A conformidade das cadeiras e mesas para conjunto aluno individual

O conjunto aluno individual é um mobiliário escolar composto por dois elementos independentes, mesa e cadeira. Os componentes, do conjunto aluno, podem ser fabricados em qualquer tipo de material, desde que sejam atendidos os requisitos dimensionais, de ergonomia, de estabilidade, de resistência, de durabilidade e de segurança e os métodos de ensaio normativos.

As dimensões para o conjunto aluno estão estabelecidas nas tabelas abaixo, sendo que a mesa deve apresentar espaço livre destinado à acomodação e à movimentação das pernas do usuário. O espaço mínimo livre destinado à acomodação e à movimentação das pernas do usuário é representado por um volume poliédrico, alinhado com a borda de contato com o usuário.

A superfície do tampo da mesa especificada nesta norma é horizontal. Entretanto, se a superfície for inclinada, esta não pode possuir inclinação superior a 10º. A borda de contato com o usuário deve ter a altura especificada para a mesa plana.

Quando houver um porta-objetos sob o tampo da mesa, a altura livre entre o tampo e a base do porta-objetos deve ser de no mínimo 60 mm. Este deve estar posicionado de forma a não invadir o espaço delimitado pelo volume poliédrico. O conjunto aluno, quando regulável para mais de um padrão dimensional, deve ser ensaiado para cada padrão dimensional contemplado.

O gestor da unidade de ensino pode fazer a otimização da utilização do conjunto aluno nos diversos turnos, relacionando as faixas de estatura dos alunos com os padrões dimensionais correspondentes, de acordo com as tabelas acima. Nas diversas etapas de fabricação, é responsabilidade de o fabricante incentivar o reaproveitamento e a reciclagem de materiais, selecionando matérias primas não poluentes desde a sua origem, e optando por processos industriais limpos, reduzindo ou eliminando dessa forma o impacto ambiental.

Em caso de necessidade, a desinfecção do conjunto aluno pode ser feita utilizando desinfetante à base de peróxido de hidrogênio, com concentração máxima de 1,5% em solução de isopropanol, com concentração de 75% ± 5%, de secagem rápida, da ordem de 1 min, conforme as instruções do fabricante.

Aplicar o desinfetante por meio de spray em toda a superfície externa do móvel. Estando seco ao toque, o móvel pode ser utilizado. As instruções de uso do conjunto aluno podem conter, além do que cada conjunto deve ser acompanhado de manual de instruções contendo informações sobre uso, manutenção e limpeza e, se aplicável, sobre regulagem, as seguintes informações: os procedimentos de montagem (quando aplicável); as tabelas acima; os procedimentos corretos de destinação, visando o reaproveitamento e a reciclagem dos materiais após a vida útil do produto. O uso de desenhos e ilustrações apropriadas pode reforçar as informações contidas no manual.

A NBR 14006 de 11/2022 – Móveis escolares — Cadeiras e mesas para conjunto aluno individual — Requisitos e métodos de ensaio estabelece os requisitos dimensionais, de ergonomia, de estabilidade, de resistência, de durabilidade e de segurança, e os métodos de ensaio, exclusivamente para conjunto aluno individual composto de mesa e cadeira, para instituições de ensino em todos os níveis. Não se aplica a cadeiras escolares com superfície de trabalho acoplada e a cadeiras e mesas para obesos. Para cadeiras escolares com superfície de trabalho acoplada, ver a NBR 16671. Esta norma não se aplica a produtos com regulagem elétrica ou pneumática e àqueles que possam ser regulados sem a utilização de ferramentas.

Os componentes, do conjunto aluno, podem ser fabricados em qualquer tipo de material, desde que sejam atendidos os requisitos dimensionais, de ergonomia, de estabilidade, de resistência, de durabilidade e de segurança e os métodos de ensaio aplicáveis definidos nesta norma, sem exclusão dos materiais que foram adotados com atendimento a requisitos específicos. Todos os componentes fabricados em madeira maciça podem ser utilizados desde que apresentem resistência em conformidade com os requisitos estabelecidos nesta norma.

A madeira utilizada deve ser de espécies exóticas oriundas de áreas de reflorestamento em conformidade com a legislação vigente, ou oriunda de áreas de florestas nativas com projetos de manejo florestal aprovados por órgãos oficiais. A madeira deve ter as seguintes características: ser isenta de defeitos naturais como nós, desvios de fibras, empenamento, rachaduras; para a confecção do tampo, a dureza Janka superficial da madeira deve ser no mínimo de 435 N.

As chapas ou componentes de madeira compensada devem ter no mínimo as seguintes características: qualidade da colagem: quando submetida ao ensaio de cisalhamento no estado úmido, a resistência à água fria conforme a NBR ISO 12466-1:2012, 6.1 deve apresentar tensão de ruptura mínima de 1,0 MPa em cinco corpos de prova; ser isenta de deterioração por fungos e/ou insetos xilófagos; compensados planos devem ter lâminas internas em número ímpar, com espessura igual ou menor que 2 mm; compensados moldados (assento e encosto) devem ter lâminas internas em número ímpar, com espessura igual ou menor que 2,0 mm.

Todos os componentes fabricados em derivados de madeira podem ser utilizados desde que apresentem resistência em conformidade com os requisitos estabelecidos nesta norma. As chapas ou componentes fabricados em madeira aglomerada devem atender aos requisitos da classificação da NBR 14810-2: 2018, Anexo I, na Classificação E1 ou E2 para formaldeído.

As chapas em fibra de madeira e outros painéis derivados de madeira devem atender aos requisitos de classificação da NBR 15316-2: 2019, Anexo I, na Classificação E1 ou E2. Os níveis de emissão de formaldeído destes painéis, caracterizados pelas NBR 14810-2 e NBR 15316-2, são definidos em classes: E1 – baixa emissão de formaldeído: inferior ou igual a 8,0 mg/100 g de amostra seca; E2 – média emissão de formaldeído: maior que 8,0 mg/100 g e inferior ou igual a 30,0 mg/100 g de amostra seca; e E3 – alta emissão de formaldeído: maior que 30,0 mg/100 g e inferior a 60,0 mg/100 g de amostra seca.

Todos os componentes fabricados em polímeros e compósitos podem ser utilizados, desde que apresentem as resistências em conformidade com os requisitos estabelecidos nesta norma. Os componentes fabricados com polímeros não podem apresentar deformações de moldagem em sua superfície (chupados) que sejam superiores a 0,35 mm na área delimitada por um retângulo de 420 mm de largura por 297 mm de profundidade, sobre a superfície de trabalho, tangente à borda de contato com o usuário, e centralizado no sentido longitudinal. Desconsiderar depressões funcionais, como porta-lápis ou porta-objetos.

Após análise visual e identificação das deformações de moldagem dentro da área delimitada, a medição da deformação pode ser feita por meio de relógio comparador. No que se refere à toxicidade, os componentes (assento, encosto e tampo) não podem conter os elementos citados em proporções excedentes aos máximos estabelecidos na NBR NM 300-3, ou seus compostos solúveis. Os componentes fabricados em aço devem atender aos requisitos gerais da NBR 11888.

As tolerâncias dimensionais dos perfis tubulares devem ser as especificadas pela NBR 8261. As dimensões para o conjunto aluno estão estabelecidas em tabelas na norma. A mesa deve apresentar espaço livre destinado à acomodação e à movimentação das pernas do usuário. O espaço mínimo livre destinado à acomodação e à movimentação das pernas do usuário é representado por um volume poliédrico, alinhado com a borda de contato com o usuário, cujas dimensões são mostradas na norma.

A superfície do tampo da mesa especificada nesta norma é horizontal. Entretanto, se a superfície for inclinada, esta não pode possuir inclinação superior a 10º. A borda de contato com o usuário deve ter a altura especificada para a mesa plana. Quando houver um porta-objetos sob o tampo da mesa, a altura livre entre o tampo e a base do porta-objetos deve ser de no mínimo 60 mm.

Este deve estar posicionado de forma a não invadir o espaço delimitado pelo volume poliédrico. O conjunto aluno, quando regulável para mais de um padrão dimensional, deve ser ensaiado para cada padrão dimensional contemplado.

O conjunto aluno deve possuir acabamento uniforme e livre de defeitos. O conjunto aluno não pode apresentar elementos que possam ser removidos sem a utilização de ferramentas. As partes acessíveis ao usuário não podem apresentar saliências, reentrâncias ou perfurações que apresentem características cortantes conforme ensaio de bordas cortantes da NBR NM 300-1:2004, 5.8.

As partes acessíveis ao usuário não podem apresentar saliências perfurantes, quando verificadas conforme ensaio de pontas agudas da NBR NM 300-1, 2004, 5.9. A estrutura metálica não pode apresentar respingos provenientes de solda. Os móveis cuja estrutura for feita de tubos devem apresentar fechamento em todas as terminações.

As partes acessíveis ao usuário não podem apresentar vãos que estejam entre 7 mm e 12 mm, a menos que sua profundidade seja menor do que 10 mm. Os furos acessíveis não podem possuir diâmetro entre 7 mm e 12 mm, a menos que sua profundidade seja menor do que 10 mm. A rugosidade (Ra) da superfície superior do tampo da mesa deve ser inferior a 40 μm e a rugosidade do assento e do encosto devem ser inferiores a 80 μm em materiais rígidos.

Os pés da mesa e da cadeira, quando carregadas com uma massa de 30 kg ± 0,15 kg devem estar perfeitamente apoiados em uma superfície plana. A superfície do tampo da mesa deve ser ensaiada de acordo com a NBR 14535:2008, 6.4, para o ensaio de resistência de luz ultravioleta (UV), e atender às especificações dessa norma. O período de exposição deve ser de 24 h à luz fluorescente UVA 351, com o pico de emissão em 353 nm e a intensidade de irradiação da lâmpada deve ser ajustada para 0,76 W/m²nm.

Após a realização do ensaio, a variação de cor deve ter um ΔE < 4, medida conforme as ISO 7724-2 e ISO 7724-3, com a geometria de medida de 45/0 ou d/8in (parâmetros de cor CIE-1976 (L*a*b*) para a luz normal D65 e para observador normal a 10°). O período de exposição deve ser de 24 h à luz fluorescente UVA 351, com o pico de emissão em 353 nm e a intensidade de irradiação da lâmpada deve ser ajustada para 0,76 W/m²nm.

A variação de cor deve ser avaliada de acordo com a ISO 105-B06 e não pode ser inferior a 4. A superfície de trabalho (independente do material de que for fabricada) deve ser ensaiada também de acordo com a NBR 14535:2008, 6.6; 6.7; 6.9; 6.10; 6.12; 6.14 conforme especificações a seguir: o brilho não pode exceder 30 unidades de brilho quando medido com a geometria de 60°; dureza > 2 H; resistência ao impacto ≥ Grau 4; e resistência à abrasão e o valor máximo de desgaste deve ser de 100 mg para 100 ciclos; aderência do filme (quando aplicável) ≤ Grau 2; resistência a manchas das seguintes substâncias e produtos: água, solução de detergente doméstico, óleo vegetal de cozinha, café, chá, leite, suco de uva, etanol (álcool etílico), ketchup, mostarda, tinta de caneta esferográfica azul, tinta de pincel atômico preta à base de água.

A limpeza dos produtos deve seguir a metodologia do fabricante. Caso persistam manchas, deve ser refeito o procedimento em outra área e passa a ser utilizado o procedimento de limpeza apresentado nesta norma, não podendo haver manchamento.

A pintura e o tratamento das partes metálicas devem atender ao apresentado na norma e as partes metálicas devem ter tratamento anticorrosivo. A resistência à corrosão na câmara de névoa salina (neutra) deve ser de 300 h, quando ensaiada conforme a NBR 8094 e avaliada conforme as NBR 5841 e NBR ISO 4628-3, com grau de enferrujamento máximo de Ri0, e grau de empolamento de d0/t0, em corpos de prova seccionados de partes retas e que contenham uniões soldadas. O tamanho do corpo de prova deve ser de no mínimo 150 mm de comprimento.

Advertisement

Os parâmetros normativos de medição predial remota do consumo de água e gás

O sistema de medição remota (SMR) se constitui por medidores providos de geradores de pulsos ou outra tecnologia substituta, dispositivos auxiliares de medição, dispositivos adicionais de medição e prescrições documentadas, que permitem a medição e outras funcionalidades, como acionamento de válvulas de bloqueio digital à distância. Basicamente, podem ser um sistema de medição remota constituído por linhas variáveis discretas; um sistema de medição remota constituído por linhas de comunicação digital; e um sistema de medição remota misto.

O comissionamento do SMR envolve um conjunto de ensaios e inspeções para assegurar a sua conformidade com a norma e minimizar a ocorrência de anomalias. O comissionamento do SMR deve ser realizado em duas etapas, tendo em vista as exigências preconizadas para a realização de ensaio de verificação da integralização de pulsos dos medidores pelo SMR.

Os seguintes documentos devem ser entregues ao proprietário e/ou operador do SMR pelo seu fornecedor na ocasião do comissionamento: manual de operação e manutenção do SMR; declaração de inspeção de componentes de SMR adquiridos de terceiros; certificados dos ensaios e simulações e inspeções feitas no SMR instalado no local; cópia das anotações de responsabilidade técnica (ART) de projeto, equipamentos e sistemas, e execução da instalação do SMR; projeto final (desenho esquemático) das instalações do SMR, para o edifício em questão, detalhando a localização dos componentes situados em área comum, assim como o tipo de material utilizado, seguindo as prescrições da ISA 5.1; e as prescrições documentadas. A discriminação dos ensaios e os respectivos planos de amostragem encontram-se na tabela abaixo.

Igualmente, deve-se entender uma metodologia de dimensionamento da infraestrutura predial civil necessária (eletrodutos, eletrocalhas, caixas de passagem, etc.) que possibilite a futura instalação de quaisquer das três modalidades de sistema de medição remota prediais, as quais estão comumente disponíveis no mercado brasileiro. Isso se preferencialmente à elaboração do projeto da edificação, para o qual existe a necessidade de se prever a infraestrutura civil para a futura instalação de SMR após a conclusão das obras e cuja modalidade e fornecedor ainda não foram definidos. Para edificações já construídas ou para o caso de já se ter definido por ocasião da elaboração do projeto da edificação o fornecedor do SMR, recomenda-se consultá-lo para efeito de dimensionamento da infraestrutura civil necessária.

A NBR 15806 de 02/2010 – Sistemas de medição predial remota e centralizada de consumo de água e gás estabelece os requisitos mínimos necessários para implementação de sistemas de medição prediais remotos e centralizados de consumo de água e gás, tipicamente utilizados em edificações residenciais e comerciais. Esta norma se aplica aos sistemas com medidores de água e gás regularmente utilizados em medições residenciais e análogas (hidrômetros e medidores de paredes deformáveis) conforme descritos nas normas NBR NM 212 e NBR 12127.

O sistema de medição remota (SMR) é usado para a medição e é constituído por medidores providos de geradores de pulsos ou outra tecnologia substituta, dispositivos auxiliares de medição, dispositivos adicionais de medição e prescrições documentadas, que permitem a medição e outras funcionalidades, como acionamento de válvulas de bloqueio digital à distância (figura abaixo). Os componentes do SMR, particularmente os dispositivos auxiliares de medição, podem constituir-se em elementos únicos situados em locais determinados ou em vários elementos localizados ao longo de uma rede digital de comunicações em função da solução tecnológica adotada.

Para exemplificar os dispositivos de memórias (dispositivo auxiliar de medição) tanto podem estar localizados de forma distribuída nos andares dos edifícios, como também podem se constituir em um elemento único localizado nas centrais de controle instaladas em área comum. Os sistemas de medição remota prediais para água e gás são classificados em três modalidades, de acordo com a tipologia das redes de comunicação de dados.

O Anexo A apresenta uma metodologia de dimensionamento da infraestrutura predial civil (eletrodutos, eletrocalhas, caixas de passagem, etc.) que possibilita no âmbito do projeto da edificação a previsão dos meios necessários para a instalação de quaisquer das três modalidades de sistema de medição remota prediais, após a sua construção. O sistema de medição remota constituído por linhas variáveis discretas – SMR 01 usa predominantemente linhas variáveis discretas (pulsos) para a transmissão de dados, sem o uso de protocolos de comunicação. A integração de pulsos digitais dos medidores, bem como o envio de pulsos de comando para acionamento das válvulas de bloqueio são realizados no dispositivo calculador do SMR (concentrador), o qual é normalmente localizado na central de operações e coleta de dados do SMR.

Eventualmente, em função das necessidades do edifício, dois ou mais calculadores podem ser interligados. O SMR é considerado um sistema de medição eletrônico, tendo em vista a sua concepção. O SMR deve ser protegido contra campos magnéticos externos, descargas eletrostáticas e interferências eletromagnéticas de acordo com as resoluções Anatel nº 442 e 238.

Recomenda-se que o SMR seja concebido de forma a não ocasionar qualquer tipo de interferência em sistemas e/ou aparelhos típicos de uso urbano normalmente existentes nos edifícios. O SMR deve ser concebido de tal maneira que o restabelecimento do fornecimento de gás não possa ser realizado remotamente.

Os componentes elétricos/eletrônicos devem ser protegidos contra a ignição no caso de contato direto com gases combustíveis. O SMR deve ser concebido de tal maneira que não gere temperaturas superiores a 85 °C e choques elétricos por contato. Deve assegurar a integridade dos dados nele coletados e armazenados.

O SMR deve ser integralmente protegido contra surtos de tensão e corrente elétrica, através de dispositivos apropriados (DPS – dispositivo de proteção contra surtos). A especificação da classe do DPS deve estar de acordo com a NBR 5410, referente à especificidade de cada sistema. Deve ser protegido contra descargas atmosféricas, levando em conta as características locais da instalação e as interfaces com outros sistemas existentes.

A especificação da classe contra descargas atmosféricas deve estar de acordo com a NBR 5410 e com a especificidade de cada sistema. Os componentes do SMR instalados em área aberta devem ser protegidos contra ação dos agentes atmosféricos e da corrosão. Os invólucros que venham a ser utilizados devem possuir classificação mínima de proteção IP 65 em conformidade com a NBR IEC 60529.

O SMR deve garantir a continuidade da aquisição de dados de medição em casos de falta de alimentação principal por um período mínimo de 24 h. O SMR deve possibilitar a medição dos consumos individuais referente às economias e ao medidor coletivo (se houver). Deve possuir dispositivo indicador local, de livre acesso, que permita a visualização dos dados de leitura e alarmes disponíveis.

O SMR deve ter a capacidade de atualização manual das leituras remotas de acordo com as leituras indicadas nos totalizadores dos medidores, sempre que essa se fizer necessária. O SMR deve ter a capacidade de disponibilizar pelo menos uma leitura por dia. O SMR deve ter a capacidade de realizar testes periódicos de funcionamento da VBRP de água ou de gás.

Os protocolos para comunicação externa do SMR devem ser abertos de forma a garantir a sua total intercambiabilidade e interoperabilidade. Recomenda-se adotar as diretrizes preconizadas no Anexo B para a sua especificação. O SMR deve emitir alarmes em casos de falta de alimentação principal por um período superior a 3 h.

O SMR deve ter a capacidade de geração, registro e visualização de alarmes relativos a rompimento da selagem eletrônica. Para se obter acesso aos componentes do SMR, no caso de uso de selos mecânicos, cada selo deve ser removido, danificado ou quebrado. O SMR deve ser capaz de emitir alarmes de consumo ininterrupto de água ou gás por no mínimo 24 h.

O SMR deve emitir alarme quando ocorrer falta de integridade da comunicação desde os medidores e a válvula de bloqueio remoto acionada por pulso (VBRP) até o concentrador, de acordo com o ensaio descrito nessa norma. Se na rede interna da economia existir um VBRP operando em conjunto com SMR, este deve enviar um alarme se o transdutor de medição enviar dados ao SMR enquanto a VBRT estiver na posição fechada, o que representaria um vazamento de gás.

O SMR, quando submetido ao ensaio de verificação da integralização de pulsos dos medidores pelo SMR, não deve apresentar nenhuma variação entre as leituras coletadas no totalizador do medidor e no dispositivo indicador remoto. Os medidores devem atender às Portarias nº 31 (medidores de gás) e nº 246 (medidores de água) do Inmetro.

Os medidores devem ser dimensionados e instalados de acordo com as normas vigentes e os requisitos específicos dos fabricantes. Recomenda-se que os medidores a serem instalados na entrada da edificação e/ou nas áreas comuns sejam pré-equipados para interligação ao SMR. O transdutor de medição deve garantir a integridade da transmissão do sinal do medidor ao SMR. Deve atender rigorosamente às normas vigentes e aos requisitos específicos dos fabricantes.

Deve possuir características de funcionamento prolongado no mínimo iguais às do medidor no qual ele será instalado. O SMR, no que tange à sua operação associada com o transdutor de medição para medidores de gás, deve estar em conformidade com a NBR15526. O SMR, no que tange à a sua operação associada com o transdutor de medição, não deve ser afetado por violações magnéticas ou eletromagnéticas. Caso seja violado deve gerar um alarme para esta ocorrência.

Para o caso do uso de transdutores de medição tipo ampola de contato (reed switch), este requisito deve ser comprovado, por ocasião do comissionamento do SMR, através da execução de ensaio de influência de campo magnético externo. O transdutor de medição deve ser solidariamente fixado ao medidor e respeitar os requisitos mínimos de proteção IP65, de acordo com a NBR IEC 60529.

O subconjunto constituído por medidores, transdutores de medição, conexões dos transdutores dos medidores aos meios físicos e VBRP deve estar devidamente selado através de lacres apropriados. O subconjunto constituído por medidores, transdutores de medição, conexões dos transdutores dos medidores aos meios físicos e VBRP deve estar devidamente protegido contra choques mecânicos ou avarias de qualquer natureza.

Os dispositivos auxiliares não podem afetar as funções metrológicas do medidor e tão pouco a correta operação do SMR. O SMR deve possuir interface para comunicação com equipamentos de coleta de dados conforme protocolo delineado no Anexo B. O concentrador deve ser instalado permanentemente em área comum de livre acesso, protegida de intempéries, de forma a permitir sua conexão com sistemas de coleta de dados e auditagem.

O invólucro do concentrador deve possuir classificação mínima IP65 segundo a NBR IEC 60529. O concentrador deve armazenar de forma não volátil os dados de medição, permitindo sua conferência com o totalizador do medidor. A altura dos dígitos do indicador deve ser igual ou superior a 5 mm. Deve ser possível a leitura de maneira clara e sem ambiguidades a um ângulo de 55° tomando como referência um eixo perpendicular ao visor. O dispositivo indicador remoto deve possuir interfaces homem-máquina amigáveis e de simples operação. O dispositivo indicador remoto deve ser alojado em local protegido de intempéries.

Os parâmetros normativos para a abrangência da iluminação de emergência

A iluminação de emergência deve fornecer uma fonte de luz de apoio em caso de corte de energia, ligando-se automaticamente ou permitindo que as luminárias permaneçam acesas. O seu objetivo é permitir que os ocupantes localizem facilmente as saídas para evacuar o edifício com segurança. A iluminação de emergência deve ser projetada para iluminar rotas de fuga, como corredores e escadas, ao mesmo tempo em que fornece uma rota de fuga clara sinalizada por luzes, evitando pânico e perigo para os ocupantes.

As limitações para a altura da instalação da iluminação de emergência de aclaramento, considerando um ambiente sem fumaça são as seguintes: a intensidade da iluminação no piso e a visibilidade de obstáculos. As limitações para a altura da instalação da iluminação de emergência de aclaramento em caso de incêndio são as seguintes: as luminárias devem ser instaladas abaixo do ponto mais baixo do colchão de fumaça possível de se formar no ambiente.

Este colchão de fumaça pode abaixar até as saídas naturais e de ventilação forçada existente. Ou pode se considerar um nível de iluminamento superior a 15 lx piso na impossibilidade de instalação do ponto de luz abaixo das saídas de ventilação natural ou forçada. Para o balizamento de rota de fuga, os pontos de indicação devem ser instalados abaixo do colchão de fumaça.

Nos casos em que a fumaça tenha a possibilidade de invadir totalmente o ambiente pela falta de ventilação adequada, impedindo a visualização da rota de fuga, aconselha-se a utilização de indicações com pintura ou placas fotoluminescentes na parede ou no piso, devidamente protegida contra o desgaste natural de acordo com a NBR 16820, ou faixas no piso com iluminação própria. Esta iluminação também pode ser colocada nos rodapés, corredores e escadas.

Para assegurar a visibilidade com a iluminação mínima de 3 lx e 5 lx no piso, utilizar um dispositivo de acordo com os desenhos da norma, com o mesmo revestimento, mesma cor e tonalidade do piso. O dispositivo deve ser visto em uma distância mínima de 5 m do ponto de vista do observador, na iluminação mais desfavorável, se possível, com a sombra do observador sobre o dispositivo.

O observador ideal é um usuário representativo para as pessoas que irão frequentar o local. O observador deve ser escolhido entre os transeuntes, sem conhecimento prévio do ensaio proposto ou do local onde deve ser executado o ensaio de visão. A colocação do dispositivo deve ser alterada no ângulo de visão do observador pelo menos quatro vezes, e o observador deve acertar 75% dos ângulos.

A distância máxima entre dois pontos de iluminação ambiente é equivalente a quatro vezes a altura da instalação destes em relação ao nível do piso, para instalações até 3,75 m. Nas instalações com pé-direito superior a 3,75 m, a distância entre os pontos de luz do sistema de iluminação de emergência considerada ideal é de 15 m um do outro. Para distâncias superiores a 15 m entre pontos de luz de aclaramento, comprovar que o sistema de iluminação de emergência atende à intensidade luminosa mínima.

Não pode haver instalações com distância superior a 20 m entre pontos de luz. Na utilização de luminárias de alto fluxo luminoso ou de luminárias do tipo projetor, convém que estes sejam instalados em altura adequada para que a relação máxima entre as iluminância não seja superior a 20:1 para evitar ofuscamento, conforme indicado na figura abaixo.

A tabela acima é uma referência para projetos e instalações de luminárias de emergência em relação à altura e distância, visando atender à iluminância mínima no piso. Para atender a esse requisito, um dos seguintes métodos deve ser adotado: método 1: o cálculo luminotécnico utilizando softwares apropriados; método 2: cálculo luminotécnico utilizando o método ponto a ponto; e método 3: na ausência de estudo luminotécnico, pode ser utilizada a tabela acima, para a verificação da instalação do sistema de iluminação de emergência em relação ao fluxo luminoso da luminária x altura de instalação x distância de instalação. Os parâmetros do ambiente de estudo da tabela acima: paredes de cor clara; área livre de objetos; e corredor de 2 m de largura. As rotas de fuga mais largas podem ser tratadas como um número de tiras de 2 m de largura.

Para a aceitação do sistema de iluminação de emergência, devem ser apresentados: o projeto contemplando os pontos de iluminação de emergência de aclaramento e de balizamento; o cálculo luminotécnico efetuado através de software de cálculo específico para tal fim, e este deve apresentar o nível de iluminamento e os pontos de distribuição de luz adequados conforme os requisitos da norma; o cálculo luminotécnico por meio do método ponto a ponto efetuado quando não utilizado software de cálculo luminotécnico devidamente assinado pelo responsável técnico; os documentos/certificados que comprovem que os equipamentos instalados foram confeccionados de acordo com os parâmetros das normas de fabricação pertinentes, e devidamente ensaiados e aprovados por órgãos reconhecidos ou devidamente acreditados; em caso de aplicação de sistema de iluminação de emergência do tipo sistema centralizado com baterias recarregáveis, o cálculo de queda de tensão com a corrente nominal para cada circuito da fiação deve ser apresentado (queda mínima da tensão entre o borne da fonte de energia até o primeiro dispositivo e a queda de tensão até o último dispositivo de iluminação) de acordo com as metodologias da NBR 5410.

A NBR 10898 de 02/2023 – Sistema de iluminação de emergência especifica os requisitos mínimos para os sistemas de iluminação de emergência a serem instalados nas edificações ou em áreas e passagens onde tais sistemas são requeridos, na falta de iluminação natural ou falha da iluminação normal instalada. Para luminárias de iluminação de emergência, utilizadas em ambientes de áreas classificadas, ou seja, em ambientes de atmosferas explosivas, esta norma se aplica somente para os requisitos de iluminamento, de autonomia e rotas de fuga. Adicionalmente, para sistemas de iluminação de emergência utilizados em ambientes de atmosferas explosivas, aplica-se a série NBR IEC 60079. Para sistemas de iluminação de emergência em túneis, aplica-se a NBR 5181.

O principal objetivo da iluminação de emergência é fornecer as condições visuais que possam aliviar o pânico e facilitar a evacuação mais segura dos ocupantes das edificações durante a falha do fornecimento normal de energia/iluminação, em condições claras (sem fumaça) e cheias de fumaça. Convém que o projeto do sistema de iluminação de emergência seja elaborado de acordo com as condições das luminárias (por exemplo, iluminância mínima em relação ao piso, limites máximos de intensidade e fluxo luminosos para evitar ofuscamento) durante sua vida útil e convém que se baseie apenas a partir da luz direta das luminárias.

Recomenda-se que as contribuições por inter-reflexão da superfície do ambiente sejam ignoradas. No entanto, em sistemas de iluminação, como luminárias indiretas ou de luzes para cima (utilizados no estado permanente/combinado), onde a luminária trabalha em conjunto com uma superfície refletora, convém que a reflexão seja tomada como luz direta do sistema. Os requisitos fornecidos nesta norma são mínimos para os fins de projeto e são calculados para o período de duração total e final da vida útil do equipamento.

Na maioria dos países, estados ou cidades, regulamentações estatutárias relacionadas à iluminação de emergência já existem. Por esta razão, convém que a autoridade competente sempre seja consultada antes de iniciar o projeto de um sistema específico de iluminação de emergência. Espera-se que os requisitos técnicos de iluminação de emergência nos regulamentos estatutários locais convirjam para esta norma.

O fornecimento de um nível adequado de iluminação de emergência com a finalidade de prevenir acidentes e assegurar a evacuação das pessoas para uma área externa segura da edificação. A redução aceitável do nível de iluminação do sistema de emergência pode ser de no máximo 10%, gradualmente entre o início e o final da autonomia estipulada, e os níveis de iluminância devem atender ao Anexo A. Para evitar a diminuição da visibilidade por ofuscamento, devem ser observados os valores de fluxo luminoso máximo da tabela abaixo.

Iluminar os ambientes facilitando a localização de pessoas impossibilitadas de se locomoverem. Iluminar os ambientes, em casos específicos sem interrupção, para a continuidade dos serviços médicos, serviços de controle aéreo, marítimo, ferroviário e serviços essenciais contidos na edificação. Iluminar os ambientes de acordo com a variação da intensidade da iluminação, conforme descrito no Anexo A e iluminar os ambientes visando à segurança patrimonial.

Deve-se sinalizar inconfundivelmente as rotas de fuga visando o abandono seguro da edificação. Sinalizar o topo dos edifícios para alerta da aviação civil e militar. Prover iluminação de emergência por um tempo mínimo de 2 h de funcionamento. Recomenda-se que a informação de autonomia do sistema de iluminação de emergência esteja na documentação de segurança da edificação.

Recomenda-se maior autonomia em regiões com dificuldade de restabelecimento da alimentação da energia elétrica. O funcionamento do sistema de iluminação de emergência deve ocorrer sem a intervenção do usuário, seja por meio de dispositivos manuais, seja por sensores que dependem da presença de pessoas ou por outros meios como centrais de alarme/segurança.

Os ambientes da edificação devem possuir visibilidade apropriada. A iluminação de aclaramento é requerida no volume do espaço e deve ser conforme esta norma. Uma luminária de iluminação de emergência deve ser instalada de modo a fornecer iluminância apropriada, próxima de cada porta de saída e nas posições onde é necessário enfatizar o perigo potencial ou a localização do equipamento de segurança.

Os locais para os quais estas ênfases devem ser consideradas são listados a seguir: em cada porta de saída destinada a ser utilizada em uma emergência; nas escadas, para que cada lance de escada receba luz direta, incluindo especialmente os degraus superior e inferior; em qualquer outra mudança de nível vertical; nas saídas de emergência e nos locais de sinalização de segurança; em cada mudança de direção; em cada interseção de corredores; em cada saída final; em cada posto de primeiros socorros; em cada equipamento de combate a incêndio e ponto de chamada; e se a fumaça for uma preocupação primordial, ver as recomendações nessa norma.

Os valores do nível de iluminamento mínimo devem ser atendidos independentemente das características do ambiente como: cor da parede, cor do teto, decoração do ambiente, leiaute do local, etc. Em caso de dúvida sobre o nível de iluminamento mínimo, este deve ser verificado no local desejado por meio de medição com luxímetro ao nível do piso. A iluminação de aclaramento também tem como objetivo permitir o reconhecimento de obstáculos que possam dificultar a circulação, como grades, vasos, mesas, armários e outros.

Os sinais de segurança que são disponibilizados em todas as saídas destinadas a serem utilizadas em uma emergência e ao longo das rotas de fuga devem ser iluminados, para indicar, sem ambiguidade, a rota de fuga para um ponto de segurança. Quando a visão direta de uma saída de emergência não for possível, um sinal de segurança iluminado (ou uma série de sinais) deve ser fornecido para auxiliar na progressão em direção à saída de emergência.

Os equipamentos que contém sinais de segurança do sistema de iluminação de emergência com a função exclusiva de indicar a rota de fuga devem possuir fluxo luminoso mínimo de 30 lm. Os equipamentos que contém sinais de segurança do sistema de iluminação de emergência com dupla função, isto é, que indica a rota de fuga e que ilumina o ambiente, deve possuir fluxo luminoso mínimo de 400 lm.

A iluminação de balizamento deve possuir sinais de segurança para indicar todas as mudanças de direção, as escadas de acesso e as saídas da edificação até uma área aberta. Recomenda-se que esta indicação não seja obstruída por anteparos ou arranjos decorativos. Em locais que possuem saídas alternativas, recomenda-se que seja prevista uma iluminação de balizamento controlável à distância que permita a alteração da rota de fuga a fim de evitar aglomeração em uma única saída.

O comando de alteração da rota da indicação de saída deve ser situado em local estratégico e protegido, junto a outros controles essenciais de segurança da edificação, por exemplo, em área de controle do sistema de alarme de abandono, ventilação, pressurização das escadas, fechamento de portas corta-fogo e outros. Os símbolos gráficos devem ser conforme a NBR 14100 e/ou a NBR ISO 3864-1. Os textos devem ser escritos em língua portuguesa. Caso necessário, podem ser adicionados, como complemento, textos em outro idioma.

Os símbolos gráficos devem ser grafados com textos e/ou símbolos junto ao elemento eletroluminescente. Podendo ser a iluminação do tipo internamente iluminada ou externamente iluminada (ver a NBR ISO 3864-1). Preferencialmente, os textos e símbolos gráficos devem ser na cor verde ou vermelha e conter fundo na cor branca, obtendo assim maior rendimento da luz quando esta for do tipo internamente iluminada. Como opção, pode-se utilizar o fundo vermelho ou fundo verde com letras em branco.

As tonalidades das cores verde ou vermelha devem seguir o apresentado nas NBR ISO 3864-1 e NBR ISO 3864-4, exceto quando utilizadas pinturas de alta reflexão, luminescentes ou fotoluminescentes que não corresponda às tonalidades da norma. Para uma melhor utilização da iluminação de balizamento, deve-se prever a presença de fumaça nos ambientes (ver a Seção 13 e o Anexo A). As dimensões mínimas da área destinada aos textos e símbolos gráficos devem seguir as orientações da NBR 16820 (dimensões das placas de sinalização).

O material empregado na confecção do elemento balizador e a sua fixação devem ser de tal forma que não possam ser facilmente danificados. A luminária de balizamento deve ser construída com o índice de impacto mecânico mínimo de IK03 conforme a NBR IEC 62262 e índice de proteção mínimo IP23 conforme a NBR IEC 60529. Quanto à fixação das luminárias, elas devem ser firmemente fixadas de maneira a impedir qualquer remoção involuntária.

A conformidade é verificada por inspeção e tem como objetivo que não ocorra o desprendimento total ou parcial em relação ao seu ponto de fixação original quando por exemplo em uma situação de aplicação indireta de jato d’água. Os equipamentos autoluminescentes não podem emitir qualquer radiação ionizante. Pisca-pisca ou equipamentos similares podem ser utilizados para uma maior atenção nas saídas principais das edificações.

O ofuscamento pela intensidade pontual deve ser evitado. As luminárias de balizamento do sistema de iluminação de emergência não podem conter qualquer tipo de interruptor manual, do tipo liga/desliga, desativando a bateria do bloco autônomo de emergência, com exceção de outros dispositivos no estado de repouso ou no estado de inibição. Havendo um botão, este deve ser para fins de testes e deve ser do tipo autorrearmável (botão pulsador).

A iluminação auxiliar instalada nos locais onde não pode ocorrer interrupção da iluminação normal pela natureza do trabalho, deve assegurar um nível de iluminamento adequado em relação ao nível de iluminamento determinado pela NBR ISO/CIE 8995-1. Alguns exemplos são: salas de cirurgia, salas de primeiros socorros, laboratórios químicos, controle de tráfego aéreo, ferroviário, metrô, dentre outros. A utilização da iluminação auxiliar não substitui o sistema de iluminação de emergência.

A iluminação de área de circulação aberta, em relação à iluminância ao nível horizontal em uma área de circulação aberta, não pode ser inferior a 1 lx ao nível do piso. A iluminância ao nível vertical em uma área de circulação aberta não pode ser inferior a 3 lx ao nível do piso. São consideradas áreas de circulação aberta: espaço aberto entre edificações, espaço aberto entre a edificação e o ponto de encontro de segurança, estruturas metálicas (por exemplo, as utilizadas geralmente em prédio de caldeiras), estruturas metálicas de escadas de emergência (normalmente instaladas externamente à edificação).

A fim de identificar as cores de segurança, o valor mínimo para o índice de reprodução de cor Ra de uma lâmpada deve ser > 40. Em áreas de alto risco, a iluminância de emergência mantida no plano de referência não pode ser inferior a 10% da iluminância mantida requerida para aquela tarefa, mas, não pode ser inferior a 15 lx. A iluminação de emergência deve estar livre de efeitos estroboscópicos. Ver também o Anexo D.

Algumas áreas críticas (por exemplo, salas de operações médicas) podem requerer até 100% da iluminação permanente da tarefa específica. Em outras áreas como salas de controles de aeroportos, metrô, rodoviárias, ferroviárias, subestações elétricas e estação de tratamento de água, e também em áreas de risco, postos de vigilância/monitoramento, recomenda-se que a iluminação de emergência assegure um mínimo de intensidade luminosa conforme a legislação correspondente.

Para identificar as cores de segurança, o valor mínimo para o índice de reprodução de cor Ra de uma lâmpada deve ser > 40. Um tipo de sistemas de iluminação de emergência é o conjunto de bloco autônomo que é um equipamento para iluminação de emergência que constitui em seu invólucro, bateria recarregável com tensão máxima de até 30 V cc, carregador de bateria, controles e lâmpadas halógenas, fluorescentes ou LED com desempenho luminoso adequado ao local de instalação.

Os sistemas de iluminação de emergência através de blocos autônomos devem ter dispositivos e controles conforme a seguir: o carregador de bateria munido de controle de supervisão de carga e flutuação; o dispositivo de comutação para ativar a iluminação de emergência na falta total ou parcial da tensão da rede local, com chaveamento do estado de vigília (supervisão) para o estado de emergência com o valor de tensão da rede elétrica da concessionária em 60% da tensão nominal, com tempo de comutação não superior a 2 s.

Para o retorno ao estado de vigília, a comutação deve ocorrer quando a tensão da rede elétrica da concessionária for de 85% da tensão nominal. O carregador com recarga automática de acordo com o tipo de bateria utilizada. A recarga total da bateria deve ocorrer em no máximo 24 h, garantindo 100% da autonomia especificada pelo fabricante do equipamento, ver o Anexo B. A instalação de luminárias satélites alimentadas por um bloco autônomo não pode prejudicar a autonomia mínima exigida para o sistema de iluminação de emergência.

As especificações do bloco autônomo devem atender à NBR IEC 60598-2-22 e a comutação automática do equipamento não pode limitar a sua vida útil. As lâmpadas incandescentes, lâmpadas led ou outro tipo de lâmpada com rosca tipo E27 não podem ser utilizadas em bloco autônomo de iluminação de emergência, pela possibilidade de utilização de dispositivos inadequados e comprometer a segurança do produto. Não é recomendado a utilização de componentes de chaveamento que possam limitar a vida útil quando for utilizada lâmpada fluorescente.

São exemplos de componentes de chaveamento: minuterias, sensores de presença, etc. Os blocos autônomos de iluminação de emergência não podem conter qualquer tipo de interruptor manual, do tipo liga/desliga, desativando a bateria do bloco autônomo de emergência, com exceção de outros dispositivos no estado de repouso ou no estado de inibição. Havendo um botão, este deve ser para fins de testes e deve ser do tipo autorrearmável (botão pulsador).

Para os blocos autônomos a serem utilizados em elevadores, além dos requisitos desta norma, verificar as normas pertinentes a elevadores. Os blocos autônomos devem ser construídos de forma que suportem o ensaio de temperatura a 70 °C com a luminária instalada e funcionando no mínimo por 1 h e estes sejam aprovados por organismos nacionais competentes. A temperatura de cor da lâmpada deve ser igual ou superior a 3.000 °K e no máximo 6.000°K.

O fluxo luminoso deve ser igual ou superior a 300 lm e deve atender ao Anexo A. Um bloco autônomo com fluxo luminoso inferior a 300 lm pode ser utilizado, desde que seja comprovado por meio de estudo luminotécnico o atendimento de iluminância mínima especificada nesta norma.

A operação dos vasos de pressão para ocupação humana

Também denominados câmaras hiperbáricas, os vasos de pressão para ocupação humana (VPOH) ou simplesmente câmaras hiperbáricas são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. São projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Durante a fase de elaboração do projeto de instalação do serviço de medicina hiperbárica (SMH), o fabricante deve fornecer: o peso do equipamento em ordem de operação e para efeito de ensaio hidrostático no local, quando aplicável, para o dimensionamento das fundações do piso onde será instalado; as condições de acesso da câmara hiperbárica multipaciente ao ambiente onde será instalada, inclusive as necessárias para o descarregamento e o transporte ao seu local definitivo; o projeto sugerido de instalação (leiaute) da câmara hiperbárica multipaciente, incluindo a disposição recomendada para os equipamentos auxiliares; os documentos e projetos de instalação elétrica de todos os equipamentos, com as informações necessárias para o dimensionamento da (s) rede (s) elétrica (s) de alimentação; os documentos e projetos para as tubulações hidráulicas e pneumáticas de alimentação da câmara hiperbárica; e os projetos sugeridos de instalação dos sistemas de suprimento do oxigênio medicinal e do ar comprimido respirável e das respectivas redes de distribuição.

Na entrega da câmara hiperbárica multipaciente e dos equipamentos auxiliares, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido respirável e de oxigênio; as instruções para os procedimentos de limpeza e assepsia do equipamento e das unidades de respiração; as advertências sobre dos riscos de fogo ou explosão e a descrição dos sistemas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica multipaciente e das janelas de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica multipaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica multipaciente e de seus equipamentos auxiliares.

Na entrega da câmara hiperbárica monopaciente, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido e de oxigênio e dos procedimentos de emergência; as instruções sobre a correta utilização da pulseira de aterramento do paciente e os riscos da não utilização; as instruções para os procedimentos de limpeza e assepsia do equipamento e da unidade de respiração, quando aplicável; as advertências sobre dos riscos de fogo ou explosão e medidas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica monopaciente e dos componentes de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e de combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica monopaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica monopaciente.

Para a câmara hiperbárica monopaciente equipada com um sistema de reaproveitamento do oxigênio medicinal por meio de um processo de absorção do dióxido de carbono, as instruções detalhadas sobre o uso deste sistema devem constar do manual de instruções, assim como no treinamento operacional. A NBR 15949 de 08/2022 – Vaso de pressão para ocupação humana (VPOH) para fins terapêuticos – Requisitos para fabricação, instalação e operação estabelece os requisitos de projeto, fabricação, instalação, manutenção, operação, sistema de suprimento de gases e de segurança para vasos de pressão para ocupação humana (VPOH) multipacientes e monopacientes, projetados para operar a pressões superiores à pressão atmosférica ambiente e empregados em procedimentos terapêuticos de oxigenoterapia hiperbárica e no tratamento de doenças descompressivas, em instalações médicas independentes ou agregadas aos serviços de saúde.

Esta norma não se aplica aos requisitos relativos à ergonomia para o projeto dos VPOH para fins terapêuticos. Os VPOH são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. Estes equipamentos são projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Estes equipamentos permitem o tratamento de um ou mais pacientes em vários níveis de atendimento, inclusive aqueles sob cuidados intensivos, com todos os aparatos necessários, além de oferecer condições ambientais confortáveis e seguras aos pacientes, operadores e atendentes. Os níveis de oxigênio da atmosfera interna requerem monitoramento e controle para evitar hipóxia, toxicidade por oxigênio e riscos de incêndio. Os vasos de pressão destinados exclusivamente aos procedimentos terapêuticos de oxigenoterapia hiperbárica operam tipicamente a uma pressão operacional de até 180 kPa acima da pressão atmosférica.

Também destinados ao tratamento de doenças descompressivas, operam com pressões mais elevadas, que podem chegar a 700 kPa ou mais. Os tempos de tratamento dentro dos vasos de pressão estão tipicamente entre 1,5 h e 3 h para procedimentos terapêuticos de oxigenoterapia hiperbárica, enquanto o tratamento de doenças descompressivas pode durar 8,5 h ou mais.

Esta norma é destinada à utilização por pessoas envolvidas no projeto, fabricação, instalação, manutenção e operação de vasos de pressão para ocupação humana (VPOH). Convém que as pessoas envolvidas na montagem e na instalação dos sistemas de suprimento de gases medicinais e do próprio serviço de medicina hiperbárica também estejam cientes do conteúdo desta norma.

As câmaras hiperbáricas são classificadas segundo o número de ocupantes em seu interior. A multipaciente é um equipamento de maior porte, normalmente de forma cilíndrica, capaz de acomodar simultaneamente de 2 pacientes a 15 pacientes, além do pessoal operacional. O casco é tipicamente em aço-carbono, dotado de janelas ou vigias de acrílico transparente, bancos ou poltronas para acomodação dos ocupantes, unidades de respiração individual com sistema de exalação para o meio externo e pelo menos uma maca de tamanho padrão.

Dotado de iluminação externa ou interna, portas herméticas, sistema de comunicação com o exterior, sistema de climatização e sistemas de combate a incêndio. A monopaciente é um equipamento de menor porte, normalmente de forma cilíndrica, capaz de acomodar apenas um paciente, que permanece deitado em uma maca durante o tratamento.

A estrutura da base pode ser em aço carbono ou alumínio e o casco cilíndrico dotado de janelas ou na forma de um tubo de acrílico transparente. Pode ser equipado com uma unidade de respiração individual. As pressões indicadas nesta norma são expressas como manométricas (isto é, a pressão atmosférica é determinada como zero), salvo quando mencionado de outra forma.

A câmara hiperbárica multipaciente e monopaciente, seus sistemas acessórios e componentes em acrílico devem ser projetados, fabricados, inspecionados e ter sua conformidade avaliada conforme estabelecido no código ANSI/ASME PVHO-1 por fabricantes com sistema de qualidade reconhecido e pessoal qualificado na produção de vasos de pressão. Exemplo de sistema de qualidade reconhecido: pode ser a NBR ISO 9000.

As marcações na placa de identificação, a ser afixada na câmara hiperbárica multipaciente e na monopaciente, devem seguir o disposto no código ANSI/ASME PVHO-1 e constar o nome, o símbolo e a marca da entidade ou sociedade certificadora. A câmara hiperbárica multipaciente e monopaciente e seus sistemas e acessórios devem estar em conformidade com o estabelecido na série NBR IEC 60601 e as respectivas emendas e normas colaterais cabíveis, por seus fabricantes. A câmara hiperbárica multipaciente e monopaciente deve ser projetada para trabalhar a uma pressão de operação de pelo menos 180 kPa e atender às relações entre as pressões especificadas na tabela abaixo.

A câmara hiperbárica multipaciente e monopaciente deve ser equipada com pelo menos duas válvulas de alívio de pressão, ajustadas para serem acionadas quando a pressão interna chegar a 10% acima da pressão máxima de operação. A vazão de descarga de cada válvula de alívio de pressão deve ser equivalente à soma das vazões máximas de pressurização dos gases oxigênio medicinal e ar comprimido respirável.

A câmara hiperbárica multipaciente deve ser construída com pelo menos três compartimentos interligados entre si: a antecâmara, a câmara principal e um compartimento de passagem (medica lock), dotados de portas herméticas para acesso ao exterior e entre a antecâmara e a câmara principal. Cada compartimento, incluindo as janelas de acrílico transparente e penetradores, deve ser capaz de suportar a pressão de ensaio, conforme especificado na tabela acima.

As portas de acesso a pessoas da antecâmara e da câmara principal devem ter altura mínima de 1,40 m e largura mínima de 0,70 m e devem permitir a passagem de um paciente deitado em uma maca de dimensões-padrão e/ou de uma cadeira de rodas. A antecâmara deve ter pelo menos uma janela de acrílico transparente que permita a observação de seu interior, pelo lado de fora.

A câmara principal deve ter mais de uma janela de acrílico transparente para permitir a observação de todos os assentos instalados, pelo lado de fora. Os meios devem ser previstos para evitar que o nível de ruído dentro da câmara hiperbárica multipaciente ultrapasse 70 dB(A) durante o tratamento. Nos procedimentos de compressão e descompressão, o ruído máximo não pode ultrapassar 90 dB(A).

O microfone do dispositivo de medição de ruídos para ensaio é tipicamente colocado no centro da câmara principal, na altura da cabeça de uma pessoa sentada. Os procedimentos de compressão, descompressão e de ventilação da câmara hiperbárica multipaciente devem ser executados pelo operador externo.

Dentro da antecâmara e da câmara principal também devem ser instalados controles que permitam ao operador interno a compressão e a descompressão de cada compartimento, em emergências. Dentro da antecâmara e da câmara principal deve ser instalado um manômetro analógico do tipo Bourdon, para a indicação das respectivas pressões internas. Ambos os manômetros devem atender no mínimo à classe B, conforme especificado na NBR 14105-1.

Os manômetros são normalmente instalados em caixas-estanque, para não sofrerem interferência da pressão interna da câmara hiperbárica. Os meios devem ser previstos para evitar a obstrução das aberturas internas de exaustão da antecâmara e da câmara principal. Exemplo de obstrução das aberturas internas de exaustão: objetos soltos, tecidos, pés e mãos de pacientes.

A câmara hiperbárica multipaciente equipada com um sistema de controle automático ou semiautomático de compressão, descompressão e manutenção da pressão deve dispor de meios que permitam a retomada do controle manual pelo operador externo ou interno, em caso de falha no suprimento de energia elétrica ou do próprio sistema de controle ou em emergências. Exemplo de controle automático ou semiautomático: por meio pneumático e/ou eletro/eletrônico.

As luminárias externas destinadas à iluminação do interior da câmara hiperbárica multipaciente através das janelas de acrílico ou de penetradores devem se alimentadas por um circuito elétrico de baixa tensão, conforme especificado na NBR 5410. As luminárias internas destinadas à iluminação do interior da câmara hiperbárica multipaciente devem ser fabricadas em LED (light-emitting diode), alimentadas por cabos de fibra ótica e alimentadas por um circuito de baixa tensão.

A utilização de um sistema de iluminação externa ou interna na câmara hiperbárica é uma opção do fabricante. Convém que a tensão de alimentação do sistema de iluminação não seja superior a 24V. Um sistema de alimentação de emergência, independentemente do suprimento principal de energia elétrica, deve estar disponível para continuar a suprir o sistema de iluminação, para permitir o término do tratamento ou sua interrupção, em caso de incêndio ou falha no suprimento principal. Exemplo de sistema de alimentação de emergência: nobreak.

A câmara hiperbárica multipaciente deve dispor de um sistema intercomunicador na antecâmara e na câmara principal que permita a captação dos sons internos e a comunicação entre os operadores interno e externo. Esse sistema deve permanecer ativado durante todo o tratamento e ser alimentado por um circuito de baixa tensão, conforme especificado na NBR 5410.

Convém que a tensão de alimentação do sistema de comunicação não seja superior a 24V. Convém que a antecâmara e a câmara principal disponham de um sistema de monitoramento por câmeras de vídeo, controlado pelo operador externo, com capacidade de gravação de todo o tratamento.

A prontidão de TIC para a continuidade dos negócios

A prontidão de tecnologia da informação e comunicação (TIC) para e prontidão de continuidade de negócios (PTCN) é a capacidade de uma organização de suportar as suas operações de negócio por meio da prevenção, detecção e resposta a uma disrupção e a recuperar os serviços de TIC. O plano de continuidade de negócios (PCN) envolve os procedimentos documentados que guiam as organizações para responder, recuperar e restaurar para um nível de operação predefinido, após um disrupção. Tipicamente, isto abrange recursos, serviços e atividades necessárias para assegurar a continuidade das funções de negócios críticos e a recuperação de desastre de TIC seria a capacidade de recuperação dos elementos da TIC em uma organização para suportar as funções críticas em um nível aceitável dentro de um período de tempo predeterminado após a ocorrência de uma disrupção.

O tempo de recuperação objetivo (recovery time objectiv – RTO) é o período de tempo dentro do qual os níveis mínimos dos produtos e/ou serviços e sistemas de suporte relacionados, aplicações ou funções devem ser recuperados após uma disrupção. Ele diz respeito à quantidade de dados que são perdidos e irrecuperáveis devido à disrupção. Isto é representado na linha de tempo como a quantidade de tempo entre o último backrup confiável e o momento em que ocorre a disrupção.

O RPO varia de acordo com a estratégia de recuperação de serviços de TIC empregada, particularmente no arranjo do backup. No tempo zero, o sistema crítico de TIC foi invadido por hackers e serviços foram derrubados. A primeira etapa após a ocorrência da disrupção do serviço de TIC é a detecção direta do incidente de segurança, ou seja, o evento de intrusão ou a detecção indireta da perda de serviço (ou degradação), para o qual haverá um tempo decorrido antes da notificação, por exemplo, em alguns casos, a notificação pode vir por meio de uma chamada para o helpdesk de TI a partir de um usuário.

Além disso, o tempo poderia passar enquanto a disrupção do serviço de TIC é investigada, analisada, comunicada e uma decisão adotada para invocar a PTCN. Isso pode levar várias horas desde o início da disrupção do serviço de TIC até que seja tomada uma decisão de invocar a PTCN, uma vez que o tempo de comunicação e de tomada de decisões é contabilizado.

A decisão de invocar pode exigir uma análise cuidadosa em algumas situações, por exemplo, onde o serviço ainda não foi totalmente perdido ou parece haver uma forte perspectiva de uma iminente recuperação do serviço, porque invocar a PTCN frequentemente tem impacto sobre operações normais de negócios. Uma vez invocada a PTCN, a recuperação de serviços de TIC pode começar. Este pode ser dividido em infraestrutura (rede, hardware, sistema operacional, software de backup etc.) e de recuperação de aplicativos (bancos de dados, aplicações, processos batch, interfaces, etc.).

Uma vez que o serviço de TIC foi recuperado e testes do sistema tenham sido conduzidos por uma equipe de TIC, o serviço pode ser disponibilizado para teste de aceitação do usuário antes que ele seja liberado para o pessoal para uso em operações de continuidade de negócios. Da perspectiva de continuidade de negócios há um RTO por produto, serviço ou atividade. O RTO se inicia do ponto no qual a disrupção ocorre e transcorre até que o produto, serviço ou atividade esteja recuperado, mas pode haver um número de serviços de TIC requeridos para habilitar cada um deste serviços, o qual pode compreender um número de sistemas de TIC ou aplicações.

Cada um destes sistemas de TIC componentes ou aplicações terão o seu próprio RTO como um subconjunto do RTO global do serviço de TIC e convém que este seja menor que RTO para a continuidade de negócio considerando o tempo de detecção e tomada de decisão e o tempo do teste de aceitação de usuário (a menos que o produto, serviço ou atividade em continuidade de negócios possa ser suportado sem TIC por um período, por exemplo, usando procedimentos manuais).

Os serviços de TIC recuperados tipicamente operam por um período de tempo suportando atividade de continuidade de negócios, e se este é um período de tempo extenso, então os serviços de TIC podem necessitar ser escalados para suportar um volume crescente de atividade, potencialmente até o ponto no qual o produto, serviço ou atividade seja totalmente recuperado aos volumes transacionais normais. Na sequência, em algum ponto na linha de tempo, a restauração será factível e desejável, e as operações em RD (recuperação de desastre) ocorrerão até a de volta às operações normais.

Essas operações normais retornadas podem ou ser no estado ou ambiente original antes da disrupção, ou em um novo arranjo operacional (especialmente, quando a disrupção tenha forçado uma mudança permanente no negócio). Embora a equipe de TIC tenha a oportunidade de planejar cuidadosamente a restauração e programá-lo para ser implantado durante um período de baixa atividade natural, esta é, todavia, uma tarefa substancial em si mesma.

Deve-se entender que na tecnologia de informação e comunicação, alta disponibilidade se refere a sistemas ou componentes que se mantêm continuamente operacionais por um longo período de tempo. A disponibilidade pode ser medida em relação a 100% operacional ou nunca falha. Existe um padrão muito generalizado de disponibilidade, mas difícil de alcançar para um sistema ou produto que é conhecido como disponibilidade cinco 9s (99,999%).

Um sistema de computador ou uma rede é composta de muitos componentes, os quais geralmente precisam estar presentes e funcionais para que o todo seja operacional, e, durante o planejamento para alta disponibilidade, frequentemente foca-se em backups e redundância de processamento, acesso e armazenamento de dados. Outros componentes de infraestrutura, como energia e refrigeração, são igualmente importantes. A disponibilidade de energia, por exemplo, pode ser assegurada por medidas como uma fonte de alimentação ininterrupta (UPS); a capacidade de geração de energia de emergência; e as fontes de energia a partir de duas redes.

O backup e a disponibilidade de dados podem ser alcançados usando uma variedade de tecnologias de armazenamento, como matriz redundante de discos (RAID), storage area network (SAN), etc. A disponibilidade de aplicativos também precisa ser considerada e, muitas vezes, é conseguida por meio de clusterização. Essas tecnologias só serão realmente eficazes no fornecimento de alta disponibilidade por meio da implementação simultânea em mais de um local.

Por exemplo, tendo apenas um servidor redundante no mesmo local como um servidor primário ou de produção não se vai fornecer os níveis necessários de resiliência se esse site é afetado por uma disrupção grave. Ambos os servidores serão atingidos pela mesma ruptura. O servidor redundante e outras tecnologias de apoio teriam de ser localizados em outro local para os níveis necessários de disponibilidade a serem alcançados. Para muitas organizações, o custo e o esforço envolvido, na obtenção de tais níveis de alta disponibilidade, podem ser assustadores e, nos últimos anos, tem havido um enorme crescimento no uso de prestadores de serviços terceirizados, que são capazes de oferecer as competências, os recursos e as tecnologias resilientes a um preço acessível, quer por meio da disponibilização de gestão ou por serviços em nuvem.

A NBR ISO/IEC 27031 de 01/2023 – Tecnologia da informação — Técnicas de segurança — Diretrizes para a prontidão para a continuidade de negócios da tecnologia da informação e comunicação descreve os conceitos e princípios da prontidão esperada para a tecnologia de comunicação e informação (TIC) na continuidade de negócios e fornece uma estrutura de métodos e processos para identificar e especificar todos os aspectos (como critérios de desempenho, projeto e implementação) para fornecer esta premissa nas organizações e assegurar a continuidade de negócios É aplicável para qualquer organização (privada, governamental e não governamental, independentemente do tamanho) desenvolvendo um programa de prontidão de TIC para a continuidade de negócios (PTCN), requerendo que os serviços e componentes de infraestrutura relacionados estejam prontos para suportar as operações de negócio na ocorrência de eventos e incidentes e seus impactos na continuidade (incluindo segurança) das funções críticas de negócio.

Também assegura que a organização estabeleça parâmetros para medir o desempenho que está correlacionado à PTCN de forma consistente e organizada. O escopo desta norma inclui todos os eventos e incidentes (incluindo os relacionados com segurança) que podem impactar a infraestrutura de TIC e sistemas, incluindo e estendendo às práticas de gestão de incidentes em segurança da informação e a prontidão esperada para o planejamento e serviços de TIC.

Através dos anos, as tecnologias da informação e comunicação (TIC) tornaram-se uma parte integrante de muitas atividades fundamentais para suportar a infraestrutura crítica em organizações de todos os setores, sejam públicas, privadas ou voluntárias. A proliferação da internet e de outros serviços de comunicação digital, somada à capacidade dos sistemas e aplicações utilizados hoje, resultaram em um cenário onde as organizações tornaram-se mais dependentes de uma infraestrutura de TIC confiável e segura.

Enquanto isso, a necessidade da gestão de continuidade de negócios (GCN), incluindo a preparação para incidentes, planejamento para recuperação de desastres e gestão de respostas emergenciais, tem sido reconhecida e suportada por meio de domínios específicos de conhecimento, expertise e normas desenvolvidas e promulgadas recentemente, incluindo a norma de GCN, desenvolvida pelo ISO/TC 223. As falhas nos serviços de TIC, incluindo a ocorrência de questões na segurança, como invasão de sistemas e infecções por códigos maliciosos, impactam a continuidade das operações de negócio.

Dessa forma, a gestão da TIC e dos aspectos relacionados à continuidade e segurança, integra os processos-chave para estabelecer os requisitos na continuidade de negócios. Além disso, na maioria dos casos, as funções críticas de negócio que demandam ser providas de estratégias para a continuidade são geralmente dependentes da TIC. Esta dependência resulta em um cenário onde qualquer disrupção na TIC pode resultar em riscos estratégicos para a reputação da organização e sua capacidade de operar.

A prontidão da TIC é um componente essencial para muitas organizações na implementação da gestão para a continuidade de negócios e segurança da informação. Como parte da implementação e operação de um sistema de gestão de segurança da informação (SGSI) especificado na NBR ISO/IEC 27001 e de um sistema de gestão de continuidade de negócios (SGCN), é uma questão crítica desenvolver e implementar um plano para a prontidão dos serviços de TIC que suportem a continuidade de processos de negócio.

Como resultado, um SGCN efetivo é frequentemente dependente da efetividade da prontidão de TIC em assegurar que os objetivos organizacionais continuem a ser atendidos durante a ocorrência de uma disrupção. Isso é especialmente importante, uma vez que as consequências de disrupções na TIC têm a complicação adicional de não serem facilmente detectadas. Para que uma organização alcance a prontidão de TIC para a continuidade de negócios (PTCN), é necessário prover um processo sistemático de prevenção e gestão de incidentes e disrupções no funcionamento da TIC que tenham o potencial de gerar impactos para o funcionamento esperado dos serviços e sistemas.

Isso pode ser alcançado aplicando os passos cíclicos estabelecidos em um Plan-Do-Check-Act (PDCA) como parte da gestão da PTCN. Dessa forma, a PTCN suporta o GCN ao garantir que os serviços de TIC são resilientes como esperado e podem ser recuperados em níveis assegurar em tempos de resposta requeridos e acordados com a organização. Em consequência, a gestão da continuidade de negócios (GCN) é um processo holístico de gestão que identifica os impactos potenciais que ameaçam a continuidade das operações de negócio de uma organização e fornecesse uma estrutura para construir a resiliência e capacidade de resposta eficaz que protegem os interesses organizacionais de disrupções.

Como parte de um processo de GCN, a PTCN refere-se à gestão de um sistema que complementa e suporta a GCN e/ou um programa de SGSI, promovendo a prontidão organizacional para: responder as mudanças constantes dos riscos do ambiente; assegurar a continuidade das operações críticas de negócio suportadas pelos serviços de TIC; estar pronta a responder antes que uma interrupção ocorra em um serviço de TIC, por meio da detecção de um ou mais eventos que podem tornar-se incidentes; e responder e recuperar frente à ocorrência de incidentes, desastres e falhas. A figura abaixo ilustra os resultados esperados da TIC para suportar as atividades da gestão da continuidade de negócios.

A NBR ISO 22301 sumariza a abordagem da GCN para prevenir, reagir e recuperar de incidentes. As atividades envolvendo a GCN incluem a preparação para incidentes, gestão da continuidade operacional (GCO), plano para recuperação de desastres (PRD) e mitigação de riscos com foco em incrementar a resiliência da organização, preparando-a para reagir efetivamente a incidentes e recuperar dentro de escalas temporais predeterminadas.

Entretanto, cada organização estabelece as suas prioridades para a GCN, e estas são utilizadas como base para direcionar as atividades da PTCN. Dessa forma, a GCN depende da garantia provida pela PTCN de que a organização pode alcançar seus objetivos de continuidade sempre que necessário, especialmente durante períodos de disrupção. A PTCN é baseada nos seguintes princípios fundamentais: prevenção de incidentes: proteger os serviços de TIC de ameaças, como as geradas pelo ambiente, falhas em hardware, erros operacionais, ataques maliciosos e desastres naturais, é uma questão crítica para manter os níveis desejados de disponibilidade dos sistemas de uma organização; detecção de incidentes: detectar incidentes o mais cedo possível minimiza os impactos para os serviços, reduzindo o esforço de recuperação e preservando a qualidade dos serviços.

Além disso, existe o princípio da resposta: responder a um incidente da maneira mais apropriada possível irá resultar em uma recuperação mais eficiente e minimizar as paradas. Uma reação inadequada pode resultar no escalonamento de um incidente pequeno para algo muito mais grave. Recuperação: identificar e implementar a estratégia de recuperação apropriada irá garantir a recuperação dos serviços dentro de um tempo aceitável e manter a integridade dos dados.

O entendimento das prioridades de recuperação permite que os serviços mais críticos possam ser reinstalados primeiro. Serviços de natureza menos crítica podem ser reinstalados posteriormente ou, em algumas circunstâncias, não ser recuperados. Melhoria: convém que lições aprendidas de incidentes de variadas intensidades sejam documentadas, analisadas e analisadas criticamente. O entendimento dessas lições irá permitir que a organização esteja melhor preparada, estabeleça um controle adequado e evite a ocorrência de incidentes ou disrupções.

Os elementos da PTCN suportam uma linha de tempo para a recuperação de um desastre que afete a TIC e suportam a continuidade das atividades de negócio. A implementação da PTCN permite que a organização responda efetivamente a ameaças novas e emergentes, assim como esteja pronta para reagir e se recuperar dos efeitos de disrupções.

Os elementos fundamentais da PTCN podem ser resumidos como apresentados: pessoas: os especialistas com o conhecimento e habilidade apropriados, e equipe de reposição competente; instalações: o ambiente físico onde os recursos de TIC estão localizados; tecnologia: hardware (incluindo racks, servidores, equipamentos de armazenamento de dados, unidades de fita e similares); rede de dados (incluindo a conectividade de dados e serviços de voz), switches, roteadores; e software: incluindo sistema operacional, software de aplicação, links ou interfaces entre aplicações e rotinas de processamento batch; dados: dados de aplicações, voz e outros tipos; processos: incluindo a documentação de suporte que descreve a configuração dos recursos de TIC e suporta uma operação efetiva, recuperação e manutenção dos serviços de TIC; e os fornecedores: outros componentes de serviços nos quais os serviços providos pela TIC dependem de um fornecedor externo ou outra organização dentro da cadeia de suprimentos, como provedores de dados do mercado financeiro, empresas de telecomunicações e provedores de serviços para acesso à internet.

Os benefícios de uma PTCN efetiva para a organização são: entender os riscos para a continuidade de serviços de TIC e suas vulnerabilidades; identificar os impactos potenciais das disrupções dos serviços de TIC; encorajar a colaboração entre os gestores das áreas de negócio e seus provedores de serviços de TIC (internos e externos); desenvolver e melhorar as competências da equipe de TIC ao demonstrar credibilidade nas respostas providas por meio do exercício dos planos para a continuidade de TIC e testes dos arranjos mantidos para a PTCN; assegurar para a Alta Direção que ela pode contar com determinados níveis de serviços para TIC, assim como o suporte e as comunicações adequados, mesmo diante dos impactos gerados por uma disrupção; assegurar para a Alta Direção que a segurança da informação (confidencialidade, integridade e disponibilidade) está sendo adequadamente preservada, estabelecendo a aderência esperada para as políticas de segurança da informação; fornecer confiança adicional na estratégia para continuidade de negócios, relacionando os investimentos feitos em tecnologia da informação para atender às necessidades organizacionais e assegurar que os serviços de TIC estão protegidos em um nível apropriado de acordo com a sua importância para os processos de negócio.

Além disso, deve-se ter os serviços de TIC dentro de uma relação custo/benefício aceitável e não subestimada ou superestimada, benefício este alcançado por meio de um entendimento dos níveis de dependência dos serviços providos, natureza, localização, interdependência e uso dos componentes que estabelecem os serviços esperados; poder incrementar a reputação organizacional pela prudência e eficiência estabelecidas; potencializar os ganhos em vantagens competitivas por meio da demonstração da habilidade para entregar serviços de continuidade e manter o fornecimento de produtos e serviços mesmo em períodos de disrupção; e entender e documentar as expectativas das partes interessadas, os relacionamentos suportados e uso dos serviços providos pela TIC.

A PTCN fornece uma forma clara de determinar o status dos serviços de TIC de uma organização em suportar os objetivos para a continuidade de negócios ao endereçar a questão nossa TIC tem a capacidade de resposta adequada em vez de nossa TIC é segura. A PTCN é geralmente mais eficiente e tem uma melhor relação custo/benefício quando desenhada e construída nos serviços de TIC, desde o começo como parte de uma estratégia que suporta os objetivos para a continuidade de negócios da organização. Isso assegura que os serviços de TIC são melhor construídos, melhores entendidos e mais resilientes.

Construir a PTCN de outra forma pode ser complexo, gerar impactos para o funcionamento dos serviços e ter um custo elevado. Convém que a organização desenvolva, implemente, mantenha e continuamente melhore um conjunto de processos documentados que suportam a PTCN. Convém que estes processos garantam que: os objetivos da PTCN estão claramente definidos, entendidos e comunicados e a alta direção demonstra estar comprometida com a PTCN.

Os atributos do projeto e o desempenho das próteses acetabulares

As próteses acetabulares, principalmente em artroplastia de quadril, é destinada a substituir o acetábulo biológico na artroplastia total de quadril. Ela compreende a superfície de suporte articular acetabular e a superfície de fixação à estrutura óssea acetabular. Em uma prótese acetabular modular, o sistema é composto pelo suporte acetabular ou acetabular shell que é a estrutura côncava externa da prótese acetabular modular que proporciona suporte ou reforço mecânico adicional para um inserto acetabular e cuja estrutura externa faz interface diretamente com os ossos da cavidade pélvica ou com o agente para a sua fixação (cimento ósseo) e pelo inserto acetabular ou acetabular liner que é o elemento interno da prótese acetabular modular com um encaixe hemisférico côncavo, projetado para articular com a cabeça femoral, destinado a ser acoplado ao suporte acetabular.

A prótese acetabular deve ser avaliada de acordo com a NBR 16359, para assegurar que as amplitudes de movimento de projeto não resultem em colisão com o componente femoral. As características de fadiga, deformação e desgaste do componente acetabular, e a luxação, sob condições dinâmicas de colisão, devem ser estabelecidas de acordo com a NBR 16359.

A prótese acetabular deve ser submetida a análises de modos de falha que é a avaliação da segurança e a eficácia que devem considerar pelo menos os modos de falha clínica reconhecidos, conforme a seguir: dissociação de componentes de próteses modulares; afrouxamento de elementos de fixação na interface com o osso ou com o cimento ósseo; fratura do suporte acetabular, do inserto acetabular ou da copa acetabular; e desgaste da (s) superfície (s) de articulação. Os modos de falha devem ser avaliados com base em resultados de ensaios físicos, quando disponíveis, ou de análises mecânicas pertinentes aos carregamentos a que o componente seja submetido.

A avaliação da resistência de acoplamento dos componentes acetabulares modulares deve ser determinada de acordo com a NBR 15670-2. O desgaste excessivo da superfície articular do suporte articular resulta em resíduos particulados que podem comprometer a segurança e a eficácia da prótese acetabular.

Os ensaios funcionais (simulados) podem ser executados para avaliar o desgaste da superfície articular acetabular, de acordo com a NBR ISO 14242-1 ou NBR ISO 14242-3. Adicionalmente, podem ser realizados os ensaios com variação de posicionamento no componente, que resultam em carregamento direto na borda, e podem ser realizados conforme a NBR ISO 14242-4.

Uma vez que seja impraticável a simulação de todos os aspectos da função do quadril utilizando apenas um conjunto de condições de ensaio, diversas condições de ensaio devem ser consideradas, podendo envolver efeitos como: a interação abrasiva por terceiro corpo; alto ângulo do inserto; microsseparação de componentes; movimentação específica, tipo parada-acomodação-partida. A parada-acomodação-partida refere-se a um protocolo de movimento para avaliação de desgaste, específico para a avaliação de implantes, que envolve ciclos de parada, acomodação sob uma carga constante por determinado período curto (por exemplo, 1 min), seguida por uma sessão longa (por exemplo, 10 min) em que se aplicam as condições de carregamento de caminhada contínua.

Este protocolo procura avaliar o efeito do atrito estático no mecanismo de desgaste. O fornecedor ou processador de material destinado à fabricação de implante deve estabelecer os controles apropriados aos processamentos conduzidos sob sua responsabilidade e manter um sistema de gestão da qualidade abrangente e reconhecido, que assegure as rastreabilidades de materiais e componentes e de processo.

Um sistema de gestão da qualidade abrangente pode ser reconhecido pelo atendimento aos requisitos estabelecidos na NBR ISO 9001. O fabricante de implante deve estabelecer controles apropriados para o recebimento de materiais e componentes para uso na fabricação do implante, bem como para os processos de fabricação, de modo a assegurar a qualidade do implante aprovado para comercialização.

Os requisitos para sistemas de gestão da qualidade aplicáveis à fabricação de implantes podem ser encontrados na NBR ISO 13485. A contratação para fornecimentos e serviços, as verificações de material e de componentes recebidos e a aceitação de declarações de fornecimento e de relatórios de ensaio pelo fabricante devem atender aos requisitos da NBR ISO 13485.

Quando aplicável, convém que as declarações de fornecimento ou os relatórios de ensaio apresentem resultados com rastreabilidade metrológica a padrões reconhecidos. O laboratório de ensaio, próprio ou terceirizado, destinado a fornecer resultados para a avaliação de projeto ou para controle de processo para a fabricação do implante, deve manter um sistema de gestão da qualidade reconhecido. Os requisitos gerais para a competência de laboratórios de ensaio e calibração podem ser encontrados na NBR ISO/IEC 17025.

A NBR 15719 de 01/2023 – Implantes para ortopedia — Prótese de quadril — Requisitos para prótese acetabular estabelece requisitos para materiais, fabricação, avaliação de projeto, avaliação de desempenho, marcação, embalagem, rotulagem e esterilização, bem como identifica os tipos de prótese, a designação de dimensões e atributos de projeto e o desempenho pretendido de próteses acetabulares. Não se aplica às próteses acetabulares fabricadas sob medida (projetadas individualmente para um único paciente), de revisão ou constritas. A prótese acetabular, em artroplastia de quadril é destinada a substituir o acetábulo biológico na artroplastia total de quadril. A prótese acetabular compreende a superfície de suporte articular acetabular e a superfície de fixação à estrutura óssea acetabular. Em uma prótese acetabular modular, o sistema é composto pelo suporte acetabular e pelo inserto acetabular

Os componentes acetabulares utilizados em artroplastia total de quadril destinam-se ao uso em pacientes com esqueleto maduro, em situações de imposição de cargas dinâmicas, em ambiente corrosivo e com movimento virtualmente contínuo das superfícies de articulação. Os componentes para artroplastia total de quadril destinam-se aos indivíduos com degeneração tanto da cabeça femoral, quanto do acetábulo.

Os requisitos da norma baseiam-se em mais de 40 anos de experiências clínicas bem-sucedidas com este tipo de implante, sendo considerados importantes para proporcionar longevidade e segurança às próteses. Os limites específicos de desempenho foram estabelecidos com base em dados in vitro relacionados aos materiais e implantes que apresentaram experiência clínica aceitável.

Vale observar a possibilidade de falha de uma artroplastia como resultado de fatores completamente não relacionados às características das próteses, podendo ocorrer até em componentes intactos. Devido à natureza complexa do procedimento cirúrgico abrangendo componentes da implantação, como implantes e cimento (se necessário), e características do ambiente hospedeiro, como ossos, tecidos moles e fluidos de corpo, a falha pode ocorrer unicamente como resultado de fatores de ambiente, que não são influenciados pelas propriedades dos componentes do implante.

Ou, ainda, pode ocorrer como resultado de limitações da amplitude de movimento, que podem ser causadas pelo dimensionamento ou posicionamento inapropriados dos implantes, associados ou não à influência de tecidos moles. Sob este aspecto, recomenda-se que seja realizada uma análise da amplitude de movimento sobre o caso mais crítico para a combinação de componente acetabular, cabeça e haste femoral.

A NBR ISO 21535 estabelece o procedimento para avaliação do movimento angular relativo dos componentes de próteses femorais. Os ensaios de laboratório, mesmo com simulação de carregamentos impostos em meio corrosivo de eletrólitos e elementos complexos dos fluidos corpóreos, não possibilitam predizer com exatidão o desempenho sobre muitas décadas de uso in vivo.

O desempenho clínico é influenciado por muitos fatores e é importante que seja considerado, ainda, em relação à anatomia e à atividade do paciente. Os esforços físicos resultantes de eventos ou atividades extraordinárias, como acidentes ou esportes especialmente enérgicos, possivelmente excedem os níveis de esforço permitidos em qualquer componente.

Além disto, outras formas de falhas de artroplastia podem ocorrer, relacionadas principalmente a fatores do paciente, como osteoporose, mau uso ou falta de uso, entre outros. Os materiais referenciados nesta norma têm sido empregados com sucesso em aplicações de implantes humanos em contato com tecidos moles e ósseos por mais de uma década, documentando o estado da arte daqueles usos clínicos para esta aplicação.

Nenhum material para implante cirúrgico mostra ser completamente livre de reações adversas no corpo humano. Entretanto, as experiências clínicas prolongadas do emprego do material referenciado na norma mostram que um nível aceitável de resposta biológica pode ser esperado quando o material é usado em aplicações apropriadas. O uso destes materiais não garante, por si só, um projeto bem-sucedido.

Outros materiais que se mostrarem apropriados serão inseridos em futuras revisões, por atenderem aos requisitos de resistência à corrosão e biocompatibilidade necessários para assegurar a aceitabilidade de novos materiais pelo corpo humano. Embora os materiais estabelecidos em algumas normas brasileiras sejam quimicamente similares àqueles estabelecidos em normas correspondentes da ASTM, as normas podem não ser idênticas.

Cabe ao fabricante de implante, no desenvolvimento do projeto do produto, identificar e estabelecer a conveniência de empregar uma, outra ou ambas na qualificação da matéria prima a ser utilizada no processo de fabricação. No momento, o desempenho de um componente só pode ser previsto indiretamente, relacionado a níveis de resistência e a outros parâmetros. As referências a parâmetros aplicáveis aos materiais podem ou não descrever adequadamente as estruturas fabricadas a partir deles.

Na transição entre normas de especificação para implantes e normas de desempenho para implantes, ambos os métodos podem ser apropriados. O desgaste entre dois materiais pode provocar efeitos adversos e prejudiciais, tanto mecânicos, quanto biológicos. As dimensões e tolerâncias estão estabelecidas conforme os documentos para projetos de engenharia da American National Standards Institute (ANSI) para esfericidade, concentricidade e acabamento superficial.

Devido à característica modular dos projetos, convém que a nomenclatura e o dimensionamento normalizado de partes sejam mantidos, de forma a auxiliar o cirurgião na seleção apropriada de componentes complementares combinados. As próteses acetabulares podem ser classificadas como: tipo I: prótese acetabular monobloco, também denominada copa acetabular; tipo II: prótese acetabular modular unipolar, constituída por um suporte acetabular e um inserto acetabular; e tipo III: prótese acetabular modular com dupla mobilidade, constituída por um suporte acetabular, inserto externo, inserto de dupla mobilidade e, quando pertinente, anel de travamento do inserto de dupla mobilidade. Para a constituição dos sistemas protéticos acetabulares, conferir a NBR 16994-1.

Quando as dimensões das próteses acetabulares não forem estabelecidas de outra forma na NBR ISO 7206-1, convém que elas sejam designadas de acordo com as figuras disponíveis na norma ou por método igualmente detalhado e aceitável. Para atributos de projeto, aplica-se o estabelecido na NBR ISO 21535. A prótese acetabular deve ser projetada de modo que as amplitudes de movimentos angulares com o componente femoral atendam aos requisitos para desempenho pretendido estabelecidos na NBR ISO 21535.

Os procedimentos de fabricação de componentes metálicos das próteses acetabulares devem atender aos requisitos estabelecidos na NBR 16874. Caso um dos componentes não seja radiopaco, ele deve ser apropriadamente marcado para avaliação radiográfica. Se um marcador radiográfico for utilizado, ele deve ser colocado em uma área não crítica, de modo a evitar a degradação das propriedades estruturais e funcionais do implante.

Para os materiais, aplica-se o estabelecido na NBR ISO 21535 e o seguinte. A seleção de material apropriado é necessária, mas não suficiente para garantir a função pretendida para o componente a ser fabricado, uma vez que projeto e os processos de fabricação podem influenciar fortemente as propriedades do material. O componente acetabular deve ser fabricado empregando materiais com biocompatibilidade, resistência mecânica, durabilidade e, se aplicável, resistência à corrosão apropriadas, que atendam aos requisitos para materiais estabelecidos na NBR ISO 14630.

A conformidade de um material selecionado às exigências de sua norma e o sucesso do uso clínico do material em projetos existentes de implantes não são suficientes para assegurar os requisitos de resistência de um implante específico. O material sem histórico, ou com histórico limitado, de uso bem-sucedido para aplicações em implantes ortopédicos deve apresentar, quando submetido aos ensaios estabelecidos na NBR ISO 10993-1, uma resposta biológica igual ou superior a algum dos materiais reconhecidos para uso na fabricação do produto.

Os materiais para suportes articulares devem atender aos requisitos estabelecidos na NBR ISO 21534. Os componentes de próteses acetabulares têm sido fabricados com sucesso clínico, empregando-se os materiais identificados nessa norma. No entanto, ressalta-se que nem todos estes materiais apresentam resistência mecânica suficiente, como requerido para os componentes críticos submetidos a altas tensões ou para as superfícies de articulação.

A segurança para a construção dos elevadores unifamiliares

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado para atender a pessoas em edificações residenciais unifamiliares, melhorando o conforto na habitação e proporcionando uma previsão para eventual necessidade futura; tem uma função social ao prover acesso a pessoas com mobilidade reduzida, pessoas idosas, doentes ou com dificuldade de locomoção, permanente ou temporária, eliminando a limitação de acesso aos espaços físicos e provendo integração com a comunidade. Diferentemente de um elevador de passageiros para transporte de pessoas em geral, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado com características peculiares

que se destinam a ocupar menor espaço horizontal e vertical; viabilizar a instalação em edificações existentes; reduzir o custo total envolvido na sua implantação e manutenção; requerer pouca potência instalada e ser energeticamente econômico.

A estrutura da edificação deve ser construída de modo a suportar às cargas e forças exercidas pelo equipamento do elevador. Salvo especificado em contrário na norma, para aplicações particulares, estas cargas e forças são os valores resultantes das massas estáticas; e os valores resultantes de massas móveis e suas operações de emergência. O efeito dinâmico é representado por um fator 2. É importante que as guias do elevador sejam suportadas de modo que os efeitos da movimentação da estrutura da edificação à qual estão ligados sejam minimizados.

Ao considerar as edificações construídas de concreto, blocos pré-moldados ou tijolos, pode-se presumir que os suportes de guia não serão submetidos ao deslocamento causado pela movimentação das paredes da caixa, com exceção da compressão. No entanto, quando os suportes de guia estiverem fixados à estrutura da edificação por vigas de aço, ou por fixação a estruturas de madeira, pode haver deformação desta estrutura, devido à carga imposta pelo carro por meio das guias e suportes de guias.

Além disso, pode haver movimento da estrutura de apoio do elevador devido às forças externas, como carga de vento, carga de neve, etc. Devem ser consideradas qualquer deflexão dessas vigas ou estruturas durante os cálculos requeridos e a deflexão total admissível das guias para a operação segura do freio de segurança, etc. deve incluir qualquer deslocamento da guia devido à deflexão da estrutura da edificação e a deflexão da própria guia devido à carga imposta pelo carro. Portanto, é importante que as pessoas responsáveis pelo projeto e fabricação das estruturas se comuniquem com o fornecedor do elevador, a fim de assegurar que as estruturas atendam a todas as condições de carga.

O requisito para ventilar adequadamente a caixa e a casa de máquinas está, muitas vezes, inserido nos regulamentos locais sobre edificações que se aplicam, especificamente, como requisito geral que seria dado para qualquer espaço da edificação onde maquinaria seja instalada ou pessoas sejam acomodadas (para o lazer, trabalho etc.). A norma não pode prover orientação específica para os requisitos de ventilação para estas áreas, tendo em vista que a caixa e a casa de máquinas são frequentemente partes de um ambiente maior e mais complexo da edificação. Caso isto seja feito, pode trazer conflito com estes requisitos nacionais. No entanto, algumas orientações gerais podem ser providas.

A segurança e o conforto das pessoas que viajam no elevador, trabalham na caixa ou aqueles que podem ficar presos na cabina ou na caixa quando o carro para entre os andares depende de muitos fatores: a temperatura ambiente da caixa, como parte da edificação, ou independente dela; a exposição à luz solar direta; o componente orgânico volátil, CO2, qualidade do ar; o acesso de ar fresco na caixa; o tamanho da caixa, tanto na área da seção transversal quanto na altura; o número, tamanho e folgas das aberturas em torno das portas de pavimento; a produção de calor dos equipamentos instalados; as estratégias de evacuação no combate a incêndios e fumaça, relacionadas ao sistema de gerenciamento da edificação; a umidade, poeira e vapores; o fluxo de ar (calor/frio) e tecnologia aplicada de economia de energia na edificação; e a estanqueidade do ar na caixa e em toda edificação.

É recomendado que o carro seja provido com aberturas de ventilação suficientes para assegurar um fluxo adequado de ar para o número máximo de ocupantes permitidos. Durante a operação normal e a manutenção do elevador, geralmente as aberturas em torno das portas de pavimento, a abertura/fechamento destas portas e o efeito pistão, devido ao deslocamento do elevador dentro da caixa, podem ser suficientes para prover as necessidades humanas de troca de ar, entre as escadas, saguões e a caixa.

No entanto, para as necessidades técnicas e, em alguns casos, para as necessidades humanas, o estancamento do ar na caixa e em toda edificação, as condições ambientais, particularmente superior à temperatura ambiente, radiação, umidade, qualidade do ar, irá resultar em necessidade permanente ou demanda de abertura (s) de ventilação e/ou (combinado com) ventilação forçada e/ou a entrada de ar fresco. Isso somente pode ser decidido caso a caso.

Além disso, no caso de parada prolongada do carro (considerando as condições normais e acidentais), é recomendado que seja fornecida ventilação suficiente. Em particular, deve ser dada atenção para aquelas edificações (novas e no caso de renovação) nas quais o projeto tecnológico de eficiência energética esteja presente. As caixas não se destinam a serem utilizadas como meios para ventilar outras áreas da edificação.

Em alguns casos, isso pode ser uma prática extremamente perigosa, como ambientes industriais ou estacionamentos subterrâneos, onde a extração de gases perigosos através da caixa pode causar risco adicional para as pessoas que viajam na cabina. De acordo com estas considerações, não é recomendado utilizar o ar viciado a partir de outras áreas da edificação para ventilar a caixa.

Quando a caixa fizer parte da segurança contra incêndio, cuidados especiais devem ser tomados. Nestes casos, as orientações devem ser obtidas por aqueles que se especializam nesse tipo de equipamento ou em regulamentos locais de construção e combate a incêndio.

A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A ventilação da casa de máquinas é normalmente realizada para fornecer um ambiente de trabalho apropriado ao técnico e ao equipamento instalado em tais espaços. Por esta razão, é recomendado que a temperatura ambiente da casa de máquinas seja mantida conforme provido nas premissas. Recomenda-se cuidados adicionais em relação à umidade e qualidade do ar para evitar problemas técnicos, por exemplo, condensação.

A falha em manter estas temperaturas pode resultar na retirada do elevador de serviço automaticamente até que a temperatura volte a ter seus níveis pretendidos. A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A NBR 12892 de 10/2022 – Elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida – Requisitos de segurança para construção e instalação especifica os requisitos de segurança para instalação permanente de novos elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida com limitação de capacidade, velocidade e percurso, com acionamento por tração ou acionamento hidráulico, servindo níveis de pavimento definidos, sendo o carro projetado para o transporte de pessoas e objetos, suspenso por cabos, cintas ou pistões e movimentando-se entre guias inclinadas não mais que 15° em relação à vertical. Em casos especiais, em complementação aos requisitos desta norma, devem ser considerados os requisitos suplementares (condições climáticas extremas, umidade, salinidade, etc.).

Esta norma não é aplicável: a elevadores com outros sistemas de acionamento diferentes dos mencionados na NBR 12892; a segurança durante as operações de transporte, montagem, reparação e desmontagem de elevadores; a ruídos e vibrações; ao uso de elevadores em caso de incêndio; e aos elevadores de passageiros instalados antes da data de sua publicação.

Com o propósito de preservar a segurança, foram impostos requisitos de desempenho no sentido de eliminar ou minimizar riscos para o uso peculiar a que se destina. Percurso, velocidade, capacidade, área da cabina, entre outras, são grandezas objeto de restrição para atender ao disposto nessa norma.

Quanto à instalação, são estabelecidas somente as seguintes aplicações: instalação em edificações unifamiliares; o elevador, conforme esta norma, não pode ser considerado para o cálculo de tráfego da NBR 5665, mas pode ser utilizado como meio de transporte de pessoas e como meio de acesso das pessoas com mobilidade reduzida à edificação; quando o elevador, conforme esta norma, for projetado para uso por pessoas com mobilidade reduzida, esta condição de uso deve ser sinalizada; capacidade de até oito passageiros; velocidade nominal até 0,35 m/s; percurso até 12 m; portas de pavimentos do tipo eixo vertical são aplicáveis somente em elevador residencial unifamiliar; e porta de cabina do tipo dobrável é aplicável somente em elevador residencial unifamiliar.

Devem ser feitas negociações para cada contrato entre o cliente e o fornecedor/instalador sobre: a finalidade do uso do elevador; condições ambientais; problemas de engenharia civil; outros aspectos relacionados à edificação e ao local da instalação; a resistência ao fogo para as portas de pavimento nas aplicações unifamiliares. Não é intenção de esta norma limitar o desenvolvimento tecnológico do produto. Entretanto, um projeto novo deve atender, pelo menos de maneira equivalente, aos requisitos de segurança desta norma.

Foram considerados possíveis riscos atribuíveis a cada componente que podem ser incorporados em uma instalação completa de elevador. Regras adequadas foram estabelecidas, considerando-se o descrito a seguir. Os componentes são: projetados de acordo com a prática usual de engenharia e os códigos de cálculos, incluindo todos os critérios de falha; de construção adequada tanto mecânica como eletricamente; fabricados com materiais de resistência e qualidade adequadas; e livres de defeitos. Materiais nocivos, como amianto, não podem ser utilizados.

Os componentes são mantidos em bom estado de conservação e funcionamento, de modo que as dimensões se mantenham, apesar do desgaste. Considera-se que todos os componentes do elevador requerem inspeção para garantir a operação segura e contínua durante a sua utilização. As folgas operacionais especificadas na norma devem ser mantidas não somente durante a inspeção e ensaios antes de o elevador ser colocado em serviço, porém também ao longo da vida útil do elevador.

Os componentes que não requerem manutenção (por exemplo, livre de manutenção, lacrado por toda vida útil) ainda são obrigados a estar disponíveis para inspeção. Os componentes são selecionados e instalados de modo que as influências ambientais previsíveis e as condições especiais de trabalho não afetem a operação segura do elevador. Por projeto dos elementos que suportam carga, uma operação segura do elevador é considerada para cargas variando de 0% até 100% da carga nominal, acrescida da sobrecarga mínima de 10% e deve atender aos ensaios desta norma.

Os requisitos desta norma sobre os dispositivos elétricos de segurança são tais que a possibilidade de falha de um dispositivo elétrico de segurança, que atenda a todos os requisitos dessa norma, não precisa ser considerada. Os usuários devem ser protegidos contra a sua negligência e descuido inconscientes ao utilizar o elevador do modo estabelecido. Considerou-se que um usuário pode, em certos casos, cometer um ato imprudente.

A possibilidade de cometer dois atos imprudentes simultâneos e/ou a má utilização de instruções de uso não foi considerada. Se durante o desenvolvimento do trabalho de manutenção um dispositivo de segurança, normalmente não acessível aos usuários for deliberadamente neutralizado, a operação segura do elevador não é mais assegurada, porém medidas compensatórias devem ser tomadas para garantir a segurança dos usuários de acordo com as instruções de manutenção.

Foi considerado que o pessoal de manutenção está instruído e trabalha de acordo com as instruções. Para reproduzir forças horizontais que uma pessoa pode exercer, foram utilizados os seguintes valores de forças estáticas: 300 N; 1.000 N, onde um impacto pode ocorrer. Com exceção dos itens listados, um dispositivo mecânico construído de acordo com as boas práticas e com os requisitos desta norma não irá deteriorar-se a ponto de criar perigo sem que a falha seja detectada.

As seguintes falhas mecânicas foram consideradas nesta norma: quebra da suspensão; deslizamento sem controle dos cabos na polia motriz; quebra e afrouxamento de toda a ligação dos seguintes elementos auxiliares: cabos; correntes; e correias. Inclui a falha de um dos componentes mecânicos do freio eletromecânico que toma parte na ação de frenagem no tambor ou disco; a falha de um componente associado com os elementos de acionamento principais e a polia motriz; a ruptura no sistema hidráulico (cilindro excluído); e pequenos vazamentos no sistema hidráulico (cilindro incluso).

Ocorrendo a queda livre do carro a partir do pavimento extremo inferior, a possibilidade de o freio de segurança não atuar, antes que o para-choque seja atingido, é considerada aceitável. Em caso de elevadores com acionamento hidráulico, providos de dispositivos contra queda livre ou a descida com velocidade excessiva, que parem o carro completamente (por exemplo, freio de segurança, válvula de queda), a possibilidade de o carro bater no para-choque com velocidade excedendo 115% da velocidade nominal de descida não pode ser considerada.

Quando a velocidade do carro está vinculada com a frequência elétrica da rede até o momento da aplicação do freio mecânico, é considerado que a velocidade não exceda 115% da velocidade nominal. Desde que nenhuma das falhas mencionadas ocorra, supõe-se que a velocidade do carro no sentido de descida com qualquer carga (até a carga nominal) não excede a velocidade nominal de descida em mais de 8%.

A caixa está devidamente ventilada, conforme regulamento da construção nacional, considerando a dissipação do calor conforme especificado pelo fabricante. Os acessos às áreas de trabalho devem ser adequadamente iluminados. O sistema de fixação das proteções utilizadas especificamente para proteção das pessoas contra riscos mecânicos, elétricos ou qualquer outro, por meio de uma barreira física, que tenha que ser removida durante a manutenção e inspeção regular, permanece solidário à proteção ou ao equipamento quando a proteção for removida.

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve atender aos requisitos de segurança e medidas de proteção desta norma. Além disso, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve ser projetado de acordo com os princípios da NBR ISO 12100, para perigos relevantes, porém não significativos, que não são tratados por esta norma (por exemplo, arestas vivas).

Esta norma foi desenvolvida tendo por base as formas construtivas usuais. Não é intenção desta norma limitar o ingresso de novas tecnologias, como por exemplo, manutenção de equipamento a partir do interior da cabina, desde que comprovadas sua eficiência, segurança e aplicação por órgão certificador reconhecido. Todos os rótulos, avisos, marcações e instruções de operação devem ser afixados permanentemente, indeléveis, legíveis e facilmente compreensíveis (se necessário, auxiliados por sinais ou símbolos). Eles devem ser de material durável, colocados em uma posição visível e redigidos no idioma do país onde o elevador está instalado (ou, se necessário, em vários idiomas).

Quando o peso, as dimensões e/ou a forma dos componentes impedirem que estes sejam movimentados manualmente, eles devem ser: equipados com fixadores para mecanismo de levantamento; ou projetados de modo que possam ser montados tais fixadores (por exemplo, por meio de furos roscados); ou projetados de modo que um mecanismo de levantamento padronizado possa facilmente ser acoplado. As forças horizontais e/ou energias a serem consideradas estão indicadas nas seções aplicáveis desta norma.

Normalmente, quando não especificada nesta norma, a energia exercida por uma pessoa resulta em uma força estática equivalente a: 300 N; 1.000 N onde o impacto pode ocorrer.

Deve-se atentar para os requisitos referentes à caixa que se destina a proteger o carro do elevador e todas as suas partes móveis, bem como servir de estrutura para fixação de componentes e partes do elevador, como guias, suportes, dispositivos de segurança, portas de pavimento e portas de emergência. É desejável que a caixa ocupe pouco espaço e se constitua em elemento arquitetônico de integração do elevador ao ambiente.

O contrapeso (se provido) do elevador deve estar na mesma caixa do carro. Em todos os casos em que houver, embaixo do poço, recinto utilizado por pessoas, o fundo do poço deve ser calculado conforme descrito a seguir. Se os espaços abaixo do carro ou do contrapeso (se provido) forem acessíveis, a base do poço deve ser projetada para resistir a uma carga de no mínimo 5.000 N/m² e o contrapeso (se provido) deve ser equipado com freio de segurança. O pistão do elevador com acionamento hidráulico deve estar na mesma caixa do carro. Ele pode prolongar-se sob o poço ou outros espaços.

A caixa deve ser totalmente fechada por paredes, piso e teto sem perfurações. As únicas aberturas permitidas são as aberturas para portas de pavimento; as aberturas para portas de inspeção e emergência da caixa; as aberturas para saída de gases e fumaça em caso de incêndio; as aberturas de ventilação; as aberturas necessárias para o funcionamento do elevador entre a caixa e as casas de máquina ou de polias.

Quando não for requerido que a caixa contribua na proteção da edificação contra a propagação do fogo, pode-se admitir proteção de vidro. As folhas de vidro, plano ou conformado, devem ser laminadas. As folhas de vidro e os seus meios de fixação devem resistir a uma força estática horizontal de 1.000 N em uma área de 0,30 m x 0,30 m, em qualquer ponto, tanto de dentro como de fora da caixa, sem deformação permanente.

A caixa deve ser convenientemente ventilada e não pode ser utilizada para ventilação de locais alheios ao serviço do elevador. Se não houver meios de fuga para pessoa (s) presa (s) na caixa para conseguir auxílio externo, um sistema de alarme deve ser instalado quando existir o risco de aprisionamento, operado a partir do (s) espaço (s) de refúgio, garantindo comunicação por voz de duas vias. Este sistema deve permitir contato com o serviço de resgate de forma: direta, via sistema remoto, conforme NBR 16756, ou indireta, via intercomunicação com a portaria.

Quando for aplicado o bloqueio mecânico eliminando o risco de aprisionamento na área de trabalho no topo da cabina ou no poço, não há necessidade de instalação do sistema de alarme. Se houver riscos de enclausuramento em áreas fora da caixa, esses riscos devem ser discutidos com o proprietário da edificação.

A segurança das válvulas para recipientes transportáveis de GLP até 13 kg

A válvula de segurança ou de alívio de pressão é um dispositivo destinado a aliviar a pressão no interior dos recipientes, quando esta atinge um valor predeterminado, interrompendo o fluxo do gás, quando a pressão voltar ao nível considerado aceitável e a sua vedação possui um elemento que mantém a sua estanqueidade. Nos ensaios, a válvula que não atender aos requisitos da norma deve ser reprovada. Quando a amostra for representativa de um lote, a sua reprovação, por não atender às condições específicas da norma, implica a reprovação de todo o lote que ela representa.

No lote reprovado, é permitido ao fabricante realizar os reparos necessários, colocando os produtos nas condições estabelecidas pela norma. Em caso de dúvida quanto à legitimidade da documentação, todo o lote deve ser reprovado. Nesse caso, é permitida ao fabricante a realização de todos os ensaios correspondentes, desde que na presença do comprador.

Assim, nos ensaios por amostragem, em um lote diário, deve ser adotado como padrão uma peça a cada lote de 1.000 válvulas produzidas. Opcionalmente, pode-se adotar para lotes com quantidades superiores o nível de inspeção S3 e o nível de qualidade aceitável (NQA) 2,5%, conforme a NBR 5426. Em um lote mensal, para ensaios não verificados em 100% do lote, pode-se adotar o nível de inspeção S3 e NQA 1,0% do plano de amostragem simples, regime de inspeção normal da NBR 5426, quando necessário.

Nos ensaios de verificação das roscas, elas devem ser verificadas por meio de calibradores tipo tampão, conforme as dimensões padronizadas na norma. As roscas de fixação devem ser verificadas por meio de calibradores tipo anel, conforme as dimensões padronizadas. A frequência do ensaio deve ser no mínimo 1 a cada lote de 1.000 peças. As roscas devem estar isentas de defeitos de fabricação, rebarbas e imperfeições.

Para o ensaio de estanqueidade da vedação, deve ser usado um dispositivo com conexão de utilização, com extremidade que simule o pino do regulador, para verificação de vazamentos no anel de vedação, quando da aplicação da pressão pneumática de 0,7 + 0,1 MPa por 2 s. A frequência do ensaio deve ser de no mínimo 1 a cada lote de 1.000 peças.

O ensaio do conjunto da válvula com dispositivo limitador de enchimento (DLE) deve ser efetuado com o conjunto acoplado em um contêiner que sugestione o recipiente para o qual o DLE foi projetado, ocorrendo a entrada de líquido pela válvula e esvaziamento posterior do recipiente, de forma a executar um ciclo de 1 000 vezes o fechamento da passagem do fluxo pelo DLE.

Para o ensaio de compatibilidade dos elastômeros ao GLP, a peça ou corpo de prova, quando o ensaio assim exigir, deve ser imersa em butano comercial líquido durante 24 h, à temperatura ambiente, e, após 15 min da retirada da imersão, devem ser determinadas: a variação da massa em relação à massa inicial: ± 8%; a variação do volume em relação ao inicial: ± 5%; e a variação da dureza Shore A em relação à inicial: ± 5 pontos. Bolha e/ou delaminação na superfície da peça não são admitidas.

Após retirada da imersão, a peça ou o corpo de prova deve permanecer por 1 h à temperatura ambiente e em seguida ser submetida à temperatura de 70°C por 24 h, sendo determinadas, após 15 min de retirada do ensaio. Estes ensaios são de responsabilidade do fabricante dos elastômeros, devendo seus certificados de qualidade serem mantidos à disposição do cliente pelo prazo mínimo de um ano.

Os ensaios de rotina devem ser realizados em 100% do lote, nível de inspeção S3 e NQA 1,0% do plano de amostragem simples, regime de inspeção normal da NBR 5426. Os ensaios são realizados conforme descritos na norma. A inspeção de lote deve seguir o especificado na norma e a aceitação e reprovação do lote deve estar conforme a descrito na norma.

Para a abertura e fechamento da válvula, o ensaio consiste na abertura e no fechamento do conjunto interno da válvula, devendo ser acionado no mínimo por duas vezes, sem que ocorra travamento. A frequência do ensaio deve ser de 100%.

Para a estanqueidade interna, deve ser aplicada uma pressão pneumática de 0,7 MPa na parte inferior da válvula que fica em contato com a fase gasosa do gás liquefeito de petróleo, no mínimo por 2 s, não podendo apresentar vazamentos. A frequência do ensaio deve ser de 100%.

O conjunto da válvula ensaiada quanto ao fechamento do DLE deve ser submetido à pressão de 1,7 MPa aplicada pela entrada da válvula, não podendo apresentar vazamento. A frequência deste ensaio deve ser de 100% do lote produzido

Se for do interesse do comprador, ele pode solicitar e acompanhar os ensaios das válvulas ou de seus componentes. O fabricante deve fornecer todas as facilidades necessárias para a verificação da conformidade da encomenda com o pedido.

A NBR 8614 de 09/2022 – Gás liquefeito de petróleo (GLP) – Válvulas para recipientes transportáveis até 13 kg – Requisitos especifica os requisitos para fabricação, compreendendo as formas, as dimensões e os ensaios para válvulas e seus componentes para recipientes transportáveis até 13 kg de gás liquefeito de petróleo (GLP).

O material para o corpo da válvula deve ser latão de forja ou de corte livre. Podem ser usados outros materiais, desde que possuam as seguintes características: resistência à ação dos hidrocarbonetos de petróleo e aos agentes atmosféricos; ponto de amolecimento superior a 600°C; características mecânicas iguais ou superiores ao latão de forja ou de corte livre. As características químicas e físicas do latão devem ser conforme a NBR 6188 para as peças forjadas e injetadas, e conforme a NBR 5023 para as peças usinadas.

O porta-vedação, o parafuso de acionamento e o guia do porta-vedação devem ser fabricados em latão ou outro material com resistência à ação dos hidrocarbonetos de petróleo e aos agentes atmosféricos. As vedações devem ser de materiais elastoméricos ou outros materiais resistentes à ação dos hidrocarbonetos do GLP, com elasticidade suficiente para produzir um fechamento-estanque, de acordo com a tabela abaixo.

A mola de pressão deve ser conforme estabelecida na NBR 13366, devendo possuir acabamento anticorrosivo. O corpo e os demais componentes da válvula devem ser fabricados por processos que assegurem um produto isento de foliações, dobra, fissuras ou quaisquer outros defeitos. Não é permitida a fabricação do corpo por processos tipo fundição.

Nas válvulas automáticas para recipientes transportáveis para GLP, o elemento obturador é normalmente mantido em contato com a sede pela ação de uma mola, assegurando o fechamento-estanque nas condições normais de armazenamento e transporte. A abertura da válvula é obtida pela introdução de um pino que, mantido em posição por meio de um dispositivo adequado, comprime a mola e provoca a abertura do elemento obturador.

O elemento obturador deve ser disposto de maneira que a pressão interna do recipiente atue no sentido do fechamento da válvula. Para válvulas com acionamentos manuais, a abertura ou fechamento deve ser por meio de manopla.

O projeto da válvula deve estar de acordo com o princípio de funcionamento, de forma a assegurar a vedação estanque na posição fechada e proporcionar, na posição aberta, uma vazão suficiente que permita o enchimento dos recipientes, admitindo-se que a vazão do bico seja maior que as condições máximas estabelecidas na norma. As formas construtivas das válvulas automáticas estão exemplificadas no Anexo C e as válvulas com dispositivos de segurança estão apresentadas no Anexo D.

O guia do porta-vedação deve ser montado com os seguintes torques de aperto: 20 ± 5 N.m para válvulas com rosca de fixação de 3/4“ NGT; 15 ± 5 N.m para válvulas com rosca de fixação 1/2“NGT. O parafuso de acionamento deve ser apertado com um torque mínimo de 1,0 N.m. Os seguintes itens devem ser gravados de forma legível, no corpo da válvula, em alto ou baixo relevo, permitindo a sua visualização após instalado: identificação do fabricante; data de fabricação (mês e ano); citação “DLE” e tipo de recipiente, quando existente.

Podem ser estabelecidas outras gravações, desde que em comum acordo entre o fabricante e o comprador. Para a identificação do dispositivo limitador de enchimento (DLE), ele deve ser marcado conforme a seguir: nome do fabricante ou iniciais ou símbolo de identificação; identificação que permita a rastreabilidade do período ou lote de fabricação; e pressão de serviço nominal.

O DLE deve incluir todos os componentes necessários para sua função normal e instalação, devendo ser fornecido como uma unidade única ou montado na válvula. O DLE deve ser instalado somente no respectivo tipo de válvula e recipiente de GLP para o qual foi projetado. Quando operado por boia, o DLE deve estar provido de um mecanismo que mantenha a orientação adequada da boia na condição de utilização. Todo DLE com boia deve ser fornecido com a certificado de qualidade do fabricante de execução dos ensaios descritos na UL – SUBJECT 2227.

Os ensaios de tipo devem ser realizados no mínimo uma vez por ano ou sempre que houver alteração do projeto/processo ou das especificações de qualquer componente do regulador de pressão. Os ensaios relativos a esta alteração devem ser realizados em dez peças, sendo que, se houver uma peça reprovada, a alteração deve ser considerada reprovada. Neste caso, deve ser elaborado um laudo do problema/ falha com ações corretivas.

Para o ensaio hidrostático para aprovação da resistência do corpo e dos componentes, a válvula deve ser fixada ao suporte, estando o seu acoplamento ligado à fonte de pressão hidrostática de 8,5 MPa, a qual deve ser mantida durante 60 s. A válvula não pode apresentar vazamentos ou deformações.

Para o ensaio do conjunto da válvula (fadiga), o conjunto da válvula deve proceder à abertura e ao fechamento do conjunto da válvula por 5.000 ciclos consecutivos. Após completados os ciclos, a válvula deve ser ensaiada e avaliada, conforme os requisitos dos ensaios descritos na norma e, no caso de algum deles não ser atendido, deve-se proceder conforme descrito em aceitação e reprovação.

As válvulas que forem dotadas de dispositivos solidários ou fixados ao corpo devem ser ensaiadas com os respectivos dispositivos instalados ao conjunto. A válvula de segurança deve atender aos requisitos da NBR 12178 e também às especificações da NBR 11708.

A gestão da qualidade em empresas de transporte de cargas

Segundo um estudo do BNDES. o transporte de carga no Brasil, especialmente por rodovias, tem mau desempenho quando comparado a parâmetros internacionais. O transporte de carga é um serviço fundamental na cadeia de produção e distribuição de bens industriais e agrícolas. O Ministério dos Transportes estima que mais de 58% desse transporte é realizado por meio das rodovias, o que faz do transporte rodoviário no país um fator determinante da eficiência e da produtividade sistêmica da economia. As comparações internacionais revelam que há espaço significativo para melhoria da eficiência da atividade no Brasil.

O principal serviço prestado pelas transportadoras com 20 ou mais empregados é o transporte de carga seca (produtos manufaturados, ensacados ou embalados), que responde, em média, por 48,3% da receita operacional líquida do transporte rodoviário de cargas. O transporte de cargas sólidas a granel (cereais, areia, brita, minérios, cimento, etc.) é o segundo em participação na receita. Em seguida, com participações semelhantes, aparecem o transporte de carga unitizada ou não solta, de explosivos, fertilizantes e outros produtos sólidos perigosos, de veículos e de combustíveis e GLP.

O serviço de transporte rodoviário de carga é prestado também por um grande número de transportadores autônomos. Esses profissionais, conhecidos como caminhoneiros ou carreteiros, são mais de 800.000, mas A participação dos autônomos na oferta total do serviço de transporte de carga é difícil de estimar; muitos autônomos são contratados pelas empresas transportadoras na condição de “agregados”. Uma indicação da relevância do segmento pode ser dada pela representatividade de sua frota: como se detalhará adiante, 57% dos veículos de carga registrados são operados por autônomos. Além das empresas e dos profissionais autônomos registrados, muitos transportadores rodoviários de carga operam informalmente.

A melhoria do desempenho do transporte rodoviário de carga no Brasil requer atenção especial ao serviço oferecido pelos transportadores autônomos, o que justifica o desenho de políticas públicas voltadas ao segmento. A oferta de crédito para a renovação da frota, em particular, é um instrumento importante, tendo em vista que os avanços tecnológicos incorporados aos veículos propiciam ganhos de eficiência significativos e que os baixos níveis de capitalização e renda dos autônomos dificultam a aquisição do caminhão à vista com recursos próprios.

Em relação à gestão da qualidade no transporte de cargas, deve-se entender que os processos operacionais são a sequência de atividades necessárias para que a carga saia da origem e chegue ao destino. O planejamento dos processos deve ser consistente com a infraestrutura existente e com os requisitos contratuais. Os processos operacionais devem ser adequadamente documentados.

Na determinação dos processos, as seguintes questões devem ser consideradas: os recursos específicos para cada contrato, se aplicável; a interrelação com as atividades de conferência e inspeção; a necessidade de registros e/ou documentos que forneçam evidência da conformidade dos processos; a disponibilidade de informações que deem apoio à tomada de decisões, incluindo sistemas informatizados, se aplicável; as questões de natureza legal; e os tipos de local de operação (cross-docking, plataforma, rampas de acesso móveis, porta-paletes, etc.). A coleta é um  processo que deve considerar todas as possíveis situações e conter particularidades em função das necessidades específicas dos clientes.

A transferência deve considerar todas as possíveis situações de transferência, incluindo manuseio, proteção, identificação e particularidades em função de necessidades específicas dos clientes. O armazenamento temporário (cross-docking) deve considerar todas as possíveis situações de armazenamento temporário, incluindo local, manuseio, proteção, identificação e particularidades em função de necessidades específicas dos clientes.

A entrega deve considerar todas as possíveis situações de entrega (do início da operação de transporte até a baixa do comprovante de entrega) e as particularidades em função de necessidades específicas dos clientes. Para a rastreabilidade e o monitoramento, a empresa de transporte deve especificar a abrangência, os meios para rastrear/monitorar as cargas transportadas e as rotinas/documentos que devem ser cumpridos para assegurar a eficácia do processo. No caso de não conformidade, ver o item não conformidade e ação corretiva.

Para a contratação de terceiros (autônomos) para transporte de cargas, a empresa deve documentar, implementar e manter procedimentos para a contratação de terceiros, incluindo o contrato de transporte especificando o serviço a ser realizado; a verificação de documentos do motorista e do veículo; a qualificação das pessoas envolvidas na operação; a consulta aos cadastros das corretoras de seguro, quando aplicável; e a inspeção do veículo. Devem ser providenciados registros que demonstrem o cumprimento do procedimento.

A empresa de transporte deve documentar, implementar e manter procedimentos para as suas atividades comerciais, que devem incluir a determinação dos requisitos do serviço especificados pelo cliente, incluindo quando aplicável, os requisitos de prazos (coleta, entrega e pagamento), estimativa de demanda, especificação de veículo, etc.; a análise do perfil de carga do cliente potencial; as obrigações relacionadas ao serviço, incluindo requisitos legais; e a análise crítica prévia para assegurar que a empresa de transporte possua capacidade para atender aos requisitos especificados.

A insatisfação dos clientes prejudica o processo de fidelização e enfraquece a reputação da empresa no mercado, abrindo espaço para que a concorrência aproveite as oportunidades de negócio surgidas a partir da ineficiência de uma empresa em logística. Portanto, o embarque e transporte de mercadorias deve ser compreendido a partir de uma visão estratégica, que contribua para a integração de todos os processos logísticos, permitindo que as empresas melhorem seus resultados e possam crescer no mercado.

A NBR 14884 de 09/2022 – Transporte rodoviário de carga – Sistema de gestão da qualidade estabelece os requisitos para um sistema de gestão da qualidade para empresas de transporte de cargas, visando: prover consistentemente serviços que atendam aos requisitos do cliente e aos requisitos regulamentares aplicáveis; aumentar a percepção de valor pelo cliente por meio da aplicação eficaz do sistema, incluindo os processos para melhoria do sistema; abordar os riscos e as oportunidades associados com seu contexto e objetivos; promover as práticas sustentáveis em suas operações; e evidenciar a conformidade com os requisitos estabelecidos nos sistemas de gestão da qualidade.

A empresa de transporte deve determinar o escopo de sua atuação no transporte rodoviário de carga, incluindo: tipo de carga e área de atuação (nacional e/ou internacional). Deve planejar, documentar e implantar o sistema de qualificação para o seu escopo de atuação. O sistema de gestão da qualidade deve apresentar sua abrangência e a parte da empresa de transporte envolvida (matriz, filiais, postos avançados, representantes/agentes, franquias, etc.).

A conformidade com esta norma só pode ser alegada se os requisitos determinados como não aplicáveis não afetarem a capacidade ou a responsabilidade da empresa de transporte de assegurar a conformidade de seus serviços e o aumento da satisfação do cliente. A empresa de transporte deve determinar os processos necessários para o sistema de gestão da qualidade e sua aplicação, e também deve: determinar as entradas requeridas e as saídas esperadas desses processos; determinar a sequência e a interação desses processos; determinar e aplicar os critérios, metas e métodos (incluindo monitoramento, medições e indicadores de desempenho relacionados), necessários para assegurar a operação e o controle eficazes desses processos; determinar os recursos necessários para esses processos e assegurar a sua disponibilidade; atribuir as responsabilidades e autoridades para esses processos; abordar os riscos e as oportunidades; avaliar esses processos e implementar quaisquer mudanças necessárias para assegurar que esses processos alcancem seus resultados pretendidos; melhorar os processos e o sistema de gestão da qualidade; manter a informação documentada para apoiar a operação de seus processos; reter a informação documentada para evidenciar que os processos sejam realizados conforme planejado.

A direção da empresa de transporte deve demonstrar liderança e comprometimento em relação ao sistema de gestão da qualidade: responsabilizando-se por prestar contas pela eficácia do sistema de gestão da qualidade; assegurando que a política da qualidade e os objetivos da qualidade sejam estabelecidos para o sistema de gestão da qualidade e que sejam compatíveis com o escopo da empresa; promovendo o uso da abordagem de processo e gestão de risco; assegurando que os recursos necessários para o sistema de gestão da qualidade estejam disponíveis; promovendo melhoria; assegurando que os requisitos do cliente e regulamentares pertinentes sejam determinados, entendidos e atendidos.

A direção da empresa de transporte deve estabelecer e documentar sua política da qualidade. A política deve incluir o compromisso com a melhoria contínua e o atendimento aos requisitos legais aplicáveis. A direção da empresa de transporte deve assegurar que a política da qualidade seja compreendida, implementada e mantida por todos os funcionários e terceiros que executam atividades que afetam a qualidade do serviço, que esteja disponível e acessível para as partes interessadas pertinentes.

A direção da empresa de transporte deve determinar, documentar e comunicar as responsabilidades e autoridades do pessoal que desempenha atividades que possam afetar a qualidade do serviço. Deve indicar um coordenador da qualidade. Este coordenador, independentemente de outras responsabilidades, deve ter autoridade e responsabilidade especificadas que incluam: planejar e gerenciar a implantação do sistema de gestão de transporte; assegurar que os processos do sistema de gestão de transporte estejam estabelecidos e mantidos; assegurar a promoção do foco no cliente na organização; assegurar que a integridade do sistema de gestão da qualidade seja mantida quando forem planejadas e implementadas mudanças no sistema de gestão da qualidade; relatar à direção o desempenho do sistema de gestão de transporte e dos indicadores de desempenho, incluindo necessidades de melhoria.

Deve ter procedimentos para identificar e avaliar os riscos potenciais à qualidade ligados à operação, incluindo no mínimo: os aspectos que têm ou podem ter um impacto significativo; os critérios para identificação da significância, contemplando a probabilidade de ocorrência e potencial impacto; o atendimento aos requisitos legais; o alcance dos resultados pretendidos; a prevenção ou redução de efeitos indesejáveis; a rastreabilidade da operação de transporte; a determinação de rotas e pontos de parada e abastecimento; e a melhoria contínua. A empresa de transporte deve implementar as ações nos processos do seu sistema de gestão da qualidade para tratar os riscos e as oportunidades com o potencial impacto sobre a conformidade de produtos e serviços, bem como deve avaliar a eficácia dessas ações.

A direção da empresa de transporte deve determinar: os indicadores mensuráveis da qualidade dos serviços; os métodos para sua medição; as metas e os prazos para atendimento de todos os indicadores de desempenho, que devem ser analisados e revisados, no mínimo anualmente, durante a análise crítica pela direção. Os indicadores de desempenho devem ser analisados periodicamente em relação ao atendimento das metas estabelecidas e um plano de ação deve ser elaborado, caso as metas não sejam atingidas. Os indicadores de desempenho especificados pela direção da empresa devem ser coerentes com a política da qualidade e incluir no mínimo o constante na tabela abaixo.

A direção da empresa de transporte deve listar e manter atualizados os requisitos legais e as normas referenciais aplicáveis ao serviço de transporte rodoviário de carga que possam afetar a qualidade das operações. Deve diagnosticar o nível de atendimento aos requisitos legais e às normas referenciais aplicáveis, bem como deve demonstrar o seu completo atendimento.

A conformidade dos produtos para diagnóstico de uso in vitro

Os produtos para diagnóstico de uso in vitro envolvem os reagentes, padrões, calibradores, controles, materiais, artigos, instrumentos e equipamentos, junto com as instruções para seu uso, que contribuem para realizar uma determinação qualitativa, quantitativa ou semiquantitativa de uma amostra proveniente do corpo humano e que não estão destinados a cumprir alguma função anatômica, física ou terapêutica, que não são ingeridos, injetados ou inoculados em seres humanos e que são utilizados unicamente para prover informação sobre amostras obtidas do organismo humano. Dessa forma, a qualidade dos laboratórios clínicos e a emissão de laudos corretos e confiáveis dependem de vários fatores: da capacidade técnica dos profissionais que realizam os exames, da eficiência e eficácia dos equipamentos, que devem estar calibrados e monitorados e, ainda, da qualidade e desempenho dos reagentes usados para a realização dos exames laboratoriais dos diferentes analitos que a classe médica solicita para complementar os seus diagnósticos e monitorar os seus clientes.

Deve ser uma preocupação de todos os profissionais da área conhecer melhor a qualidade e o desempenho dos produtos de diagnósticos que os fabricantes colocam à disposição dos laboratórios clínicos. Diante disto, é importante que seja feita a avaliação da conformidade destes produtos. Na literatura sobre o assunto, não se encontra uma norma específica para reagentes de laboratórios para realização de exames. Somente alguns documentos técnicos produzidos pelo Clinical & Laboratory Standards Institute (CLSI), que tratam isoladamente de alguns itens necessários para a avaliação da conformidade dos reagentes.

Na inexistência de uma norma específica para a avaliação da conformidade destes reagentes, a NBR 16075 se propõe a avaliar esta conformidade através da Resolução Anvisa – RDC nº 206, de 17 de novembro de 2006, que dispõe de um regulamento técnico de produto para diagnóstico de uso in vitro e seu registro, cadastramento, alterações, revalidações e cancelamentos. Para tal, elaborou-se uma sistemática de avaliação da conformidade dos reagentes baseada nesta resolução.

Esta avaliação da conformidade dos reagentes é de interesse da classe médica, dos laboratórios clínicos, da vigilância sanitária e de toda a população, que busca os médicos e os laboratórios clínicos para diagnosticar as suas doenças e para a emissão de laudos corretos e confiáveis, a fim de ser tratada e monitorada adequadamente. Para o estabelecimento da avaliação da conformidade de produtos de diagnóstico de uso in vitro usados nos laboratórios de análises clínicas e patologia clínica, deve-se fazer uma análise crítica da adequação do produto aos requisitos relativos à apresentação, embalagem interna e externa e rotulagens, uma análise crítica da adequação aos requisitos para as instruções de uso fornecidas pelo fabricante aos consumidores e um relatório técnico de avaliação da conformidade. O responsável técnico pela avaliação da conformidade do produto, após obtenção dos dados das análises críticas aos requisitos exigidos, deve emitir um relatório completo e minucioso dos resultados obtidos e das suas conclusões.

O relatório técnico deve abranger os resultados da análise crítica da adequação aos requisitos de apresentação, rotulagem e embalagens externa e interna do produto, a fim de atender às exigências de conservação, armazenamento, transporte, estabilidade; da análise crítica da adequação aos requisitos das instruções de uso do fornecedor aos consumidores sobre todas as informações e dados necessários, de modo a permitir o uso correto do produto, bem como da análise crítica da adequação do produto aos testes de desempenho relacionados à sensibilidade, especificidade, reprodutibilidade, sensibilidade e estabilidade do produto. O laboratório ou instituição deve utilizar o reagente em estudo para uma determinação qualitativa, utilizando padrões ou amostras-controle de valor conhecido e elaborando os cálculos estatísticos para a obtenção da variabilidade analítica, antes de elaborar o relatório técnico.

A NBR 16075 de 07/2012 – Diagnóstico de uso in vitro — Competência de laboratórios e organização de ensaio de avaliação da conformidade de produtos — Requisitos gerais especifica os requisitos gerais para a competência de laboratórios e organizações para realizar a avaliação da conformidade de produtos para diagnóstico de uso in vitro, incluindo amostragem. Ela cobre os ensaios realizados utilizando métodos normalizados, métodos não normalizados e métodos desenvolvidos pelo laboratório. É aplicável a todas as organizações e laboratórios que realizam a avaliação da conformidade de produtos para diagnóstico de uso in vitro, para os métodos quantitativos e qualitativos.

O produto para diagnóstico de uso in vitro envolve os reagentes, padrões, calibradores, controles, materiais, artigos, instrumentos e equipamentos, junto com as instruções para seu uso, que contribuem para realizar uma determinação qualitativa, quantitativa ou semiquantitativa de uma amostra proveniente do corpo humano e que não estão destinados a cumprir alguma função anatômica, física ou terapêutica, que não são ingeridos, injetados ou inoculados em seres humanos e que são utilizados unicamente para prover informação sobre amostras obtidas do organismo humano. O laboratório ou a organização da qual ele faça parte deve ser uma entidade que possa ser legalmente responsável.

É responsabilidade do laboratório ou organização realizar suas atividades para a avaliação da conformidade, de modo a atender aos requisitos desta norma e satisfazer as necessidades dos clientes, das autoridades regulamentadoras ou das organizações que fornecem reconhecimento. O sistema de gestão da qualidade deve cobrir os trabalhos realizados nas instalações permanentes do laboratório ou organizações, em locais fora de suas instalações permanentes ou em instalações associadas, temporárias ou móveis.

Se o laboratório for parte de uma organização que realiza outras atividades, além da avaliação da conformidade, as responsabilidades do pessoal-chave da organização que tenha um envolvimento ou influência nas atividades da avaliação da conformidade devem ser definidas, de modo a identificar potenciais conflitos de interesse. Quando um laboratório for parte de uma organização maior, convém que os arranjos organizacionais sejam tais que os departamentos que tenham conflito de interesses, tais como produção, marketing comercial ou financeiro, não influenciem negativamente a conformidade do laboratório com os requisitos desta norma.

Se o laboratório ou organização desejar ser reconhecido como um laboratório de terceira parte, convém que ele seja capaz de demonstrar que é imparcial e que ele e seu pessoal estão livres de quaisquer pressões comerciais, financeiras e outras indevidas, que possam influenciar seu julgamento técnico. Convém que o laboratório de ensaio de terceira parte não se envolva em atividades que possam colocar em risco a confiança na sua independência de julgamento e integridade em relação às atividades para avaliação da conformidade.

O laboratório ou organização deve ter pessoal gerencial e técnico que, independentemente de outras responsabilidades, tenha a autoridade e os recursos necessários para desempenhar suas tarefas, incluindo a implementação, manutenção e melhoria do sistema de gestão da qualidade, e para identificar a ocorrência de desvios do sistema de gestão da qualidade ou dos procedimentos para a realização da avaliação da conformidade, e para iniciar ações para prevenir ou minimizar tais desvios; ter meios para assegurar que sua direção e o seu pessoal estejam livres de quaisquer pressões e influências indevidas, comerciais, financeiras e outras, internas ou externas, que possam afetar adversamente a qualidade dos seus trabalhos; ter políticas e procedimentos para assegurar a proteção das informações confidenciais e direitos de propriedade dos seus clientes, incluindo os procedimentos para a proteção do armazenamento e da transmissão eletrônica dos resultados; ter políticas e procedimentos para evitar envolvimento em quaisquer atividades que possam diminuir a confiança na sua competência, imparcialidade, julgamento ou integridade operacional; definir a sua estrutura organizacional e gerencial, seu lugar na organização principal e as relações entre a gestão da qualidade, operações técnicas e serviços de apoio; especificar a responsabilidade, a autoridade e o inter-relacionamento de todo o pessoal que gerencia, realiza ou verifica os trabalhos que afetem a qualidade da avaliação da conformidade; prover a supervisão adequada do pessoal da avaliação da conformidade, inclusive daqueles em treinamento, por pessoas familiarizadas com os métodos e procedimentos, com a finalidade de cada ensaio e com a avaliação dos resultados; ter uma gerência técnica que tenha responsabilidade total pelas operações técnicas e pela provisão dos recursos necessários para assegurar a qualidade requerida das suas operações; nomear um membro do seu quadro de pessoal como gerente da qualidade (qualquer que seja a denominação) que, independentemente de outros deveres e responsabilidades, deve ter responsabilidade e autoridade definidas para assegurar que o sistema de gestão relacionado à qualidade seja implementado e seguido permanentemente.

Somado a tudo isso, o gerente da qualidade deve ter acesso direto ao mais alto nível gerencial, onde são tomadas as decisões sobre as políticas e/ou recursos. Deve designar substitutos para o pessoal-chave no nível gerencial e assegurar que seu pessoal está consciente da pertinência e importância de suas atividades e de como eles contribuem para alcançar os objetivos do sistema de gestão da qualidade.

Algumas pessoas podem ter mais de uma função e pode ser impraticável designar substitutos para cada função. A administração deve assegurar que os processos adequados de comunicação sejam estabelecidos e que haja comunicação a respeito da eficácia do sistema de gestão da qualidade. O laboratório ou organização deve estabelecer, implementar e manter um sistema de gestão da qualidade apropriado ao escopo das suas atividades.

Deve documentar suas políticas, sistemas, programas, procedimentos e instruções, na extensão necessária para assegurar a qualidade dos resultados das suas atividades. A documentação do sistema deve ser comunicada, compreendida, estar disponível e ser implementada pelo pessoal apropriado. As políticas do sistema de gestão relativas à qualidade, incluindo uma declaração sobre a política da qualidade, devem ser definidas em um manual da qualidade (qualquer que seja a denominação).

Os objetivos gerais devem ser estabelecidos e analisados criticamente durante a análise crítica pela direção. A declaração da política da qualidade deve ser emitida sob a autoridade da administração. Ela deve incluir pelo menos o seguinte: o comprometimento da direção com as boas práticas profissionais e com a qualidade dos seus ensaios no atendimento aos seus clientes; a declaração da direção sobre o nível de seu serviço; o propósito do sistema de gestão com respeito à qualidade; um requisito de que todo o pessoal envolvido nas atividades da avaliação da conformidade familiarize-se com a documentação da qualidade e implemente as políticas e os procedimentos nos seus trabalhos; e o comprometimento da direção com a conformidade a esta norma e com a melhoria contínua da eficácia do sistema de gestão da qualidade.

A declaração da política da qualidade deve ser concisa, podendo incluir o requisito de que a avaliação da conformidade deve sempre ser realizada de acordo com métodos estabelecidos e requisitos dos clientes. Quando o laboratório ou organização for parte de uma organização maior, alguns elementos da política da qualidade podem estar em outros documentos.

A administração deve fornecer evidência do seu comprometimento com o desenvolvimento e implementação do sistema de gestão da qualidade e também com a melhoria contínua de sua eficácia. A administração deve comunicar à organização a importância de atender aos requisitos do cliente, assim como aos requisitos estatutários e regulamentares. O manual da qualidade deve incluir ou fazer referência aos procedimentos complementares, incluindo procedimentos técnicos.

Também, deve descrever a estrutura da documentação usada no sistema de gestão da qualidade. As atribuições e responsabilidades da gerência técnica e do gerente da qualidade, incluindo suas responsabilidades por assegurar a conformidade com esta norma, devem estar definidas no manual da qualidade. A administração deve assegurar que a integridade do sistema de gestão da qualidade seja mantida quando são planejadas e implementadas mudanças no sistema de gestão.

O laboratório ou organização deve estabelecer e manter procedimentos para controlar todos os documentos que fazem parte do seu sistema de gestão da qualidade (gerados internamente ou obtidos de fontes externas), tais como regulamentos, normas, outros documentos normativos, métodos de ensaio, assim como desenhos, softwares, especificações, instruções e manuais. Neste contexto, documento poderia ser declarações da política, procedimentos, especificações, tabelas de calibração, gráficos, livros, pôsteres, avisos, memorandos, software, desenhos, planos, etc.

Todos os documentos emitidos para o pessoal, como parte do sistema de gestão da qualidade, devem ser analisados criticamente e aprovados para uso por pessoal autorizado, antes de serem emitidos. Uma lista mestra ou um procedimento equivalente para controle de documentos, que identifique a situação da revisão atual e a distribuição dos documentos do sistema de gestão, deve ser estabelecida e estar prontamente disponível, para evitar o uso dos documentos inválidos e/ou obsoletos.

O (s) procedimento (s) adotado (s) deve (m) assegurar que as edições autorizadas dos documentos apropriados estejam disponíveis em todos os locais onde sejam realizadas operações essenciais para o seu efetivo funcionamento; os documentos sejam periodicamente analisados criticamente e, quando necessário, revisados para assegurar contínua adequação e conformidade com os requisitos aplicáveis; os documentos inválidos e/ou obsoletos sejam prontamente removidos de todos os pontos de emissão ou uso, ou, de alguma outra forma, seja impedido o seu uso não intencional; os documentos obsoletos retidos, por motivos legais e/ou para preservação de conhecimento, sejam adequadamente identificados.

Os documentos do sistema de gestão da qualidade gerados devem ser univocamente identificados. Esta identificação deve incluir a data da emissão e/ou identificação da revisão, a paginação, o número total de páginas ou uma marca indicando o final do documento e a (s) autoridade (s) emitente (s). As alterações nos documentos devem ser analisadas criticamente e aprovadas pela mesma função que realizou a análise crítica original, salvo prescrição em contrário.

O pessoal designado deve ter acesso à informação prévia pertinente, para subsidiar sua análise crítica e aprovação. Onde praticável, o texto alterado ou o novo texto deve ser identificado no documento ou em anexos apropriados. Se o sistema de controle da documentação permitir emendas manuscritas dos documentos, até sua reemissão, devem ser definidos os procedimentos e as pessoas autorizadas para fazer essas emendas.

As emendas devem ser claramente marcadas, rubricadas e datadas. Um documento revisado deve ser reemitido formalmente o mais breve possível. Devem ser estabelecidos procedimentos para descrever como são realizadas e controladas as alterações nos documentos mantidos em sistemas computadorizados.

O laboratório ou organização deve estabelecer e manter procedimentos para a análise crítica dos pedidos, propostas e contratos. As políticas e procedimentos para as análises críticas que originem um contrato para avaliação da conformidade devem garantir que os requisitos, inclusive os métodos a serem utilizados, sejam adequadamente definidos, documentados e entendidos; o laboratório ou organização tenha capacidade e recursos para atender aos requisitos; seja selecionado o método de avaliação da conformidade apropriado e capaz de atender aos requisitos dos clientes; quaisquer diferenças entre o pedido ou proposta e o contrato devem ser resolvidas antes do início do trabalho; cada contrato deve ser aceito tanto pelo laboratório ou organização como pelo cliente.

Para a análise crítica de tarefas de rotina e de outras tarefas simples, considera-se adequado o registro da data e da identificação (por exemplo, a rubrica) da pessoa responsável pela realização do trabalho contratado. Para tarefas rotineiras repetitivas, a análise crítica só precisa ser executada no estágio inicial do pedido de informações ou na aprovação do contrato, para trabalhos rotineiros em andamento sendo realizados dentro de um acordo geral com o cliente, desde que os requisitos do cliente permaneçam inalterados. Para as atividades da avaliação de conformidade novas, complexas ou avançadas, convém que seja mantido um registro mais detalhado.