A execução de paredes estruturais com painéis de PVC preenchidos com concreto

Esses sistemas construtivos envolvem aqueles formados por paredes internas e externas com função estrutural, constituídas por painéis de PVC preenchidos com concreto. Os painéis de PVC são utilizados como fôrmas e ficam incorporados à parede, tendo também função de revestimento e acabamento. Os painéis de PVC são acoplados entre si por meio de encaixes nas laterais. O concreto utilizado é o autoadensável, para possibilitar o preenchimento dos painéis de PVC sem necessidade de vibração mecânica.

Durante a concretagem, devem ser monitorados a estabilidade do sistema de escoramento e o prumo e o esquadro das paredes. Caso seja verificada a perda de argamassa do concreto por meio da interface entre a fôrma das paredes e a base, ou por meio de eventuais aberturas nos painéis de PVC, a concretagem deve ser interrompida e somente reiniciada após o reparo da fôrma que assegure a sua estanqueidade.

O sistema de piso entre as unidades sobrepostas deve ser composto por laje de concreto armado, que deve atender aos requisitos estabelecidos na norma. A fôrma lateral das lajes pode ser composta pelo prolongamento dos painéis de PVC ou por fôrmas removíveis de outros materiais, como, por exemplo, aço ou madeira. O sistema de cobertura pode ser composto por laje de concreto impermeabilizada ou telhado, devendo o seu dimensionamento atender às respectivas normas técnicas aplicáveis.

Os painéis de PVC são utilizados como fôrmas e ficam incorporados à parede, tendo também a função de revestimento final. São permitidas aplicações de revestimentos sobre os painéis de PVC, como pintura, textura e placas cerâmicas, desde que a sua aderência ao PVC seja comprovada por meio de ensaios especificados nas normas técnicas aplicáveis ao revestimento utilizado.

Para evitar o aquecimento excessivo dos perfis de PVC, é recomendado o uso de revestimentos aderidos aos painéis de PVC, de cores claras ou média, com absortância à radiação solar (α) ≤ 0,6. Nas paredes próximas a eletrodomésticos que trabalhem com temperaturas superiores a 60 °C, deve ser aplicado revestimento cerâmico, em área que supere a área de projeção do equipamento sobre a parede em 150 mm, em todas as direções e sentidos. As instruções para o assentamento da cerâmica sobre o PVC devem constar no manual de montagem do sistema.

A NBR 17077 de 03/2023 – Paredes estruturais constituídas por painéis de PVC preenchidos com concreto para a construção de edificações — Projeto, execução e controle — Requisitos e procedimentos estabelece os requisitos e os procedimentos para elaboração de projeto, execução e controle de paredes estruturais constituídas por painéis de PVC preenchidos com concreto para a construção de edificações. Aplica-se à construção de edificações de até dois pavimentos (térreo mais um), com lajes entre os pavimentos e cobertura que atenda às normas técnicas.

Esta norma não se aplica a: paredes de concreto com características não contempladas na Tabela 2 da norma; paredes com espessura da parede menor que 80 mm; paredes com espessura do núcleo de concreto menor que 76 mm; paredes de concreto pré-moldadas; paredes de concreto moldadas in loco com fôrmas removíveis; paredes curvas; e paredes submetidas a ações predominantemente horizontais. Não estabelece os requisitos para o preparo, o controle, o recebimento e a aceitação do concreto, para os quais se aplica a NBR 12655. Não é aplicável aos aspectos da execução relativos à saúde e segurança do trabalho, estabelecidos na legislação vigente.

Esta norma apresenta requisitos para os componentes, as premissas para elaboração de projetos e execução de paredes estruturais constituídas por painéis de policloreto de vinila (PVC) preenchidos com concreto, bem como orientações quanto a cuidados de uso, operação e manutenção das paredes. Os sistemas construtivos abrangidos por esta norma são aqueles formados por paredes internas e externas com função estrutural, constituídas por painéis de PVC preenchidos com concreto.

Os painéis de PVC são utilizados como fôrmas e ficam incorporados à parede, tendo também função de revestimento e acabamento. Os painéis de PVC são acoplados entre si por meio de encaixes

nas laterais. O concreto utilizado é o autoadensável, para possibilitar o preenchimento dos painéis de PVC sem necessidade de vibração mecânica. Cabe lembrar que as normas técnicas são documentos dinâmicos e estão em constante evolução.

Assim o tema objeto desta NBR 17077 pode ser revisitado a qualquer momento visando atender às demandas da sociedade, buscando, entre outros exemplos, abranger outras tipologias e, portanto, o conteúdo deste documento está sujeito a atualizações através da continuidade dos trabalhos na respectiva Comissão de Estudo da ABNT, de acordo com os procedimentos internos estabelecidos

para o processo de normalização brasileiro. Esta norma estabelece os requisitos a serem atendidos pelas edificações contempladas em seu escopo, não impedindo ou limitando que se projete e construa edificações com características diferentes das aqui especificadas. A parede externa do painel de PVC é aquela que constitui o contorno de um painel de PVC (ver figura abaixo).

As incumbências técnicas dos fabricantes dos painéis de PVC, dos projetistas e do construtor, referentes, especificamente, aos requisitos e procedimentos estabelecidos nesta Norma, encontram-se descritas a seguir. O fabricante dos painéis de PVC deve caracterizá-los conforme a norma e disponibilizar informações sobre o sistema construtivo, contendo: o detalhamento de cada tipologia de painel de PVC; a modulação e o detalhamento do acoplamento entre os painéis de PVC e das interfaces entre os painéis de PVC e outros elementos e componentes da edificação, como fundação, janelas e instalações elétricas, sanitárias e hidráulicas; as orientações para uso, operação e manutenção das paredes, contemplando: os procedimentos de limpeza; o procedimento de reparo de áreas danificadas; a manutenção de instalações embutidas; a especificação de dispositivos e forma de fixação de objetos nas paredes; as condições de aplicação de revestimentos sobre os painéis de PVC; as condições de ampliação; e a especificação de atividades e periodicidade de manutenções preventivas, atendendo aos requisitos da  NBR 5674.

A caracterização do desempenho das paredes, de acordo com os métodos de avaliação estabelecidos na NBR 15575, deve contemplar a resistência à solicitação de cargas provenientes de peças suspensas; a resistência a impactos de corpo mole e de corpo duro; a resistência a ações transmitidas por portas; a estanqueidade à água de chuva; o índice de redução sonora ponderado obtido em laboratório (Rw); a resistência ao fogo; e o comportamento sob ação de calor e choque térmico.

O projetista deve especificar os materiais, componentes e detalhes construtivos das paredes estruturais de painéis de PVC preenchidos com concreto, de modo que estas paredes atendam aos requisitos estabelecidos nesta norma, devendo ser considerado no projeto o desempenho declarado pelos fabricantes dos painéis de PVC. No caso de edificações habitacionais, o projetista deve ser responsável também pelas incumbências da NBR 15575-1.

O construtor deve executar as paredes estruturais da edificação de acordo com o projeto, bem como atender aos requisitos estabelecidos nessa norma e às especificações técnicas disponibilizadas pelo fabricante dos painéis de PVC. O construtor também deve incluir no manual de uso, operação e manutenção da edificação as orientações contempladas nas especificações técnicas disponibilizadas pelo fabricante dos painéis de PVC.

Os painéis de PVC têm a função de fôrma do concreto fresco, ficando incorporados à parede, com a função de acabamento. Os painéis de PVC não possuem função estrutural, devendo a sua contribuição na estabilidade global da estrutura ser desconsiderada. É possível a aplicação de um revestimento final sobre os painéis de PVC, desde que isso seja previsto e aplicado conforme as orientações do fabricante dos painéis de PVC.

Cada fabricante deve possuir um conjunto de painéis modulares que viabilize a montagem de todas as paredes, devendo ser elaborado um projeto de montagem dos painéis de PVC para a edificação. Como elementos complementares aos painéis de PVC, devem ser previstos um sistema de escoramento, andaimes, incluindo seus apoios, bem como componentes de ligação entre estes elementos, de forma a assegurar a resistência às ações durante o processo de construção, considerando: a ação dos ventos; a ação da estrutura auxiliar, se for o caso; os efeitos produzidos pelo lançamento do concreto, em especial o efeito do empuxo do concreto nos painéis de PVC.

O planejamento da execução das paredes deve considerar o método a ser seguido para montagem e desmontagem das estruturas auxiliares. A desmontagem do sistema de escoramentos deve ser executada de modo a atender ao comportamento da estrutura em serviço. No caso de dúvidas quanto ao modo de funcionamento da parede, o profissional responsável pela execução da obra deve consultar o projetista, a fim de obter esclarecimentos sobre a sequência correta de desmontagem do sistema de escoramento.

Cada fornecedor deve especificar os tipos de conexões entre painéis, e estas conexões devem assegurar a resistência às ações durante o processo de construção e viabilizar o atendimento aos requisitos de desempenho do sistema de vedação vertical, como a estanqueidade à água. Os painéis de PVC devem possuir orifícios nas faces de encontro com outros painéis, alinhados entre si, de forma a permitir o escoamento do concreto, assegurando que as paredes se tornem uma peça única.

O formato e as dimensões dos orifícios devem ser especificados pelo fornecedor, observando a necessidade de assegurar o escoamento do concreto entre os painéis. Não são permitidos cortes longitudinais, no sentido da altura, nos painéis de PVC, mesmo nos casos de vãos de portas e janelas.

As larguras das portas e janelas devem se adequar à modulação dos painéis de PVC. Quando necessário, os módulos com dimensões especiais, produzidos pelo fabricante e detalhados em projeto, podem ser utilizados para ajustes nas medidas de vãos de portas e janelas.

Advertisement

As características normativas obrigatórias dos cabos de fibra

Nos cabos de fibra, a sobreposição de pernas é a continuação sobreposta, em um cabo trançado, de apenas uma perna interrompida (ou de múltiplas pernas) com outra perna idêntica que segue um caminho idêntico na trança. A resistência à ruptura mínima (minimum breaking strength – MBS) é a força que o cabo de fibra deve atingir no mínimo ao ser ensaiado conforme um procedimento ou método de ensaio reconhecido. O MBS é estabelecido por cada fabricante, pelos seus próprios métodos estatísticos baseados em ensaios de ruptura.

Os fabricantes devem fornecer as informações detalhadas sobre o uso e manutenção de cabos. Recomenda-se que eles forneçam uma etiqueta de advertência, sempre que razoável, para alertar os usuários sobre práticas perigosas. Por exemplo, Ao se remover um cabo de uma bobina, recomenda-se que se inicie com a ponta a partir da parte interna.

O cabo deve ser seja desenrolado no sentido anti-horário. Se o cabo for puxado no sentido horário, ocorrerão dobras. Se isso acontecer, colocar o trecho do cabo de volta na bobina, virá-la para o outro lado e puxar o trecho do cabo a partir do centro novamente. O cabo deve ser desenrolado no sentido anti-horário a fim de ficar livre de dobras.

Uma maneira melhor ainda de desenrolar o cabo é o uso de uma mesa rotativa. O cabo pode ser então desenrolado a partir da ponta externa. Um pequeno comprimento do cabo também pode ser desenrolado no piso.

Recomenda-se que a relação D/d, onde D é o diâmetro das polias e d é o diâmetro do cabo, exceda 5 em todos os casos, mas possa chegar a 20 para certas fibras de alta performance. Muitas aplicações ou tipos de cabos exigem uma alta relação D/d, especialmente para operações de içamento, sendo que fatores de segurança maiores são apropriados. Independentemente do diâmetro da polia, a vida útil do cabo também depende do projeto e das dimensões do canal.

Se o canal da polia for demasiadamente estreito, o cabo pode travar e as pernas e as fibras podem não flexionar adequadamente, prejudicando a vida útil do cabo. Por outro lado, o canal da polia largo demais também é prejudicial à vida útil do cabo devido ao achatamento das pernas e dos fios.

Para cabos sintéticos, recomenda-se que o diâmetro do canal seja de 10% a 15% superior ao diâmetro nominal do cabo. O cabo será apoiado da melhor forma possível se o arco de contato com o contorno do canal for de 150°. A altura dos canais deve ser no mínimo 1,5 vez o diâmetro do cabo, a fim de impedir que o cabo saia da polia. As voltas excessivas podem causar dobras8 em qualquer cabo, mas os encabritamentos só ocorrem em cabos torcidos básicos.

Os cabos trançados podem não se encabritar, pois sua construção de pernas intertravadas impede que sejam destorcidos. As pernas são dispostas em ambos os sentidos criando um equilíbrio livre de torque, eliminando, assim, qualquer tendência inerente de torção ou rotação. Deve-se remover as voltas excessivas (dobras) em um cabo por meio da rotação em seu sentido contrário em uma condição de relaxamento assim que possível.

Uma vez formados os encabritamentos, o cabo terá perdido a resistência à ruptura, até mesmo quando o encabritamento for desfeito. O dano é irreversível e a perda da resistência pode chegar a 30%. Não se deve permitir a formação de dobras no cabo. Caso isso ocorra, é sinal de que a torção foi adquirida ou perdida no cabo e se recomenda que as dobras sejam retiradas do cabo a partir de uma ponta.

Essa recomendação se aplica tanto a cabos torcidos quanto aos trançados. As dobras são especialmente graves no caso de cabos torcidos, pois podem ocorrer danos graves caso não se preste atenção a este problema. Recomenda-se que as tentativas de eliminar as dobras jamais envolvam o puxamento do cabo em uma tentativa de forçar o desdobramento. Isso pode provocar a destorção das pernas,

Ocorrerá uma situação de perigo se o pessoal estiver próximo a um cabo sob tensão excessiva. Caso ocorra a falha do cabo, ele provavelmente se enrolará novamente com uma força considerável (efeito chicote), podendo ser fatal. As pessoas devem ser advertidas a não se posicionarem próximas ao eixo do cabo ou em sua parte do meio.

Os requisitos de utilização precisam ser considerados durante o projeto, a fabricação e o uso dos cabos de fibra. Os aspectos a serem observados são aspectos como a resistência a produtos químicos; as restrições devidas à temperatura; a suscetibilidade ao corte e à abrasão; a degradação devida à radiação ultravioleta; o dobramento estático sobre, por exemplo, uma ferragem disponível; os dobramentos repetidos sobre polias; a compressão axial; fatiga à tração; e o alongamento irreversível durante o tempo induzido por carregamento constante (fluência).

Os seguintes aspectos são para serem considerados em relação a inspeção e manutenção: critérios para descarte, incluindo ausência/danos de etiqueta e marcação ilegível; e os registros de inspeção. Assim, antes do trecho de um cabo ser colocado em uso, todo o comprimento, incluindo os olhais trançados e a emenda de topo, deve ser inspecionado por uma pessoa qualificada. Recomenda-se que essa inspeção seja realizada para a detecção dos tipos de danos descritos na norma. Recomenda-se que os detalhes de toda inspeção sejam registrados incluindo a data, o dano, o local e as conclusões.

Alguns tipos de cabos desenvolverão uma aparência felpuda ou aveludada como resultado do atrito sobre uma superfície rugosa. Isso é perfeitamente normal e não causará uma perda de resistência significativa no cabo. O desgaste excessivo é indicado pela remoção de uma grande parte das seções transversais dos fios na parte externa do cabo. Tal desgaste é geralmente visto mais claramente nas cristas das pernas e na parte interna das costuras dos olhais, particularmente sob o sapatilho de um cabo.

Quando os cabos tiverem sido usados em um ambiente abrasivo, as partículas abrasivas podem penetrar em seu centro. É importante abrir o cabo e inspecioná-lo entre as pernas para se definir se tal dano está ocorrendo e deve-se fazer esse exame com muito cuidado para evitar o empenamento e a distorção das pernas que, por sua vez, podem causar problemas posteriormente.

A presença de grandes quantidades de materiais particulados nas fibras do centro do cabo indica que a substituição pode ser necessária. Os cabos podem estar sujeitos à compressão axial, especialmente os que tenham uma capa trançada ou extrudada sobre uma alma interna que carregue uma carga sujeita a compressão axial, conforme manifestado pelos vincos de filamentos (fibrilas). Isto ocorre principalmente em cabos com almas com passo longo (trançadas) em uma capa muito apertada quando estão sujeitas ao curvamento enquanto estão sob tração (como ocorre em cabeços e guias de cabos – fairleads).

Em casos graves, o cabo terá protuberâncias em áreas nas quais os vincos estiverem concentrados (protuberâncias frequentemente se repetem em um comprimento de ciclo uniforme). Se a alma interna puder ser inspecionada, vincos de filamentos de fibras dobradas ou fios que tiverem uma aparência de um Z podem ser vistos. Se o dano for grave, os filamentos nos pontos Z podem ser cortados com uma faca.

Se a capa não puder ser aberta para inspeção interna, ou ensaios destrutivos podem ser as únicas formas de avaliação. Os danos mecânicos sempre reduzem a resistência de um cabo. A perda de resistência dependerá da gravidade do dano. Deve-se lembrar que os danos mecânicos, especialmente o desgaste por atrito, sempre terão um efeito mais pronunciado em um cabo de menor diâmetro do que em um cabo de maior diâmetro.

Os cortes requerem um exame cuidadoso para verificar a sua profundidade, e, dessa forma, a extensão da seção transversal danificada. Para cabos com capa, em que esta não suporte a carga, um corte que não danifica a alma provavelmente não afetará a resistência. Porém, uma deformação na alma ou alma saltada poderia ocorrer com o uso subsequente se a capa não for reparada.

As almas podem se deslocar para a capa e se recomenda que uma maior inspeção quanto à proximidade dos danos seja realizada a fim de assegurar a integridade da alma. Os cortes para almas podem causar outros efeitos adversos como dificuldades em manusear, inabilidade em deslizar pelos acessórios suavemente, expondo a alma a partículas abrasivas.

Sugere-se que sejam adotadas as diretrizes descritas a seguir para a estimativa de danos e da degradação da resistência ocasionada pelo desgaste normal. É importante entender que um cabo perderá a sua resistência durante o uso em qualquer aplicação. Os cabos são ferramentas de trabalho importantes e, se usados devidamente, prestarão serviço consistentes e confiáveis.

O custo da reposição de um cabo é extremamente limitado quando comparado aos danos físicos ou lesões pessoais que podem ser provocados por um cabo desgastado. Antes da inspeção, identificar o cabo por sua etiqueta ou marcação permanente, consultando

quaisquer registros de inspeção anteriores. Inspecionar visualmente o cabo em toda a sua extensão, identificando quaisquer áreas que exijam uma investigação mais aprofundada.

Deve-se inspecionar também as terminações trançadas para assegurar que estejam na condição conforme fabricada. Em cabos de fibra sintética, o grau da perda de resistência devida à abrasão e/ou ao dobramento está diretamente relacionado com a quantidade de fibra rompida na seção transversal do cabo. Após cada uso, observar e apalpar todo o comprimento do cabo à procura de áreas de abrasão, brilhantes ou vitrificadas, diâmetros inconsistentes, descoloração, inconsistências na textura e rigidez.

É importante compreender as características construtivas do cabo em uso. A maioria dos cabos é projetada para ter características especificamente destinadas à sua aplicação. Estas características podem gerar equívocos durante as inspeções visuais. Quando um cabo tem uma capa trançada, é possível apenas inspecionar visualmente a capa.

Em construções de cabos trançados e de oito pernas, as partes de superfícies proeminentes de cada perna são expostas de maneira intermitente. Assim, essas zonas, que normalmente são conhecidas como as cristas, estão sujeitas a danos. Os cabos trançados de 12 pernas são semelhantes ao cabo de oito pernas mencionado anteriormente.

Contudo, as cristas das pernas são menos proeminentes e, portanto, menos suscetíveis a danos superficiais. A construção de cabos de dupla trança possui uma alma interna independente, apresentando aproximadamente 50% da resistência total do cabo. Como essa alma não está sujeita à abrasão da superfície e ao desgaste, tende a reter um grande percentual de sua resistência original durante um período de tempo mais longo. Assim, o desgaste nas pernas da superfície não constitui um percentual de perda de resistência tão grande quanto em outras construções.

A NBR ISO 9554 de 08/2022 – Cabos de fibra – Especificações gerais especifica as características gerais de cabos de fibra e seus materiais constituintes. Pretende-se que seja usada em conjunto com as normas dos tipos individuais de cabo de fibra, que tratam das propriedades físicas e dos requisitos específicos desses tipos de produtos. Este documento também fornece algumas informações sobre o uso de cabos de fibra, bem como sobre sua inspeção e critérios de descarte. Este documento não pretende abordar todas as questões de segurança associadas à sua utilização.

Os seguintes materiais são considerados neste documento: fibras naturais: sisal; manilha; cânhamo; algodão. Fibras sintéticas: poliamida, PA; poliéster, PES; polipropileno, PP; polietileno, PE; poliolefina mista, PP/PE; fibras combinadas de poliéster e poliolefina; polietileno de alto módulo, HMPE; para-aramida, AR; poliarilato, LCP; e polioxazol, PBO. As características típicas destes materiais são apresentadas no Anexo A. Recomenda-se, para as aplicações específicas, que sejam realizadas discussões técnicas com os fabricantes do cabo.

A menos que especificado em contrário, os cabos torcidos de três, quatro e seis pernas devem ter torção Z (torção à direita), sendo suas pernas construídas com torção S e seus fios com torção Z. Os cabos trançados de oito pernas devem ser constituídos de quatro pernas com torção S e quatro pernas com torção Z, dispostas de modo que as pernas com torção S alternem (individualmente ou em pares) com as pernas com torção Z (individualmente ou em pares).

Os cabos trançados de 12 pernas devem ser constituídos de seis pernas com torção S e seis pernas com torção Z, dispostas de modo que as pernas com torção S alternem (individualmente ou em pares) com as pernas com torção Z (individualmente ou em pares). Um cabo de dupla trança deve ser constituído de várias pernas que são trançadas para formar uma alma, em torno da qual pernas adicionais são trançadas para formar uma capa.

A alma se situa coaxialmente dentro da capa. O número de pernas varia em função do tamanho do cabo. Um cabo com capa consiste em uma alma protegida por uma cobertura sem contribuição para suportar cargas. Uma construção de cabos paralelos é um cabo com capa cuja alma consiste em um número de subcabos.

Cada perna deve ser composta do mesmo número de fios de cabo suficientes para assegurar as características especificadas na norma internacional para o produto em questão. Para cabos com número de referência igual ou superior a 36, o número de fios em cada perna pode variar em um fio ou ± 2,5% em relação ao número previsto de fios na perna.

Os cabos e suas pernas devem ser contínuos, sem emendas para comprimentos fornecidos padronizados ou comprimentos menores. Porém, alguns comprimentos ou métodos de fabricação impõem limitações. A fim de superar essas limitações, sobreposições de pernas podem ser utilizadas, sendo que estas devem estar de acordo com essa norma. Os fios podem ser emendados conforme necessário. As pernas podem ser formadas por fios emendados.

O fabricante deve determinar o passo do cordão ou o paço de trança do cabo de acordo com a aplicação à qual se destina ou conforme o especificado pelo comprador. Para um determinado número de referência do cabo, quanto menor for o passo de torção ou o passo de trança, maior a dureza do cabo. A dureza pode afetar a resistência à ruptura estimada do cabo.

Os cabos torcidos de poliamida e poliéster que necessitam de termofixação para assegurar a estabilidade do passo e das dimensões são designados como cabos do tipo 1 na norma do produto pertinente. Em outros casos, os cabos torcidos em poliamida e poliéster para os quais a termofixação não é requerida são designados como cabos do tipo 2 na norma do produto pertinente.

Se o tipo 1 ou 2 não for especificado em uma norma de um produto em particular, deve ser entendido que a termofixação não foi considerada para o respectivo produto. O produtor da fibra ou o fabricante do cabo pode aplicar um acabamento à fibra a fim de controlar a fricção e a tração da fibra, além de reduzir o dano à fibra durante a fabricação.

A quantidade total de aditivos ou materiais extraíveis não pode ultrapassar 2,5% em massa. Um cabo com torção à direita seja sempre enrolado no sentido horário e que um cabo com torção à esquerda seja sempre enrolado no sentido anti-horário, ou seja, com a torção do cabo. ((ver a figura abaixo)

Em vez de colocar todas as camadas umas sobre as outras, recomenda-se colocar o cabo em formato espiral, movendo cada camada em alguns centímetros. Mediante a solicitação do comprador, o fabricante pode utilizar um revestimento ou a impregnação do produto para aplicações especiais.

Os cabos de polipropileno e polietileno devem ser protegidos contra a deterioração devida à luz solar (UV). Recomenda-se que o sistema de inibição usado assegure, durante o uso, o desempenho correspondente às zonas geográficas previstas para as aplicações, desde que o fabricante seja mantido informado pelo usuário.

Os cabos de polietileno de alto módulo são tipicamente impregnados. Os cabos de polietileno de alto módulo podem estar sujeitos ao processo de termofixação. A termofixação de cabos de HMPE são designados cabos de tipo 1 na norma do produto pertinente.

Os cabos de polietileno de alto módulo que não tiverem passado por termofixação são designados como cabos de tipo 2 na norma do produto pertinente. A termofixação geralmente melhora a resistência à ruptura de um cabo de polietileno de alto módulo. Porém, a vida útil geral do cabo pode ser reduzida.

Todos os cabos de manilha e de sisal devem ser feitos exclusivamente de fibras novas. Na manilha, deve-se aplicar um óleo lubrificante para cabos de qualidade adequada. O lubrificante não pode conferir ao cabo acabado um odor ofensivo. O percentual de material extraível baseado no peso seco do cabo não pode ser inferior a 11,5% nem superior a 16,5%.

Quando especificado, o cabo deve ser submetido a um tratamento resistente a mofo. Sempre que solicitado pelo comprador, podem ser acrescentados aditivos bactericidas para manilha para ampliar o desempenho da fibra natural. No sisal, deve-se aplicar um óleo lubrificante para cabos de qualidade adequada. Este lubrificante não pode conferir ao cabo acabado um odor ofensivo.

O percentual de material extraível baseado no peso seco do cabo não pode ser superior a 11,5% para um produto não lubrificado nem superior a 16,5% para um produto lubrificado. Quando especificado, o cabo deve estar livre de quaisquer óleos e ser vendido como um cabo não lubrificado. Quando solicitado pelo comprador, podem ser adicionados aditivos bactericidas para sisal para ampliar o desempenho da fibra natural.

O cabo acabado não pode conter cortes, dobras ou pontos com amolecimento causados por passos irregulares, deformações, trechos desgastados por atrito ou danificados, ou pontas rompidas, soltas ou salientes no cabo ou nas pernas. As extremidades não emendadas de todos os cabos devem ser cortadas em ângulo reto e firmemente amarradas, fixadas com fita ou vedadas termicamente.

As sobreposições de pernas, quando presentes em cabos ou subcabos de 12 pernas, devem ser distribuídas ao longo do comprimento do cabo e a uma distância suficiente. As pernas interrompidas e recolocadas são organizadas paralelamente a uma distância e são embutidas ou enfiadas na trança a fim de fixá-las na trança.

A fim de manter a resistência, as pernas devem se sobrepor uma à outra a uma distância suficiente. Uma amostra de ensaio incluindo uma sobreposição de pernas em uma perna deve atingir 100% da carga de ruptura mínima (MBS) especificada quando ensaiada conforme a NBR ISO 2307.

Para sobreposições de pernas em cabos de dupla trança, ver a noma do produto pertinente. O processo de intercâmbio de pernas deve ser completamente documentado. A documentação deve conter pelo menos as informações seguintes e devem ser disponibilizadas a um inspetor caso solicitado: o comprimento de uma sobreposição de pernas; a distância mínima entre duas sobreposições de pernas; o comprimento total da sobreposição de pernas; e as posições das sobreposições de pernas do início ao fim do cabo.

Se necessário, toda a emenda de perna ou parte deve ser permanentemente marcada (por exemplo, com tinta) no cabo a fim de possibilitar uma detecção preventiva de uma sobreposição de perna que esteja deslizando para fora e a fim de distinguir uma sobreposição de pernas de um defeito. As sobreposições de perna são permitidas apenas em cabos trançados de 12 pernas.

Os cabos de diferentes tamanhos podem ser considerados do mesmo projeto, quando os seguintes parâmetros permanecerem inalterados independentemente da escala: fio do cabo; relação entre passo de torção da perna com o diâmetro é fixo (= passo da perna dividido pelo diâmetro da perna); relação entre passo de torção ou passo de trança do cabo com o diâmetro é fixo (= passo do cabo dividido pelo diâmetro do cabo); tipo de equipamento utilizado; tipo de acabamento, percentual de impregnação, e penetração (quando aplicável); controle de qualidade e emenda. Recomenda-se que o projeto seja reportado em uma folha de especificação de projeto contendo as informações gerais quanto à empresa, ao inspetor independente, ao projeto do cabo e a ensaios de protótipos realizados a fim de validar o projeto.

Essa especificação deve ser seja disponibilizada para as partes quando requerido. Convém que os detalhes do projeto do cabo e de ensaios de protótipos sejam apresentados em uma segunda folha. Detalhes da fibra utilizada no projeto devem ser especificados e convém que estas duas últimas folhas sejam disponibilizadas para inspeção por inspetores independentes quando solicitado pelas partes interessadas.

Os principais requisitos devem ser aqueles especificados na norma do produto pertinente e devem incluir o seguinte: número de referência; densidade linear; e carga de ruptura mínima. Os métodos de ensaios estão especificados na NBR ISO 2307. Outros requisitos, por exemplo, o comprimento do passo, o passo de trança, o diâmetro do círculo circunscrito e o alongamento do cabo sob condições de tração específicas podem ser especificados, sujeitos a acordos entre o fabricante e o comprador.

A identificação do material, da qualidade e da origem de um cabo de fibra de acordo com este documento deve ser marcada usando-se uma fita colocada dentro do produto de maneira a permanecer reconhecível apesar da sujeira, imersão ou descoloração durante o uso. A fita deve ter uma largura de no mínimo 3 mm, e deve conter o número da norma pertinente devidamente impresso e uma referência identificando o fabricante. A distância máxima entre duas marcações consecutivas deve ser de 0,5 m. Os cabos com número de referência inferior a 14 não precisam ser marcados, a menos que especificado na norma do produto.

A conformidade das selagens resistentes ao fogo em elementos de compartimentação

Pode-se definir a selagem de passagem como um componente único ou sistema usado em abertura de elementos de compartimentação para manter a resistência ao fogo e a selagem de passagem cega é um sistema em que uma abertura no elemento de compartimentação é selada ou fechada sem incorporação de qualquer instalação de serviço. Eventualmente as aberturas podem não receber a passagem de instalações de serviço. Neste caso o fechamento desta abertura é conhecido como selagem cega que nunca pode ser utilizada para a avaliação de desempenho de uma selagem com passagem de instalações de serviço.

As selagens de aberturas de passagem podem ser classificadas em dois tipos: selagens de aberturas de passagens de instalações de serviço em passagem total e em passagem de membrana. As aberturas de passagens de instalações de serviço em passagem total são exemplificadas na figura abaixo e as aberturas de passagens de instalações de serviço em passagem de membrana são exemplificadas em outra figura abaixo.

Há exigências, parâmetros e características de selagens a serem instaladas nas edificações, para estabelecer a correta aplicação desses elementos de compartimentação e assim impedir a propagação de incêndio do pavimento de origem para outros ambientes no plano horizontal (compartimentação horizontal) e no sentido vertical, ou seja, entre os pavimentos elevados consecutivos (compartimentação vertical).Todas as informações fornecidas na norma técnica aplicam-se a todas as edificações onde é exigida a compartimentação, conforme estabelecido em regulamentos e leis.

A selagem de juntas e de aberturas em elementos de compartimentação resistentes ao fogo não pode ser ocultada por qualquer revestimento ou elemento que a possa cobrir até que esta seja inspecionada e aprovada. Por exemplo, a colocação de um revestimento sobre a selagem é realizada somente após a inspeção e aprovação da respectiva selagem. A abertura de passagem total através de elementos de compartimentação verticais deve ser protegida por sistema de selagem resistente ao fogo aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante.

A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação onde será instalada, comprovada pela realização de ensaio conforme a NBR 16944-2. Algumas exceções podem ser consideradas nos sistemas de selagens em elementos de compartimentação com passagem total, desde que atendam a todas as condições dispostas na norma e atendam na íntegra aos critérios estabelecidos nas regulamentações e leis locais: aberturas de passagens de instalações de serviço em piso que estão dentro de cavidades de paredes não requerem a classificação de isolamento térmico (I), desde que as instalações de serviço do sistema de selagem não estejam em contato com quaisquer outros elementos ou instalações que não componham o sistema de selagem; aberturas de passagens de instalações de serviço em piso constituídas por ralos, caixas sifonadas, drenos e vaso sanitário não requerem a classificação de isolamento térmico (I), desde que essas instalações de serviço não estejam em contato com quaisquer outros elementos ou instalações, por exemplo, os revestimentos de piso e louças sanitárias considerados combustíveis, conforme os critérios de classificação da NBR 16626.

Devem atender as aberturas de passagens de instalações de serviço de aço, ferro fundido ou cobre pressurizadas, com diâmetro nominal máximo de 150 mm, que não estejam em contato com quaisquer outros elementos ou instalações, e com o espaço anular preenchido em toda a espessura do elemento de compartimentação por concreto ou graute. Nesse caso, ainda deve-se respeitar às seguintes limitações: os elementos de compartimentação de concreto; uma única instalação de serviço de passagem em cada abertura; e cada abertura afastada das demais em 200 mm. O somatório das aberturas na área do elemento de compartimentação não pode exceder 0,092 m².

Deve-se observar que as penetrações por caixas elétricas de qualquer material, desde que tais caixas tenham sido ensaiadas em conjunto com o elemento de compartimentação usual; o espaço anular criado pela penetração de um chuveiro automático, desde que coberto por um espelho de chapa metálica. A abertura de passagem de membrana (aberturas parciais) em elementos de compartimentação resistentes ao fogo deve ser protegida por sistema de selagem resistente ao fogo com classificação (E ou EI) igual ou superior à classificação de resistência ao fogo do elemento de compartimentação onde a selagem será instalada, comprovada pela realização de ensaio conforme a NBR 16944-2.

Os acessórios embutidos devem ser instalados de forma que a resistência ao fogo do elemento de compartimentação exigida não seja reduzida. Algumas exceções podem ser consideradas nos sistemas de selagens em elementos de compartimentação com passagem por membrana, desde que atendam a todas as condições dispostas na norma e atendam na íntegra aos critérios estabelecidos nas regulamentações e leis locais. Isso inclui a passagem de membrana por caixas elétricas de aço em paredes com classificação de resistência ao fogo máxima de 2 h não precisa de selagem ao atender os seguintes critérios: a área da caixa elétrica não pode exceder 0,01 m²; a soma da área das caixas elétricas da parede não pode exceder 0,065 m² em uma parede de 9,3 m²; o espaço anular entre a parede e a caixa elétrica não pode exceder 3,2 mm; as caixas elétricas de aço em lados opostos da parede devem atender a um dos seguintes itens: estar afastadas no mínimo 600 mm; estar afastadas no mínimo a distância igual à largura da parede e a parede estar preenchida com lã mineral; passagem de membrana por caixas elétricas de qualquer material, desde que tais caixas tenham sido instaladas e ensaiadas para uso juntamente com o elemento resistente ao fogo.

O espaço anular entre o elemento de compartimentação e a caixa não pode exceder 3,2 mm, a menos que indicado de outra forma. Essas caixas em lados opostos da parede ou divisórias devem ser separadas como a seguir: estar afastadas no mínimo 600 mm; estar afastadas no mínimo a distância igual à largura da parede e a parede estar preenchida com lã mineral; as caixas elétricas metálicas instaladas em lajes de concreto não precisam de selagem, caso estejam concretadas e não cruzem por toda a espessura da laje (passagem de membrana).

As juntas instaladas dentro ou entre paredes com classificação de resistência ao fogo, pisos ou conjuntos de piso/teto e telhados ou conjuntos de telhado/teto devem ser protegidas por um sistema de selagem de junta linear resistente ao fogo, aprovado e projetado para resistir à passagem do fogo por um período de tempo não inferior à classificação de resistência ao fogo (E e EI) exigida do elemento de compartimentação (parede, piso ou telhado), em que o sistema será instalado. As juntas de construção em elementos de compartimentação devem receber selagem resistente ao fogo de acordo com a NBR 16944-3, observando-se alguns aspectos relativos à movimentação descritos a seguir.

A junta dinâmica deve ser capaz de acompanhar a movimentação dos elementos de compartimentação em compressão e extensão sempre que as juntas tiverem movimentação ou dilatação por variações térmicas, sísmicas, vento, cargas acidenteis e carga permanente. A junta estática ocorre quando não está prevista a movimentação dos elementos de compartimentação durante a construção e ao longo da vida útil da edificação.

Algumas exceções podem ser consideradas nos sistemas de selagens de juntas de construção, desde que atendam a todas as condições dispostas na norma e atendam na íntegra aos critérios estabelecidos nas regulamentações e leis locais. Isso inclui os pisos dentro de uma unidade de habitação unifamiliar; os pisos em que a junta é protegida por um shaft com resistência ao fogo igual ou maior que o elemento de compartimentação; os pisos dentro de átrios em que o espaço adjacente é utilizado para fins de controle de fumaça (inclusive no volume do átrio); os andares dentro de shoppings; os pisos e rampas em garagens de estacionamento; os pisos em mezanino; as paredes que podem ter aberturas desprotegidas; e os telhados em que as aberturas são permitidas.

As aberturas criadas na interseção entre parede-cortina externa e entrepiso devem ser protegidas por sistema de selagem resistente ao fogo aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante, para evitar a propagação de fogo e fumaça no exterior e interior da edificação. A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação onde será instalada.

As juntas perimetrais existentes em espaços vazios localizados na interseção dos conjuntos de paredes-cortina (peles de vidro, painéis de concreto etc.) e conjuntos de piso devem ser selados com um sistema aprovado de selagens perimetrais que evite a propagação do fogo no interior da edificação. Esses sistemas devem ser instalados com segurança e ensaiados de acordo com a EN 1364-3, EN 1364-4, ou norma brasileira aplicável, quando houver, para fornecer a classificação de resistência por um período não inferior à classificação de resistência ao fogo do conjunto de piso.

Os requisitos de altura e resistência ao fogo para o anteparo vertical da parede-cortina devem seguir a legislação local. A selagem da junta perimetral deve ser capaz de acompanhar a movimentação do conjunto em compressão e extensão, sempre que as juntas tiverem movimentação ou dilatação por variações térmicas, sísmicas, de vento, cargas acidenteis e carga permanente.

As aberturas criadas na passagem de dutos de ventilação, ar-condicionado ou exaustão nas paredes e entrepisos devem protegidas por sistema de selagem resistente ao fogo, aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante, para evitar a propagação de fogo e a fumaça no exterior e no interior da edificação. A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação.

Se necessário, tais instalações devem conter os registros resistentes ao fogo e/ou sistema de proteção dos dutos, os quais devem também apresentar a mesma classificação de resistência ao fogo do elemento de compartimentação e da selagem. As aberturas nas prumadas, visitáveis ou não visitáveis, por onde passam as instalações de serviço em geral devem ser protegidas por sistema de selagem resistente ao fogo aprovado e instalado conforme os métodos de ensaios específicos e o manual do fabricante, para evitar a propagação de fogo e fumaça no exterior e no interior da edificação.

A selagem deve ter uma classificação de resistência ao fogo (E ou EI) igual ou superior à resistência ao fogo do elemento de compartimentação. A selagem da abertura da prumada vertical pode ser substituída pela compartimentação horizontal, realizada por meio de enclausuramento com parede resistente ao fogo, que atenda no mínimo ao mesmo tempo de resistência ao fogo do entrepiso e da parede onde será instalada. As instalações que transpassam a parede resistente ao fogo da prumada (registros, chuveiros, tubulações em geral, etc.) devem ser devidamente seladas com elementos ou sistemas resistentes ao fogo, com classificação igual ou superior à do elemento de compartimentação.

A NBR 16944-1 de 09/2022 – Selagens resistentes ao fogo em elementos de compartimentação – Parte 1: Requisitos estabelece os requisitos para classificação, desempenho, especificação, aplicação, instalação, responsabilidades, ensaios e inspeção, manutenção e comissionamento de selagens resistentes ao fogo em elementos de compartimentação, a serem empregadas na passagem de instalações elétricas, hidráulicas, mecânicas, de ar-condicionado e comunicações (telefone, dados) e em todas as passagens que permitam a comunicação entre áreas compartimentadas, incluindo juntas perimetrais e juntas de construção. Não fornece todas as informações específicas normalmente descritas em documentos técnicos para aplicações específicas de sistemas de selagens e não pode ser considerada um manual de instalação destes sistemas. Oferece alguns recursos para verificar informações suplementares relacionadas a propriedades ambientais, mecânicas e físicas do sistema de selagens; longevidade; durabilidade; e desempenho do sistema de selagens, pois essas características podem afetar a instalação e o desempenho do sistema de selagens.

Os sistemas de selagens são compostos por partes, sendo a primeira o elemento de compartimentação e a segunda uma abertura criada através ou dentro deste elemento de compartimentação. Quando a abertura estiver apenas em um lado do elemento de compartimentação, o sistema de selagem necessário é chamado de sistema de selagem de passagem de membrana, e quando a abertura for total através do elemento compartimentação, a abertura é chamada de passagem total e o sistema de selagem necessário é chamado de sistema de selagem de passagem total.

A próxima parte extremamente importante de um sistema de selagem é a passagem do item penetrante, que pode ser uma instalação de serviço (por exemplo, serviços elétricos, mecânicos, hidráulicos, telecomunicações ou outro serviço) ou um elemento estrutural (por exemplo, vigas, pilares etc.). Por fim, as aberturas em elementos de compartimentação recebem o sistema de selagem.

Conhecer as terminologias relevantes é fundamental para compreender o relatório de ensaio do sistema de selagem e assim verificar se a aplicação está adequada na prática. Também é necessária a verificação da documentação do fabricante antes da realização da montagem do sistema de selagem no local, tomando cuidado com as revisões do manual.

Para garantir que as instruções do fabricante não sejam alteradas e que ainda sejam aplicáveis, as instruções devem ser verificadas antes de se iniciar o processo de instalação do sistema. Idealmente, esse processo de verificação deve ocorrer quando um sistema está sendo projetado e especificado. As instruções do fabricante também devem conter datas de revisão, que ajudarão no processo de verificação.

Os ensaios em sistemas de selagens não replicam o ambiente e as condições de instalação de todos os projetos. Os sistemas de selagens em laboratório estão sujeitos às condições ambientais do local, que pode ser diferente daquele da instalação em campo.

O ensaio de resistência ao fogo em corpos de prova tem como objetivo avaliar materiais, montagens e detalhes, como dimensões e condições representativas aplicadas na construção e operação do edifício. No entanto, essas variáveis na construção real são enormes, por exemplo, um elemento de compartimentação em um projeto específico ensaiado com um sistema selagem não é normalmente representativo de todas as construções para cada projeto, pois os traços de concretos usados na construção civil variam consideravelmente.

Assim, a construção do elemento de compartimentação pode ser padronizada para permitir uma aplicação mais ampla dos resultados de ensaio, usando um tipo de concreto genérico, com uma espessura um pouco menor do que o necessário para a classificação de resistência ao fogo prescrita potencialmente. Os produtos que compõem os sistemas de selagens resistentes ao fogo devem apresentar as respectivas fichas de informações de segurança de produtos conforme regulamentação nacional vigente, que devem ser tomadas como referência para orientar os processos produtivos, de forma a preservar as condições adequadas de segurança do trabalho.

O produto final não pode oferecer qualquer risco à saúde do usuário das edificações onde estes sistemas encontram-se instalados. Todos os produtos do sistema de selagem, sendo ele aplicado individualmente ou dentro do sistema de selagem, têm como objetivo restabelecer a classificação de resistência ao fogo dos elementos de compartimentação, devido à realização de aberturas para passagem de instalações de serviço, aberturas entre elementos construtivos devido à necessidade de acomodar movimentos (por exemplo, juntas de dilatação), aberturas entre fachadas e sistemas construtivos, ou mesmo devido a aberturas resultantes de projetos mal concebidos.

Um sistema de selagem resistente ao fogo é formado a partir de um único produto, de um kit de produtos ou de uma combinação com outros produtos montados no local. Exemplos de produtos destinados a esta finalidade: mantas e placas revestidas; selantes ou mastiques; colares de proteção; fitas; luvas e módulos; almofadas, travesseiros e bolsas; plugues e blocos; chapas compostas; massa e argamassa de selagem; espumas; e massas para caixas elétricas.

As selagens resistentes ao fogo são indicadas para instalação nos locais como passagens de elétrica, hidráulica, incêndio, dutos de ventilação permanente (selagem + damper) ou telefônica, e outras que cruzem total ou parcialmente os elementos de compartimentação. A seguir são apresentados alguns exemplos de aplicação: eletrocalhas, conduítes metálicos e plásticos ou barramentos blindados que cruzem verticalmente, em qualquer local, entre pavimentos compartimentados; tubulações hidrossanitárias, como esgoto, pluvial, ventilação, recalque, água fria, água quente etc., que cruzem verticalmente, em qualquer local, entre pavimentos compartimentados; tubulações, luvas ou passantes de caixas sifonadas, ralos e vaso sanitários que cruzem verticalmente, mesmo em banheiros, cozinhas, lavanderias ou garagens, entre pavimentos compartimentados; eletrocalhas, conduítes metálicos, conduítes plásticos ou barramentos blindados que cruzem horizontalmente, em qualquer local, entre unidades autônomas, saídas de emergência, poços de elevadores, paredes de subestações elétricas e demais paredes de compartimentação; e tubulações hidrossanitárias, como esgoto, pluvial, ventilação, recalque, água fria, água quente etc., que cruzem horizontalmente, em qualquer local, entre unidades autônomas, saídas de emergência, poços de elevadores, paredes classificadas de shafts, paredes de subestações elétricas e demais paredes de compartimentação.

As passagens de juntas perimetrais com espaços vazios criados na interseção dos conjuntos de parede-cortina externa (peles de vidro, painéis de concreto, etc.) e conjuntos de piso. Em qualquer junta ou encunhamento de elementos resistentes ao fogo nas configurações apresentadas a seguir: junta no topo da parede; junta na base da parede; junta entre paredes ou estruturas como pilares; junta entre pisos; junta entre piso e parede. Em passagem de barramentos blindados (bus way), levando em consideração tanto a selagem interna como a externa do barramento.

As selagens resistentes ao fogo devem ser ensaiadas ou certificadas por laboratório reconhecido nacionalmente ou internacionalmente, e ser instaladas de modo que garantam a completa vedação das aberturas, independentemente de suas dimensões, não permitindo, assim, a passagem de calor, gases, fumaça e fogo entre paredes e entrepisos compartimentados. Tais selagens devem restabelecer as características de resistência ao fogo dos elementos de compartimentação.

As tubulações de materiais combustíveis devem receber proteção por sistema de selagem devidamente ensaiado e aprovado, em ambos os lados da parede ou abaixo do entrepiso. Todas as selagens resistentes ao fogo em shafts e passagens visitáveis devem receber identificação de que é um sistema resistente ao fogo e que informe que qualquer dano deve ser reportado ao responsável pela edificação, para o reparo imediato. Adicionalmente, é importante constar, nesta identificação, o nome do fabricante e a rastreabilidade dos sistemas instalados.

O sistema de selagem resistente ao fogo deve ser autoportante, ou seja, deve suportar a exposição ao fogo, em uma das faces, por um determinado período de tempo, preservando a sua integridade, e apresentar durabilidade compatível de acordo com a NBR 16944-2, NBR 16944-3, EN 1364-3 e EN 1364-4 ou norma brasileira aplicável, quando houver, conforme apropriado. As selagens resistentes ao fogo ensaiadas pelos seus respectivos métodos de ensaio devem ter classificação mínima igual ou superior à do elemento de compartimentação (piso ou parede), mantendo os critérios de integridade (E) e/ou de isolação térmica (I).

As selagens de aberturas de passagem de instalações de serviço consistem em produtos ou sistemas de selagens de aberturas em elementos de compartimentação, por onde transpassam instalações de serviço, como, por exemplo, instalações hidráulicas e elétricas, juntamente com qualquer construção de suporte, projetadas para manter o desempenho da integridade e/ou a isolação térmica do elemento de compartimentação durante a ocorrência de um incêndio. Eventualmente as aberturas podem não receber a passagem de instalações de serviço. Neste caso o fechamento desta abertura é conhecido como selagem cega que nunca pode ser utilizada para a avaliação de desempenho de uma selagem com passagem de instalações de serviço.

As selagens de juntas de construção são produtos ou sistemas de selagens de aberturas entre elementos de compartimentação (juntas, vazios, lacunas ou outras descontinuidades) entendidas como a razão entre o comprimento e a largura de pelo menos 10:1. As selagens de juntas perimetrais são projetadas para manter a função do elemento de compartimentação com relação às suas características de resistência ao fogo. Este tipo de selagem deve ser projetado para acomodar um grau especificado de movimento dentro da junta linear, se houver.

As localizações típicas de juntas de construção incluem pisos, perímetro de pisos, paredes, tetos e telhados. Geralmente, tais aberturas estão presentes em edifícios como resultados de: projeto para acomodar vários movimentos induzidos por diferenciais térmicos, sismicidade e cargas de vento, existindo como uma separação de folga; tolerâncias dimensionais aceitáveis entre dois ou mais elementos de construção, por exemplo, entre paredes e pisos não resistentes; e projeto inadequado, montagem incorreta, reparos ou danos ao edifício.

As juntas de construção dinâmicas ou estáticas devem ser classificadas em: junta de topo de parede: é o espaço vazio horizontal entre o topo da parede classificada e a face inferior do piso; junta de base de parede: é o espaço vazio horizontal entre a base da parede classificada e a face superior do piso; junta parede-parede: é o espaço vazio vertical entre duas laterais de paredes ou estruturas classificadas; junta piso-piso: é o espaço vazio no piso entre dois pisos classificados; e junta piso-parede: é o espaço vazio no piso entre o piso classificado e a parede. A junta dinâmica deve ser capaz de acompanhar a movimentação dos elementos de compartimentação em compressão e extensão sempre que as juntas tiverem movimentação ou dilatação por variações térmicas, sísmicas, vento, cargas acidentais e carga permanente.

A junta estática ocorre quando não está prevista a movimentação das barreiras de compartimentação durante a construção e ao longo da vida útil da edificação. Alguns sistemas construtivos realizados com quantidade substancial de materiais combustíveis têm propriedades inerentes de comportamento e desempenho ao fogo.

Diante disso, tais sistemas devem fornecer resistência estrutural e limitar a propagação do fogo e da fumaça por meio dos elementos construtivos do edifício (paredes e pisos). Assim, duas características com relação à selagem de juntas de construção devem ser adotadas, a saber: nas bordas adjacentes e interseções, quando uma parede ou montagem horizontal servir como elemento de compartimentação; e nas conexões entre as peças, com o objetivo de garantir a capacidade resistente da estrutura em uma situação de incêndio.

O tempo de resistência ao fogo da selagem de compartimentação entre as peças e nas conexões nunca pode ser inferior ao tempo de resistência ao fogo exigido para o elemento onde estas selagens serão instaladas. Dessa forma, um elemento de compartimentação perimetral é composto pelos elementos de compartimentação (parede e entrepiso) e pela selagem perimetral, com o objetivo de fornecer a resistência ao fogo para evitar a passagem de chamas e fumaça entre pavimentos do edifício, pela abertura entre o elemento de parede externa e o elemento do entrepiso, sendo considerado um detalhe de construção exclusivo, não tratado por outras normas, incluindo os métodos de ensaio.

As selagens perimetrais são sistemas que permitem vedar aberturas lineares localizadas entre um elemento de parede externa justaposta a um elemento de entrepiso. Entre outras funções, o sistema impede a propagação vertical externa do fogo do pavimento de origem para os pavimentos subsequentes e acomoda vários movimentos, como aqueles induzidos por diferenciais térmicos, abalos sísmicos e cargas de vento.

As selagens de outros elementos resistentes ao fogo são produtos e sistemas utilizados para aberturas entre os dispositivos classificados como resistentes ao fogo, como, por exemplo, registros (dampers), chaminés protegidas, dutos de ventilação protegidos, shafts e dutos de extração de fumaça, com o objetivo de selar os espaços entre esses dispositivos e o elemento de compartimentação (parede e entrepiso). A resistência ao fogo dos dispositivos resistentes ao fogo e a selagem devem ser avaliadas nos métodos específicos de ensaio.

As selagens de barramentos blindados consistem em produtos e sistemas de vedações de aberturas internas e externas a esse elemento, de forma a garantir a resistência ao fogo do elemento de compartimentação em ambas as situações, de forma concomitante. Os espaços dentro da caixa do barramento blindado e entre este barramento e o elemento de compartimentação (abertura) devem ser projetados de forma a selar esses espaços concomitantemente com barreiras especiais, evitando, em caso de incêndio, a propagação de chama, fumaça e gases quentes entre os ambientes compartimentados, sendo esses elementos de compartimentação horizontal (paredes) ou vertical (entrepisos).

Os sistemas de selagens resistentes ao fogo em aberturas de passagem de instalações de serviço e juntas de construção, incluindo selagens perimetrais, e em outras aberturas que permitam a comunicação entre as áreas compartimentadas são classificados de acordo com os critérios de integridade e isolação térmica. Os valores relativos à classificação devem ser obtidos por meio de ensaios de resistência ao fogo, especificados nas normas citadas, considerando as suas características funcionais, determinadas durante o tempo de resistência ao fogo no ensaio.

A resistência ao fogo deve ser determinada utilizando-se os métodos de ensaio especificados nas NBR 16944-2, NBR 16944-3, EN 1364-3 e EN 1364-4 ou norma brasileira aplicável, quando houver, conforme apropriado. Situações específicas não previstas nas normas brasileiras devem ser avaliadas com auxílio das normas internacionais até que normas brasileiras correspondentes sejam publicadas.

Para a execução dos ensaios de classificação, os corpos de prova devem ser totalmente representativos do elemento de compartimentação, da selagem de serviço e do elemento de passagem usado na prática, incluindo quaisquer recursos especiais que sejam exclusivos para a instalação, como, por exemplo, suportes, grelhas, revestimentos, etc. Os corpos de prova devem, sempre que possível, apresentar dimensões reais de instalação. Quando isto não puder ser feito, o tamanho do corpo de prova deve atender às condições estabelecidas no método de ensaio empregado.

As classes de desempenho de resistência ao fogo devem ser expressas por uma ou mais letras representando os critérios funcionais, seguidas do tempo de resistência ao fogo, expresso em minutos, conforme especificado na NBR 16945, nos respectivos métodos de ensaios. Para a classificação de resistência ao fogo de selagens, as seguintes letras designativas devem ser utilizadas, seguidas do tempo de resistência ao fogo atingido, em minutos: E para integridade; e I para isolação térmica.

Quando os critérios forem combinados, o tempo declarado deve ser o do critério que possuir a menor resistência ao fogo, conforme apresentado na NBR 16945. Assim, uma selagem com E: 120 min e I: 90 min deve ser classificada como EI 90/E 120. Para os efeitos de classificação, os resultados, em minutos, devem ser arredondados para baixo no período de classificação de resistência ao fogo mais próximo, como descrito a seguir: 30 min, 45 min, 60 min, 90 min, 120 min, 150 min, 180 min e 240 min.

Os parâmetros normativos para a construção de paredes de concreto moldadas in loco

A parede de concreto é um elemento estrutural autoportante, moldado no local, com comprimento maior que cinco vezes sua espessura e capaz de suportar carga no mesmo plano da parede. A espessura mínima das paredes com altura de até 3 m deve ser de 10 cm. Permite-se espessura de 8 cm apenas em paredes internas de edificações até dois pavimentos. Para paredes com alturas maiores, a espessura mínima deve ser h/30.

A critério dos projetistas, pode-se desconsiderar a diminuição da espessura provocada por frisos ou rebaixos com profundidade máxima de 1/10 da espessura da parede e largura máxima de 10 cm, respeitados os cobrimentos mínimos das eventuais armaduras. Permite-se apenas um friso ou rebaixo horizontal por pavimento. O espaçamento entre frisos ou rebaixos verticais deve ser maior que 30 vezes a espessura da parede.

Os demais limites para as situações de serviço devem seguir o descrito na NBR 6118, exceto quando utilizados os resultados de ensaios específicos. Para prevenir o aparecimento de fissuras, deve ser analisada a necessidade da colocação de juntas verticais. A fissuração da parede pode ocorrer por variação de temperatura, retração, variação brusca de carregamento e variação da altura ou espessura da parede.

Para paredes de concreto contidas em um único plano e na ausência de uma avaliação precisa das condições específicas da parede, devem ser dispostas juntas verticais de controle. O espaçamento máximo dessas juntas deve ser determinado de acordo com dados de ensaios específicos (espaçamento condizente com o especificado no projeto). Na falta desses ensaios, adotar o distanciamento máximo de 8 m entre juntas para paredes internas e de 6 m para paredes externas. As juntas podem ser passantes ou não passantes (recomenda-se uma profundidade mínima de 2 cm), pré-formadas ou serradas.

Em face da dilatação da última laje, pode ser prevista uma junta de controle imediatamente sob esta laje, a critério do projetista estrutural. É necessário executar o reforço, sem ligação de tela entre a parede e a última laje. As paredes são calculadas como livres na extremidade superior. Nesta situação, a platibanda deve ser engastada na laje.

Sempre que a deformação por efeito da variação da temperatura puder comprometer a integridade do conjunto, recomenda-se o uso de juntas de dilatação a cada 30 m da estrutura em planta; e nas variações bruscas de geometria ou de esforços verticais. Estes limites podem ser alterados, desde que seja feita uma avaliação mais precisa dos efeitos da variação de temperatura do concreto sobre a estrutura.

As tubulações elétricas verticais podem ser embutidas nas paredes de concreto, desde que atendidas, simultaneamente, as seguintes condições: respeitar as condições de manutenibilidade indicadas na NBR 15575-2; diâmetro máximo de 25% da espessura da parede, espaçado em no mínimo 5 cm, livre entre faces das tubulações, sem reforços; quando o diâmetro da tubulação for maior que 25%, mas não ultrapassar 50% da espessura da parede No caso do uso de telas metálicas, recomenda-se que se coloque a tubulação centrada e com telas nas duas faces, com largura mínima de 60 cm e transpasse mínimo equivalente à metade da espessura de parede, não sendo admitida a utilização de tubos metálicos embutidos.

Não são admitidas tubulações horizontais, a não ser trechos de até um terço do comprimento da parede (entre travamentos), não ultrapassando 1 m, desde que este trecho seja considerado não estrutural. Em paredes de concreto não estruturais, desvinculadas do restante da estrutura, estas restrições não se aplicam.

Nos encontros de paredes, não havendo verificação específica do projetista de estruturas, não são permitidas tubulações verticais ou horizontais, a uma distância inferior a três vezes a espessura da parede, a partir do canto delas, respeitada a região de emenda das telas. Permite-se a colocação das instalações hidráulicas e sanitárias em nichos verticais previamente previstos no projeto estrutural.

Permite-se a colocação embutida das instalações flexíveis reticuladas encamisadas (PEX). Quando encamisado, o raio de curvatura deve permitir a manutenção dos tubos. Aplicam-se as observações a respeito de diâmetro máximo e reforços. Em conformidade com os requisitos da NBR 12655, o controle tecnológico do concreto deve ser feito em dois momentos: o controle de recebimento que é realizado no ato do recebimento do concreto na obra, condicionando sua liberação para lançamento, e a aceitação dos lotes de concreto, realizada com base nos resultados dos ensaios de resistência à compressão nas idades de controle.

O controle de recebimento do concreto no estado fresco deve ser realizado pela determinação do abatimento do tronco de cone, prescrito na NBR 16889, com no mínimo a frequência e a amostragem estabelecidas na NBR 12655. Para o concreto autoadensável, devem ser realizados os ensaios indicados nas NBR 15823-2 e NBR 15823-3, com no mínimo a frequência e a amostragem estabelecidas na NBR 15823-1.

Além desses ensaios que são realizados na obra, devem ser previamente determinadas algumas características e propriedades do concreto no estado fresco em laboratório, conforme indicado nas NBR 12655 e NBR 15823. O controle de aceitação dos lotes de concreto no estado endurecido deve ser realizado conforme a NBR 12655, sendo comprovados no mínimo os seguintes requisitos estabelecidos em projeto: resistência de desforma, na idade especificada em projeto; resistência característica do concreto (fck), aos 28 dias. Para controle da resistência do concreto na idade de desforma, permite-se o uso do método da maturidade, em conformidade com a ASTM C1074. A junta de concretagem deve ser conforme a NBR 14931.

A NBR 16055 de 10/2022 – Parede de concreto moldada no local para a construção de edificações – Requisitos e procedimentos estabelece os requisitos básicos para o sistema construtivo de paredes de concreto moldadas in loco, com fôrmas removíveis e armaduras distribuídas em toda a parede (barras e fios de aço ou telas de aço soldadas), para qualquer número de pavimentos. Alternativamente, no caso de edifícios simplificados, pode ser utilizado concreto reforçado com fibras. Esta norma se aplica às paredes submetidas à carga axial, com ou sem flexão, concretadas com todos os elementos que farão parte da construção final, como detalhes de fachada (frisos, rebaixos), armaduras distribuídas e localizadas, instalações (elétricas e hidráulicas), quando embutidas e elementos estruturais solidarizados.

Para edificações com lajes, considerar as lajes incorporadas ao sistema por solidarização com as paredes, tornando o sistema monolítico (funcionamento de placa e chapa). Esta norma se aplica à estrutura em paredes de concreto de massa específica normal, conforme a NBR 6118. Não se aplica a paredes de concreto pré-fabricadas; paredes de concreto moldadas in loco com fôrmas incorporadas; paredes curvas; paredes submetidas ao carregamento predominantemente horizontal; fundações, elementos de fundações, paredes-diafragma e solo grampeado.

Esta norma não estabelece os requisitos para especificação, preparação e conformidade do concreto, que devem seguir o que estabelece a NBR 12655. Não abrange os aspectos da execução relativos à segurança do trabalho e à saúde, estabelecidos em regulamentos governamentais, normas regulamentadoras e na NBR 12284.

Todas as paredes de cada ciclo construtivo de uma edificação são moldadas em uma única etapa de concretagem, permitindo que, após a desforma, as paredes já contenham, em seu interior, vãos para portas e janelas, dutos que possibilitem a manutenção, elementos de fixação para coberturas e outros elementos específicos, quando for o caso. As instalações com tubos de grande diâmetro não são embutidas nas paredes.

A aprovação quanto ao embutimento das instalações nas paredes deve ser do projetista estrutural, de forma a não comprometer o sistema construtivo. Além disso, tal decisão deve considerar os requisitos de manutenibilidade das instalações hidrossanitárias e elétricas ao longo da vida útil da edificação. As soluções em concreto reforçado com fibras (CRF) a serem utilizadas nos edifícios devem atender ao desempenho da parede em condições de incêndio, avaliado como estabelecido pela NBR 15575-4.

Uma estrutura em paredes de concreto deve ser projetada e construída de modo que: resista a todas as ações que produzam efeitos significativos sobre ela, tanto na sua construção quanto durante a sua vida útil; sob as condições ambientais previstas na época de projeto e quando utilizada conforme preconizado em projeto, conserve sua segurança, estabilidade e aptidão em serviço durante o período correspondente à sua vida útil; contemple detalhes construtivos que possibilitem manter a estabilidade pelo tempo necessário à evacuação, quando da ocorrência de ações excepcionais localizadas previsíveis, conforme a NBR 6118.

O projeto de uma estrutura em paredes de concreto deve ser elaborado adotando-se: o sistema estrutural adequado à função desejada para a edificação; a combinação de ações compatíveis e representativas; o dimensionamento e a verificação de todos os elementos estruturais presentes; e a especificação de materiais de acordo com os dimensionamentos efetuados. O espaçamento do escoramento, detalhes embutidos ou vazados e os projetos de instalações devem ser informados ao projetista da estrutura.

O projeto estrutural deve ser constituído por desenhos, especificações e memorial descritivo. Esses documentos devem conter informações claras, corretas e consistentes entre si, tornando possível a execução da estrutura de acordo com os critérios adotados. O projeto deve apresentar desenhos contendo as plantas de formas e elevações das paredes com a respectiva armadura.

Sempre que necessário, devem ser apresentados localização de pontos de reforços, detalhes de amarração de paredes entre si, paredes com laje e posicionamento de juntas de controle ou construtivas. O projeto deve contemplar as etapas construtivas com as respectivas idades e resistências do concreto, em especial a capacidade resistente das lajes junto às escoras. As especificações de projeto devem considerar e fazer referência às normas brasileiras e, na falta de algum ponto determinado por estas, podem-se utilizar referências estrangeiras.

Também devem considerar os requisitos específicos do local da obra, em relação a todos os aspectos inerentes à construção, como ações sobre a estrutura (como vento e sismo), segurança, condição ambiental e outros. O memorial descritivo deve conter: a caracterização do empreendimento e o local de implantação; as hipóteses adotadas para o carregamento; a descrição da estrutura com condições de contorno; e a informação quanto ao enquadramento de edifício simplificado

Devem ser seguidas as atribuições de responsabilidades estabelecidas na NBR 12655. A avaliação técnica de projeto (ATP) da estrutura de paredes de concreto é a verificação e análise crítica do projeto, realizadas com o objetivo de avaliar se este atende aos requisitos das normas técnicas vigentes aplicáveis. A avaliação técnica de projeto da estrutura de paredes de concreto deve contemplar, entre outras, as seguintes atividades (integral ou parcialmente): verificar se as premissas adotadas para o projeto estão de acordo com o previsto nesta norma e se todos os seus requisitos foram considerados; analisar as considerações de cálculo e verificar os seus resultados; e analisar os desenhos que compõem o projeto, inclusive os detalhes construtivos.

A avaliação técnica do projeto deve ser obrigatória e realizada por profissional habilitado e independente em relação ao projetista da estrutura. É recomendável que o profissional escolhido para realizar a avaliação técnica do projeto possua experiência em estruturas de paredes de concreto. A avaliação deve ser registrada em documento específico, que deve acompanhar a documentação do projeto citada nesta norma.

A responsabilidade pela escolha do profissional habilitado que for realizar a avaliação técnica do projeto cabe ao contratante do projeto da estrutura. Esta responsabilidade pode ser do proprietário da obra que, no caso de não ter os conhecimentos técnicos necessários para a escolha do profissional responsável pela avaliação técnica do projeto, pode designar um representante ou preposto para substituí-lo nesta atribuição.

A avaliação técnica do projeto deve ser realizada antes da fase de construção e, de preferência, simultaneamente com a fase de projeto. No caso de edifícios simplificados, fica dispensada a avaliação técnica de projeto. No caso de empreendimentos com tipologias padronizadas, permite-se que a avaliação técnica do projeto seja feita para a tipologia-padrão submetida às mesmas condições ambientais e aos mesmos esforços. As fundações variantes e os conceitos de adaptações possíveis devem ser verificados.

Para as diretrizes para a durabilidade das estruturas de paredes de concreto, aplicam-se os requisitos da NBR 6118. No caso do uso de armaduras principais com cobrimentos maiores ou iguais a 1,5 vez o cobrimento especificado pela NBR 6118, ou reforços com fibras estruturais, podem-se utilizar as prescrições de uma classe de agressividade ambiental imediatamente mais branda, desde que se verifique que o estado-limite de abertura de fissuras em uma eventual face tracionada atende ao estabelecido nesta norma. No caso de utilização de fibras estruturais, deve-se utilizar concreto com classe de resistência mínima C25.

Quando não forem utilizadas fibras inoxidáveis, cuidados especiais devem ser adotados para evitar patologias. Para os critérios de projeto que visam a durabilidade, aplicam-se os requisitos da NBR 6118. Para o cobrimento das armaduras das paredes de concreto, aplicam-se os requisitos estabelecidos para pilares da NBR 6118. Quanto às propriedades dos materiais, o concreto deve seguir as especificações das NBR 6118, NBR 8953, NBR 12655, conforme a classe de agressividade ambiental a que a estrutura estiver sujeita.

Para a análise das tensões devidas à retração, aplica-se, na falta de ensaios específicos, o que estabelece a NBR 6118. Recomenda-se a utilização de concreto autoadensável de baixa retração, conforme a NBR 15823-1. O concreto deve ser preparado em atendimento aos requisitos das NBR 12655 e NBR 7212.

Para a caracterização do concreto, o ensaio de resistência à compressão, nas idades de controle, deve ser feito conforme a NBR 5739, e os ensaios de massa específica, absorção de água e índice de vazios, conforme a NBR 9778. A consistência do concreto deve ser especificada conforme a classificação estabelecida na NBR 8953 ou na NBR 15823-1, em função do tipo de aplicação.

A dimensão máxima característica do agregado graúdo deve ser estabelecida considerando a espessura das paredes e a densidade da armadura. O uso de aditivos químicos deve ser feito em conformidade com as NBR 11768-1 e NBR 12655. Não podem ser usados aditivos que possam atacar quimicamente as armaduras ou fibras, em especial aqueles à base de cloreto.

No caso da utilização de reforços com fibras, estes devem ser caracterizados de acordo com as NBR 16941, NBR 16942 e NBR 15530. Para controlar a retração plástica, podem ser utilizadas microfibras poliméricas (conforme a NBR 16942), álcali-resistentes, com comprimento entre 12 mm e 20 mm, diâmetro entre 12 μm 18 μm, comprimento mínimo total de 2.500 km/m³.

Para a caracterização do concreto antes do início de seu uso na obra (válida enquanto não mudar a central de concreto, a carta-traço e o modo de aplicação), o projeto estrutural deve especificar: a idade e a resistência à compressão para desforma, compatível com o ciclo de concretagem; a resistência à compressão característica aos 28 dias (fck); a classe de agressividade do local de implantação da estrutura, conforme a NBR 12655; o módulo de elasticidade do concreto, a uma determinada idade e tensão; e a retração do concreto, conforme a NBR 16834. Os dados a seguir não fazem parte do projeto estrutural e devem ser estabelecidos por tecnologista de concreto: relação água-cimento conforme a NBR 12655; consumo mínimo de cimento conforme a NBR 12655; consistência, medida pelo abatimento do tronco de cone (NBR 16889) ou pelo espalhamento do concreto (NBR 15823-2); índice de estabilidade visual conforme a NBR 15823-1.

A tela de aço soldada deve ser conforme a NBR 7481. As barras e os fios devem ser conforme a NBR 7480. Para as fibras de aço, o material deve ser conforme a NBR 15530. As fibras de aço podem ser galvanizadas. Para as fibras de vidro, o material deve ser conforme a NBR 16941. Para as fibras poliméricas, material deve ser conforme a NBR 16942. O comportamento conjunto dos materiais deve ser conforme a NBR 6118.

A segurança para a construção dos elevadores unifamiliares

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado para atender a pessoas em edificações residenciais unifamiliares, melhorando o conforto na habitação e proporcionando uma previsão para eventual necessidade futura; tem uma função social ao prover acesso a pessoas com mobilidade reduzida, pessoas idosas, doentes ou com dificuldade de locomoção, permanente ou temporária, eliminando a limitação de acesso aos espaços físicos e provendo integração com a comunidade. Diferentemente de um elevador de passageiros para transporte de pessoas em geral, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado com características peculiares

que se destinam a ocupar menor espaço horizontal e vertical; viabilizar a instalação em edificações existentes; reduzir o custo total envolvido na sua implantação e manutenção; requerer pouca potência instalada e ser energeticamente econômico.

A estrutura da edificação deve ser construída de modo a suportar às cargas e forças exercidas pelo equipamento do elevador. Salvo especificado em contrário na norma, para aplicações particulares, estas cargas e forças são os valores resultantes das massas estáticas; e os valores resultantes de massas móveis e suas operações de emergência. O efeito dinâmico é representado por um fator 2. É importante que as guias do elevador sejam suportadas de modo que os efeitos da movimentação da estrutura da edificação à qual estão ligados sejam minimizados.

Ao considerar as edificações construídas de concreto, blocos pré-moldados ou tijolos, pode-se presumir que os suportes de guia não serão submetidos ao deslocamento causado pela movimentação das paredes da caixa, com exceção da compressão. No entanto, quando os suportes de guia estiverem fixados à estrutura da edificação por vigas de aço, ou por fixação a estruturas de madeira, pode haver deformação desta estrutura, devido à carga imposta pelo carro por meio das guias e suportes de guias.

Além disso, pode haver movimento da estrutura de apoio do elevador devido às forças externas, como carga de vento, carga de neve, etc. Devem ser consideradas qualquer deflexão dessas vigas ou estruturas durante os cálculos requeridos e a deflexão total admissível das guias para a operação segura do freio de segurança, etc. deve incluir qualquer deslocamento da guia devido à deflexão da estrutura da edificação e a deflexão da própria guia devido à carga imposta pelo carro. Portanto, é importante que as pessoas responsáveis pelo projeto e fabricação das estruturas se comuniquem com o fornecedor do elevador, a fim de assegurar que as estruturas atendam a todas as condições de carga.

O requisito para ventilar adequadamente a caixa e a casa de máquinas está, muitas vezes, inserido nos regulamentos locais sobre edificações que se aplicam, especificamente, como requisito geral que seria dado para qualquer espaço da edificação onde maquinaria seja instalada ou pessoas sejam acomodadas (para o lazer, trabalho etc.). A norma não pode prover orientação específica para os requisitos de ventilação para estas áreas, tendo em vista que a caixa e a casa de máquinas são frequentemente partes de um ambiente maior e mais complexo da edificação. Caso isto seja feito, pode trazer conflito com estes requisitos nacionais. No entanto, algumas orientações gerais podem ser providas.

A segurança e o conforto das pessoas que viajam no elevador, trabalham na caixa ou aqueles que podem ficar presos na cabina ou na caixa quando o carro para entre os andares depende de muitos fatores: a temperatura ambiente da caixa, como parte da edificação, ou independente dela; a exposição à luz solar direta; o componente orgânico volátil, CO2, qualidade do ar; o acesso de ar fresco na caixa; o tamanho da caixa, tanto na área da seção transversal quanto na altura; o número, tamanho e folgas das aberturas em torno das portas de pavimento; a produção de calor dos equipamentos instalados; as estratégias de evacuação no combate a incêndios e fumaça, relacionadas ao sistema de gerenciamento da edificação; a umidade, poeira e vapores; o fluxo de ar (calor/frio) e tecnologia aplicada de economia de energia na edificação; e a estanqueidade do ar na caixa e em toda edificação.

É recomendado que o carro seja provido com aberturas de ventilação suficientes para assegurar um fluxo adequado de ar para o número máximo de ocupantes permitidos. Durante a operação normal e a manutenção do elevador, geralmente as aberturas em torno das portas de pavimento, a abertura/fechamento destas portas e o efeito pistão, devido ao deslocamento do elevador dentro da caixa, podem ser suficientes para prover as necessidades humanas de troca de ar, entre as escadas, saguões e a caixa.

No entanto, para as necessidades técnicas e, em alguns casos, para as necessidades humanas, o estancamento do ar na caixa e em toda edificação, as condições ambientais, particularmente superior à temperatura ambiente, radiação, umidade, qualidade do ar, irá resultar em necessidade permanente ou demanda de abertura (s) de ventilação e/ou (combinado com) ventilação forçada e/ou a entrada de ar fresco. Isso somente pode ser decidido caso a caso.

Além disso, no caso de parada prolongada do carro (considerando as condições normais e acidentais), é recomendado que seja fornecida ventilação suficiente. Em particular, deve ser dada atenção para aquelas edificações (novas e no caso de renovação) nas quais o projeto tecnológico de eficiência energética esteja presente. As caixas não se destinam a serem utilizadas como meios para ventilar outras áreas da edificação.

Em alguns casos, isso pode ser uma prática extremamente perigosa, como ambientes industriais ou estacionamentos subterrâneos, onde a extração de gases perigosos através da caixa pode causar risco adicional para as pessoas que viajam na cabina. De acordo com estas considerações, não é recomendado utilizar o ar viciado a partir de outras áreas da edificação para ventilar a caixa.

Quando a caixa fizer parte da segurança contra incêndio, cuidados especiais devem ser tomados. Nestes casos, as orientações devem ser obtidas por aqueles que se especializam nesse tipo de equipamento ou em regulamentos locais de construção e combate a incêndio.

A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A ventilação da casa de máquinas é normalmente realizada para fornecer um ambiente de trabalho apropriado ao técnico e ao equipamento instalado em tais espaços. Por esta razão, é recomendado que a temperatura ambiente da casa de máquinas seja mantida conforme provido nas premissas. Recomenda-se cuidados adicionais em relação à umidade e qualidade do ar para evitar problemas técnicos, por exemplo, condensação.

A falha em manter estas temperaturas pode resultar na retirada do elevador de serviço automaticamente até que a temperatura volte a ter seus níveis pretendidos. A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A NBR 12892 de 10/2022 – Elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida – Requisitos de segurança para construção e instalação especifica os requisitos de segurança para instalação permanente de novos elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida com limitação de capacidade, velocidade e percurso, com acionamento por tração ou acionamento hidráulico, servindo níveis de pavimento definidos, sendo o carro projetado para o transporte de pessoas e objetos, suspenso por cabos, cintas ou pistões e movimentando-se entre guias inclinadas não mais que 15° em relação à vertical. Em casos especiais, em complementação aos requisitos desta norma, devem ser considerados os requisitos suplementares (condições climáticas extremas, umidade, salinidade, etc.).

Esta norma não é aplicável: a elevadores com outros sistemas de acionamento diferentes dos mencionados na NBR 12892; a segurança durante as operações de transporte, montagem, reparação e desmontagem de elevadores; a ruídos e vibrações; ao uso de elevadores em caso de incêndio; e aos elevadores de passageiros instalados antes da data de sua publicação.

Com o propósito de preservar a segurança, foram impostos requisitos de desempenho no sentido de eliminar ou minimizar riscos para o uso peculiar a que se destina. Percurso, velocidade, capacidade, área da cabina, entre outras, são grandezas objeto de restrição para atender ao disposto nessa norma.

Quanto à instalação, são estabelecidas somente as seguintes aplicações: instalação em edificações unifamiliares; o elevador, conforme esta norma, não pode ser considerado para o cálculo de tráfego da NBR 5665, mas pode ser utilizado como meio de transporte de pessoas e como meio de acesso das pessoas com mobilidade reduzida à edificação; quando o elevador, conforme esta norma, for projetado para uso por pessoas com mobilidade reduzida, esta condição de uso deve ser sinalizada; capacidade de até oito passageiros; velocidade nominal até 0,35 m/s; percurso até 12 m; portas de pavimentos do tipo eixo vertical são aplicáveis somente em elevador residencial unifamiliar; e porta de cabina do tipo dobrável é aplicável somente em elevador residencial unifamiliar.

Devem ser feitas negociações para cada contrato entre o cliente e o fornecedor/instalador sobre: a finalidade do uso do elevador; condições ambientais; problemas de engenharia civil; outros aspectos relacionados à edificação e ao local da instalação; a resistência ao fogo para as portas de pavimento nas aplicações unifamiliares. Não é intenção de esta norma limitar o desenvolvimento tecnológico do produto. Entretanto, um projeto novo deve atender, pelo menos de maneira equivalente, aos requisitos de segurança desta norma.

Foram considerados possíveis riscos atribuíveis a cada componente que podem ser incorporados em uma instalação completa de elevador. Regras adequadas foram estabelecidas, considerando-se o descrito a seguir. Os componentes são: projetados de acordo com a prática usual de engenharia e os códigos de cálculos, incluindo todos os critérios de falha; de construção adequada tanto mecânica como eletricamente; fabricados com materiais de resistência e qualidade adequadas; e livres de defeitos. Materiais nocivos, como amianto, não podem ser utilizados.

Os componentes são mantidos em bom estado de conservação e funcionamento, de modo que as dimensões se mantenham, apesar do desgaste. Considera-se que todos os componentes do elevador requerem inspeção para garantir a operação segura e contínua durante a sua utilização. As folgas operacionais especificadas na norma devem ser mantidas não somente durante a inspeção e ensaios antes de o elevador ser colocado em serviço, porém também ao longo da vida útil do elevador.

Os componentes que não requerem manutenção (por exemplo, livre de manutenção, lacrado por toda vida útil) ainda são obrigados a estar disponíveis para inspeção. Os componentes são selecionados e instalados de modo que as influências ambientais previsíveis e as condições especiais de trabalho não afetem a operação segura do elevador. Por projeto dos elementos que suportam carga, uma operação segura do elevador é considerada para cargas variando de 0% até 100% da carga nominal, acrescida da sobrecarga mínima de 10% e deve atender aos ensaios desta norma.

Os requisitos desta norma sobre os dispositivos elétricos de segurança são tais que a possibilidade de falha de um dispositivo elétrico de segurança, que atenda a todos os requisitos dessa norma, não precisa ser considerada. Os usuários devem ser protegidos contra a sua negligência e descuido inconscientes ao utilizar o elevador do modo estabelecido. Considerou-se que um usuário pode, em certos casos, cometer um ato imprudente.

A possibilidade de cometer dois atos imprudentes simultâneos e/ou a má utilização de instruções de uso não foi considerada. Se durante o desenvolvimento do trabalho de manutenção um dispositivo de segurança, normalmente não acessível aos usuários for deliberadamente neutralizado, a operação segura do elevador não é mais assegurada, porém medidas compensatórias devem ser tomadas para garantir a segurança dos usuários de acordo com as instruções de manutenção.

Foi considerado que o pessoal de manutenção está instruído e trabalha de acordo com as instruções. Para reproduzir forças horizontais que uma pessoa pode exercer, foram utilizados os seguintes valores de forças estáticas: 300 N; 1.000 N, onde um impacto pode ocorrer. Com exceção dos itens listados, um dispositivo mecânico construído de acordo com as boas práticas e com os requisitos desta norma não irá deteriorar-se a ponto de criar perigo sem que a falha seja detectada.

As seguintes falhas mecânicas foram consideradas nesta norma: quebra da suspensão; deslizamento sem controle dos cabos na polia motriz; quebra e afrouxamento de toda a ligação dos seguintes elementos auxiliares: cabos; correntes; e correias. Inclui a falha de um dos componentes mecânicos do freio eletromecânico que toma parte na ação de frenagem no tambor ou disco; a falha de um componente associado com os elementos de acionamento principais e a polia motriz; a ruptura no sistema hidráulico (cilindro excluído); e pequenos vazamentos no sistema hidráulico (cilindro incluso).

Ocorrendo a queda livre do carro a partir do pavimento extremo inferior, a possibilidade de o freio de segurança não atuar, antes que o para-choque seja atingido, é considerada aceitável. Em caso de elevadores com acionamento hidráulico, providos de dispositivos contra queda livre ou a descida com velocidade excessiva, que parem o carro completamente (por exemplo, freio de segurança, válvula de queda), a possibilidade de o carro bater no para-choque com velocidade excedendo 115% da velocidade nominal de descida não pode ser considerada.

Quando a velocidade do carro está vinculada com a frequência elétrica da rede até o momento da aplicação do freio mecânico, é considerado que a velocidade não exceda 115% da velocidade nominal. Desde que nenhuma das falhas mencionadas ocorra, supõe-se que a velocidade do carro no sentido de descida com qualquer carga (até a carga nominal) não excede a velocidade nominal de descida em mais de 8%.

A caixa está devidamente ventilada, conforme regulamento da construção nacional, considerando a dissipação do calor conforme especificado pelo fabricante. Os acessos às áreas de trabalho devem ser adequadamente iluminados. O sistema de fixação das proteções utilizadas especificamente para proteção das pessoas contra riscos mecânicos, elétricos ou qualquer outro, por meio de uma barreira física, que tenha que ser removida durante a manutenção e inspeção regular, permanece solidário à proteção ou ao equipamento quando a proteção for removida.

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve atender aos requisitos de segurança e medidas de proteção desta norma. Além disso, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve ser projetado de acordo com os princípios da NBR ISO 12100, para perigos relevantes, porém não significativos, que não são tratados por esta norma (por exemplo, arestas vivas).

Esta norma foi desenvolvida tendo por base as formas construtivas usuais. Não é intenção desta norma limitar o ingresso de novas tecnologias, como por exemplo, manutenção de equipamento a partir do interior da cabina, desde que comprovadas sua eficiência, segurança e aplicação por órgão certificador reconhecido. Todos os rótulos, avisos, marcações e instruções de operação devem ser afixados permanentemente, indeléveis, legíveis e facilmente compreensíveis (se necessário, auxiliados por sinais ou símbolos). Eles devem ser de material durável, colocados em uma posição visível e redigidos no idioma do país onde o elevador está instalado (ou, se necessário, em vários idiomas).

Quando o peso, as dimensões e/ou a forma dos componentes impedirem que estes sejam movimentados manualmente, eles devem ser: equipados com fixadores para mecanismo de levantamento; ou projetados de modo que possam ser montados tais fixadores (por exemplo, por meio de furos roscados); ou projetados de modo que um mecanismo de levantamento padronizado possa facilmente ser acoplado. As forças horizontais e/ou energias a serem consideradas estão indicadas nas seções aplicáveis desta norma.

Normalmente, quando não especificada nesta norma, a energia exercida por uma pessoa resulta em uma força estática equivalente a: 300 N; 1.000 N onde o impacto pode ocorrer.

Deve-se atentar para os requisitos referentes à caixa que se destina a proteger o carro do elevador e todas as suas partes móveis, bem como servir de estrutura para fixação de componentes e partes do elevador, como guias, suportes, dispositivos de segurança, portas de pavimento e portas de emergência. É desejável que a caixa ocupe pouco espaço e se constitua em elemento arquitetônico de integração do elevador ao ambiente.

O contrapeso (se provido) do elevador deve estar na mesma caixa do carro. Em todos os casos em que houver, embaixo do poço, recinto utilizado por pessoas, o fundo do poço deve ser calculado conforme descrito a seguir. Se os espaços abaixo do carro ou do contrapeso (se provido) forem acessíveis, a base do poço deve ser projetada para resistir a uma carga de no mínimo 5.000 N/m² e o contrapeso (se provido) deve ser equipado com freio de segurança. O pistão do elevador com acionamento hidráulico deve estar na mesma caixa do carro. Ele pode prolongar-se sob o poço ou outros espaços.

A caixa deve ser totalmente fechada por paredes, piso e teto sem perfurações. As únicas aberturas permitidas são as aberturas para portas de pavimento; as aberturas para portas de inspeção e emergência da caixa; as aberturas para saída de gases e fumaça em caso de incêndio; as aberturas de ventilação; as aberturas necessárias para o funcionamento do elevador entre a caixa e as casas de máquina ou de polias.

Quando não for requerido que a caixa contribua na proteção da edificação contra a propagação do fogo, pode-se admitir proteção de vidro. As folhas de vidro, plano ou conformado, devem ser laminadas. As folhas de vidro e os seus meios de fixação devem resistir a uma força estática horizontal de 1.000 N em uma área de 0,30 m x 0,30 m, em qualquer ponto, tanto de dentro como de fora da caixa, sem deformação permanente.

A caixa deve ser convenientemente ventilada e não pode ser utilizada para ventilação de locais alheios ao serviço do elevador. Se não houver meios de fuga para pessoa (s) presa (s) na caixa para conseguir auxílio externo, um sistema de alarme deve ser instalado quando existir o risco de aprisionamento, operado a partir do (s) espaço (s) de refúgio, garantindo comunicação por voz de duas vias. Este sistema deve permitir contato com o serviço de resgate de forma: direta, via sistema remoto, conforme NBR 16756, ou indireta, via intercomunicação com a portaria.

Quando for aplicado o bloqueio mecânico eliminando o risco de aprisionamento na área de trabalho no topo da cabina ou no poço, não há necessidade de instalação do sistema de alarme. Se houver riscos de enclausuramento em áreas fora da caixa, esses riscos devem ser discutidos com o proprietário da edificação.

A locação topográfica e o acompanhamento dimensional de obra metroviária

Devido à grande expansão das obras metroviárias e assemelhadas, é necessária a aplicação de procedimentos específicos para trabalhos topográficos, trazendo como principal benefício a normalização mínima necessária para execução destes trabalhos. Por exemplo, a via permanente envolve os conjuntos e componentes coordenados entre si de forma a permitir o tráfego de composições ferroviárias e metroviárias. Para a locação de uma obra metroviária há requisitos normativos exigíveis para execução das obras metroviárias e assemelhadas, devendo se utilizar os procedimentos e os equipamentos topográficos que resultem em pleno atendimento aos quesitos exigidos nos trabalhos de cadastro, anteprojeto, projeto, implantação, acompanhamento e levantamento das obras como construídas, visando a melhor qualidade.

Para os túneis e estações em Shield e NATM (new austrian tunneling method), para as operações na superfície do terreno planimétricas, o transporte de direção do túnel tem início na rede GPS, triangulação, trilateração ou poligonal principal ou básica. Destes pontos, quando necessário, medir os ângulos pelo método das direções e as distâncias recíprocas, para no mínimo dois pontos ao nível da superfície e próximos ao poço de emboque do túnel, constituindo assim uma base de primeira ordem.

Da poligonal principal ou da base de primeira ordem implantar um ponto próximo ao poço e medir os ângulos pelo método das direções e as distâncias recíprocas, para dois fios de aço pendurados da superfície ao fundo do poço. Com esta operação determinam-se as coordenadas planas dos fios. Os fios de aço são posicionados através de roldanas afixadas em cavaletes metálicos, tensos com pesos compatíveis com a profundidade do poço, imersos em óleo para evitar o efeito pêndulo.

Para as operações altimétricas, a partir da rede de referência de nível metroviária, o transporte de referência de nível no interior do túnel deve ser feito pelo método de nivelamento e contranivelamento geométrico, com referências de nível (RRNN) espaçadas em no máximo 60 m, sendo realizada uma verificação geral da rede a cada duas referências implantadas. As estações projetadas na superfície e/ou elevadas são referenciadas a eixos longitudinais e transversais, sendo que os eixos longitudinais são demarcados a partir dos pontos notáveis do eixo da via permanente e os transversais a partir dos eixos dos pilares.

Deve-se implantar marcos topográficos no prolongamento destes eixos para locar e/ou verificar toda a obra. Estes marcos têm origem na poligonal principal. Implantar RRNN, na obra, em lugares sem influência de recalque, a partir da rede de referência de nível e com os mesmos critérios de sua implantação.

Para o aparelho de mudança de via (AMV), a locação deve ser feita pelo método da irradiação de pontos a partir de dois vértices da poligonal de entrevias, que caminha próxima ao eixo a ser locado, de modo que o AMV fique contido entre eles. O método consiste no cálculo das projeções das estacas neste intervalo, obtendo as ordenadas, as abscissas, as distâncias e os ângulos dessas estacas do eixo da via. Com essa planilha (anexo E), locar as estacas do eixo de via, a partir do primeiro vértice da poligonal de entrevias até próximo da metade do intervalo considerado. Em seguida, locar as demais estacas a partir do vértice seguinte, conferindo a última estaca locada pelo vértice anterior para que não ocorra eventual descontinuidade da via, conforme figura abaixo.

As estacas de eixo de via são materializadas com piquetes de madeira, sendo que o espaçamento adotado entre elas é o definido na planta de instalação do AMV. Os pontos de começo de mudança de via (CMV) e fim de mudança de via (FMV) são materializados com marcos definitivos em perfil metálico.

A inspeção em uma obra metroviária deve ser realizada com o objetivo de assegurar o desenvolvimento dos serviços segundo as prescrições e recomendações desta norma e o estabelecido na seção 7 da NBR 13133:1994, no que couber. Os marcos da rede GPS, triangulação e/ou trilateração são inspecionados anualmente e, se constatada alguma anomalia (destruído, removido, deslocado, não intervisível), estes marcos devem ter tratamento adequado, ou seja, reimplantado, substituído ou eliminado.

Os vértices da poligonal principal são inspecionados visualmente a cada três meses. Caso seja encontrada alguma irregularidade, fazer as correções mantendo as precisões originais. Os marcos da rede de referência de nível são inspecionados antes de sua utilização.

A NBR 15309 de 12/2005 – Locação topográfica e acompanhamento dimensional de obra metroviária e assemelhada – Procedimento fixa os requisitos exigíveis para locação topográfica e acompanhamento dimensional de obra metroviária e assemelhada em vala a céu aberto, túnel, estação, superfície e elevado, destinada a: apoiar a construção e atualizar o cadastro de obras metroviárias e assemelhadas; controlar todos os serviços topográficos de cadastramento, anteprojeto, projeto, implantação, acompanhamento e levantamento de obras como construídas (as built) no sistema metroviário e assemelhados; servir de parâmetro para todos os serviços de topografia, os quais envolvem obras referentes ao sistema metroviário e assemelhadas. Os equipamentos de medição empregados devem ter precisão compatível, segundo a NBR 13133, com as exigências dos serviços contemplados por esta norma. Devem ter sua precisão real atestada por instituição oficial, não devendo ser aceita sua precisão nominal. Os equipamentos de medição devem ser apresentados ao órgão fiscalizador com os devidos atestados de revisão/retificação, no início dos trabalhos.

Os requisitos exigíveis para execução de obras metroviárias e assemelhadas devem utilizar procedimentos e equipamentos topográficos que resultem em pleno atendimento aos quesitos exigidos nos trabalhos de cadastro, anteprojeto, projeto, implantação, acompanhamento e levantamento das obras como construídas, visando a melhor qualidade, e devem atender aos procedimentos estabelecidos nesta norma. Para a adequada gestão da obra, deve ser projetada e realizada uma rede de apoio geodésico vinculada ao sistema geodésico brasileiro (SGB) oficialmente em vigor. Deve ser realizado o projeto básico e executivo da rede, antevendo as necessidades em termos de apoio, localização dos marcos, tipo de monumentação, condicionamento da rede, metodologia de observação, equipamentos e logística.

A tolerância em posição dos vértices desta rede, considerando o ajustamento livre, é de 5 ppm, observando o limite máximo de 0,05 m para o desvio em posição, considerando um nível de confiança de 95% após o ajustamento vetorial pelo método dos mínimos quadrados. O espaçamento máximo entre os vértices deve ser de 2 km.

A monumentação deve ser realizada por pilar de concreto armado e centragem forçada, marco de concreto armado com chapa convexa de latão ou aço inox, ou ainda somente a chapa cravada em estrutura considerada estável. Da quantidade de injunções do SGB, proceder conforme descrito a seguir. Para a rede distante até 100 km dos pontos de apoio do SGB, o apoio deve ser realizado por no mínimo dois pontos das redes, global positioning system (GPS), estaduais ou da Rede Brasileira de Monitoramento Contínuo (RBMC). Nas redes distantes até 100 km dos pontos do SGB, a tolerância em posição é de 10 ppm, observando-se o limite máximo de 0,10 m para o desvio em posição, considerando-se um nível de confiança de 95% após o ajustamento vetorial pelo método dos mínimos quadrados.

Para as redes distantes mais de 100 km dos pontos do SGB, a tolerância é de 10 ppm, observando-se o limite máximo de 0,50 m para o desvio em posição, considerando-se um nível de confiança de 95% após o ajustamento vetorial pelo método dos mínimos quadrados. Na integração ao SGB de duas ou mais redes de apoio geodésico, deve-se contemplar também como injunções os vértices da rede do SGB já empregados no ajustamento anterior.

É parte integrante da rede de apoio geodésico a rede altimétrica ou rede de referência de nível metroviária, materializada por pontos distintos da rede planimétrica. A monumentação da referência de nível (RN) deve ser feita por marco de concreto, pino convexo de aço inox ou chapa convexa de latão ou aço inoxidável.

A altitude ortométrica de cada RN da rede altimétrica tem tolerância de 6 mm √K, considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. Após os ajustamentos da rede de apoio geodésico, deve ser definido um número conveniente de planos topográficos locais (PTL), com dimensão máxima de 30 km, conforme a NBR 14166.

Os elementos constantes já descritos são representados em planta na escala 1:25 000 ou maior, contendo cada marco indicação da intervisibilidade entre eles, seu número de monografia e o perímetro do plano topográfico, sempre representados por convenções adequadas, tendo como finalidade principal a visualização de conjunto. Na região ao longo da obra deve ser materializada uma rede de apoio topográfico definindo as linhas básicas para a execução da obra.

A monumentação deve ser realizada por marco de concreto armado ou chapa convexa de latão ou aço inox, de acordo com a finalidade. A rede de apoio topográfico, quando executada por metodologia topográfica clássica, deve seguir os critérios da classe IIP da NBR 13133. Qualquer que seja a tecnologia empregada, os lados da rede topográfica devem medir no mínimo 50 m e no máximo 300 m.

A posição planimétrica de cada ponto do apoio topográfico tem tolerância de 33 ppm, observando o limite máximo de 0,035 m para o desvio em posição, considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. Todos os pontos do apoio topográfico devem ter a altitude ortométrica no SGB.

A altitude ortométrica de cada ponto de apoio topográfico tem tolerância de 12 mm √K (nivelamento I N da NBR 13133), considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. A poligonal destinada ao trabalho de locação de projeto e levantamento como construído é apoiada na rede de apoio topográfico e desenvolvida conforme a classe IIP da NBR 13133, observando-se as adequações descritas a seguir.

A monumentação deve ser realizada por chapa convexa de latão ou aço inox, ou pino de aço cravado em estrutura. O comprimento mínimo dos lados deve ser de 30 m e suas medidas lineares devem ser realizadas com leituras recíprocas. A medida angular deve ser realizada através do método das direções em três séries de leituras conjugadas.

O desvio em posição planimétrica de cada ponto de apoio topográfico deve ter tolerância de 50 ppm e no limite máximo de 0,015 m, considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. Em situações especiais, quando a única alternativa para o levantamento for o emprego de ponto polar ou auxiliar, constituindo um polígono aberto ou lado irradiado da poligonal do apoio topográfico, devem ser implantados no máximo dois pontos e adotados os procedimentos descritos a seguir.

A medida angular é determinada através do método das direções com duas séries de leituras conjugadas (direta e inversa), horizontal e vertical, com teodolito classe 2. A medida linear é realizada com leituras recíprocas (vante e ré) com distanciômetro eletrônico classe 1 trena de aço aferida com correções de dilatação, tensão, catenária e redução ao horizonte. A extensão máxima entre pontos é de 100 m.

Deve-se materializar com marcos de concreto ou pinos de aço. As monografias, tanto da rede de apoio geodésico quanto da rede de apoio topográfico, devem conter as seguintes informações: identificação do vértice; localização, contendo estado, município, bairro, etc.; especificação de mapa ou carta que contenha a área (maior escala); data da observação; responsável técnico; contratante; coordenadas cartesianas e geodésicas no Datum WGS 84; coordenadas geodésicas, UTM, topográficas locais com sua origem no sistema geodésico brasileiro; desvio-padrão após ajustamento por mínimos quadrados, com nível de confiança de 95%; azimutes geodésicos e distância zenital, para as miras e marcos intervisíveis; duas fotos do marco, uma próxima contendo a identificação e outra panorâmica; croqui de localização que pode ser parte de aerofoto, guia, carta, etc.; duas miras de azimute com respectivas fotografias (panorâmicas) tomadas do ponto de vista do marco monografado.

Condomínio é condenado por danos morais por descumprir as normas técnicas

Um menor de idade sofreu um escorregão no gramado do playground infantil de um condomínio e, devido à velocidade do deslize, chocou-se com uma torre de iluminação, ocorrendo corte profundo abaixo do joelho devido ao impacto com parafusos de fixação existentes e totalmente desprotegidos. Em razão de rebarbas metálicas, a pele do menor sofreu um corte profundo na altura do joelho. Houve um processo e, em primeira instância, o condomínio foi condenado a pagar uma indenização de indenização de R$ 7.000,00 ao menor pelo não cumprimento das normas técnicas: NBR 9050 de 08/2020 – Acessibilidade a edificações, mobiliário, espaços e equipamentos urbanos e NBR 16747 de 05/2020 – Inspeção predial – Diretrizes, conceitos, terminologia e procedimento. Houve recurso em segunda instância, mas a sentença foi confirmada. Conheça o acórdão.

Hayrton Rodrigues do Prado Filho

Não custa repetir: mesmo que algumas instituições continuem a defender, de forma irresponsável, a voluntariedade das normas técnicas, elas são elaboradas em procedimento de consenso pelos diferentes setores, com representantes da atividade privada, consumidores e representantes de órgãos públicos, que compõem a atividade produtiva e de serviço. Afirmar que a norma é, por princípio, de uso voluntário, mas quase sempre é usada por representar o consenso sobre o estado da arte de determinado assunto, obtido entre especialistas das partes interessadas é uma defesa do caos do mercado de produtos e serviços no Brasil. É um crime contra a nação.

As normas são impositivas para todos os setores, uma vez que são homologadas e publicadas, em razão do fundamento de sua expedição e de sua finalidade. Em razão dessa expressa atribuição normativa, contida em textos legais e regulamentares, e qualificada como atividade normativa secundária, delegada pelo poder público, a norma técnica brasileira tem a natureza de norma jurídica, de caráter secundário, impositiva de condutas porque fundada em atribuição estatal, sempre que sinalizada para a limitação ou restrição de atividades para o fim de proteção de direitos fundamentais e do desenvolvimento nacional.

Essas funções são eminentemente estatais o que quer dizer que as normas podem ser equiparadas, por força do documento que embasa sua expedição, à lei em sentido material, uma vez que obriga o seu cumprimento. O estabelecimento das normas técnicas tem a finalidade de garantir a saúde, a segurança, o exercício de direitos fundamentais em geral das pessoas, além de ser o balizamento nos projetos, na fabricação e ensaio dos produtos, no cumprimento dos mesmos pelos compradores e consumidores e na comercialização interna e externa de produtos e serviços.

E não foi caso do condomínio que não observou as normas técnicas obrigatórias. A perícia, realizada no local dos fatos, constatou que no local há talude sem proteção, rebarbas na base do poste de iluminação decorrentes do corte dos parafusos, parafusos sem proteção na área de lazer do empreendimento. Tanto em primeira instância, quanto na segunda, a decisão se baseou no laudo do perito que, após vistoria realizada no imóvel, concluiu que, de acordo com a NBR 9050, não há proteção no talude, ao redor da área de lazer do empreendimento, sendo assim, não está em conformidade com a norma, pois apresenta risco de queda.

Igualmente, conforme a NBR 16747, os furos e postes devem ter tampas, o sistema de fixação não pode permitir a soltura da tampa e não podem ficar desniveladas, portanto, também não foi respeitada a norma técnica. Também, o acesso ao campo de futebol não está em conformidade com as referidas normas e foi constatado que não há guarda corpo nos taludes, para proteção contra quedas.

Os furos e postes devem ter tampas, o sistema de fixação não pode permitir a soltura da tampa e não podem ficar desniveladas, portanto, também não foi houve obediência ao processo de normalização. O juiz foi claro e objetivo: dada a negligência do condomínio em manter os elementos de suas dependências de acordo com as regras de segurança, ocorreu a lesão do autor em maior intensidade, ainda que não se trate de gravidade extraordinária.

Nessa linha de raciocínio, de rigor deve-se concluir que há responsabilidade do condomínio na ocorrência do acidente, que poderia ter sido evitada com a colocação de proteção no talude e preenchimento adequado dos furos e parafusos da base do poste de iluminação. Por isso, resolveu condenar os condôminos ao pagamento de indenização por danos morais ao menor de idade.

Em resumo, as normas técnicas são imperativas em seu cumprimento e acarretam, também por expressa determinação legal ou regulamentar, em caso de descumprimento, a aplicação de penalidades administrativas – e eventualmente até de natureza criminal – que dependem do documento legal que as abriga no ordenamento brasileiro. A lei impõe obrigações e restrições e a ninguém é dado escusar-se ao seu cumprimento alegando ignorância, também com relação às normas técnicas brasileiras prevalece o mesmo princípio. Isso é o que a justiça brasileira vem reconhecendo de forma constante e repetitiva.

Hayrton Rodrigues do Prado Filho é jornalista profissional, editor da revista digital AdNormas https://revistaadnormas.com.br , membro da Academia Brasileira da Qualidade (ABQ) e editor do blog  https://qualidadeonline.wordpress.com/ — hayrton@hayrtonprado.jor.br

O controle da fumaça e do calor em um incêndio

A fumaça liberada por qualquer tipo de incêndio (floresta, mato, lavoura, estrutura, pneus, resíduos ou queima de madeira) é uma mistura de partículas e produtos químicos produzidos pela queima incompleta de materiais contendo carbono. Toda a fumaça contém monóxido de carbono, dióxido de carbono e material particulado ou fuligem.

Ela pode conter muitos produtos químicos diferentes, incluindo aldeídos, gases ácidos, dióxido de enxofre, óxidos de nitrogênio, hidrocarbonetos aromáticos policíclicos, benzeno, tolueno, estireno, metais e dioxinas. O tipo e a quantidade de partículas e produtos químicos na fumaça variam dependendo do que está queimando, da quantidade de oxigênio disponível e da temperatura de queima.

A exposição a altos níveis de fumaça deve ser evitada. Os indivíduos são aconselhados a limitar seu esforço físico se a exposição a altos níveis de fumaça não puder ser evitada. Indivíduos com problemas cardiovasculares ou respiratórios (por exemplo, asma), fetos, bebês, crianças pequenas e idosos podem ser mais vulneráveis aos efeitos da exposição à fumaça sobre a saúde.

A inalação de fumaça por um curto período de tempo pode causar efeitos imediatos (agudos), sendo irritante para os olhos, nariz e garganta, e seu odor pode ser nauseante. Estudos mostraram que algumas pessoas expostas à fumaça pesada apresentam alterações temporárias na função pulmonar, o que dificulta a respiração. Dois dos principais agentes da fumaça que podem causar efeitos à saúde são o gás monóxido de carbono e as partículas finas. Essas partículas possuem 2,5 µ ou menos de tamanho, sendo muito pequenas para serem vistas a olho nu.

A inalação de monóxido de carbono diminui o suprimento de oxigênio do corpo. Isso pode causar dores de cabeça, reduzir o estado de alerta e agravar uma condição cardíaca conhecida como angina. As partículas finas são capazes de viajar profundamente no trato respiratório, atingindo os pulmões. A inalação de partículas finas pode causar uma variedade de efeitos à saúde, incluindo irritação respiratória e falta de ar e pode piorar as condições médicas, como asma e doenças cardíacas.

Durante o aumento do esforço físico, os efeitos cardiovasculares podem ser agravados pela exposição ao monóxido de carbono e material particulado. Uma vez que a exposição à fumaça para, os sintomas da inalação de monóxido de carbono ou partículas finas geralmente diminuem, mas podem durar alguns dias.

Evitar as situações de fumaça é a melhor maneira de evitar a exposição. Se a idade ou estado de saúde colocar em maior risco de exposição ao fumo, deve falar com o seu médico sobre as medidas alternativas que pode tomar quando se deparar com situações de fumaça. Qualquer pessoa com sintomas persistentes ou frequentes que acreditem estar associados à exposição à fumaça deve consultar o médico.

Dessa forma, o incêndio ocorre da combinação simultânea de um combustível, o calor e o oxigênio. Quando uma substância combustível se aquece, em determinada temperatura crítica, ela se inflamará e continuará queimando enquanto houver combustível, temperatura adequada e oxigênio no ambiente. Os três elementos citados formam o que se chama de triângulo do fogo: se algum deles for eliminado ou isolado dos demais, não ocorrerá o fogo.

O calor pode ser eliminado por resfriamento. O oxigênio por abafamento. O combustível, mantendo-o em um local onde não haja calor suficiente para a sua inflamação. O fogo gera calor, que pode causar a combustão ou a fusão dos materiais atingidos e danos como trincas e rachaduras nas estruturas.

Quando se extingue o fogo, pode-se eliminar o calor: quando o principal agente é a água, podendo ser usada sob a forma de jato pleno, pulverizada ou com jato de água e espuma; eliminar o oxigênio: quando se provoca o abafamento, cobrindo-se o local com material incombustível como a espuma química, pó químico seco, gás carbônico e agente mecânico; e a retirada do material combustível.

A NBR 16983 de 02/2022 – Controle de fumaça e calor em incêndio especifica os requisitos para sistemas de controle de fumaça e calor em incêndio com os seguintes objetivo: manutenção de um ambiente seguro nas edificações, durante o tempo necessário para permitir o abandono do local sinistrado pelos ocupantes da edificação, reduzindo o perigo da intoxicação; manter as rotas de escape e as vias de acesso livres da fumaça do incêndio, permitindo a visualização da sinalização de orientação e a ação do sistema de iluminação de emergência; facilitar as operações de combate ao fogo pelas equipes de brigadistas ou do corpo de bombeiros que terão mais facilidade de visualizar o foco do incêndio; atrasar e/ou prevenir a ocorrência do flashover e, assim, o pleno desenvolvimento do fogo; proteger os equipamentos, os mobiliários e o conteúdo das edificações; reduzir os efeitos térmicos em elementos estruturais durante um incêndio; reduzir os danos causados por produtos de decomposição térmica e gases quentes. Não se se aplica a controle de fumaça em átrios e não se aplica a tuneis de transporte metroferroviários subterrâneos e suas plataformas de estação.

Esta norma estabelece os parâmetros técnicos básicos para a implementação do sistema de controle de fumaça e calor em incêndio, objetivando: a manutenção de um ambiente seguro nas edificações, durante o tempo necessário para o abandono do local sinistrado, evitando os perigos da intoxicação e falta de visibilidade pela fumaça; o controle e redução da propagação de gases quentes e fumaça entre a área incendiada e áreas adjacentes, baixando a temperatura interna e limitando a propagação do incêndio; prever as condições dentro e fora da área incendiada que auxiliem nas operações de busca e resgate de pessoas, localização e controle do incêndio.

Mediante a remoção de fumaça e calor, o sistema de controle de fumaça e calor em incêndio (CFCI) gera um vão livre de fumaça abaixo de uma camada de fumaça flutuante que se propaga no ambiente sinistrado. Sua importância principal e proporcionar o abandono seguro das pessoas nas edificações, a redução de danos oriundo do incêndio bem como perdas financeiras, diminuindo o volume de fumaça acumulado, facilitando o combate a incêndios, reduzindo a temperatura ao nível do telhado, bem como retardando a propagação lateral do incêndio quando este está estável.

Para que todos estes resultados sejam alcançados é primordial que o CFCI seja instalado de acordo com o projeto, bem como os ensaios, que devem ser realizados de forma confiável durante toda a vida útil do sistema. O CFCI deve ser entendido como um sistema complexo, composto por equipamentos destinados a desempenhar um papel positive em uma emergência envolvendo incêndio. As edificações devem ser dotadas de meios de controle de fumaça que promovam a extração mecânica ou natural dos gases e da fumaça do local de origem do incêndio, controlando a entrada de ar (ventilação) e prevenindo a migração de fumaça e gases quentes para as áreas adjacentes não sinistradas.

Toda a instalação com sistema de extração de fumaça deve assegurar uma altura da zona livre de fumaça de no mínimo 2,2 m, respeitando os critérios da altura da barreira de contenção de fumaça, para garantir o escape ou remoção de pessoas e o início de combate ao incêndio na edificação ou área de risco. Para obter um controle de fumaça eficiente, as seguintes condições devem ser estabelecidas: divisão dos volumes de fumaça a extrair por meio da compartimentação de área ou pela previsão de área de acantonamento, ver figura abaixo ; extração adequada da fumaça, não permitindo a criação de zonas mortas (estagnado) onde a fumaça possa vir a ficar acumulada, ap6s o sistema entrar em funcionamento, ver figura abaixo; permitir um diferencial de pressão, por meio do controle das aberturas de extração de fumaça da zona sinistrada, e o fechamento das aberturas de extração de fumaça das demais áreas adjacentes a zona sinistrada, conduzindo a fumaça para as saídas externas da edificação, ver figura abaixo.

O controle de fumaça é obtido simultaneamente pela introdução de ar limpo e pela extração de fumaça. A tabela abaixo apresenta as combinações possíveis.

A escolha do sistema a ser adotado fica a critério do projetista, desde que atenda as condições descritas nesta norma. O fabricante deve fornecer as características e especificações dos componentes, e seus respectivos funcionamentos, com comprovação de ensaios de produtos realizados por organismos de certificação nacional ou internacionalmente reconhecidos, utilizando os métodos de ensaio, conforme a EN-12101.

Não pode haver sistemas de extração natural e mecânica que possam interferir um no outro. A lógica de funcionamento do sistema deve ser projetada de forma que a área sinistrada seja colocada em pressão negativa em relação às áreas adjacentes. Deve ser acionada a extração de fumaça apenas do acantonamento sinistrado, e concomitantemente, deve ser acionada a introdução de ar para o acantonamento sinistrado e também para os acantonamentos adjacentes.

Cuidados especiais devem ser observados no projeto e execução do sistema de controle de fumaça, prevendo sua entrada em operação no início da formação da fumaça pelo incêndio, projetando a camada de fumaça em determinada altura, de forma a se evitar condições perigosas, como explosão ambiental (backdraft) e a propagação do incêndio decorrente do aumento de temperatura do local incendiado.

Para evitar as condições perigosas citadas no item anterior, deve ser previsto o acionamento em conjunto da abertura de extração de fumaça da área sinistrada e de introdução de ar correspondente. Para a exigência de aplicação do sistema de controle de fumaça, de forma genérica, o controle de fumaça deve ser previsto isoladamente ou em conjunto nos locais indicados para: espaços amplos (grandes volumes); átrios, halls e corredores; rotas de fuga horizontais; e nos subsolos, nos locais com ocupação distinta de estacionamento. No sistema de extração natural, a entrada de ar livre de fumaça pode ser por: aberturas de entrada de ar livre localizadas nas fachadas externas e acantonamentos adjacentes; por portas dos locais para extrair fumaça, localizadas nas fachadas externas e acantonamentos adjacentes; por vão aberto entre pisos.

A extração de fumaça pode ser feita pelos seguintes dispositivos: por abertura ou vão de extração; por janela e veneziana de extração; grelhas ligadas a dutos; claraboia ou alçapão de extração; poço inglês; dutos e peças especiais; registros corta-fogo e fumaça; mecanismos elétricos, pneumáticos e mecânicos de acionamento dos dispositivos de extração de fumaça. O sistema de extração mecânica deve ter a entrada de ar, livre de fumaça, e pode ser por: abertura ou vão de entrada; pelas portas; pelos vãos das escadas abertas; pela abertura de ar por insuflação mecânica por meio de grelhas; e por escadas pressurizadas.

A extração de fumaça pode ser feita pelos seguintes dispositivos: grelha de extração de fumaça em dutos; duto e peças especiais; registro corta-fogo e fumaça; ventiladores de extração mecânica de fumaça; mecanismos elétricos, pneumáticos e mecânicos de acionamento dos dispositivos de extração de fumaça. Os sistemas aplicados tanto para controle de fumaça mecânico como natural deve ter um sistema de detecção automática de fumaça e calor; fonte de alimentação; quadros e comandos elétricos; acionadores automáticos e mecânicos dos dispositivos de controle de extração de fumaça; sistema de supervisão e acionamento.

As barreiras de contenção de fumaça são constituídas por: elementos de construção do edifício ou qualquer outro componente rígido e estável; materiais incombustíveis, para-chamas, que apresentem o mesmo tempo de resistência ao fogo previsto para as coberturas; podem ser utilizados vidros de segurança, conforme a NBR 14925; outros dispositivos, decorrentes de inovações tecnol6gicas, desde que submetidos a aprovação previa da autoridade com jurisdição.

As barreiras de contenção de fumaça devem ter altura suficiente para center a camada de fumaça. O tamanho da barreira de contenção de fumaça depende do tamanho da camada de fumaça adotada em projeto. Caso as barreiras de contenção de fumaça possuam aberturas, estas devem ser protegidas por dispositivos de fechamento automático ou par dutos adequadamente protegidos para controlar o movimento da fumaça pelas barreiras.

Aprenda a realizar o levantamento cadastral territorial para o registro público

Pode-se definir a parcela como o espaço territorial de extensão contínua, definido por seus vértices de limite, formando um polígono fechado. A parcela possui como elementos os seus limites em relação às causas jurídicas que a originam, as coordenadas georreferenciadas dos vértices de limite e o seu código.

Dessa forma, deve-se fazer uma análise dos documentos da parcela ou do imóvel deve preceder o levantamento cadastral territorial em campo, pois pode apresentar elementos importantes para a definição dos limites reais e legais. Em linhas gerais, o responsável técnico pelos processos de registro público deve apresentar a planta topográfica que representará os vértices da parcela ou do imóvel, com seus respectivos códigos; os polígono fechado da área da parcela ou do imóvel, formado pela união dos vértices; as distâncias lineares entre os vértices na projeção cartográfica utilizada; as feições topográficas que auxiliem na interpretação e caracterização do limite da parcela ou do imóvel; os códigos das parcelas confrontantes; o número da matrícula e do Cadastro Nacional de Serventia (CNS) do imóvel confrontante, na inexistência do código da parcela; o nome completo e número do cadastro de pessoa física (CPF) do confrontante, na inexistência do código da parcela e da matrícula do imóvel confrontante; a tabela de coordenadas dos vértices e quadro de áreas, quando necessário; a informação sobre o Datum e a projeção cartográfica utilizada; o fator de escala para transformação da distância horizontal em distância na projeção cartográfica utilizada; as convenções, escala gráfica e direção norte da projeção cartográfica utilizada; o carimbo (selo) com nome completo do proprietário, endereço completo da parcela ou do imóvel, nome completo e número de registro profissional no conselho de classe do responsável técnico, número da Anotação de Responsabilidade Técnica (ART), Termo de Responsabilidade Técnica (TRT) ou Registro de Responsabilidade Técnica (RRT), informação de área e perímetro na projeção cartográfica utilizada, escala numérica, data do levantamento e data de conclusão da planta topográfica.

Ele deve incluir ainda o memorial descritivo que deve apresentar o cabeçalho contendo nome completo e número de CPF do proprietário, endereço completo, código da parcela (se existir), número da matrícula e CNS (se existir), sistema de referência e projeção cartográfica utilizada no cálculo das distâncias e da área; a área e perímetro da parcela ou do imóvel na projeção cartográfica utilizada; a tabela com dados técnicos contendo o código do vértice e suas respectivas coordenadas geodésicas, os códigos das parcelas dos confrontantes (na inexistência do código da parcela, prioritariamente, o número de matrícula do confrontante ou o nome completo e número do CPF do confrontante), a distância projetada do vértice ao seu ponto de vante no sentido horário e o local específico para complemento das informações sobre os vértices, por exemplo, a sua situação, entre outras informações relevantes.

A descrição tabular da parcela ou imóvel deve iniciar no primeiro vértice de confrontação com o sistema viário ou acesso a este e seguir no sentido horário. Deve-se conter a assinatura do responsável técnico, formação profissional, número do registro no conselho de classe, número da ART, TRT ou RRT; e o croqui do polígono da parcela ou do imóvel indicando a posição do sistema viário.

Além da apresentação da tabela, caso haja necessidade de cumprimento legal ou normativo pela serventia, o memorial descritivo tabular pode ser acompanhado de descrição textual, desde que apresente ao menos os mesmos elementos apresentados no Anexo B da norma. Deve-se incorporar o relatório técnico que deve ser elaborado conforme a NBR 13133 e contemplar o tipo de materialização e localização dos vértices da parcela ou do imóvel; o tipo de materialização e localização dos pontos de apoio; os cálculos de propagação das precisões; os valores obtidos no controle de qualidade em campo; os valores comparativos das coordenadas geodésicas com as parcelas e os imóveis confrontantes, se existirem.

A NBR 17047 de 06/2022 – Levantamento cadastral territorial para registro público – Procedimento especifica o levantamento cadastral territorial para registro público nos casos de usucapião, parcelamento do solo, unificação e retificação de matrícula. Esta norma se aplica à análise de documentos, verificação e materialização dos limites das parcelas ou imóveis, levantamento cadastral territorial e controle de qualidade das medições, projeção cartográfica e peças técnicas, considerando o aspecto técnico-legal.

A análise de documentos da parcela ou do imóvel deve preceder o levantamento cadastral territorial em campo, pois pode apresentar elementos importantes para a definição dos limites reais e legais. Prioritariamente, devem ser avaliados os seguintes documentos, quando existentes: matrículas ou transcrições do imóvel em questão e dos imóveis confrontantes; plantas topográficas, memoriais descritivos e croquis existentes de levantamentos anteriores, relacionados à parcela ou ao imóvel e seus confrontantes; relatório técnico de serviços realizados anteriormente na parcela ou no imóvel em questão; títulos de domínio, como escritura pública, formal de partilha, carta de arrematação, sentença de usucapião, título de legitimação de terras devolutas, entre outros, que venham a modificar a informação na matrícula do imóvel, mas que ainda não tenham sido averbados ou registrados.

Pode-se ainda incluir o contrato e/ou escritura de compra e venda; as escrituras de transferência de posse; os dados cadastrais disponibilizados pela prefeitura municipal; fotografias aéreas ou imagens de satélite que possam auxiliar na definição ou reconhecimento dos limites; projeto de parcelamento do solo; e outros documentos que o responsável técnico julgar necessários. Os limites da parcela ou do imóvel devem ser identificados e verificados em campo para comparação com a documentação analisada no início do trabalho.

Os vértices da parcela ou do imóvel devem ser materializados, sobretudo nos locais em que exista a possibilidade de demarcações físicas e estáveis. Os vértices podem ser demarcados com marcos de concreto, marcos de pedra, marcos de material sintético, pinos ou parafusos metálicos, placas, plaquetas ou qualquer outro material estável e perene que possa identificar perfeitamente o limite da parcela ou do imóvel.

Para a demarcação de vértices em muros, alambrados, gradis e edificações, recomenda-se que os vértices sejam materializados o mais próximo possível da superfície topográfica. Não sendo possível, deve-se verificar a verticalidade da construção.

Além disso, deve-se verificar se o muro ou edificação está dentro do limite de um dos imóveis ou se foi construído em comum acordo entre os dois imóveis, sendo parte do muro ou edificação em cada um dos imóveis. Em limites materializados com cercas, os vértices devem ser monumentados independentemente da estrutura da cerca.

O responsável técnico deve avaliar o melhor tipo de materialização para o vértice, para assegurar a estabilidade e perenidade da demarcação a ser realizada junto à cerca. Em locais de solo nu, como, por exemplo, na implantação de loteamentos, recomenda-se a demarcação dos vértices com marcos de concreto, pedra ou material sintético. No caso da retirada dessas demarcações por alguma necessidade construtiva, o responsável técnico deve materializar o vértice na construção realizada, por processos de locação.

Para os imóveis rurais, deve-se atender às orientações do Instituto Nacional de Colonização e Reforma Agrária (INCRA). Em caso de vértices inacessíveis, como centros de cruzamento de muro e edificações, eixos de rios e valas, centros de árvores, entre outros, não pode haver demarcação física destes vértices. Porém, o uso de funções excêntricas dos equipamentos topográficos e/ou de cálculos analíticos em escritório permite a determinação das coordenadas destes vértices.

Recomenda-se que os pontos de referência para o levantamento dos vértices inacessíveis sejam materializados. Caso não seja possível, conveniente ou viável a sua materialização, a localização deles deve ser documentada por meio de croquis e descrição a serem apresentados em relatório técnico.

O levantamento cadastral territorial para registro público deve estar apoiado à Rede de Referência Cadastral Municipal (RRCM) ou, na inexistência desta, deve estar apoiado ao Sistema Geodésico Brasileiro (SGB). Os métodos de levantamento cadastral territorial devem atender às NBR 13133 e NBR 14166. Nos casos em que a legislação vigente no registro público inclua algum tipo de direito, restrição ou responsabilidade que deva ser expressamente registrado sobre ou sob a parcela ou o imóvel, a determinação dos limites e o levantamento cadastral territorial podem incluir a componente vertical (altimétrica) para caracterizar o (s) objeto (s) territorial (is) que se relaciona (m) à parcela ou o imóvel.

A componente vertical (altimétrica) adotada deve ser a altitude geodésica. No caso da necessidade de levantamento topográfico planialtimétrico em concomitância com o de registro público para o parcelamento do solo, deve-se atender aos métodos de levantamento descritos na NBR 13133.

O memorial descritivo, conforme exemplo no figura abaixo, deve apresentar no mínimo o seguinte: cabeçalho contendo nome completo e número de CPF do proprietário, endereço completo, código da parcela (se existir), número da matrícula e CNS (se existir), sistema de referência e projeção cartográfica utilizada no cálculo das distâncias e da área; área e perímetro da parcela ou do imóvel na projeção cartográfica utilizada; tabela com dados técnicos contendo o código do vértice e suas respectivas coordenadas geodésicas, os códigos das parcelas dos confrontantes (na inexistência do código da parcela, prioritariamente, o número de matrícula do confrontante ou o nome completo e número do CPF do confrontante), a distância projetada do vértice ao seu ponto de vante no sentido horário e o local específico para complemento das informações sobre os vértices, por exemplo, a sua situação, entre outras informações relevantes.

A descrição tabular da parcela ou imóvel deve iniciar no primeiro vértice de confrontação com o sistema viário ou acesso a este e seguir no sentido horário. Deve-se incluir a assinatura do responsável técnico, formação profissional, número do registro no conselho de classe, número da ART, TRT ou RRT;  croqui do polígono da parcela ou do imóvel indicando a posição do sistema viário. Não se deve esquecer a apresentação da tabela, caso haja necessidade de cumprimento legal ou normativo pela serventia. O memorial descritivo tabular pode ser acompanhado de descrição textual, desde que apresente ao menos os mesmos elementos apresentados na figura abaixo.

Quando os vértices do SGB ou da RRCM não possibilitarem o levantamento do imóvel diretamente apoiado a estes, o responsável técnico deve utilizar estas redes para transportar pontos de apoio ao local a ser mensurado. Para implantação de pontos de apoio ao levantamento, podem ser utilizadas as técnicas de poligonação, método de estação livre, método do alinhamento, irradiação e posicionamento por satélite.

Quando não houver a possibilidade de se atender a um ou mais parâmetros ou requisitos da NBR 13133, e se for necessária a implantação de poligonal sem ajuste ou compensações, deve ser realizado um controle de qualidade em campo e/ou escritório, para assegurar que não ocorram erros sistemáticos ou grosseiros. Para o método da irradiação, recomenda-se que seja realizada no mínimo uma série de leituras conjugadas ao ponto de orientação, bem como ao vértice a ser medido.

A precisão posicional planimétrica do vértice da parcela ou do imóvel urbano deve ser de 8 cm. Para as parcelas ou imóveis rurais, devem ser seguidas as normativas do INCRA. Pode ser utilizado qualquer método de propagação de precisão, desde que as precisões das bases ou dos pontos de referência sejam consideradas.

Pode ser utilizado o cálculo de propagação da precisão pelo método simplificado previsto na NBR 13133. A tolerância para o vértice da parcela ou do imóvel é de três vezes a precisão posicional, ou seja, quando forem encontradas diferenças posicionais entre dois levantamentos distintos com valor admissível de até 24 cm em um ou mais vértice de parcela ou imóvel urbano, considera-se válido o levantamento inicial e permanecem as coordenadas originais do vértice de limite.

Além de atender à precisão posicional, o levantamento da parcela ou do imóvel deve atender aos requisitos de controle de qualidade indicados nessa norma. Nos casos em que a altitude é necessária à definição da parcela ou objeto territorial urbanos, a precisão posicional altimétrica do vértice deve ser de 8 cm.

Para as parcelas e os objetos territoriais rurais, a precisão deve atender à legislação vigente. As peças técnicas a serem apresentadas pelo responsável técnico para os processos de registro público são: planta topográfica; memorial descritivo; relatório técnico conforme a NBR 13133.

A resistência ao fogo de cabos de potência de até 0,6/1 kV

Os cabos resistentes ao fogo são desenvolvidos com o objetivo de aumentar a segurança e diminuir o risco de incêndios em fábricas e outros edifícios. Certos circuitos são necessários para continuar operando durante uma situação de emergência e a colocação de cabos com classificação de resistência ao fogo torna isso possível.

A tecnologia está permitindo o desenvolvimento de cabos resistentes ao fogo para alarme de incêndio e outros sistemas de emergência. Esses cabos à prova de fogo devem atender aos requisitos das normas técnicas e não podem desligar imediatamente quando um incêndio começa. Em vez disso, a energia continua a percorrer pelo circuito.

Essa energia é direcionada para bombas de incêndio, elevadores, equipamentos de controle de fumaça, sistemas de alarme de incêndio e outros sistemas de emergência necessários para manter as pessoas seguras durante uma emergência. A definição de um cabo resistente ao fogo é o que continuará a operar na presença de um incêndio. Isso é comumente conhecido como um cabo de integridade de circuito e tem classificação de incêndio de por duas horas.

O cabo com isolamento mineral fornece essa proteção adicional há décadas, sendo que que na sua construção do cabo se usa condutores de cobre, óxido de magnésio e uma bainha de cobre. O cabo MI vem em versões de um e multicondutor, sendo projetado para circuitos de energia de emergência para bombas de incêndio e geradores de emergência. O MI é trabalhoso e difícil de instalar e, portanto, raramente é usado em proteção contra incêndio de baixa tensão.

Para a aceitação e rejeição dos cabos de potência de até 0,6/1 kV, na inspeção visual podem ser rejeitadas, de forma individual, a critério do comprador, as unidades de expedição que não cumpram as condições estabelecidas na norma. Nos ensaios de rotina podem ser rejeitadas, de forma individual, as unidades de expedição que não cumpram os requisitos especificados.

Nos ensaios especiais, sobre as amostras obtidas conforme critério estabelecido, devem ser aplicados os ensaios especiais que são realizados em amostras de cabo completo, ou em componentes retirados destas, conforme critério de amostragem, com a finalidade de verificar se o cabo atende às especificações do projeto. Devem ser aplicados os critérios de aceitação e rejeição correspondentes à construção do cabo, conforme determinado nas normas .

Adicionalmente aos ensaios correspondentes à construção do cabo, conforme determinado nas normas referenciadas, deve ser realizado o ensaio de resistência ao fogo. O corpo de prova deve consistir em um comprimento adequado de cabo completo, de acordo com a NBR 10301. No caso de cabo unipolar não blindado, devem ser ensaiados simultaneamente dois corpos de prova torcidos entre si, com passo adequado, de modo a serem mantidos em contato.

A tensão entre veias deve ser igual ao valor da tensão de isolamento entre fases (V). Se o corpo de prova não superar o ensaio, dois outros corpos de prova devem ser ensaiados nas mesmas condições. Se ambos os resultados forem satisfatórios, o cabo deve ser considerado aprovado no ensaio.

O ensaio deve ser realizado conforme a NBR 10301, de acordo com a classe de resistência ao fogo especificada (CR2 ou CR3). Existem alguns dados para as encomendas dos cabos, conforme a figura abaixo.

Os cabos devem ser acondicionados de maneira que fiquem protegidos durante o manuseio, transporte e armazenagem. O acondicionamento deve ser em rolo ou carretel, que deve ter resistência adequada e ser isento de defeitos que possam danificar o produto. Para cada unidade de expedição, a incerteza máxima requerida na quantidade efetiva deve ser de ± 1 % em comprimento.

Os cabos devem ser fornecidos em lances normais de fabricação, sobre os quais é permitida uma tolerância de ± 3 % no comprimento. Adicionalmente, pode-se admitir que até 5% dos lances de um lote de expedição tenham um comprimento diferente do lance normal de fabricação, com um mínimo de 50 % do comprimento do referido lance.

Os carretéis devem possuir dimensões conforme a NBR 11137, sendo respeitados os limites de curvatura previstos na NBR 9511, e os rolos devem possuir dimensões conforme a NBR 7312. As extremidades dos cabos acondicionados em carretéis devem ser convenientemente seladas com capuzes de vedação ou com fita autoaglomerante, resistentes às intempéries, a fim de evitar a penetração de umidade durante manuseio, transporte e armazenagem.

No caso de cabos com construção não bloqueada longitudinalmente, é recomendado somente o uso de capuzes de vedação. Externamente, os carretéis devem ser marcados, nas duas faces laterais, diretamente sobre o disco e/ou por meio de etiquetas, com caracteres legíveis e indeléveis, com no mínimo as seguintes informações: nome e identificação do fabricante e país de origem; tensão de isolamento (Uo/U), expressa em quilovolts (kV); número de condutores e seção nominal, expressa em milímetros quadrados (mm²); material do condutor (cobre ou alumínio), da isolação (PVC/A, PVC/E, PE, XLPE, EPR, HEPR) e da cobertura; NBR 13418; número da norma correspondente à construção básica do cabo; comprimento de cada unidade de expedição, expresso em metros (m); massa bruta aproximada, expressa em quilogramas (kg); número da ordem de compra; identificação para fins de rastreabilidade; seta no sentido de rotação para desenrolar e o texto desenrole neste sentido. Quando o ano de fabricação for marcado com fita colocada no interior do cabo, esta indicação deve também constar como requisito de marcação no carretel.

A NBR 13418 de 05/2022 – Cabos resistentes ao fogo para instalações de segurança – Requisitos de desempenho especifica os requisitos de desempenho de resistência ao fogo para cabos de potência até 0,6/1 kV, controle e instrumentação, para instalações fixas de segurança, nas quais é requerida a manutenção da integridade das linhas elétricas em condições de incêndio, conforme a NBR 5410. Esta norma prevê duas classes de resistência ao fogo, a CR2 e a CR3. A classe CR2 é a classificação que engloba os cabos resistentes ao fogo, conforme a NBR 10301, submetidos a uma temperatura mínima de 750 °C, sem choque mecânico.

A classe CR3 é a classificação que engloba os cabos resistentes ao fogo, conforme a NBR 10301, submetidos a uma temperatura mínima de 830 °C, com choque mecânico durante a execução do ensaio.

Para os efeitos de utilização desta norma, os cabos se caracterizam pela tensão de isolamento em função da aplicação, conforme indicado a seguir: cabos de potência, com condutores de cobre, classe de tensão até 0,6 kV/1 kV: NBR 7286, NBR 7287, NBR 7288 e NBR 13248; cabos de controle, com condutores de cobre, classe de tensão até 1.000 V: NBR 7289, NBR 7290 e NBR 16442; e cabos de instrumentação com condutores de cobre, classe de tensão até 300 V: NBR 10300.

A temperatura no condutor, em regime permanente, não pode ultrapassar a 70 °C para os cabos isolados com composto termoplástico e 90 °C para os cabos isolados com composto termofixo. A temperatura no condutor, em regime de sobrecarga, não pode ultrapassar a 100 °C para os cabos isolados com composto termoplástico e 130 °C para os cabos isolados com composto termofixo. A operação neste regime não pode superar 100 h durante 12 meses consecutivos, nem 500 h durante a vida do cabo.

A temperatura no condutor, em regime de curto-circuito, não pode ultrapassar 160 °C para os cabos isolados com composto termoplástico e 250 °C para os cabos isolados com composto termofixo. A duração neste regime não pode ser superior a 5 s. O condutor deve ser de cobre, com ou sem revestimento metálico, ter têmpera mole e estar de acordo com a NBR NM 280.

Os condutores devem atender à classe 1, 2, 4 ou 5 de encordoamento. As demais características construtivas devem estar de acordo com uma das normas especificadas nessa norma. Sobre o condutor podem ser aplicadas, por extrusão ou por enfaixamento, uma ou mais camadas de material adequado à temperatura de operação do cabo, compatíveis com o material da isolação, a fim de conferir a propriedade de resistência ao fogo.

A cor padronizada para a cobertura é a vermelha. Outras cores podem ser adotadas mediante acordo prévio entre o comprador e o fabricante. A marcação da cobertura deve ser conforme a NBR 6251, contendo no mínimo as seguintes informações: a marca de origem (nome, marca ou logotipo do fabricante); o número de condutores, pares, ternas ou quadras, e seção nominal do (s) condutor (es), expressa em milímetros quadrados (mm²); a tensão de isolamento Uo/U expressa em quilovolts (kV) para os cabos de potência, ou tensão de isolamento expressa em Volts (V) para os cabos de controle e instrumentação; o material do condutor, da isolação e da cobertura, indicado pelas siglas estabelecidas nas normas especificadas nessa norma; o número desta norma (NBR 13418); a expressão Resistente ao Fogo CR2 ou Resistente ao Fogo CR3; o número da norma correspondente à construção básica do cabo; o ano de fabricação.

Os ensaios previstos nesta norma são classificados em: ensaios de recebimento (R e); ensaios de tipo (T); ensaios de controle; e ensaios durante e após a instalação. Antes de qualquer ensaio, deve ser realizada uma inspeção visual sobre todas as unidades de expedição, para verificação das condições estabelecidas nessa norma.

Os ensaios de recebimento constituem-se em: ensaios de rotina (R); e ensaios especiais (E). Devem ser realizados os ensaios de rotina (R) correspondentes à construção do cabo, conforme determinado nas normas referenciadas nessa norma. Estes ensaios são realizados nas unidades de expedição, conforme critério de amostragem, com a finalidade de demonstrar a integridade do cabo.

Devem ser realizados os ensaios especiais (E) correspondentes à construção do cabo, conforme determinado nas normas referenciadas nessa norma. Estes ensaios (E) são realizados em amostras de cabo completo, ou em componentes retirados destas, conforme critério de amostragem estabelecido, com a finalidade de verificar se o cabo atende às especificações do projeto.

Os ensaios de tipo (T) devem ser realizados e correspondem à construção do cabo, conforme determinado nas normas referenciadas nessa norma. Deve também ser realizado, como ensaio de tipo, o ensaio de resistência ao fogo, sendo recomendado realizar este ensaio nos seguintes cabos: cabos de potência com seções de 1,5 mm² e 25 mm², cabos de instrumentação com seção de 1,0 mm², com formação mínima de dois pares, e cabos de controle com seção de 1,5 mm², com formação mínima de seis condutores.

Os ensaios de tipo devem ser realizados, de modo geral, uma única vez, com a finalidade de demonstrar o comportamento satisfatório do projeto do cabo, para atender à aplicação prevista. Estes ensaios são, por isso mesmo, de natureza tal que não precisam ser repetidos, independentemente do material do condutor, a menos que haja modificação do projeto do cabo que possa alterar o seu desempenho.

Entende-se por modificação do projeto do cabo, para os objetivos desta norma, qualquer variação construtiva ou de tecnologia que possa influir diretamente no desempenho elétrico e mecânico e/ou em condições de queima do cabo, como, por exemplo, modificação nos seus materiais componentes. Todos os ensaios elétricos e não elétricos indicados nesta norma compreendem o conjunto de ensaios de controle disponíveis ao fabricante que, a seu critério e necessidade, os utiliza para determinada ordem ou lote de produção.

Os ensaios durante e após a instalação, correspondentes à construção do cabo conforme determinado nas normas referenciadas nessa norma, podem ser realizados. Estes ensaios são destinados a demonstrar a integridade do cabo e seus acessórios durante a instalação e após a sua conclusão.