectos de segurança ou um ou mais tipos de dispositivos de segurança que podem ser utilizados em uma ampla faixa de máquinas. As normas tipo B1 tratam sobre os aspectos de segurança específicos (por exemplo, distâncias de segurança, temperatura da superfície, ruído).

As normas tipo B2 especificam sobre os dispositivos de segurança (por exemplo, controles bimanuais, dispositivos de travamento, dispositivos sensíveis à pressão, proteções) e as normas tipo C (normas de segurança de máquinas) tratam de requisitos de segurança detalhados para uma máquina específica ou grupo de máquinas específico.

Este documento é uma norma tipo C, conforme declarado na ISO 12100-1. Quando os requisitos desta norma tipo C forem diferentes dos que são declarados em normas tipo A ou tipo B, os requisitos desta norma tipo C têm prioridade sobre os requisitos das outras normas para máquinas que foram projetadas e construídas de acordo com os requisitos desta norma tipo C.

As máquinas afetadas e a extensão em que os perigos, situações perigosas ou eventos perigosos são abrangidos estão indicadas no escopo deste documento. Estes perigos são específicos a sistemas para coleta de material. A máquina deve ser projetada de acordo com os princípios de redução de risco especificados na ISO 12100-1:2003, Seção 5, para perigos relevantes, porém não significativos.

Salvo se especificado em contrário nessa norma, as aberturas e as distâncias de segurança relativas devem estar de acordo com a NBR NM ISO 13852:2003, Tabelas 1, 3, 4 e 6. A mangueira ou tubo de sucção devem ser fixados no dispositivo de entrada. A remoção da mangueira ou tubo de sucção não pode ser possível, exceto com o uso de uma ferramenta. O manual do operador deve incluir informações sobre a remoção de obstruções.

O tamanho máximo da abertura da calha de descarga deve ser de 625 cm². Para evitar o acesso às partes perigosas do soprador, a máquina deve estar em conformidade com um ou mais dos seguintes itens. A distância mínima entre a abertura da calha de descarga e o contorno externo do soprador deve ser de 850 mm. Alternativamente, a distância mínima entre o contorno ou partes da máquina que restringem o acesso ao soprador e o contorno externo do soprador deve ser de 850 mm.

Este requisito deve ser verificado utilizando a sonda de ensaio do braço mostrada na figura abaixo. A sonda deve ser aplicada em todas as direções em que o braço do operador pode ser utilizado e na área sombreada mostrada na figura abaixo. A distância de segurança de 850 mm deve ser aplicada abaixo da altura desta área sombreada, isto é, abaixo de uma altura de 700 mm. (Ver figura abaixo).

A chapa da sonda deve ser mantida paralela à máquina. A sonda de ensaio do braço deve ser aplicada com uma força não superior a 20 N. A distância de segurança é medida como a medição da corrente. Alternativamente, a abertura da calha de descarga deve estar de acordo com a NBR NM ISO 13852:2003, Tabelas 1, 3, 4 e 6. Se isto for atingido por meios adicionais, estes meios devem estar no local sempre que o acesso do operador na abertura da calha de descarga for possível.

Eles não podem ser removíveis, exceto utilizando uma ferramenta, e devem corresponder à NBR ISO 13849-1, categoria 1. Alternativamente, os meios devem ser fornecidos para parar o soprador – por exemplo, ao levantar ou abrir o funil – antes do acesso direto do operador, sendo que isso sempre é possível.

O fluxo de ar na saída, na parte traseira do funil, deve ser direcionado para baixo, para evitar o contato com o material coletado. O sistema de articulação para levantar ou abaixar o funil durante a sua descarga deve ser projetado de modo que os pontos de compressão e corte sejam evitados e que seja mantida uma distância de 25 mm entre os componentes móveis da articulação.

As informações sobre possíveis perigos que podem ocorrer quando a porta do funil é aberta devem ser fornecidas na máquina e no manual do operador. Quanto à estabilidade, os sistemas para coleta de material vazios devem ser projetados para serem estáveis, quando desmontados e estacionados de acordo com o manual do operador em solo firme, com uma inclinação de até 8,5° em qualquer direção. Se necessário, meios para calçar as rodas de transporte devem ser fornecidos.

Os requisitos dos equipamentos para atmosferas explosivas

Conheça os requisitos gerais para construção, ensaios e marcação de equipamentos “Ex” e componentes “Ex” destinados à utilização em atmosferas explosivas.

A NBR IEC 60079-0 de 11/2020 – Atmosferas explosivas – Parte 0: Equipamentos – Requisitos gerais especifica os requisitos gerais para construção, ensaios e marcação de equipamentos “Ex” e componentes “Ex” destinados à utilização em atmosferas explosivas. As condições atmosféricas padronizadas (relativas às características de explosão de uma atmosfera) sob as quais pode ser assumido que os equipamentos “Ex” podem ser operados são: temperatura de ‒20 °C a + 60 °C; pressão de 80 kPa (0,8 bar) a 110 kPa (1,1 bar); e ar com concentração normal de oxigênio, tipicamente 21 % v/v. Esta parte e outras normas que suplementam esta norma especificam os requisitos de ensaios adicionais para equipamentos “Ex” que operem fora da faixa padronizada de temperatura, porém considerações e ensaios adicionais podem ser requeridos para equipamentos “Ex” que operam fora da faixa padronizada de pressão atmosférica e concentração padronizada de oxigênio.

Estes ensaios adicionais podem ser particularmente aplicáveis em relação aos tipos de proteção “Ex” que dependem do resfriamento da chama, como os invólucros à prova de explosão “d” (NBR IEC 60079-1) ou limitação de energia, como a segurança intrínseca “i”(NBR IEC 60079-11). Embora as condições atmosféricas padronizadas indicadas anteriormente apresentem uma faixa de temperatura para a atmosfera de –20 °C a +60 °C, a faixa normal de temperatura ambiente para equipamentos “Ex” é de –20 °C a +40 /C, a menos que de outra forma especificada e marcada. Ver 5.1.1.

É considerado que a faixa de –20 °C a + 40 °C é apropriada para diversos tipos de equipamentos “Ex” e que, para a fabricação de todos os equipamentos “Ex” como sendo adequados para a atmosfera padronizada de temperatura ambiente superior +60 °C, poderia requerer desnecessárias restrições de projeto. Os requisitos apresentados nesta norma resultam de uma avaliação de risco de ignição realizada nos equipamentos. As fontes de ignição levadas em consideração são aquelas encontradas associadas com este tipo de equipamento, como superfícies quentes, radiação eletromagnética, centelhas geradas mecanicamente, impactos mecânicos que resultam em reações térmicas, arcos elétricos e descargas eletrostáticas em ambientes industriais normais.

Quando uma atmosfera explosiva de gás e uma atmosfera combustível de poeira estão, ou podem estar, presentes ao mesmo tempo, a presença simultânea de ambos frequentemente requer medidas adicionais de proteção. Orientações adicionais sobre a utilização de equipamentos “Ex” em misturas híbridas (mistura de um gás ou vapor inflamável com uma poeira combustível ou partículas combustíveis em suspensão) são indicadas na NBR IEC 60079-14. A série IEC 60079 não especifica os requisitos para segurança, além daqueles diretamente relacionados com o risco da ocorrência de uma explosão.

Fontes de ignição como compressão adiabática, ondas de choque, reações químicas exotérmicas, autoignição de poeiras, chamas expostas e gases ou líquidos aquecidos não são consideradas por esta norma. Embora esteja fora do escopo desta norma, é recomendado que estes equipamentos sejam tipicamente submetidos a análises de risco que identifiquem e relacionem todas as fontes potenciais de ignição pelos equipamentos elétricos e as medidas a serem aplicadas para evitar que estas se tornem efetivas. Ver NBR ISO 80079-36.

Acesse algumas perguntas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a classificação da temperatura máxima de superfície para equipamento elétrico do Grupo II?

Qual deve ser a temperatura de pequenos componentes para equipamentos elétricos para Grupo I ou Grupo II?

Quais são as correntes circulantes em invólucros (por exemplo, de grandes máquinas elétricas?

Qual deve ser a potência limiar de frequência de rádio?

Os equipamentos para atmosferas explosivas são divididos em grupos. O Equipamento do Grupo I é destinado para utilização em minas de carvão suscetíveis ao gás metano (grisu). Os tipos de proteção para o Grupo I consideram a ignição do grisu e da poeira de carvão, juntamente com proteção física adequada para equipamentos de utilização subterrânea. Os equipamentos destinados a minas, onde a atmosfera, além de grisu, pode conter proporções significantes de outros gases inflamáveis (isto é, outros que não o metano), devem ser construídos e ensaiados de acordo com os requisitos referentes ao Grupo I e também à subdivisão do Grupo II, correspondente aos outros gases inflamáveis significantes.

O Equipamento do Grupo II é destinado para utilização com uma atmosfera explosiva de gás que não sejam minas suscetíveis a grisu. O Equipamento do Grupo II é subdividido de acordo com a natureza da atmosfera explosiva de gás para o qual é destinado. As subdivisões do Grupo II: IIA, um gás representativo é o propano; IIB, um gás representativo é o etileno; IIC, gases representativos são o hidrogênio e o acetileno. Esta subdivisão é baseada no máximo interstício experimental seguro (MESG) ou a proporção de corrente mínima de ignição (proporção MIC) da atmosfera explosiva de gás na qual o equipamento pode ser instalado (ver IEC 60079-20-1).

Para materiais externos de equipamentos não metálicos, a subdivisão é baseada no risco de carregamento eletrostático para áreas de superfície externas (ver 7.4.2). O equipamento marcado IIB é adequado para aplicações que requerem equipamento do Grupo IIA. Similarmente, equipamento marcado IIC é adequado para aplicações que requerem equipamento dos Grupos IIA ou IIB.

O Equipamento do Grupo III é destinado para utilização em áreas com uma atmosfera explosiva de poeiras que não sejam minas suscetíveis a grisu. O Equipamento do Grupo III é subdividido de acordo com a natureza da atmosfera explosiva de poeira para o qual ele é destinado. Subdivisões do Grupo III: IIIA: partículas combustíveis em suspensão; IIIB: poeiras não condutivas; IIIC: poeiras condutivas. O equipamento marcado IIIB é adequado para aplicações que requerem equipamento do Grupo IIIA. Similarmente, equipamento marcado IIIC é adequado para aplicações que requerem equipamento do Grupo IIIA ou IIIB.

O equipamento pode ser ensaiado para uma atmosfera explosiva específica de gás. Neste caso, a informação deve ser registrada no certificado e o equipamento marcado adequadamente. O equipamento projetado para utilização em uma faixa de temperatura ambiente normal entre ‒20 °C a + 40 °C não requer marcação da faixa de temperatura ambiente. Entretanto, equipamento projetado para utilização em outra faixa de temperatura que não a normal é considerada especial.

A marcação deve então incluir o símbolo Ta ou Tamb junto com ambas as temperaturas ambientes mais alta e mais baixa ou, se isto for impraticável, o símbolo “X” deve ser utilizado para indicar condições específicas de utilização que incluam as temperaturas ambientes mais alta e mais baixa. Ver 29.3-e) e tabela abaixo.

Onde o equipamento for projetado para ser conectado fisicamente ou que possa ser influenciado por uma fonte externa separada de aquecimento ou resfriamento, como um processo de aquecimento ou resfriamento por vaso ou duto, os valores nominais da fonte externa devem ser especificados no certificado e nas instruções do fabricante. A fonte externa de aquecimento ou de resfriamento é frequentemente referenciada como a “temperatura do processo”. A forma pela qual estes valores nominais são expressos varia de acordo com a natureza da fonte e da instalação.

Para fontes em geral maiores do que o equipamento, a máxima ou a mínima temperatura será usualmente suficiente. Para fontes em geral menores do que o equipamento ou para condução de calor através de isolamento térmico, a taxa de fluxo de calor pode ser apropriada. Alternativamente, a classificação é frequentemente expressa pela especificação de uma temperatura em um ponto acessível definido no equipamento. Pode ser necessária a consideração da influência da radiação do calor na instalação final.

Quando esta norma ou a norma específica do tipo de proteção requerer que a temperatura de serviço seja determinada em qualquer ponto do equipamento, a temperatura deve ser determinada para o valor nominal do equipamento quando o equipamento for submetido à máxima ou à mínima temperatura ambiente e, quando aplicável, o valor nominal máximo da fonte externa de aquecimento ou resfriamento. A temperatura de ensaio de serviço, quando requerida, deve estar de acordo com 26.5.1 Medição de temperatura. Para equipamentos EPL Da, a mesma camada de poeira aplicada deve ser aplicada quando determinada a temperatura de serviço.

Para equipamento EPL Db com uma camada de poeira, as mesmas camadas de poeira como aplicadas, como aplicável, devem ser aplicadas quando determinada a temperatura de serviço. Onde a faixa de temperatura de um componente Ex for dependente da faixa de temperatura de serviço de um ou mais materiais de construção dos quais o tipo de proteção depende, a faixa de temperatura permitida para o componente Ex deve ser indicada na relação de limitações. Ver 13.5.

O valor nominal do equipamento elétrico inclui a temperatura ambiente, a alimentação elétrica e a carga, o ciclo de serviço ou o tipo de serviço, como especificado pelo fabricante, tipicamente como mostrado na marcação. A temperatura máxima de superfície deve ser determinada de acordo com 26.5.1, considerando a temperatura máxima ambiente e, quando pertinente, o valor nominal máximo da fonte externa de aquecimento.

Para equipamentos elétricos do Grupo I, a temperatura máxima de superfície deve ser especificada em documentação pertinente, de acordo com a Seção 24. Esta temperatura máxima de superfície não pode exceder — 150 °C sobre qualquer superfície onde possa se formar uma camada de poeira de carvão, — 450 °C onde não for provável que se forme uma camada de poeira de carvão (por exemplo, dentro de um invólucro protegido contra poeira). Pode-se ressaltar a especificação para materiais plásticos que deve incluir o seguinte: o nome ou marca registrada do fabricante da resina ou composto; a identificação do material, incluindo sua designação de cor e tipo; os possíveis tratamentos superficiais, como vernizes, etc.; o índice de temperatura (TI) correspondente para o ponto de 20 000 h sobre o gráfico da resistência térmica sem perda da resistência à flexão excedendo 50%, determinado de acordo com as NBR IEC 60216-1 e NBR IEC 60216-2 e com base na propriedade de flexão de acordo com a ISO 178.

Se o material não quebrar neste ensaio antes da exposição ao calor, o índice deve ser baseado na resistência à tensão de acordo com a ISO 527-2, com barras de ensaio do Tipo 1A ou 1B. Como uma alternativa ao índice de temperatura (TI), o índice térmico relativo (ou RTI – resistência mecânica ou RTI – impacto mecânico) pode ser determinado de acordo com a ANSI/UL 746B; quando aplicável, dados que confirmem o atendimento de 7.3 (resistência à luz ultravioleta).

A fonte de dados para estas características deve ser identificada. Não é requisito desta norma que a conformidade da especificação do material plástico necessite ser verificada. Quando selecionaram materiais plásticos, alguns fabricantes notaram que variações no tipo e porcentagem de cargas, retardantes a chamas, estabilizadores de luz ultravioleta e semelhantes podem ter um efeito significativo nas propriedades do material plástico.

 

O uso do corta-chamas para evitar riscos em instalações industriais

Saiba como se deve fazer a seleção de corta-chamas, de acordo com a NBR ISO 16852, para os diferentes cenários com as melhores práticas para seleção, instalação e manutenção destes. 

A NBR 16906 de 09/2020 – Corta-chamas — Requisitos de seleção, instalação, especificação e manutenção estabelece os requisitos para a seleção de corta-chamas, de acordo com a NBR ISO 16852, para os diferentes cenários com as melhores práticas para seleção, instalação e manutenção destes. Descreve os possíveis riscos que podem ocorrer em instalações industriais e fornece os tipos de proteção para uso do corta-chamas. Esta norma se destina principalmente a técnicos responsáveis pelo projeto e pela operação segura de instalações industriais e de equipamentos que usam líquidos, vapores ou gases inflamáveis.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os limites de velocidade máxima de fluxo?

Como fazer a seleção de corta-chamas?

Como deve ser feita a marcação de equipamentos com limites de aplicação?

Quais são os limites de instalação dos corta-chamas?

O corta-chamas é um dispositivo instalado na abertura de um equipamento ou no duto de conexão de um sistema de processo e cuja função pretendida é permitir o fluxo, mas evitar a transmissão da chama. Os corta-chamas são necessários para proteger os equipamentos e as tubulações contra vários tipos de explosão que possam ocorrer nos seus interiores. Entretanto, esta segurança depende da seleção do tipo adequado de corta-chamas, de sua correta instalação e da sua manutenção.

Esta norma fornece orientações importantes para o uso de corta-chamas, além das orientações dos manuais de operação dos fabricantes e das resoluções de segurança e ambientais. Os corta-chamas são projetados para uso em áreas com risco de explosão.

É prioridade dar atenção à prevenção de formação de atmosferas explosivas em unidades de processo para evitar o desenvolvimento de uma potencial explosão. A prevenção de explosão pode ser efetuada pela redução de uso ou limitando a concentração das substâncias inflamáveis no processo. A prevenção também pode ser realizada por meio da inertização de equipamentos.

Caso a prevenção da formação de atmosfera explosiva não seja possível, é necessário se evitar a presença de qualquer fonte de ignição no local. Para tanto, o uso de medidas de proteção auxilia a evitar ou a reduzir a probabilidade de ocorrência de potenciais fontes de ignição. É possível que a probabilidade de formação de atmosfera explosiva e de fonte de ignição esteja presente no mesmo tempo e local. Neste caso, é preciso determinar as medidas corretas de proteção do equipamento.

Uma medida de segurança recomendada é a classificação de área pelo conceito de zonas de risco de explosão, de acordo com a NBR IEC 60079-10-1. Os corta-chamas devem ser ensaiados de acordo com a NBR ISO 16852 e atender a todos os requisitos de segurança desta norma. Em muitos casos, não é possível identificar previamente a possibilidade de formação de atmosferas explosivas ou de fontes de ignição. Para tanto, é necessário adotar medidas para minimizar os efeitos da explosão. Os tipos de medidas de segurança contra os efeitos de uma explosão são: projeto de equipamentos resistentes à explosão; alívio de explosão; supressão de explosão; prevenção da formação de chama e da propagação da explosão.

A ocorrência de uma explosão em uma unidade de processo pode se propagar para partes a montante e a jusante de sua ocorrência, podendo causar explosões secundárias. A aceleração causada por acessórios da unidade de processo ou pela propagação por tubulações pode intensificar os efeitos de uma explosão. As pressões decorrentes de uma explosão podem ser superiores à pressão máxima de explosão sob condições normais de operação, e podem destruir partes da unidade de processo, mesmo que estas tenham sido projetadas para resistir à pressão de explosão ou para resistência mecânica.

Portanto, é importante limitar possíveis explosões em determinadas partes da unidade de processo. Esta limitação pode ser obtida pela técnica de bloqueio mecânico de uma explosão. Este bloqueio normalmente é efetuado por válvulas de isolamento ou corta-chamas. As áreas perigosas de instalações industriais são classificadas de acordo com a NBR IEC 60079-10-1, em zonas de riscos de explosão, dependendo da frequência e da duração da presença de atmosferas explosivas, conforme tabela abaixo.

As aberturas de equipamentos (reatores, vasos de pressão, etc.) à prova de explosão, onde explosões internas possam ocorrer, devem ser equipadas com corta-chamas à prova de deflagrações volumétricas, de modo a prevenir a propagação da explosão do interior para o exterior desses equipamentos, quando estiverem conectados a outros equipamentos não resistentes a essa condição, ou se houver a presença de pessoas no local do alívio.

De acordo com a NBR ISO 16852, o conceito de segurança de instalações industriais usando corta-chamas à prova de detonações estáveis depende da probabilidade de ocorrência de eventos adversos (transmissão de chama de uma fonte de ignição), e da extensão das consequências destes eventos (capacidade destrutiva da onda de choque da explosão). A tabela abaixo apresenta a quantidade requerida de medidas independentes de proteção contra a transmissão de chama diante das consequências graves da explosão, conforme a NBR ISO 16852.

Dependendo da classificação de áreas e da probabilidade de presença de fontes de ignição, os corta-chamas podem ser usados em combinação com outras medidas de proteção, por exemplo, os corta-chamas em série, sistemas de inertização, sistemas de controle de concentração, válvulas de isolamento, sensores de temperatura e/ou controle de potenciais fontes de ignição. Caso as misturas inflamáveis sejam processadas durante a operação em grandes volumes e por longos períodos (por exemplo, durante o enchimento de tanques e/ou transferência de vapores a uma unidade de incineração), é necessário prever a formação de combustão contínua no corta-chamas.

Caso os corta-chamas não sejam adequados para combustão contínua, são requeridas medidas adicionais para evitar esta condição. Os corta-chamas são equipamentos que permitem a passagem de misturas gasosas através deles, mas impedem a transmissão de chama, prevenindo uma explosão ou um fogo maior. Existem diversas situações em que se aplicam os corta-chamas.

Os riscos de explosão dependem dos processos de combustão, que são função das condições e estrutura dos ambientes. Os corta-chamas são projetados para processos específicos de combustão. Assim sendo, há uma grande variedade de tipos de corta-chamas (por exemplo, em linha ou fim de linha, para tubulações de grandes e pequenos diâmetros, etc.). Existem alguns possíveis locais típicos de instalação de corta-chamas, por exemplo: tanques de armazenamento; sistemas de processamento; sistema de combustão de vapores, incineradores, tochas (flares); navios, plataformas marítimas (offshore), veículos e sistemas de carregamento; unidades de recuperação de vapores; integrado a bombas, a sopradores e outras máquinas.

Para as condições de operação que levam à combustão estabilizada das misturas diretamente sobre o elemento do corta-chamas, há apenas uma segurança limitada em tempo contra a transmissão de chama. Nesse caso, os corta-chamas em linha devem ser equipados com sensores de temperatura para detectar a chama e disparar medidas para suprimir a combustão estabilizada (por exemplo, funções de emergência, como desligar a unidade de processo, inertização, etc.) na metade do tempo para o qual o dispositivo for resistente à combustão de curta duração.

Manual de calçados profissionais para download

Para auxiliar os profissionais das áreas de saúde e da segurança do trabalho e os próprios usuários na escolha adequada dos calçados profissionais, de acordo com as normatizações adotadas pelos órgãos competentes, o Instituto de Pesquisas Tecnológicas (IPT) elaborou o manual Instruções para escolha adequada dos calçados profissionais de acordo com a simbologia empregada. “A publicação pode ser vista como uma ferramenta para ajudar a minimizar os danos decorrentes de acidentes de trabalho devido à utilização de calçados inadequados à função”, explica a pesquisadora Nicole Aparecida Amorim de Oliveira, do Laboratório de Calçados e Produtos de Proteção, uma das autoras da publicação ao lado de Felipe Cintra Clementino e David Henrique Zago.

Dúvidas nos processos de compra podem levar a uma escolha inadequada dos calçados. O uso de um modelo inapropriado pode ocasionar calos, dores, problemas de saúde nos membros inferiores e tronco e acidentes, inclusive o mais comum, por quedas. Além disso, podem influenciar negativamente na independência e mobilidade da população idosa. “A escolha do calçado ideal deve ser realizada com atenção, visando não somente a proteção imediata, mas futura do usuário”, ressalta a pesquisadora.

O manual, que está dividido em sete capítulos (Introdução; Calçados; Normas vigentes; Disposições finais; Referências normativas e Siglas), tem um total de 20 páginas e está disponível gratuitamente para download. Os autores dedicam especial atenção à legislação atual, que ocupa sete páginas da publicação: em 2009, o então Ministério do Trabalho e Emprego, por meio da Portaria nº 121, publicou as novas normas a serem adotadas no Brasil para a certificação de calçados utilizados como Equipamentos de Proteção Individual (EPIs).

Para calçados de proteção contra riscos mecânicos foram adotadas as NBR ISO 20344, NBR ISO 203459, NBR ISO 20346 e NBR ISO 20347. Atualmente, ainda são adotadas as mesmas normas em versões atualizadas, regularizadas pela Portaria n° 452 de 20 de novembro de 2014, sendo a Secretaria Especial de Previdência e Trabalho (SEPRT) responsável pela emissão dos certificados.

Conforme indicado no título da publicação, existem simbologias específicas para indicar que os calçados foram submetidos aos testes necessários para desempenho de suas funções. Quatro tabelas estão incluídas no livro: Simbologias básicas; Simbologia para ensaio de escorregamento; Simbologias adicionais aplicadas aos calçados da Classe I e da Classe II e Simbologia por categoria. “Pelo conhecimento do significado de cada um dos símbolos, fica mais fácil escolher o calçado ideal que alinhe o tipo de proteção ao local onde estará o trabalhador e os possíveis riscos”, afirma a pesquisadora.
Quando realizados apenas os ensaios básicos, o calçado deve ser identificado com um símbolo que varia de acordo com a norma de especificação que foi adotada – por exemplo, SB significa Segurança básica pela NBR ISO 20345 e PB Proteção básica pela NBR ISO 20346. Todo calçado profissional deve ser submetido ao ensaio de escorregamento e obter resultados satisfatórios. Este teste avalia o coeficiente de atrito, ou seja, a capacidade de o calçado se opor à tendência de escorregar quando submetido a uma força inicial superior à necessária para dar início ao movimento. Para este ensaio, existem três tipos de simbologia aplicáveis, sendo obrigatória a utilização de ao menos uma delas.

Um exemplo é a classificação SRA: a sigla indica que o calçado foi submetido ao ensaio de escorregamento tendo como premissa a sua utilização em um posto de trabalho com superfícies que podem ter contato com água e saponáceos, especialmente em pisos cerâmicos. É o tipo de calçado para uso de profissionais que trabalham com serviços de limpeza, construção civil e linha de produção, por exemplo.

Para baixar o manual, clique no link https://www.ipt.br/download.php?filename=1960-Instrucoes_para_escolha_adequada_dos_calcados_profissionais_de_acordo_com_a_simbologia_empregada.pdf

A conformidade dos sistemas de sinalização de emergência

Deve-se conhecer os requisitos para projetos, fabricação, instalação, classificação, aceitação, manutenção e métodos de ensaio para sistema de sinalização de emergência, prevenção e proteção contra incêndio e situações de emergência.

A NBR 16820 de 09/2020 – Sistemas de sinalização de emergência — Projeto, requisitos e métodos de ensaio especifica os requisitos para projetos, fabricação, instalação, classificação, aceitação, manutenção e métodos de ensaio para sistema de sinalização de emergência, prevenção e proteção contra incêndio e situações de emergência.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as cores de segurança e contraste das sinalizações impressas?

Como deve ser apresentada a sinalização de proibição?

Como deve ser a sinalização de orientação e salvamento?

Como deve ser executada a sinalização de agente extintor?

O sistema de sinalização de emergência é composto por dois tipos: sinalização básica e complementar. A sinalização básica é constituída por quatro classes, de acordo com a sua função: sinalização de proibição, cuja função é proibir ou coibir ações capazes de conduzir ao início do incêndio ou ao seu agravamento e ameaça à vida humana; sinalização de alerta, cuja função é alertar para áreas e materiais com potencial risco; sinalização de orientação e salvamento, cuja função é indicar as rotas de saída e ações necessárias para o seu acesso; sinalização de equipamentos de combate a incêndio e alarme, cuja função é indicar a localização e os tipos de equipamentos de combate a incêndio e alarme disponíveis.

As sinalizações de alerta, de orientação e de equipamentos devem apresentar efeito fotoluminescente. A sinalização de proibição modelo P4 deve apresentar efeito fotoluminescente. A sinalização complementar é composta por faixas de cor, mensagens escritas, indicação de agente extintor, sistemas de segurança e lotação máxima, rota continuada, plano de fuga e deve ser empregada nas faixas de cor, utilizadas para indicação de obstáculos e riscos de utilização das rotas de saída, como pilares, arestas de paredes e vigas; mensagens escritas para necessidades especiais que não constem nos exemplos desta norma; indicação de agente extintor, que indicam o tipo de agente extintor e suas aplicações.

Devem ser utilizadas em locais de instalação de extintores de incêndio onde houver risco ao usuário se forem utilizados incorretamente e na indicação da lotação máxima do recinto e de sistemas de segurança contra incêndio, utilizadas para orientação de lotação e dos sistemas de segurança contra incêndio disponíveis na edificação. Devem ser usadas em rota continuada, próxima ou junto ao solo, cuja função é indicar as rotas de saída e ações necessárias para seu acesso; em plano de fuga, deve ser instalado em locais estratégicos com o objetivo de orientar, informar e instruir o usuário da edificação para os procedimentos adotados em situações de emergência.

As sinalizações complementares são obrigatórias em diversas situações apontadas nesta norma. Deve ser observada a relação: A > L2/2.000. onde A é a área da placa, expressa em metros quadrados (m²); L é a distância do observador à placa, expressa em metros (m). Esta relação é válida para L < 50 m. A medida mínima utilizada deve ser considerada para uma distância mínima de 4 m. (ver tabela abaixo)

Em situações onde há sinalizações conjugadas (por exemplo Tabela 6, códigos S13 e S16, disponível na norma), o comprimento da sinalização deve ser L = 4 H. Nestas situações, para o cálculo de distância de visualização, a área deve ser calculada com a relação 2 H2. No caso de emprego de letras na sinalização, estas devem ser grafadas conforme a seguir: h > L/125, onde h é a altura da letra, expressa em metros (m); L é a distância do observador à placa, expressa em metros (m). A tabela abaixo apresenta valores de altura de letra para distâncias predefinidas.

Todas as palavras e sentenças devem apresentar letras em caixa alta utilizando fonte univers 65 ou helvetica bold, não sendo admitido qualquer tipo de distorção da fonte. Quando houver a necessidade de instalação repetida acima da altura superior indicada nesta norma, devem ser adotados os critérios de ângulos de alcance visual conforme NBR 9050 para cálculo de distância de visualização. Para o cálculo de distância de visualização em sinalizações onde forem utilizadas letras, sempre deve ser priorizada a altura da letra e medida da placa, utilizando para os cálculos de projeto a menor distância de visualização encontrada.

A sinalização circular é utilizada para implantar símbolos de proibição e ação de comando; a triangular é utilizada para implantar símbolos de alerta; a retangular é usada para implantar símbolos de orientação, socorro, emergência, alarme e bomba de incêndio; a quadrada é usada para implantar símbolos de identificação de equipamentos utilizados no combate a incêndio. Quando adicionadas mensagens complementares às sinalizações de equipamento de combate a incêndio, estas passam a ser retangulares.

A cor da segurança deve cobrir no mínimo 50% da área do símbolo, exceto no símbolo de proibição, onde este valor deve ser no mínimo de 35 %. A cor vermelha é usada para símbolos de proibição, identificação de equipamentos de combate a incêndio e alarme. A verde, utilizada para símbolos de orientação e salvamento; a preta é usada para símbolos de alerta e sinais de perigo. A cor de contraste para sinalização de proibição deve ser branca ou fotoluminescente. A cor de contraste deve ser fotoluminescente para as sinalizações, orientação e salvamento, e de equipamentos de combate a incêndio e alarme.

A cor de contraste para a moldura da sinalização de alerta deve possuir fundo fotoluminescente e cor amarela. O preenchimento desta área deve realizado com efeito retícula utilizando 50% de fotoluminescente e 50% de amarelo ou amarelo fotoluminescente. A classificação das cores das sinalizações é referente às sinalizações impressas (produto acabado). As classificações das cores são relacionadas às cores de segurança, cores de contraste, cores das formas geométricas e dos símbolos de segurança das sinalizações.

A sinalização de proibição deve ser apresentada conforme a seguir: forma: circular; cor do fundo (cor de contraste): branca ou fotoluminescente; barra diametral e faixa circular (cor de segurança): vermelha; cor do símbolo: preta; margem (borda): branca. A sinalização de alerta deve ser apresentada conforme a seguir: forma: triangular; cor do fundo da moldura (cor de contraste): amarela fotoluminescente ou retícula; cor do símbolo e moldura: preta; margem (borda): fotoluminescente.

A sinalização de orientação deve ser apresentada conforme a seguir: forma: quadrada ou retangular; cor do fundo (cor de segurança): verde; cor do símbolo (cor de contraste): fotoluminescente; margem (borda): fotoluminescente. A sinalização de equipamento de combate e alarme de incêndio deve ser apresentada conforme a seguir: forma: quadrada ou retangular; cor de fundo (cor de segurança): vermelha; cor do símbolo (cor de contraste): fotoluminescente; margem (borda): fotoluminescente.

As sinalizações básicas possuem requisitos específicos conforme a seguir. A borda fotoluminescente deve possuir largura mínima de 5 mm. Convém que para sinalizações com distância de visualização superiores a 10 m, esta espessura seja aumentada progressivamente. As sinalizações de proibição e de alerta podem ser complementadas com mensagem escrita indicando o risco sinalizado. O texto deve ser na cor preta ou em cor de contraste quando o fundo for da cor de segurança e não pode substituir ou interferir no dimensionamento do pictograma.

A sinalização de proibição P4 deve possuir texto e a sinalização de equipamento pode ser complementada com mensagem escrita indicando o nome do equipamento. O texto deve ser na cor de contraste e não pode substituir ou interferir na visualização do pictograma. Para sinalizações de equipamento com mensagem de texto complementar, a medida deve ser aumentada em no mínimo 30% de altura (H = 1,3 L). As sinalizações de alarme de incêndio e bomba de incêndio devem possuir mensagem complementar indicando seu uso a as sinalizações de alarme e bomba de incêndio devem seguir a distância de visualização, calculando sua medida com a proporção L2 (largura ao quadrado). A altura das letras destas sinalizações não necessita seguir a altura mínima, devendo ser proporcional ao leiaute.

A forma do símbolo das sinalizações de alerta e perigo se referem ao pictograma, e não ao produto acabado. Os símbolos para sinalização básica são apresentados nas Tabelas 4 a 7 (disponíveis na norma), acompanhados de indicação de aplicação. A especificação de cada cor designada a seguir é apresentada na Tabela 3, disponível na norma. Exemplos de utilização das sinalizações instaladas podem ser visualizados no Anexo A.

Quanto às dimensões de plano de fuga, o tamanho pode ser reduzido para 210 mm × 297 mm (tamanho A4). É admitida uma tolerância de 5 % com relação a estas medidas. Os textos em um plano de fuga devem ser legíveis à distância para o qual o plano de fuga está destinado a ser lido. A altura mínima das letras deve ser de 2 mm. A altura dos caracteres no título deve ser de no mínimo 7% da menor dimensão do plano inteiro e a altura mínima dos sinais representados num plano de fuga deve ser 5 mm.

As linhas no plano de fuga também devem respeitar espessuras mínimas. Para paredes externas, 1,6 mm, e para paredes internas, 0,6 mm. Linhas representando escadas, rampas ou outro elemento semelhante devem possuir espessura de 0,15 mm. As instruções gerais de segurança são de âmbito geral e a sua inclusão nas plantas de emergência tem como objetivo informar e orientar sobre os comportamentos adotados em caso de emergência.

As instruções gerais de segurança das plantas de emergência: manter a calma e acionar a botoeira de alarme; seguir para a saída orientando-se pela sinalização existente ou instruções dos brigadistas; não utilizar elevadores, apenas as escadas sinalizadas; não retornar ao local de origem e caminhar abaixado para evitar inalar fumaça; seguir a sinalização até o ponto de encontro e aguarde instruções. O sistema de sinalização de emergência tem como objetivo reduzir o risco de ocorrência de incêndio, alertar para os riscos existentes, assegurar que sejam adotadas ações adequadas à situação de risco, orientar as ações de combate, e facilitar a localização dos equipamentos e das rotas de saída para abandono seguro da edificação em caso de incêndio.

O projeto do sistema de sinalização de emergência deve ser composto por um conjunto de peças gráficas, contendo plantas baixas e cortes, onde estejam claramente apontados todos os detalhes necessários para a identificação de todas as partes constituintes do sistema, suas localizações e as orientações necessárias para sua implementação. O projeto deve conter um memorial descritivo, onde constem a descrição dos princípios que orientaram a concepção do sistema para cada um dos tipos de sinalização básica considerada, as justificativas para a sinalização complementar adotada associada às correspondentes sinalizações básicas, os modelos, dimensões e quantitativos das placas de sinalizações adotadas, todos os detalhes necessários para identificação das partes constituintes do sistema de sinalização de emergência, os requisitos mínimos de desempenho (ver Seção 7), as orientações para instalação e as recomendações para inspeção e conservação.

O projeto e a instalação devem ser executados por empresas ou por responsáveis profissionais, legalmente habilitados, sendo comprovada a capacitação, a qualquer tempo. O projeto e as atividades de instalação, com o correspondente projeto como construído, devem ser registrados em conselho profissional competente. O instalador do sistema de sinalização deve destacar todas as eventuais alterações introduzidas, relacionadas ao local e altura de instalação, medidas, e modelos de sinalizações utilizadas, apresentando ao projetista para verificação da adequação dos parâmetros e condições de uso estabelecida para o sistema de sinalização.

Os documentos assim produzidos devem fazer parte do memorial do sistema. Todos os documentos do memorial, bem como as alterações de projeto propostas pelo instalador e aprovadas pelo projetista, devem compor a versão final do projeto, denominada Projeto como construído. A elaboração de toda documentação é condição necessária para a entrega do sistema e é referência para os procedimentos de aceitação técnica do sistema.

As plantas baixas e respectivos cortes devem ser elaboradas, para cada pavimento-tipo, em conformidade com os documentos técnicos NBR 10067 e NBR 10068, em escala 1:50 ou 1:100 ou 1:200, compatível com as dimensões da planta baixa, e que permita a clara visualização das peças constituintes do sistema e dos espaçamentos que definem suas localizações. Não é permitida a referência a outro projeto para justificar a aplicação de qualquer informação no memorial.

As plantas também devem mostrar os itens da lista a seguir: a identificação do proprietário ou responsável pelo uso; o nome, endereço e número de registro do conselho de classe do responsável apto para realização do projeto; a localização da edificação ou área de risco e respectiva planta de situação; a vista em corte da altura total, incluindo informações sobre elementos estruturais e localização das divisórias baixas; a apresentação dos detalhes dos modelos, das medidas e da localização das sinalizações; a apresentação da legenda de símbolos empregados no projeto de sinalização em todas as plantas que o constituem, conforme a NBR 14100.

 

A operação correta dos detectores de tensão portáteis

Deve-se ter conhecimento sobre os detectores de tensão portáteis, com ou sem fontes de alimentação embutidas, para serem usados em sistemas elétricos para tensões de 1kV a 765 kV CA, e frequências de 50 Hz e/ou 60 Hz.

A NBR IEC 61243-1 de 09/2020 – Trabalhos em tensão — Detectores de tensão – Parte 1: Tipo capacitivo para ser usado para tensões superiores a 1 kV ca é aplicável a detectores de tensão portáteis, com ou sem fontes de alimentação embutidas, para serem usados em sistemas elétricos para tensões de 1kV a 765 kV CA, e frequências de 50 Hz e/ou 60 Hz. Aplica-se somente aos detectores de tensão de tipo capacitivo usados em contato com a parte a ser ensaiada, como um dispositivo completo incluindo seu elemento de isolamento ou como um dispositivo separado, adaptável a um bastão isolado que, como uma ferramenta separada, não é coberta por esta norma (ver 4.4.1 para projeto geral).

Outros tipos de detectores de tensão não são cobertos por esta parte da norma. Algumas restrições em seu uso são aplicáveis no caso de comutadores montados de fábrica e sobre sistemas aéreos de ferrovias eletrificadas (ver Anexo B, instruções de uso). Exceto onde especificado de forma diferente, todas as tensões definidas nesta norma se referem aos valores de tensões fase-fase ou sistemas trifásicos. Em outros sistemas, convêm que as tensões fase-fase ou fase-terra (aterramento) aplicáveis, sejam usadas para determinar a tensão de operação.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as marcações a serem inseridas no aparelho?

Quais são os critérios de ensaios para os produtos?

Como devem ser executados os ensaios em condições úmidas?

Como deve ser feita a seleção do arranjo de ensaio para a influência de campo de interferência em fase?

O detector de tensão deve ser projetado e fabricado para ser seguro ao usuário, desde que seja utilizado de acordo com os métodos seguros de trabalho, e as instruções de uso. O detector de tensão deve dar uma indicação clara do estado de presença de tensão e/ou ausência de tensão, por meio da mudança do status do sinal. A indicação deve ser visual e/ou sonora.

O detector de tensão deve fornecer uma indicação clara da presença e/ou ausência da tensão de operação do sistema, de acordo com sua tensão nominal ou faixa de tensão nominal, e sua frequência nominal ou frequências nominais. A indicação pode não ser confiável na proximidade de grandes áreas condutivas, que podem criar zonas equipotenciais. Quando o detector de tensão for usado de acordo com as instruções de uso, a presença de uma tensão adjacente ou condutor aterrado não pode afetar sua indicação.

Quando usado de acordo com as instruções de uso, o detector de tensão não pode indicar presença de tensão para valores normais de tensões de interferência. O detector de tensão deve dar indicação contínua quando em contato direto com o condutor. O usuário não pode ter acesso ao ajuste de tensão limiar.

A indicação presença de tensão deve aparecer se a tensão para terra na parte a ser ensaiada for maior do que 45% da tensão nominal. 45% da tensão nominal correspondem a 0,78 Un 3. A indicação presença de tensão não pode aparecer se a tensão para terra na parte a ser ensaiada for igual ou menor do que 10% da tensão nominal. 10% da tensão nominal corresponde a 0,17 Un 3 e é a máxima tensão induzida fase-terra normalmente encontrada em campo.

Para preencher os requisitos anteriores, a tensão limiar Ut deve satisfazer a seguinte relação: 0,10 Un máx. < Ut ≤ 0,45 Un mín. Para detectores de tensão com somente uma tensão nominal, Un máx. é igual a Un mín. Há um limite teórico de 4,5 para a razão entre Un máx. e Un mín. para atingir uma clara indicação do detector de tensão. Este valor corresponde à divisão de 0,45 por 0,1. Pode acontecer que o nível de tensão induzida em uma rede específica seja maior do que 10% da tensão nominal ou da tensão nominal máxima da faixa de tensão.

Pode também acontecer que as variações da tensão nominal da rede sejam tais que 0,45 Un ou 0,45 Un máx. não sejam o menor valor possível. Além disso, quando é esperado que o detector de tensão seja utilizado na proximidade de grandes partes condutivas que gerem zonas equipotenciais (ver 4.2.1), o usuário pode especificar um valor inferior para a tensão limiar. Em todos esses casos, é necessário que o fabricante e o usuário definam um acordo para estabelecer o valor apropriado para a tensão limiar, enquanto a mantém na faixa especificada anteriormente.

O ajuste da tensão limiar é adicionalmente limitado pelos requisitos para clara indicação que reduzam a faixa de valores possíveis, e os ensaios necessários (indicação clara) têm que ser aprovados. Caso específico de detectores de tensão a serem utilizados em sistemas com baixos valores de tensão de interferência. Em algumas situações, caso o usuário tenha uma rede com baixos valores de tensão de interferência, pode solicitar ajuste no limiar de tensão abaixo de 0,10 Un máx. Este caso específico pode facilitar na operação do detector de tensão na proximidade de grandes partes condutivas.

Apesar dessa mudança de tensão limiar para um valor mais baixo, o limite teórico de 4,5 para a razão entre Un máx. e Un mín. ainda permanece válido, e os ensaios pertinentes (clara indicação) têm que ser aprovados. Nesse caso, o detector de tensão deve ter uma marcação especial e uma advertência deve ser incluída nas instruções de uso para informar aos usuários sobre a modificação na tensão limiar. Convém que a marcação especial seja o resultado de um acordo entre o fabricante e o usuário.

O detector de tensão deve proporcionar uma clara indicação sob condições normais de iluminação e ruído. Os tipos de indicações de detector de tensão são divididos em três grupos: grupo I: Indicação com no mínimo dois sinais ativos distintos, que fornecem uma indicação da condição de presença de tensão e ausência de tensão. A condição de standby não é necessária; grupo II: Indicação com no mínimo um sinal ativo, que fornece uma indicação da condição de ausência de tensão e é ativado ligando manualmente e suprimido quando o eletrodo de contato é posicionado em contato com a parte sob tensão; grupo III: Indicação com no mínimo um sinal ativo, que dá uma indicação da condição de presença de tensão e deve possuir a condição de standby.

A indicação visual deve ser claramente visível ao usuário na posição de operação e em condições normais de iluminação. Quando dois sinais visuais são utilizados, a indicação não pode depender somente das luzes de diferentes cores para a percepção. Características adicionais devem ser utilizadas, como separação física das fontes de luz, forma distinta de sinais luminosos ou luz piscando.

A indicação sonora deve ser claramente audível ao usuário quando na situação de operação e em condições de ruídos normais. Quando dois sinais sonoros forem utilizados, a indicação não pode depender somente dos sons de diferentes níveis de pressão sonora para a percepção. Características adicionais devem ser utilizadas, como tom ou intermitência dos sinais sonoros.

Existem três categorias de detectores de tensão de acordo com as condições climáticas de operação: frio (C), normal (N), e quente (W). O detector de tensão deve operar corretamente na faixa de temperatura de sua categoria climática, de acordo com a tabela abaixo. O detector de tensão deve operar corretamente em caso de mudança repentina de temperatura na faixa de temperatura de sua categoria climática.

Um detector de tensão deve operar entre 97% a 103% de sua frequência nominal ou de cada uma de suas frequências nominais. O tempo de resposta deve ser menor do que 1 s. O detector de tensão com uma fonte de alimentação embutida deve fornecer uma indicação clara até que a fonte esteja esgotada, a menos que sua utilização seja limitada a uma indicação de não prontidão ou desligamento automático como mencionado nas instruções de uso. O elemento de ensaio, item embutido ou separado, deve ser capaz de ensaiar todos os circuitos elétricos, incluindo a fonte de energia e o funcionamento da indicação.

Quando todos os circuitos não puderem ser testados, qualquer limitação deve ser claramente informada nas instruções de uso. Esses circuitos devem ser construídos com alta confiabilidade. Quando houver um elemento de ensaio embutido, o detector de tensão deve dar uma indicação de pronto ou não pronto. O detector de tensão não pode detectar a tensão V cc. O detector de tensão deve ser capaz de funcionar sem falha quando sujeito à tensão de operação por 5 min. Os materiais de isolamento devem ser adequadamente classificados (natureza do material e dimensões) para tensão nominal (ou a máxima tensão nominal da faixa de tensão) do detector de tensão.

Quando tubos de material isolante, com corte transversal circular, são utilizados no projeto dos detectores de tensão, convém que atendam aos requisitos da IEC 60855 ou IEC 61235. Para um detector de tensão, como um dispositivo completo, deve ser fornecido ao usuário um isolamento adequado, por meio de elementos isolantes incorporados. Para um detector de tensão, como um dispositivo separado, convém que seja fornecido ao usuário um isolamento adequado, por meio de um bastão isolante adaptável.

A proteção contra ponte deve ser tal que o detector de tensão não possa causar descarga elétrica ou avaria entre as peças sob tensão de uma instalação ou entre uma peça sob tensão de uma instalação e o terra. O detector de tensão deve ser construído para que o indicador não possa ser danificado ou desligado como resultado de um arco elétrico de baixa energia.

Quanto aos requisitos mecânicos, para um detector de tensão como um dispositivo completo, deve ser fornecido ao usuário uma distância adequada por meio de um elemento isolante. Para um detector de tensão como um dispositivo separado, convém que o usuário receba uma distância adequada por meio de um bastão isolante adaptável.

O detector de tensão como um dispositivo completo deve incluir pelo menos os seguintes elementos: punho, proteção de mão, elemento isolante, marca-limite, indicador e eletrodo de contato. O detector de tensão como um dispositivo separado deve incluir pelo menos: adaptador, indicador e eletrodo de contato. Convém que o bastão isolante utilizado em conjunto com o detector de tensão como um dispositivo separado atenda aos requisitos descritos, mesmo se não for fornecido com o detector de tensão. O detector de tensão não pode ter uma conexão condutiva externa, ou qualquer outro dispositivo para fazer esta conexão, exceto para o eletrodo de contato.

O detector de tensão sem extensão do eletrodo de contato deve ter a marcação de categoria L. Ele é utilizado principalmente em linhas aéreas. O detector de tensão com extensão do eletrodo de contato deve ter marcação de categoria S. Ele é principalmente utilizado em subestações internas. O comprimento mínimo de um elemento isolante de um detector de tensão como um dispositivo completo deve estar de acordo com a tabela abaixo.

A tensão nominal Un é usada quando os parâmetros a serem especificados são relacionados ao dimensionamento ou ao desempenho funcional do detector de tensão, enquanto que a tensão projetada Ur é usada quando o desempenho isolante do detector de tensão é apresentado. Os valores Li da tabela acima correspondem à distância mínima no ar (obtida da IEC 61931, Tabelas 1 e 2) mais uma distância de segurança adicional. Os valores Li da tabela acima podem ser usados como orientação para determinar o comprimento do bastão isolante usado com o detector de tensão como um dispositivo separado.

Entretanto, o comprimento do bastão isolante para trabalho sob tensão pode ser encurtado para detectores de tensão como um dispositivo separado considerando as distâncias de aproximação mínimas ou de acordo com as regulamentações nacionais ou regionais. Para Li igual ou maior do que 520 mm, as partes condutivas não excedendo 200 mm (no total), medidas a partir da marca-limite em direção ao punho, são permitidas dentro do comprimento mínimo do elemento isolante se elas estiverem completamente isoladas externamente.

A marca-limite deve ser de cerca de 20 mm de largura, permanente, e claramente reconhecível pelo usuário. Se não houver uma marca-limite em um detector de tensão como um dispositivo separado, a extremidade do adaptador deve agir como marca-limite. Para um detector de tensão como um dispositivo completo, o punho deve ser de no mínimo 115 mm de comprimento. O punho pode ser feito mais comprido para operação com as duas mãos.

Para um detector de tensão como um dispositivo completo, o protetor de mão deve estar permanentemente fixo e ter uma altura mínima de (hHG) de 20 mm. A fim de adaptar o detector de tensão a usos diferentes o eletrodo de contato prontamente pode ser intercambiável ou completado com outros tipos de eletrodos de contato dependendo do tipo de instalação e instruções de uso. O detector de tensão deve ser projetado para facilitar operação confiável com esforço físico razoável pelo usuário.

O detector de tensão deve ser projetado para permitir uma aproximação segura em direção da instalação a ser ensaiada. A deflexão sobre seu próprio peso deve ser tão baixa quanto possível. O peso do indicador deve ser mínimo e compatível com os requisitos de desempenho. No caso de um detector de tensão como um dispositivo separado, convém que o usuário esteja ciente que sua escolha de um bastão isolante pode influenciar muito na força de aperto e deflexão.

 

Os conceitos da drenagem oleosa em postos de combustíveis

É obrigatório ter as iniciativas para o manuseio das águas superficiais e sua origem, e seus potenciais contaminantes oleosos, para a prevenção de contaminação das águas e para a instalação dos sistemas de drenagem em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos.

A NBR 14605-1 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis – Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 1: Conceituação e projeto da drenagem oleosa estabelece as iniciativas para o manuseio das águas superficiais e sua origem, e seus potenciais contaminantes oleosos, para a prevenção de contaminação das águas e para a instalação dos sistemas de drenagem em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos. O objetivo desta parte é assegurar que o efluente líquido do posto revendedor de combustíveis automotivos, dos pontos de abastecimento e de demais serviços automotivos seja destinado dentro dos padrões mínimos de contaminantes oleosos sendo estes padrões estabelecidos pela legislação vigente.

A NBR 14605-2 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 2: Dimensionamento de vazão de sistema de contenção e separação de efluentes estabelece a metodologia para o dimensionamento de vazão do sistema de drenagem oleosa em posto revendedor de combustíveis automotivos, em ponto de abastecimento e em demais serviços automotivos (PRC/PA). A NBR 14605-3 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 3: Ensaio-padrão, equipamentos e técnica de amostragem para determinação do desempenho de caixas separadoras de água tem o objetivo de avaliar o desempenho da caixa separadora de água e óleo sob as condições da legislação ambiental local vigente e as necessidades do usuário. Outro objetivo desta parte é estabelecer que uma caixa separadora de água e óleo operando na sua capacidade nominal esteja sujeita à prática, ao receber águas provenientes do sistema de separação de água e óleo. Estabelece os procedimentos relacionados aos equipamentos e à técnica de amostragem a serem usados na determinação do desempenho da separação da mistura água/óleo oriunda da contaminação das águas superficiais. Não expressa a determinação da eficiência da separação água/óleo, sujeita às emissões de grandes quantidades de hidrocarbonetos que podem ocorrer na sua forma pura ou em altas concentrações, do afluente para a caixa separadora de água e óleo.

A NBR 14605-4 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 4: Projeto, construção e montagem de sistema de contenção e separação de efluentes fornece orientações e requisitos para o projeto, construção, montagem e instalação de sistema de contenção e separação de efluentes. Não contempla o esgotamento sanitário e o dimensionamento do sistema de águas pluviais. A NBR 14605-5 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 5: Comissionamento, operação e manutenção de sistema de contenção e separação de efluentes fornece orientações para o comissionamento, operação e manutenção de sistema de captação, condução e separação de efluentes oleosos. não é aplicável ao comissionamento, à operação e à manutenção do sistema de esgotamento sanitário e do sistema de águas pluviais.

A NBR 14605-6 de 09/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Sistema de drenagem oleosa em posto revendedor de combustíveis automotivos – Parte 6: Construção de sistema de contenção, tratamento e separação de efluente — Área de lavagem estabelece as diretrizes e os requisitos para o desenvolvimento de sistemas de contenção, tratamento e separação de águas oleosas, bem como a metodologia de dimensionamento de vazão do sistema de drenagem oleosa da área de lavagem em posto revendedor de combustível automotivo, ponto de abastecimento e demais serviços automotivos. Os veículos somente podem ser lavados em áreas especificadas, onde a água de lavagem e qualquer precipitação pluvial podem ser contidas. A captação e a condução da água utilizada na operação de lavagem devem ser independentes da captação e condução das águas pluviais. Na área de lavagem de veículos são geradas correntes líquidas que podem conter os seguintes produtos e materiais contaminantes: óleo, combustível, graxa, produtos químicos utilizados na lavagem e sólidos em suspensão. A água escoada da área de lavagem de veículos deve ser dirigida a um sistema de separação de água e óleo ou tratamento no próprio local, podendo ser possível o seu reuso. Alternativamente, esta água pode ser coletada em uma unidade de armazenamento e enviada para um local de descarte autorizado. No caso da utilização de produtos químicos na operação de lavagem de veículos, a corrente líquida contendo produtos químicos não pode ser direcionada exclusivamente para uma caixa separadora de água e óleo (CSAO), uma vez que pode interferir no seu funcionamento e eficiência, devendo ser utilizado concomitantemente um sistema de reciclagem ou devendo esta corrente líquida ser coletada em uma unidade de armazenamento para posterior envio para um local de descarte autorizado. Produtos químicos com pH entre 6 e 9, de modo geral, podem não afetar o funcionamento e a eficiência da CSAO, sendo que aqueles com pH neutro praticamente não afetam esta eficiência.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como proceder na drenagem de águas oleosas?

Como deve ser executado o dimensionamento da caixa separadora de água e óleo?

Como realizar o Ensaio A – Investigação do arraste de óleo na sua capacidade de armazenamento de óleo?

Quais as considerações quando de construção nova, de ampliação ou de reforma de posto revendedor de combustíveis?

Pode-se dizer que as operações do posto revendedor de combustíveis automotivos, do ponto de abastecimento e dos demais serviços automotivos envolvendo o manuseio de produtos oleosos apresentam potencial para a presença destes produtos no piso, por deficiências na operação ou eventos acidentais. Os produtos oleosos, se não contidos e recolhidos adequadamente, quando em contato com a água, produzirão águas oleosas.

A utilização de água de forma não seletiva nas áreas operacionais é fonte de geração de água oleosa que é captada e conduzida de forma segregada das águas pluviais do posto revendedor de combustíveis automotivos ou ponto de abastecimento e demais serviços automotivos. O impacto de águas oleosas no meio ambiente pode ser evitado adotando-se as seguintes estratégias: não geração de águas oleosas; captação das águas oleosas superficiais, separação e destinação do óleo, e lançamento do efluente aquoso dentro de parâmetros ambientais aceitos.

A não geração ou a minimização de águas oleosas é condição fundamental para a redução do impacto nas águas pluviais, provocado pelas operações do posto revendedor de combustíveis automotivos, do ponto de abastecimento e dos demais serviços automotivos. Por conseguinte, deve ser minimizada a presença de material oleoso no piso por meio de equipamentos adequados e bem mantidos, procedimentos operacionais seguros e procedimentos de emergência. Por outro lado, a presença de água em determinadas áreas onde possa potencialmente haver a presença de material oleoso deve ser eliminada, sempre que possível.

Não sendo viável a não geração de águas oleosas, deve haver um sistema segregado de captação das águas, condução e separação do óleo e lançamento do efluente aquoso dentro de padrões ambientalmente aceitos. A não geração de águas oleosas tem início na especificação e na devida manutenção e calibração dos equipamentos envolvidos nas operações, de modo a não permitir a presença de material oleoso no piso. No caso da operação na área de abastecimento, a unidade abastecedora e os seus acessórios, como os bicos de abastecimento, devem estar corretamente especificados e em boas condições de uso, de forma que evitem o derramamento de produto.

No ambiente de troca de óleo lubrificante e de lubrificação, os cuidados devem partir do momento da retirada dos bujões do cárter, da caixa de marcha e transmissão, do recipiente do fluido de freio até a troca do filtro de óleo e da lubrificação dos pinos graxeiros, e devem ser realizados com precaução. No caso da área de descarga de produto, os cuidados devem iniciar com a correta especificação dos equipamentos, com a utilização da descarga selada, continuando com o perfeito acoplamento e desacoplamento da mangueira de descarga e com a devida manutenção da câmara de contenção da descarga de combustível (spill de descarga).

O sistema de drenagem oleosa (SDO) deve ser constituído por componentes para executar as funções de captação, separação, estocagem temporária de resíduos oleosos provenientes da operação do PRC/PA e a devida condução do efluente para a rede coletora, corpo receptor ou outro destino determinado pelo poder público. O SDO deve garantir a captação das águas oleosas provenientes das áreas onde existam equipamentos e atividades com possibilidade de geração de resíduos oleosos (ver figura abaixo). Eventuais resíduos oleosos provenientes da operação de descarga de combustíveis têm como captação as câmaras de contenção de descarga, conforme as NBR 13786 e NBR 13783.

Os casos de derrames acidentais não estão contemplados nesta norma. Os PRC/PA com lavagem de veículos devem possuir SDO independente das demais áreas. A área de abastecimento de veículos onde são realizadas operações utilizando água para a limpeza de vidros e partes da carroceria, e de reposição da água de reservatórios de veículos, deve ser dotada de canaletas em seu entorno, localizados internamente a 0,5 m da projeção da cobertura da área de abastecimento, quando houver.

O dimensionamento de canaletas para águas oleosas deve ser feito com seção suficiente para vazão de projeto Q3 ou Q4, conforme o Anexo A, considerando um fator de segurança de 1,5 para a vazão da canaleta, devendo a seção mínima ser de 60 mm × 60 mm. A pavimentação da área de abastecimento deve garantir caimento para as canaletas, limitando a captação a esta área, evitando contribuição das áreas externas. Quando for inevitável o caimento do piso das áreas externas para a área de abastecimento e/ou troca

de óleo devido à topografia do terreno, deve ser previsto uma canaleta independente para a captação das águas pluviais, evitando a contribuição de águas não oleosas para a CSAO (ver figura abaixo). As áreas de troca de óleo e de outros serviços automotivos com contribuição de resíduos oleosos devem ser dotadas de canaletas que captem as águas oleosas.

O uso da parte 3 da NBR 14605 pode envolver o emprego de materiais, operações e equipamentos perigosos, e esta norma não pretende tratar de todos os problemas de segurança associados com seu uso. É responsabilidade do usuário estabelecer as práticas de segurança, meio ambiente e saúde apropriados, e determinar a aplicabilidade de limitações regulamentadoras, antes de seu uso. Esta parte 3 não é aplicável se o afluente contiver uma liberação inesperada de contaminante oleoso que gere uma concentração na água oleosa maior que a prevista em projeto. Não é aplicável se o afluente for transferido por bombeamento.

Os dados produzidos na parte 3 são considerados válidos somente para as caixas separadoras de água e óleo ensaiadas. Entretanto, os resultados dos ensaios podem ser extrapolados para caixas separadoras de água e óleo menores ou maiores, desde que providos de uma geometria e dinâmica semelhantes. Quando a utilização da extrapolação não for aplicável, submeter a unidade ao ensaio.

A vazão utilizada para realização dos ensaios é a mesma vazão dada pelo fabricante para uma dada caixa separadora de água e óleo, a fim de determinar o máximo nível de contaminação no afluente relacionado com a concentração máxima permitida no efluente. O projeto deve contemplar o encaminhamento, o perfil, os equipamentos e o material utilizado para os sistemas pluvial e oleoso, a partir do leiaute de arquitetura do posto de serviço, ponto de abastecimento e demais serviços automotivos. O projeto deve estabelecer o diâmetro mínimo de 100 mm no sistema de condução de águas oleosas, para evitar o entupimento com contaminantes particulados.

O projeto deve contemplar a utilização de materiais plásticos para a condução das águas oleosas. O projeto deve prever dispositivos para separação e retenção de contaminantes particulados, conforme a NBR 14605-2. Estes dispositivos são integrados pelos seguintes componentes: caixa de areia; sistema de retenção de resíduos flutuantes. A localização dos dispositivos que integram o conjunto responsável pela remoção dos contaminantes particulados deve ser tal que o acesso a eles ocorra sem dificuldades e não sofra a interferência do trânsito de veículos.

Os ensaios dos riscos eletrostáticos em atmosferas explosivas

Deve-se conhecer os métodos de ensaios relacionados às propriedades dos equipamentos, produtos e processos necessárias para se evitar uma ignição e os riscos de choques eletrostáticos provenientes da eletricidade estática.

A NBR IEC 60079-32-2 de 09/2020 – Atmosferas explosivas – Parte 32-2: Riscos eletrostáticos — Ensaios descreve os métodos de ensaios relacionados às propriedades dos equipamentos, produtos e processos necessárias para se evitar uma ignição e os riscos de choques eletrostáticos provenientes da eletricidade estática. Destina-se à utilização em uma avaliação de risco dos perigos eletrostáticos ou na preparação de normas para famílias de produtos ou de produtos dedicados para máquinas ou equipamentos elétricos ou não elétricos.

O objetivo desta parte é fornecer os métodos de ensaio padronizados utilizados para o controle da eletricidade estática, como resistência de superfície, resistência de fuga para terra, resistividade em poeiras, condutividade de líquidos, capacitância e avaliação da capacidade de gerar uma ignição de descargas eletrostáticas provocadas. Destina-se especialmente para utilização com as normas existentes da série NBR IEC 60079. A ABNT IEC TS 60079-32-1, Atmosferas explosivas – Parte 32-1: Riscos eletrostáticos, orientação, foi publicada em 2020. Esta norma não se destina a substituir normas que abrangem produtos específicos e situações industriais.

Esta parte apresenta o mais recente estado do conhecimento que pode, no entanto, diferir ligeiramente dos requisitos de outras normas, especialmente no que concerne a ensaios climáticos. Quando um requisito desta norma conflitar com um requisito especificado na NBR IEC 60079-0, para evitar a possibilidade de reensaiar equipamentos previamente aprovados, o requisito da NBR IEC 60079-0 se aplica apenas para equipamentos dentro do escopo da NBR IEC 60079-0. Em todos os outros casos, aplicam-se os requisitos indicados nesta parte.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser preparada a amostra de ensaio da resistência superficial?

O que deve conter o relatório de ensaio?

Quais os conceitos da resistência de fuga?

Como devem ser executados os ensaios de calçados em uso?

As variações nos resultados da medição de propriedades eletrostáticas de materiais são devidas principalmente a variações na amostra (por exemplo, superfícies e geometria não homogêneas e o estado do material) em vez de incertezas na tensão, corrente, geometria do eletrodo ou incerteza do dispositivo de medição. Isto porque as propriedades eletrostáticas são fortemente influenciadas por diferenças muito pequenas, de modo que os efeitos estatísticos desempenham um papel importante. Por exemplo, na ASTM E582, a energia mínima de ignição (MIE – Minimum Ignition Energy) de uma atmosfera de gás explosivo é definida por 100 ou 1.000 não ignições. Isto não exclui, no entanto, que o ensaio 1 001 possa causar uma ignição.

Devido a este efeito estatístico, a precisão e a reprodutibilidade das propriedades eletrostáticas são limitadas pela dispersão estatística. Normalmente, a precisão e a reprodutibilidade das medições eletrostáticas são de cerca de 20% a 30%. Isto é muito mais alto do que para uma medição elétrica típica, que é inferior a 1 %. Por esta razão, os limiares do limite eletrostático contêm certa margem de segurança para compensar a dispersão estatística ocorrida.

Pode ser difícil compreender que a ocorrência da dispersão estatística pode não ser minimizada por meio de melhoria da qualidade dos ensaios. No entanto, essa situação tem que ser aceita, lembrando que os ensaios eletrostáticos contêm margens de segurança adequadas, especificamente para compensar este efeito. Os processos de fabricação (por exemplo, moldagem, extrusão etc.) podem alterar as propriedades eletrostáticas dos materiais.

Recomenda-se, portanto, ensaiar produtos acabados, quando possível, em vez de os materiais dos quais os produtos são feitos. Para obter resultados comparáveis em todo o mundo para medições laboratoriais, convém que as amostras sejam aclimatadas e medidas em umidade relativa e temperatura declaradas (por pelo menos 24 h a (23 ± 2) °C e (25 ± 5) % de umidade relativa). Em locais que podem apresentar níveis mais baixos ou mais altos de umidade e temperatura, um valor adicional na umidade relativa e na temperatura local mais alta ou mais baixa pode ser aceitáveis (por exemplo, 40 ± 2) °C e (90 ± 5)% de umidade relativa para climas tropicais e (23 ± 2) °C e (15 ± 5) % de umidade relativa para locais com climas muito frios).

De forma a evitar erros de medição causados por um comportamento diferente da histerese da umidade do material, convém que a amostra seja inicialmente seca e depois aclimatada ao clima específico. Em algumas outras normas, por exemplo, NBR IEC 60079-0, diferentes valores-limite com base em medições feitas a 50% de umidade relativa ou 30 % de umidade relativa foram especificados no passado na ausência de uma câmara efetiva desumidificadora. A experiência mostra que os resultados e medição neste clima não são obtidos com o mesmo grau de consistência que aqueles medidos de acordo com esta norma.

No entanto, pode ser necessário utilizar o clima especificado em outras normas para manter a continuidade do equipamento previamente avaliado. Pode ser difícil aplicar os métodos de ensaio exatamente como especificados nesta norma, a todos os tipos de equipamentos e em todas as situações. Se este for o caso, o relatório de ensaio deve indicar claramente quais partes desta norma foram aplicadas em sua totalidade e quais partes desta norma foram aplicadas em parte. Isto deve ser acompanhado de uma justificativa técnica dos motivos pelos quais a norma não pôde ser aplicada em sua totalidade e da equivalência de quaisquer outros métodos que tenham sido aplicados em comparação com os métodos de ensaio especificados nesta norma.

Os métodos de ensaio especificados nesta norma envolvem a utilização de fontes de alimentação de alta tensão e, em alguns ensaios, gases inflamáveis que podem apresentar perigo se manuseados incorretamente. Os usuários desta norma são alertados a realizar avaliações de risco adequadas e a considerar os regulamentos locais antes de realizar qualquer um dos procedimentos de ensaio. Em relação à resistência superficial, as superfícies que têm uma resistência superficial suficientemente baixa, de acordo com 3.11, podem não ser carregadas eletrostaticamente quando em contato com a terra. Por esta razão, a resistência da superfície é uma propriedade eletrostática básica relativa à capacidade dos materiais de dissipar a carga eletrostática por condução. Como as resistências superficiais geralmente aumentam com a diminuição da umidade relativa, é necessária uma baixa umidade relativa durante a medição para reproduzir as condições com o pior caso.

A IEC 60093 e IEC 61340-2-3 descrevem métodos de medição da resistência superficial e volumétrica e a resistividade de materiais sólidos planos. A IEC 61340-4-10 é um método alternativo para medir a resistência superficial. No entanto, muitas vezes estes métodos podem não ser aplicados devido ao tamanho e forma dos materiais, especialmente quando incorporados em equipamentos e aparelhos. Por esta razão, o método de ensaio para medições de resistência de materiais que não são planos e produtos com pequenas estruturas especificadas na IEC 61340-2-3, ou o método a seguir pode ser utilizado como uma alternativa adequada.

A superfície é colocada em contato com dois eletrodos condutivos de comprimento e distância definidos e a resistência entre os dois eletrodos é medida. Uma vez que as resistências elevadas geralmente diminuem com o aumento da tensão, a tensão aplicada deve ser aumentada para pelo menos 500 V, preferencialmente 1.000 V, para resistências muito altas. Os conhecimentos mais recentes indicam que pode ser benéfico medir resistências elevadas a 10 kV. No entanto, neste caso, a centelha tem que ser evitada, por exemplo, por uma espuma isolante entre os eletrodos, e os critérios de aceitação têm que ser modificados.

Quando camadas finas isolantes são montadas sobre um material mais condutivo, a tensão aplicada pode queimar totalmente o material inferior, e os resultados obtidos são inconclusivos. Os materiais não homogêneos, particularmente tecidos, podem apresentar resultados diferentes quando medidos em diferentes direções. Isto pode ser evitado utilizando-se um sistema de eletrodo de anel concêntrico, de acordo com a IEC 61340-2-3 ou ISO 14309. Eletrodos de tiras de borracha condutiva macia são preferidos aos eletrodos de tinta prateada para limitar a interação química não desejada da superfície.

No caso de amostras irregulares, os eletrodos de tinta prateada são preferidos aos eletrodos macios, devido à sua melhor adaptação à geometria irregular da amostra. O critério de >25 mm para a área ao redor dos eletrodos, conforme indicado na figura 1, disponível na norma, aplica-se somente às folhas de ensaio, podendo ser ignorado no caso de produtos reais. Os eletrodos são conectados a um teraohmímetro. Um eletrodo de proteção pode ser colocado sobre os eletrodos de medição, para minimizar o ruído elétrico. Durante o ensaio, a tensão deve ser suficientemente estável para que a corrente de carregamento, devida à flutuação de tensão, seja insignificante em comparação com a corrente que flui através da amostra de ensaio.

A precisão do teraohmímetro deve ser verificada regularmente com várias resistências de valores ôhmicos conhecidos em um intervalo de 1 MΩ a 1 TΩ. O teraohmímetro deve ler a resistência dentro da sua precisão especificada. A geometria dos eletrodos condutivos de borracha ou espuma também deve ser regularmente checada medindo a sua marca impressa. Se a força no eletrodo é maior do que 20 N para alcançar a mínima resistência medida, os eletrodos de borracha devem ser substituídos por outros mais macios. A resistência superficial deve ser medida na região da amostra real se o tamanho permitir, ou em uma amostra de ensaio que compreende uma placa retangular com dimensões de acordo com a figura 1.

A amostra de ensaio deve ter uma superfície intacta e limpa. Como alguns solventes podem deixar resíduos condutivos na superfície ou podem afetar negativamente as propriedades eletrostáticas da superfície, é melhor limpar a superfície apenas com uma escova. Isto é especialmente importante nos casos em que a superfície for tratada com agentes antiestáticos especiais. Se, entretanto, houver uma impressão digital ou outra impureza visível na superfície e não forem utilizados agentes antiestáticos especiais na superfície, a amostra de ensaio deve ser limpa com 2-propanol (álcool isopropílico) ou outro solvente adequado que não afete o material da amostra de ensaio e os eletrodos, e que sequem no ar.

A amostra de ensaio deve ser condicionada por pelo menos 24 h em (23 ± 2) °C e (25 ± 5) % de umidade relativa sem ser tocada novamente por mãos desprotegidas. No caso de invólucro de equipamentos elétricos, as condições climáticas são dadas na NBR IEC 60079-0 e a tensão de 500 V do ensaio deve ser utilizada para ser compatível com os históricos das medições. Deve-se ressaltar que o gás inflamável é gerado pela mistura do gás de ensaio (com pureza mínima de 99,5 %) com o ar. O ar utilizado deve conter (21,0 ± 0,5) % de oxigênio e (79,0 ± 0,5) % de nitrogênio. O equipamento de controle do gás e mistura é utilizado para direcionar o gás, na proporção apropriada, para a sonda de ignição. Os gases de ensaio e sua concentração em volume a ser utilizada indicada na NBR IEC 60079-7 é apresentada na tabela abaixo.

O controle da mistura de gás dentro das tolerâncias especificadas deve ser verificado utilizando, por exemplo, um analisador de gás retirando amostras da linha de fornecimento da mistura de gás. Se uma mistura de gás diferente daquela especificada na tabela acima for utilizada, a mínima energia de ignição da mistura de gás deve ser verificada utilizando o método da ASTM E582. É conveniente utilizar cilindros de gás comprimido para o fornecimento de gás, mas outras fontes de fornecimento podem ser utilizadas. Se necessário, filtros de peneira molecular devem ser utilizados para assegurar que os gases tenham baixo teor de umidade.

Isto é importante, por exemplo, quando se utiliza ar diretamente de um compressor. Cada fonte de gás é controlada e monitorada utilizando medidores de vazão e válvulas. A combinação das taxas de vazão de todos os gases por uma sonda de ignição deve ser (0,21 ± 0,04) L/s. Uma válvula de fechamento de ação rápida é utilizada para interromper o fluxo de gás de ensaio quando ocorre a ignição. A válvula de fechamento deve parar o fornecimento do gás de ensaio enquanto deixa o ar fluir livremente para fornecer resfriamento e secagem da sonda de ignição após a ignição ter ocorrido. O tipo e a localização da válvula de fechamento devem ser selecionados de acordo com o projeto do equipamento completo.

A análise sensorial no controle da qualidade

Conheça as diretrizes para a implementação de um programa de análise sensorial em controle da qualidade (CQ), incluindo elementos e procedimentos gerais. É aplicável a indústrias de alimentos e não alimentos.

A NBR ISO 20613 de 08/2020 – Análise sensorial — Guia geral para a aplicação da análise sensorial no controle da qualidade fornece diretrizes para a implementação de um programa de análise sensorial em controle da qualidade (CQ), incluindo elementos e procedimentos gerais. É aplicável a indústrias de alimentos e não alimentos. Está limitado à análise sensorial durante o CQ na unidade produtora/fábrica.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como escolher os avaliadores para avaliação de produtos em processamento?

O que é um teste dentro ou fora do padrão?

Como aplicar o método de análise sensorial descritiva?

O que é um gráfico de médias ou X?

Durante a sua configuração e implementação, recomenda-se que um programa de CQ sensorial seja avaliado por meio de várias perspectivas, como as práticas de garantia da qualidade (GQ)/CQ existentes; os registros de qualidade do produto e fatores que influenciam a qualidade sensorial requerida dos produtos acabados; a capacidade de executar testes sensoriais; o nível técnico do responsável pela produção; o custo e o benefício econômico; a aceitação do consumidor; e o feedback do mercado. Recomenda-se que um programa de CQ sensorial cubra todas as fases do processo de produção.

É indicado que a análise sensorial de ingredientes/matéria-prima, assim como durante o processamento e de produtos acabados, seja levada em consideração. Recomenda-se que os procedimentos de avaliação sigam as regras das boas práticas sensoriais, como avaliadores capacitados e métodos sensoriais adequados, quando possível com as mesmas condições de preparação e avaliação para cada amostra, ambiente adequado, procedimentos controlados e delineamentos balanceados.

Recomenda-se que as contribuições dos consumidores-alvo auxiliem no estabelecimento de especificações sensoriais dos produtos. É indicado que os principais atributos sensoriais e seus limites aceitáveis sejam estabelecidos pelo reconhecimento e aceitação de consumidores-alvo para assegurar que o programa de CQ sensorial atenda às necessidades dos consumidores e permita o monitoramento da qualidade atual dos produtos (incluindo produtos competitivos no mercado). Recomenda-se que os exemplos de produtos fora de padrão sejam mantidos para auxiliar na resolução de problemas de produção ou reclamações de consumidores.

A análise sensorial e a análise instrumental são ferramentas poderosas que podem ser usadas no controle da qualidade. A relação entre dados sensoriais e instrumentais é necessária para explorar e validar as técnicas instrumentais, a fim de medir ou fornecer informações sobre os principais atributos sensoriais do produto. A análise sensorial é a única maneira de obter medidas diretas dos atributos percebidos.

Ajuda a entender melhor e a satisfazer as necessidades dos consumidores. Recomenda-se que todos os dispositivos instrumentais ou medidas analíticas utilizados para estimar a qualidade sensorial sejam testados com os produtos da empresa e as faixas de variabilidade de produção, e validados com as respostas sensoriais coletadas pela análise sensorial. Recomenda-se que os requisitos de monitoramento para CQ sensorial e sua inspeção sejam totalmente documentados e registrados.

É indicado que os registros sejam preenchidos e detalhados de tal forma que sejam fáceis de entender, de forma conveniente e eficaz. Recomenda-se que eles expliquem claramente a condição da qualidade do produto e forneçam razões confiáveis para a rejeição de produtos que não atendam à qualidade especificada. Eles podem fornecer orientação sobre as ações específicas a serem tomadas.

Para realizar um programa de CQ sensorial, é importante primeiro, estabelecer a especificação sensorial impressa e/ou padrões físicos, segundo, coletar dados de qualidade, incluindo o estabelecimento de um painel sensorial, as instalações com equipamento apropriado, a seleção de métodos de análise sensorial e a análise e interpretação estatística dos resultados, e, finalmente, tomar decisões por meio da análise estatística dos dados. A figura abaixo apresenta um delineamento para um programa completo de CQ sensorial.

Ao definir as especificações/padrões sensoriais, recomenda-se que vários fatores sejam considerados, como objetivos de marketing, variabilidade de produção, atributos que impulsionam a aceitação do consumidor, natureza do produto, condições de fabricação e recursos disponíveis. Também se recomenda que os objetivos específicos do programa de CQ sejam levados em conta. Quando o objetivo é projetar um programa de CQ sensorial para evitar defeitos sensoriais, os padrões de qualidade sensorial incluirão uma descrição dos defeitos mais comuns no produto, incluindo defeitos resultantes de características inadequadas das matérias primas utilizadas ou das condições do processo.

Os defeitos também podem resultar de armazenamento incorreto ou prolongado ou de causas acidentais. Quando o objetivo do programa CQ é controlar a qualidade sensorial apresentada em uma determinada denominação de origem ou comparar a qualidade de um produto industrial com concorrentes no mercado, recomenda-se que os padrões de qualidade sensorial incluam não apenas os atributos que definem seus perfis sensoriais, mas também aqueles que afetam a aceitabilidade.

Recomenda-se que a elaboração de um padrão impresso inclua definições para todos os principais atributos, especialmente aqueles que impulsionam a aceitação do consumidor e variações perceptíveis com limites aceitáveis, dependendo das matérias primas e/ou processo de fabricação. Os principais atributos referem-se aos atributos que variam na produção e que provavelmente causam rejeição do consumidor.

Recomenda-se que os profissionais de análise sensorial e/ou equipe gerencial determinem os principais atributos com base em análises descritivas e testes de consumidor. Fotografias também podem ser usadas como suplementos de padrões impressos, especialmente para as exigências de aparência de matérias-primas em processo e produtos acabados. O padrão físico ou o produto acabado pode ser preparado de acordo com a fórmula e o processo determinados pelo setor de desenvolvimento de produtos, e pode ser armazenado nas condições exigidas.

Também pode ser preparado selecionando produtos de qualidade requerida a partir da produção prática em condições normais. Recomenda-se que os padrões de controle físico das matérias primas sejam determinados conjuntamente pelo fabricante e fornecedor, e contratados por um protocolo preliminar. A validade dos padrões físicos pode variar com o tempo. Recomenda-se que os padrões físicos sejam periodicamente renovados para serem sensorialmente idênticos aos anteriores e/ou atualizados e adaptados às variações do mercado, conforme as especificações sensoriais derivadas do consumidor.

Uma vez que um padrão físico tenha sido identificado, recomenda-se que as condições ótimas de armazenamento e um suprimento adequado do padrão em armazenamento sejam determinados e documentados para referência futura. Recomenda-se que uma quantidade apropriada do padrão de controle em condições adequadas de embalagem e armazenamento seja preservada para garantir que a mudança de sua qualidade sensorial seja mínima. Recomenda-se que o padrão físico seja substituído quando estiver esgotado ou quando as propriedades sensoriais tiverem mudado.

Recomenda-se estabelecer um protocolo bem descrito para substituir o produto-padrão, quando necessário. Recomenda-se que o novo produto padrão tenha características sensoriais idênticas às anteriores. Recomenda-se que essa similaridade seja verificada por meio de um teste sensorial discriminativo, por exemplo, o teste triangular definido na NBR ISO 4120. Os avaliadores envolvidos no CQ sensorial são selecionados entre funcionários da empresa e/ou avaliadores experientes externos.

A seleção, treinamento e monitoramento são realizados de acordo com a NBR ISO 8586. Recomenda-se que as referências de calibração e especificações sensoriais de produtos acabados, produtos em processamento e ingredientes recebidos sejam usadas nas sessões de treinamento. Avaliadores aptos, quer sejam iniciados, selecionados ou especialistas/experts, são recrutados segundo as NBR ISO 8586 e NBR ISO 13300 (todas as partes), de acordo com os requisitos do avaliador para os métodos de análise sensorial.

Os avaliadores para avaliação de produtos acabados podem ser selecionados de um grande número de fontes (por exemplo, painéis externos ou painéis de funcionários da empresa com avaliadores selecionados ou avaliadores especialistas/experts), dependendo dos requisitos para o método selecionado. Sua tarefa principal é realizar os testes sensoriais para o CQ (exceto na avaliação em processamento e no teste com consumidor) do produto acabado.

Além disso, eles podem fornecer orientação ou auxiliar no ajuste do programa de CQ sensorial. Recomenda-se que eles sejam treinados para estar familiarizados com os padrões sensoriais relevantes dos produtos e seus limites de variação aceitáveis, fornecer informações de diagnóstico sobre defeitos, se houver referências que tipifiquem esses problemas e fornecer resultados sensoriais válidos com reprodutibilidade e repetibilidade. O teste de diferença do controle é usado para indicar a magnitude das diferenças entre uma amostra teste e o padrão de controle.

Neste método, é essencial que seja viável manter um padrão constante para comparação. Também é adequado para comparar produtos onde exista um único atributo sensorial ou apenas alguns atributos sensoriais que variam. Existem várias maneiras de realizar o teste: uma é avaliar o grau geral de diferença usando uma simples escala de categoria de intensidade; outra é avaliar as diferenças dos principais atributos em relação ao padrão com uma escala bipolar e um ponto central correspondente ao padrão de controle. Este último permite a avaliação da magnitude e a direção das diferenças nos atributos sensoriais.