A conformidade das selagens resistentes ao fogo em elementos de compartimentação

Pode-se definir a selagem de passagem como um componente único ou sistema usado em abertura de elementos de compartimentação para manter a resistência ao fogo e a selagem de passagem cega é um sistema em que uma abertura no elemento de compartimentação é selada ou fechada sem incorporação de qualquer instalação de serviço. Eventualmente as aberturas podem não receber a passagem de instalações de serviço. Neste caso o fechamento desta abertura é conhecido como selagem cega que nunca pode ser utilizada para a avaliação de desempenho de uma selagem com passagem de instalações de serviço.

As selagens de aberturas de passagem podem ser classificadas em dois tipos: selagens de aberturas de passagens de instalações de serviço em passagem total e em passagem de membrana. As aberturas de passagens de instalações de serviço em passagem total são exemplificadas na figura abaixo e as aberturas de passagens de instalações de serviço em passagem de membrana são exemplificadas em outra figura abaixo.

Há exigências, parâmetros e características de selagens a serem instaladas nas edificações, para estabelecer a correta aplicação desses elementos de compartimentação e assim impedir a propagação de incêndio do pavimento de origem para outros ambientes no plano horizontal (compartimentação horizontal) e no sentido vertical, ou seja, entre os pavimentos elevados consecutivos (compartimentação vertical).Todas as informações fornecidas na norma técnica aplicam-se a todas as edificações onde é exigida a compartimentação, conforme estabelecido em regulamentos e leis.

A selagem de juntas e de aberturas em elementos de compartimentação resistentes ao fogo não pode ser ocultada por qualquer revestimento ou elemento que a possa cobrir até que esta seja inspecionada e aprovada. Por exemplo, a colocação de um revestimento sobre a selagem é realizada somente após a inspeção e aprovação da respectiva selagem. A abertura de passagem total através de elementos de compartimentação verticais deve ser protegida por sistema de selagem resistente ao fogo aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante.

A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação onde será instalada, comprovada pela realização de ensaio conforme a NBR 16944-2. Algumas exceções podem ser consideradas nos sistemas de selagens em elementos de compartimentação com passagem total, desde que atendam a todas as condições dispostas na norma e atendam na íntegra aos critérios estabelecidos nas regulamentações e leis locais: aberturas de passagens de instalações de serviço em piso que estão dentro de cavidades de paredes não requerem a classificação de isolamento térmico (I), desde que as instalações de serviço do sistema de selagem não estejam em contato com quaisquer outros elementos ou instalações que não componham o sistema de selagem; aberturas de passagens de instalações de serviço em piso constituídas por ralos, caixas sifonadas, drenos e vaso sanitário não requerem a classificação de isolamento térmico (I), desde que essas instalações de serviço não estejam em contato com quaisquer outros elementos ou instalações, por exemplo, os revestimentos de piso e louças sanitárias considerados combustíveis, conforme os critérios de classificação da NBR 16626.

Devem atender as aberturas de passagens de instalações de serviço de aço, ferro fundido ou cobre pressurizadas, com diâmetro nominal máximo de 150 mm, que não estejam em contato com quaisquer outros elementos ou instalações, e com o espaço anular preenchido em toda a espessura do elemento de compartimentação por concreto ou graute. Nesse caso, ainda deve-se respeitar às seguintes limitações: os elementos de compartimentação de concreto; uma única instalação de serviço de passagem em cada abertura; e cada abertura afastada das demais em 200 mm. O somatório das aberturas na área do elemento de compartimentação não pode exceder 0,092 m².

Deve-se observar que as penetrações por caixas elétricas de qualquer material, desde que tais caixas tenham sido ensaiadas em conjunto com o elemento de compartimentação usual; o espaço anular criado pela penetração de um chuveiro automático, desde que coberto por um espelho de chapa metálica. A abertura de passagem de membrana (aberturas parciais) em elementos de compartimentação resistentes ao fogo deve ser protegida por sistema de selagem resistente ao fogo com classificação (E ou EI) igual ou superior à classificação de resistência ao fogo do elemento de compartimentação onde a selagem será instalada, comprovada pela realização de ensaio conforme a NBR 16944-2.

Os acessórios embutidos devem ser instalados de forma que a resistência ao fogo do elemento de compartimentação exigida não seja reduzida. Algumas exceções podem ser consideradas nos sistemas de selagens em elementos de compartimentação com passagem por membrana, desde que atendam a todas as condições dispostas na norma e atendam na íntegra aos critérios estabelecidos nas regulamentações e leis locais. Isso inclui a passagem de membrana por caixas elétricas de aço em paredes com classificação de resistência ao fogo máxima de 2 h não precisa de selagem ao atender os seguintes critérios: a área da caixa elétrica não pode exceder 0,01 m²; a soma da área das caixas elétricas da parede não pode exceder 0,065 m² em uma parede de 9,3 m²; o espaço anular entre a parede e a caixa elétrica não pode exceder 3,2 mm; as caixas elétricas de aço em lados opostos da parede devem atender a um dos seguintes itens: estar afastadas no mínimo 600 mm; estar afastadas no mínimo a distância igual à largura da parede e a parede estar preenchida com lã mineral; passagem de membrana por caixas elétricas de qualquer material, desde que tais caixas tenham sido instaladas e ensaiadas para uso juntamente com o elemento resistente ao fogo.

O espaço anular entre o elemento de compartimentação e a caixa não pode exceder 3,2 mm, a menos que indicado de outra forma. Essas caixas em lados opostos da parede ou divisórias devem ser separadas como a seguir: estar afastadas no mínimo 600 mm; estar afastadas no mínimo a distância igual à largura da parede e a parede estar preenchida com lã mineral; as caixas elétricas metálicas instaladas em lajes de concreto não precisam de selagem, caso estejam concretadas e não cruzem por toda a espessura da laje (passagem de membrana).

As juntas instaladas dentro ou entre paredes com classificação de resistência ao fogo, pisos ou conjuntos de piso/teto e telhados ou conjuntos de telhado/teto devem ser protegidas por um sistema de selagem de junta linear resistente ao fogo, aprovado e projetado para resistir à passagem do fogo por um período de tempo não inferior à classificação de resistência ao fogo (E e EI) exigida do elemento de compartimentação (parede, piso ou telhado), em que o sistema será instalado. As juntas de construção em elementos de compartimentação devem receber selagem resistente ao fogo de acordo com a NBR 16944-3, observando-se alguns aspectos relativos à movimentação descritos a seguir.

A junta dinâmica deve ser capaz de acompanhar a movimentação dos elementos de compartimentação em compressão e extensão sempre que as juntas tiverem movimentação ou dilatação por variações térmicas, sísmicas, vento, cargas acidenteis e carga permanente. A junta estática ocorre quando não está prevista a movimentação dos elementos de compartimentação durante a construção e ao longo da vida útil da edificação.

Algumas exceções podem ser consideradas nos sistemas de selagens de juntas de construção, desde que atendam a todas as condições dispostas na norma e atendam na íntegra aos critérios estabelecidos nas regulamentações e leis locais. Isso inclui os pisos dentro de uma unidade de habitação unifamiliar; os pisos em que a junta é protegida por um shaft com resistência ao fogo igual ou maior que o elemento de compartimentação; os pisos dentro de átrios em que o espaço adjacente é utilizado para fins de controle de fumaça (inclusive no volume do átrio); os andares dentro de shoppings; os pisos e rampas em garagens de estacionamento; os pisos em mezanino; as paredes que podem ter aberturas desprotegidas; e os telhados em que as aberturas são permitidas.

As aberturas criadas na interseção entre parede-cortina externa e entrepiso devem ser protegidas por sistema de selagem resistente ao fogo aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante, para evitar a propagação de fogo e fumaça no exterior e interior da edificação. A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação onde será instalada.

As juntas perimetrais existentes em espaços vazios localizados na interseção dos conjuntos de paredes-cortina (peles de vidro, painéis de concreto etc.) e conjuntos de piso devem ser selados com um sistema aprovado de selagens perimetrais que evite a propagação do fogo no interior da edificação. Esses sistemas devem ser instalados com segurança e ensaiados de acordo com a EN 1364-3, EN 1364-4, ou norma brasileira aplicável, quando houver, para fornecer a classificação de resistência por um período não inferior à classificação de resistência ao fogo do conjunto de piso.

Os requisitos de altura e resistência ao fogo para o anteparo vertical da parede-cortina devem seguir a legislação local. A selagem da junta perimetral deve ser capaz de acompanhar a movimentação do conjunto em compressão e extensão, sempre que as juntas tiverem movimentação ou dilatação por variações térmicas, sísmicas, de vento, cargas acidenteis e carga permanente.

As aberturas criadas na passagem de dutos de ventilação, ar-condicionado ou exaustão nas paredes e entrepisos devem protegidas por sistema de selagem resistente ao fogo, aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante, para evitar a propagação de fogo e a fumaça no exterior e no interior da edificação. A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação.

Se necessário, tais instalações devem conter os registros resistentes ao fogo e/ou sistema de proteção dos dutos, os quais devem também apresentar a mesma classificação de resistência ao fogo do elemento de compartimentação e da selagem. As aberturas nas prumadas, visitáveis ou não visitáveis, por onde passam as instalações de serviço em geral devem ser protegidas por sistema de selagem resistente ao fogo aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante, para evitar a propagação de fogo e fumaça no exterior e no interior da edificação.

A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação. A selagem da abertura da prumada vertical pode ser substituída pela compartimentação horizontal, realizada por meio de enclausuramento com parede resistente ao fogo, que atenda no mínimo ao mesmo tempo de resistência ao fogo do entrepiso e da parede onde será instalada. As instalações que transpassam a parede resistente ao fogo da prumada (registros, chuveiros, tubulações em geral, etc.) devem ser devidamente seladas com elementos ou sistemas resistentes ao fogo, com classificação igual ou superior à do elemento de compartimentação.

A NBR 16944-1 de 09/2022 – Selagens resistentes ao fogo em elementos de compartimentação – Parte 1: Requisitos estabelece os requisitos para classificação, desempenho, especificação, aplicação, instalação, responsabilidades, ensaios e inspeção, manutenção e comissionamento de selagens resistentes ao fogo em elementos de compartimentação, a serem empregadas na passagem de instalações elétricas, hidráulicas, mecânicas, de ar-condicionado e comunicações (telefone, dados) e em todas as passagens que permitam a comunicação entre áreas compartimentadas, incluindo juntas perimetrais e juntas de construção. Não fornece todas as informações específicas normalmente descritas em documentos técnicos para aplicações específicas de sistemas de selagens e não pode ser considerada um manual de instalação destes sistemas. Oferece alguns recursos para verificar informações suplementares relacionadas a propriedades ambientais, mecânicas e físicas do sistema de selagens; longevidade; durabilidade; e desempenho do sistema de selagens, pois essas características podem afetar a instalação e o desempenho do sistema de selagens.

Os sistemas de selagens são compostos por partes, sendo a primeira o elemento de compartimentação e a segunda uma abertura criada através ou dentro deste elemento de compartimentação. Quando a abertura estiver apenas em um lado do elemento de compartimentação, o sistema de selagem necessário é chamado de sistema de selagem de passagem de membrana, e quando a abertura for total através do elemento compartimentação, a abertura é chamada de passagem total e o sistema de selagem necessário é chamado de sistema de selagem de passagem total.

A próxima parte extremamente importante de um sistema de selagem é a passagem do item penetrante, que pode ser uma instalação de serviço (por exemplo, serviços elétricos, mecânicos, hidráulicos, telecomunicações ou outro serviço) ou um elemento estrutural (por exemplo, vigas, pilares etc.). Por fim, as aberturas em elementos de compartimentação recebem o sistema de selagem.

Conhecer as terminologias relevantes é fundamental para compreender o relatório de ensaio do sistema de selagem e assim verificar se a aplicação está adequada na prática. Também é necessária a verificação da documentação do fabricante antes da realização da montagem do sistema de selagem no local, tomando cuidado com as revisões do manual.

Para garantir que as instruções do fabricante não sejam alteradas e que ainda sejam aplicáveis, as instruções devem ser verificadas antes de se iniciar o processo de instalação do sistema. Idealmente, esse processo de verificação deve ocorrer quando um sistema está sendo projetado e especificado. As instruções do fabricante também devem conter datas de revisão, que ajudarão no processo de verificação.

Os ensaios em sistemas de selagens não replicam o ambiente e as condições de instalação de todos os projetos. Os sistemas de selagens em laboratório estão sujeitos às condições ambientais do local, que pode ser diferente daquele da instalação em campo.

O ensaio de resistência ao fogo em corpos de prova tem como objetivo avaliar materiais, montagens e detalhes, como dimensões e condições representativas aplicadas na construção e operação do edifício. No entanto, essas variáveis na construção real são enormes, por exemplo, um elemento de compartimentação em um projeto específico ensaiado com um sistema selagem não é normalmente representativo de todas as construções para cada projeto, pois os traços de concretos usados na construção civil variam consideravelmente.

Assim, a construção do elemento de compartimentação pode ser padronizada para permitir uma aplicação mais ampla dos resultados de ensaio, usando um tipo de concreto genérico, com uma espessura um pouco menor do que o necessário para a classificação de resistência ao fogo prescrita potencialmente. Os produtos que compõem os sistemas de selagens resistentes ao fogo devem apresentar as respectivas fichas de informações de segurança de produtos conforme regulamentação nacional vigente, que devem ser tomadas como referência para orientar os processos produtivos, de forma a preservar as condições adequadas de segurança do trabalho.

O produto final não pode oferecer qualquer risco à saúde do usuário das edificações onde estes sistemas encontram-se instalados. Todos os produtos do sistema de selagem, sendo ele aplicado individualmente ou dentro do sistema de selagem, têm como objetivo restabelecer a classificação de resistência ao fogo dos elementos de compartimentação, devido à realização de aberturas para passagem de instalações de serviço, aberturas entre elementos construtivos devido à necessidade de acomodar movimentos (por exemplo, juntas de dilatação), aberturas entre fachadas e sistemas construtivos, ou mesmo devido a aberturas resultantes de projetos mal concebidos.

Um sistema de selagem resistente ao fogo é formado a partir de um único produto, de um kit de produtos ou de uma combinação com outros produtos montados no local. Exemplos de produtos destinados a esta finalidade: mantas e placas revestidas; selantes ou mastiques; colares de proteção; fitas; luvas e módulos; almofadas, travesseiros e bolsas; plugues e blocos; chapas compostas; massa e argamassa de selagem; espumas; e massas para caixas elétricas.

As selagens resistentes ao fogo são indicadas para instalação nos locais como passagens de elétrica, hidráulica, incêndio, dutos de ventilação permanente (selagem + damper) ou telefônica, e outras que cruzem total ou parcialmente os elementos de compartimentação. A seguir são apresentados alguns exemplos de aplicação: eletrocalhas, conduítes metálicos e plásticos ou barramentos blindados que cruzem verticalmente, em qualquer local, entre pavimentos compartimentados; tubulações hidrossanitárias, como esgoto, pluvial, ventilação, recalque, água fria, água quente etc., que cruzem verticalmente, em qualquer local, entre pavimentos compartimentados; tubulações, luvas ou passantes de caixas sifonadas, ralos e vaso sanitários que cruzem verticalmente, mesmo em banheiros, cozinhas, lavanderias ou garagens, entre pavimentos compartimentados; eletrocalhas, conduítes metálicos, conduítes plásticos ou barramentos blindados que cruzem horizontalmente, em qualquer local, entre unidades autônomas, saídas de emergência, poços de elevadores, paredes de subestações elétricas e demais paredes de compartimentação; e tubulações hidrossanitárias, como esgoto, pluvial, ventilação, recalque, água fria, água quente etc., que cruzem horizontalmente, em qualquer local, entre unidades autônomas, saídas de emergência, poços de elevadores, paredes classificadas de shafts, paredes de subestações elétricas e demais paredes de compartimentação.

As passagens de juntas perimetrais com espaços vazios criados na interseção dos conjuntos de parede-cortina externa (peles de vidro, painéis de concreto, etc.) e conjuntos de piso. Em qualquer junta ou encunhamento de elementos resistentes ao fogo nas configurações apresentadas a seguir: junta no topo da parede; junta na base da parede; junta entre paredes ou estruturas como pilares; junta entre pisos; junta entre piso e parede. Em passagem de barramentos blindados (bus way), levando em consideração tanto a selagem interna como a externa do barramento.

As selagens resistentes ao fogo devem ser ensaiadas ou certificadas por laboratório reconhecido nacionalmente ou internacionalmente, e ser instaladas de modo que garantam a completa vedação das aberturas, independentemente de suas dimensões, não permitindo, assim, a passagem de calor, gases, fumaça e fogo entre paredes e entrepisos compartimentados. Tais selagens devem restabelecer as características de resistência ao fogo dos elementos de compartimentação.

As tubulações de materiais combustíveis devem receber proteção por sistema de selagem devidamente ensaiado e aprovado, em ambos os lados da parede ou abaixo do entrepiso. Todas as selagens resistentes ao fogo em shafts e passagens visitáveis devem receber identificação de que é um sistema resistente ao fogo e que informe que qualquer dano deve ser reportado ao responsável pela edificação, para o reparo imediato. Adicionalmente, é importante constar, nesta identificação, o nome do fabricante e a rastreabilidade dos sistemas instalados.

O sistema de selagem resistente ao fogo deve ser autoportante, ou seja, deve suportar a exposição ao fogo, em uma das faces, por um determinado período de tempo, preservando a sua integridade, e apresentar durabilidade compatível de acordo com a NBR 16944-2, NBR 16944-3, EN 1364-3 e EN 1364-4 ou norma brasileira aplicável, quando houver, conforme apropriado. As selagens resistentes ao fogo ensaiadas pelos seus respectivos métodos de ensaio devem ter classificação mínima igual ou superior à do elemento de compartimentação (piso ou parede), mantendo os critérios de integridade (E) e/ou de isolação térmica (I).

As selagens de aberturas de passagem de instalações de serviço consistem em produtos ou sistemas de selagens de aberturas em elementos de compartimentação, por onde transpassam instalações de serviço, como, por exemplo, instalações hidráulicas e elétricas, juntamente com qualquer construção de suporte, projetadas para manter o desempenho da integridade e/ou a isolação térmica do elemento de compartimentação durante a ocorrência de um incêndio. Eventualmente as aberturas podem não receber a passagem de instalações de serviço. Neste caso o fechamento desta abertura é conhecido como selagem cega que nunca pode ser utilizada para a avaliação de desempenho de uma selagem com passagem de instalações de serviço.

As selagens de juntas de construção são produtos ou sistemas de selagens de aberturas entre elementos de compartimentação (juntas, vazios, lacunas ou outras descontinuidades) entendidas como a razão entre o comprimento e a largura de pelo menos 10:1. As selagens de juntas perimetrais são projetadas para manter a função do elemento de compartimentação com relação às suas características de resistência ao fogo. Este tipo de selagem deve ser projetado para acomodar um grau especificado de movimento dentro da junta linear, se houver.

As localizações típicas de juntas de construção incluem pisos, perímetro de pisos, paredes, tetos e telhados. Geralmente, tais aberturas estão presentes em edifícios como resultados de: projeto para acomodar vários movimentos induzidos por diferenciais térmicos, sismicidade e cargas de vento, existindo como uma separação de folga; tolerâncias dimensionais aceitáveis entre dois ou mais elementos de construção, por exemplo, entre paredes e pisos não resistentes; e projeto inadequado, montagem incorreta, reparos ou danos ao edifício.

As juntas de construção dinâmicas ou estáticas devem ser classificadas em: junta de topo de parede: é o espaço vazio horizontal entre o topo da parede classificada e a face inferior do piso; junta de base de parede: é o espaço vazio horizontal entre a base da parede classificada e a face superior do piso; junta parede-parede: é o espaço vazio vertical entre duas laterais de paredes ou estruturas classificadas; junta piso-piso: é o espaço vazio no piso entre dois pisos classificados; e junta piso-parede: é o espaço vazio no piso entre o piso classificado e a parede. A junta dinâmica deve ser capaz de acompanhar a movimentação dos elementos de compartimentação em compressão e extensão sempre que as juntas tiverem movimentação ou dilatação por variações térmicas, sísmicas, vento, cargas acidentais e carga permanente.

A junta estática ocorre quando não está prevista a movimentação das barreiras de compartimentação durante a construção e ao longo da vida útil da edificação. Alguns sistemas construtivos realizados com quantidade substancial de materiais combustíveis têm propriedades inerentes de comportamento e desempenho ao fogo.

Diante disso, tais sistemas devem fornecer resistência estrutural e limitar a propagação do fogo e da fumaça por meio dos elementos construtivos do edifício (paredes e pisos). Assim, duas características com relação à selagem de juntas de construção devem ser adotadas, a saber: nas bordas adjacentes e interseções, quando uma parede ou montagem horizontal servir como elemento de compartimentação; e nas conexões entre as peças, com o objetivo de garantir a capacidade resistente da estrutura em uma situação de incêndio.

O tempo de resistência ao fogo da selagem de compartimentação entre as peças e nas conexões nunca pode ser inferior ao tempo de resistência ao fogo exigido para o elemento onde estas selagens serão instaladas. Dessa forma, um elemento de compartimentação perimetral é composto pelos elementos de compartimentação (parede e entrepiso) e pela selagem perimetral, com o objetivo de fornecer a resistência ao fogo para evitar a passagem de chamas e fumaça entre pavimentos do edifício, pela abertura entre o elemento de parede externa e o elemento do entrepiso, sendo considerado um detalhe de construção exclusivo, não tratado por outras normas, incluindo os métodos de ensaio.

As selagens perimetrais são sistemas que permitem vedar aberturas lineares localizadas entre um elemento de parede externa justaposta a um elemento de entrepiso. Entre outras funções, o sistema impede a propagação vertical externa do fogo do pavimento de origem para os pavimentos subsequentes e acomoda vários movimentos, como aqueles induzidos por diferenciais térmicos, abalos sísmicos e cargas de vento.

As selagens de outros elementos resistentes ao fogo são produtos e sistemas utilizados para aberturas entre os dispositivos classificados como resistentes ao fogo, como, por exemplo, registros (dampers), chaminés protegidas, dutos de ventilação protegidos, shafts e dutos de extração de fumaça, com o objetivo de selar os espaços entre esses dispositivos e o elemento de compartimentação (parede e entrepiso). A resistência ao fogo dos dispositivos resistentes ao fogo e a selagem devem ser avaliadas nos métodos específicos de ensaio.

As selagens de barramentos blindados consistem em produtos e sistemas de vedações de aberturas internas e externas a esse elemento, de forma a garantir a resistência ao fogo do elemento de compartimentação em ambas as situações, de forma concomitante. Os espaços dentro da caixa do barramento blindado e entre este barramento e o elemento de compartimentação (abertura) devem ser projetados de forma a selar esses espaços concomitantemente com barreiras especiais, evitando, em caso de incêndio, a propagação de chama, fumaça e gases quentes entre os ambientes compartimentados, sendo esses elementos de compartimentação horizontal (paredes) ou vertical (entrepisos).

Os sistemas de selagens resistentes ao fogo em aberturas de passagem de instalações de serviço e juntas de construção, incluindo selagens perimetrais, e em outras aberturas que permitam a comunicação entre as áreas compartimentadas são classificados de acordo com os critérios de integridade e isolação térmica. Os valores relativos à classificação devem ser obtidos por meio de ensaios de resistência ao fogo, especificados nas normas citadas, considerando as suas características funcionais, determinadas durante o tempo de resistência ao fogo no ensaio.

A resistência ao fogo deve ser determinada utilizando-se os métodos de ensaio especificados nas NBR 16944-2, NBR 16944-3, EN 1364-3 e EN 1364-4 ou norma brasileira aplicável, quando houver, conforme apropriado. Situações específicas não previstas nas normas brasileiras devem ser avaliadas com auxílio das normas internacionais até que normas brasileiras correspondentes sejam publicadas.

Para a execução dos ensaios de classificação, os corpos de prova devem ser totalmente representativos do elemento de compartimentação, da selagem de serviço e do elemento de passagem usado na prática, incluindo quaisquer recursos especiais que sejam exclusivos para a instalação, como, por exemplo, suportes, grelhas, revestimentos, etc. Os corpos de prova devem, sempre que possível, apresentar dimensões reais de instalação. Quando isto não puder ser feito, o tamanho do corpo de prova deve atender às condições estabelecidas no método de ensaio empregado.

As classes de desempenho de resistência ao fogo devem ser expressas por uma ou mais letras representando os critérios funcionais, seguidas do tempo de resistência ao fogo, expresso em minutos, conforme especificado na NBR 16945, nos respectivos métodos de ensaios. Para a classificação de resistência ao fogo de selagens, as seguintes letras designativas devem ser utilizadas, seguidas do tempo de resistência ao fogo atingido, em minutos: E para integridade; e I para isolação térmica.

Quando os critérios forem combinados, o tempo declarado deve ser o do critério que possuir a menor resistência ao fogo, conforme apresentado na NBR 16945. Assim, uma selagem com E: 120 min e I: 90 min deve ser classificada como EI 90/E 120. Para os efeitos de classificação, os resultados, em minutos, devem ser arredondados para baixo no período de classificação de resistência ao fogo mais próximo, como descrito a seguir: 30 min, 45 min, 60 min, 90 min, 120 min, 150 min, 180 min e 240 min.

Advertisement

Os parâmetros normativos para a construção de paredes de concreto moldadas in loco

A parede de concreto é um elemento estrutural autoportante, moldado no local, com comprimento maior que cinco vezes sua espessura e capaz de suportar carga no mesmo plano da parede. A espessura mínima das paredes com altura de até 3 m deve ser de 10 cm. Permite-se espessura de 8 cm apenas em paredes internas de edificações até dois pavimentos. Para paredes com alturas maiores, a espessura mínima deve ser h/30.

A critério dos projetistas, pode-se desconsiderar a diminuição da espessura provocada por frisos ou rebaixos com profundidade máxima de 1/10 da espessura da parede e largura máxima de 10 cm, respeitados os cobrimentos mínimos das eventuais armaduras. Permite-se apenas um friso ou rebaixo horizontal por pavimento. O espaçamento entre frisos ou rebaixos verticais deve ser maior que 30 vezes a espessura da parede.

Os demais limites para as situações de serviço devem seguir o descrito na NBR 6118, exceto quando utilizados os resultados de ensaios específicos. Para prevenir o aparecimento de fissuras, deve ser analisada a necessidade da colocação de juntas verticais. A fissuração da parede pode ocorrer por variação de temperatura, retração, variação brusca de carregamento e variação da altura ou espessura da parede.

Para paredes de concreto contidas em um único plano e na ausência de uma avaliação precisa das condições específicas da parede, devem ser dispostas juntas verticais de controle. O espaçamento máximo dessas juntas deve ser determinado de acordo com dados de ensaios específicos (espaçamento condizente com o especificado no projeto). Na falta desses ensaios, adotar o distanciamento máximo de 8 m entre juntas para paredes internas e de 6 m para paredes externas. As juntas podem ser passantes ou não passantes (recomenda-se uma profundidade mínima de 2 cm), pré-formadas ou serradas.

Em face da dilatação da última laje, pode ser prevista uma junta de controle imediatamente sob esta laje, a critério do projetista estrutural. É necessário executar o reforço, sem ligação de tela entre a parede e a última laje. As paredes são calculadas como livres na extremidade superior. Nesta situação, a platibanda deve ser engastada na laje.

Sempre que a deformação por efeito da variação da temperatura puder comprometer a integridade do conjunto, recomenda-se o uso de juntas de dilatação a cada 30 m da estrutura em planta; e nas variações bruscas de geometria ou de esforços verticais. Estes limites podem ser alterados, desde que seja feita uma avaliação mais precisa dos efeitos da variação de temperatura do concreto sobre a estrutura.

As tubulações elétricas verticais podem ser embutidas nas paredes de concreto, desde que atendidas, simultaneamente, as seguintes condições: respeitar as condições de manutenibilidade indicadas na NBR 15575-2; diâmetro máximo de 25% da espessura da parede, espaçado em no mínimo 5 cm, livre entre faces das tubulações, sem reforços; quando o diâmetro da tubulação for maior que 25%, mas não ultrapassar 50% da espessura da parede No caso do uso de telas metálicas, recomenda-se que se coloque a tubulação centrada e com telas nas duas faces, com largura mínima de 60 cm e transpasse mínimo equivalente à metade da espessura de parede, não sendo admitida a utilização de tubos metálicos embutidos.

Não são admitidas tubulações horizontais, a não ser trechos de até um terço do comprimento da parede (entre travamentos), não ultrapassando 1 m, desde que este trecho seja considerado não estrutural. Em paredes de concreto não estruturais, desvinculadas do restante da estrutura, estas restrições não se aplicam.

Nos encontros de paredes, não havendo verificação específica do projetista de estruturas, não são permitidas tubulações verticais ou horizontais, a uma distância inferior a três vezes a espessura da parede, a partir do canto delas, respeitada a região de emenda das telas. Permite-se a colocação das instalações hidráulicas e sanitárias em nichos verticais previamente previstos no projeto estrutural.

Permite-se a colocação embutida das instalações flexíveis reticuladas encamisadas (PEX). Quando encamisado, o raio de curvatura deve permitir a manutenção dos tubos. Aplicam-se as observações a respeito de diâmetro máximo e reforços. Em conformidade com os requisitos da NBR 12655, o controle tecnológico do concreto deve ser feito em dois momentos: o controle de recebimento que é realizado no ato do recebimento do concreto na obra, condicionando sua liberação para lançamento, e a aceitação dos lotes de concreto, realizada com base nos resultados dos ensaios de resistência à compressão nas idades de controle.

O controle de recebimento do concreto no estado fresco deve ser realizado pela determinação do abatimento do tronco de cone, prescrito na NBR 16889, com no mínimo a frequência e a amostragem estabelecidas na NBR 12655. Para o concreto autoadensável, devem ser realizados os ensaios indicados nas NBR 15823-2 e NBR 15823-3, com no mínimo a frequência e a amostragem estabelecidas na NBR 15823-1.

Além desses ensaios que são realizados na obra, devem ser previamente determinadas algumas características e propriedades do concreto no estado fresco em laboratório, conforme indicado nas NBR 12655 e NBR 15823. O controle de aceitação dos lotes de concreto no estado endurecido deve ser realizado conforme a NBR 12655, sendo comprovados no mínimo os seguintes requisitos estabelecidos em projeto: resistência de desforma, na idade especificada em projeto; resistência característica do concreto (fck), aos 28 dias. Para controle da resistência do concreto na idade de desforma, permite-se o uso do método da maturidade, em conformidade com a ASTM C1074. A junta de concretagem deve ser conforme a NBR 14931.

A NBR 16055 de 10/2022 – Parede de concreto moldada no local para a construção de edificações – Requisitos e procedimentos estabelece os requisitos básicos para o sistema construtivo de paredes de concreto moldadas in loco, com fôrmas removíveis e armaduras distribuídas em toda a parede (barras e fios de aço ou telas de aço soldadas), para qualquer número de pavimentos. Alternativamente, no caso de edifícios simplificados, pode ser utilizado concreto reforçado com fibras. Esta norma se aplica às paredes submetidas à carga axial, com ou sem flexão, concretadas com todos os elementos que farão parte da construção final, como detalhes de fachada (frisos, rebaixos), armaduras distribuídas e localizadas, instalações (elétricas e hidráulicas), quando embutidas e elementos estruturais solidarizados.

Para edificações com lajes, considerar as lajes incorporadas ao sistema por solidarização com as paredes, tornando o sistema monolítico (funcionamento de placa e chapa). Esta norma se aplica à estrutura em paredes de concreto de massa específica normal, conforme a NBR 6118. Não se aplica a paredes de concreto pré-fabricadas; paredes de concreto moldadas in loco com fôrmas incorporadas; paredes curvas; paredes submetidas ao carregamento predominantemente horizontal; fundações, elementos de fundações, paredes-diafragma e solo grampeado.

Esta norma não estabelece os requisitos para especificação, preparação e conformidade do concreto, que devem seguir o que estabelece a NBR 12655. Não abrange os aspectos da execução relativos à segurança do trabalho e à saúde, estabelecidos em regulamentos governamentais, normas regulamentadoras e na NBR 12284.

Todas as paredes de cada ciclo construtivo de uma edificação são moldadas em uma única etapa de concretagem, permitindo que, após a desforma, as paredes já contenham, em seu interior, vãos para portas e janelas, dutos que possibilitem a manutenção, elementos de fixação para coberturas e outros elementos específicos, quando for o caso. As instalações com tubos de grande diâmetro não são embutidas nas paredes.

A aprovação quanto ao embutimento das instalações nas paredes deve ser do projetista estrutural, de forma a não comprometer o sistema construtivo. Além disso, tal decisão deve considerar os requisitos de manutenibilidade das instalações hidrossanitárias e elétricas ao longo da vida útil da edificação. As soluções em concreto reforçado com fibras (CRF) a serem utilizadas nos edifícios devem atender ao desempenho da parede em condições de incêndio, avaliado como estabelecido pela NBR 15575-4.

Uma estrutura em paredes de concreto deve ser projetada e construída de modo que: resista a todas as ações que produzam efeitos significativos sobre ela, tanto na sua construção quanto durante a sua vida útil; sob as condições ambientais previstas na época de projeto e quando utilizada conforme preconizado em projeto, conserve sua segurança, estabilidade e aptidão em serviço durante o período correspondente à sua vida útil; contemple detalhes construtivos que possibilitem manter a estabilidade pelo tempo necessário à evacuação, quando da ocorrência de ações excepcionais localizadas previsíveis, conforme a NBR 6118.

O projeto de uma estrutura em paredes de concreto deve ser elaborado adotando-se: o sistema estrutural adequado à função desejada para a edificação; a combinação de ações compatíveis e representativas; o dimensionamento e a verificação de todos os elementos estruturais presentes; e a especificação de materiais de acordo com os dimensionamentos efetuados. O espaçamento do escoramento, detalhes embutidos ou vazados e os projetos de instalações devem ser informados ao projetista da estrutura.

O projeto estrutural deve ser constituído por desenhos, especificações e memorial descritivo. Esses documentos devem conter informações claras, corretas e consistentes entre si, tornando possível a execução da estrutura de acordo com os critérios adotados. O projeto deve apresentar desenhos contendo as plantas de formas e elevações das paredes com a respectiva armadura.

Sempre que necessário, devem ser apresentados localização de pontos de reforços, detalhes de amarração de paredes entre si, paredes com laje e posicionamento de juntas de controle ou construtivas. O projeto deve contemplar as etapas construtivas com as respectivas idades e resistências do concreto, em especial a capacidade resistente das lajes junto às escoras. As especificações de projeto devem considerar e fazer referência às normas brasileiras e, na falta de algum ponto determinado por estas, podem-se utilizar referências estrangeiras.

Também devem considerar os requisitos específicos do local da obra, em relação a todos os aspectos inerentes à construção, como ações sobre a estrutura (como vento e sismo), segurança, condição ambiental e outros. O memorial descritivo deve conter: a caracterização do empreendimento e o local de implantação; as hipóteses adotadas para o carregamento; a descrição da estrutura com condições de contorno; e a informação quanto ao enquadramento de edifício simplificado

Devem ser seguidas as atribuições de responsabilidades estabelecidas na NBR 12655. A avaliação técnica de projeto (ATP) da estrutura de paredes de concreto é a verificação e análise crítica do projeto, realizadas com o objetivo de avaliar se este atende aos requisitos das normas técnicas vigentes aplicáveis. A avaliação técnica de projeto da estrutura de paredes de concreto deve contemplar, entre outras, as seguintes atividades (integral ou parcialmente): verificar se as premissas adotadas para o projeto estão de acordo com o previsto nesta norma e se todos os seus requisitos foram considerados; analisar as considerações de cálculo e verificar os seus resultados; e analisar os desenhos que compõem o projeto, inclusive os detalhes construtivos.

A avaliação técnica do projeto deve ser obrigatória e realizada por profissional habilitado e independente em relação ao projetista da estrutura. É recomendável que o profissional escolhido para realizar a avaliação técnica do projeto possua experiência em estruturas de paredes de concreto. A avaliação deve ser registrada em documento específico, que deve acompanhar a documentação do projeto citada nesta norma.

A responsabilidade pela escolha do profissional habilitado que for realizar a avaliação técnica do projeto cabe ao contratante do projeto da estrutura. Esta responsabilidade pode ser do proprietário da obra que, no caso de não ter os conhecimentos técnicos necessários para a escolha do profissional responsável pela avaliação técnica do projeto, pode designar um representante ou preposto para substituí-lo nesta atribuição.

A avaliação técnica do projeto deve ser realizada antes da fase de construção e, de preferência, simultaneamente com a fase de projeto. No caso de edifícios simplificados, fica dispensada a avaliação técnica de projeto. No caso de empreendimentos com tipologias padronizadas, permite-se que a avaliação técnica do projeto seja feita para a tipologia-padrão submetida às mesmas condições ambientais e aos mesmos esforços. As fundações variantes e os conceitos de adaptações possíveis devem ser verificados.

Para as diretrizes para a durabilidade das estruturas de paredes de concreto, aplicam-se os requisitos da NBR 6118. No caso do uso de armaduras principais com cobrimentos maiores ou iguais a 1,5 vez o cobrimento especificado pela NBR 6118, ou reforços com fibras estruturais, podem-se utilizar as prescrições de uma classe de agressividade ambiental imediatamente mais branda, desde que se verifique que o estado-limite de abertura de fissuras em uma eventual face tracionada atende ao estabelecido nesta norma. No caso de utilização de fibras estruturais, deve-se utilizar concreto com classe de resistência mínima C25.

Quando não forem utilizadas fibras inoxidáveis, cuidados especiais devem ser adotados para evitar patologias. Para os critérios de projeto que visam a durabilidade, aplicam-se os requisitos da NBR 6118. Para o cobrimento das armaduras das paredes de concreto, aplicam-se os requisitos estabelecidos para pilares da NBR 6118. Quanto às propriedades dos materiais, o concreto deve seguir as especificações das NBR 6118, NBR 8953, NBR 12655, conforme a classe de agressividade ambiental a que a estrutura estiver sujeita.

Para a análise das tensões devidas à retração, aplica-se, na falta de ensaios específicos, o que estabelece a NBR 6118. Recomenda-se a utilização de concreto autoadensável de baixa retração, conforme a NBR 15823-1. O concreto deve ser preparado em atendimento aos requisitos das NBR 12655 e NBR 7212.

Para a caracterização do concreto, o ensaio de resistência à compressão, nas idades de controle, deve ser feito conforme a NBR 5739, e os ensaios de massa específica, absorção de água e índice de vazios, conforme a NBR 9778. A consistência do concreto deve ser especificada conforme a classificação estabelecida na NBR 8953 ou na NBR 15823-1, em função do tipo de aplicação.

A dimensão máxima característica do agregado graúdo deve ser estabelecida considerando a espessura das paredes e a densidade da armadura. O uso de aditivos químicos deve ser feito em conformidade com as NBR 11768-1 e NBR 12655. Não podem ser usados aditivos que possam atacar quimicamente as armaduras ou fibras, em especial aqueles à base de cloreto.

No caso da utilização de reforços com fibras, estes devem ser caracterizados de acordo com as NBR 16941, NBR 16942 e NBR 15530. Para controlar a retração plástica, podem ser utilizadas microfibras poliméricas (conforme a NBR 16942), álcali-resistentes, com comprimento entre 12 mm e 20 mm, diâmetro entre 12 μm 18 μm, comprimento mínimo total de 2.500 km/m³.

Para a caracterização do concreto antes do início de seu uso na obra (válida enquanto não mudar a central de concreto, a carta-traço e o modo de aplicação), o projeto estrutural deve especificar: a idade e a resistência à compressão para desforma, compatível com o ciclo de concretagem; a resistência à compressão característica aos 28 dias (fck); a classe de agressividade do local de implantação da estrutura, conforme a NBR 12655; o módulo de elasticidade do concreto, a uma determinada idade e tensão; e a retração do concreto, conforme a NBR 16834. Os dados a seguir não fazem parte do projeto estrutural e devem ser estabelecidos por tecnologista de concreto: relação água-cimento conforme a NBR 12655; consumo mínimo de cimento conforme a NBR 12655; consistência, medida pelo abatimento do tronco de cone (NBR 16889) ou pelo espalhamento do concreto (NBR 15823-2); índice de estabilidade visual conforme a NBR 15823-1.

A tela de aço soldada deve ser conforme a NBR 7481. As barras e os fios devem ser conforme a NBR 7480. Para as fibras de aço, o material deve ser conforme a NBR 15530. As fibras de aço podem ser galvanizadas. Para as fibras de vidro, o material deve ser conforme a NBR 16941. Para as fibras poliméricas, material deve ser conforme a NBR 16942. O comportamento conjunto dos materiais deve ser conforme a NBR 6118.

A segurança para a construção dos elevadores unifamiliares

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado para atender a pessoas em edificações residenciais unifamiliares, melhorando o conforto na habitação e proporcionando uma previsão para eventual necessidade futura; tem uma função social ao prover acesso a pessoas com mobilidade reduzida, pessoas idosas, doentes ou com dificuldade de locomoção, permanente ou temporária, eliminando a limitação de acesso aos espaços físicos e provendo integração com a comunidade. Diferentemente de um elevador de passageiros para transporte de pessoas em geral, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado com características peculiares

que se destinam a ocupar menor espaço horizontal e vertical; viabilizar a instalação em edificações existentes; reduzir o custo total envolvido na sua implantação e manutenção; requerer pouca potência instalada e ser energeticamente econômico.

A estrutura da edificação deve ser construída de modo a suportar às cargas e forças exercidas pelo equipamento do elevador. Salvo especificado em contrário na norma, para aplicações particulares, estas cargas e forças são os valores resultantes das massas estáticas; e os valores resultantes de massas móveis e suas operações de emergência. O efeito dinâmico é representado por um fator 2. É importante que as guias do elevador sejam suportadas de modo que os efeitos da movimentação da estrutura da edificação à qual estão ligados sejam minimizados.

Ao considerar as edificações construídas de concreto, blocos pré-moldados ou tijolos, pode-se presumir que os suportes de guia não serão submetidos ao deslocamento causado pela movimentação das paredes da caixa, com exceção da compressão. No entanto, quando os suportes de guia estiverem fixados à estrutura da edificação por vigas de aço, ou por fixação a estruturas de madeira, pode haver deformação desta estrutura, devido à carga imposta pelo carro por meio das guias e suportes de guias.

Além disso, pode haver movimento da estrutura de apoio do elevador devido às forças externas, como carga de vento, carga de neve, etc. Devem ser consideradas qualquer deflexão dessas vigas ou estruturas durante os cálculos requeridos e a deflexão total admissível das guias para a operação segura do freio de segurança, etc. deve incluir qualquer deslocamento da guia devido à deflexão da estrutura da edificação e a deflexão da própria guia devido à carga imposta pelo carro. Portanto, é importante que as pessoas responsáveis pelo projeto e fabricação das estruturas se comuniquem com o fornecedor do elevador, a fim de assegurar que as estruturas atendam a todas as condições de carga.

O requisito para ventilar adequadamente a caixa e a casa de máquinas está, muitas vezes, inserido nos regulamentos locais sobre edificações que se aplicam, especificamente, como requisito geral que seria dado para qualquer espaço da edificação onde maquinaria seja instalada ou pessoas sejam acomodadas (para o lazer, trabalho etc.). A norma não pode prover orientação específica para os requisitos de ventilação para estas áreas, tendo em vista que a caixa e a casa de máquinas são frequentemente partes de um ambiente maior e mais complexo da edificação. Caso isto seja feito, pode trazer conflito com estes requisitos nacionais. No entanto, algumas orientações gerais podem ser providas.

A segurança e o conforto das pessoas que viajam no elevador, trabalham na caixa ou aqueles que podem ficar presos na cabina ou na caixa quando o carro para entre os andares depende de muitos fatores: a temperatura ambiente da caixa, como parte da edificação, ou independente dela; a exposição à luz solar direta; o componente orgânico volátil, CO2, qualidade do ar; o acesso de ar fresco na caixa; o tamanho da caixa, tanto na área da seção transversal quanto na altura; o número, tamanho e folgas das aberturas em torno das portas de pavimento; a produção de calor dos equipamentos instalados; as estratégias de evacuação no combate a incêndios e fumaça, relacionadas ao sistema de gerenciamento da edificação; a umidade, poeira e vapores; o fluxo de ar (calor/frio) e tecnologia aplicada de economia de energia na edificação; e a estanqueidade do ar na caixa e em toda edificação.

É recomendado que o carro seja provido com aberturas de ventilação suficientes para assegurar um fluxo adequado de ar para o número máximo de ocupantes permitidos. Durante a operação normal e a manutenção do elevador, geralmente as aberturas em torno das portas de pavimento, a abertura/fechamento destas portas e o efeito pistão, devido ao deslocamento do elevador dentro da caixa, podem ser suficientes para prover as necessidades humanas de troca de ar, entre as escadas, saguões e a caixa.

No entanto, para as necessidades técnicas e, em alguns casos, para as necessidades humanas, o estancamento do ar na caixa e em toda edificação, as condições ambientais, particularmente superior à temperatura ambiente, radiação, umidade, qualidade do ar, irá resultar em necessidade permanente ou demanda de abertura (s) de ventilação e/ou (combinado com) ventilação forçada e/ou a entrada de ar fresco. Isso somente pode ser decidido caso a caso.

Além disso, no caso de parada prolongada do carro (considerando as condições normais e acidentais), é recomendado que seja fornecida ventilação suficiente. Em particular, deve ser dada atenção para aquelas edificações (novas e no caso de renovação) nas quais o projeto tecnológico de eficiência energética esteja presente. As caixas não se destinam a serem utilizadas como meios para ventilar outras áreas da edificação.

Em alguns casos, isso pode ser uma prática extremamente perigosa, como ambientes industriais ou estacionamentos subterrâneos, onde a extração de gases perigosos através da caixa pode causar risco adicional para as pessoas que viajam na cabina. De acordo com estas considerações, não é recomendado utilizar o ar viciado a partir de outras áreas da edificação para ventilar a caixa.

Quando a caixa fizer parte da segurança contra incêndio, cuidados especiais devem ser tomados. Nestes casos, as orientações devem ser obtidas por aqueles que se especializam nesse tipo de equipamento ou em regulamentos locais de construção e combate a incêndio.

A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A ventilação da casa de máquinas é normalmente realizada para fornecer um ambiente de trabalho apropriado ao técnico e ao equipamento instalado em tais espaços. Por esta razão, é recomendado que a temperatura ambiente da casa de máquinas seja mantida conforme provido nas premissas. Recomenda-se cuidados adicionais em relação à umidade e qualidade do ar para evitar problemas técnicos, por exemplo, condensação.

A falha em manter estas temperaturas pode resultar na retirada do elevador de serviço automaticamente até que a temperatura volte a ter seus níveis pretendidos. A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A NBR 12892 de 10/2022 – Elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida – Requisitos de segurança para construção e instalação especifica os requisitos de segurança para instalação permanente de novos elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida com limitação de capacidade, velocidade e percurso, com acionamento por tração ou acionamento hidráulico, servindo níveis de pavimento definidos, sendo o carro projetado para o transporte de pessoas e objetos, suspenso por cabos, cintas ou pistões e movimentando-se entre guias inclinadas não mais que 15° em relação à vertical. Em casos especiais, em complementação aos requisitos desta norma, devem ser considerados os requisitos suplementares (condições climáticas extremas, umidade, salinidade, etc.).

Esta norma não é aplicável: a elevadores com outros sistemas de acionamento diferentes dos mencionados na NBR 12892; a segurança durante as operações de transporte, montagem, reparação e desmontagem de elevadores; a ruídos e vibrações; ao uso de elevadores em caso de incêndio; e aos elevadores de passageiros instalados antes da data de sua publicação.

Com o propósito de preservar a segurança, foram impostos requisitos de desempenho no sentido de eliminar ou minimizar riscos para o uso peculiar a que se destina. Percurso, velocidade, capacidade, área da cabina, entre outras, são grandezas objeto de restrição para atender ao disposto nessa norma.

Quanto à instalação, são estabelecidas somente as seguintes aplicações: instalação em edificações unifamiliares; o elevador, conforme esta norma, não pode ser considerado para o cálculo de tráfego da NBR 5665, mas pode ser utilizado como meio de transporte de pessoas e como meio de acesso das pessoas com mobilidade reduzida à edificação; quando o elevador, conforme esta norma, for projetado para uso por pessoas com mobilidade reduzida, esta condição de uso deve ser sinalizada; capacidade de até oito passageiros; velocidade nominal até 0,35 m/s; percurso até 12 m; portas de pavimentos do tipo eixo vertical são aplicáveis somente em elevador residencial unifamiliar; e porta de cabina do tipo dobrável é aplicável somente em elevador residencial unifamiliar.

Devem ser feitas negociações para cada contrato entre o cliente e o fornecedor/instalador sobre: a finalidade do uso do elevador; condições ambientais; problemas de engenharia civil; outros aspectos relacionados à edificação e ao local da instalação; a resistência ao fogo para as portas de pavimento nas aplicações unifamiliares. Não é intenção de esta norma limitar o desenvolvimento tecnológico do produto. Entretanto, um projeto novo deve atender, pelo menos de maneira equivalente, aos requisitos de segurança desta norma.

Foram considerados possíveis riscos atribuíveis a cada componente que podem ser incorporados em uma instalação completa de elevador. Regras adequadas foram estabelecidas, considerando-se o descrito a seguir. Os componentes são: projetados de acordo com a prática usual de engenharia e os códigos de cálculos, incluindo todos os critérios de falha; de construção adequada tanto mecânica como eletricamente; fabricados com materiais de resistência e qualidade adequadas; e livres de defeitos. Materiais nocivos, como amianto, não podem ser utilizados.

Os componentes são mantidos em bom estado de conservação e funcionamento, de modo que as dimensões se mantenham, apesar do desgaste. Considera-se que todos os componentes do elevador requerem inspeção para garantir a operação segura e contínua durante a sua utilização. As folgas operacionais especificadas na norma devem ser mantidas não somente durante a inspeção e ensaios antes de o elevador ser colocado em serviço, porém também ao longo da vida útil do elevador.

Os componentes que não requerem manutenção (por exemplo, livre de manutenção, lacrado por toda vida útil) ainda são obrigados a estar disponíveis para inspeção. Os componentes são selecionados e instalados de modo que as influências ambientais previsíveis e as condições especiais de trabalho não afetem a operação segura do elevador. Por projeto dos elementos que suportam carga, uma operação segura do elevador é considerada para cargas variando de 0% até 100% da carga nominal, acrescida da sobrecarga mínima de 10% e deve atender aos ensaios desta norma.

Os requisitos desta norma sobre os dispositivos elétricos de segurança são tais que a possibilidade de falha de um dispositivo elétrico de segurança, que atenda a todos os requisitos dessa norma, não precisa ser considerada. Os usuários devem ser protegidos contra a sua negligência e descuido inconscientes ao utilizar o elevador do modo estabelecido. Considerou-se que um usuário pode, em certos casos, cometer um ato imprudente.

A possibilidade de cometer dois atos imprudentes simultâneos e/ou a má utilização de instruções de uso não foi considerada. Se durante o desenvolvimento do trabalho de manutenção um dispositivo de segurança, normalmente não acessível aos usuários for deliberadamente neutralizado, a operação segura do elevador não é mais assegurada, porém medidas compensatórias devem ser tomadas para garantir a segurança dos usuários de acordo com as instruções de manutenção.

Foi considerado que o pessoal de manutenção está instruído e trabalha de acordo com as instruções. Para reproduzir forças horizontais que uma pessoa pode exercer, foram utilizados os seguintes valores de forças estáticas: 300 N; 1.000 N, onde um impacto pode ocorrer. Com exceção dos itens listados, um dispositivo mecânico construído de acordo com as boas práticas e com os requisitos desta norma não irá deteriorar-se a ponto de criar perigo sem que a falha seja detectada.

As seguintes falhas mecânicas foram consideradas nesta norma: quebra da suspensão; deslizamento sem controle dos cabos na polia motriz; quebra e afrouxamento de toda a ligação dos seguintes elementos auxiliares: cabos; correntes; e correias. Inclui a falha de um dos componentes mecânicos do freio eletromecânico que toma parte na ação de frenagem no tambor ou disco; a falha de um componente associado com os elementos de acionamento principais e a polia motriz; a ruptura no sistema hidráulico (cilindro excluído); e pequenos vazamentos no sistema hidráulico (cilindro incluso).

Ocorrendo a queda livre do carro a partir do pavimento extremo inferior, a possibilidade de o freio de segurança não atuar, antes que o para-choque seja atingido, é considerada aceitável. Em caso de elevadores com acionamento hidráulico, providos de dispositivos contra queda livre ou a descida com velocidade excessiva, que parem o carro completamente (por exemplo, freio de segurança, válvula de queda), a possibilidade de o carro bater no para-choque com velocidade excedendo 115% da velocidade nominal de descida não pode ser considerada.

Quando a velocidade do carro está vinculada com a frequência elétrica da rede até o momento da aplicação do freio mecânico, é considerado que a velocidade não exceda 115% da velocidade nominal. Desde que nenhuma das falhas mencionadas ocorra, supõe-se que a velocidade do carro no sentido de descida com qualquer carga (até a carga nominal) não excede a velocidade nominal de descida em mais de 8%.

A caixa está devidamente ventilada, conforme regulamento da construção nacional, considerando a dissipação do calor conforme especificado pelo fabricante. Os acessos às áreas de trabalho devem ser adequadamente iluminados. O sistema de fixação das proteções utilizadas especificamente para proteção das pessoas contra riscos mecânicos, elétricos ou qualquer outro, por meio de uma barreira física, que tenha que ser removida durante a manutenção e inspeção regular, permanece solidário à proteção ou ao equipamento quando a proteção for removida.

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve atender aos requisitos de segurança e medidas de proteção desta norma. Além disso, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve ser projetado de acordo com os princípios da NBR ISO 12100, para perigos relevantes, porém não significativos, que não são tratados por esta norma (por exemplo, arestas vivas).

Esta norma foi desenvolvida tendo por base as formas construtivas usuais. Não é intenção desta norma limitar o ingresso de novas tecnologias, como por exemplo, manutenção de equipamento a partir do interior da cabina, desde que comprovadas sua eficiência, segurança e aplicação por órgão certificador reconhecido. Todos os rótulos, avisos, marcações e instruções de operação devem ser afixados permanentemente, indeléveis, legíveis e facilmente compreensíveis (se necessário, auxiliados por sinais ou símbolos). Eles devem ser de material durável, colocados em uma posição visível e redigidos no idioma do país onde o elevador está instalado (ou, se necessário, em vários idiomas).

Quando o peso, as dimensões e/ou a forma dos componentes impedirem que estes sejam movimentados manualmente, eles devem ser: equipados com fixadores para mecanismo de levantamento; ou projetados de modo que possam ser montados tais fixadores (por exemplo, por meio de furos roscados); ou projetados de modo que um mecanismo de levantamento padronizado possa facilmente ser acoplado. As forças horizontais e/ou energias a serem consideradas estão indicadas nas seções aplicáveis desta norma.

Normalmente, quando não especificada nesta norma, a energia exercida por uma pessoa resulta em uma força estática equivalente a: 300 N; 1.000 N onde o impacto pode ocorrer.

Deve-se atentar para os requisitos referentes à caixa que se destina a proteger o carro do elevador e todas as suas partes móveis, bem como servir de estrutura para fixação de componentes e partes do elevador, como guias, suportes, dispositivos de segurança, portas de pavimento e portas de emergência. É desejável que a caixa ocupe pouco espaço e se constitua em elemento arquitetônico de integração do elevador ao ambiente.

O contrapeso (se provido) do elevador deve estar na mesma caixa do carro. Em todos os casos em que houver, embaixo do poço, recinto utilizado por pessoas, o fundo do poço deve ser calculado conforme descrito a seguir. Se os espaços abaixo do carro ou do contrapeso (se provido) forem acessíveis, a base do poço deve ser projetada para resistir a uma carga de no mínimo 5.000 N/m² e o contrapeso (se provido) deve ser equipado com freio de segurança. O pistão do elevador com acionamento hidráulico deve estar na mesma caixa do carro. Ele pode prolongar-se sob o poço ou outros espaços.

A caixa deve ser totalmente fechada por paredes, piso e teto sem perfurações. As únicas aberturas permitidas são as aberturas para portas de pavimento; as aberturas para portas de inspeção e emergência da caixa; as aberturas para saída de gases e fumaça em caso de incêndio; as aberturas de ventilação; as aberturas necessárias para o funcionamento do elevador entre a caixa e as casas de máquina ou de polias.

Quando não for requerido que a caixa contribua na proteção da edificação contra a propagação do fogo, pode-se admitir proteção de vidro. As folhas de vidro, plano ou conformado, devem ser laminadas. As folhas de vidro e os seus meios de fixação devem resistir a uma força estática horizontal de 1.000 N em uma área de 0,30 m x 0,30 m, em qualquer ponto, tanto de dentro como de fora da caixa, sem deformação permanente.

A caixa deve ser convenientemente ventilada e não pode ser utilizada para ventilação de locais alheios ao serviço do elevador. Se não houver meios de fuga para pessoa (s) presa (s) na caixa para conseguir auxílio externo, um sistema de alarme deve ser instalado quando existir o risco de aprisionamento, operado a partir do (s) espaço (s) de refúgio, garantindo comunicação por voz de duas vias. Este sistema deve permitir contato com o serviço de resgate de forma: direta, via sistema remoto, conforme NBR 16756, ou indireta, via intercomunicação com a portaria.

Quando for aplicado o bloqueio mecânico eliminando o risco de aprisionamento na área de trabalho no topo da cabina ou no poço, não há necessidade de instalação do sistema de alarme. Se houver riscos de enclausuramento em áreas fora da caixa, esses riscos devem ser discutidos com o proprietário da edificação.

A importância da transformação digital para a gestão de riscos

Um estudo global da PwC avaliou os aspectos como investimentos em pessoas, tecnologia e revisão de processos para aprimorar o gerenciamento de riscos. O risco é um efeito da incerteza nos objetivos e um efeito é um desvio em relação ao esperado. Pode ser positivo, negativo ou ambos, e pode abordar, criar ou resultar em oportunidades e ameaças. Conforme a NBR ISO 31022 de 12/2020 – Gestão de riscos — Diretrizes para a gestão de riscos legais, que fornece as diretrizes para a gestão dos desafios específicos dos riscos legais enfrentados pelas organizações, deve-se ter uma abordagem estruturada para avaliar os riscos legais dentro do contexto de uma organização. Por meio da adaptação de técnicas apropriadas de gestão de riscos, uma organização pode identificar proativamente, os riscos legais e então, reduzir, eliminar ou reconfigurar seus processos para minimizar sua exposição a eles. Os objetivos podem possuir diferentes aspectos e categorias, e podem ser aplicados em diferentes níveis. Já o risco legal é aquele relacionado a questões legais, regulamentares e contratuais, e de direitos e obrigações extracontratuais. Questões legais podem ter origem em decisões políticas, lei nacional ou internacional, incluindo lei estatutária, jurisprudência ou direito comum, atos administrativos, ordens regulamentares, julgamento e prêmios, regras processuais, memorandos de entendi mento ou contratos. As questões contratuais se referem às situações em que a organização falha em cumprir suas obrigações contratuais, falha no cumprimento de seus direitos contratuais ou celebra contratos com termos e condições onerosos, inadequados, injustos e/ou inexequíveis. O risco de direitos extracontratuais é o risco de a organização deixar de reivindicar seus direitos extracontratuais. Por exemplo, a falha de uma organização em fazer valer seus direitos de propriedade intelectual, como direitos relacionados a direitos autorais, marcas comerciais, patentes, segredos comerciais e informações confidenciais contra terceiros. O risco de obrigações extracontratuais é o de que o comportamento e a tomada de decisões da organização possam resultar em comportamento ilegal ou uma falha no dever de assistência (ou dever civil) não legislativo para com terceiros. Por exemplo, uma organização infringir direitos de terceiros na propriedade intelectual, uma falha para atender normas necessárias e/ou cuidados devidos a clientes (como mis-selling), ou uso ou gestão de mídias sociais inadequados resultando em alegação por terceiros de difamação ou calúnia e deveres tortuosos em geral. Atualmente, as empresas operam em um ambiente complexo com uma variedade de riscos legais. Não é apenas requerido que organizações cumpram as leis dentro de todos os países em que operam, pois os requisitos regulamentares e legais podem variar entre diferentes países, fortalecendo a necessidade de a organização ter confiança e compreensão em seus processos. As organizações precisam estar alinhadas com as alterações legais e regulamentares, e analisar criticamente suas necessidades à medida que novas atividades e operações são desenvolvidas. As organizações enfrentam considerável incerteza ao tomar decisões e ações que podem ter consequências legais significativas. A gestão de riscos legais ajuda as organizações a proteger e a aumentar seu valor.

Hayrton Rodrigues do Prado Filho

Há orientações sobre as atividades a serem realizadas para apoiar as organizações a gerenciar os riscos legais de maneira eficiente e econômica para atender às expectativas de uma ampla gama de partes interessadas. Ao desenvolver uma compreensão contínua dos contextos legais interno e externo, as organizações podem estar aptas a desenvolver novas oportunidades ou melhorar o desempenho operacional.

Contudo, o não atendimento dos requisitos e expectativas das partes interessadas pode ter consequências negativas consideráveis e imediatas que podem afetar o desempenho, a reputação e poderia levar a diretoria a um processo criminal. Acompanhar a velocidade das transformações digitais e de outras mudanças está entre os principais desafios de 89% das empresas brasileiras quando pensam em gestão de riscos. Este é o resultado da Pesquisa Global de Riscos 2022, realizada pela PwC, que ouviu mais de 3,5 mil líderes globais, incluindo o Brasil. No mundo, esta preocupação foi apontada por 79% das empresas participantes da pesquisa.

Os dados ficam ainda mais evidentes quando a pesquisa aponta os investimentos em digitalização. As empresas brasileiras aumentaram em 68% os recursos destinados à análise de dados, automação de processos e tecnologia para apoiar a detecção e o monitoramento de riscos. O percentual demonstra que o país segue uma tendência global, 74% das organizações participantes da pesquisa global aumentaram os investimentos nesta mesma área.

“A capacidade de resiliência e o gerenciamento de riscos das organizações precisam se adaptar rapidamente para tornar mais ágeis os negócios e contribuir com insights proativos, robustos e oportunos para a tomada de decisões. Em um ambiente onde a mudança é constante, esses recursos podem fornecer vantagem. Os líderes conseguem tomar decisões com confiança ao estabelecer sua estratégia, pois elas são fundamentadas em uma visão panorâmica e abrangente dos riscos”, afirma Evandro Carreras, sócio da PwC Brasil.

Entre os fatores essenciais neste contexto, a associação entre recursos tecnológicos e equipes preparadas é fundamental, e os líderes brasileiros estão atentos a três aspectos da inovação para os quais têm priorizado os investimentos: automação de processos, apontada por 77% dos respondentes; análise de dados, indicada por 72% deles; e detecção e monitoramento de riscos, 70%. Nestes três aspectos, o Brasil está alinhado às preocupações das empresas globalmente.

Para definir as melhores decisões diante dos desafios, há ainda um outro aspecto importante, incorporar o gerenciamento de riscos no planejamento estratégico dos projetos. Para 54% das empresas brasileiras, a preocupação em calcular riscos desde a primeira fase dos projetos resultou em melhores decisões de negócios e em resultados mais duradouros. Esta mesma percepção foi apontada por 39% das empresas no mundo.

Do paradoxo de apostar na inovação e se expor mais ou investir de forma mais sólida em compliance com pouca disrupção, destaca-se o conceito de apetite a riscos. O termo é atribuído aos limites dentro dos quais o conselho de administração pede que as lideranças das empresas sigam ao tomar decisões e traçar estratégias.

A pesquisa da PwC mostra que 17% das empresas brasileiras já percebem a necessidade de definir ou redefinir o apetite a riscos da organização, no mundo, este percentual é de 22% entre os líderes ouvidos na pesquisa. Ao mesmo tempo, a cultura de riscos também ajuda a aproveitar as oportunidades de ganho. Uma cultura de compliance muito forte pode sufocar a inovação. No Brasil, 47% dos líderes estão investindo no desenvolvimento e aprimoramento de uma cultura de riscos em 2022, enquanto este é um investimento para 56% das empresas no mundo.

“A alta liderança precisa de subsídios que a faça se sentir segura com os rumos que os negócios tomam. Quando se utiliza extensivamente tecnologia e gestão de dados para tomada de decisões, é possível viabilizar um cenário mais previsível e assim orientar melhor os movimentos dos executivos, tudo isso tem que ser considerado em uma visão de gerenciamento de riscos eficiente, amparada por pessoas qualificadas e recursos digitais adequados”, completa Carreras.

Lembrando que conforme a NBR ISO 31022 de 12/2020 – Gestão de riscos — Diretrizes para a gestão de riscos legais, que fornece as diretrizes para a gestão dos desafios específicos dos riscos legais enfrentados pelas organizações, deve-se ter uma abordagem estruturada para avaliar os riscos legais dentro do contexto de uma organização. Por meio da adaptação de técnicas apropriadas de gestão de riscos, uma organização pode identificar proativamente, os riscos legais e então, reduzir, eliminar ou reconfigurar seus processos para minimizar sua exposição a eles.

A matriz de identificação de riscos legais (MIRL) é uma abordagem para organizar os riscos legais identificados e coletados como eventos de diferentes tipos através de áreas/unidades/atividades de negócios. Ao considerar as várias áreas/unidades/atividades de negócios envolvidas, a MIRL conecta os riscos legais de vários tipos às operações da organização. Em uma MIRL, todos os eventos de riscos legais identificados são categorizados em diferentes tipos.

Para a categorização dos riscos legais ser útil, é importante reconhecer que cada categoria pode não ser mutuamente exclusiva e que uma simples atividade de negócio pode gerar riscos legais que se enquadram em uma ou mais categorias. Adicionalmente, enquanto a MIRL se refere aos riscos legais para a organização, isso pode incluir ações de agentes, trabalhadores, contratados, etc., que trabalham para ou com a organização.

Dentro de cada categoria de riscos legais pode haver bandeiras vermelhas que devem ser identificadas. Essas estas bandeiras vermelhas devem ser escaladas dentro da estrutura de governança organizacional a fim de que elas sejam tratadas adequadamente. Estas bandeiras vermelhas podem incluir: as jurisdições onde há falta de um estado de direito em pleno funcionamento ou instabilidade política; as condições que requerem que o fornecedor proveja uma indenização contratual devido ao extremo dever de cuidado requerido; os produtos perigosos ou condições perigosas de desempenho.

A estimativa da probabilidade de ocorrência de eventos relacionados ao risco legal é um processo de duas etapas. Primeiro, é determinado se um evento de risco pode ocorrer com um certo grau de probabilidade. Segundo, é determinado se este evento de risco tem consequências legais ou não se qualifica como um risco legal.

Uma vez realizada essa segunda determinação, o risco legal é classificado em uma escala que varia de um risco legal menor, com poucas ou nenhuma consequência provável regulatória ou monetária, até um risco legal com consequências regulatórias ou monetárias significativas. A tabela abaixo fornece uma lista não extensiva de alguns dos fatores em potencial a serem considerados, juntamente com uma classificação apropriada. Uma pontuação mais alta indica uma maior probabilidade de riscos legais relacionados.

A consequência de riscos legais se manifestará em termos das consequências financeiras, regulatórias, de reputação, geográficas e organizacionais da empresa. A análise quantitativa das consequências dos riscos legais pode ser realizada subdividindo cada uma das categorias ao longo de um espectro que varia de nenhuma consequência a consequência grave, dependendo dos efeitos específicos que os riscos legais têm sobre a organização. Portanto, cada uma das cinco categorias pode ser dividida em um espectro de cinco graus de 1 a 5, com 1 indicando nenhuma consequência de riscos legais e 5 indicando uma consequência grave. A ponderação a ser dada para cada uma das cinco categorias usadas para avaliar a consequência de risco legal variará dependendo da organização envolvida e da complexidade das questões envolvidas. A organização é incentivada a desenvolver sua própria ponderação para avaliar a consequência de um risco legal, avaliando a consequência específica das cinco categorias, de acordo com organizações semelhantes, o país ou países em que atua e as operações específicas da indústria que é objeto de seu foco.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital AdNormas https://revistaadnormas.com.br, membro da Academia Brasileira da Qualidade (ABQ) e editor do blog — https://qualidadeonline.wordpress.com/hayrton@hayrtonprado.jor.br

A Qualidade normativa dos cilindros hidráulicos

Em sistemas de energia de fluido hidráulico, a energia é transmitida e controlada através de um líquido sob pressão que circula dentro de um circuito fechado. Um componente de tal sistema é o cilindro de potência do fluido hidráulico. É um dispositivo que converte energia fluida em força mecânica linear e movimento. Consiste em um elemento móvel, ou seja, um pistão e haste do pistão, operando dentro de um furo cilíndrico.

Eles podem ser encontrados em quase todas as máquinas hidráulicas que requerem uma forte força de empurrão ou tração e são usados ​​em uma infinidade de indústrias, incluindo manufatura, construção, mineração e offshore. Um cilindro hidráulico é um atuador mecânico usado para converter energia hidráulica em movimento linear para realizar a ação desejada da máquina, como levantar, pressionar ou mover.

A carcaça de um cilindro hidráulico consiste em um barril com portas separadas para entrada e saída de fluido e um pistão dentro do qual separa o tubo em duas câmaras. O pistão está conectado a uma haste que se move para frente e para trás dentro do cilindro quando exposta à pressão.

A câmara é parcialmente preenchida com fluido hidráulico, deixando espaço suficiente para o pistão operar. O fluido alimenta o cilindro, transmitindo uma força que retrai ou estende o pistão. À medida que a primeira câmara é preenchida com fluido hidráulico, ela atua no pistão forçando-o a se estender e expelindo fluido da segunda câmara. Se a segunda câmara for então preenchida, o pistão se retrai e o fluido é expelido da primeira câmara.

Esse processo gera movimentos de empurrar e puxar, fornecendo a grande força linear necessária para que uma máquina execute a operação necessária. Tal como acontece com todos os outros componentes e aplicações hidráulicas, os cilindros hidráulicos funcionam com base na lei de Pascal. A teoria por trás disso é que, como os fluidos hidráulicos são incompressíveis, a força gerada no pistão transmite uma pressão igual por todo o cilindro. Portanto, a força aplicada internamente será igual à força de saída especificada.

Para a preparação para o ensaio, o cilindro sob análise deve ser montado horizontalmente sem nenhuma carga móvel adicional. A proporção de pressão entre as duas câmaras deve ser inversamente proporcional às áreas do embolo de modo a balancear as forças em ambas as câmaras.

O ensaio pode ser montado verticalmente, caso requerido pela aplicação ou acordado. Neste caso, o peso deve ser considerado nos cálculos de força de atrito. A velocidade máxima de ensaio vk deve ser de 0,05 m/s e deve ser atingida dentro dos primeiros 5 % da amplitude.

No caso de a potência disponível ser insuficiente para atingir a velocidade máxima de ensaio, vk, a velocidade máxima de ensaio será resultado da vazão de óleo disponível. É recomendado que os fabricantes utilizem uma das seguintes declarações, conforme aplicável, em relatórios de ensaios, catálogos e literatura de vendas quando decidirem estar de acordo com este documento.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L e P.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L e F.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação” para cilindros ensaiados com o Módulo L, P e F.

Enfim, a maioria dos tipos de cilindros se enquadram em duas categorias. Os cilindros de simples ação, em um cilindro de simples ação, o fluido só pode atuar em um lado da haste do pistão. Para operar o cilindro da extremidade oposta, outra força, como a pressão da mola ou o peso da carga, deve ser aplicada.

Os cilindros de dupla ação podem exercer força em duas direções, permitindo que a haste atinja movimentos de ida e volta sob a força do líquido de ambos os lados da câmara. Nestas categorias, existem muitas variações na construção para criar diferentes tipos de cilindros. A diferença entre eles depende principalmente de como as duas tampas são presas ao cano, juntamente com os materiais e a espessura da parede.

A NBR ISO 10100 de 09/2022 – Sistemas hidráulicos – Cilindros – Ensaios de aceitação especifica a aceitação e os ensaios funcionais para cilindros hidráulicos. Em sistemas hidráulicos, a energia é transmitida e controlada por meio da circulação de um líquido sob pressão dentro de um circuito fechado. Um componente desse sistema é o cilindro hidráulico. Esse é o dispositivo que converte a energia hidráulica em uma força linear mecânica e em movimento.

Ele consiste em um elemento móvel, por exemplo, um pistão e haste, operando dentro de um cilindro. As seguintes informações sobre o cilindro a ser ensaiado devem ser registradas: tipo; tamanho, tipo e orientação do pórtico; se o cilindro possuir amortecimento, verificação da localização e orientação adequada dos parafusos de regulagem; curso do cilindro; etiqueta do modelo; diâmetro interno do cilindro; diâmetro da haste; extensão e configuração da haste do pistão; e o tipo ou estilo de fixação e, onde aplicável, posição da superfície variável de fixação. Na figura abaixo pode-se conferir a identificação de um cilindro de haste dupla (passante) e a identificação de cilindros de haste simples.

Inserir cilindro2

O óleo hidráulico (ou outro líquido cujo fabricante do cilindro e usuário concorde), que esteja em conformidade com as ISO 6743-4, ISO 7745 ou ISO 15380 e seja compatível com os materiais de vedação usados no cilindro ensaiado, deve ser o meio de ensaio. O fluido usado no circuito de ensaio deve estar de acordo com o descrito a seguir. O nível de contaminação do fluido deve ser 19/16 ou 19/16/13, expresso de acordo com a ISO 4406:2017, ou inferior.

Para aquelas aplicações que requerem um elevado nível de limpeza do fluido, por exemplo, para cilindros com servoválvulas ou elementos de vedação sensíveis a contaminação, o nível de contaminação do fluido deve ser 16/13 ou 16/13/10 de acordo com o especificado na ISO 4406:2017. A temperatura do fluido durante o ensaio deve ser mantida entre 35 °C e 55 °C. Outras faixas de temperatura devem ser acordadas entre o fabricante e o usuário.

Os inibidores de oxidação que previnem a corrosão dentro do cilindro podem ser adicionados ao fluido, desde que sejam compatíveis com os materiais de vedação usados no cilindro sob ensaio. Para o ensaio de estanqueidade em baixa pressão, deve-se realizar o ciclo do cilindro com no mínimo 500 kPa (5 bar) para cilindros com diâmetro interno maior do que 32 mm e com até 1.000 kPa (10 bar) para cilindros com diâmetro interno menor ou igual a 32 mm, três ou mais vezes até a posição final.

Parar em uma das posições finais por no mínimo 10 s. É recomendado que a pressão seja aplicada por mais tempo durante as pausas em cilindros de diâmetros maiores. Para o ensaio visual, verificar a ausência de vibração ou irregularidades durante o movimento. Quando o pistão chegar ao curso final, o curso total deve ser medido. Observar o vazamento do fluido na vedação da haste.

Quando o ensaio terminar, qualquer camada de óleo presente na haste deve ser insuficiente para formar uma gota ou um anel de óleo na haste. Verificar a ausência de vazamento de fluido em todas as vedações estáticas e verificar a ausência de vazamento de fluido nos parafusos de regulagem ou nas válvulas de retenção ou nos amortecedores de fim de curso.

Se quaisquer componentes do cilindro forem vedados por uma solda, verificar a ausência de vazamento de fluido no cordão de solda. Se o cilindro incorporar um amortecimento ou amortecimentos de fim de curso e possuir parafusos de regulagem, os parafusos devem ser ajustados fixados a uma posição ligeiramente aberta. Verificar se a montagem do pistão com a haste mostra um efeito de desaceleração antes do seu contato com o (s) cabeçotes (s) do cilindro.

Um ensaio de pressão de 1,5 vez a pressão nominal do cilindro ou pressão de operação recomendada deve ser aplicado alternadamente em ambas as extremidades do cilindro e mantido por pelo menos 10 s.

É recomendado que a pressão seja aplicada por mais tempo em ambas extremidades em cilindros de diâmetros maiores. No ensaio visual, deve ser verificada a integridade estrutural do cilindro e a ausência de vazamento de fluido em todas as vedações estáticas. Deve ser verificada a ausência de vazamento de fluido no parafuso de regulagem ou na válvula de retenção de amortecimento de fim de curso, quando aplicável.

Se quaisquer componentes do cilindro forem vedados por uma solda, deve ser verificada a ausência de vazamento de fluido no cordão de solda (s). O módulo P, ensaio de estanqueidade da vedação do êmbolo (opcional) é um ensaio é requerido somente se especificado pelo usuário. Uma pressão de ensaio igual à pressão nominal do cilindro ou uma pressão de ensaio especificada pelo usuário deve ser aplicada ao cilindro. No ensaio visual, deve ser verificada a ausência de vazamento do fluido na vedação do pistão.

O módulo F, ensaio de força de atrito (opcional) é requerido se especificado pelo usuário. As forças de atrito em cilindros hidráulicos devem ser determinadas pela medição de pressão diferencial em um circuito eletro-hidráulico. Para este propósito, as hastes dos cilindros hidráulicos devem ser movimentadas com controle de posição em malha fechada com válvulas de controles e transdutores de posição apropriados.

Os transdutores de pressão adequados devem ser integrados as duas câmaras do cilindro. Ambas as pressões das câmaras e a posição da haste devem ser continuamente medidas em cada estágio de pressão pa = 5 MPa,10 MPa, 15 MPa, 20 MPa e 25 Mpa2) durante dois ciclos de avanço e recuo completos. Se a pressão de trabalho permitida for menor do que a pressão de ensaio mencionada neste documento, nenhuma medição deve ser efetuada com estas altas pressões.

Os contentores intermediários para granel devem ser cumprir a norma técnica

Os intermediates bulks containers (IBC) compostos são equipamentos estruturais, em forma de armação externa rígida, envolvendo um recipiente interno de plástico, juntamente com qualquer equipamento estrutural ou de serviço, construído de modo que a armação externa e o recipiente interno, uma vez montados, passam a ser uma unidade integrada, envasada, armazenada, transportada e esvaziada como tal. Os contentores intermediários para granel podem ser usados para líquidos inflamáveis, tanto os IBC metálicos (31A) quanto os IBC compostos EX com recipiente interno plástico rígido e estrutura metálica (31HZ1) com proteção antiestática e dispositivo metálico interno para escoamento das cargas eletrostáticas que podem se acumular no líquido durante as operações de enchimento e esvaziamento. A escolha do IBC adequado e compatibilidade do material construtivo do IBC com produtos nele acondicionados é de responsabilidade do envasador e a análise deve ser realizada antes do início do processo.

Pode-se ressaltar que muitas operações com líquidos inflamáveis produzem atmosferas inflamáveis pela evaporação do líquido manuseado. O ponto de fulgor fornece uma indicação aproximada da temperatura mínima de superfície do líquido necessária para produzir uma atmosfera inflamável. No entanto, por causa das incertezas envolvidas na medição do ponto de fulgor, das diferenças entre as condições de ensaio para determinação do ponto de fulgor comparados a situação real na indústria e da dificuldade de estabelecer a temperatura de superfície do líquido (em grandes volumes), deve-se assumir que uma atmosfera inflamável pode existir, mesmo quando a temperatura do líquido é inferior ao ponto de fulgor considerando uma margem de segurança que depende do nível de incerteza sobre a temperatura, composição líquida, etc.

Para condições bem controladas, uma margem de 5 °C para líquidos puros e pelo menos 11 °C para as misturas é normalmente necessária. Quando os IBC são expostos à luz solar direta e as temperaturas dos líquidos não são monitoradas, recomenda-se assumir que exista uma atmosfera inflamável ao manusear líquidos com ponto de fulgor de até 60 °C.

Deve-se ser considerado que em áreas com temperatura ambiente elevada e exposta ao sol, as atmosferas inflamáveis podem ocorrer mesmo com os líquidos que possuam pontos de fulgor acima de 60 °C. Quando um líquido é manuseado a uma temperatura bem acima do seu ponto de fulgor, o vapor saturado pode resultar em uma atmosfera mais rica (isto é, não inflamável). No entanto, a atmosfera logo acima do líquido pode não estar saturada (por exemplo, devido a ventilação), e assim pode ser inflamável.

Por isso, é necessário assumir que a atmosfera pode ser inflamável, a menos que possa ser demonstrado o contrário. Consequentemente, para líquidos de baixo ponto de fulgor, não convém que a presença de uma atmosfera mais rica geralmente seja considerada a única medida de controle. Em algumas circunstâncias, a atmosfera inflamável não ocorre devido ao líquido manuseado, mas devido aos resíduos de líquidos voláteis ou vapores de operações anteriores, no mesmo equipamento ou de outras operações em locais próximos.

Os vapores residuais podem ocorrer durante o carregamento, no qual um líquido com alto ponto de fulgor (por exemplo, diesel) é carregado em um IBC que anteriormente continha um líquido com ponto de fulgor baixo (por exemplo, gasolina). A sensibilidade de uma atmosfera inflamável para ignição eletrostática depende da concentração e da energia de ignição mínima (minimum ignition energy – MIE) do material inflamável. Deve-se considerar que a concentração mais facilmente inflamável de vapor é aproximadamente o dobro da concentração no limite inferior de explosividade.

Devido ao efeito de concentração, uma mistura feita com um material de alta MIE na sua concentração mais facilmente inflamável pode ser mais sensível à ignição do que uma mistura feita com um material de baixa MIE em uma concentração de vapor que se encontre apenas na faixa de explosividade. Para as misturas equilibradas de vapor/ar criadas por líquidos inflamáveis, a concentração mais facilmente inflamável de vapor é normalmente alcançada a uma temperatura de aproximadamente 10 °C a 20 °C acima do ponto de fulgor. Deve-se considerar que os líquidos inflamáveis de volatilidade intermediária tendem a produzir suas misturas mais facilmente inflamáveis nas temperaturas ambientes normais.

Como exemplo destes líquidos, pode-se incluir o tolueno (ponto de fulgor 6 °C), acetato de propila (ponto de fulgor de 10 °C) e acetonitrila (ponto de fulgor 2 °C). As precauções gerais dadas nesta seção se destinam a impedir a explosividade de materiais com MIE de 0,20 mJ ou mais, quando presentes na concentração de vapor mais facilmente. Eles são, portanto, aplicáveis às misturas mais facilmente igníferas na mistura dos vapores de líquidos inflamáveis comuns, como solventes parafínicos e aromáticos, combustíveis de hidrocarbonetos e muitos solventes orgânicos.

Nas temperaturas típicas ambiente, as margens de segurança estão no mínimo quando são manuseados líquidos inflamáveis de volatilidade intermediária, como os descritos acima. Nestas operações, recomenda-se um cuidado especial para assegurar que todas as orientações sejam diligentemente seguidas. Embora os grupos de explosão não sejam atribuídos com base no MIE, as precauções requeridas na presença da maioria dos vapores do grupo IIA de explosão, são geralmente semelhantes às apresentadas para MIE de 0,20 mJ e acima.

As precauções adicionais são necessárias onde a atmosfera acima do líquido é mais sensível à ignição. Esta situação surgirá, por exemplo, com as misturas mais facilmente inflamáveis no ar de materiais voláteis que possuem MIE menor que 0,20 mJ (a maioria dos materiais dos grupos IIB e IIC) ou com misturas ricas de oxigênio. Apesar das orientações gerais não terem sido desenvolvidas para estes ambientes mais sensíveis, as recomendações são dadas por algumas atividades específicas.

Onde elas são dadas, as precauções adicionais para os materiais mais sensíveis são explicitamente identificadas como tal no texto. Os líquidos podem se tornar eletrostaticamente carregados quando eles se movem em contato com os sólidos ou se existirem duas ou mais fases de líquidos imiscíveis e existir movimento. A pulverização de líquidos também pode criar uma névoa ou vaporização altamente carregada.

A geração de cargas eletrostáticas ocorre onde os líquidos escoam através das tubulações e acessórios onde ocorre turbulência durante as operações de transferência. Quanto maiores forem as áreas de interface entre o líquido e a superfície, e quanto mais alta for a velocidade de fluxo, maiores são as taxas de geração de carga. As cargas se tornam misturadas com o líquido e são transportadas até os vasos de recepção, onde podem se acumular.

As características de acumulação de cargas eletrostáticas da maioria dos líquidos inflamáveis, particularmente hidrocarbonetos não polares, são o resultado de traços de contaminantes, às vezes em concentrações inferiores a 1 ppm. Assim, esses líquidos podem se tornar mais ou menos condutivos em várias magnitudes, dependendo das concentrações de contaminantes que se originam de processos, armazenamento, manuseio, manipulação e transporte. A dissipação da carga eletrostática em líquido inflamável deve ocorrer de modo rápido o suficiente para anular os riscos de ignição.

A carga eletrostática em um líquido contido em um recipiente aterrado dissipa a uma taxa que depende da sua condutividade elétrica. O líquido condutivo que, à primeira vista aparenta ser seguro pode representar um risco significativo se não estiver aterrado, por estar contido em um recipiente isolado eletricamente ou vaporizado (névoa). Quando isolado, as cargas no líquido condutivo podem ser liberadas na forma de uma faísca.

Quando suspenso como uma névoa, um campo elétrico significativo gerado pela eletricidade estática pode resultar em uma descarga. Os líquidos com alta viscosidade (viscosidade de cinemática cerca de 100 mm²/s) tendem a se tornar eletrostaticamente carregados mais facilmente do que os líquidos com baixa viscosidade, como os combustíveis ou solventes, como o hexano (viscosidade cinemática de cerca de 1 mm²/s) durante a vazão pelas tubulações e, especialmente pelos filtros. Estes líquidos de alta viscosidade podem também possuir uma condutividade elétrica tão baixa quanto 0,01 pS/m, permitindo a eles que retenham sua carga eletrostática por mais de 1 h.

Devido a isto, não se deve aplicar as restrições na velocidade do fluxo, recomendadas para líquidos de baixa viscosidade, se uma atmosfera explosiva estiver presente. A maioria dos líquidos de alta viscosidade é de alta condutividade (por exemplo, óleo cru) ou não é suficientemente volátil para produzir uma atmosfera explosiva (por exemplo, a maioria dos óleos lubrificantes). Como resultado, eles normalmente não geram um elevado risco de ignição.

Em alguns casos, entretanto, existe um risco de ignição, por exemplo, quando um óleo lubrificante de baixa condutividade é bombeado para um tanque rodoviário que continha um líquido inflamável volátil. Uma vez que os limites de vazão confiáveis para líquidos de alta viscosidade não são conhecidos, quando líquidos de baixa condutividade e alta viscosidade são manuseados, convém evitar a presença de uma atmosfera explosiva, por exemplo, por meio de inertização.

O nível de acúmulo de carga em um determinado líquido específico e, portanto, o risco eletrostático que pode ser criado, é fortemente dependente da sua condutividade elétrica e constante dielétrica (permissividade relativa), εr. Para descrever os possíveis riscos e os meios de prevenção, a condutividade de líquidos é classificada da seguinte forma: baixa condutividade < 25 × εr pS/m; média condutividade entre 25 × εr pS/m e 10.000 pS/m; e alta condutividade > 10 000 pS/m.

Para líquidos com constante dielétrica de cerca de 2 (por exemplo, hidrocarbonetos), resultam em: baixa condutividade < 50 pS/m; média condutividade entre 50 pS/m e 10.000 pS/m; e alta condutividade > 10.000 pS/m. Para líquidos com uma constante dielétrica substancialmente maior do que 2 ou para líquidos cuja constante dielétrica seja desconhecida, o valor-limite para baixa condutividade é geralmente definido como 100 pS/m. O valor-limite superior da condutividade média se mantém em 10.000 pS/m.

O valor de 100 pS/m é considerado suficiente mesmo para casos não conhecidos, uma vez que poucos líquidos, caso existam, possuem uma permissividade relativa significativamente maior que 4. Os níveis perigosos de acúmulo de carga são mais comumente associados aos líquidos de baixa condutividade. No entanto, estes riscos podem ocorrer com líquidos de média ou alta condutividade em processos que geram névoas ou sprays, durante transporte de líquidos de condutividade média pelos tubos isolantes ou durante as operações de transporte de mistura em duas fases.

Em geral, os solventes polares, como álcoois, cetonas e água, possuem elevada condutividade, enquanto que os líquidos de hidrocarbonetos saturados e aromáticos purificados possuem uma baixa condutividade. As condutividades e os tempos de relaxamento para alguns líquidos são apresentados na tabela abaixo.

Quando do carregamento de tanque com líquido de baixa condutividade eletrostaticamente carregado, a carga que se acumula no líquido dentro do tanque gera campos elétricos e potenciais, tanto no líquido como no vapor dentro do tanque. Com potenciais de superfícies do líquido elevados, as descargas ramificadas podem ocorrer entre a superfície do líquido carregado e as partes metálicas da estrutura do tanque. Estudos indicam que os hidrocarbonetos alifáticos, como o propano, podem ser inflamados por estas descargas ramificadas na sua passagem até um ponto aterrado, se o potencial de superfície do líquido for superior a 25 kV.

Um risco de ignição pode ser gerado por potenciais muito mais baixos (tipicamente entre 5 kV a 10 kV) se objetos condutores isolados, como partes metálicas flutuantes ou componentes inadequadamente equipotencializados, estiverem presentes no tanque, ou se o tanque possuir um revestimento isolante, sem pontos de contato para o aterramento do líquido, e o enchimento for do tipo turbilhonado, por um líquido que seja suficientemente condutivo para produzir centelhamento.

As descargas podem ocorrer se houver geração e acúmulo de cargas eletrostáticas nos líquidos. A geração de cargas ocorre onde líquidos escoam através de tubulações, de mangotes e de filtros, onde ocorrer turbulência durante as operações de transferência ou onde os líquidos são misturados ou agitados. Quanto maiores forem as áreas de interface entre o líquido e a superfície, e quanto mais alta for a velocidade do fluxo, maiores serão as taxas de geração de carga.

As cargas se tornam misturadas com o líquido e são transportadas até os vasos de recepção, onde elas podem se acumular. Ao se acumular, estas cargas podem ser descarregadas na forma de uma centelha dentro ou fora do IBC, e se a mistura de ar e vapor estiver dentro do limite de explosividade pode ocorrer um incêndio ou uma explosão. Dentro de um IBC, as descargas eletrostáticas são mais prováveis de ocorrer logo acima da superfície líquida, à medida que os vapores inflamáveis se acumulam.

A NBR 17056 de 09/2022 – Transporte de produtos perigosos – Contentor intermediário para granel (IBC) para líquidos inflamáveis – Requisitos e métodos e métodos de ensaio  estabelece os requisitos operacionais para o uso de IBC com líquidos inflamáveis e o método de ensaio eletrostático para IBC composto, a fim de evitar riscos de ignição e choque eletrostático decorrentes da eletricidade estática e para assegurar condições seguras de processos, armazenagem e transporte. Estabelece as orientações para uma avaliação de riscos relacionados a uso de líquidos inflamáveis em IBC. Esta norma não se destina a substituir as normas que cobrem produtos e aplicações industriais específicas.

Esta norma não se aplica aos IBC sem propriedades antiestática e dissipativa. Os contentores intermediários para granel (IBC) são as embalagens portáteis rígidas ou flexíveis, utilizadas para o transporte de produtos fracionados.

Quando se trata de armazenamento fracionado de líquidos inflamáveis, em recipientes que proporcionam a facilidade de movimentação e transporte, cuidados adicionais são necessários para evitar que a atmosfera criada por aquela substância não gere um perigo de acidente. Com base nesta premissa, existem determinados tipos de recipientes que são permitidos por normas para armazenar líquidos inflamáveis.

Um dos recipientes seguros é o contentor intermediário para granel (IBC) para líquidos inflamáveis, com ênfase em IBC composto EX e IBC metálico, desde que observados e aplicados os requisitos desta norma. Ela também especifica um método de ensaio de resistência eletrostática em IBC, de forma a assegurar o uso seguro de líquidos inflamáveis em IBC adequado, sempre de forma preventiva e em conformidade com as leis aplicáveis, incluindo a legislação de transporte de produtos perigosos.

Espera-se que se as recomendações fornecidas neste documento forem atendidas, o risco de descargas eletrostáticas perigosas em uma atmosfera explosiva esteja em um nível aceitavelmente baixo. O IBC rígido metálico pode ser encontrado em aço-carbono e aço inoxidável, para transporte de produtos perigosos conforme legislação vigente. Possui tampa com Ø nominal 450 mm com fecho tipo clamp de abertura rápida.

O IBC metálico é condutivo e por esta razão o risco de acúmulo de cargas eletrostáticas é baixo durante a operação com líquidos inflamáveis e combustíveis, desde que ele esteja aterrado. Possui boa resistência mecânica a choques e boa resistência ao calor. Exemplos de IBC metálicos e suas características construtivas são apresentados na norma. O IBC metálico pode ser cúbico, como exemplo na figura abaixo, ou cilíndrico, como exemplo na figura abaixo, e é construído com aço inoxidável podendo ser autoportante, com válvula de segurança.

Os tipos de válvulas do IBC metálico são as seguintes: as válvulas para alívio de pressão e quebra a vácuo, independentes, e a válvula para descarga inferior. O IBC composto EX possui sua composição estrutural idêntica ao IBC composto comum, acrescido de componentes e aditivos que proveem características de operação adequadas aos requisitos seguros para operar em zonas EX 1 e 2 para líquidos pertencentes ao grupo de explosão IIA e aos líquidos pertencentes aos grupos de explosão IIB com energia mínima de ignição de 0,2 mJ ou maior (de acordo com a NBR ISO/IEC 80079-20-1). Ele possui tampa rosqueável.

Para IBC composto destinado a líquidos inflamáveis, obrigatoriamente o palete deve conter partes metálicas a fim de atender aos requisitos de ensaios para o aterramento. O IBC composto EX deve apresentar as seguintes características: recipiente interno com cobertura integral e homogênea por aditivo antiestático (dissipativo); sistema permanente de aterramento entre o terra e o líquido com resistência máxima de 1MΩ); adesivo de advertência, com informações seguras sobre o grupo de produtos e áreas de risco permitidos o uso do IBC na cor amarela. O IBC de plástico composto sem as características citadas anteriormente, não podem ser usados com líquidos inflamáveis, pois não oferecem proteção para o escoamento das cargas eletrostáticas.

Desta forma, o IBC composto sem proteção EX só pode ser usado com líquidos que tiverem ponto de fulgor superior a 60 °C e não podem ser usados em locais onde possa haver a presença de vapores inflamáveis. O aditivo desenvolvido para esta aplicação deve possuir propriedades permanentes. O único cuidado que convém que o usuário tome é quanto a sua resistência mecânica, assim como o polietileno em si.

O uso de jatos de água e escovas abrasivas usados na limpeza externa do IBC podem comprometer a ação do aditivo antiestático. As partes do IBC que entram em contato direto com produtos perigosos, incluindo tampas, válvulas, guarnições, devem atender aos seguintes requisitos: não podem ser afetadas ou significativamente enfraquecidas por tais produtos; não podem provocar efeito perigoso, como, por exemplo, catalisar uma reação ou reagir com os produtos perigosos; e não podem permitir penetração dos produtos perigosos de forma que possa gerar risco em condições normais de transporte.

Para o volume máximo no enchimento do IBC, deve ser observada a legislação de transporte de produtos perigosos: no enchimento de embalagens (inclusive IBC e embalagens grandes) com líquidos, deve ser deixada uma folga suficiente para assegurar que não ocorra vazamento ou deformação permanente da embalagem, em decorrência de uma expansão do líquido devida a prováveis variações de temperatura durante o transporte. Exceto quando houver prescrição específica em contrário, os líquidos não podem encher completamente a embalagem à temperatura de 55 °C. No caso de IBC, deve ser deixada folga de enchimento suficiente para assegurar que, à temperatura média de 50 °C, o nível de enchimento não ultrapasse 98 % de sua capacidade em água. Quanto às características dos IBC e do processo a ser utilizado para enchimento e esvaziamento do IBC, devem ser fabricados a partir de um recipiente interno isolante cercado por uma estrutura ou revestimento condutor

Para os IBC fabricados a partir de um recipiente interno isolante cercado por uma estrutura ou revestimento condutor, essa forma de construção é geralmente utilizada para pequenos tanques ou IBC com capacidade de cerca de 1 m³. Eletrostaticamente a cobertura fornecida pela estrutura condutora pode ser incompleta, portanto, pode haver lacunas entre a estrutura e a parede do IBC. Exemplos incluem contentores de plástico, como os IBC compostos, rodeados por uma chapa, grade, malha ou revestimento condutivo (camada).

A orientação neste item é focada na aplicação de IBC, principalmente nos compostos. A utilização de IBC para produtos mais sensíveis à ignição necessita de requisitos específicos. Para IBC e tanques similares, um invólucro totalmente condutivo, revestimento ou uma grade com abertura não excedendo 10.000 mm² são capazes de evitar que a superfície externa do invólucro plástico se torne eletrostaticamente carregada em um nível de risco (sujeito aos requisitos indicados a seguir, sobre o contato entre o invólucro e o plástico) e contribuem para dissipar quaisquer cargas eletrostáticas presentes na superfície interna, reduzindo o risco de ocorrência de descargas ramificadas capazes de causar uma ignição no interior do IBC.

Deve-se ter alguns cuidados rigorosos para evitar a existência de ilhas condutivas que podem ser causadas por revestimentos condutivos não homogêneos sobre as superfícies isolantes do recipiente. O revestimento externo pode ser uma camada não carregável eletrostaticamente do tipo coextrusada com o recipiente interno do IBC. O recipiente pode ser composto de várias outras camadas.

Para assegurar que nenhuma das paredes internas ou externas do IBC, nem os líquidos do seu interior possam ser eletrostaticamente carregados a um nível de risco, alguns requisitos de devem ser atendidos de acordo com o grupo de explosão do líquido. Requisitos para IBC que serão usados somente para líquidos pertencentes ao grupo de explosão IIA. Existem também os requisitos que se aplicam a líquidos pertencentes ao grupo de explosão IIA, bem como os líquidos: etanol, propanol, butanol, hexanol, heptanol, 1,2-etanodiol, etilbenzeno e ácido etil éster 3-oxobutanoico.

Somente poucos grupos de líquidos não são classificados no grupo de explosão IIA. Ver a NBR ISO/IEC 80079-20-1, Anexo B, para mais detalhes. O IBC deve estar completamente cercado por uma chapa, grade, malha ou revestimento condutivo, exceto para pequenas áreas limitadas consideradas no projeto (isto é, para as quais as consequências de uma cobertura incompleta tiverem sido consideradas no projeto e não representarem risco). Se o invólucro for formado por uma tela, convém que a área da grade aberta (mesh) da tela não seja maior que 10.000 mm².

O espaçamento máximo de 10.000 mm² em áreas não protegidas se aplica quando as partes metálicas são as únicas propriedades de proteção eletrostática, conforme o caso dos IBC revestidos com chapas metálicas. No caso dos IBC antiestáticos que possuem o aditivo dissipativo presente na totalidade da superfície da camada externa do recipiente plástico, aplicado durante o sopro, este espaçamento não é considerado.

Quaisquer áreas limitadas não cercadas por uma chapa, grade, malha ou revestimento condutivo (por exemplo, o dispositivo de carregamento ou áreas ao seu redor sejam dissipativas e aterradas, ou protegidas de outras maneiras, de forma que não possam ocorrer riscos de ignição para o Grupo IIA em uma área classificada do tipo Zona 1 e ao redor de uma Zona 0 existente no interior do contêiner (por exemplo, limitando a área que possa ser eletrostaticamente carregável aos valores indicados na ABNT IEC/TS 60079-32-1:2020, 6.3.2 ou por tratamento superficial).

A efetividade e a durabilidade do tratamento superficial (por exemplo, por extrapolação, por revestimento homogêneo com camadas dissipativas etc.) devem ser demonstradas experimentalmente sob as condições mais desfavoráveis de carregamento eletrostático, umidade e contaminação (ver a ABNT IEC/TS 60079-32-1:2020, 6.3.9). A chapa, a grade, a malha ou o revestimento condutivo devem possuir um contato adequado com o recipiente interno em todas as faces do IBC, exceto para pequenas áreas com dimensões especiais consideradas no projeto.

Para uma tela com malhas abertas excedendo a 3.000 mm², não convém que uma distância máxima de 20 mm entre a tela e o receptáculo interno seja excedida nas áreas com dimensões especiais consideradas no projeto, por exemplo, a área do bocal da válvula de saída. Somente em bordas e cantos do IBC uma distância máxima de até 40 mm pode ser tolerada. Para uma chapa, malha, revestimento condutivo sólidos ou uma tela com malhas menor que 3.000 mm2, uma distância máxima de 40 mm é permitida em áreas, bordas ou cantos considerados no projeto.

Não é comum obter distâncias menores. As cargas eletrostáticas resultantes destas áreas são pequenas e geralmente apresentam um risco aceitavelmente baixo. Todas as partes condutivas e dissipativas devem ser equipotencializadas e aterradas. O IBC deve possuir um meio condutivo com resistência máxima de 1 megaohm entre o líquido e o aterramento, por exemplo, pela utilização de uma tubulação de carregamento condutiva aterrada que se estenda até um local próximo do fundo do IBC ou uma válvula de fundo condutiva aterrada ou uma placa condutiva com área suficientemente grande no fundo do tanque.

Convém que mesmo pequenas quantidades de líquido remanescente, por exemplo 1 L, estejam permanentemente em contato com o ponto de aterramento do fundo, de forma a evitar que o líquido se torne um material condutor isolado eletrostaticamente carregado. O IBC deve ser equipado com uma etiqueta de advertência na cor amarela, informando à sua utilização segura com letras de no mínimo 2 mm de altura, legível, escritas no idioma oficial do Brasil, podendo usar concomitantemente outro idioma.

A etiqueta deve ser confeccionada em material que resista às condições normais de uso, transporte e armazenagem. Antes do reabastecimento, o IBC deve ser verificado com relação ao atendimento às orientações dessa norma. O IBC não pode ser utilizado quando uma Zona 0 estiver presente no lado externo do IBC.

Convém que os líquidos isolantes (por exemplo, tolueno) sejam adicionados por meio de um tubo condutivo aterrado imerso no líquido. Convém que este tubo submerso esteja próximo do fundo do IBC, de forma a evitar a ocorrência de descargas ramificadas a partir do líquido isolante. A vazão de carregamento deve ser limitada a 200 L/min e a velocidade de carregamento não pode exceder 2 m/s.

Ambos os valores são normalmente atendidos quando o carregamento ocorre por gravidade. Os enchimentos rápidos e repetitivos, ou outros processos de alto carregamento eletrostático, devem ser evitados. Estes outros processos de alto carregamento eletrostático são abordados na ABNT IEC/TS 60079-32-1:2020, 7.5, 7.9 e 7.10). O IBC não pode ser abastecido imediatamente após a sua limpeza, fabricação, etc. quando ele pode estar eletrostaticamente carregado em um nível elevado. Em caso de dúvidas consultar o fabricante.

Quanto aos requisitos para os IBC que podem ser utilizados para todos os líquidos que geram vapores do grupo IIB, o IBC deve ser circundado por uma superfície de parede externa dissipativa ou condutiva, obtida, por exemplo, por revestimento ou coextrusão. Todas as partes condutivas e dissipativas devem ser equipotencializadas e aterradas. Quaisquer áreas limitadas não circundadas pela superfície de parede externa (por exemplo o bocal de carregamento ou áreas ao redor deste bocal) devem ser dissipativas e aterradas ou protegidas pela limitação da área carregável eletrostaticamente aos valores estabelecidos na ABNT IEC/TS 60079-32-1:2020, 6.3.2.

O IBC deve possuir um meio condutivo com resistência máxima de 1 megaohm entre o líquido e o aterramento. O IBC deve ser equipado com uma etiqueta de advertência na cor verde relativa à sua utilização segura, com letras de no mínimo 2 mm de altura, legível, escritas no idioma oficial do Brasil, podendo usar concomitantemente outro idioma. A etiqueta deve ser confeccionada em material que resista as condições normais de uso, transporte e armazenagem.

A busca de um propósito está no centro da governança das empresas

Normalmente, a busca de um propósito está no centro de todas as organizações e é, portanto, de importância primordial para a governança de organizações. A boa governança de organizações estabelece as bases para o cumprimento do propósito da organização de forma ética, eficaz e responsável, de acordo com as expectativas das partes interessadas. Os resultados organizacionais desta boa governança são o desempenho eficaz; e a administração (stewardship) responsável.

Pode-se definir o órgão de governança como uma pessoa ou grupo de pessoas que têm a responsabilização final por toda a organização. Toda entidade organizacional tem um órgão de governança, esteja ou não explicitamente estabelecido. Um órgão de governança pode ser explicitamente estabelecido em vários formatos, incluindo, mas não se limitando a, um conselho de administração, conselho de supervisão, diretor único, diretoria conjunta e vários diretores ou curadores.

Ele deve assegurar que a organização proteja e restaure os sistemas dos quais depende. Nesse sentido, o órgão de governança deve considerar e gerenciar o risco associado às decisões que tome e que possam impactar sistemas ambiental natural, social e econômico. Ao fazer isso, o órgão de governança deve assegurar que as partes interessadas pertinentes sejam consultadas e engajadas.

Esse processo deve proporcionar clareza sobre o impacto que as decisões do órgão de governança têm, ao longo do tempo, sobre os aspectos em relação aos quais a organização: depende diretamente; não depende diretamente, mas cuja capacidade de sustentar-se será afetada pelas decisões do órgão de governança. O órgão de governança deve assegurar que, quando a organização relatar e divulgar seu modelo de geração de valor, sejam incluídos: a visão integrada das relações entre o modelo de geração de valor da organização e os sistemas dos quais ela depende (e que a organização também afeta por meio de sua geração de valor); os riscos que se apresentam à organização e ao seu modelo de geração de valor, pelos sistemas do ambiente natural, social e econômico em que ela opera, e pelas decisões do órgão de governança; os riscos que se apresentam aos sistemas do ambiente natural, social e econômico pela organização, por seu modelo de geração de valor e pelas decisões do órgão de governança.

A NBR ISO 37000 de 09/2022 – Governança de organizações – Orientações fornece orientações sobre a governança das organizações. Fornece também os princípios e os aspectos-chave das práticas para orientar os órgãos de governança e os grupos de governança sobre como cumprir as suas responsabilidades, de modo que as organizações que governam possam cumprir o seu propósito. Destina-se às partes interessadas envolvidas ou impactadas pela organização e pela sua governança.

A busca do propósito está no centro de todas as organizações e é, portanto, de importância primordial para a governança de organizações. A boa governança de organizações estabelece as bases para o cumprimento do propósito da organização de forma ética, eficaz e responsável, de acordo com as expectativas das partes interessadas.

Os resultados organizacionais desta boa governança são: o desempenho eficaz; a administração (stewardship) responsável; e o comportamento ético. Boa governança significa que a tomada de decisão da organização é baseada no ethos, cultura, normas, práticas, comportamentos, estruturas e processos da organização. A boa governança cria e mantém uma organização com um propósito claro, que proporciona valor a longo prazo, consistente com as expectativas das suas partes interessadas pertinentes.

A implementação da boa governança é baseada em liderança, em valores e em um quadro de mecanismos, processos e estruturas que são apropriados aos contextos interno e externo da organização. Esta orientação é dirigida aos órgãos de governança e grupos de governança, mas também pode ser útil para aqueles que os apoiam no exercício de suas funções, como: o pessoal; os praticantes de governança; e as outras partes interessadas.

As organizações que utilizam esta orientação estarão melhor equipadas para entender as expectativas de suas partes interessadas e aplicar a criatividade, cultura, princípios e desempenho necessários para entregar os objetivos da organização de acordo com seu propósito e valores. Seus órgãos de governança responsabilizarão os gestores e assegurarão que a cultura, as normas e as práticas da organização estejam alinhadas com o propósito e os valores da organização. Esta orientação estabelece princípios de governança que auxiliarão os órgãos de governança no exercício dos seus deveres de forma eficaz, prudente e eficiente, ao mesmo tempo em que aumenta a confiança, inclusão, responsabilização, legitimidade, capacidade de resposta rápida, transparência e equidade.

Os órgãos de governança que aplicam esta orientação podem esperar que as organizações que governam alcançarão desempenho eficaz, administração (stewardship) responsável e comportamento ético. Quando as organizações usam este documento, as partes interessadas em todos os países e setores podem ter maior confiança de que os órgãos de governança dessas organizações são responsáveis, responsabilizáveis, justos e transparentes, agem com probidade e tomam decisões baseadas em riscos e esclarecidas por: informação verossímil e dados confiáveis; expectativas das partes interessadas; obrigações de compliance; expectativas éticas e da sociedade, incluindo as antecipadas para as futuras gerações; e impactos, e confiança, no ambiente natural.

Os benefícios da boa governança podem se aplicar: à própria organização; às partes interessadas membro; a outras partes interessadas. A governança das organizações é facilitada pela aplicação de princípios que ajudem a organização a cumprir seu propósito organizacional e, ao fazê-lo, gerar valor para a organização e para as suas partes interessadas.

A figura abaixo fornece uma visão geral da governança das organizações e dos princípios e resultados de governança descritos neste documento. Esses componentes já podem existir na íntegra ou em parte na organização. No entanto, às vezes, precisam ser adaptados ou melhorados para que a governança da organização permaneça eficaz, eficiente e apropriada ao seu contexto e à natureza dinâmica únicos.

Todas as partes interessadas esperam que as organizações, especialmente aquelas que impactam diretamente em suas vidas, sejam bem governadas. Isso resulta na necessidade de desenvolver uma compreensão comum do que constitui a governança das organizações em todas as jurisdições. Portanto, é necessária uma abordagem global baseada no consenso. Este documento define condições e princípios de governança, e recomenda aspectos-chave da prática que podem orientar aqueles que governam organizações para compreender e cumprir suas responsabilidades, para que a organização que governam possa cumprir seu propósito.

Esta orientação é para os membros do órgão de governança e para os grupos de governança, aqueles a quem supervisionam e aqueles perante quem o órgão de governança é responsabilizável. Destina-se também às partes interessadas envolvidas ou impactadas pela governança das organizações. A governança das organizações é um sistema de base humana pelo qual uma organização é dirigida, supervisionada e responsabilizada por alcançar seu propósito organizacional definido.

Em sua essência, isso inclui: estabelecer e se comprometer com o propósito organizacional e valores organizacionais; determinar a abordagem da organização para a geração de valor; dirigir e se engajar com estratégia para gerar valor; supervisionar para que a organização desempenhe e se comporte de acordo com as expectativas estabelecidas pelo órgão de governança; demonstrar responsabilização por esse desempenho e comportamento. A governança é exercida em toda a organização por grupos de governança, incluindo: as partes interessadas membro; o órgão de governança; os gestores; e outras funções internas da organização.

O órgão de governança é responsabilizado por estabelecer e manter uma estrutura organizacional integrada de governança em toda a organização que coordena essas atividades de governança, de tal forma que a organização realize desempenho efetivo, administração (stewardship) responsável e comportamento ético. Convém que essa estrutura organizacional de governança assegure que os tomadores de decisão tenham autoridade, competência e recursos apropriados para as responsabilidades que lhes são dadas.

A delegação eficaz e a tomada de decisão transparente empoderam o pessoal para agir apropriadamente, resultando em uma organização mais resiliente e ágil. Convém que os controles e as ações subsequentes de melhoria sejam planejados e implementados para assegurar que o sistema de governança permaneça adequado ao propósito da organização.

O órgão de governança pode delegar, mas ainda continua responsável pelo que delegou e continua sempre responsável pela organização como um todo. Ao delegar, convém que o órgão de governança delegue de forma que aumente a confiança e a transparência.

Para que a delegação e a prestação de contas sejam eficazes, convém que o órgão de governança assegure que as seguintes condições sejam cumpridas: os resultados esperados sejam negociados, especificados e acordados; os recursos necessários estejam disponíveis; a autoridade corresponda ao nível de responsabilidade, que inclui a autonomia para fazer cumprir planos para alcançar os resultados acordados dentro dos parâmetros estabelecidos; as saídas, os resultados e os processos para alcançar as responsabilidades sejam periodicamente relatados e apresentados com evidências de que as ações tomadas são razoáveis e apropriadas; as consequências, como sanções, para o não cumprimento de uma responsabilidade ou não adesão aos parâmetros estabelecidos sejam aplicáveis. Convém que ninguém seja responsabilizado por assuntos sobre os quais não têm autoridade ou para os quais as expectativas não foram declaradas ou acordadas.

As pessoas responsáveis podem delegar para outras. No entanto, convém deixar claro que aqueles que delegarem permanecem responsáveis pelo uso dessa autoridade pelo delegado. Convém que a delegação seja formalizada juntamente com os processos de garantia apropriados. Convém que os limites da autoridade decisória sejam aplicados em resposta ao risco avaliado.

A governança e a gestão são atividades distintas, necessárias e complementares que interagem e influenciam umas às outras. A governança envolve definir e ser responsabilizado pelo cumprimento pela organização de seu propósito dentro dos parâmetros estabelecidos para a organização, enquanto a gestão trata de cumprir os objetivos associados, fazendo escolhas dentro desses parâmetros.

Convém que o órgão de governança assegure a clareza dos papéis e das responsabilidades de todos os envolvidos e responsabilize aqueles a quem delega. O grau de separação de deveres entre o órgão de governança e os gestores varia de acordo com as necessidades e circunstâncias organizacionais. Em certas circunstâncias, como no caso de um membro executivo do órgão de governança, pode ser exigido que um indivíduo cumpra tanto as responsabilidades de governança quanto as de gestão.

Nesses casos, é importante que essa pessoa seja capaz de distinguir quando está cumprindo as diferentes responsabilidades e que aja e se comporte de acordo. Este documento fornece orientação sobre a governança de organizações e complementa as normas de gestão. Faz isto definindo e orientando o papel e o funcionamento da governança da organização.

O objetivo da governança, e o dever do órgão de governança, é criar as condições para, e para possibilitar, que a organização atue ao longo do tempo, de tal forma que o seu propósito organizacional seja cumprido e valor seja gerado conforme pretendido. Pode ser dito que uma organização está contribuindo para o desenvolvimento sustentável, e é sustentável, quando ela gera valor de uma forma que atenda às necessidades do presente sem comprometer a capacidade das gerações futuras de atender às suas próprias necessidades.

Ao alinhar a governança de uma organização com o desenvolvimento sustentável, por exemplo, por meio dos ODS da ONU, os órgãos de governança ajudam a criar as condições para o sucesso futuro de uma organização. Como resultado, convém que os órgãos de governança assegurem que o desenvolvimento sustentável e a sustentabilidade sejam considerações fundamentais ao governar e aplicar os princípios de governança deste documento.

Convém que o órgão de governança trate, e assegure que a organização trate, todas as partes interessadas de forma justa, e convém que considere as expectativas das partes interessadas pertinentes. Convém que o órgão de governança assegure que o propósito organizacional e o valor pretendido a ser gerado sejam definidos por meio do engajamento com partes interessadas membro, partes interessadas de referência e outras partes interessadas pertinentes. Embora não sejam definidos como partes interessadas, convém que o ambiente natural e a sociedade como um todo também sejam considerados pelo órgão de governança em sua tomada de decisão, porque afetam ou serão afetados pelas atividades da organização.

A composição e a estrutura do órgão de governança irão variar entre as organizações. No entanto, convém que o órgão de governança, como um coletivo, permaneça adequadamente equipado para cumprir seu papel. Convém que as nomeações para o órgão de governança sejam transparentes para as partes interessadas e considerem: a competência (conhecimento e compreensão pertinentes, habilidades e experiência); a diversidade e a inclusão; a independência de pensamento e de ação; a capacidade; a probidade; e o compromisso.

Dependendo do porte da organização, os órgãos de governança podem criar comitês para ajudá-los a cumprir suas obrigações. Esses comitês podem ser estatutários ou voluntários. Convém que, em ambos os casos, eles forneçam ao órgão de governança capacidade adicional, habilidades, independência, diversidade e/ou representação de partes interessadas.

Se um órgão de governança utilizar comitês de apoio, convém que o órgão de governança assegure que ele efetivamente delegue as responsabilidades e a autoridade necessárias a tais comitês. Em todos os momentos, convém que o órgão de governança atue coletivamente, realizando muitas atividades inter-relacionadas, para exercer sua autoridade e cumprir sua responsabilização. Convém que os membros do órgão de governança ajam com probidade e no melhor interesse da organização, aplicando os princípios deste documento.

A segurança das válvulas para recipientes transportáveis de GLP até 13 kg

A válvula de segurança ou de alívio de pressão é um dispositivo destinado a aliviar a pressão no interior dos recipientes, quando esta atinge um valor predeterminado, interrompendo o fluxo do gás, quando a pressão voltar ao nível considerado aceitável e a sua vedação possui um elemento que mantém a sua estanqueidade. Nos ensaios, a válvula que não atender aos requisitos da norma deve ser reprovada. Quando a amostra for representativa de um lote, a sua reprovação, por não atender às condições específicas da norma, implica a reprovação de todo o lote que ela representa.

No lote reprovado, é permitido ao fabricante realizar os reparos necessários, colocando os produtos nas condições estabelecidas pela norma. Em caso de dúvida quanto à legitimidade da documentação, todo o lote deve ser reprovado. Nesse caso, é permitida ao fabricante a realização de todos os ensaios correspondentes, desde que na presença do comprador.

Assim, nos ensaios por amostragem, em um lote diário, deve ser adotado como padrão uma peça a cada lote de 1.000 válvulas produzidas. Opcionalmente, pode-se adotar para lotes com quantidades superiores o nível de inspeção S3 e o nível de qualidade aceitável (NQA) 2,5%, conforme a NBR 5426. Em um lote mensal, para ensaios não verificados em 100% do lote, pode-se adotar o nível de inspeção S3 e NQA 1,0% do plano de amostragem simples, regime de inspeção normal da NBR 5426, quando necessário.

Nos ensaios de verificação das roscas, elas devem ser verificadas por meio de calibradores tipo tampão, conforme as dimensões padronizadas na norma. As roscas de fixação devem ser verificadas por meio de calibradores tipo anel, conforme as dimensões padronizadas. A frequência do ensaio deve ser no mínimo 1 a cada lote de 1.000 peças. As roscas devem estar isentas de defeitos de fabricação, rebarbas e imperfeições.

Para o ensaio de estanqueidade da vedação, deve ser usado um dispositivo com conexão de utilização, com extremidade que simule o pino do regulador, para verificação de vazamentos no anel de vedação, quando da aplicação da pressão pneumática de 0,7 + 0,1 MPa por 2 s. A frequência do ensaio deve ser de no mínimo 1 a cada lote de 1.000 peças.

O ensaio do conjunto da válvula com dispositivo limitador de enchimento (DLE) deve ser efetuado com o conjunto acoplado em um contêiner que sugestione o recipiente para o qual o DLE foi projetado, ocorrendo a entrada de líquido pela válvula e esvaziamento posterior do recipiente, de forma a executar um ciclo de 1 000 vezes o fechamento da passagem do fluxo pelo DLE.

Para o ensaio de compatibilidade dos elastômeros ao GLP, a peça ou corpo de prova, quando o ensaio assim exigir, deve ser imersa em butano comercial líquido durante 24 h, à temperatura ambiente, e, após 15 min da retirada da imersão, devem ser determinadas: a variação da massa em relação à massa inicial: ± 8%; a variação do volume em relação ao inicial: ± 5%; e a variação da dureza Shore A em relação à inicial: ± 5 pontos. Bolha e/ou delaminação na superfície da peça não são admitidas.

Após retirada da imersão, a peça ou o corpo de prova deve permanecer por 1 h à temperatura ambiente e em seguida ser submetida à temperatura de 70°C por 24 h, sendo determinadas, após 15 min de retirada do ensaio. Estes ensaios são de responsabilidade do fabricante dos elastômeros, devendo seus certificados de qualidade serem mantidos à disposição do cliente pelo prazo mínimo de um ano.

Os ensaios de rotina devem ser realizados em 100% do lote, nível de inspeção S3 e NQA 1,0% do plano de amostragem simples, regime de inspeção normal da NBR 5426. Os ensaios são realizados conforme descritos na norma. A inspeção de lote deve seguir o especificado na norma e a aceitação e reprovação do lote deve estar conforme a descrito na norma.

Para a abertura e fechamento da válvula, o ensaio consiste na abertura e no fechamento do conjunto interno da válvula, devendo ser acionado no mínimo por duas vezes, sem que ocorra travamento. A frequência do ensaio deve ser de 100%.

Para a estanqueidade interna, deve ser aplicada uma pressão pneumática de 0,7 MPa na parte inferior da válvula que fica em contato com a fase gasosa do gás liquefeito de petróleo, no mínimo por 2 s, não podendo apresentar vazamentos. A frequência do ensaio deve ser de 100%.

O conjunto da válvula ensaiada quanto ao fechamento do DLE deve ser submetido à pressão de 1,7 MPa aplicada pela entrada da válvula, não podendo apresentar vazamento. A frequência deste ensaio deve ser de 100% do lote produzido

Se for do interesse do comprador, ele pode solicitar e acompanhar os ensaios das válvulas ou de seus componentes. O fabricante deve fornecer todas as facilidades necessárias para a verificação da conformidade da encomenda com o pedido.

A NBR 8614 de 09/2022 – Gás liquefeito de petróleo (GLP) – Válvulas para recipientes transportáveis até 13 kg – Requisitos especifica os requisitos para fabricação, compreendendo as formas, as dimensões e os ensaios para válvulas e seus componentes para recipientes transportáveis até 13 kg de gás liquefeito de petróleo (GLP).

O material para o corpo da válvula deve ser latão de forja ou de corte livre. Podem ser usados outros materiais, desde que possuam as seguintes características: resistência à ação dos hidrocarbonetos de petróleo e aos agentes atmosféricos; ponto de amolecimento superior a 600°C; características mecânicas iguais ou superiores ao latão de forja ou de corte livre. As características químicas e físicas do latão devem ser conforme a NBR 6188 para as peças forjadas e injetadas, e conforme a NBR 5023 para as peças usinadas.

O porta-vedação, o parafuso de acionamento e o guia do porta-vedação devem ser fabricados em latão ou outro material com resistência à ação dos hidrocarbonetos de petróleo e aos agentes atmosféricos. As vedações devem ser de materiais elastoméricos ou outros materiais resistentes à ação dos hidrocarbonetos do GLP, com elasticidade suficiente para produzir um fechamento-estanque, de acordo com a tabela abaixo.

A mola de pressão deve ser conforme estabelecida na NBR 13366, devendo possuir acabamento anticorrosivo. O corpo e os demais componentes da válvula devem ser fabricados por processos que assegurem um produto isento de foliações, dobra, fissuras ou quaisquer outros defeitos. Não é permitida a fabricação do corpo por processos tipo fundição.

Nas válvulas automáticas para recipientes transportáveis para GLP, o elemento obturador é normalmente mantido em contato com a sede pela ação de uma mola, assegurando o fechamento-estanque nas condições normais de armazenamento e transporte. A abertura da válvula é obtida pela introdução de um pino que, mantido em posição por meio de um dispositivo adequado, comprime a mola e provoca a abertura do elemento obturador.

O elemento obturador deve ser disposto de maneira que a pressão interna do recipiente atue no sentido do fechamento da válvula. Para válvulas com acionamentos manuais, a abertura ou fechamento deve ser por meio de manopla.

O projeto da válvula deve estar de acordo com o princípio de funcionamento, de forma a assegurar a vedação estanque na posição fechada e proporcionar, na posição aberta, uma vazão suficiente que permita o enchimento dos recipientes, admitindo-se que a vazão do bico seja maior que as condições máximas estabelecidas na norma. As formas construtivas das válvulas automáticas estão exemplificadas no Anexo C e as válvulas com dispositivos de segurança estão apresentadas no Anexo D.

O guia do porta-vedação deve ser montado com os seguintes torques de aperto: 20 ± 5 N.m para válvulas com rosca de fixação de 3/4“ NGT; 15 ± 5 N.m para válvulas com rosca de fixação 1/2“NGT. O parafuso de acionamento deve ser apertado com um torque mínimo de 1,0 N.m. Os seguintes itens devem ser gravados de forma legível, no corpo da válvula, em alto ou baixo relevo, permitindo a sua visualização após instalado: identificação do fabricante; data de fabricação (mês e ano); citação “DLE” e tipo de recipiente, quando existente.

Podem ser estabelecidas outras gravações, desde que em comum acordo entre o fabricante e o comprador. Para a identificação do dispositivo limitador de enchimento (DLE), ele deve ser marcado conforme a seguir: nome do fabricante ou iniciais ou símbolo de identificação; identificação que permita a rastreabilidade do período ou lote de fabricação; e pressão de serviço nominal.

O DLE deve incluir todos os componentes necessários para sua função normal e instalação, devendo ser fornecido como uma unidade única ou montado na válvula. O DLE deve ser instalado somente no respectivo tipo de válvula e recipiente de GLP para o qual foi projetado. Quando operado por boia, o DLE deve estar provido de um mecanismo que mantenha a orientação adequada da boia na condição de utilização. Todo DLE com boia deve ser fornecido com a certificado de qualidade do fabricante de execução dos ensaios descritos na UL – SUBJECT 2227.

Os ensaios de tipo devem ser realizados no mínimo uma vez por ano ou sempre que houver alteração do projeto/processo ou das especificações de qualquer componente do regulador de pressão. Os ensaios relativos a esta alteração devem ser realizados em dez peças, sendo que, se houver uma peça reprovada, a alteração deve ser considerada reprovada. Neste caso, deve ser elaborado um laudo do problema/ falha com ações corretivas.

Para o ensaio hidrostático para aprovação da resistência do corpo e dos componentes, a válvula deve ser fixada ao suporte, estando o seu acoplamento ligado à fonte de pressão hidrostática de 8,5 MPa, a qual deve ser mantida durante 60 s. A válvula não pode apresentar vazamentos ou deformações.

Para o ensaio do conjunto da válvula (fadiga), o conjunto da válvula deve proceder à abertura e ao fechamento do conjunto da válvula por 5.000 ciclos consecutivos. Após completados os ciclos, a válvula deve ser ensaiada e avaliada, conforme os requisitos dos ensaios descritos na norma e, no caso de algum deles não ser atendido, deve-se proceder conforme descrito em aceitação e reprovação.

As válvulas que forem dotadas de dispositivos solidários ou fixados ao corpo devem ser ensaiadas com os respectivos dispositivos instalados ao conjunto. A válvula de segurança deve atender aos requisitos da NBR 12178 e também às especificações da NBR 11708.

A gestão da qualidade em empresas de transporte de cargas

Segundo um estudo do BNDES. o transporte de carga no Brasil, especialmente por rodovias, tem mau desempenho quando comparado a parâmetros internacionais. O transporte de carga é um serviço fundamental na cadeia de produção e distribuição de bens industriais e agrícolas. O Ministério dos Transportes estima que mais de 58% desse transporte é realizado por meio das rodovias, o que faz do transporte rodoviário no país um fator determinante da eficiência e da produtividade sistêmica da economia. As comparações internacionais revelam que há espaço significativo para melhoria da eficiência da atividade no Brasil.

O principal serviço prestado pelas transportadoras com 20 ou mais empregados é o transporte de carga seca (produtos manufaturados, ensacados ou embalados), que responde, em média, por 48,3% da receita operacional líquida do transporte rodoviário de cargas. O transporte de cargas sólidas a granel (cereais, areia, brita, minérios, cimento, etc.) é o segundo em participação na receita. Em seguida, com participações semelhantes, aparecem o transporte de carga unitizada ou não solta, de explosivos, fertilizantes e outros produtos sólidos perigosos, de veículos e de combustíveis e GLP.

O serviço de transporte rodoviário de carga é prestado também por um grande número de transportadores autônomos. Esses profissionais, conhecidos como caminhoneiros ou carreteiros, são mais de 800.000, mas A participação dos autônomos na oferta total do serviço de transporte de carga é difícil de estimar; muitos autônomos são contratados pelas empresas transportadoras na condição de “agregados”. Uma indicação da relevância do segmento pode ser dada pela representatividade de sua frota: como se detalhará adiante, 57% dos veículos de carga registrados são operados por autônomos. Além das empresas e dos profissionais autônomos registrados, muitos transportadores rodoviários de carga operam informalmente.

A melhoria do desempenho do transporte rodoviário de carga no Brasil requer atenção especial ao serviço oferecido pelos transportadores autônomos, o que justifica o desenho de políticas públicas voltadas ao segmento. A oferta de crédito para a renovação da frota, em particular, é um instrumento importante, tendo em vista que os avanços tecnológicos incorporados aos veículos propiciam ganhos de eficiência significativos e que os baixos níveis de capitalização e renda dos autônomos dificultam a aquisição do caminhão à vista com recursos próprios.

Em relação à gestão da qualidade no transporte de cargas, deve-se entender que os processos operacionais são a sequência de atividades necessárias para que a carga saia da origem e chegue ao destino. O planejamento dos processos deve ser consistente com a infraestrutura existente e com os requisitos contratuais. Os processos operacionais devem ser adequadamente documentados.

Na determinação dos processos, as seguintes questões devem ser consideradas: os recursos específicos para cada contrato, se aplicável; a interrelação com as atividades de conferência e inspeção; a necessidade de registros e/ou documentos que forneçam evidência da conformidade dos processos; a disponibilidade de informações que deem apoio à tomada de decisões, incluindo sistemas informatizados, se aplicável; as questões de natureza legal; e os tipos de local de operação (cross-docking, plataforma, rampas de acesso móveis, porta-paletes, etc.). A coleta é um  processo que deve considerar todas as possíveis situações e conter particularidades em função das necessidades específicas dos clientes.

A transferência deve considerar todas as possíveis situações de transferência, incluindo manuseio, proteção, identificação e particularidades em função de necessidades específicas dos clientes. O armazenamento temporário (cross-docking) deve considerar todas as possíveis situações de armazenamento temporário, incluindo local, manuseio, proteção, identificação e particularidades em função de necessidades específicas dos clientes.

A entrega deve considerar todas as possíveis situações de entrega (do início da operação de transporte até a baixa do comprovante de entrega) e as particularidades em função de necessidades específicas dos clientes. Para a rastreabilidade e o monitoramento, a empresa de transporte deve especificar a abrangência, os meios para rastrear/monitorar as cargas transportadas e as rotinas/documentos que devem ser cumpridos para assegurar a eficácia do processo. No caso de não conformidade, ver o item não conformidade e ação corretiva.

Para a contratação de terceiros (autônomos) para transporte de cargas, a empresa deve documentar, implementar e manter procedimentos para a contratação de terceiros, incluindo o contrato de transporte especificando o serviço a ser realizado; a verificação de documentos do motorista e do veículo; a qualificação das pessoas envolvidas na operação; a consulta aos cadastros das corretoras de seguro, quando aplicável; e a inspeção do veículo. Devem ser providenciados registros que demonstrem o cumprimento do procedimento.

A empresa de transporte deve documentar, implementar e manter procedimentos para as suas atividades comerciais, que devem incluir a determinação dos requisitos do serviço especificados pelo cliente, incluindo quando aplicável, os requisitos de prazos (coleta, entrega e pagamento), estimativa de demanda, especificação de veículo, etc.; a análise do perfil de carga do cliente potencial; as obrigações relacionadas ao serviço, incluindo requisitos legais; e a análise crítica prévia para assegurar que a empresa de transporte possua capacidade para atender aos requisitos especificados.

A insatisfação dos clientes prejudica o processo de fidelização e enfraquece a reputação da empresa no mercado, abrindo espaço para que a concorrência aproveite as oportunidades de negócio surgidas a partir da ineficiência de uma empresa em logística. Portanto, o embarque e transporte de mercadorias deve ser compreendido a partir de uma visão estratégica, que contribua para a integração de todos os processos logísticos, permitindo que as empresas melhorem seus resultados e possam crescer no mercado.

A NBR 14884 de 09/2022 – Transporte rodoviário de carga – Sistema de gestão da qualidade estabelece os requisitos para um sistema de gestão da qualidade para empresas de transporte de cargas, visando: prover consistentemente serviços que atendam aos requisitos do cliente e aos requisitos regulamentares aplicáveis; aumentar a percepção de valor pelo cliente por meio da aplicação eficaz do sistema, incluindo os processos para melhoria do sistema; abordar os riscos e as oportunidades associados com seu contexto e objetivos; promover as práticas sustentáveis em suas operações; e evidenciar a conformidade com os requisitos estabelecidos nos sistemas de gestão da qualidade.

A empresa de transporte deve determinar o escopo de sua atuação no transporte rodoviário de carga, incluindo: tipo de carga e área de atuação (nacional e/ou internacional). Deve planejar, documentar e implantar o sistema de qualificação para o seu escopo de atuação. O sistema de gestão da qualidade deve apresentar sua abrangência e a parte da empresa de transporte envolvida (matriz, filiais, postos avançados, representantes/agentes, franquias, etc.).

A conformidade com esta norma só pode ser alegada se os requisitos determinados como não aplicáveis não afetarem a capacidade ou a responsabilidade da empresa de transporte de assegurar a conformidade de seus serviços e o aumento da satisfação do cliente. A empresa de transporte deve determinar os processos necessários para o sistema de gestão da qualidade e sua aplicação, e também deve: determinar as entradas requeridas e as saídas esperadas desses processos; determinar a sequência e a interação desses processos; determinar e aplicar os critérios, metas e métodos (incluindo monitoramento, medições e indicadores de desempenho relacionados), necessários para assegurar a operação e o controle eficazes desses processos; determinar os recursos necessários para esses processos e assegurar a sua disponibilidade; atribuir as responsabilidades e autoridades para esses processos; abordar os riscos e as oportunidades; avaliar esses processos e implementar quaisquer mudanças necessárias para assegurar que esses processos alcancem seus resultados pretendidos; melhorar os processos e o sistema de gestão da qualidade; manter a informação documentada para apoiar a operação de seus processos; reter a informação documentada para evidenciar que os processos sejam realizados conforme planejado.

A direção da empresa de transporte deve demonstrar liderança e comprometimento em relação ao sistema de gestão da qualidade: responsabilizando-se por prestar contas pela eficácia do sistema de gestão da qualidade; assegurando que a política da qualidade e os objetivos da qualidade sejam estabelecidos para o sistema de gestão da qualidade e que sejam compatíveis com o escopo da empresa; promovendo o uso da abordagem de processo e gestão de risco; assegurando que os recursos necessários para o sistema de gestão da qualidade estejam disponíveis; promovendo melhoria; assegurando que os requisitos do cliente e regulamentares pertinentes sejam determinados, entendidos e atendidos.

A direção da empresa de transporte deve estabelecer e documentar sua política da qualidade. A política deve incluir o compromisso com a melhoria contínua e o atendimento aos requisitos legais aplicáveis. A direção da empresa de transporte deve assegurar que a política da qualidade seja compreendida, implementada e mantida por todos os funcionários e terceiros que executam atividades que afetam a qualidade do serviço, que esteja disponível e acessível para as partes interessadas pertinentes.

A direção da empresa de transporte deve determinar, documentar e comunicar as responsabilidades e autoridades do pessoal que desempenha atividades que possam afetar a qualidade do serviço. Deve indicar um coordenador da qualidade. Este coordenador, independentemente de outras responsabilidades, deve ter autoridade e responsabilidade especificadas que incluam: planejar e gerenciar a implantação do sistema de gestão de transporte; assegurar que os processos do sistema de gestão de transporte estejam estabelecidos e mantidos; assegurar a promoção do foco no cliente na organização; assegurar que a integridade do sistema de gestão da qualidade seja mantida quando forem planejadas e implementadas mudanças no sistema de gestão da qualidade; relatar à direção o desempenho do sistema de gestão de transporte e dos indicadores de desempenho, incluindo necessidades de melhoria.

Deve ter procedimentos para identificar e avaliar os riscos potenciais à qualidade ligados à operação, incluindo no mínimo: os aspectos que têm ou podem ter um impacto significativo; os critérios para identificação da significância, contemplando a probabilidade de ocorrência e potencial impacto; o atendimento aos requisitos legais; o alcance dos resultados pretendidos; a prevenção ou redução de efeitos indesejáveis; a rastreabilidade da operação de transporte; a determinação de rotas e pontos de parada e abastecimento; e a melhoria contínua. A empresa de transporte deve implementar as ações nos processos do seu sistema de gestão da qualidade para tratar os riscos e as oportunidades com o potencial impacto sobre a conformidade de produtos e serviços, bem como deve avaliar a eficácia dessas ações.

A direção da empresa de transporte deve determinar: os indicadores mensuráveis da qualidade dos serviços; os métodos para sua medição; as metas e os prazos para atendimento de todos os indicadores de desempenho, que devem ser analisados e revisados, no mínimo anualmente, durante a análise crítica pela direção. Os indicadores de desempenho devem ser analisados periodicamente em relação ao atendimento das metas estabelecidas e um plano de ação deve ser elaborado, caso as metas não sejam atingidas. Os indicadores de desempenho especificados pela direção da empresa devem ser coerentes com a política da qualidade e incluir no mínimo o constante na tabela abaixo.

A direção da empresa de transporte deve listar e manter atualizados os requisitos legais e as normas referenciais aplicáveis ao serviço de transporte rodoviário de carga que possam afetar a qualidade das operações. Deve diagnosticar o nível de atendimento aos requisitos legais e às normas referenciais aplicáveis, bem como deve demonstrar o seu completo atendimento.

A conformidade dos produtos para diagnóstico de uso in vitro

Os produtos para diagnóstico de uso in vitro envolvem os reagentes, padrões, calibradores, controles, materiais, artigos, instrumentos e equipamentos, junto com as instruções para seu uso, que contribuem para realizar uma determinação qualitativa, quantitativa ou semiquantitativa de uma amostra proveniente do corpo humano e que não estão destinados a cumprir alguma função anatômica, física ou terapêutica, que não são ingeridos, injetados ou inoculados em seres humanos e que são utilizados unicamente para prover informação sobre amostras obtidas do organismo humano. Dessa forma, a qualidade dos laboratórios clínicos e a emissão de laudos corretos e confiáveis dependem de vários fatores: da capacidade técnica dos profissionais que realizam os exames, da eficiência e eficácia dos equipamentos, que devem estar calibrados e monitorados e, ainda, da qualidade e desempenho dos reagentes usados para a realização dos exames laboratoriais dos diferentes analitos que a classe médica solicita para complementar os seus diagnósticos e monitorar os seus clientes.

Deve ser uma preocupação de todos os profissionais da área conhecer melhor a qualidade e o desempenho dos produtos de diagnósticos que os fabricantes colocam à disposição dos laboratórios clínicos. Diante disto, é importante que seja feita a avaliação da conformidade destes produtos. Na literatura sobre o assunto, não se encontra uma norma específica para reagentes de laboratórios para realização de exames. Somente alguns documentos técnicos produzidos pelo Clinical & Laboratory Standards Institute (CLSI), que tratam isoladamente de alguns itens necessários para a avaliação da conformidade dos reagentes.

Na inexistência de uma norma específica para a avaliação da conformidade destes reagentes, a NBR 16075 se propõe a avaliar esta conformidade através da Resolução Anvisa – RDC nº 206, de 17 de novembro de 2006, que dispõe de um regulamento técnico de produto para diagnóstico de uso in vitro e seu registro, cadastramento, alterações, revalidações e cancelamentos. Para tal, elaborou-se uma sistemática de avaliação da conformidade dos reagentes baseada nesta resolução.

Esta avaliação da conformidade dos reagentes é de interesse da classe médica, dos laboratórios clínicos, da vigilância sanitária e de toda a população, que busca os médicos e os laboratórios clínicos para diagnosticar as suas doenças e para a emissão de laudos corretos e confiáveis, a fim de ser tratada e monitorada adequadamente. Para o estabelecimento da avaliação da conformidade de produtos de diagnóstico de uso in vitro usados nos laboratórios de análises clínicas e patologia clínica, deve-se fazer uma análise crítica da adequação do produto aos requisitos relativos à apresentação, embalagem interna e externa e rotulagens, uma análise crítica da adequação aos requisitos para as instruções de uso fornecidas pelo fabricante aos consumidores e um relatório técnico de avaliação da conformidade. O responsável técnico pela avaliação da conformidade do produto, após obtenção dos dados das análises críticas aos requisitos exigidos, deve emitir um relatório completo e minucioso dos resultados obtidos e das suas conclusões.

O relatório técnico deve abranger os resultados da análise crítica da adequação aos requisitos de apresentação, rotulagem e embalagens externa e interna do produto, a fim de atender às exigências de conservação, armazenamento, transporte, estabilidade; da análise crítica da adequação aos requisitos das instruções de uso do fornecedor aos consumidores sobre todas as informações e dados necessários, de modo a permitir o uso correto do produto, bem como da análise crítica da adequação do produto aos testes de desempenho relacionados à sensibilidade, especificidade, reprodutibilidade, sensibilidade e estabilidade do produto. O laboratório ou instituição deve utilizar o reagente em estudo para uma determinação qualitativa, utilizando padrões ou amostras-controle de valor conhecido e elaborando os cálculos estatísticos para a obtenção da variabilidade analítica, antes de elaborar o relatório técnico.

A NBR 16075 de 07/2012 – Diagnóstico de uso in vitro — Competência de laboratórios e organização de ensaio de avaliação da conformidade de produtos — Requisitos gerais especifica os requisitos gerais para a competência de laboratórios e organizações para realizar a avaliação da conformidade de produtos para diagnóstico de uso in vitro, incluindo amostragem. Ela cobre os ensaios realizados utilizando métodos normalizados, métodos não normalizados e métodos desenvolvidos pelo laboratório. É aplicável a todas as organizações e laboratórios que realizam a avaliação da conformidade de produtos para diagnóstico de uso in vitro, para os métodos quantitativos e qualitativos.

O produto para diagnóstico de uso in vitro envolve os reagentes, padrões, calibradores, controles, materiais, artigos, instrumentos e equipamentos, junto com as instruções para seu uso, que contribuem para realizar uma determinação qualitativa, quantitativa ou semiquantitativa de uma amostra proveniente do corpo humano e que não estão destinados a cumprir alguma função anatômica, física ou terapêutica, que não são ingeridos, injetados ou inoculados em seres humanos e que são utilizados unicamente para prover informação sobre amostras obtidas do organismo humano. O laboratório ou a organização da qual ele faça parte deve ser uma entidade que possa ser legalmente responsável.

É responsabilidade do laboratório ou organização realizar suas atividades para a avaliação da conformidade, de modo a atender aos requisitos desta norma e satisfazer as necessidades dos clientes, das autoridades regulamentadoras ou das organizações que fornecem reconhecimento. O sistema de gestão da qualidade deve cobrir os trabalhos realizados nas instalações permanentes do laboratório ou organizações, em locais fora de suas instalações permanentes ou em instalações associadas, temporárias ou móveis.

Se o laboratório for parte de uma organização que realiza outras atividades, além da avaliação da conformidade, as responsabilidades do pessoal-chave da organização que tenha um envolvimento ou influência nas atividades da avaliação da conformidade devem ser definidas, de modo a identificar potenciais conflitos de interesse. Quando um laboratório for parte de uma organização maior, convém que os arranjos organizacionais sejam tais que os departamentos que tenham conflito de interesses, tais como produção, marketing comercial ou financeiro, não influenciem negativamente a conformidade do laboratório com os requisitos desta norma.

Se o laboratório ou organização desejar ser reconhecido como um laboratório de terceira parte, convém que ele seja capaz de demonstrar que é imparcial e que ele e seu pessoal estão livres de quaisquer pressões comerciais, financeiras e outras indevidas, que possam influenciar seu julgamento técnico. Convém que o laboratório de ensaio de terceira parte não se envolva em atividades que possam colocar em risco a confiança na sua independência de julgamento e integridade em relação às atividades para avaliação da conformidade.

O laboratório ou organização deve ter pessoal gerencial e técnico que, independentemente de outras responsabilidades, tenha a autoridade e os recursos necessários para desempenhar suas tarefas, incluindo a implementação, manutenção e melhoria do sistema de gestão da qualidade, e para identificar a ocorrência de desvios do sistema de gestão da qualidade ou dos procedimentos para a realização da avaliação da conformidade, e para iniciar ações para prevenir ou minimizar tais desvios; ter meios para assegurar que sua direção e o seu pessoal estejam livres de quaisquer pressões e influências indevidas, comerciais, financeiras e outras, internas ou externas, que possam afetar adversamente a qualidade dos seus trabalhos; ter políticas e procedimentos para assegurar a proteção das informações confidenciais e direitos de propriedade dos seus clientes, incluindo os procedimentos para a proteção do armazenamento e da transmissão eletrônica dos resultados; ter políticas e procedimentos para evitar envolvimento em quaisquer atividades que possam diminuir a confiança na sua competência, imparcialidade, julgamento ou integridade operacional; definir a sua estrutura organizacional e gerencial, seu lugar na organização principal e as relações entre a gestão da qualidade, operações técnicas e serviços de apoio; especificar a responsabilidade, a autoridade e o inter-relacionamento de todo o pessoal que gerencia, realiza ou verifica os trabalhos que afetem a qualidade da avaliação da conformidade; prover a supervisão adequada do pessoal da avaliação da conformidade, inclusive daqueles em treinamento, por pessoas familiarizadas com os métodos e procedimentos, com a finalidade de cada ensaio e com a avaliação dos resultados; ter uma gerência técnica que tenha responsabilidade total pelas operações técnicas e pela provisão dos recursos necessários para assegurar a qualidade requerida das suas operações; nomear um membro do seu quadro de pessoal como gerente da qualidade (qualquer que seja a denominação) que, independentemente de outros deveres e responsabilidades, deve ter responsabilidade e autoridade definidas para assegurar que o sistema de gestão relacionado à qualidade seja implementado e seguido permanentemente.

Somado a tudo isso, o gerente da qualidade deve ter acesso direto ao mais alto nível gerencial, onde são tomadas as decisões sobre as políticas e/ou recursos. Deve designar substitutos para o pessoal-chave no nível gerencial e assegurar que seu pessoal está consciente da pertinência e importância de suas atividades e de como eles contribuem para alcançar os objetivos do sistema de gestão da qualidade.

Algumas pessoas podem ter mais de uma função e pode ser impraticável designar substitutos para cada função. A administração deve assegurar que os processos adequados de comunicação sejam estabelecidos e que haja comunicação a respeito da eficácia do sistema de gestão da qualidade. O laboratório ou organização deve estabelecer, implementar e manter um sistema de gestão da qualidade apropriado ao escopo das suas atividades.

Deve documentar suas políticas, sistemas, programas, procedimentos e instruções, na extensão necessária para assegurar a qualidade dos resultados das suas atividades. A documentação do sistema deve ser comunicada, compreendida, estar disponível e ser implementada pelo pessoal apropriado. As políticas do sistema de gestão relativas à qualidade, incluindo uma declaração sobre a política da qualidade, devem ser definidas em um manual da qualidade (qualquer que seja a denominação).

Os objetivos gerais devem ser estabelecidos e analisados criticamente durante a análise crítica pela direção. A declaração da política da qualidade deve ser emitida sob a autoridade da administração. Ela deve incluir pelo menos o seguinte: o comprometimento da direção com as boas práticas profissionais e com a qualidade dos seus ensaios no atendimento aos seus clientes; a declaração da direção sobre o nível de seu serviço; o propósito do sistema de gestão com respeito à qualidade; um requisito de que todo o pessoal envolvido nas atividades da avaliação da conformidade familiarize-se com a documentação da qualidade e implemente as políticas e os procedimentos nos seus trabalhos; e o comprometimento da direção com a conformidade a esta norma e com a melhoria contínua da eficácia do sistema de gestão da qualidade.

A declaração da política da qualidade deve ser concisa, podendo incluir o requisito de que a avaliação da conformidade deve sempre ser realizada de acordo com métodos estabelecidos e requisitos dos clientes. Quando o laboratório ou organização for parte de uma organização maior, alguns elementos da política da qualidade podem estar em outros documentos.

A administração deve fornecer evidência do seu comprometimento com o desenvolvimento e implementação do sistema de gestão da qualidade e também com a melhoria contínua de sua eficácia. A administração deve comunicar à organização a importância de atender aos requisitos do cliente, assim como aos requisitos estatutários e regulamentares. O manual da qualidade deve incluir ou fazer referência aos procedimentos complementares, incluindo procedimentos técnicos.

Também, deve descrever a estrutura da documentação usada no sistema de gestão da qualidade. As atribuições e responsabilidades da gerência técnica e do gerente da qualidade, incluindo suas responsabilidades por assegurar a conformidade com esta norma, devem estar definidas no manual da qualidade. A administração deve assegurar que a integridade do sistema de gestão da qualidade seja mantida quando são planejadas e implementadas mudanças no sistema de gestão.

O laboratório ou organização deve estabelecer e manter procedimentos para controlar todos os documentos que fazem parte do seu sistema de gestão da qualidade (gerados internamente ou obtidos de fontes externas), tais como regulamentos, normas, outros documentos normativos, métodos de ensaio, assim como desenhos, softwares, especificações, instruções e manuais. Neste contexto, documento poderia ser declarações da política, procedimentos, especificações, tabelas de calibração, gráficos, livros, pôsteres, avisos, memorandos, software, desenhos, planos, etc.

Todos os documentos emitidos para o pessoal, como parte do sistema de gestão da qualidade, devem ser analisados criticamente e aprovados para uso por pessoal autorizado, antes de serem emitidos. Uma lista mestra ou um procedimento equivalente para controle de documentos, que identifique a situação da revisão atual e a distribuição dos documentos do sistema de gestão, deve ser estabelecida e estar prontamente disponível, para evitar o uso dos documentos inválidos e/ou obsoletos.

O (s) procedimento (s) adotado (s) deve (m) assegurar que as edições autorizadas dos documentos apropriados estejam disponíveis em todos os locais onde sejam realizadas operações essenciais para o seu efetivo funcionamento; os documentos sejam periodicamente analisados criticamente e, quando necessário, revisados para assegurar contínua adequação e conformidade com os requisitos aplicáveis; os documentos inválidos e/ou obsoletos sejam prontamente removidos de todos os pontos de emissão ou uso, ou, de alguma outra forma, seja impedido o seu uso não intencional; os documentos obsoletos retidos, por motivos legais e/ou para preservação de conhecimento, sejam adequadamente identificados.

Os documentos do sistema de gestão da qualidade gerados devem ser univocamente identificados. Esta identificação deve incluir a data da emissão e/ou identificação da revisão, a paginação, o número total de páginas ou uma marca indicando o final do documento e a (s) autoridade (s) emitente (s). As alterações nos documentos devem ser analisadas criticamente e aprovadas pela mesma função que realizou a análise crítica original, salvo prescrição em contrário.

O pessoal designado deve ter acesso à informação prévia pertinente, para subsidiar sua análise crítica e aprovação. Onde praticável, o texto alterado ou o novo texto deve ser identificado no documento ou em anexos apropriados. Se o sistema de controle da documentação permitir emendas manuscritas dos documentos, até sua reemissão, devem ser definidos os procedimentos e as pessoas autorizadas para fazer essas emendas.

As emendas devem ser claramente marcadas, rubricadas e datadas. Um documento revisado deve ser reemitido formalmente o mais breve possível. Devem ser estabelecidos procedimentos para descrever como são realizadas e controladas as alterações nos documentos mantidos em sistemas computadorizados.

O laboratório ou organização deve estabelecer e manter procedimentos para a análise crítica dos pedidos, propostas e contratos. As políticas e procedimentos para as análises críticas que originem um contrato para avaliação da conformidade devem garantir que os requisitos, inclusive os métodos a serem utilizados, sejam adequadamente definidos, documentados e entendidos; o laboratório ou organização tenha capacidade e recursos para atender aos requisitos; seja selecionado o método de avaliação da conformidade apropriado e capaz de atender aos requisitos dos clientes; quaisquer diferenças entre o pedido ou proposta e o contrato devem ser resolvidas antes do início do trabalho; cada contrato deve ser aceito tanto pelo laboratório ou organização como pelo cliente.

Para a análise crítica de tarefas de rotina e de outras tarefas simples, considera-se adequado o registro da data e da identificação (por exemplo, a rubrica) da pessoa responsável pela realização do trabalho contratado. Para tarefas rotineiras repetitivas, a análise crítica só precisa ser executada no estágio inicial do pedido de informações ou na aprovação do contrato, para trabalhos rotineiros em andamento sendo realizados dentro de um acordo geral com o cliente, desde que os requisitos do cliente permaneçam inalterados. Para as atividades da avaliação de conformidade novas, complexas ou avançadas, convém que seja mantido um registro mais detalhado.