O ensaio de ultrassom de juntas soldadas metálicas

A técnica de tempo de percurso da onda difratada (ToFD) para o ensaio de ultrassom de juntas soldadas em materiais metálicos com espessura maior ou igual a 6 mm destina-se principalmente ao uso em juntas soldadas de penetração total de geometria simples em chapas, tubos e vasos, onde tanto a solda quanto o metal de base são de aço de baixa liga.

A NBR 16196 de 05/2020 – Ensaios não destrutivos — Ultrassom — Uso da técnica de tempo de percurso da onda difratada (ToFD) para ensaio em soldas especifica a aplicação da técnica de tempo de percurso da onda difratada (ToFD) para o ensaio de ultrassom de juntas soldadas em materiais metálicos com espessura maior ou igual a 6 mm. Destina-se principalmente ao uso em juntas soldadas de penetração total de geometria simples em chapas, tubos e vasos, onde tanto a solda quanto o metal de base são de aço de baixa liga. Quando especificado e apropriado, o ToFD também pode ser usado em outros tipos de materiais que apresentem baixa atenuação ultrassônica.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as configurações dos cabeçotes recomendadas para juntas de topo em função da espessura de parede?

Como fazer a preparação das áreas de varredura?

Como executar a conversão tempo versus espessura?

Como deve ser feito o ensaio na solda?

Esta norma foi elaborada com base na EN 14751 e fornece diretrizes sobre as capacidades especificas e limitações de ToFD para detecção, localização, dimensionamento e caracterização de descontinuidades em juntas soldadas por fusão. A tecnica ToFD é de geração de imagens ultrassônicas, a qual demonstra capacidade de detecção, localização e dimensionamento. Também é possível a caracterização de descontinuidades em uma certa extensão no metal de solda, assim como no metal de base adjacente.

O ToFD pode ser usado como técnica única ou combinado com outros métodos ou técnicas de END, tanto para inspeção de fabricação quanto para inspeção em serviço. Esta técnica, que é baseada na difração, bem como na reflexão, quando comparada as técnicas baseadas somente na reflexão, e menos sensível para a orientação da descontinuidade. Descontinuidades orientadas perpendicularmente a superfície, e nos ângulos intermediários de incidência, são detectáveis bem como descontinuidades na face da solda.

Quando especificado nesta norma, os parâmetros ultrassônicos estão referenciados ao aço que possui uma velocidade sônica de 5.920 m/s ± 50 m/s para ondas longitudinais, e 3.255 m/s ± 30 m/s para ondas transversais. Isto deve ser considerado quando se inspecionam materiais com velocidades diferentes. Em determinadas circunstâncias, como espessura, configuração da junta soldada, objetivo do ensaio, etc., é requerido mais que um único arranjo (montagem) ToFD. A imagem típica de ToFD tem em um eixo a componente tempo ou caminho percorrido pelo ultrassom e, no outro eixo, a distância percorrida pelos cabeçotes.

Devido a geometria V dos percursos ultrassônicos, a localização de uma eventual descontinuidade na direção da espessura não é linear. O ensaio ToFD deve ser realizado de forma correta e coerente, de modo que as imagens geradas sejam validas e possam ser avaliadas corretamente. Por exemplo, perdas de acoplamento e erros de aquisição de dados tem que ser evitados.

A interpretação das imagens ToFD requer inspetores com habilidade e experiencia. Algumas imagens de ToFD típicas de descontinuidades em juntas soldadas são apresentadas no Anexo B. Existe uma redução na capacidade de detecção de descontinuidades próximas ou conectadas com a superfície de varredura ou com a superfície oposta. Isto tem que ser considerado, especialmente para aços suscetíveis as trincas ou na inspeção em serviço.

Em casos onde é requerida total cobertura destas zonas, medidas adicionais devem ser tomadas. Por exemplo, ToFD pode ser acompanhado por outros métodos ou técnicas de END, como o ensaio de ultrassom pulso-eco. Sinais difratados de descontinuidades em soldas tem pequenas amplitudes comparáveis ao espalhamento causado pelos grãos grosseiros de alguns materiais, que podem dificultar a detecção e avaliação das descontinuidades.

A pessoa que executa o ensaio de ultrassom deve atender aos requisitos da NBR NM ISO 9712. Adicionalmente, os profissionais envolvidos com ToFD devem ter treinamento especifico no sistema de ultrassom ToFD utilizado, com certificação emitida pelo profissional nível 3 de ultrassom capacitado na tecnica. O ensaio ToFD deve ser realizado de acordo com um procedimento escrito, que deve conter no mínimo os requisitos listados na tabela abaixo.

Todos os procedimentos de ensaio devem ser qualificados por profissional nível 3, de acordo com a norma especifica do produto, e as evidências da qualificação devem estar disponíveis para apreciação da contratante. A norma específica do produto pode ser uma norma de projeto, construção, fabricação, montagem e inspeção em serviço, que estabelece os requisitos técnicos referentes ao material, montagem e inspeção nos projetos de fabricação e construção de produtos ou equipamentos.

Quando não especificado na norma especifica do produto, a qualificação do procedimento deve ser efetuada em corpos de prova representativos do ensaio a ser efetuado. As características e a quantidade dos corpos de prova devem ser aprovadas pela contratante. Sempre que qualquer variável da tabela acima for alterada, deve ser emitida uma revisão do procedimento. Se a variável for essencial, o procedimento deve ser requalificado e revalidado.

Recomenda-se que o instrumento de ultrassom usado para a técnica ToFD seja calibrado de acordo com a NBR 15922, e os cabeçotes de ultrassom conforme NBR 16138, e realizados por laboratórios que atendem aos requisitos apresentados na NBR ISO/IEC 17025. Qualquer reparo ou manutenção no sistema de medição implica a necessidade de nova calibração, independentemente da periodicidade estabelecida. O item do sistema de medição que deve ser periodicamente calibrado e o bloco padrão deve ser realizado por laboratórios que atendem aos requisitos apresentados na NBR ISO/IEC 17025.

A periodicidade de calibração do bloco padrão depende da frequência e condições de utilização. Recomenda-se que a periodicidade de calibração atenda ao especificado na NBR ISO 10012. Qualquer avaria observada no bloco padrão implica na necessidade de nova calibração, independente da periodicidade estabelecida. O instrumento deve ser capaz de selecionar uma parte adequada da base de tempo dentro do qual os A-scan são digitalizados. Para selecionar esta parte adequada, deve-se ter uma janela com posição e comprimento ajustáveis.

O início da janela deve ser ajustável entre 0 μs e 200 μs do pulso transmissor e o comprimento da janela deve ser ajustável entre 5 μs e 100 μs. Desta forma, os sinais apropriados (onda lateral ou creeping, sinal do eco de fundo, um ou mais sinais de conversão de modo) podem ser selecionados para serem digitalizados e exibidos. Os sinais não retificados devem ser digitalizados com uma taxa de amostragem de pelo menos quatro vezes a frequência nominal do cabeçote.

A largura de banda do receptor deve no mínimo ter intervalo entre 0,5 e 2 vezes a frequência nominal do cabeçote a – 6 dB, a menos que certas classes de produtos e materiais específicos exijam maior largura de banda. Filtros de banda apropriados podem ser usados. O pulso de transmissão pode ser unipolar ou bipolar. O tempo de subida não pode exceder 0,25 vez o período correspondente a frequência nominal do cabeçote.

Para aplicações gerais, as combinações de instrumentos de medição de ultrassom e mecanismos de varredura (escaneres) devem ser capazes de digitalizar sinais com uma taxa de pelo menos um A‑scan por 0,5 mm de comprimento escaneado. Para atingir este objetivo, a aquisição de dados e o movimento do mecanismo de varredura (escaner) devem estar sincronizados. Os A-scans digitalizados devem ser exibidos relacionando a amplitude aos níveis de cinza, plotados sequencialmente para formar uma imagem B-scan. O número de escalas deve ser de pelo menos 256 tons de cinza.

O instrumento de medição deve ser capaz de armazenar todas as imagens A-Scan na sua forma original, isto e, sem filtros de qualquer natureza, em uma mídia de armazenamento. Para fins de relatório, o respectivo software deve ser capaz de gerar cópias em papel das imagens A‑scan e B-scan. O instrumento de medição deve ser capaz de realizar uma média de sinal (averaging).

Para atingir as configurações de ganho relativamente alto, necessárias para sinais típicos de ToFD, pode ser usado pré-amplificador, que deve ter uma resposta plana sobre a faixa de frequências de interesse. Este pré-amplificador deve ser posicionado tão próximo quanto possível do cabeçote receptor. Os cabeçotes ultrassônicos utilizados na tecnica de ToFD devem atender pelo menos aos seguintes requisitos: número de cabeçotes: 2 (transmissor e receptor); modo de onda: ondas longitudinais.

O uso de cabeçotes de ondas transversais pode ser empregado em situações especificas de forma a completar as longitudinais. Ambos os cabeçotes devem ter a mesma frequência nominal. A frequência central deve estar dentro de uma tolerância de ± 10% da frequência nominal e o comprimento de pulso tanto da onda lateral quanto do eco de fundo não pode exceder dois ciclos, medidos a 10 % do pico da amplitude (queda de 20 dB).

A distância entre a superfície de ensaio e a superfície de contato do cabeçote não pode exceder 0,5 mm. Para superfícies cilíndricas e esféricas, este requisito e atendido com a seguinte equação: D ≥ 15 a, onde D é o diâmetro do componente, expresso em milímetros (mm); a é a dimensão da sapata do cabeçote na direção do ensaio, expressa em milímetros (mm). Se o requisito especificado não for atendido, uma sapata deve ser adaptada a superfície de contato do cabeçote e a sensibilidade e a escala devem ser ajustadas adequadamente.

Os mecanismos de varredura devem ser usados para manter uma distância constante e alinhamento entre os pontos de saída dos cabeçotes. Uma função adicional dos mecanismos de varredura e fornecer aos instrumentos de ultrassom informações de posição dos cabeçotes, sendo capaz de gerar a posição relacionada as imagens. Informações sobre a posição dos cabeçotes podem ser fornecidas por meio de, por exemplo, codificadores incrementais magnéticos ou óticos ou potenciômetros.

Os mecanismos de varredura no ToFD podem ser motorizados ou acionados manualmente. Eles devem ser guiados de maneira adequada, como cinta de aço, cinto, sistemas de rastreamento automático, rodas guiadas etc. A exatidão na orientação em relação ao centro de uma linha de referência, por exemplo, a linha de centro da solda, deve ser mantida dentro de um erro máximo admissível de ± 10% da separação entre os pontos de saída dos cabeçotes.

As inspeções devem ser realizadas de acordo com o procedimento qualificado, que deve conter o plano de varredura a ser utilizado, conforme as especificações técnicas aplicáveis. Para inspeções de fabricação, o volume de ensaio e definido como a zona que inclui solda e metal de base por pelo menos 10 mm de cada lado da solda, ou a largura da zona afetada pelo calor, o que for maior. Em todos os casos, o ensaio deve cobrir o volume total da região de interesse.

Para inspeção em operação, o volume de ensaio pode ser direcionado para áreas de interesse especifico. Os cabeçotes devem ser ajustados para garantir uma cobertura adequada e condições ideais para iniciar e detectar os sinais difratados na área de interesse. Para soldas de topo de geometria simples, onde a largura da solda e estreita na superfície oposta à da varredura, o ensaio deve ser realizado com uma ou mais configurações, dependendo da espessura da parede.

Deve-se tomar cuidado para escolher as combinações de parâmetros adequadas. EXEMPLO Na faixa de espessura de 15 mm a 35 mm com frequência de 10 MHz, um feixe com angulo de 70° e um cristal de tamanho de 3 mm pode ser apropriado para uma espessura de 16 mm, mas não para 32 mm.

Os ensaios em solos

Há vários ensaios em solos e um deles é a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas.

A NBR 16843 de 05/2020 – Solo — Determinação do índice de vazios mínimo de solos não coesivos especifica o método de determinação do índice de vazios mínimo (mín.) de solos granulares, não coesivos, contendo no máximo 12 % (em massa) de material que passa na peneira de 0,075 mm. Esta norma também especifica o método para o cálculo de compacidade relativa correspondente a um determinado índice de vazio mínimo do material ensaiado.

A NBR 16853 de 05/2020 – Solo — Ensaio de adensamento unidimensional especifica o método de ensaio para determinação das propriedades de adensamento do solo, caracterizadas pela velocidade e magnitude das deformações, quando o solo é lateralmente confinado e axialmente carregado e drenado. A NBR 16867 de 05/2020 – Solo – Determinação da massa específica aparente de amostras indeformadas — Método da balança hidrostática especifica um método para determinação da massa específica aparente de amostras indeformadas de solo, com emprego da balança hidrostática. Esta norma é aplicável somente a materiais que possam ser adequadamente talhados.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o método do enchimento com água para a determinação do índice de vazios?

Como deve ser a mesa vibratória para realizar peneiramento para a determinação do índice de vazios?

Como deve ser os corpos de prova para determinação das propriedades de adensamento do solo?

Como deve ser feito a montagem do corpo de prova na célula de adensamento?

Como fazer a determinação da massa específica aparente da parafina?

Para a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas. Nesta norma, o índice de vazios mínimo absoluto não é necessariamente obtido.

Para os solos não coesivos, os índices de vazios máximo e mínimo constituem-se nos parâmetros básicos para avaliação do estado de compacidade. Para tanto, a compacidade relativa, como especificada em 7.4, fornece uma indicação do estado de compacidade de uma determinada massa de solo, seja uma ocorrência natural, seja construída pelo homem. No entanto, as propriedades de engenharia, como a resistência ao cisalhamento, compressibilidade e permeabilidade de um dado material, compactado por métodos distintos, para um mesmo estado de compacidade, podem variar consideravelmente.

Por outro lado, solos distintos, no mesmo estado de compacidade, podem apresentar diferenças ainda mais acentuadas dessas propriedades, dependendo da granulometria, formato dos grãos, etc. Por esse motivo, discernimento considerável deve ser usado ao se relacionarem as propriedades de engenharia dos solos com o estado de compacidade. A amplitude dupla de vibração vertical tem efeito significativo no índice de vazios obtido. Para uma mesa vibratória e molde específicos, o menor índice de vazios de um dado material pode ser obtido para uma amplitude dupla diferente das especificadas nesta norma, ou seja, o índice de vazios pode inicialmente diminuir com o aumento da amplitude dupla de vibração, atingir um mínimo e então aumentar com o incremento da amplitude dupla.

Portanto, a relação entre o menor índice de vazios e a amplitude dupla de vibração ótima pode variar com o tipo de solo. A aparelhagem necessária para a execução do ensaio é a seguinte: estufa capaz de manter a temperatura entre 105 °C e 110 °C; peneiras de 75 mm, 38 mm, 19 mm, 9,5 mm, 4,8 mm e 0,075 mm, de acordo com as NBR NM ISO 2395 e NBR NM ISO 3310-1; balanças que permitam pesar nominalmente 40 kg, 10 kg e 1,5 kg, com precisões de 5 g, 1g e 0,1 g, respectivamente; outros equipamentos, como bandeja metálica, conchas metálicas, pá, escova de cerdas macias, cronômetro com indicação de minutos e segundos, e paquímetro que possibilite leituras de no mínimo 30 mm, com precisão de 0,2 mm.

O conjunto para a realização do ensaio pelo método A deve conter o seguinte: moldes cilíndricos metálicos padrões, com volumes nominais de 2.830 cm³ e 14.200 cm³; tubo-guia com dispositivo de fixação ao molde, para cada tamanho de molde. Para facilitar a centralização do tubo-guia acima do molde, ele deve ser dotado de três dispositivos de fixação. Incluir um disco-base da sobrecarga, para cada tamanho de molde, perfurado e dotado de três pinos para centralização da sobrecarga; sobrecarga de seção circular dotada de alça para cada tamanho de molde.

A massa total do disco-base e sobrecarga deve ser suficiente para a aplicação de uma pressão de (13,8 ± 0,1) kPa. Incorporar uma alça dotada de rosca para colocação e retirada do disco-base; suporte encaixável no guia do molde, ao qual fica acoplado um deflectômetro, para medir a diferença de elevação entre o topo do molde e o disco-base da sobrecarga, após a densificação. O deflectômetro deve possibilitar medições de no mínimo 50 mm, com resoluções de 0,02 mm, devendo ser instalado de modo que a sua haste fique paralela ao eixo barra de calibração metálica (opcional), com largura de aproximadamente 7 cm, altura de 0,5 cm e comprimento adequado.

Incluir uma mesa vibratória eletromagnética de aço, com vibração vertical acionada por um vibrador eletromagnético do tipo impacto sólido, com massa maior que 45 kg. A mesa deve ser instalada em ambiente acusticamente isolado do restante do laboratório, sobre um piso ou laje de concreto, com massa de 500 kg, de modo que vibrações excessivas não sejam transmitidas a outras áreas onde estejam sendo realizados outros ensaios. O tampo da mesa deve ter dimensões adequadas, que confiram rigidez suficiente, de forma que o conjunto molde + tubo-guia + sobrecarga fique firmemente fixado e rigidamente apoiado durante o ensaio, devendo por este motivo ser dotado de dispositivo de fixação ao conjunto mencionado.

O conjunto para a realização do ensaio pelo método B deve conter o seguinte: cilindro de Proctor, com volume nominal de 1.000 cm³, de acordo com a NBR 7182, soldado à base, de modo que o conjunto resulte estanque. A base do molde deve ser mais espessa que a normalmente utilizada no ensaio de compactação, além de ser dotada de dispositivo de fixação à mesa vibratória. Deve-se dispor de um tubo-guia, constituído por outro cilindro de Proctor solidário ao colarinho; disco-base da sobrecarga, perfurado e dotado de dispositivo para centralização da sobrecarga; sobrecarga de seção circular dotada de alça. A massa total do disco-base e da sobrecarga deve ser suficiente para aplicação de uma pressão de (13,8 ± 0,1) kPa.

Deve-se incluir uma mesa vibratória, do tipo utilizado para realizar o peneiramento de amostras na análise granulométrica. Este método de ensaio para determinação das propriedades de adensamento do solo requer que um elemento de solo, mantido lateralmente confinado, seja axialmente carregado em incrementos, com pressão mantida constante em cada incremento, até que todo o excesso de pressão na água dos poros tenha sido dissipado. Durante o processo de compressão, medidas de variação de altura da amostra são feitas, e estes dados são usados no cálculo do parâmetro que descreve a relação entre a pressão efetiva e o índice de vazios, bem como a evolução das deformações em função do tempo.

Os dados de ensaio de adensamento podem ser utilizados na estimativa, tanto da magnitude dos recalques totais e diferenciais de uma estrutura ou de um aterro, como da velocidade desses recalques. Como aparelhagem, usar um sistema de aplicação de carga (prensa de adensamento), que permite a aplicação e manutenção das cargas verticais especificadas, ao longo do período necessário de tempo, e com uma precisão de 0,5% da carga aplicada. Quando da aplicação de um incremento de carga, a transferência para o corpo de prova deve ocorrer em um intervalo de tempo não superior a 2 s e sem impacto significativo.

Usar uma célula de adensamento apropriada para conter o corpo de prova e que proporcione meios para aplicação de cargas verticais, medida da variação da altura do corpo de prova e sua eventual submersão. Esta célula consiste em uma base rígida, um anel para manter o corpo de prova, pedras porosas e um cabeçote rígido de carregamento. O anel pode ser do tipo fixo (indeslocável em relação à base rígida) ou flutuante (deslocável em relação à base, sendo suportado pelo atrito lateral desenvolvido entre o corpo de prova e o anel), conforme os esquemas indicados na figura abaixo.

Incluir um anel de adensamento, conforme a seguir: o diâmetro interno do anel deve ser no mínimo de 50 mm (preferencialmente 100 mm) e, no caso de amostras extrudadas e talhadas, no mínimo 5 mm (preferencialmente 10 mm) menor do que o diâmetro interno do tubo de amostragem; a altura do anel deve ser no mínimo de 13 mm e não inferior a dez vezes o máximo diâmetro de partícula do corpo de prova; a relação entre o diâmetro interno e a altura do anel deve ser no mínimo de 2,5 (preferencialmente 3,0); a rigidez do anel deve ser tal que, sob a condição de pressão hidrostática igual à máxima pressão axial a ser aplicada ao corpo de prova, a variação do diâmetro do anel não exceda 0,03%; o anel de adensamento deve ser feito de material não corrosível (preferencialmente aço inoxidável), e sua superfície interna deve ser altamente polida ou recoberta com material de baixo atrito, por exemplo, politetrafluoroetileno (PTFE).

Recomenda-se, antes do ensaio, untar a superfície interna do anel com graxa de silicone. O anel fixo permite a execução de ensaios de permeabilidade, junto com o ensaio de adensamento. Quando o solo a ser ensaiado se constituir de material muito mole, não se utiliza anel flutuante. Usar pedras porosas, conforme a seguir. As pedras porosas devem ser confeccionadas com material quimicamente inerte em relação ao solo e à água dos poros. Devem ser constituídas de poros com dimensões suficientemente pequenas, de forma a se evitar a intrusão de partículas de solo.

Se necessário, papel-filtro resistente pode ser utilizado entre o corpo de prova e a pedra porosa para impedir a infiltração de solo e facilitar a limpeza posterior da pedra. O conjunto pedra porosa e papel-filtro deve apresentar permeabilidade suficientemente alta, de modo a não retardar a drenagem do corpo de prova. As pedras porosas devem ser uniformes e estar sempre limpas e livres de trincas.

A adequabilidade de pedra porosa sob o ponto de vista de permeabilidade e limpeza pode ser comprovada por meio de ensaios expeditos, submetendo-a a uma carga hidráulica da ordem de 10 cm e observando-se o gotejamento em sua face inferior. o diâmetro da pedra porosa do topo deve ser 0,2 mm a 0,5 mm menor que o diâmetro interno do anel. Se for utilizado anel flutuante, a pedra de base deve apresentar o mesmo diâmetro da pedra do topo. Recomenda-se a utilização de pedras biseladas, com a face de maior diâmetro em contato com o solo. As pedras porosas devem ser espessas o suficiente para se evitar a sua quebra, sendo de topo, na sua face superior, protegida por um disco metálico (cabeçote) rígido, resistente à corrosão e com diâmetro igual ao da pedra.

Já a aparelhagem necessária para o ensaio para determinação da massa específica aparente de amostras indeformadas de solo é a seguinte: estufa capaz de manter a temperatura de 60 °C a 65 °C e de 105 °C a 110 °C; balança que permita pesar nominalmente 1,5 kg, com precisão de 0,1 g e sensibilidade compatível; moldura que possa ser acoplada ao prato da balança, sendo que balanças que disponham de dispositivo adequado para realização deste ensaio prescindem de tal moldura. Incluir um recipiente contendo água, de dimensões adequadas, para imersão do corpo de prova; fogareiro ou aquecedor para derreter a parafina; linha comum, ou preferencialmente de náilon, e utensílios como panela, faca, espátula, pincel, etc.; parafina isenta de impurezas e com massa específica aparente, no estado sólido, conhecida e verificada a cada mudança de lote.

IEEE 1248: o comissionamento de sistemas elétricos em usinas hidrelétricas

Essa norma é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

A IEEE 1248:2020 – Guide for the Commissioning of Electrical Systems in Hydroelectric Power Plants é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

Em resumo, o guia descreve os ensaios realizados e fornece os processos a serem seguidos durante o comissionamento de sistemas elétricos e de controle em usinas hidrelétricas. São fornecidas orientações sobre métodos a serem utilizados, organização e execução dos ensaios.

Embora o guia não forneça os procedimentos prescritivos específicos para instalações e equipamentos, os ensaios são descritos juntamente com os padrões de referência para obter mais informações. O comissionamento de equipamentos elétricos pode ser para uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização de equipamentos elétricos existentes.

Conteúdo da norma

1. Visão geral………………………. 10

1.1 Escopo………………………….. 10

1.2 Objetivo………………………. 10

1.3 Organização…………………… 10

2 Referências normativas………. 11

3 Definições, acrônimos e abreviações……………… …. 11

3.1 Definições………………………………………… 11

3.2 Acrônimos e abreviações……….. …………. 12

4. Planejamento, funções e responsabilidades do comissionamento…………………… 13

4.1 Planejamento…………………… 13

4.2 Proprietário……………………. 14

4.3 Empreiteiro……………………… 14

4.4 Engenheiro………………………. 15

4.5 Fabricante/fornecedor……………. 16

5. Fases do programa de comissionamento ……………. 16

5.1 Fase de ensaio de construção… …………………. 17

5.2 Fase de ensaio pré-operacional ………………. 18

5.3 Fase de ensaio operacional…………………. 18

5.4 Ensaio de desempenho.. …………………….. 19

6. Implementação do comissionamento….. …………… 19

6.1 Geral…………. ……………………………………. 19

6.2 Fase de conclusão da construção………. ………. 19

6.3 Fase de ensaio pré-operacional……….. ………….. 20

6.4 Fase de ensaio operacional e inicialização da unidade……………………. 21

6.5 Ensaio de desempenho……………………. 21

7. Aplicação deste guia……………………… 21

7.1 Geral…………………………………. 21

7.2 Usando este guia para desenvolver um programa de ensaio…………………….. 22

7.3 Coordenar ensaios de comissionamento de sistemas e unidades………………… 26

8. Equipamentos na planta……………………… 27

8.1 Lista de equipamentos e matrizes de ensaio….. …… 27

9. Descrições dos ensaios……………………… 64

9.1 Geral …………………………………….. 64

9.2 Ensaios de construção…………………….. 66

9.3 Ensaios pré-operacionais……………….. 101

9.4 Ensaios operacionais…………………….. 123

9.5 Ensaios de desempenho……………….. 137

10. Documentação………………………… 143

10.1 Manutenção de registros……………… 143

10.2 Documentação de engenharia ……….. 143

10.3 Documentação de fábrica… ……………… 143

10.4 Documentação no local…. ………………… 144

Anexo A (informativo) Bibliografia……… ……….. 145

A.1 Turbinas, geradores e motores……. ………. 145

A.2 Transformadores……………………………. 146

A.3 Reguladores………………………………. 147

A.4 Cabos e pista…… ……………………….. 147

A.5 Proteção e retransmissão……………….. 148

A.6 Excitação……………………………. 148

A.7 Isolamento…………………………… 148

A.8 Baterias, UPS e sistemas de energia em espera……… 149

A.9 Disjuntores, painéis, painéis e centros de controle de motores……………… 149

A.10 Controle e SCADA………………….. 150

A.11 Aterramento…………………………. 150

A.12 Definições, códigos, referências e tabelas………………. 151

A.13 Manutenção……….. …………………………….. 151

A.14 Proteção contra incêndio…………………… 151

A.15 Diversos………………………….. 152

Este guia foi desenvolvido para auxiliar os engenheiros envolvidos no comissionamento de equipamentos elétricos em relação ao seguinte: ensaios específicos de equipamentos elétricos; programa de ensaio para colocar o equipamento em operação; o comissionamento de equipamentos elétricos pode ser para o seguinte: uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização do equipamento existente.

O guia descreve o desenvolvimento de uma organização de inicialização, seguida de uma descrição do fases de comissionamento de uma usina hidrelétrica. As informações principais estão contidas no formato de matriz para cada tipo principal de equipamento elétrico, que identifica os vários ensaios associados ao equipamento. As informações são fornecidas para cada ensaio específico, incluindo o seguinte: uma breve descrição; documentos comprovativos; equipamento necessário; duração ou tempo necessário.

Com base nas informações acima, são fornecidas orientações para o planejamento, desenvolvimento e documentação de um programa de comissionamento. Este guia aborda a energia hidrelétrica convencional. Partes do guia são relevantes para instalações de armazenamento bombeado, mas os recursos exclusivos das instalações de armazenamento bombeado não são abordados especificamente.

O guia também contém uma bibliografia de normas do setor, práticas recomendadas e guias que podem ser usado como recursos pelo engenheiro envolvido no comissionamento de equipamentos elétricos. A listagem destina-se a auxiliar na preparação para o início de uma usina hidrelétrica ou para um ensaio específico. Uma revisão de documentos é incentivada.

Todos os ensaios devem ser feitos de acordo com as especificações do equipamento e contratos com referência e em conjunto com as normas pertinentes da indústria. A revisão mais recente das normas e os guias listados no Anexo A devem ser usados. Uma lista de documentos comprovativos, que inclui itens bibliográficos e documentos gerais, é fornecido para cada ensaio na Cláusula 9 deste guia.

A conformidade das portas e vedadores resistentes ao fogo, do tipo de enrolar

Conheça a classificação, avaliação, fabricação, instalação, aceitação técnica da instalação, funcionamento e manutenção de portas e vedadores resistentes ao fogo, do tipo de enrolar, confeccionados em aço e dotados de fechamento automatizado.

A NBR 16829 de 04/2020 – Portas e vedadores de aço de enrolar resistentes ao fogo estabelece os requisitos para classificação, avaliação, fabricação, instalação, aceitação técnica da instalação, funcionamento e manutenção de portas e vedadores resistentes ao fogo, do tipo de enrolar, confeccionados em aço e dotados de fechamento automatizado. Estes elementos são destinados à proteção de aberturas em paredes que integram a compartimentação horizontal e vertical, onde são requeridos valores de resistência ao fogo de até 240 min.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os requisitos específicos das portas de aço de enrolar resistentes ao fogo?

Como deve ser previsto o fechamento automático?

Como deve ser feita a manutenção desse tipo de porta?

Quais as dimensões do vão-luz?

A porta de aço de enrolar resistente ao fogo é composta por folha de aço que, na posição aberta, permanece enrolada sobre a abertura e que, em situação de incêndio, se desenrola, fechando automaticamente a abertura, sendo dotada de um reforço enrijecedor na extremidade inferior, um eixo cilíndrico sobre o qual a porta permanece enrolada, quando na posição aberta, molas de contrabalanço e fechamento, suportes, guias, dispositivo de fechamento automático e uma caixa metálica de proteção da folha enrolada. A porta resistente ao fogo é um dispositivo móvel que, fechando aberturas em parede, retarda a propagação do incêndio de um ambiente para outro, sendo utilizado no nível do piso e destinado à passagem de pessoas e veículos.

As portas e vedadores de aço de enrolar resistentes ao fogo são classificadas em três classes, segundo o seu tempo de resistência ao fogo determinado em ensaio, realizado de acordo com os procedimentos estabelecidos na NBR 6479: classe PE-120: porta de enrolar cujo tempo de resistência ao fogo, atendendo ao critério de integridade, correspondente à resistência mecânica, de acordo com a NBR 6479, é de 120 min; classe PE-180: porta de enrolar cujo tempo de resistência ao fogo, atendendo ao critério de integridade, correspondente à resistência mecânica, de acordo com a NBR 6479, é de 180 min; classe PE-240: porta de enrolar cujo tempo de resistência ao fogo, atendendo ao critério de integridade, correspondente à resistência mecânica, de acordo com a NBR 6479, é de 240 min.

Não são admitidas classificações intermediárias. A classificação da porta ou do vedador de aço de enrolar resistente ao fogo, ensaiado em parede de alvenaria, vale apenas para instalações reais em paredes de alvenaria e de concreto. A instalação em outros tipos de elementos construtivos deve ser avaliada e classificada, reproduzindo a condição de instalação no elemento construtivo específico.

O tempo de resistência ao fogo das portas e vedadores de aço de enrolar deve ser igual ou superior à resistência ao fogo das paredes onde serão instalados, atendendo a uma das três classes estabelecidas. Cada porta ou vedador deve receber uma identificação indelével e permanente, por gravação ou por plaqueta de aço, fixada por meio de parafusos ou rebites também de aço. Adicionalmente às exigências legais, tal identificação deve conter as seguintes informações, em língua portuguesa: porta ou vedador de aço de enrolar resistente ao fogo conforme esta norma; identificação do fabricante; classificação conforme o disposto acima; número de ordem de fabricação; e mês e ano de fabricação.

A identificação com plaqueta metálica deve ser afixada com rebite sobre a caixa metálica de proteção da porta ou do vedador e sobre seu reforço enrijecedor. A identificação por gravação deve ser localizada nos mesmos locais indicados de fixação das plaquetas metálicas. Caso a porta ou vedador apresente selo de conformidade, este deve ser fixado ao lado ou abaixo da identificação.

A folha da porta ou vedador, quando instalada, deve receber, ao lado da sua ombreira, fixada em ambas as faces da parede onde está instalada, entre 1,50 m e 1,80 m acima do piso, uma sinalização complementar de orientação e salvamento, fotoluminescente, de acordo com as NBR 13434-1, NBR 13434-2 e NBR 13434-3, com os seguintes dizeres: PORTA (ou VEDADOR) DE ENROLAR RESISTENTE AO FOGO É OBRIGATÓRIO MANTER O VÃO DESOBSTRUÍDO.

Esta sinalização deve ser fornecida pelo instalador e ser composta por placas fixadas sobre as superfícies da parede onde a porta ou vedador estiverem instalados. O formato deve ser retangular, com a maior dimensão na horizontal e área mínima de 200 cm². É proibida a veiculação de qualquer outra informação ou propaganda, que não a orientação estabelecida, ao lado de ambas as faces da porta ou vedador.

A unidade de compra é a porta ou vedador completo, que inclui a folha, o respectivo reforço enrijecedor, o eixo cilíndrico sobre o qual a folha é enrolada, as guias, as estruturas de sustentação do conjunto, a caixa metálica de proteção da folha enrolada, os dispositivos de fechamento automático e manual, bem como todos os dispositivos complementares necessários ao perfeito funcionamento do conjunto. Os vedadores devem incluir, adicionalmente, um quadro de montagem com guias e soleira incorporadas.

Cada porta ou vedador de aço de enrolar resistente ao fogo fornecido deve estar acompanhado de um manual técnico contendo informações referentes aos cuidados no transporte, embalagem, armazenamento, instalação, funcionamento, manutenção e acabamento. Todas estas informações devem estar em língua portuguesa e rigorosamente de acordo com o disposto nesta norma. As partes que compõem a porta ou o vedador, quando armazenadas na obra, devem permanecer em locais secos e limpos, e ao abrigo de intempéries, obedecendo às instruções do fabricante.

Todos os componentes de montagem da porta ou vedador de aço de enrolar resistente ao fogo devem ser entregues no local de instalação devidamente acabados e em condições de serem montados, compondo a unidade de compra. As portas ou vedadores de aço de enrolar resistentes ao fogo devem ser dotados de caixa metálica de proteção da folha que, quando aberta, permanece enrolada sobre um eixo cilíndrico e que contém molas de contrabalanço e fechamento.

Caso esta caixa seja dotada de defletor interno, este deve ser composto por uma chapa de aço pendente e travada por um sensor (detector ou fusível térmico), que deve ser liberado com o fechamento da porta ou vedador, fechando o espaço entre o topo da porta ou vedador e a abertura da caixa. A liberação do defletor pode ser independente dos detectores ou fusíveis térmicos que promovem a ativação do mecanismo de fechamento automático da porta ou vedador.

A folha da porta ou vedador deve ser composta por réguas de aço com comprimento suficiente para vedar todo o vão. A folha deve ser dotada de um reforço enrijecedor na extremidade inferior. A folha da porta ou vedador, na posição aberta, permanece enrolada sobre um eixo cilíndrico que deve conter molas de contrabalanço e fechamento.

O dispositivo de fechamento automático deve estar instalado no interior da caixa ou ao seu lado. Componentes necessários à instalação, compostos por guias e peças destinadas à sustentação e fixação das portas e vedadores de aço de enrolar resistentes ao fogo. Quando a porta ou vedador de aço de enrolar resistente ao fogo for instalado em paredes de fachada, deve ser protegido contra as ações do meio externo para assegurar o fechamento em situação de emergência ou ser capaz de resistir a estas ações.

Os vedadores de aço de enrolar resistentes ao fogo devem ser dotados de um quadro de instalação fechado contendo ombreiras, travessa e soleira, compostos por perfis de aço confeccionados com chapa com espessura mínima de 4,76 mm. Neste caso, devem ser fornecidos juntamente com os demais componentes do vedador. Ao contrário do disposto em 4.6.1.6.1, as portas de aço de enrolar resistentes ao fogo não podem ser dotadas de quadros e soleiras incorporados.

O fusível térmico empregado para a liberação da porta em caso de incêndio deve apresentar temperatura de acionamento de (70 ± 3) °C. É permitido o uso de mais de um fusível térmico, caso a carga a que esteja submetido exceda a capacidade de um único destes dispositivos. A instalação das portas e vedadores de aço de enrolar resistentes ao fogo deve reproduzir todas as condições determinadas no projeto destes elementos, que atendam a todos os requisitos desta norma e que tenham sido previamente avaliadas por ensaios laboratoriais de funcionamento e de resistência ao fogo.

A instalação da porta ou vedador de aço de enrolar resistentes ao fogo deve ser executada pelo fabricante ou por firma especializada, credenciada pelo fabricante. As portas e vedadores de aço de enrolar resistentes ao fogo, após a instalação, devem comprovar bom desempenho de abertura e fechamento, de acordo com o disposto em 4.7.2.3 e 4.7.3, considerando a ativação por calor do fusível térmico ou a sua retirada.

Itens que não fizerem parte da montagem da porta ou vedador de aço de enrolar resistentes ao fogo não podem ser fixados posteriormente em campo a quaisquer componentes destes elementos, sem a anuência devidamente documentada do fabricante ou do seu credenciado. O espaço e as folgas entre as ombreiras e travessa e a porta ou vedador de aço de enrolar resistentes ao fogo devem permitir acesso aos procedimentos de ensaios e manutenção necessários.

As portas de aço de enrolar resistentes ao fogo são indicadas para proteção de aberturas em paredes resistentes ao fogo que integram a compartimentação horizontal e vertical nos seguintes locais: edificações industriais e de depósito; áreas técnicas, incluindo salas de motores, salas de transformadores e sala de motogeradores; compartimentação de áreas. Os vedadores de aço de enrolar resistentes ao fogo são indicados para proteção de aberturas em paredes resistentes ao fogo que integram a compartimentação horizontal e vertical nos seguintes locais: sobre balcões e em aberturas que dão acesso a áreas de risco, como cozinhas em restaurantes e lanchonetes; sobre parapeitos ou em aberturas por meio dos quais os pavimentos da edificação se intercomunicam com átrios; aberturas de passagem de esteiras transportadoras; aberturas, dotadas ou não de vidros, destinadas à observação de setores das edificações.

Outras aplicações são admitidas, desde que devidamente justificadas em projeto integrado de segurança contra incêndio e desde que atendam aos requisitos de compartimentação horizontal e vertical da regulamentação de segurança contra incêndio aplicável. Os detectores para comando do fechamento podem fazer parte de um sistema específico ou ser parte integrante de um sistema de detecção de incêndio que proteja a edificação como um todo. Caso seja parte de um sistema específico, os detectores devem ser pontuais do tipo de fumaça iônicos e devem ser posicionados de ambos os lados da parede, junto ao teto ou sobre a parede, de acordo com as indicações da figura abaixo.

Os detectores deste sistema específico ou os fusíveis térmicos devem ser posicionados em ambos os lados da parede e devem ser interconectados de tal forma que a operação de um único detector ou fusível térmico libere o fechamento da porta ou vedador. A temperatura de acionamento dos fusíveis térmicos deve ser de (70 ± 3) °C. Quando estas portas ou vedadores forem instalados em paredes de fachada, os sensores devem ser instalados apenas no interior da edificação.

Os fusíveis térmicos devem ser localizados próximo ao topo da abertura protegida. Fusíveis térmicos adicionais podem ser instalados próximos ao teto em ambos os lados da parede, atendendo às condições apresentadas na figura acima. As portas e vedadores de aço de enrolar resistentes ao fogo devem ser dotados de dispositivo regulador de velocidade, fechando à velocidade média na faixa de 100 mm/s a 400 mm/s.

As portas e vedadores de aço de enrolar resistentes ao fogo dotados de fechamento motorizado devem ser equipados com dispositivo de fechamento automático que, ao ser ativado, promova o fechamento, mesmo em caso de falta de energização da motorização. Após a ativação do dispositivo de fechamento automático, a porta ou vedador deve permanecer na posição fechado até que o dispositivo seja resetado.

Caso a porta ou vedador sejam dotados de dispositivo de fechamento motorizado, eles devem permanecer na posição fechada em situação de incêndio, porém se admite que parem e abram automaticamente e voltem a fechar, caso apresentem sensor de obstrução e se uma obstrução ao fechamento estiver presente. Nesta situação, as tentativas de fechamento devem ser repetidas por três vezes, depois das quais o reforço enrijecedor na extremidade inferior deve permanecer encostado na obstrução. O sensor de obstrução deve ser instalado no reforço enrijecedor.

A limpeza dos implantes para cirurgia

Entenda os requisitos e as orientações para o estado de limpeza de implantes para cirurgia e métodos de ensaio para a validação do processo de limpeza, que são baseados em um processo de gestão de risco. Aplica-se aos processos de limpeza conduzidos em múltiplas etapas de limpeza, ao longo do processo de fabricação, ou em uma única etapa, antes de ser protegido contra contaminações.

A NBR 16862 de 05/2020 – Implantes para cirurgia — Requisitos e orientações gerais para o estado de limpeza e para validação do processo de limpeza estabelece requisitos e apresenta orientações para o estado de limpeza de implantes para cirurgia e métodos de ensaio para a validação do processo de limpeza, que são baseados em um processo de gestão de risco. Aplica-se aos processos de limpeza conduzidos em múltiplas etapas de limpeza, ao longo do processo de fabricação, ou em uma única etapa, antes de ser protegido contra contaminações. Este documento é aplicável à limpeza em processo e limpeza final. Não especifica os requisitos para processos de embalagem ou esterilização, que são cobertos por outras normas. Este documento não é aplicável aos implantes com componentes líquidos e gasosos e aos processos de limpeza conduzidos pelo usuário ou sob responsabilidade do usuário.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executado o projeto do processo de limpeza?

Como deve ser a validação do processo de limpeza?

Como deve ser feita a amostragem do processo?

Como deve ser feita a limpeza contra a endotoxina bacteriana?

A biocompatibilidade de um implante está relacionada não apenas aos materiais que o constituem, mas também aos contaminantes presentes na sua superfície. Assim, o estado de limpeza dos implantes é uma característica essencial tanto para a garantia da biocompatibilidade, como para assegurar uma carga microbiológica apropriada requerida pelo processo de esterilização.

O estado de limpeza de um implante pode ser assegurado tanto pela fabricação de produtos em ambientes limpos associados a processos limpos (processamento limpo), como por um efetivo processo de limpeza, destinado tanto a eliminar resíduos oriundos dos materiais de fabricação e do manuseio quanto a controlar o nível de contaminação biológica, de modo a atender aos requisitos estabelecidos para a embalagem dos produtos. O processo de limpeza pode ser conduzido em múltiplas etapas de limpeza durante o processo de fabricação, incluindo uma etapa final antes da embalagem (processamento com limpezas em processo); ou, exclusivamente, por uma única etapa de limpeza, antes da embalagem (processamento com limpeza ao final).

Como o estado de limpeza é um fator-chave para a garantia da biocompatibilidade, é essencial que o projeto do processo de limpeza assegure a remoção de contaminações provenientes das diversas etapas de fabricação, assegurando também que os métodos de limpeza empregados não interajam, não prejudiquem a biocompatibilidade dos materiais e não afetem o desempenho do implante, e que os agentes de limpeza utilizados sejam eficientemente removidos, de modo a não contaminarem o implante. Consequentemente, é necessário que o processo de limpeza seja estabelecido e validado antes da avaliação biológica do implante.

Independentemente do processo de limpeza empregado, dificilmente toda a contaminação superficial do implante é removida. Resíduos de contaminantes exógenos e endógenos ao processo de limpeza são admissíveis, desde que em níveis seguros e não tóxicos. O objetivo da validação de limpeza é verificar a eficácia do processo de limpeza no que tange à capacidade de remover contaminantes químicos, físicos e físico-químicos, e de reduzir os contaminantes microbianos a níveis tão baixos quanto possível.

A avaliação e validação de métodos de limpeza são tarefas que requerem um conhecimento exaustivo do processo de fabricação do implante, a fim de identificar tanto potenciais contaminantes, quanto possíveis interações entre o processo de limpeza, os materiais do implante e a ambiência do acondicionamento do implante (especialmente para os implantes comercializados na condição estéril, a atmosfera entre a etapa de limpeza final e a etapa de embalagem pode ter influência sobre a limpeza do implante). Independentemente da forma de fornecimento (estéril ou para ser esterilizado pelo usuário), o implante limpo é um pré-requisito para a validação dos processos de esterilização aplicáveis.

Esta validação exige que a contaminação microbiológica inicial esteja sob controle. Além disto, é importante que a contaminação microbiológica inicial seja a mais baixa possível para reduzir esforços na fase de esterilização. Como consequência, é essencial que a limpeza que precede a embalagem do implante (limpeza final) assegure o controle da contaminação microbiológica antes da esterilização. Este documento pode envolver o uso de materiais, operações e equipamentos de risco, porém não trata de questões, caso existam, relacionadas à segurança associadas ao seu uso.

É responsabilidade do usuário estabelecer práticas de saúde e de segurança adequadas e determinar a aplicabilidade de exigências a regulamentos antes do uso. A avaliação do estado de limpeza e a validação do processo de limpeza de implantes ortopédicos de acordo com este Documento atendem aos requisitos da ISO 19227:2018. Em um projeto de limpeza, o processo de limpeza abrange o conjunto de tecnologias requerido para assegurar que as especificações de limpeza estabelecidas para um implante sejam atingidas.

O processo de limpeza abrange o conjunto de atividades do processo de fabricação de um implante que, necessariamente, se encerra imediatamente antes do processo de embalagem. A limpeza pode ser conduzida em etapa única ou em múltiplas etapas. Quando conduzida em etapa única, caracteriza-se como um processo de manufatura com a limpeza do implante conduzida exclusivamente ao final do processo fabril. Quando conduzida em múltiplas etapas, as etapas de limpeza estão associadas a uma ou mais etapas do processo de fabricação (limpeza em processo), necessariamente, seguidas por uma etapa final (limpeza final), conduzida após todas as etapas de fabricação prévias ao processo de embalagem do implante.

EXEMPLO No processo de fabricação com limpezas em processo, se um implante for fabricado de acordo com as seguintes etapas de fabricação: usinagem, “limpeza 1”, controle dimensional, polimento, “limpeza 2”, marcação a laser, inspeção, “limpeza 3”, embalagem em sala limpa e esterilização, então as etapas de fabricação “limpeza 1” e “limpeza 2” são caracterizadas como limpezas em processo (ver 3.10), e a etapa de fabricação “limpeza 3” é caracterizada como a etapa da limpeza final. No caso de inexistirem as etapas de fabricação “limpeza 1” e “limpeza 2”, a etapa de fabricação identificada como “limpeza 3”, constitui a etapa única de limpeza do processo de fabricação.

O conceito de família de limpeza de implante está associado exclusivamente ao processo de limpeza e à capacidade de os elementos da família serem limpos. Assim, a caracterização de uma família de limpeza não depende do tipo de implante, nem da natureza ou da quantidade de contaminantes dos implantes antes de serem submetidos ao processo de limpeza. Implantes de diferentes tipos ou de diferentes famílias de implantes podem estar incluídos em uma mesma família de limpeza, desde que possam ser representados pelo espécime de pior caso. A capacidade de um implante ser limpo, também denominada capacidade de limpeza do implante (implant cleanability), não está relacionada à capacidade de um processo efetuar a limpeza, mas intrinsecamente às características do implante e de seus contaminantes.

Neste contexto, a capacidade de limpeza depende de muitos fatores. Associados a cada contaminante, estes fatores incluem a natureza química e quantidade presente. Associados ao implante, estes fatores incluem o material, aspectos geométricos do projeto (por exemplo, a montagem de superfícies e as presenças de furos cegos e/ou furos longos de pequenos diâmetros dificultam e prejudicam a capacidade de limpeza), tipo, características e morfologia das superfícies, porosidades etc.

As atividades descritas neste documento devem ser conduzidas dentro de um sistema de gestão da qualidade formal. Um sistema de gestão da qualidade possível e amplamente empregado para produtos para a saúde está estabelecido na NBR ISO 13485. O gerenciamento de risco (risk management) é um processo iterativo que deve ser conduzido durante o projeto e a validação do processo de limpeza e com o uso contínuo do processo de limpeza.

A avaliação de risco no projeto do processo de limpeza e a gestão de risco do processo de limpeza devem ser realizadas de acordo com a NBR ISO 14971. Como parte do gerenciamento de riscos, o processo de limpeza deve ser avaliado quanto às medidas necessárias para atingir um nível pretendido de estado de limpeza (por exemplo, produção em um ambiente controlado ou diferentes métodos de limpeza) e quanto à sua integração na sequência de etapas de fabricação.

Um processo de limpeza é incluído no processo de fabricação de um implante, se os perigos (harzards) relacionados a possíveis contaminantes, por exemplo, provenientes dos passos anteriores de fabricação, forem identificados. Consequentemente, o projeto e a validação de um processo de limpeza devem ser conduzidos dentro de um sistema de gerenciamento de risco. Os perigos relacionados à limpeza devem ser levados em consideração durante o projeto do processo de limpeza e ao estabelecer os requisitos de projeto para as limpezas em processo críticas e para a limpeza final.

O Anexo A identifica alguns aspectos do processo de limpeza que podem ser considerados fontes de dano (harm). A avaliação de risco dos perigos relacionados à limpeza deve ser realizada após o processo de limpeza ser projetado e deve levar em conta as características do implante, as etapas de fabricação antes da limpeza, as características do processo de limpeza e o ambiente implementado após a limpeza final.

Os requisitos do estado de limpeza devem ser estabelecidos (ver Seção 5) levando em conta os contaminantes que se pretende que sejam removidos por qualquer etapa de limpeza, em processo ou final, bem como os contaminantes adicionais introduzidos pelo processo de limpeza em si. Pelo menos as seguintes questões devem ser abordadas durante uma avaliação de risco: Quais são os potenciais contaminantes em contato com os implantes durante as etapas de fabricação que precedem cada limpeza em processo crítica ou a limpeza final? Quais são os riscos associados a estes contaminantes? Quais são as interações potenciais entre os contaminantes e o material do implante? Há limpeza em processo crítica prévia ou outras operações para remover estes contaminantes potenciais da superfície? Quais são os possíveis contaminantes trazidos pelas etapas de limpeza?

Reconhece-se que não há um conjunto de perguntas que abranja todos os implantes. Esta lista não é exaustiva, e questões adicionais podem precisar ser abordadas durante a avaliação de risco. Com base nos resultados da avaliação de risco, pelo menos as seguintes questões adicionais devem ser abordadas alguns aspectos. Os métodos de ensaio selecionados para a validação do processo de limpeza são capazes de avaliar o nível dos possíveis contaminantes a serem limitados nos implantes, levando em consideração o limite de detecção, o limite de quantificação e a exatidão do método?

Quais são os critérios de aceitação para cada família de limpeza? Após a validação, quais requisitos de controle de processo são necessários para manter a limpeza durante a fabricação? Quais as mudanças no processo requerem a revalidação de eficácia da limpeza do produto? Antes de avaliar os desempenhos de um processo de limpeza em processo crítica ou de um processo de limpeza final, possíveis contaminantes devem ser identificados, métodos de ensaio apropriados devem ser determinados e critérios de aceitação devem ser estabelecidos como parte de um processo de gerenciamento de risco.

Com base nos critérios de aceitação para o estado de limpeza (ver a Seção 6), a validação de limpeza pode ser realizada. A figura abaixo ilustra a relação entre projeto de limpeza, validação e gerenciamento de risco. As condições da superfície do implante estabelecidas pelo processo de limpeza devem ser mantidas até o implante estar embalado e, assim, definitivamente protegido contra contaminações, de modo que o estado de limpeza exigido para o implante esteja assegurado no produto liberado para uso clínico.

Dessa forma, a análise de risco do estado final de limpeza do implante deve considerar o processo de limpeza, bem como todas as demais etapas de trabalho subsequentes que possam afetar essa condição. É importante que seja observada a interdependência do gerenciamento de risco do projeto de limpeza e da validação do processo de limpeza com a avaliação biológica do implante e com a validação da esterilização do implante. Como a contaminação microbiológica e a avaliação biológica podem ser influenciadas pela embalagem do implante, é necessário considerar, também, a validação da embalagem no processo de validação do projeto de limpeza.

A classificação das chapas de gesso diferenciadas para drywall

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra.

A NBR 16831 de 05/2020 – Chapas de gesso diferenciadas para drywall — Classificação e requisitos estabelece a classificação e os requisitos das chapas de gesso diferenciadas para com suas características para aplicação e inspeção. Não é aplicável às chapas de gesso para drywall dos tipos standard (ST), resistente à umidade (RU) e resistente ao fogo (RF), sendo seus requisitos encontrados na NBR 14715-1.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os valores da carga de ruptura?

Qual é a densidade superficial de massa em função das espessuras das chapas?

Como deve ser feita a identificação das chapas?

Quais são os critérios para aceitação e rejeição?

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra. A lâmina ou véu podem variar em função da aplicação de um determinado tipo de chapa, e o núcleo pode conter aditivos a fim de proporcionar características adicionais à NBR 14715-1.

As chapas de gesso diferenciadas para drywall são selecionadas de acordo com o seu tipo, tamanho e espessura. São aplicáveis a ambientes construídos com características específicas demandadas. Devem ser classificadas pelos seguintes tipos indicados na EN 520 2004+A1 e descritas a seguir. As chapas de gesso diferenciadas para drywall do Tipo A para utilização em áreas secas, chapas produzidas para utilização em áreas secas classificadas de acordo com o seu peso e a espessura.

As chapas de gesso diferenciadas do Tipo A devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo standard (ST), especificadas na NBR 14715-1. As chapas de gesso diferenciadas para drywall do Tipo H com absorção d’água reduzida, chapas com capacidade reduzida de absorção d’água adequadas para aplicações em locais sujeitos à umidade por tempo limitado e intermitente ou esporádico. As chapas de gesso diferenciadas do Tipo H devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo resistente à umidade (RU), especificadas na NBR 14715-1.

As chapas de gesso para drywall do Tipo E para utilização em exteriores, chapas produzidas para utilização em áreas externas. Devem sempre ser especificadas com o uso de algum tipo de revestimento ou proteção, a ser indicado pelo fabricante. A exposição da chapa sem revestimento é por tempo limitado, a ser indicado pelo fabricante.

Esta norma não prevê os tipos de revestimento ou proteção. A permeabilidade ao vapor d’água deve ser mínima, bem como a capacidade de absorção d’água reduzida. As chapas de gesso para drywall do Tipo F com coesão do núcleo de gesso para altas temperaturas, chapas que contêm fibras minerais e/ou outros aditivos no núcleo de gesso para melhorar sua coesão às altas temperaturas. Essas características são dependentes dos sistemas construtivos.

As chapas de gesso diferenciadas do Tipo F devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declaradas pelo fabricante, que as distinguem das chapas de gesso do tipo resistente ao fogo (RF), especificadas na NBR 14715-1. As chapas de gesso para drywall do Tipo P chapas para serem combinadas mediante colagem a outros materiais em forma de chapas ou painéis ou películas. Esse tipo pode também apresentar furos a fim de melhorar as características acústicas do ambiente construído.

As chapas de gesso para drywall do Tipo D com densidade controlada, chapas que possuem densidade controlada que permitem melhorar algumas aplicações, entre elas as características acústicas do ambiente construído; chapas de gesso para drywall do Tipo R com resistência aumentada, chapas utilizadas para aplicações diferenciadas que requeiram resistência mais elevada às cargas de ruptura tanto no sentido longitudinal quanto no transversal. As chapas de gesso para drywall do Tipo I com dureza superficial aumentada, chapas utilizadas para aplicações diferenciadas que requeiram maior dureza superficial.

As utilizações dos diversos tipos de chapas de gesso diferenciadas para drywall, constantes nesta norma, podem ser combinadas em uma única chapa, neste caso a designação da chapa deve incluir a letra que identifica cada tipo de aplicação. Os tipos D, E, F, H, I, R podem ser combinados e os tipos A e P não podem ser combinados. EXEMPLO: Tipo A3, Tipo A1, Tipo F-H, ou seja, chapa resistente ao fogo com absorção de água reduzida, Tipo D-F-H, ou seja, chapa com densidade controlada, resistente ao fogo e com absorção de água reduzida.

Todos os tipos de chapas de gesso diferenciadas para drywall devem atender à classe IIA de reação ao fogo de acordo com NBR14432 e podem receber em uma das faces acabamentos. Os tipos das chapas de gesso diferenciadas para drywall são classificados nesta norma, de acordo com os requisitos descritos na Seção 5. A carga de ruptura à flexão das chapas de gesso diferenciadas para drywall, constantes nesta norma para os tipos A, D, E, F, H e I, devem estar conforme a NBR 14715-2, não podendo ser inferior aos valores indicados na tabela abaixo. Nenhum resultado individual do ensaio pode ser inferior em mais de 10% dos valores indicados na tabela abaixo.

A densidade da chapa diferenciada para drywall do tipo D ou sua combinação, determinada conforme o método descrito na NBR 14715-2, deve ser no mínimo 0,8 × 103 kg/m³. A dureza superficial aumentada da chapa de gesso diferenciada do Tipo I ou sua combinação é determinada medindo o diâmetro da mossa produzida na superfície, quando ensaiada conforme o método descrito na NBR 14715-2. O diâmetro da mossa não pode ser superior a 15 mm.

As características dimensionais das chapas de gesso diferenciadas para drywall, seus valores e tolerâncias estão especificadas na NBR 14715-1, sendo verificadas conforme a NBR 14715-2. A tolerância na espessura para as chapas de 6,0 mm a 6,5 mm é de ± 0,2 mm. A tolerância na espessura para as chapas de 6,6 mm a 15,0 mm é de ± 0,5 mm.

Outras espessuras nominais são também possíveis, de acordo com a mínima espessura de 6,0 mm. Para espessuras nominais maiores ou iguais a 15,1 mm, as tolerâncias devem ser ± 0,04 × t, arredondadas para o próximo 0,1 mm. A critério do comprador e do fornecedor as análises dimensionais e pesos, podem ser avaliados em função da NBR 5426. Para a amostragem, dez chapas (amostras) devem ser retiradas aleatoriamente do lote declarado pelo fornecedor, constituindo as amostras, sendo cinco chapas à guisa de prova e cinco chapas à guisa de contraprova.

As testemunhas ou contraprovas devem ficar sob a guarda do fabricante. As amostras devem ser identificadas de forma a permitir, inclusive, a rastreabilidade do lote de produção. O local de inspeção deve ser previamente acordado entre o fornecedor e o comprador, podendo ser ou no pátio da fábrica, no distribuidor ou na obra.

Para a inspeção visual, todas as chapas diferenciadas para drywall devem ser submetidas às inspeções conforme determinado na norma, rejeitando-se apenas as chapas que não estiverem conforme. Para as chapas, de per si, devem ser verificadas e comparadas as características expressas indicadas na seção 5, com as Instruções ou declaração do fabricante. Para os sistemas construtivos executados com chapas diferenciadas para drywall, podem ser avaliados por meio de ensaios tipo, estabelecidos de comum acordo entre fabricante e consumidor.

BS EN IEC 62984-2: as baterias secundárias para alta temperatura

Essa norma europeia, editada em 2020 pelo BSI, especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes).

A BS EN IEC 62984-2:2020 – High-temperature secondary batteries. Safety requirements and tests especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes). As baterias de alta temperatura são sistemas eletroquímicos cuja temperatura operacional interna mínima das células está acima de 100 °C.

CONTEÚDO DA NORMA

PREFÁCIO…………………… 4

1 Escopo……………………… 6

2 Referências normativas………… ….. 6

3 Termos, definições, símbolos e termos abreviados………… 7

3.1 Construção da bateria……………………………………. 7

3.2 Funcionalidade da bateria………………………….. 10

3.3 Símbolos e termos abreviados…………………….. 12

4 Condições ambientais (de serviço)…………………………… 13

4.1 Geral………………………. …………… 13

4.2 Condições normais de serviço para instalações estacionárias……………………. .13

4.2.1 Geral………………… ……… 13

4.2.2 Condições ambientais normais adicionais para instalações internas ……………. 14

4.2.3 Condições ambientais normais adicionais para instalações externas ………….. 14

4.3 Condições especiais de serviço para instalações estacionárias……………………….. .14

4.3.1 Geral…………………. ……… 14

4.3.2 Condições especiais de serviço adicionais para instalações internas………………….. 14

4.3.3 Condições especiais de serviço adicionais para instalações externas………………… 14

4.4 Condições normais de serviço para instalações móveis (exceto propulsão) ………………. 14

4.5 Condições especiais de serviço para instalações móveis (exceto propulsão) ……………… 14

5 Projeto e requisitos……………………… 15

5.1 Arquitetura da bateria……………………. 15

5.1.1 Módulo…………. ………. 15

5.1.2 Bateria………………. ……….. 15

5.1.3 Montagem das baterias………………. 16

5.1.4 Subsistema de gerenciamento térmico……….. 17

5.2 Requisitos mecânicos……………………………. 17

5.2.1 Geral…………………………… ……… 17

5.2.2 Carcaça da bateria………………….. 17

5.2.3 Vibração………………………… …….. 18

5.2.4 Impacto mecânico……………………… 18

5.3 Requisitos ambientais………………………. 18

5.4 Requisitos de Electromagnetic compatibility (EMC)…………….. 18

6 Ensaios……… ……………………… 19

6.1 Geral……………… …………… 19

6.1.1 Classificação dos ensaios………………….. 19

6.1.2 Seleção de objetos de ensaio…………………….. 19

6.1.3 Condições iniciais do DUT antes dos ensaios………………… 20

6.1.4 Equipamento de medição……………. 20

6.2 Lista de ensaios…………….. ……….. 20

6.3 Ensaios de tipo…………….. ………… 21

6.3.1 Ensaios mecânicos………………. 21

6.3.2 Ensaios ambientais…………………………. 23

6.3.3 Ensaios EMC…………………….. ……. 24

6.4 Ensaios de rotina……………… …….. 33

6.5 Ensaios especiais………………. …….. 33

7 Marcações………….. …………………. 33

7.1 Geral……………………………. …………… 33

7.2 Marcação da placa de dados……………………. 33

8 Regras para transporte, instalação e manutenção ……… 33

8.1 Transporte…………………….. …. 33

8.2 Instalação………………. ………. 33

8.3 Manutenção………………… ……. 33

9 Documentação……………………. ………… 33

9.1 Manual de instruções……………………. 33

9.2 Relatório de ensaio……. ……….. 34

Bibliografia……………… ………………….. 35

Figura 1 – Componentes de uma bateria………………….. 16

Figura 2 – Componentes de um conjunto de baterias……….. 16

Figura 3 – Subsistema de gerenciamento térmico……………………. 17

Tabela 1 – Lista de símbolos e termos abreviados………………….. 13

Tabela 2 – Ambientes eletromagnéticos……………. 19

Tabela 3 – Ensaios de tipo…………………….. ………….. 21

Tabela 4 – Ensaio de calor úmido – Estado estacionário…………………………. 23

Tabela 5 – Nível de gravidade dos ensaios EMC………………………… 25

Tabela 6 – Descrição dos critérios de avaliação para ensaios de imunidade…….. …….. 26

Tabela 7 – Parâmetros de ensaio EFT/Burst……………….. 28

Tabela 8 – Níveis de ensaio de surto…………………. ….. 29

Segundo a International Electrotechnical Commission (IEC), as baterias são dispositivos indispensáveis na vida cotidiana: muitos itens que são usados diariamente, desde os telefones celulares até os laptops, dependem da energia da bateria para funcionar. No entanto, apesar de uso mundial, a tecnologia das baterias está subitamente dominando os holofotes porque é usada para alimentar todos os tipos de diferentes veículos elétricos (VE), de carros elétricos a scooters eletrônicas, que estão regularmente nos mercados. Para os ambientalistas, no entanto, a tecnologia da bateria é mais interessante como forma de armazenar eletricidade, à medida que a geração e o uso de energia renovável – que é intermitente – aumentam.

As baterias de íon lítio podem ser recicladas, mas esse processo permanece caro e, por enquanto, as taxas de recuperação de material raramente chegam a 20%. As matérias-primas usadas nas baterias de íon lítio são geralmente níquel, cobalto, manganês e lítio, que são caros de se obter. Algumas dessas matérias primas são escassas e, mesmo que as pesquisas estejam progredindo rapidamente, alguns laboratórios conseguiram atingir 80% dos níveis de recuperação.

Os cientistas também estão analisando as baterias recarregáveis de ar lítio como uma alternativa ao íon lítio. As baterias de íon de lítio usadas em uma aplicação podem ser avaliadas quanto à capacidade de serem usadas em outras aplicações menos exigentes. Uma segunda vida útil possível para as baterias é um componente para estações de carregamento flexíveis.

São estações de carregamento rápido que podem ser operadas de forma autônoma durante eventos de grande escala, como festivais ou eventos esportivos. As baterias de veículos elétricos podem ser reutilizadas em tudo, desde energia de backup para data centers até sistemas de armazenamento de energia. Na Europa, vários fabricantes de veículos, empresas pioneiras no mercado de carros elétricos, instalaram baterias usadas principalmente em diferentes tipos de sistemas de armazenamento de energia, variando de pequenos dispositivos residenciais a soluções maiores em escala de grade em contêiner.