Os dispositivos para a detecção de falhas por arcos

Deve-se conhecer os dispositivos para a detecção de falhas por arcos (AFDD), utilizados para fins domésticos e análogos em circuitos de corrente alternada (ca), para as tensões nominais não superiores a 440 V ca, com frequências nominais de 50 Hz, 60 Hz ou 50/60 Hz e correntes nominais não superiores a 63 A.

A NBR IEC 62606 de 09/2020 – Requisitos gerais dos dispositivos para a detecção de falhas por arcos aplica-se aos dispositivos para a detecção de falhas por arcos (AFDD), utilizados para fins domésticos e análogos em circuitos de corrente alternada (ca), para as tensões nominais não superiores a 440 V ca, com frequências nominais de 50 Hz, 60 Hz ou 50/60 Hz e correntes nominais não superiores a 63 A. Nos Estados Unidos, os interruptores de circuito de falha por arco (AFCI) são considerados semelhantes aos AFDD. Um AFDD é projetado pelo fabricante: como um dispositivo único munido de um sistema de abertura capaz de abrir o circuito protegido em condições especificadas; ou como um dispositivo único munido de um dispositivo de proteção; ou como uma unidade separada, de acordo com o Anexo D, montado no local com um dispositivo de proteção especificado.

O dispositivo de proteção integrado é um disjuntor de acordo com a IEC 60898-1 ou um dispositivo à corrente diferencial-residual, de acordo com a IEC 61008-1, IEC 61009-1 ou NBR IEC 62423. Estes dispositivos são destinados a atenuar os riscos de incêndio em um circuito terminal de uma instalação fixa, causados pela presença de correntes de falha por arco. De fato, essa falha comporta um risco de início de incêndio, em certas condições, se o arco persiste.

A proteção contra o início de incêndio, devido a uma sobretensão, em consequência de uma ruptura de neutro, em uma instalação trifásica, para integrar este tipo de equipamento como uma opção adicional, está sendo estudada em 9.22. A corrente de trilhamento leva à formação de arcos elétricos e, em consequência, pode causar um incêndio. Esta norma aplica-se aos dispositivos que realizam, simultaneamente, a detecção e o reconhecimento da corrente por arco no que se refere aos riscos de incêndio, e define os critérios de funcionamento, nas condições especificadas para a capacidade de abertura do circuito, quando a corrente por arco excede os valores-limites especificados nesta norma.

Os AFDD satisfazendo esta norma, exceto aqueles sem interrupção do neutro, são apropriados para utilização em esquemas IT. Os AFDD alimentados por baterias, ou por um circuito diferente do circuito protegido, não são abrangidos por esta norma. Os AFDD são providos de uma isolação. Eles são projetados para serem utilizados por pessoas não advertidas e não necessitam de manutenção alguma.

Os requisitos específicos podem ser necessários para os AFDD incorporados nos, ou destinados apenas à associação com, plugues e tomadas para uso domésticos e similares; os AFDD destinados a serem utilizados em frequências diferentes de 50 Hz ou 60 Hz.

8Para os AFDD incorporados ou destinados apenas às tomadas, os requisitos desta norma podem ser utilizados, tanto quanto possível com os requisitos da IEC 60884-1 ou com os requisitos nacionais do país onde o produto é colocado no mercado. No Reino Unido, o plugue e a tomada não precisam satisfazer os requisitos da IEC 60884-1. No Reino Unido, o plugue deve atender à BS 1363-1 e a tomada deve ser de acordo com a BS 1363-2.

Precauções especiais (por exemplo, os limitadores de sobretensão) podem ser necessárias quando as sobretensões excessivas forem suscetíveis de ocorrer na alimentação. Os requisitos desta norma se aplicam às condições normais de temperatura e ambiente. Eles se aplicam aos AFDD para utilização em ambientes com grau de poluição 2. Os requisitos adicionais podem ser necessários para os dispositivos utilizados em áreas com condições ambientais mais severas. Os AFDD para aplicações em cc estão em estudo.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feita a marcação e posição da marcação nos dispositivos?

Quais devem ser as instruções para a conexão e o funcionamento?

Quais devem ser os requisitos de construção e de funcionamento?

Como deve ser executado o projeto mecânico dos dispositivos?

Um dispositivo para a detecção de arcos (AFDD) destina-se a atenuar os efeitos das falhas por arco desconectando o circuito, quando a falha por arco for detectada. Eles podem ser classificados de acordo com o método de construção: o AFDD como dispositivo único, que consiste em um módulo de AFD e em um sistema de abertura, não fornecendo proteção contra as sobrecorrentes ou contra a corrente diferencial. O AFDD como dispositivo único, composto por um módulo AFD integrado a um dispositivo de proteção, satisfazendo uma ou mais das seguintes normas: IEC 60898-1, IEC 61008-1, IEC 61009-1 ou ABNT NBR IEC 62423. O AFDD de acordo com o Anexo D, que é composto por um módulo de AFD e por um dispositivo de proteção declarado, projetado para ser montado no local.

De acordo com o método de montagem e de conexão, o AFDD do tipo para montagem em quadro, também chamado de tipo AFDD para quadro de distribuição, pode ser conectado como a seguir: AFDD onde as conexões não estão associadas a um sistema de fixação mecânica; AFDD onde as conexões estão associadas a um sistema de fixação mecânica, por exemplo: tipo alugável; tipo com fixação por parafusos. Certos AFDD são do tipo plugáveis ou do tipo com fixação por parafusos do lado da alimentação somente, sendo os bornes de saída normalmente utilizados para a conexão dos circuitos. De acordo com o número de polos e percursos de corrente, o AFDD unipolar com dois percursos de corrente (um polo mais um neutro sem interrupção); AFDD bipolar; AFDD tripolar; e AFDD tetrapolar.

Esta norma visa fornecer os requisitos necessários e os procedimentos de ensaio para dispositivos a serem instalados por pessoal qualificado, destinados a uso doméstico e análogo, para mitigar o risco de incêndio de origem elétrica a jusante do dispositivo. A eficácia dos dispositivos à corrente diferencial-residual (dispositivo à corrente diferencial-residual), que detectam a corrente de fuga e produzem um arco elétrico à terra, devido à presença de corrente de trilhamento em uma instalação elétrica, é comprovada para atenuar o risco de incêndio. Entretanto, os dispositivos à corrente diferencial-residual, como fusíveis ou disjuntores, não são capazes de reduzir o risco de incêndio de origem elétrica devido à formação de arcos elétricos em série ou em paralelo entre os condutores vivos.

Uma falha por arco em série não implica em fuga à terra. Por consequência, os dispositivos à corrente diferencial-residual podem não detectar este tipo de falha. Além disso, a impedância da falha por arco em série reduz a corrente de carga, o que mantém a corrente abaixo do limiar de disparo do disjuntor e do fusível. No caso do arco em paralelo entre a fase e o condutor de neutro, a corrente é limitada apenas pela impedância da instalação. Na pior das hipóteses, para os casos esporádicos de arcos, os disjuntores convencionais não foram projetados para essa finalidade.

A experiência e as informações disponíveis confirmaram que o valor eficaz da corrente de falha à terra provocada por uma falha por arco, que é capaz de desencadear um incêndio, não é limitado à frequência de alimentação da potência nominal de 50/60 Hz, mas pode conter um espectro de frequência muito mais elevado que não é considerado para o ensaio dos dispositivos à corrente diferencial-residual.

É reconhecido que uma sobretensão causada por uma ruptura do neutro em uma instalação trifásica pode provocar riscos de incêndio. Esta norma refere-se aos dispositivos projetados para serem instalados no quadro de distribuição de uma instalação fixa na origem de um ou mais circuitos terminais. O AFDD como dispositivo único, que consiste em um módulo de AFD e em um sistema de abertura, não fornecendo proteção contra as sobrecorrentes ou contra a corrente diferencial. O AFDD como dispositivo único, composto por um módulo AFD integrado a um dispositivo de proteção, satisfazendo uma ou mais das seguintes normas: IEC 60898-1, IEC 61008-1, IEC 61009-1 ou NBR IEC 62423.

O AFDD de acordo com o Anexo D, que é composto por um módulo de AFD e por um dispositivo de proteção declarado, projetado para ser montado no local. O AFDD do tipo para montagem em quadro, também chamado de tipo AFDD para quadro de distribuição, pode ser conectado como a seguir: AFDD onde as conexões não estão associadas a um sistema de fixação mecânica; AFDD onde as conexões estão associadas a um sistema de fixação mecânica, por exemplo: tipo alugável; tipo com fixação por parafusos.

Certos AFDD são do tipo plugáveis ou do tipo com fixação por parafusos do lado da alimentação somente, sendo os bornes de saída normalmente utilizados para a conexão dos circuitos. A tensão nominal de utilização de um AFDD (daqui por diante denominada tensão nominal) é o valor da tensão atribuída pelo fabricante, na qual o seu desempenho é referido. Várias tensões nominais podem ser atribuídas a um mesmo AFDD. A tensão nominal de isolamento de um AFDD é o valor da tensão atribuída pelo fabricante na qual se referem as tensões de ensaio dielétrico e as distâncias de escoamento.

Salvo especificação contrária, a tensão nominal de isolamento é o valor da tensão nominal máxima do AFDD. Em nenhum caso, a tensão nominal de utilização máxima deve exceder a tensão nominal de isolamento. A tensão nominal de impulso suportável de um AFDD deve ser igual ou superior aos valores de tensão nominal de impulso suportável indicados na IEC 60664-1:2007, Tabela F.1, e na Tabela 4 desta norma. O valor da corrente, atribuído ao AFDD pelo fabricante, que o dispositivo pode suportar em serviço contínuo.

A frequência nominal de um AFDD é a frequência industrial para a qual o AFDD é projetado e à qual correspondem as outras características. Várias frequências nominais podem ser atribuídas a um mesmo AFDD. O valor eficaz da componente alternada da corrente presumida, atribuído pelo fabricante, que um AFDD pode estabelecer, suportar e interromper nas condições especificadas.

As condições são as especificadas nessa norma para os AFDD classificados de acordo com 4.1.1; e na norma do dispositivo de proteção declarado (por exemplo, IEC 60898-1, IEC 61008-1, IEC 61009-1, NBR IEC 62423) para os AFDD classificados de acordo com 4.1.2 e 4.1.3. O valor eficaz da componente alternada da corrente presumida, atribuído pelo fabricante, que um AFDD pode estabelecer, suportar e interromper com um polo nas condições especificadas. Os valores preferenciais da tensão nominal são os indicados na tabela abaixo.

Os AFDD devem ser protegidos contra os curtos-circuitos por meio de disjuntores ou de fusíveis que atendam às suas próprias normas e de acordo com as normas de instalação da série IEC 60364. A coordenação entre os AFDD e o DPCC deve ser verificada nas condições gerais mencionadas em 9.11 para verificar se a proteção dos AFDD contra as correntes de curto-circuito é adequada até a corrente condicional de curto-circuito Inc. O valor eficaz da corrente presumida, atribuído pelo fabricante, que um AFDD protegido por um DPCC pode suportar, nas condições especificadas, sem sofrer alterações irreversíveis que possam comprometer o seu funcionamento.

BS EN 10219-3: as condições técnicas de entrega de aços de alta resistência

Essa norma europeia, editada pelo BSI em 2020, especifica as condições técnicas de entrega de aços para alta resistência e resistente às intempéries, soldados eletricamente e a arco submerso, seções ocas estruturais de aço formadas a frio de formas circulares, quadradas, retangulares ou elípticas e formadas a frio sem tratamento térmico subsequente além do tratamento térmico da linha de solda.

A BS EN 10219-3:2020 – Cold formed welded steel structural hollow sections. Technical delivery conditions for high strength and weather resistant steels especifica as condições técnicas de entrega de aço para alta resistência e resistente às intempéries, soldadas elétricas e soldadas a arco submerso, seções ocas estruturais de aço formadas a frio de formas circulares, quadradas, retangulares ou elípticas e formadas a frio sem tratamento térmico subsequente além do tratamento térmico da linha de solda.

Os requisitos para tolerâncias, dimensões e propriedades seccionais podem ser encontrados na EN 1021972. Chama-se a atenção dos usuários para o fato de que, embora as classes formadas a frio neste documento possam ter propriedades mecânicas equivalentes às classes acabadas a quente em EN 10210-3, as propriedades seccionais de seções vazadas quadradas e retangulares em EN 10219-2 e EN 10210-2 não são equivalentes.

Uma variedade de classes de aço é especificada neste documento e o usuário pode selecionar a classe mais apropriada para o uso pretendido e as condições de serviço. Inclui, ainda, os graus e as propriedades mecânicas, mas não a condição de fornecimento final de seções ocas formadas a frio são geralmente comparáveis com aqueles em EN 10025-3, EN 10025-4, EN 10025-5, EN 10025-6, EN 10149-2 e EN 10149-3.

Conteúdo da norma

Prefácio europeu……………………. 4

1 Escopo……………………………….. 5

2 Referências normativas…………….. 5

3 Termos, definições e símbolos……… 7

3.1 Termos e definições………………… 7

3.2 Símbolos…………………………….. 8

4 Classificação e designação…………… 8

4.1 Classificação………………………… 8

4.2 Designação……………… ………….. 8

5 Informações a serem obtidas pelo fabricante …………..10

5.1 Informações obrigatórias … ………………………. 10

5.2 Opções……………………………………. ……… 10

5.3 Exemplo de um pedido ………………………………. 11

6 Processo de fabricação……………………………. 11

6.1 Geral………………………………. ……… 11

6.2 Processo de fabricação de aço ……………….. 11

6.3 Estrutura do grão …………………………… 11

6.4 Condição do material de alimentação…… …………… 11

6.5 Processo de fabricação de seção oca estrutural…………. 11

6.6 Condições de entrega………………………………… 12

7 Requisitos……………………………………… 12

7.1 Composição química………………….. 12

7.2 Propriedades mecânicas……………. 15

7.3 Propriedades tecnológicas…………………… 16

7.4 Condição de fornecimento do produto………….17

7.5 Ensaio não destrutivo……………………….. 17

7.6 Tolerâncias e massa……………………. 17

8 Inspeção…………………………….. … 18

8.1 Tipos de inspeção…………………………….. 18

8.2 Tipos e conteúdo dos documentos de inspeção………. 18

8.3 Resumo da inspeção…. ………………………… 19

9 Frequência de ensaio e preparação de amostras e peças de ensaio…….. …… 20

9.1 Frequência dos ensaios……………………. 20

9.2 Seleção e preparação de amostras para análise do produto….21

9.3 Localização e orientação de amostras para ensaios mecânicos……… 21

9.4 Preparação de peças para ensaios mecânicos…………… 22

10 Métodos de ensaio……………………………………….. 22

10.1 Análise química …………………………………. 22

10.2 Ensaios mecânicos……………………… 22

10.3 Inspeção visual e verificação dimensional………….. 23

10.4 Ensaios não destrutivos …………………………….. 23

10.5 Ensaios, classificação e reprocessamento……… 24

11 Marcação………………………….. 24

Anexo A (informativo) Seções ocas estruturais de aços de qualidade não ligados – Composição química e propriedades mecânicas …….26

Anexo B (normativo) Seções ocas estruturais de aços laminados normalizados – Composição química e propriedades mecânicas……………………… 27

Anexo C (normativo) Seções ocas estruturais de aços moldados termomecânicos – Composição química e propriedades mecânicas……. 29

Anexo D (normativo) Seções ocas estruturais de aços temperados e revenidos – Composição química e propriedades mecânica…………………….. 34

Anexo E (normativo) Seções ocas estruturais de aços com atmosfera melhorada com resistência à corrosão – Composição química e propriedades mecânicas …………………. 39

Anexo F (normativo) Localização de amostras e peças de ensaio………………….. 41

Bibliografia………………… 43

A formação a frio pode ser definida como o processo onde a formação para a forma final da seção oca soldada é realizada no ambiente temperatura. As seções circulares ocas produzidas a partir de tira normalizada com uma costura de solda normalizada e com uma relação de conformação a frio de D / T ≥ 20 podem ser classificados como seções ocas com acabamento a quente. A normalização da laminação para matéria-prima é o processo de laminação em que a deformação final é realizada em uma determinada faixa de temperatura levando a uma condição material equivalente àquela obtida após a normalização de modo que os valores especificados das propriedades mecânicas são mantidos mesmo após a normalização subsequente.

A laminação termomecânica para matéria-prima é o processo de laminação em que a deformação final é realizada em uma determinada faixa de temperatura levando a uma condição do material com certas propriedades que não podem ser alcançadas ou repetidas por tratamento térmico sozinho. A laminação termomecânica pode incluir processos com uma taxa de resfriamento aumentada com ou sem revenido incluindo autorrevenimento, mas excluindo têmpera direta, bem como têmpera e revenimento.

O aço com resistência à corrosão atmosférica aprimorada para matéria-prima é aquele no qual um certo número de elementos de liga foi adicionado a fim de aumentar sua resistência à corrosão atmosférica, formando uma camada de óxido autoprotetora no metal base sob a influência das condições meteorológicas. O aço com resistência aprimorada à corrosão atmosférica é freqüentemente chamado de aço resistente às intempéries. Informações adicionais para o uso de aço com melhor resistência à corrosão atmosférica são fornecidas no Anexo E.

A operação correta dos detectores de tensão portáteis

Deve-se ter conhecimento sobre os detectores de tensão portáteis, com ou sem fontes de alimentação embutidas, para serem usados em sistemas elétricos para tensões de 1kV a 765 kV CA, e frequências de 50 Hz e/ou 60 Hz.

A NBR IEC 61243-1 de 09/2020 – Trabalhos em tensão — Detectores de tensão – Parte 1: Tipo capacitivo para ser usado para tensões superiores a 1 kV ca é aplicável a detectores de tensão portáteis, com ou sem fontes de alimentação embutidas, para serem usados em sistemas elétricos para tensões de 1kV a 765 kV CA, e frequências de 50 Hz e/ou 60 Hz. Aplica-se somente aos detectores de tensão de tipo capacitivo usados em contato com a parte a ser ensaiada, como um dispositivo completo incluindo seu elemento de isolamento ou como um dispositivo separado, adaptável a um bastão isolado que, como uma ferramenta separada, não é coberta por esta norma (ver 4.4.1 para projeto geral).

Outros tipos de detectores de tensão não são cobertos por esta parte da norma. Algumas restrições em seu uso são aplicáveis no caso de comutadores montados de fábrica e sobre sistemas aéreos de ferrovias eletrificadas (ver Anexo B, instruções de uso). Exceto onde especificado de forma diferente, todas as tensões definidas nesta norma se referem aos valores de tensões fase-fase ou sistemas trifásicos. Em outros sistemas, convêm que as tensões fase-fase ou fase-terra (aterramento) aplicáveis, sejam usadas para determinar a tensão de operação.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as marcações a serem inseridas no aparelho?

Quais são os critérios de ensaios para os produtos?

Como devem ser executados os ensaios em condições úmidas?

Como deve ser feita a seleção do arranjo de ensaio para a influência de campo de interferência em fase?

O detector de tensão deve ser projetado e fabricado para ser seguro ao usuário, desde que seja utilizado de acordo com os métodos seguros de trabalho, e as instruções de uso. O detector de tensão deve dar uma indicação clara do estado de presença de tensão e/ou ausência de tensão, por meio da mudança do status do sinal. A indicação deve ser visual e/ou sonora.

O detector de tensão deve fornecer uma indicação clara da presença e/ou ausência da tensão de operação do sistema, de acordo com sua tensão nominal ou faixa de tensão nominal, e sua frequência nominal ou frequências nominais. A indicação pode não ser confiável na proximidade de grandes áreas condutivas, que podem criar zonas equipotenciais. Quando o detector de tensão for usado de acordo com as instruções de uso, a presença de uma tensão adjacente ou condutor aterrado não pode afetar sua indicação.

Quando usado de acordo com as instruções de uso, o detector de tensão não pode indicar presença de tensão para valores normais de tensões de interferência. O detector de tensão deve dar indicação contínua quando em contato direto com o condutor. O usuário não pode ter acesso ao ajuste de tensão limiar.

A indicação presença de tensão deve aparecer se a tensão para terra na parte a ser ensaiada for maior do que 45% da tensão nominal. 45% da tensão nominal correspondem a 0,78 Un 3. A indicação presença de tensão não pode aparecer se a tensão para terra na parte a ser ensaiada for igual ou menor do que 10% da tensão nominal. 10% da tensão nominal corresponde a 0,17 Un 3 e é a máxima tensão induzida fase-terra normalmente encontrada em campo.

Para preencher os requisitos anteriores, a tensão limiar Ut deve satisfazer a seguinte relação: 0,10 Un máx. < Ut ≤ 0,45 Un mín. Para detectores de tensão com somente uma tensão nominal, Un máx. é igual a Un mín. Há um limite teórico de 4,5 para a razão entre Un máx. e Un mín. para atingir uma clara indicação do detector de tensão. Este valor corresponde à divisão de 0,45 por 0,1. Pode acontecer que o nível de tensão induzida em uma rede específica seja maior do que 10% da tensão nominal ou da tensão nominal máxima da faixa de tensão.

Pode também acontecer que as variações da tensão nominal da rede sejam tais que 0,45 Un ou 0,45 Un máx. não sejam o menor valor possível. Além disso, quando é esperado que o detector de tensão seja utilizado na proximidade de grandes partes condutivas que gerem zonas equipotenciais (ver 4.2.1), o usuário pode especificar um valor inferior para a tensão limiar. Em todos esses casos, é necessário que o fabricante e o usuário definam um acordo para estabelecer o valor apropriado para a tensão limiar, enquanto a mantém na faixa especificada anteriormente.

O ajuste da tensão limiar é adicionalmente limitado pelos requisitos para clara indicação que reduzam a faixa de valores possíveis, e os ensaios necessários (indicação clara) têm que ser aprovados. Caso específico de detectores de tensão a serem utilizados em sistemas com baixos valores de tensão de interferência. Em algumas situações, caso o usuário tenha uma rede com baixos valores de tensão de interferência, pode solicitar ajuste no limiar de tensão abaixo de 0,10 Un máx. Este caso específico pode facilitar na operação do detector de tensão na proximidade de grandes partes condutivas.

Apesar dessa mudança de tensão limiar para um valor mais baixo, o limite teórico de 4,5 para a razão entre Un máx. e Un mín. ainda permanece válido, e os ensaios pertinentes (clara indicação) têm que ser aprovados. Nesse caso, o detector de tensão deve ter uma marcação especial e uma advertência deve ser incluída nas instruções de uso para informar aos usuários sobre a modificação na tensão limiar. Convém que a marcação especial seja o resultado de um acordo entre o fabricante e o usuário.

O detector de tensão deve proporcionar uma clara indicação sob condições normais de iluminação e ruído. Os tipos de indicações de detector de tensão são divididos em três grupos: grupo I: Indicação com no mínimo dois sinais ativos distintos, que fornecem uma indicação da condição de presença de tensão e ausência de tensão. A condição de standby não é necessária; grupo II: Indicação com no mínimo um sinal ativo, que fornece uma indicação da condição de ausência de tensão e é ativado ligando manualmente e suprimido quando o eletrodo de contato é posicionado em contato com a parte sob tensão; grupo III: Indicação com no mínimo um sinal ativo, que dá uma indicação da condição de presença de tensão e deve possuir a condição de standby.

A indicação visual deve ser claramente visível ao usuário na posição de operação e em condições normais de iluminação. Quando dois sinais visuais são utilizados, a indicação não pode depender somente das luzes de diferentes cores para a percepção. Características adicionais devem ser utilizadas, como separação física das fontes de luz, forma distinta de sinais luminosos ou luz piscando.

A indicação sonora deve ser claramente audível ao usuário quando na situação de operação e em condições de ruídos normais. Quando dois sinais sonoros forem utilizados, a indicação não pode depender somente dos sons de diferentes níveis de pressão sonora para a percepção. Características adicionais devem ser utilizadas, como tom ou intermitência dos sinais sonoros.

Existem três categorias de detectores de tensão de acordo com as condições climáticas de operação: frio (C), normal (N), e quente (W). O detector de tensão deve operar corretamente na faixa de temperatura de sua categoria climática, de acordo com a tabela abaixo. O detector de tensão deve operar corretamente em caso de mudança repentina de temperatura na faixa de temperatura de sua categoria climática.

Um detector de tensão deve operar entre 97% a 103% de sua frequência nominal ou de cada uma de suas frequências nominais. O tempo de resposta deve ser menor do que 1 s. O detector de tensão com uma fonte de alimentação embutida deve fornecer uma indicação clara até que a fonte esteja esgotada, a menos que sua utilização seja limitada a uma indicação de não prontidão ou desligamento automático como mencionado nas instruções de uso. O elemento de ensaio, item embutido ou separado, deve ser capaz de ensaiar todos os circuitos elétricos, incluindo a fonte de energia e o funcionamento da indicação.

Quando todos os circuitos não puderem ser testados, qualquer limitação deve ser claramente informada nas instruções de uso. Esses circuitos devem ser construídos com alta confiabilidade. Quando houver um elemento de ensaio embutido, o detector de tensão deve dar uma indicação de pronto ou não pronto. O detector de tensão não pode detectar a tensão V cc. O detector de tensão deve ser capaz de funcionar sem falha quando sujeito à tensão de operação por 5 min. Os materiais de isolamento devem ser adequadamente classificados (natureza do material e dimensões) para tensão nominal (ou a máxima tensão nominal da faixa de tensão) do detector de tensão.

Quando tubos de material isolante, com corte transversal circular, são utilizados no projeto dos detectores de tensão, convém que atendam aos requisitos da IEC 60855 ou IEC 61235. Para um detector de tensão, como um dispositivo completo, deve ser fornecido ao usuário um isolamento adequado, por meio de elementos isolantes incorporados. Para um detector de tensão, como um dispositivo separado, convém que seja fornecido ao usuário um isolamento adequado, por meio de um bastão isolante adaptável.

A proteção contra ponte deve ser tal que o detector de tensão não possa causar descarga elétrica ou avaria entre as peças sob tensão de uma instalação ou entre uma peça sob tensão de uma instalação e o terra. O detector de tensão deve ser construído para que o indicador não possa ser danificado ou desligado como resultado de um arco elétrico de baixa energia.

Quanto aos requisitos mecânicos, para um detector de tensão como um dispositivo completo, deve ser fornecido ao usuário uma distância adequada por meio de um elemento isolante. Para um detector de tensão como um dispositivo separado, convém que o usuário receba uma distância adequada por meio de um bastão isolante adaptável.

O detector de tensão como um dispositivo completo deve incluir pelo menos os seguintes elementos: punho, proteção de mão, elemento isolante, marca-limite, indicador e eletrodo de contato. O detector de tensão como um dispositivo separado deve incluir pelo menos: adaptador, indicador e eletrodo de contato. Convém que o bastão isolante utilizado em conjunto com o detector de tensão como um dispositivo separado atenda aos requisitos descritos, mesmo se não for fornecido com o detector de tensão. O detector de tensão não pode ter uma conexão condutiva externa, ou qualquer outro dispositivo para fazer esta conexão, exceto para o eletrodo de contato.

O detector de tensão sem extensão do eletrodo de contato deve ter a marcação de categoria L. Ele é utilizado principalmente em linhas aéreas. O detector de tensão com extensão do eletrodo de contato deve ter marcação de categoria S. Ele é principalmente utilizado em subestações internas. O comprimento mínimo de um elemento isolante de um detector de tensão como um dispositivo completo deve estar de acordo com a tabela abaixo.

A tensão nominal Un é usada quando os parâmetros a serem especificados são relacionados ao dimensionamento ou ao desempenho funcional do detector de tensão, enquanto que a tensão projetada Ur é usada quando o desempenho isolante do detector de tensão é apresentado. Os valores Li da tabela acima correspondem à distância mínima no ar (obtida da IEC 61931, Tabelas 1 e 2) mais uma distância de segurança adicional. Os valores Li da tabela acima podem ser usados como orientação para determinar o comprimento do bastão isolante usado com o detector de tensão como um dispositivo separado.

Entretanto, o comprimento do bastão isolante para trabalho sob tensão pode ser encurtado para detectores de tensão como um dispositivo separado considerando as distâncias de aproximação mínimas ou de acordo com as regulamentações nacionais ou regionais. Para Li igual ou maior do que 520 mm, as partes condutivas não excedendo 200 mm (no total), medidas a partir da marca-limite em direção ao punho, são permitidas dentro do comprimento mínimo do elemento isolante se elas estiverem completamente isoladas externamente.

A marca-limite deve ser de cerca de 20 mm de largura, permanente, e claramente reconhecível pelo usuário. Se não houver uma marca-limite em um detector de tensão como um dispositivo separado, a extremidade do adaptador deve agir como marca-limite. Para um detector de tensão como um dispositivo completo, o punho deve ser de no mínimo 115 mm de comprimento. O punho pode ser feito mais comprido para operação com as duas mãos.

Para um detector de tensão como um dispositivo completo, o protetor de mão deve estar permanentemente fixo e ter uma altura mínima de (hHG) de 20 mm. A fim de adaptar o detector de tensão a usos diferentes o eletrodo de contato prontamente pode ser intercambiável ou completado com outros tipos de eletrodos de contato dependendo do tipo de instalação e instruções de uso. O detector de tensão deve ser projetado para facilitar operação confiável com esforço físico razoável pelo usuário.

O detector de tensão deve ser projetado para permitir uma aproximação segura em direção da instalação a ser ensaiada. A deflexão sobre seu próprio peso deve ser tão baixa quanto possível. O peso do indicador deve ser mínimo e compatível com os requisitos de desempenho. No caso de um detector de tensão como um dispositivo separado, convém que o usuário esteja ciente que sua escolha de um bastão isolante pode influenciar muito na força de aperto e deflexão.

 

Os ensaios dos riscos eletrostáticos em atmosferas explosivas

Deve-se conhecer os métodos de ensaios relacionados às propriedades dos equipamentos, produtos e processos necessárias para se evitar uma ignição e os riscos de choques eletrostáticos provenientes da eletricidade estática.

A NBR IEC 60079-32-2 de 09/2020 – Atmosferas explosivas – Parte 32-2: Riscos eletrostáticos — Ensaios descreve os métodos de ensaios relacionados às propriedades dos equipamentos, produtos e processos necessárias para se evitar uma ignição e os riscos de choques eletrostáticos provenientes da eletricidade estática. Destina-se à utilização em uma avaliação de risco dos perigos eletrostáticos ou na preparação de normas para famílias de produtos ou de produtos dedicados para máquinas ou equipamentos elétricos ou não elétricos.

O objetivo desta parte é fornecer os métodos de ensaio padronizados utilizados para o controle da eletricidade estática, como resistência de superfície, resistência de fuga para terra, resistividade em poeiras, condutividade de líquidos, capacitância e avaliação da capacidade de gerar uma ignição de descargas eletrostáticas provocadas. Destina-se especialmente para utilização com as normas existentes da série NBR IEC 60079. A ABNT IEC TS 60079-32-1, Atmosferas explosivas – Parte 32-1: Riscos eletrostáticos, orientação, foi publicada em 2020. Esta norma não se destina a substituir normas que abrangem produtos específicos e situações industriais.

Esta parte apresenta o mais recente estado do conhecimento que pode, no entanto, diferir ligeiramente dos requisitos de outras normas, especialmente no que concerne a ensaios climáticos. Quando um requisito desta norma conflitar com um requisito especificado na NBR IEC 60079-0, para evitar a possibilidade de reensaiar equipamentos previamente aprovados, o requisito da NBR IEC 60079-0 se aplica apenas para equipamentos dentro do escopo da NBR IEC 60079-0. Em todos os outros casos, aplicam-se os requisitos indicados nesta parte.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser preparada a amostra de ensaio da resistência superficial?

O que deve conter o relatório de ensaio?

Quais os conceitos da resistência de fuga?

Como devem ser executados os ensaios de calçados em uso?

As variações nos resultados da medição de propriedades eletrostáticas de materiais são devidas principalmente a variações na amostra (por exemplo, superfícies e geometria não homogêneas e o estado do material) em vez de incertezas na tensão, corrente, geometria do eletrodo ou incerteza do dispositivo de medição. Isto porque as propriedades eletrostáticas são fortemente influenciadas por diferenças muito pequenas, de modo que os efeitos estatísticos desempenham um papel importante. Por exemplo, na ASTM E582, a energia mínima de ignição (MIE – Minimum Ignition Energy) de uma atmosfera de gás explosivo é definida por 100 ou 1.000 não ignições. Isto não exclui, no entanto, que o ensaio 1 001 possa causar uma ignição.

Devido a este efeito estatístico, a precisão e a reprodutibilidade das propriedades eletrostáticas são limitadas pela dispersão estatística. Normalmente, a precisão e a reprodutibilidade das medições eletrostáticas são de cerca de 20% a 30%. Isto é muito mais alto do que para uma medição elétrica típica, que é inferior a 1 %. Por esta razão, os limiares do limite eletrostático contêm certa margem de segurança para compensar a dispersão estatística ocorrida.

Pode ser difícil compreender que a ocorrência da dispersão estatística pode não ser minimizada por meio de melhoria da qualidade dos ensaios. No entanto, essa situação tem que ser aceita, lembrando que os ensaios eletrostáticos contêm margens de segurança adequadas, especificamente para compensar este efeito. Os processos de fabricação (por exemplo, moldagem, extrusão etc.) podem alterar as propriedades eletrostáticas dos materiais.

Recomenda-se, portanto, ensaiar produtos acabados, quando possível, em vez de os materiais dos quais os produtos são feitos. Para obter resultados comparáveis em todo o mundo para medições laboratoriais, convém que as amostras sejam aclimatadas e medidas em umidade relativa e temperatura declaradas (por pelo menos 24 h a (23 ± 2) °C e (25 ± 5) % de umidade relativa). Em locais que podem apresentar níveis mais baixos ou mais altos de umidade e temperatura, um valor adicional na umidade relativa e na temperatura local mais alta ou mais baixa pode ser aceitáveis (por exemplo, 40 ± 2) °C e (90 ± 5)% de umidade relativa para climas tropicais e (23 ± 2) °C e (15 ± 5) % de umidade relativa para locais com climas muito frios).

De forma a evitar erros de medição causados por um comportamento diferente da histerese da umidade do material, convém que a amostra seja inicialmente seca e depois aclimatada ao clima específico. Em algumas outras normas, por exemplo, NBR IEC 60079-0, diferentes valores-limite com base em medições feitas a 50% de umidade relativa ou 30 % de umidade relativa foram especificados no passado na ausência de uma câmara efetiva desumidificadora. A experiência mostra que os resultados e medição neste clima não são obtidos com o mesmo grau de consistência que aqueles medidos de acordo com esta norma.

No entanto, pode ser necessário utilizar o clima especificado em outras normas para manter a continuidade do equipamento previamente avaliado. Pode ser difícil aplicar os métodos de ensaio exatamente como especificados nesta norma, a todos os tipos de equipamentos e em todas as situações. Se este for o caso, o relatório de ensaio deve indicar claramente quais partes desta norma foram aplicadas em sua totalidade e quais partes desta norma foram aplicadas em parte. Isto deve ser acompanhado de uma justificativa técnica dos motivos pelos quais a norma não pôde ser aplicada em sua totalidade e da equivalência de quaisquer outros métodos que tenham sido aplicados em comparação com os métodos de ensaio especificados nesta norma.

Os métodos de ensaio especificados nesta norma envolvem a utilização de fontes de alimentação de alta tensão e, em alguns ensaios, gases inflamáveis que podem apresentar perigo se manuseados incorretamente. Os usuários desta norma são alertados a realizar avaliações de risco adequadas e a considerar os regulamentos locais antes de realizar qualquer um dos procedimentos de ensaio. Em relação à resistência superficial, as superfícies que têm uma resistência superficial suficientemente baixa, de acordo com 3.11, podem não ser carregadas eletrostaticamente quando em contato com a terra. Por esta razão, a resistência da superfície é uma propriedade eletrostática básica relativa à capacidade dos materiais de dissipar a carga eletrostática por condução. Como as resistências superficiais geralmente aumentam com a diminuição da umidade relativa, é necessária uma baixa umidade relativa durante a medição para reproduzir as condições com o pior caso.

A IEC 60093 e IEC 61340-2-3 descrevem métodos de medição da resistência superficial e volumétrica e a resistividade de materiais sólidos planos. A IEC 61340-4-10 é um método alternativo para medir a resistência superficial. No entanto, muitas vezes estes métodos podem não ser aplicados devido ao tamanho e forma dos materiais, especialmente quando incorporados em equipamentos e aparelhos. Por esta razão, o método de ensaio para medições de resistência de materiais que não são planos e produtos com pequenas estruturas especificadas na IEC 61340-2-3, ou o método a seguir pode ser utilizado como uma alternativa adequada.

A superfície é colocada em contato com dois eletrodos condutivos de comprimento e distância definidos e a resistência entre os dois eletrodos é medida. Uma vez que as resistências elevadas geralmente diminuem com o aumento da tensão, a tensão aplicada deve ser aumentada para pelo menos 500 V, preferencialmente 1.000 V, para resistências muito altas. Os conhecimentos mais recentes indicam que pode ser benéfico medir resistências elevadas a 10 kV. No entanto, neste caso, a centelha tem que ser evitada, por exemplo, por uma espuma isolante entre os eletrodos, e os critérios de aceitação têm que ser modificados.

Quando camadas finas isolantes são montadas sobre um material mais condutivo, a tensão aplicada pode queimar totalmente o material inferior, e os resultados obtidos são inconclusivos. Os materiais não homogêneos, particularmente tecidos, podem apresentar resultados diferentes quando medidos em diferentes direções. Isto pode ser evitado utilizando-se um sistema de eletrodo de anel concêntrico, de acordo com a IEC 61340-2-3 ou ISO 14309. Eletrodos de tiras de borracha condutiva macia são preferidos aos eletrodos de tinta prateada para limitar a interação química não desejada da superfície.

No caso de amostras irregulares, os eletrodos de tinta prateada são preferidos aos eletrodos macios, devido à sua melhor adaptação à geometria irregular da amostra. O critério de >25 mm para a área ao redor dos eletrodos, conforme indicado na figura 1, disponível na norma, aplica-se somente às folhas de ensaio, podendo ser ignorado no caso de produtos reais. Os eletrodos são conectados a um teraohmímetro. Um eletrodo de proteção pode ser colocado sobre os eletrodos de medição, para minimizar o ruído elétrico. Durante o ensaio, a tensão deve ser suficientemente estável para que a corrente de carregamento, devida à flutuação de tensão, seja insignificante em comparação com a corrente que flui através da amostra de ensaio.

A precisão do teraohmímetro deve ser verificada regularmente com várias resistências de valores ôhmicos conhecidos em um intervalo de 1 MΩ a 1 TΩ. O teraohmímetro deve ler a resistência dentro da sua precisão especificada. A geometria dos eletrodos condutivos de borracha ou espuma também deve ser regularmente checada medindo a sua marca impressa. Se a força no eletrodo é maior do que 20 N para alcançar a mínima resistência medida, os eletrodos de borracha devem ser substituídos por outros mais macios. A resistência superficial deve ser medida na região da amostra real se o tamanho permitir, ou em uma amostra de ensaio que compreende uma placa retangular com dimensões de acordo com a figura 1.

A amostra de ensaio deve ter uma superfície intacta e limpa. Como alguns solventes podem deixar resíduos condutivos na superfície ou podem afetar negativamente as propriedades eletrostáticas da superfície, é melhor limpar a superfície apenas com uma escova. Isto é especialmente importante nos casos em que a superfície for tratada com agentes antiestáticos especiais. Se, entretanto, houver uma impressão digital ou outra impureza visível na superfície e não forem utilizados agentes antiestáticos especiais na superfície, a amostra de ensaio deve ser limpa com 2-propanol (álcool isopropílico) ou outro solvente adequado que não afete o material da amostra de ensaio e os eletrodos, e que sequem no ar.

A amostra de ensaio deve ser condicionada por pelo menos 24 h em (23 ± 2) °C e (25 ± 5) % de umidade relativa sem ser tocada novamente por mãos desprotegidas. No caso de invólucro de equipamentos elétricos, as condições climáticas são dadas na NBR IEC 60079-0 e a tensão de 500 V do ensaio deve ser utilizada para ser compatível com os históricos das medições. Deve-se ressaltar que o gás inflamável é gerado pela mistura do gás de ensaio (com pureza mínima de 99,5 %) com o ar. O ar utilizado deve conter (21,0 ± 0,5) % de oxigênio e (79,0 ± 0,5) % de nitrogênio. O equipamento de controle do gás e mistura é utilizado para direcionar o gás, na proporção apropriada, para a sonda de ignição. Os gases de ensaio e sua concentração em volume a ser utilizada indicada na NBR IEC 60079-7 é apresentada na tabela abaixo.

O controle da mistura de gás dentro das tolerâncias especificadas deve ser verificado utilizando, por exemplo, um analisador de gás retirando amostras da linha de fornecimento da mistura de gás. Se uma mistura de gás diferente daquela especificada na tabela acima for utilizada, a mínima energia de ignição da mistura de gás deve ser verificada utilizando o método da ASTM E582. É conveniente utilizar cilindros de gás comprimido para o fornecimento de gás, mas outras fontes de fornecimento podem ser utilizadas. Se necessário, filtros de peneira molecular devem ser utilizados para assegurar que os gases tenham baixo teor de umidade.

Isto é importante, por exemplo, quando se utiliza ar diretamente de um compressor. Cada fonte de gás é controlada e monitorada utilizando medidores de vazão e válvulas. A combinação das taxas de vazão de todos os gases por uma sonda de ignição deve ser (0,21 ± 0,04) L/s. Uma válvula de fechamento de ação rápida é utilizada para interromper o fluxo de gás de ensaio quando ocorre a ignição. A válvula de fechamento deve parar o fornecimento do gás de ensaio enquanto deixa o ar fluir livremente para fornecer resfriamento e secagem da sonda de ignição após a ignição ter ocorrido. O tipo e a localização da válvula de fechamento devem ser selecionados de acordo com o projeto do equipamento completo.

Os materiais multicamadas para fabricação de bronzinas planas

Conheça os requisitos para materiais multicamadas para fabricação de bronzinas planas de parede fina (bronzinas, buchas, arruelas de encosto).

 

A NBR 16017 de 07/2020 – Bronzinas planas – Materiais multicamadas para bronzinas planas de parede fina especifica os requisitos para materiais multicamadas para fabricação de bronzinas planas de parede fina (bronzinas, buchas, arruelas de encosto). O material multicamada consiste de uma capa de aço, uma camada da bronzina (fundida, sinterizada, cladeada) e possivelmente uma camada eletrodepositada. As preocupações ambientais podem, no futuro, restringir o uso de alguns materiais, como o chumbo.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as ligas de chumbo e estanho?

Quais as propriedades do bronze sinterizado com superfície de deslizamento polimérica?

Qual deve ser a dureza do metal de deslizamento em forma de peça?

O material multicamada consiste em uma capa de aço, uma camada de deslizamento (fundida, sinterizada, cladeada) e, possivelmente, uma camada de revestimento eletrodepositada. Além dos materiais multicamadas utilizados para fabricação de bronzinas planas de parede fina (bronzinas, buchas, arruelas de encosto), descritos na ISO 4383, o Brasil utiliza também as seguintes ligas e revestimentos superficiais: ligas de cobre: CuPb20Sn2, CuSn4Bi, CuSn4Bi4Ni, CuSn8Ni, CuSn8Bi4Ni, CuPb20Sn2Ni4, CuPb23Sn2, CuPb21Sn2, CuPb25Sn3, CuSn10Zn3Bi7,5, CuAl8, CuPb22Sn3, CuPb14Sn3; CuPb15Sn5Zn6; ligas de alumínio: AlSn10CuSi4, AlSn15Cu2, AlZn5Cu1,4Si1,3PbMg-6, AlSiMg6Mn6, AlSn20Cu2, AlZn5Bi4Si1,5Cu1Mg, AlZn5Pb4SiCu, AlSn15Cu2, AlCu2Sn16, AlCuSn6,3NiSi2,3, AlPb6Si4Sn, AlSn10Si3CuCr, AlSn6Si1.5Cu, AlPb7Si4Cu, AlSn12Si2,5Cu; revestimentos superficiais: PbSn10Cu5, PbSn13Cu9, PbSn11+Al2O3, PbSn10In14+Al2O3, SnAg10, Sn, AlSn30Cu, AlSn40Cu, Tin Flash, AlSn20Cu, AlSn25Cu2,5, PAI+Al+PTFE.

A composição química deve estar dentro dos limites especificados nas tabelas da norma, onde números únicos denotam valores máximos. A composição química do aço para as costas da bronzina deve ser sujeita a acordo entre o fabricante e o comprador. Em geral, utiliza–se aço de baixo carbono. Camadas de revestimento podem ser aplicadas às camadas de metal de deslizamento.

A espessura da camada de revestimento e de quaisquer camadas adicionais entre a liga de metal de deslizamento e a camada de revestimento deve ser objeto de acordo entre o fabricante e o comprador. Como exemplo, mostrado na tabela abaixo, um material multicamada, consistindo em capa de aço, metal de deslizamento CuPb24Sn fundido (G) e camada de revestimento PbSn10Cu2, é designado conforme descrito a seguir: metal de deslizamento NBR 16017 – G – CuPb24Sn – PbSn10Cu2.

A função principal de uma bronzina é reduzir o atrito entre uma parte móvel de um motor e a parte estática a ela ligada. Além disso, ela deve suportar a parte móvel. Esta última função exige que a bronzina resista a cargas muito altas, particularmente, cargas de alto impacto causadas pela combustão que ocorre no motor.

A capacidade de uma bronzina de reduzir o atrito está baseada no fenômeno de que dois materiais não similares, deslizando um contra o outro, apresentam atrito e desgaste menores, quando comparados ao caso de materiais similares (materiais com dureza da mesma ordem de grandeza). Portanto, as ligas de alguns metais, tais como cobre, estanho, chumbo ou alumínio, apresentam um melhor desempenho ao suportar uma parte móvel de aço, do que aquele apresentado por um alojamento de aço ou ferro fundido.

Embora uma bronzina possa realizar sozinha essa função de redução de atrito, seu desempenho é enormemente melhorado pela adição de um lubrificante entre a parte móvel e a superfície interna da bronzina. Por isso, um dos objetivos principais do projeto de uma bronzina é estabelecer e manter um filme de óleo entre essas superfícies, geralmente sob cargas variáveis. Um pequeno desgaste ocorre quando o motor funciona, mesmo quando bronzinas do projeto mais avançado são instaladas em um novo modelo de motor altamente eficiente.

As duas causas principais desse fato são: o filme de óleo lubrificante torna-se muito fino ou desaparece inteiramente por um curto período de tempo sob certas condições de operação, por exemplo, no instante da partida do motor; as partículas estranhas, misturadas ao óleo lubrificante, passam pela bronzina. Este desgaste pode ser assumido pela bronzina, pelo eixo ou por ambos. O reparo ou a substituição de partes do motor, tais como virabrequim e eixo comando, é caro.

Por essa razão é que as bronzinas são projetadas e fabricadas para assumir o desgaste produzido pelo atrito, protegendo dessa forma as partes mais caras do motor. Por isso é que as bronzinas devem ser substituídas. Portanto, um dos objetivos do projeto de bronzinas modernas é permitir que essa substituição se faça fácil e corretamente.

A nova bronzina a ser instalada, quando devidamente selecionada e colocada, atenderá normalmente às especificações de durabilidade da montagem original. Apesar de os fabricantes continuarem a se esforçar para tornar a substituição de bronzinas tão segura quanto possível, é preciso uma certa parcela de conhecimento para realizar essa tarefa. A bronzina nunca deve ser reaproveitada. Sua manutenção preventiva é a lubrificação correta do motor durante a vida dentro do carro, como todas as peças.

Na sua substituição recomenda-se verificar seus alojamentos, sua posição de montagem de acordo com o rebaixo da bronzina (quando houver), limpar os alojamentos antes da montagem e lubrificar a superfície de contato da bronzina com o eixo. Um aspecto fundamental na instalação da bronzina é o ajuste do conjunto, observando a circularidade dos alojamentos de biela e mancal, a folga radial, a folga axial das bielas e mancal, o desalinhamento dos mancais fixos e a rugosidade dos colos de virabrequim.

Um dos erros mais comuns que acontecem é a montagem das bronzinas com a posição invertida. Na maioria das bronzinas, existe apenas um furo de lubrificação, onde deve ser montado os mancais do bloco. Por isso, é preciso certificar-se de que esse furo esteja posicionado corretamente com o duto de lubrificação.

Caso os casquilhos sejam montados do lado errado, a lubrificação do motor será certamente prejudicada, chegando até a soldá-los ao virabrequim devido ao calor produzido pelo atrito e a falta de lubrificação. Para evitar esse erro, em alguns motores, as bronzinas de biela vêm com a definição de montagem descrita em um pequeno formulário de aplicação interno em sua embalagem e nas costas da própria bronzina.

O desempenho de motores de indução de baixa tensão

Conheça os parâmetros de desempenho para motores de indução de baixa tensão (≤ 1.000 V) alimentados por conversores de frequência PWM tipo fonte de tensão e as características de projeto para motores especificamente projetados para aplicações com conversor de frequência.

A NBR 16881 de 09/2020 – Motores de indução alimentados por conversores de frequência — Parâmetros de desempenho e critérios de aplicação fornece parâmetros de desempenho para motores de indução de baixa tensão (≤ 1.000 V) alimentados por conversores de frequência PWM tipo fonte de tensão e as características de projeto para motores especificamente projetados para aplicações com conversor de frequência. Também são especificados parâmetros de interface e interação entre o motor e o conversor de frequência, incluindo boas práticas de instalação como parte do sistema de acionamento.

Esta norma é aplicável tanto a motores especificamente projetados para uso com o conversor de frequência quanto a motores projetados para partida direta (alimentação senoidal) alimentados por conversor de frequência. Para motores que operam em atmosferas explosivas, devem ser observados os requisitos especificados na NBR IEC 60079-0. Quando o fabricante do conversor de frequência fornecer recomendações específicas para a instalação do sistema de acionamento, estas prevalecem sobre as recomendações desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as considerações para o projeto do motor?

Quais são os parâmetros do circuito equivalente do motor para ajuste do conversor de frequência?

Quais as características do conversor de frequência para reduzir as perdas no motor?

Qual é a influência da temperatura na expectativa de vida?

O desempenho e os dados de operação de motores de indução alimentados por conversores de frequência são influenciados por todo o sistema de acionamento, incluindo a fonte de alimentação, o conversor de frequência, os cabos elétricos, o motor, a carga acionada e o equipamento de controle. Existem inúmeras variações para cada um destes componentes. Assim, quaisquer valores mencionados nesta norma são meramente indicativos.

Em face das complexas interações técnicas existentes entre os componentes do sistema de acionamento e das possíveis variações das condições de operação, está além do escopo desta norma especificar valores ou limites numéricos para todas as grandezas relevantes para o projeto do sistema de acionamento. Cada vez mais é comum que o sistema de acionamento seja constituído por equipamentos e componentes produzidos por diferentes fabricantes.

O objetivo desta norma é explicar, tanto quanto possível, a influência destes componentes no projeto do motor e nas suas características de desempenho. Esta norma, a princípio, não enfoca questões relacionadas à segurança. No entanto, algumas recomendações contidas no documento podem ter implicações no aspecto da segurança. Embora as etapas de especificação das características do motor e do conversor de frequência sejam semelhantes para qualquer aplicação, a escolha dos equipamentos mais apropriados a cada caso é muito influenciada pelo tipo de aplicação.

A seguir são descritas as etapas de seleção dos equipamentos constituintes do PDS. Por conveniência, os efeitos dos diferentes tipos de carga acionada existentes são discutidos no Anexo A. A informação completa de uma aplicação considera a carga acionada, o motor elétrico, o conversor de frequência e a rede elétrica. O conhecimento de todas essas informações é fundamental para que o desempenho requerido de todo o sistema seja alcançado.

Os dados requeridos incluem: a faixa de operação; a potência ou o conjugado requerido em toda a faixa de operação; as taxas de aceleração e desaceleração do processo que está sendo controlado; os requisitos de partida incluindo o número (frequência) de partidas e a descrição da carga (a inércia vista do eixo do motor e o conjugado da carga durante a partida); ciclo de trabalho da aplicação; a descrição das funcionalidades adicionais que não podem ser satisfeitas somente com o motor elétrico e conversor de frequência (por exemplo: monitoramento da temperatura do motor elétrico, dispositivos para permitir a partida direta (bypass), se necessário, circuitos especiais de sequenciamento ou sinais de referência de velocidade para controlar o PDS, etc.); a descrição da fonte de alimentação elétrica disponível e do tipo de ligação.

As figuras abaixo resumem as características típicas do comportamento de um motor alimentado por conversor de frequência. Elas não mostram possíveis faixas evitadas. A figura abaixo mostra a curva de conjugado versus rotação de um motor alimentado por conversor de frequência. O conjugado máximo permitido é limitado pela característica do motor e pela corrente do conversor de frequência. Acima da frequência de enfraquecimento de campo f0 e da rotação n0, o motor pode operar com potência constante com um valor proporcional de 1/n. Se o valor de conjugado máximo (que é proporcional à 1/n2) atingir o valor de conjugado nominal, a potência tem de ser reduzida proporcionalmente a 1/n resultando em um conjugado proporcional a 1/n2 (faixa estendida).

A rotação máxima utilizável (nmáx.) é limitada não apenas pela redução de conjugado devido ao enfraquecimento do campo em rotações superiores a n0, mas também pela rigidez e estabilidade mecânica do rotor, pela capacidade de rotação dos mancais e por outros parâmetros mecânicos. Em baixas frequências, o conjugado disponível pode ser reduzido em motores autoventilados a fim de se evitar sobreaquecimento. Em algumas aplicações, é possível aplicar um incremento de conjugado na partida.

A figura abaixo mostra a capacidade de corrente de saída (I) do conversor de frequência.

Conforme indicado na figura acima, o tipo de resfriamento influencia a capacidade máxima de conjugado versus rotação do PDS. Motores elétricos com potência na faixa de megawatts muitas vezes têm um sistema de resfriamento composto por um circuito de resfriamento primário (geralmente tendo ar como refrigerante primário) e um circuito de resfriamento secundário (tendo ar ou água como refrigerante secundário). As perdas são transferidas do circuito primário para o secundário por meio de um trocador de calor.

Quando os fluidos refrigerantes primário e secundário são movidos por um dispositivo separado, tornando o seu fluxo independente da rotação do motor (por exemplo, IC656 conforme a NBR IEC 60034-6), a curva da figura acima para ventilação separada é aplicável. Quando o fluido refrigerante secundário é movido por um dispositivo separado e o fluido refrigerante primário é movido por um dispositivo acionado pelo eixo (por exemplo, IC81W ou IC616), a curva da figura para autorresfriamento é aplicável.

Quando os fluidos refrigerantes primário e secundário são movidos por um dispositivo acionado pelo próprio eixo do motor elétrico, o conjugado de saída não deve exceder a curva T/TN = n2/n02 e recomenda-se que a mínima rotação de operação seja ≥ 70 % da rotação nominal. Para aplicações que excedam esta faixa, o fabricante do motor deve ser consultado.

A faixa de operação de um motor alimentado por conversor de frequência pode incluir rotações que podem excitar ressonâncias em partes do estator, no eixo, no sistema de acoplamento do motor com a carga acionada, ou na própria carga acionada. Dependendo do conversor de frequência, pode ser possível evitar as frequências ressonantes. No entanto, mesmo que as frequências ressonantes sejam evitadas, a carga é acelerada através dela, caso o motor seja operado em qualquer rotação acima da rotação de ressonância.

Diminuir o tempo de aceleração pode ajudar a minimizar o intervalo de tempo em que se opera na rotação de ressonância. A faixa de operação deve ser acordada com o fabricante do motor e da máquina acionada. Como motores aplicados com conversor de frequência costumam trabalhar em uma faixa de operação e não apenas em um ponto de operação fixo, normalmente não se aplica o conceito de condição nominal de operação para esses motores.

O ponto-base de operação do motor alimentado por conversor de frequência geralmente é considerado o ponto em que o motor entrega o máximo conjugado e a máxima potência. Neste ponto, o motor opera com rotação-base, tensão-base, corrente-base, conjugado-base e potência-base, correspondendo ao ponto da figura acima em que n = n0. A máxima rotação de operação pode ser maior do que a rotação-base e, dependendo das características de tensão e frequência, a máxima tensão de operação pode exceder a tensão-base.

Para um motor elétrico operado por conversor de frequência, o fabricante deve informar os limites de rotação para operação segura nos dados de placa. Para motores de indução de gaiola de baixa tensão com partida direta, o limite de rotação para operação segura deve ser definido de acordo com a NBR 17094-1. Os critérios de sobrevelocidade para motores são especificados na NBR 17094-1, mas os ensaios de sobrevelocidade não são normalmente considerados necessários.

Os ensaios especiais, porém, podem ser realizados mediante acordo, para que se verifique a integridade do projeto do rotor em relação às forças centrífugas. Para motores alimentados por conversor de frequência, uma aceleração até uma rotação maior de que a máxima rotação de operação determinada pelo controle do conversor de frequência é improvável. Especialmente para motores grandes, geralmente é benéfico projetar o motor para uma rotação limite de 1,05 vez a rotação máxima de operação. Ensaios também podem ser realizados a 1,05 vez a rotação máxima de operação.

Deve-se considerar que, para operação em alta rotação, um balanceamento fino do rotor pode ser necessário. No caso de operação nesta condição por longos períodos, a vida dos rolamentos pode ser reduzida, requerendo redução do intervalo de relubrificação. As aplicações com regimes cíclicos são aquelas nas quais existem variações periódicas ou intermitentes de rotação e/ou carga (ver NBR 17094-1).

Vários aspectos deste tipo de aplicação afetam o motor e o conversor de frequência, como a dissipação térmica do motor é variável, dependendo da rotação e do método de resfriamento; operação acima de conjugado nominal do motor pode ser requerida para acelerar, desacelerar e atender picos de carga. Operação acima da corrente nominal aumenta o aquecimento do motor. Isso pode requerer uma classe de isolação mais elevada, um motor sobredimensionado ou a avaliação do regime de serviço para determinar se o motor possui reserva térmica suficiente para a aplicação (ver regime de serviço S10 da NBR 17094-1).

A frenagem por injeção de corrente contínua dinâmica ou regenerativa pode ser requerida para reduzir a rotação do motor. Independentemente de o motor estar fornecendo conjugado para acionar a carga, estar gerando potência reversa para o conversor de frequência devido a estar sendo acionado pela carga, ou estar fornecendo conjugado de frenagem durante a desaceleração pela aplicação de corrente contínua nos enrolamentos, o aquecimento do motor ocorre de forma aproximadamente proporcional ao quadrado da corrente enquanto aplicada. Este aquecimento deve ser incluído na análise do regime de serviço.

Além disso, os conjugados transitórios impostos no eixo pela frenagem devem ser controlados de forma que não cause danos. A IEC 61800-6 fornece informações sobre regime de carga e determinação de corrente para todo o PDS. As cargas de alto impacto são um caso especial de regime e são encontradas em certas aplicações com conjugado intermitente (por exemplo, regime de serviço S6 da NBR 17094-1).

Nestas aplicações, a carga é aplicada ou removida do motor muito rapidamente. É também possível para este conjugado de carga ser positivo (contrário à direção de rotação do motor) ou negativo (na mesma direção de rotação do motor). A carga de impacto provoca um rápido aumento ou redução na demanda de corrente do conversor de frequência. Se o conjugado for negativo, o motor pode gerar corrente de volta para o conversor de frequência. Estas correntes transitórias estressam os enrolamentos do estator e sua amplitude depende das características da carga e do dimensionamento do conversor de frequência e do motor.

A recuperação de equipamentos “Ex” para atmosferas explosivas

Entenda as instruções, principalmente de natureza técnica, sobre os serviços de reparo, revisão, recuperação e modificação de equipamentos “Ex” projetados para utilização em atmosferas explosivas; é aplicável à revisão e recuperação, as quais mitigam deficiências identificadas durante a operação, inspeção e manutenção; não apresenta orientações sobre cabos e sistemas de fiação que possam requerer revisão quando o equipamento for reinstalado; e não é aplicável ao tipo de proteção “m”.

A NBR IEC 60079-19 de 09/2020 – Atmosferas explosivas – Parte 19: Reparo, revisão e recuperação de equipamentos fornece instruções, principalmente de natureza técnica, sobre os serviços de reparo, revisão, recuperação e modificação de equipamentos “Ex” projetados para utilização em atmosferas explosivas; é aplicável à revisão e recuperação, as quais mitigam deficiências identificadas durante a operação, inspeção e manutenção; não apresenta orientações sobre cabos e sistemas de fiação que possam requerer revisão quando o equipamento for reinstalado; e não é aplicável ao tipo de proteção “m”.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

O que deve conter o relatório de serviço para o usuário?

O que deve ser feito em relação aos dispositivos de fixação dos equipamentos?

Como se deve proceder em relação às exclusões de algumas peças componentes?

Como deve ser executada a brasagem ou soldagem?

Quando um equipamento é instalado em áreas onde concentrações perigosas e quantidades de gases, inflamáveis vapores ou poeiras podem estar presentes na atmosfera, medidas de proteção são aplicadas para reduzir a possibilidade de explosão devido à ignição por arcos, centelhamento ou superfícies quentes produzidas em operação normal ou sob condições de falhas especificadas. Essa parte é complementada por outras normas aplicáveis da IEC, por exemplo, a série IEC 60034, em particular pela IEC 60034-23, e também se refere à série IEC 60079, e suas respectivas partes apropriadas para os requisitos adequados de projeto de equipamentos elétricos.

O método de proteção contra o risco de ignição de uma atmosfera explosiva fornecida por cada tipo de proteção varia de acordo com as suas respectivas características. Este documento apresenta orientações práticas para a manutenção dos tipos de proteção dos equipamentos reparados. Este documento também indica os procedimentos para reparo, revisão ou recuperação, e verificação do cumprimento contínuo do equipamento com os requisitos do certificado de conformidade ou com as normas dos tipos de proteção aplicáveis, quando um certificado de conformidade “Ex” não estiver disponível.

Pretende-se que os usuários utilizem as instalações de serviço mais adequadas para qualquer tipo de equipamento, quer sejam as instalações do fabricante ou de um reparador competente e adequadamente equipado. Este documento reconhece a necessidade de um nível de competência para reparo, revisão e recuperação de equipamentos. Alguns fabricantes podem recomendar que os equipamentos sejam reparados somente por eles.

Grande parte do conteúdo deste documento refere-se ao reparo e à revisão de máquinas elétricas. Isto é, porque eles são itens de equipamentos “Ex” reparáveis nos quais, independentemente dos tipos de proteção envolvidos, existem similaridades suficientes de construção, tornando possível a indicação de instruções mais detalhadas para seu reparo, revisão, recuperação ou modificação. As seções pertinentes desta norma são aplicáveis sobre o reparo ou recuperação destes outros tipos de proteção, mas se um componente “m” apresentar falha, ele pode somente ser substituído. Os requisitos adicionais para reparo para o tipo de proteção “m” a inda.

Os serviços de reparo ou revisão que afetem o tipo de proteção devem ser assumidos como estando em conformidade com os documentos de certificação, quando: as  peças do fabricante ou peças especificadas de acordo com a documentação indicada forem utilizadas; o reparo ou modificação forem realizados especificamente como detalhado nesta norma e nos documentos de certificação; e quando forem realizados por pessoas competentes.

Em certas circunstâncias, quando a documentação aplicável indicada não estiver disponível, então os serviços de reparos e revisões devem ser realizados nos equipamentos de acordo com esta norma e com outras normas aplicáveis para as quais os equipamentos tenham sido originalmente verificados. As etapas realizadas para obter a documentação aplicável devem ser registradas nos relatórios da empresa de serviço de reparo.

Se o equipamento tiver sido modificado, este deve estar de acordo com os requisitos de 4.3.2.6, quando um novo certificado é requerido para ser emitido, ou então o equipamento não é mais considerado adequado para utilização em áreas classificadas. Em alguns casos, de acordo com os requisitos legais, a recuperação não pode ser realizada sem documentação relevante para o equipamento do Grupo I, a menos que seja submetida a reensaios completos e que um novo certificado de equipamento “Ex” seja emitido.

Se outras técnicas de reparos ou de alterações forem realizadas e não estiverem de acordo com esta norma, então é necessário confirmar com o fabricante ou com o organismo de certificação que emitiu o certificado que o equipamento continua adequado para utilização em atmosferas explosivas. Existem evidências sobre ocorrências de equipamentos Ex “d” que passaram em ensaios de propagação com o interstício ajustado no valor máximo especificado pelo fabricante, mas que falharam no ensaio, quando ajustados para os valores máximos de interstício permitidos pela norma Ex “d”.

Como tais equipamentos não são necessariamente marcados com um sufixo “X” no número do certificado do equipamento “Ex”, não existe uma forma de conhecer se o equipamento pode ser reparado com segurança para os valores permitidos pela norma ou se o equipamento necessita ser reparado para o menor interstício especificado nos documentos de certificação. Desta forma, na ausência de documentos de certificação que mostrem os interstícios utilizados pelo fabricante, as empresas de serviços de reparo devem utilizar as orientações fornecidas pela tabela abaixo.

Convém que o usuário do equipamento “Ex” esteja ciente de qualquer legislação aplicável no que diz respeito à inspeção periódica e verificação, para assegurar que o equipamento elétrico instalado em atmosferas explosivas seja adequado para a finalidade. Convém que o usuário considere se existem equipamentos e instalações suficientes e que competências pessoais estejam disponíveis para a execução dos serviços de reparo e revisão de tais equipamentos pelo usuário, ou se é recomendada a contratação de empresa de prestação de serviços de reparo e revisão especializada.

Adicionalmente, é recomendado que as informações apresentadas ao usuário por empresas de serviços e de montagem de terceira parte sejam suficientes e que atendam aos requisitos de segurança e saúde ocupacional. O usuário é responsável pela obtenção dos certificados dos equipamentos “Ex” e de outros documentos

relacionados como parte original do acordo de compra dos equipamentos “Ex”. Convém que toda a documentação pertinente (ver 4.3.2.4.1) obtida como parte do contrato original de compra, em conjunto com os registros de quaisquer reparos, revisões ou modificações anteriores, seja mantida em prontuário de verificação e disponibilizada para as empresas de serviços.

A documentação e os registros são normalmente arquivados no prontuário das instalações do usuário durante toda a vida útil do equipamento. É do interesse do usuário que o reparador seja notificado, sempre que possível, da falha e da natureza do trabalho a ser realizado e de qualquer informação importante da aplicação, por exemplo, uma máquina elétrica alimentada por um conversor de frequência.

Convém que o usuário alerte o reparador quanto aos requisitos específicos das especificações técnicas, caso sejam suplementares às diversas normas, como, por exemplo, um grau de proteção mais elevado devido às condições ambientais da aplicação. O reparador deve ser informado de qualquer requisito legal adicional para a conformidade com o certificado do equipamento “Ex”.

A reinstalação de um equipamento reparado deve ser realizada de acordo com a NBR IEC 60079-14. É um requisito da NBR IEC 60079-14 que, antes que os equipamentos reparados ou recuperados serem recomissionados, que os cabos e os sistemas de fiação sejam verificados para assegurar que não estejam danificados e que estejam apropriados para o tipo de proteção. Requisitos específicos legais nacionais ou regionais podem ser aplicáveis às atividades de reparo ou revisão.

Convém que o usuário verifique se a empresa de serviço de reparo escolhida pode demonstrar conformidade com os requisitos desta norma e requisitos regulatórios. A entidade de serviços, que pode ser o fabricante, o usuário ou uma empresa de serviço de reparo de terceira parte, deve estar ciente sobre os requisitos legais específicos indicados na legislação nacional ou regional aplicável, que pode estabelecer critérios para atividades de reparo e revisão. As empresas de serviço de reparo devem possuir um sistema de gestão da qualidade implementado que inclua os requisitos descritos a seguir. As NBR ISO 9001 e NBR ISO/IEC 80079-34 apresentam orientações adicionais.

Cada empresa de serviço de reparo deve indicar uma “pessoa responsável” com a competência requerida (ver Anexo B) dentro da estrutura organizacional, para assumir a responsabilidade e possuir autoridade para assegurar que o equipamento “Ex” revisado ou reparado esteja de acordo com o certificado de conformidade do equipamento “Ex” e com os requisitos do usuário. A pessoa responsável indicada deve possuir conhecimentos de trabalho dos requisitos das normas dos tipos de proteção “Ex” e compreensão desta norma.

Um planejamento de processo da qualidade deve ser estabelecido, incorporando as atividades apropriadas de inspeção, diagnósticos, ensaios e procedimentos de verificação, de forma a assegurar que os serviços de reparo e revisão atendam aos requisitos funcionais e de conformidade desta norma, de outras normas aplicáveis, ou aos requisitos do certificado do equipamento “Ex”e dos documentos de certificação, de forma a serem capazes de assegurar ao usuário a adequabilidade de reinstalação do equipamento “Ex” em área classificada.

A empresa de serviço de reparo deve estabelecer procedimentos ou instruções de trabalho para os serviços de reparo e revisão de equipamentos “Ex”. A empresa de serviço de reparo deve identificar e registrar a faixa de ensaios e de precisão de medições e suas limitações para utilização nos serviços de reparo e revisão de equipamentos “Ex”. A empresa de serviço de reparo deve manter um sistema de calibração de instrumentos e equipamentos de medição de acordo com normas nacionais ou internacionais.

A empresa de serviço de reparo deve manter registros, os quais devem ser legíveis, que proporcionem a rastreabilidade dos resultados medidos com instrumentos de medição calibrados para registro de medições específicas, sendo que os registros devem ser acessíveis durante o período de manutenção especificado. Quando da condução dos serviços de medições dimensionais e elétricas, a empresa de serviço de reparo deve registrar os valores de como “recebido” e “após o reparo” nos relatórios, para referência futura.

A empresa de serviço de reparo deve estabelecer um programa interno de auditoria para avaliar a efetividade da empresa de serviço de reparo, no atendimento dos requisitos desta norma. Quando um processo de reparo pode afetar a integridade de um tipo de proteção e quando a integridade resultante pode não ser verificada após o reparo, aquele processo específico deve ser medido e monitorado para demonstrar a conformidade com os parâmetros requeridos. Quando os ensaios forem requeridos, estes devem ser executados como especificados nesta norma, ou em outras normas aplicáveis, não sendo permitidas técnicas de amostragem.

Quando equipamentos não conforme forem identificados, a empresa de serviço de reparo deve avaliar o risco, para determinar as ações corretivas necessárias e manter os registros para identificar o usuário e os detalhes completos das ações corretivas tomadas. A empresa de serviço de reparo deve possuir instalações adequadas para as atividades de reparo e revisão, bem como os equipamentos apropriados necessários, além de pessoal treinado com a competência requerida (ver Anexo B), com autoridade para executar atividades, levando em consideração os tipos de proteção “Ex” específicos envolvidos.

A empresa de serviço de reparo deve conduzir uma avaliação da situação do equipamento a ser reparado, bem como concordar com a situação esperada pelo usuário do equipamento após os serviços de reparo, e também com o escopo dos serviços a serem executados. Os serviços de reparo e revisão requerem que a empresa de serviço de reparo confirme os requisitos “Ex” relacionados com o tipo de proteção, de forma a tornar possível verificar a conformidade com os documentos da certificação ou outras normas aplicáveis, incluindo as condições específicas de utilização.

É recomendado que isto inclua a justificativa para a não execução de qualquer ensaio indicado nesta norma, que o usuário pode entender como incluso no serviço. A avaliação deve ser documentada e abordar as seções aplicáveis desta norma ao tipo de proteção “Ex” apropriado e ser incluída no relatório de serviço a ser entregue para o usuário. Tais avaliações devem ser executadas pela pessoa responsável, apoiada pelos executantes apropriados.

A pessoa responsável deve somente executar avaliações para os tipos de proteção “Ex” para as quais ela tenha demonstrado a devida competência. As atividades de reparo e revisão podem ser executadas fora da empresa de serviço de reparo, quando o sistema de gestão da qualidade permitir que trabalhos sejam executados em outros lugares, por exemplo, pela existência de procedimentos adicionais específicos para documentar os serviços externos de reparo e revisão.

Todo o pessoal diretamente envolvido com reparo ou revisão de equipamentos “Ex” deve ser competente ou supervisionado por uma pessoa responsável ou por um executante competente. As competências podem ser específicas para os tipos de trabalho. Os treinamentos e as avaliações são especificados no Anexo B. Quando um componente de um equipamento completo for retirado do local da instalação para reparo, como o rotor de uma máquina elétrica ou a tampa de um invólucro, e não for prática a realização de determinados ensaios, como requerido nesta norma ou pela norma do tipo de proteção “Ex” aplicável, o reparador deve documentar os detalhes dos ensaios que podem não ser executados e informá-los ao usuário por escrito, antes da continuidade do reparo. A empresa de serviço de reparo deve procurar obter todas as informações e dados do usuário ou fabricante para os serviços de reparo ou revisão do equipamento. Isto deve incluir informações referentes ao tipo de proteção aplicável, documentos da certificação e informações relacionadas com serviços anteriores de reparos, revisões ou modificações.

A segurança no armazenamento de recipientes de gás liquefeito de petróleo (GLP)

Saiba quais são os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. 

A NBR 15514 de 08/2020 – Recipientes transportáveis de gás liquefeito de petróleo (GLP) — Área de armazenamento — Requisitos de segurança estabelece os requisitos mínimos de segurança das áreas de armazenamento de recipientes transportáveis de gás liquefeito de petróleo (GLP) com capacidade nominal de até 90 kg de GLP (inclusive), destinados ou não à comercialização. Não se aplica às bases de armazenamento, envasamento e distribuição de GLP, para as quais é aplicável a NBR 15186, e aos recipientes transportáveis de GLP quando em uso. A não ser que seja especificado de outra forma por regulamentação legal, os requisitos desta norma não são obrigatórios para as instalações que já existiam ou tiveram sua construção, instalação e ampliação aprovadas e executadas anteriormente à data de publicação desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o empilhamento de recipientes transportáveis de GLP?

Como deve ser feito o empilhamento de recipientes em paletes estruturados?

Que medidas devem ser tomadas em relação à máquina de vendas de recipientes transportáveis de GLP?

Quais são as características da área de armazenamento de apoio?

Os locais que armazenam, para consumo próprio, cinco ou menos recipientes transportáveis, com massa líquida de até 13 kg de GLP (cheios, parcialmente cheios ou vazios), ou carga equivalente em outro tipo de recipiente, devem atender aos seguintes requisitos: estar em local aberto com ventilação natural; estar afastado no mínimo 1,5 m de outros produtos inflamáveis, de fontes de calor, de faíscas, ralos, caixas de gordura e de esgotos, bem como de galerias subterrâneas e similares; não podem estar expostos ao público. As áreas de armazenamento de recipientes transportáveis de GLP devem ser classificadas pela capacidade de armazenamento, em quilogramas de GLP, conforme tabela abaixo.

A capacidade de armazenamento, em quilogramas de GLP, de uma área deve ser limitada pela soma da massa líquida total preestabelecida nos recipientes transportáveis. Quando a área de armazenamento estiver instalada em postos revendedores de combustíveis líquidos-PR, ela deve ser limitada a uma única área, classe I ou II. O lote de recipientes transportáveis de GLP pode armazenar até 6.240 kg, em botijões ou cilindros, (novos, cheios, parcialmente cheios e vazios).

O local de assento dos recipientes transportáveis de GLP deve ter ventilação natural, piso plano pavimentado com superfície que suporte carga e descarga, podendo ter inclinação desde que não comprometa a estabilidade do empilhamento máximo estabelecido na Tabela 3, disponível na norma. O local de assento dos lotes pode ser localizado ao nível do solo ou plataforma elevada. As áreas de armazenamento de classe III ou superiores devem possuir corredores de circulação com no mínimo 1,0 m de largura, entre os lotes de recipientes e ao redor destes.

A plataforma elevada destinada a áreas de armazenamento de recipientes transportáveis de GLP, quando existente, deve ser construída com materiais incombustíveis e possuir ventilação natural de forma a evitar o acúmulo de gás. O corredor de circulação pode ter inclinação, podendo estar em nível diferente do local de assentamento dos lotes desde que não ultrapasse a diferença máxima de 0,2 m, conforme Figura A.1, disponível na norma. A área ou corredor de circulação pode estar situado em outro nível diferente do assentamento dos recipientes, desde que a diferença de altura não ultrapasse 0,2 m, conforme Figura A.2, disponível na norma.

Uma mesma área de armazenamento pode possuir lotes em diferentes níveis de altura. Caso uma área esteja 0,2 m acima das demais ou do solo, essa deve possuir corredor de circulação, conforme Figura A.3, disponível na norma. A delimitação da área de armazenamento deve ser através de pintura ou demarcação de material incombustível no piso ou por meio de cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível, para assegurar ampla ventilação.

Para as áreas de armazenamento de classe III e superiores, também deve ser demarcado o piso para o local do (s) lote (s) de recipientes. A área de armazenamento, quando coberta, deve ter no mínimo 2,6 m de altura não sendo permitido o cercamento total do limite da área de armazenamento por paredes, permitindo-se, entretanto, sua delimitação por no máximo duas paredes. A estrutura e a cobertura devem ser construídas com produto incombustível e fora da projeção da edificação, tendo a cobertura menor resistência mecânica do que a estrutura que a suporta.

Quando a delimitação da área de armazenamento é feita por paredes, estas devem estar posicionadas a no mínimo 1,0 m do limite do lote, não podendo ter cobertura e atendendo aos distanciamentos de segurança da respectiva classe. Quando a área de armazenamento for delimitada por paredes ou cercas deve possuir acesso através de uma ou mais aberturas (portões) de no mínimo 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos.

Quando o imóvel não for delimitado por muros, cercas ou outros materiais, as áreas de armazenamento de qualquer classe devem ser delimitadas por cerca de tela metálica, gradil metálico ou elemento vazado de concreto, cerâmica ou outro material incombustível. O imóvel que contenha qualquer classe de área de armazenamento deve possuir no mínimo uma abertura (portão), com dimensões mínimas de 1,2 m de largura e 2,1 m de altura, que abram de dentro para fora, sem mudança de nível no piso e sem obstáculos, para permitir a evasão de pessoas em caso de emergência. Adicionalmente, o imóvel pode possuir outros acessos com dimensões quaisquer e com qualquer tipo de abertura.

Não é permitida a armazenagem de outros materiais e equipamentos na área de armazenamento dos recipientes transportáveis de GLP, excetuando-se aqueles exigidos pela legislação vigente, como: balança, material para teste de vazamento, extintor(es) e placa(s), e outros destinados à operação de carga e descarga, como: carrinho de transporte, rampa metálica, incluindo as disposições de 4.9 e 4.10. Os recipientes transportáveis de GLP devem estar dentro da área de armazenamento, com exceção do estabelecido em 7.2 e dos recipientes carregados em veículos previsto na Seção 8.

Os recipientes transportáveis de GLP que apresentem defeitos ou vazamentos devem ser identificados e organizados separadamente dentro da área de armazenamento. As operações de carga e descarga de recipientes transportáveis de GLP devem ser realizadas com cuidado, evitando-se impacto no solo ou na plataforma elevada, para que não sejam danificados. Não é permitida a circulação de pessoas não autorizadas na área de armazenamento.

O muro do limite do imóvel deve ser construído com material resistente ao fogo (TRRF 60 minutos), com altura mínima 1,8 m, sem aberturas, com comprimento mínimo de 1,0 m excedente da (s) extremidade (s) do lote. Os muros internos ao imóvel não podem ser considerados como limite de propriedade. A área de armazenamento deve ser mantida limpa, livre, e os lotes afastados 1,5 m de acumulações de materiais de fácil combustão.

Deve ser observada a distância mínima de 3,0 m contados a partir dos limites do lote até onde existam reservatórios de líquidos inflamáveis cujo volume seja superior a 50 L, exceto tanque de combustível de veículos. As tolerâncias dimensionais desta norma admitem um desvio de até 0,1 m para menos. O (s) lote (s) de recipientes devem estar a 1,0 m no mínimo de qualquer parede, exceto na condição prevista em 7.2.

As distâncias mínimas de segurança definidas na Tabela 4 (disponível na norma) podem ser reduzidas pela metade com a construção de paredes resistentes ao fogo, desde que observado o estabelecido na Seção 9. Na entrada do imóvel deve ser exibida placa que indique no mínimo a (s) classe (s) de armazenamento existente (s) e a capacidade de armazenamento de GLP, em quilogramas, de cada classe. Exibir as placa (s) em locais visíveis, a uma altura de mínimo 1,8 m, medida do piso acabado à base da placa, distribuída (s) ao longo do perímetro da(s) área(s) de armazenamento, com os seguintes dizeres: PERIGO – INFLAMÁVEL; PROIBIDO O USO DE FOGO OU DE QUALQUER INSTRUMENTO QUE PRODUZA FAÍSCA.

As quantidades mínimas de placas a serem exibidas são as seguintes: classes I e II – uma placa; classes III e superiores – duas placas. As dimensões das placas devem permitir a visualização e a identificação da sinalização a uma distância mínima de 3,0 m. Os afastamentos entre placas de mesmo dizeres devem ter entre si no máximo 15,0 m. A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura.

O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.4.8.1 A área de armazenamento deve ter separação física da residência por meio da interposição de muro de alvenaria sem aberturas e com no mínimo 1,8 m de altura.

Não pode existir acesso entre a residência e a área de armazenamento. Os acessos devem ser independentes com rotas de fuga distintas. Os corredores, quando necessários, devem ter largura mínima de 1,2 m com separação física por muro de alvenaria sem aberturas com no mínimo 1,8 m de altura. O lote de recipientes de GLP deve estar afastado no mínimo 1,0 m do muro de separação física. O Anexo B figuras B.1 e B.2 apresenta exemplos de imóveis que possuem área de armazenamento de recipientes transportáveis de GLP e residência.

API STD 6AV2: a instalação e a manutenção de válvulas de segurança

Essa norma, editada em 2020 pelo American Petroleum Institute (API), fornece os requisitos para a instalação e a manutenção de válvulas de segurança. Estão incluídos os requisitos para receber a inspeção, a instalação, a manutenção, os reparos em campo e fora do local, procedimentos de ensaios com critérios de aceitação e relatório de falha e documentação. Os sistemas de energia e controle para válvulas de segurança não estão incluídos.

A API STD 6AV2:2020 – Installation, Maintenance, and Repair of Safety Valves (SSV, USV, and BSDV) fornece os requisitos para a instalação e a manutenção de válvulas de segurança. Estão incluídos os requisitos para receber a inspeção, a instalação, a manutenção, os reparos em campo e fora do local, procedimentos de ensaios com critérios de aceitação e relatório de falha e documentação. Os sistemas de energia e controle para válvulas de segurança não estão incluídos. A válvula de segurança, conforme usada nesta norma, denota uma válvula de superfície (surface safety valve – SSV), uma válvula de segurança subaquática (underwater safety valve – USV) ou uma válvula de desligamento de embarque (boarding shutdown valve – BSDV). O ensaio do sistema de desligamento de segurança e a sua frequência estão fora do escopo desta norma.

Conteúdo da norma

1 Escopo…………………….. ……….. 1

2 Referências normativas…………….. 1

3 Termos, definições, acrônimos e abreviações………….. 1

3.1 Termos e definições ………………………………… 1

3.2 Siglas e abreviações………………………. 2

4 Inspeção de recebimento……………………….. 3

5 Instalação, manutenção e ensaio. ……………. 3

5.1 Geral…………………………….. ……… 3

5.2 Procedimentos de trabalho………………… 3

5.3 Instalação…………………………….. …. 4

5.4 Ensaio………………………………………. 4

5.5 Manutenção…………………………… 4

6 Reparo e remanufatura…………………. 5

6.1 Reparo no campo de válvulas de segurança……… 5

6.2 Reparo/remanufatura fora do local da válvula de segurança…………. 6

7 Procedimentos de ensaio…………………………. 8

7.1 Geral……………………………….. ……… 8

7.2 Ensaio periódico de operação/pressão…… ……….. 8

7.3 Ensaio após a instalação/reparos de campo………….. 10

8 Relatório de falha…………………………… 12

8.1 Geral…………………………………. ……. 12

8.2 Relatório de falha…………………….. 12

8.3 Responsabilidades do relatório………………… 13

9 Requisitos de documentação………………………. 13

Anexo A (informativo) Cálculo de acúmulo de pressão…….. 16

Bibliografia…….. 26

Figuras

1 Folha de registro de reparo no campo de válvula de segurança……….. 6

2 Folha de dados de ensaio funcional da válvula de segurança para reparos de instalação/campo… …………………. 7

3 Folha de dados de ensaio funcional da válvula de segurança para ensaios periódicos…………………… 10

4 Lista de verificação de falha para válvulas de segurança de superfície e válvulas de segurança subaquáticas………. 15

A.1 Diagrama de fluxo de cálculo………………….. 18

Tabelas

A.1 Nomenclatura…………………… 17

A válvula de segurança é um conjunto de válvulas que fecha em caso de perda de alimentação. A arquitetura do sistema e os sistemas de energia/controle para válvulas de segurança são abordados nos documentos do sistema de segurança, como a API 14C. A válvula de segurança de superfície (SSV) ou válvula de segurança subaquática (USV) é normalmente a segunda válvula na corrente de fluxo da cabeça do poço e da árvore. Para uma instalação de superfície offshore, a válvula de desligamento de embarque (BSDV) é normalmente a segunda válvula no fluxo de fluxo, entre um sistema de produção subaquático e a instalação de superfície.

Esta edição da API 6AV2 contém algumas alterações principais em relação às edições anteriores. Foi alterado o título da norma para incluir válvulas de desligamento de embarque, que é um novo tipo de válvula de segurança no API 6A, 21ª Edição. O termo válvula de segurança substituiu SSV e USV em todo o documento. Este termo agora inclui SSV, USV e BSDV.

Os requisitos para reparos externos de válvulas de segurança agora se referem ao API 6AR. O ensaio e a possível reparação da válvula de segurança são tratados na norma. A operação completa do sistema para atender o operador e os possíveis requisitos regulamentares não são especificados. Foram adicionados os requisitos para o estabelecimento da definição do produto pelo provedor de serviços. O termo definição original do produto e os requisitos associados foram removidos.

A conformidade da proteção catódica de estruturas complexas

Saiba quais são os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares.

A NBR 16896 de 08/2020 – Proteção catódica de estruturas complexas — Requisitos estabelece os requisitos de projeto, construção, operação, inspeção e manutenção do sistema de proteção catódica de estruturas complexas em unidades industriais. Aplica-se às estruturas de aço-carbono, revestidas ou não, em contato com eletrodos externos, geralmente compostos por materiais metálicos dissimilares. As estruturas compostas por outros metais, como aço inoxidável ou alumínio, podem ser protegidas aplicando-se os conceitos e requisitos descritos nesta norma, com exceção dos critérios de proteção, que são exclusivos para o aço-carbono. Esta norma visa eliminar a corrosão acelerada causada pelo acoplamento galvânico.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as técnicas de proteção catódica para estruturas complexas?

O que são os leitos de anodos?

Como deve ser executada a instalação de sistemas de proteção catódica?

Como deve ser feita a verificação da eficácia da proteção catódica?

Pode-se dizer que a proteção catódica é um método de prevenção da corrosão em estruturas metálicas submersas e subterrâneas. É um dos métodos mais eficazes para prevenir a corrosão em uma superfície metálica, sendo usada para proteger várias estruturas contra a corrosão, como navios, flutuadores offshore, equipamentos submarinos, portos, dutos, tanques. Ou seja, basicamente todas as estruturas metálicas submersas ou enterradas.

A técnica se baseia na conversão de áreas ativas de uma superfície metálica em passivas, ou seja, torná-las o cátodo de uma célula eletroquímica. Com o fornecimento de corrente, o potencial do metal é reduzido, o ataque de corrosão cessará e a proteção catódica será alcançada. A proteção catódica pode ser alcançada por: proteção anódica catódica sacrificial e proteção catódica de corrente impressa, muitas vezes referida como ICCP.

No caso dos anodos para a proteção catódica, ao processo de fundição dos anodos deve resultar uma liga com perfeita homogeneização dos componentes em toda a extensão de seu corpo, sem defeitos internos ou externos. O forno para fundição da liga deve ter capacidade igual ou superior à massa do anodo a ser fabricado. O vazamento da liga deve ser contínuo, não sendo admitidas interrupções na alimentação.

O material da alma do anodo deve ser o aço. O aço deve ter teor de carbono ≤ 0,28%. Antes do processo de fundição, o aço deve ser revestido com zinco aderente, aplicado por qualquer meio comercial adequado, ou ter superfície limpa através de um jateamento até atingir o grau Sa 2½, conforme NBR 7348. A alma deve ter boa aderência ao corpo do anodo, não apresentando vazios entre as superfícies de contato.

Os profissionais envolvidos com o projeto, a supervisão da instalação e do comissionamento, e a supervisão da operação e da manutenção do sistema de proteção catódica devem ter o nível adequado de competência para a realização de suas atribuições. Recomenda-se que a competência do pessoal de proteção catódica seja demonstrada de acordo com a NBR 15653 ou por outro procedimento equivalente. Convém que sejam usados os critérios de proteção catódica estabelecidos na NBR ISO 15589-1, mesmo para estruturas classificadas como complexas. No entanto, as características das estruturas complexas e os fatores que as influenciam (ver Seção 6) significam que nem sempre é possível determinar ou alcançar os critérios de proteção catódica tradicionais.

Nesse caso, os métodos de verificação alternativos podem ser utilizados para garantir uma redução adequada da taxa de corrosão. Estes critérios são derivados daqueles contidos na EN 14505. Todos os potenciais devem ser medidos em relação a um eletrodo de referência de cobre/sulfato de cobre saturado. Recomenda-se que os pontos de posicionamento de eletrodos de referência sejam marcados em campo, assim como que o mapa de localização do sistema de aterramento seja avaliado para determinação dos pontos de medição.

Pode-se definir o potencial ON como o de um tubo-eletrólito medido durante a operação contínua do sistema de proteção catódica. Ele é igual ou mais negativo que –0,85 V, se o ponto de medição se situar na área de influência do eletrodo externo. O critério da aplicação de corrente tem o objetivo de demonstrar que a corrente é capaz de entrar na estrutura nos locais inspecionados. Consiste em ligar a fonte de corrente de proteção catódica e avaliar a alteração do potencial natural ou de corrosão, que deve instantaneamente ficar pelo menos 0,3 V mais negativo.

Isso indica que uma quantidade suficiente de corrente está entrando na estrutura. Uma despolarização em cupom de proteção catódica de, no mínimo, 0,1 V, medindo o potencial OFF do cupom imediatamente e após até 1 h de desconexão. Recomenda-se atender a mais de um desses critérios para comprovar que toda a estrutura complexa está protegida adequadamente.

Podem ser usados métodos alternativos, caso se possa demonstrar que o controle da corrosão é atingido. Técnicas de inspeção do revestimento, associadas a escavações para correlação ou inspeção com pipeline inspection gauges (pig) instrumentado, podem ser utilizados, quando disponíveis. O sistema de proteção catódica depende do tamanho e do formato da estrutura complexa, do tipo de revestimento, da ação agressiva do solo e de sua resistividade, das interferências de corrente contínua (cc) e corrente alternada (ca), de regulamentos nacionais, bem como de critérios técnicos e econômicos.

Para uma proteção catódica eficiente, recomenda-se que as condições estabelecidas a seguir sejam atendidas. Para a continuidade elétrica, convém que todas as partes metálicas de uma estrutura complexa a ser protegida sejam eletricamente contínuas. Recomenda-se que eletrodos externos também sejam eletricamente contínuos.

O cálculo da corrente drenada e vida útil: Para que o sistema de proteção catódica seja devidamente projetado, recomenda-se que a forma e a extensão da estrutura sejam claramente definidas em termos de sua localização e isolamento elétrico de estruturas externas. Se o isolamento elétrico for ineficaz e não puder ser restaurado a suas condições originais, convém que a extensão da estrutura complexa seja revisada para levar isso em conta.

Para os revestimentos externos, ou seja, os revestimentos protetores nem sempre são aplicados nos componentes em uma estrutura complexa (por exemplo, sistemas de aterramento). Os componentes não revestidos elevam significativamente as demandas de corrente de proteção, aumentando, por conseguinte, as dificuldades associadas à aplicação da proteção catódica assim como os riscos de interferência. Sempre que possível, convém que componentes metálicos enterrados sejam devidamente revestidos.

Devem ser levantadas as características dos componentes metálicos relevantes que compõem a estrutura complexa, incluindo os tipos de material e suas áreas superficiais enterradas. Os eletrodos externos relevantes devem ser levantados. Embora não haja um compromisso do projeto em proteger essas estruturas, elas consomem parte da corrente injetada pelo sistema de proteção catódica e devem ser consideradas no dimensionamento.

Devem ser consideradas no projeto as especificidades dos revestimentos aplicados em todos os componentes de uma estrutura complexa, incluindo a sua compatibilidade com o uso de proteção catódica. Convém que sejam consideradas no projeto as condições ambientais específicas, como, por exemplo, o teor de cloretos (caso partes da estrutura seja em aço inoxidável), a presença de bactérias ou contaminantes, etc.

Para a blindagem elétrica, convém que sejam levantadas as estruturas físicas ou os materiais específicos, situados no entorno da estrutura complexa, que possam atuar como blindagem elétrica ou restringir a distribuição da corrente destinada à proteção catódica. As blindagens elétricas podem ser condutoras ou não condutoras, conforme exemplos descritos a seguir. As condutoras são as estruturas em concreto armado, estacas metálicas, poços metálicos, tubulações metálicas, aterramento elétrico, tubos-camisa, etc. As não condutoras incluem as mantas geotêxteis ou poliméricas, materiais de proteção mecânica, concreto impermeabilizado, etc.

No estabelecimento dos locais para instalação de anodos e de eletrodos de referência estacionários deve ser considerada a localização das blindagens elétricas. Devem ser considerados no projeto todos os componentes e acessórios destinados a promover o isolamento elétrico entre estruturas metálicas. Eventuais caminhos elétricos paralelos que possam comprometer o isolamento elétrico devem ser levantados.

As fontes de caminhos elétricos paralelos típicos são: aterramentos elétricos, cabos de instrumentação e telemetria, suportes metálicos de tubulações, ferragens de estruturas de concreto armado, etc. Os curtos-circuitos eletrolíticos podem ocorrer em regiões com eletrólitos de baixa resistividade, onde há circulação de corrente iônica entre as estruturas metálicas que, a princípio, estariam isoladas eletricamente.

As situações típicas de curtos-circuitos eletrolíticos que devem ser mapeadas são o curto-circuito devido ao transporte de fluido de baixa resistividade entre as extremidades de uma junta isolante; o curto-circuito em solos contaminados com vazamentos de fluidos de baixa resistividade. Os detalhes referentes às juntas de isolamento elétrico são apresentados na NBR ISO 15589-1. Devem ser levantadas todas as possíveis fontes de interferência elétrica cc ou ca existentes nas proximidades da estrutura complexa.

As fontes de interferência cc mais comuns são os sistemas de tração eletrificados e os sistemas de proteção catódica existentes. As fontes de interferência ca mais usuais são as linhas de transmissão em alta-tensão e as subestações elétricas. Convém que sejam levantadas todas as estruturas metálicas existentes nas proximidades da estrutura complexa e que possam sofrer interferência cc do sistema de proteção catódica da estrutura complexa. No projeto devem ser adotadas medidas para mitigar ou reduzir seus efeitos.