Os conjuntos de manobra para instalações públicas


Conheça os requisitos específicos aplicáveis aos conjuntos, como a seguir: conjuntos onde a tensão nominal não excede 1.000 v em corrente alternada ou 1.500 v em corrente contínua; conjuntos destinados a serem utilizados com os equipamentos projetados para a geração, transmissão, distribuição e conversão da energia elétrica e comando de equipamentos que consomem energia elétrica; conjuntos acionados por pessoas comuns (por exemplo, equipamentos elétricos plugáveis e não plugáveis); conjuntos destinados a serem instalados e utilizados em marinas, acampamentos, locais de eventos e outros espaços públicos externos similares; conjuntos destinados às estações de recarga para veículos elétricos; conjuntos destinados às estações de recarga para veículo elétrico (AEVCS) de Modo 3 e de Modo 4.

A NBR IEC 61439-7 de 06/2020 – Conjuntos de manobra e comando de baixa tensão – Parte 7: Conjuntos para instalações públicas específicas, como marinas, acampamentos, locais de eventos e estações de recarga para veículos elétricos define os requisitos específicos aplicáveis aos conjuntos, como a seguir: conjuntos onde a tensão nominal não excede 1.000 v em corrente alternada ou 1.500 v em corrente contínua; conjuntos destinados a serem utilizados com os equipamentos projetados para a geração, transmissão, distribuição e conversão da energia elétrica e comando de equipamentos que consomem energia elétrica; conjuntos acionados por pessoas comuns (por exemplo, equipamentos elétricos plugáveis e não plugáveis); conjuntos destinados a serem instalados e utilizados em marinas, acampamentos, locais de eventos e outros espaços públicos externos similares; conjuntos destinados às estações de recarga para veículos elétricos; conjuntos destinados às estações de recarga para veículo elétrico (AEVCS) de Modo 3 e de Modo 4. Eles são projetados para integrar a funcionalidade e os requisitos adicionais dos sistemas de recarga condutiva para veículo elétrico de acordo com a NBR IEC 61851-1.

Para a seleção correta dos dispositivos de manobra e componentes, aplicam-se as seguintes normas: IEC 60364-7-709 (AMHS) ou IEC 60364-7-708 (ACCS) ou IEC 60364-7-740 (AMPS) ou IEC 60364-7-722 (AEVCS). Este documento é aplicável a todos os conjuntos que sejam projetados, fabricados e verificados individualmente ou que constituam um modelo de tipo e sejam fabricados em quantidade. A fabricação e/ou montagem podem ser realizadas por um terceiro que não seja o fabricante original (ver 3.10.1 da NBR IEC 61439-1).

Este documento não é aplicável aos dispositivos individuais e componentes independentes, como disjuntores, fusíveis-interruptores e equipamentos eletrônicos, que estão conforme suas normas de produto pertinentes. Quando o equipamento elétrico estiver diretamente conectado à fonte de alimentação pública de baixa tensão e equipado com um medidor de energia do distribuidor local, fornecedor da alimentação de baixa tensão, os requisitos particulares adicionais com base nas regulamentações nacionais podem ser aplicados, se existirem. Não é aplicável às caixas e invólucros para equipamentos elétricos para instalações elétricas fixas para uso doméstico e similar, conforme definido na NBR IEC 60670-24.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os símbolos e abreviaturas usados nessa norma?

Como deve ser feita a verificação de resistência à carga estática?

Como executar a verificação da resistência mecânica das portas?

Qual é o esquema de ensaio de verificação da resistência à carga de impacto?

Como fazer a verificação da resistência a impactos mecânicos causados por objetos pontiagudos?

Na ausência de informações sobre as correntes de carga reais, a carga presumida dos circuitos de saída do conjunto ou do grupo dos circuitos de saída pode ser utilizada sobre os valores da Tabela 701 disponível na norma não é aplicável aos conjuntos de manobra e comando de baixa tensão para estações de recarga para veículos elétricos (AEVCS). Para eles, o fator de diversidade do circuito de saída alimentando diretamente o ponto de conexão deve ser igual a 1. O fator de diversidade nominal do circuito de distribuição alimentando vários pontos de conexão pode ser reduzido, se um controle de carga for disponível.

O montador do conjunto deve fornecer cada conjunto com uma ou mais etiquetas, marcadas de maneira durável e dispostas em um local que permita que sejam visíveis e legíveis quando o CONJUNTO estiver instalado. A conformidade é verificada de acordo com o ensaio de 10.2.7 da NBR IEC 61439-1 e por inspeção. As seguintes informações sobre o CONJUNTO devem ser fornecidas na (s) etiqueta (s): nome do montador do CONJUNTO ou sua marca comercial (ver 3.10.2 da NBR IEC 61439-1); designação do tipo ou um número de identificação, ou outros meios de identificação, para obter as informações apropriadas do montador do CONJUNTO; meios de identificação da data de fabricação; NBR IEC 61439-7; frequência em corrente alternada (ver 5.5 da NBR IEC 61439-1); tensão nominal (Un) (do CONJUNTO) (ver 5.2.1 da NBR IEC 61439-1); corrente nominal do CONJUNTO (InA) (ver 5.3.1 da NBR IEC 61439-1) para os CONJUNTOS móveis; grau de proteção; peso, para os CONJUNTOS transportáveis e os CONJUNTOS móveis (ver 3.5.702 e 3.5.703), se exceder 30 kg.

As seguintes informações adicionais devem, quando aplicável, ser fornecidas na documentação técnica do montador do CONJUNTO, entregue com o CONJUNTO: tensão nominal de utilização (Ue) (de um circuito) (ver 5.2.2 da NBR IEC 61439-1); tensão nominal de impulso suportável (Uimp) (ver 5.2.4 da NBR IEC 61439-1); tensão nominal de isolamento (Ui) (ver 5.2.3 da ABNT NBR IEC 61439-1); corrente nominal de cada circuito (Inc) (ver 5.3.2 da NBR IEC 61439-1); frequência nominal (fn) (ver 5.5 da NBR IEC 61439-1); fator (es) de diversidade nominal (RDF) (ver 5.4); todas as informações necessárias relativas a outras classificações e características (ver 5.6); dimensões gerais (incluindo saliências, por exemplo, manoplas, painéis, portas); AMHS (ver 3.1.701), ACCS (ver 3.1.702), AMPS (ver 3.1.703), AEVCS (ver 3.1.704) ou termos equivalentes; para os CONJUNTOS móveis de acordo com 3.5.704, a posição de instalação durante o funcionamento, se necessário.

A resistência mecânica mínima dos CONJUNTOS instalados no solo e no piso para locais com acesso não restrito é a resistência elevada (5.702.3). A resistência mecânica mínima para os CONJUNTOS instalados na parede para locais com acesso não restrito é a resistência elevada (5.702.3). No caso dos CONJUNTOS instalados na parede, para locais com acesso não restrito destinados a serem instalados a uma altura em que a borda inferior dos CONJUNTOS esteja a uma distância superior ou igual a 0,9 m do solo ou do piso, a resistência mecânica pode ser reduzida para a resistência média (5.702.2).

Após a instalação de acordo com as instruções do montador, o grau de proteção de um CONJUNTO para uso abrigado deve ser pelo menos IP41 e IP44 para um CONJUNTO ao tempo, de acordo com a NBR IEC 60529. O grau de proteção deve também ser assegurado quando os cabos de alimentação forem conectados ao CONJUNTO. No caso de condições específicas e mais severas, um grau de proteção IP superior pode ser requerido de acordo com os requisitos de instalação.

O CONJUNTO deve compreender as medidas de proteção e ser adequado às instalações projetadas para estar de acordo com a IEC 60364-4-41 e com as normas de instalação aplicáveis. A IEC 60364-7-709 (AMHS), a IEC 60364-7-708 (ACCS), a IEC 60364-7-740 (AMPS) e a IEC 60364-7-722 (AEVCS) são as normas de instalação aplicáveis. O CONJUNTO instalado em um mesmo invólucro com água e outros fluidos deve ser projetado de acordo com os requisitos deste documento para instalação ao tempo.

O compartimento que contém o sistema de alimentação de fluido deve ser separado de maneira a evitar a penetração inadequada de fluido. A conformidade é verificada por inspeção. No caso em que o sistema de alimentação de fluido possa levar a um risco de explosão, podem ser necessários requisitos adicionais. As medidas relativas à utilização de outros fluidos podem estar sujeitas a um acordo entre o fabricante e os usuários.

Outros serviços (por exemplo, telecomunicações, internet) podem ser instalados no mesmo invólucro, desde que não sejam criadas interferências inaceitáveis. Nos AEVCS destinados a serem alimentados por corrente alternada, o dispositivo de manobra individual deve suportar uma corrente de partida que represente um carregador típico de um veículo elétrico. O requisito para a corrente de partida de um veículo elétrico é baseado na ISO 17409.

O dispositivo de manobra individual deve ser verificado pelos ensaios do Anexo CC, se ele ainda não tiver sido ensaiado em relação a este requisito. Os requisitos aplicáveis ao AEVCS destinado a ser alimentado em corrente contínua são descritos na NBR IEC 61851-23. Os ensaios devem ser realizados a uma temperatura ambiente entre +10 °C e +40 °C. Com exceção do ensaio de 10.2.701.5, uma nova amostra do CONJUNTO pode ser utilizada para cada um dos ensaios independentes.

Se a mesma amostra do CONJUNTO for utilizada para mais ensaios de 10.2.701, a conformidade para o segundo numeral do grau de proteção (código IP) somente necessita ser verificada no final dos ensaios realizados nesta amostra. Quando a base e os meios de fixação não são fornecidos pelo fabricante original do CONJUNTO, o fabricante original deve fornecer todas as instruções úteis para a instalação deste CONJUNTO da maneira mais segura (ver 6.2.2 da NBR IEC 61439-1). Todos os ensaios devem ser realizados com o CONJUNTO instalado e fixado como em utilização normal, de acordo com as instruções do fabricante original.

Com exceção do ensaio de 10.2.701.4, a (s) porta (s) do CONJUNTO, se aplicável, deve (m) ser travada(s) no início do ensaio e assim permanecer durante todo o ensaio. Com exceção dos ensaios de 10.2.701.2, estes ensaios não são aplicáveis aos CONJUNTOS do tipo de sobrepor na parede (ver 3.3.9 da ABNT NBR IEC 61439-1) e aos CONJUNTOS de embutir na parede (ver 3.3.10 da NBR IEC 61439-1). Os ensaios a seguir devem ser realizados de acordo com a Tabela 702 disponível na norma.

Os ensaios de impacto mecânico devem ser realizados de acordo com a ABNT NBR IEC 62262. As bases definidas em 3.5.707 não podem ser submetidas a qualquer ensaio mecânico deste documento. Os golpes não podem ser aplicados nos componentes instalados sobre ou na superfície do invólucro, por exemplo, em tomadas de corrente, botões de pressão e visores. Após o ensaio, as amostras não podem apresentar danos que levem ao não atendimento deste documento.

Convém que sejam desconsiderados os danos superficiais, pequenos entalhes e pequenas descamações que não afetem adversamente a proteção contra os choques elétricos ou contra a penetração prejudicial de água. As rachaduras no material, não visíveis com uma visão normal ou corrigida sem ampliação, as rachaduras superficiais oriundas de moldagens reforçadas com fibra e os pequenos recuos são desconsiderados. Após o ensaio, a inspeção deve verificar se o código IP especificado e as propriedades dielétricas foram mantidos, se as tampas removíveis ainda podem ser retiradas e reinstaladas, e se as portas ainda podem ser abertas e fechadas.

Os ensaios em poliestireno expandido (EPS)

Conheça os métodos de ensaio para determinação das propriedades do poliestireno expandido (EPS) utilizado para qualquer fim. O EPS é um plástico celular rígido, resultado da polimerização do estireno em água. O produto final são pérolas de até 3 milímetros de diâmetro, que se destinam à expansão.

A NBR 16866 de 06/2020 – Poliestireno expandido (EPS) — Determinação das propriedades — Métodos de ensaio estabelece os métodos de ensaio para determinação das propriedades do poliestireno expandido (EPS) utilizado para qualquer fim. O EPS é um plástico celular rígido, resultado da polimerização do estireno em água. O produto final são pérolas de até 3 milímetros de diâmetro, que se destinam à expansão. No processo de transformação, essas pérolas aumentam em até 50 vezes o seu tamanho original, por meio de vapor, fundindo-se e moldando-se em formas diversas.

Expandidas, as pérolas apresentam em seu volume até 98% de ar e apenas 2% de poliestireno. Em 1m³ de EPS expandido, por exemplo, existem de 3 a 6 bilhões de células fechadas e cheias de ar. O processo produtivo do EPS não utiliza o gás CFC ou qualquer um de seus substitutos. Como resultado os produtos finais de EPS são inertes, não contaminam o solo, água e ar. São 100% reaproveitáveis e recicláveis e podem, inclusive, voltar à condição de matéria-prima.

Pode ser reciclado infinitas vezes que não perde as propriedades mecânicas (não degrada).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a aparelhagem e como se faz a preparação dos corpos de prova para a determinação da resistência à compressão?

Qual é o esquema do ensaio de flexão?

Qual deve ser a aparelhagem para a determinação do índice de oxigênio?

Qual é o procedimento para execução do ensaio de determinação do índice de oxigênio?

Também conhecido como isopor, o EPS consiste em até 98% de ar e apenas 2% de poliestireno. Em 1m³ de EPS expandido, por exemplo, existem de 3 a 6 bilhões de células fechadas e cheias de ar. É produzido em duas versões: Classe P, não retardante à chama, e Classe F, retardante à chama. Também 3 grupos de massa específica aparente: I – de 13 a 16 kg/m3, II – de 16 a 20 kg/m³, III – de 20 a 25 kg/m³. Outro aspecto da classificação do EPS diz respeito à resistência à deformação.

O valor que se segue ao nome EPS indica a pressão necessária para uma compressão com deformação de 10%, em KPa. Por exemplo, para o EPS 30 são necessários 30 KPa para uma deformação de 10%. Esse material ganhou nos últimos 35 anos uma posição estável na construção de edifícios, não apenas por suas características isolantes, mas também por sua leveza, resistência, facilidade de trabalhar e baixo custo.

Existe um método de ensaio para a determinação da densidade aparente de blocos ou produtos moldados de EPS calculada pela relação entre a massa e o volume de cinco corpos de prova de uma amostra. Para a realização do ensaio, utilizar a seguinte aparelhagem: balança com resolução mínima de 0,1g; paquímetro ou régua com resolução de 0,1 mm. Para fazer a preparação dos corpos de prova, devem ser retirados cinco corpos de prova de regiões diferentes da amostra e com dimensões de 200 mm x 200 mm x 200 mm.

Os corpos de prova não podem conter faces da superfície original do bloco. Os corpos de prova devem ser condicionados por 24 h em ambiente a (23 ± 2) °C antes da realização do ensaio. O ensaio deve ser realizado em ambiente com temperatura de (23 ± 2) °C e umidade relativa do ar de (50 ± 10) %. Após o condicionamento descrito, determinar a massa M dos corpos de prova. Utilizando o paquímetro, medir três vezes a largura, o comprimento e a altura dos corpos de prova.

Cada medição deve ser realizada em posições distintas, tomando o cuidado para não comprimir as faces durante o procedimento. Calcular a densidade dos corpos de prova, expressa em quilogramas por metro cúbico (kg/m³), pela relação entre a massa e o volume, por meio da seguinte expressão: D=M/Vx10-6, onde D é a densidade, expressa por quilogramas por metro cúbico (kg/m³); M é a massa do corpo de prova, expressa em gramas (g); V é o volume do corpo de prova, expresso em milímetros cúbicos (mm³). Calcular a média aritmética dos resultados obtidos pelas determinações realizadas.

Expressar os resultados do ensaio para determinação da densidade em quilogramas por metro cúbico (kg/m³) com base na média aritmética da densidade encontrada para os cinco corpos de prova com uma casa decimal. O relatório de ensaio deve conter no mínimo as seguintes informações: identificação da amostra ensaiada; referência a esta norma; condições ambientais durante acondicionamento dos corpos de prova e durante o ensaio; dimensões e quantidades dos corpos de prova; resultados individuais e média aritmética da densidade, com aproximação de 0,1 kg/m³; data de realização do ensaio; possíveis desvios em relação a esta norma,

O método de ensaio para determinação da quantidade de água absorvida pelo EPS é feito após imersão total em água calculada pelo aumento da porcentagem em volume d’água dos corpos de prova imersos em água à temperatura controlada por 24 h. Para a realização do ensaio, utilizar a aparelhagem a seguir: balança analítica com resolução mínima de 0,001 g; paquímetro com resolução de 0,01 mm; estufa com circulação de ar, capaz de manter a temperatura constante em (50 ± 3) °C; dessecador; água deionizada; recipiente com profundidade mínima de 150 mm; dispositivo que evite a flutuação e exposição dos corpos de prova ao ar, de modo a impactar pouco sobre a superfície dos corpos de prova, por exemplo, rede.

Os corpos de prova devem ser cubos de 100 mm de lado sem falhas ou imperfeições visíveis. Os corpos de prova devem ser retirados da parte interna do bloco de EPS, sem conter nenhuma face externa original. Devem ser ensaiados cinco corpos de prova por amostra, retirados de diferentes regiões do bloco.

Como procedimento para execução do ensaio, deve-se usar o paquímetro, determinar as três dimensões de cada corpo de prova. Realizar três medições para cada lado e calcular a média aritmética. Multiplicar os valores obtidos para obter o volume de cada corpo de prova. Para realizar a medição corretamente, o paquímetro deve apenas encostar sobre a superfície do corpo de prova, sem comprimi-la.

Manter os corpos de prova na estufa por 24 +10 h a uma temperatura de (50 ± 3) °C. Retirar os corpos de prova da estufa e mantê-los no dessecador a uma temperatura de (23 ± 3) °C até atingirem a temperatura ambiente. Determinar a massa seca (mi) de cada corpo de prova. B.4.5 Imergir os corpos de prova em um recipiente com água deionizada por 24 +10 h a (23 ± 3) °C. Os corpos de prova devem ser presos com uma rede ou um dispositivo semelhante, de modo que exista uma camada de água de pelo menos 25 mm acima dos corpos de prova e que eles não encostem no fundo do recipiente, conforme figura abaixo.

Retirar os corpos de prova da água e remover o excesso de água com um pano úmido. Determinar a massa saturada (mf) de cada corpo de prova. Para obter os valores de absorção de água em porcentagem de volume d’água, utilizar a seguinte equação: av=mf-m1/V x r  x 100, onde av é a absorção de água de cada corpo de prova, expressa em porcentagem (%); mf é a massa saturada de cada corpo de prova, expressa em gramas (g); mi é a massa seca de cada corpo de prova, expressa em gramas (g); V é o volume do corpo de prova, expressa em centímetros cúbicos (cm³); r é a densidade da água, expressa em gramas por centímetro cúbico (g/cm³). Considerar r = 1 g/cm³.

Calcular a média aritmética dos resultados obtidos das determinações realizadas nos cinco corpos de prova. Expressar os resultados do ensaio de determinação de absorção de água por volume em porcentagem com base na média aritmética dos resultados encontrados para os cinco corpos de prova com uma casa decimal. O relatório de ensaio deve conter no mínimo as seguintes informações: identificação da amostra ensaiada; referência a esta norma; dimensões e quantidades dos corpos de prova; condições ambientais durante acondicionamento dos corpos de prova e durante a realização do ensaio; resultados individuais e média aritmética da absorção de água em porcentagem de volume d’água, com aproximação de 0,1%; data de realização do ensaio; possíveis desvios em relação a esta norma.

A conformidade dos perfis fabricados em aço e suas ligas para esquadrias

Conheça os requisitos e os métodos de ensaios para perfis fabricados em aço e suas ligas para esquadrias, visando assegurar que, após o processo de fabricação atendam aos requisitos mínimos de desempenho.

A NBR 16872 de 06/2020 – Aços e suas ligas — Perfis de aço para esquadrias — Requisitos e métodos de ensaio especifica os requisitos e os métodos de ensaios para perfis fabricados em aço e suas ligas para esquadrias, visando assegurar que, após o processo de fabricação atendam aos requisitos mínimos de desempenho. Não é aplicável a balaustradas e balcões, portões e portas corrediças de ferro e aço, fechamento de área, portas de aço onduladas ou frisadas, portas e divisões sanfonadas, revestidas de qualquer material, portas metálicas contra incêndio (corta-fogo), portas pantográficas, portões metálicos e produtos de serralheria artística.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser a classificação do revestimento da pintura de acabamento em pó ou líquido?

Como deve ser a preparação dos corpos de prova para os ensaios cíclicos acelerados de corrosão?

Qual deve ser a aparelhagem para os ensaios de intemperismo acelerado – UV (câmara de ultravioleta)?

Como deve ser feita a execução do ensaio de intemperismo acelerado – UV (câmara de ultravioleta)?

Uma esquadria ao ser fabricada com perfis de aço e suas ligas assegura ao produto final a resistência ao ataque de agentes corrosivos existentes em nossa atmosfera permitindo ao seu usuário o uso adequado deste produto. A corrosão é um ponto de atenção em uma esquadria em função deste produto metálico estar em contato com o meio ambiente. Esta alteração química pode comprometer o desempenho estrutural dos perfis de aços e suas ligas utilizados em uma esquadria.

Além disso, também pode causar impacto em funções das esquadrias como estanqueidade, fechamento, abertura, travamento, etc. Portanto, a falta de atenção a uma corrosão pode expor os usuários das esquadrias a riscos a sua saúde e segurança bem, como pode ocasionar prejuízo econômico, em função da necessidade de reparos ou da substituição da esquadria fabricada com perfis de aço e suas ligas. Nesta norma são apresentados os processos para que os perfis de aço e suas ligas, proporcionem ao consumidor esquadrias um desempenho satisfatório quanto à resistência estrutural, funcionabilidade, estanqueidade e durabilidade.

Para isso, esta norma apresenta características físico–químicas, processos de pré-tratamento e tratamento de superfície, resistência à corrosão e intemperismo. A partir das premissas mencionadas anteriormente, houve a solicitação da Comissão de Estudos Especial de Esquadrias (CEE-191) para a criação de uma norma técnica que trate deste assunto. Diante do seu escopo de atuação estar na Comissão de Estudos de Perfis Soldados e Conformados a Frio (CE 028:001.004) do Comitê Brasileiro de Siderurgia (ABNT/CB-028), esta demanda foi apresentada e aprovada, e esta norma elaborada tomando por base os seguintes documentos técnicos: NBR 14125, NBR 12609, série ISO 12944, bem como especificações técnicas das associações internacionais QUALISTEELCOAT e QUALICOAT da Suíça, que são referências técnicas em tratamento de superfície e resistência a corrosão consagradas mundialmente, estudando e avaliando produtos na Europa nos últimos 30 anos.

Para a fabricação de perfis de aço para esquadrias deve ser utilizado um dos aços estabelecidos nessa norma. A especificação do aço deve ser acordada entre as partes. Esta norma é aplicável para avaliação da conformidade dos perfis fabricados em aço e suas ligas para esquadrias, e devem ser aplicadas todas as seções desta norma. Os aços para esquadrias devem apresentar uma composição química e propriedades mecânicas, conforme a NBR 5915-2. A composição química e as propriedades mecânicas podem ser comprovadas por relatórios de ensaios de seu fornecedor.

No caso do uso de aços revestidos, aplicar os requisitos da NBR 7008-2, ou NBR 7008-3, ou DIN EN 10346. A composição química e as propriedades mecânicas podem ser comprovadas por relatórios de ensaios de seu fornecedor. O corpo de prova revestido por meio do processo de pintura primer, possuindo ou não pintura de acabamento, deve ser verificado nas faces aparentes conforme descrito nessa norma.

A distância mínima entre o verificador, em pé, e o corpo de prova colocado na posição final em que for utilizado deve ser de (1,5 ± 0,1) m. A iluminação deve estar posicionada entre o verificador e o corpo de prova, de modo que haja uma incidência angular de aproximadamente 60° entre os três pontos, de acordo com a figura abaixo e intensidade de luz deve estar de acordo com a NBR ISO/IEC 8995-1.

Ressalte-se que o corpo de prova revestido por meio do processo de pintura primer, possuindo ou não pintura de acabamento, verificada à vista normal ou corrigida, não pode apresentar os seguintes defeitos de pintura: craqueamento ou gretamento, crateras, descascamento, empolamento ou bolhas, enrugamento, fervura, manchamento nas cores metálicas, riscos, e/ou rugosidades provenientes do processo de pintura; fuga de borda ou falta de cobertura em regiões de sobreposições de chapa, transpasse de perfis ou pontos de solda; outros requisitos de inspeção visual, se superiores aos determinados, e referentes ao tratamento de superfície, devem estar especificados no contrato firmado entre as partes. No Anexo A estão ilustrados exemplos de defeitos na pintura.

Para o ensaio de aderência pelo método de grade, o corpo de prova deve ser revestido por meio do processo de pintura primer, possuindo ou não pintura de acabamento, deve ser ensaiado conforme descrito nessa norma. A determinação da aderência nos corpos de prova pelo método do corte em grade deve ser ensaiada conforme a NBR 11003:2009, 4.2. Todos os corpos de prova (total de três) devem apresentar resultados, conforme a NBR 11003:2009, 5.2 para as seguintes situações: para a pintura primer antes do ensaio de corrosão; para a pintura de acabamento antes do ensaio de corrosão; para a pintura de acabamento após o ensaio de intemperismo acelerado.

Para o ensaio cíclico acelerado de corrosão, o corpo de prova deve ser revestido por meio do processo de pintura primer e/ou pintura de acabamento e deve ter a verificação da resistência à corrosão, conforme os ensaios do Anexo B. Todos os corpos de prova (total de três por tipo de tratamento de superfície) devem, ao término de cada ciclo do ensaio.

Para o ensaio de intemperismo acelerado em câmara de ultravioleta (UV), no corpo de prova revestido por meio do processo de pintura de acabamento, deve ser verificada a resistência ao intemperismo após a exposição por 250 h em câmara de ultravioleta UV, conforme a ASTM G-154[4] e o Anexo C. Todos os corpos de prova devem, ao término do período de exposição, apresentar: aderência da película da pintura conforme grau Gr0; pintura isenta de craqueamento, empolamento e escamação.

Os ensaios conforme descritos a seguir devem ser realizados se o contratante determinar, neste caso, todos os corpos de prova ao término do período de exposição, devem atender aos requisitos

de retenção de brilho e mudança de cor, e deve ser classificado em um dos níveis de desempenho definidos nessa norma na tabela 5 na norma: retenção de brilho ou uma avaliação visual adicional deve ser realizada para revestimentos orgânicos em pó ou líquidos com valor de brilho original inferior a 20 unidades; revestimentos orgânicos em pó ou líquidos com aparência estruturada em todas as categorias de brilho; revestimentos orgânicos em pó ou líquidos com efeito metálico ou metalizado.

API RP 652: os revestimentos de tanques de armazenamento de petróleo

Essa norma, editada em 2020 pela American Petroleum Institute (API), fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes.

A API RP 652:2020 – Linings of Aboveground Petroleum Storage Tank Bottoms fornece as orientações sobre como alcançar um controle eficaz da corrosão em tanques de armazenamento acima do solo pela aplicação de revestimentos no fundo do tanque. Ela contém as informações pertinentes à seleção de materiais de revestimento, preparação de superfície, aplicação de revestimento, cura e inspeção de revestimentos de fundo de tanque para tanques de armazenamento novos e existentes. Em muitos casos, os revestimentos do fundo do tanque provaram ser um método eficaz para evitar a corrosão interna do fundo do tanque de aço.

O objetivo desta prática recomendada (RP) é fornecer informações e orientações específicas para tanques de armazenamento de aço acima do solo em serviço de hidrocarbonetos. Certas práticas recomendadas também podem ser aplicáveis a tanques em outros serviços. Esta prática recomendada destina-se a servir apenas como um guia. As especificações detalhadas do revestimento do fundo do tanque não estão incluídas. Não designa os revestimentos específicos do fundo do tanque para todas as situações, devido à grande variedade de ambientes de serviço.

A NACE No.10/SSPC-PA 6 e a NACE No. 11/SSPC-PA 8 são normas da indústria para a instalação de revestimentos nos fundos dos tanques. Elas são escritas em linguagem obrigatória e contêm critérios específicos destinados ao uso por pessoas que fornecem especificações escritas para revestimentos de tanques e navios. Estes documentos devem ser considerados ao projetar e instalar um sistema de revestimento para tanques com fundo de aço.

Conteúdo da norma

1 Escopo……………………………. 1

2 Referências normativas…………….. 1

3 Termos e definições………………….. 2

4 Mecanismos de corrosão…………….. 6

4.1 Geral……………………… ………. 6

4.2 Corrosão química………………………… 6

4.3 Corrosão da célula de concentração………….. 6

4.4 Corrosão das células de oxigênio……………….. 7

4.5 Corrosão de células galvânicas………………… 7

4.6 Corrosão influenciada microbiologicamente (MIC)……… 7

4.7 Corrosão por erosão…………………………. 7

4.8 Corrosão relacionada ao atrito…………………. 8

4.9 Corrosão generalizada versus localizada…… …….. 8

4.10 Quebra por corrosão sob tensão………………… 8

4.11 Mecanismos de corrosão internos……………… 8

5 Determinação da necessidade de revestimento do fundo do tanque………………. 9

5.1 Geral……………………. ………. 9

5.2 Revestimentos para proteção contra corrosão…….. 9

5.3 Histórico de corrosão do tanque……………………… 9

5.4 Fundação do tanque……………………………… 10

6 Seleção do revestimento do fundo do tanque……………… 10

6.1 Geral………………………………………. 10

6.2 Zinco inorgânico/silicato de zinco (IOZ)…………….. 11

6.3 Revestimentos inferiores do tanque de filme fino…………….. 12

6.4 Revestimentos de fundo de tanque sem reforço de filme espesso……………… 13

6.5 Revestimentos inferiores reforçados do tanque de filme espesso………………….. 14

6.6 Circunstâncias que afetam a seleção de revestimento… 16

6.7 Seleção de revestimentos internos para tanques que armazenam combustíveis alternativos…………………. 18

7 Preparação da superfície………………………. 20

7.1 Geral…………………………….. …….. 20

7.2 Pré-limpeza…………………………… 21

7.3 Reparo inferior e preparação subsequente de solda e componente………………… 21

7.4 Limpeza da superfície……………………………….. 21

7.5 Perfil de superfície ou padrão de ancoragem………….. 22

7.6 Limpeza com ar e por abrasivo………………………….. 22

7.7 Remoção de sais………………………….. 22

7.8 Remoção de poeira…………………………. 22

8 Aplicação de revestimento…………………. 22

8.1 Geral…………………………….. …….. 22

8.2 Diretrizes para aplicação de revestimento……………… 23

8.3 Controle de temperatura e umidade………………. 23

8.4 Espessura do revestimento………………………. 23

8.5 Cura de revestimento…………………… 23

9 Inspeção…………………………… 24

9.1 Geral…………………….. …….. 24

9.2 Qualificação do pessoal de inspeção………………. 24

9.3 Parâmetros de inspeção recomendados……….. 24

10 Avaliação, reparo e substituição de revestimentos existentes……………….. 25

10.1 Geral………. …….. 25

10.2 Métodos de avaliação…………. 25

10.3 Critérios de avaliação para revestimentos………. 25

10.4 Avaliando a capacidade de manutenção de revestimentos existentes………………………….. 26

10.5 Determinando a causa da degradação/falha do revestimento…………………….. 26

10.6 Reparo e substituição do revestimento……. 26

11 Maximizando a vida útil do revestimento pela seleção e especificação adequadas de material……. 27

11.1 Geral……………………………… 27

11.2 Seleção de material de revestimento…………….. 28

11.3 Especificações escritas………………………. 28

12 Saúde, segurança e meio ambiente………………… 28

12.1 Geral………………………….. 28

12.2 Entrada do tanque……………………. …. 29

12.3 Preparação da superfície e aplicação de revestimento……29

12.4 Folhas de dados de segurança do fabricante…………….. 29

Bibliografia……… 30

A prevenção de legionelose em água de edificações

Conheça os métodos para gerenciamento de risco e práticas para a prevenção de legionelose associada aos sistemas prediais coletivos de água de edificações industriais, comerciais, de serviços, públicos e residenciais. É aplicável à incorporação, projeto, construção, instalação, gerenciamento, operação e manutenção de edificações.

A NBR 16824 de 06/2020 – Sistemas de distribuição de água em edificações — Prevenção de legionelose — Princípios gerais e orientações especifica os métodos para gerenciamento de risco e práticas para a prevenção de legionelose associada aos sistemas prediais coletivos de água de edificações industriais, comerciais, de serviços, públicos e residenciais. É aplicável à incorporação, projeto, construção, instalação, gerenciamento, operação e manutenção de edificações. A Legionella é um gênero de bactérias patogênicas que podem causar doenças respiratórias conhecidas como legionelose. Foi identificada pela primeira vez após um surto de grande repercussão entre membros da Legião Americana na Filadélfia (EUA) em 1976. Essas bactérias são encontradas em sistemas de água naturais e artificiais, bem como, ocasionalmente, em alguns solos. Mais de 50 espécies de Legionella já foram identificadas.

A espécie Legionella pneumophila está associada à grande maioria dos casos de legionelose (cerca de 90%). A legionelose é um termo genérico usado para descrever qualquer infecção causada por bactéria do gênero Legionella. A doença do legionário (LD) e a Febre Pontiac são os dois tipos mais comuns de legionelose. Ambas são infecções no sistema respiratório, sendo a doença dos legionários a mais grave preocupação para a saúde pública por ser uma pneumonia atípica que pode ser fatal. A Febre Pontiac não tem fatalidades associadas e pessoas saudáveis se recuperam em no máximo cinco dias.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os procedimentos de partida e parada no plano APPCC?

Como manter a qualidade da água e desinfecção?

Como proceder no caso das fontes decorativas e outros dispositivos?

O que fazer em resfriadores de ar diretos e indiretos, pulverizadores, umidificadores e lavadores de ar?

O levantamento de risco na edificação deve ser realizado por pessoa (s) ou entidade responsável (eis). Convém que a periodicidade máxima para este levantamento seja de dois anos. Para edificações com riscos identificados, convém que os levantamentos de risco sejam repetidos ao menos uma vez ao ano. Se as características da edificação forem alteradas durante este período, a edificação deve ser submetida a medidas preventivas de um novo levantamento de risco.

O levantamento de risco da edificação deve levar em conta um ou mais fatores de risco relacionados à legionelose que possam estar presentes nos sistemas listados a seguir: sistemas de água fria e água quente; sistemas de água para irrigação; sistemas de água para recreação (como piscinas, spas etc.); sistemas de água para uso decorativo (como fontes e chafarizes); todos os sistemas de água não potável; todos os outros sistemas de água que gerem aerossol e dispersão de água no ambiente (lavador de ar, umidificador, nebulizador, lava a jato, etc.); todos os sistemas de água que tenham presença residual de cloro menor que 0,2 ppm; sistemas de água para uso em serviços de saúde. O levantamento de risco da edificação deve determinar se há sistema que possua torre de resfriamento ou condensador evaporativo, independentemente do tamanho ou frequência de uso.

A abordagem de APPCC (análise de perigos e pontos críticos de controle que é um método de gerenciamento de riscos com base científica que impede que os riscos possam prejudicar as pessoas) deve considerar os seguintes princípios: condução da avaliação de risco; determinação dos pontos críticos de controle; estabelecimento dos limites críticos para cada ponto crítico de controle; estabelecimento de um sistema para monitorar os controles dos pontos críticos de controle; estabelecimento de ação corretiva a ser realizada quando o monitoramento de um PCC não estiver sob controle; estabelecimento de procedimentos de verificação para confirmar se o sistema de APPCC está funcionando efetivamente; estabelecimento de documentação relativa a todos os procedimentos e registros apropriados a estes princípios e a suas aplicações.

Uma equipe de APPCC deve ser estabelecida, incluindo um profissional habilitado e que possua conhecimento no processo de APPCC de água para edificações e os riscos associados a bactérias do gênero Legionella. Os membros da equipe de APPCC podem ser funcionários, fornecedores, consultores ou a combinação destes. A avaliação de risco deve ser conduzida por um profissional com conhecimento de avaliação de risco para Legionella em sistemas de água com conhecimento do processo de APPCC.

A equipe de APPCC deve ser responsável pelo gerenciamento rotineiro das ações e deve ter acesso às instalações hidráulicas, ao que for necessário para implementar o gerenciamento de risco. Devem ser consideradas as seguintes ações específicas no desenvolvimento do plano de APPCC: identificar os finais de linha de água potável ou outro sistema avaliado na edificação; desenvolver um fluxograma de todos os sistemas de água avaliados que mostre como a água é recebida, processada, armazenada e distribuída aos pontos de consumo e uso na edificação; confirmar a adequação do fluxograma por meio de inspeção in loco; utilizar o fluxograma para identificar os pontos de controle necessários; determinar quais são os pontos críticos de controle (PCC) e indicá-los nos diagramas de fluxo de processo; estabelecer os limites críticos de controle para cada PCC; estabelecer um processo de monitoramento para cada limite crítico em cada PCC; estabelecer as ações corretivas para cada limite crítico, quando houver desvios dos limites críticos; validar a seleção dos PCC, limites críticos e ações corretivas; estabelecer os procedimentos de verificação; estabelecer a documentação e manter os registros dos procedimentos requeridos.

Um único documento deve ser produzido para um plano de APPCC completo, que deve incluir no mínimo os seguintes elementos: lista com os membros da equipe de APPCC e outras pessoas envolvidas (consultores externos, empresas de apoio, etc.), incluindo seus respectivos títulos, funções e informações de contato; diagramas de fluxo de processos para o sistema de água potável e para o sistema de água de utilidade, por meio de esquemas e desenhos de como a água potável e a água de utilidade são processadas na instalação, com os processamentos das etapas nomeados e codificados; resumo da análise de risco com o nome e o código de cada parte do sistema de água e os perigos potenciais. O julgamento do risco de cada perigo identificado cabe à equipe de APPCC, explicitando o critério para avaliação do risco e apontando os PCC estabelecidos.

Incluir um plano de monitoramento descrito para cada controle determinado, com um limite crítico e as ações corretivas necessárias em caso de desvio; planos de manutenção para os equipamentos e partes dos sistemas incorporadas ou anexadas ao plano; um resumo de validação com a justificativa e, quando disponível, a evidência científica usada para validar a seleção de cada PCC e cada limite crítico selecionado pela equipe de APPCC. A seleção dos limites críticos deve cumprir regulamentação local e o cronograma de verificação de todas as atividades de verificação e a frequência em que elas serão realizadas. Levar em consideração as respostas planejadas a interrupções de fornecimento de água, que podem ser associadas a surtos de legionelose.

Convém que o projeto dos sistemas prediais de água fria e água quente leve em conta o seguinte: considerar mecanismos que permitam esvaziamento completo dos reservatórios para limpeza. Recomenda-se que os reservatórios de água quente possibilitem a harmonização de temperatura no seu interior. Onde aplicável, considerar o sistema de recirculação de água quente com isolamento térmico como um recurso de projeto e assegurar que os trechos de distribuição sejam os mais curtos possíveis.

Convém que as operações de armazenamento e distribuição dos sistemas de água fria e água quente atendam ao seguinte: em instalações de cuidados de saúde, lares de idosos e outras semelhantes, recomenda-se que a água fria seja armazenada e distribuída a temperaturas inferiores a 25 °C. Convém que a água quente seja armazenada acima de 60°C e recirculada a uma temperatura mínima de retorno de 51°C. Recomenda-se avaliar a possibilidade de instalação de equipamentos antiescaldamento nos pontos de utilização que forneçam água quente acima de 45 °C.

Em instalações prediais que não sejam de saúde, recomenda-se que a temperatura da água quente seja armazenada à temperatura mínima de 50 °C ou superior. Recomenda-se avaliar a possibilidade de estender os níveis de temperatura a toda extensão do sistema (aquecedores, reservatórios, distribuição e recirculação). Recomenda-se a realização dos seguintes procedimentos de manutenção e inspeção dos sistemas de água fria e água quente, cuidando para evitar riscos de queimaduras: inspeção anual dos sistemas, para garantir que os termostatos estejam funcionando adequadamente.

Também deve ser realizada a drenagem semestral dos reservatórios de água quente, para remoção de calcário e sedimentos; inspeção e/ou limpeza semestral dos reservatórios dos sistemas de água quente ou fria; inspeção visual trimestral do reservatório de água fria, verificando se a tampa está instalada conforme as instruções do fabricante;- a tela para inseto no tubo de saída está instalada; o isolamento térmico do reservatório (se instalado) está conforme as instruções do fabricante; a superfície da água está limpa, brilhante e livre de espuma e mancha de óleo; a superfície acima do nível máximo de água do reservatório está limpa e não apresenta sinais de corrosão, deposição, incrustações ou crescimento biológico; a água não contém quaisquer detritos.

Para sistemas prediais de água fria e água quente, convém que seja instalado um sistema de desinfecção secundária. Quando for necessário implementar a desinfecção secundária em sistemas de água fria e água quente, utilizar produtos e/ou dispositivos desinfetantes para a água, conforme a NBR 15784 e a legislação vigente. A desinfecção secundária é a adição de desinfetante suplementar à água potável além do que já foi aplicado para a desinfecção primária. Seu objetivo é manter a qualidade da água, minimizando micro-organismos patogênicos.

Convém que medidas preventivas para abertura de sistemas para reparos e manutenção sejam descritas e documentadas para evitar a contaminação da água. Recomenda-se que atividades como limpeza e desinfecção de reservatórios, manutenção e reparos do sistema tenham medidas para evitar a entrada de contaminantes externos. Recomendações de medidas e de procedimentos para desinfecção de emergência são apresentadas no Anexo A.

Recomendações e orientações sobre o projeto, manutenção e operação de torres de resfriamento e evaporação de condensadores evaporativos são fornecidas nos ASHRAE Guideline 12 e NSF P453. Outras fontes de referência são a Associated Water Technology (AWT) e Cooling Technology Institute. Para nova construção ou modificações significativas em um sistema de resfriamento, incluindo torres de resfriamento e/ou condensadores evaporativos, recomenda-se que os projetos sejam revisados para minimizar os problemas de contaminação no local, prioritariamente antes do início da construção.

Além disso, recomenda-se que o plano de APPCC identifique e solucione: as condições locais que possam permitir a contaminação do (s) equipamento (s) por agentes externos; as condições que possam permitir a infiltração de contaminação da torre de resfriamento ou condensadores evaporativos nos edifícios ou áreas públicas; as condições que possam reduzir ou impedir o acesso ao(s) equipamento(s) e que possam inibir ou dificultar as atividades de manutenção e inspeções. Recomenda-se que o plano de APPCC inclua um plano de comissionamento que: inclua as etapas de limpeza que fazem parte do comissionamento do sistema de resfriamento e identifique-se os responsáveis; inclua um meio de garantir que um programa de tratamento de água em curso será iniciado imediatamente, uma vez que o sistema esteja carregado com água.

Recomenda-se que o plano de APPCC inclua um programa de manutenção que: especifique cronograma de inspeções para avaliar a limpeza geral do sistema, incluindo a limpeza e condições dos eliminadores de gotas e dos enchimentos, assim como a distribuição de água no interior do equipamento; especifique requisitos e cronograma para limpeza de reservatórios remotos, bacias e inclua purga de tubulações com água estagnada ou zonas de baixo fluxo de água; identifique os responsáveis e inclua um meio de registro das atividades de manutenção e notas de inspeção. Para manutenções prediais ver a NBR 5674. Recomenda-se que o plano de APPCC possua um plano de tratamento de água para controle de incrustação, microbiologia, deposição e corrosão, incluindo: especificação de todos os equipamentos e produtos químicos utilizados no tratamento do sistema de recirculação. Os contaminantes da água do sistema de resfriamento (sólidos em suspensão e em precipitação) facilitam o crescimento das bactérias e dos biofilmes que podem impactar o potencial para Legionella.

Cumprir com o requisito para que o controle de sólidos na água da torre de resfriamento seja realizado por meio de filtragem, lavagem física ou outros meios, como o tratamento químico da água. Fazer a identificação dos responsáveis pela manutenção do sistema de tratamento de água e a inclusão de uma inspeção e cronograma de manutenção para o equipamento de tratamento de água e um cronograma para qualquer ensaio requerido como parte do plano de tratamento de água.

Convém que o plano de APPCC tenha uma descrição dos procedimentos a serem seguidos no caso de indícios de contaminação grave (por exemplo, fezes, vômito, etc.). A política para lidar com tais incidentes pode incluir desinfecção de emergência de todo o sistema. Recomendações de medidas e procedimentos para desinfecção de emergência são apresentadas no Anexo A. Quando houver suspeita de Legionella, recomenda-se que o plano de APPCC tenha uma descrição dos procedimentos a serem seguidos, se houver suspeita de problemas de saúde associados à Legionella.

Convém que estes procedimentos incluam critérios para quando se ensaiar a Legionella nas águas de piscinas ou banheiras de uso coletivo. A política para lidar com tais incidentes pode incluir desinfecção de emergência de todo o sistema. As recomendações de medidas e procedimentos para desinfecção de emergência são apresentadas no Anexo A. Recomenda-se que o plano de APPCC inclua uma política para atualizar regularmente todos os manuais de operação para filtros, bombas e equipamentos de halogenação, e para mantê-los em um local seguro e acessível aos responsáveis pela manutenção.

IEC 61400-6: os projetos de torre e fundação dos sistemas de geração de energia eólica

Essa norma, editada pela International Electrotechnical Commission (IEC) em 2020, especifica os requisitos e os princípios gerais a serem usados na avaliação da integridade estrutural de estruturas de suporte de turbinas eólicas em terra (incluindo fundações). O escopo inclui a avaliação geotécnica do solo para fins genéricos ou específicos do local. A força de qualquer flange e sistema de conexão conectado ao conjunto da barquinha do rotor (incluindo a conexão ao mancal de guinada) é projetada e documentada de acordo com este documento ou com a IEC 61400-1.

A IEC 61400-6:2020 – Wind energy generation systems – Part 6: Tower and foundation design requirements especifica os requisitos e os princípios gerais a serem usados na avaliação da integridade estrutural de estruturas de suporte de turbinas eólicas em terra (incluindo fundações). O escopo inclui a avaliação geotécnica do solo para fins genéricos ou específicos do local. A força de qualquer flange e sistema de conexão conectado ao conjunto da barquinha do rotor (incluindo a conexão ao mancal de guinada) é projetada e documentada de acordo com este documento ou com a IEC 61400-1. O escopo inclui todos os problemas do ciclo de vida que podem afetar a integridade estrutural, como montagem e manutenção.

Este documento foi desenvolvido para o projeto de torres e fundações de turbinas eólicas terrestres que se basearão e complementarão a IEC 61400-1 em relação aos critérios de projeto e fornecerão um conjunto completo de requisitos técnicos para o projeto estrutural e geotécnico. Os requisitos também são aplicáveis às turbinas eólicas cobertas pela IEC 61400-2. Prevê-se que o trabalho proposto seja seguido pelo desenvolvimento de outra parte, direcionada ao projeto de estruturas de apoio offshore, complementando também a IEC 61400-3-1.

As práticas de engenharia civil associadas ao escopo da norma apresentam variações regionais. Não é intenção deste documento entrar em conflito com essas práticas, mas complementá-las principalmente para garantir que todas as características importantes das torres e fundações típicas de turbinas eólicas sejam plena e corretamente consideradas. Para esse fim, foram identificadas as partes relevantes das normas existentes para o projeto de estruturas de aço e concreto e para o projeto geotécnico em países e regiões participantes.

Os princípios incluídos neste documento aplicam-se às seções da torre de uma estrutura fixa offshore acima da zona de respingo, se a carga tiver sido calculada de acordo com a IEC 61400-3-1. Este documento incluirá a avaliação e calibração de fatores de segurança parciais para as forças do material a serem usadas juntamente com os elementos de segurança nas normas IEC 61400-1 e IEC 61400-2 para cargas e para verificação do equilíbrio estático.

Em suma, esta parte da IEC 61400 especifica requisitos e princípios gerais a serem usados na avaliação da integridade estrutural de estruturas de suporte de turbinas eólicas em terra (incluindo fundações). O escopo inclui a avaliação geotécnica do solo para fins genéricos ou específicos do local.

A força de qualquer flange e sistema de conexão conectado ao conjunto da barquinha do rotor (incluindo a conexão ao mancal de guinada) é projetada e documentada de acordo com este documento ou com a IEC 61400-1. O escopo inclui todos os problemas do ciclo de vida que podem afetar a integridade estrutural, como montagem e manutenção. A avaliação pressupõe que os dados de carga foram derivados conforme definido nas IEC 61400-1 ou IEC 61400-2 e usando o nível de confiabilidade implícito e fatores de segurança parciais para cargas.

Os conceitos da inspeção predial

Conheça as diretrizes, os conceitos, a terminologia e os procedimentos relativos à inspeção predial, visando uniformizar metodologia, estabelecendo métodos e etapas mínimas da atividade.

 

A NBR 16747 de 05/2020 – Inspeção predial – Diretrizes, conceitos, terminologia e procedimento fornece as diretrizes, conceitos, terminologia e procedimentos relativos à inspeção predial, visando uniformizar metodologia, estabelecendo métodos e etapas mínimas da atividade. Aplica-se às edificações de qualquer tipologia, públicas ou privadas, para avaliação global da edificação, fundamentalmente através de exames sensoriais por profissional habilitado.

Em termos da lógica de um sistema de inspeção, a inspeção predial descrita nesta norma ocupa a função de um exame clínico geral que avalia as condições globais da edificação e detecta a existência de problemas de conservação ou funcionamento, com base em uma análise fundamentalmente sensorial por um profissional habilitado. Com base nesta análise, pode ser recomendada a contratação de inspeções prediais especializadas ou outras ações para que se possa aprofundar e refinar o diagnóstico. Os procedimentos e as recomendações para as inspeções prediais especializadas não estão cobertos por esta norma.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como poder definida a avaliação do comportamento em uso na inspeção predial?

Como deve ser feita a classificação das irregularidades constatadas?

Como deve ser fundamentada a avaliação da manutenção e uso?

Como deve ser executada a avaliação da manutenção?

A inspeção predial é um processo que visa auxiliar na gestão da edificação e, quando realizada com periodicidade regular, contribui com a mitigação de riscos técnicos e econômicos associados à perda do desempenho. Sua periodicidade está de acordo com às leis e regulamentos vigentes, bem como à eventual recomendação do profissional da inspeção. Uma vez que a utilização da edificação é uma atividade dinâmica, assim como sua exposição permanente a agentes degradantes, os resultados da inspeção predial são referentes ao momento em que a inspeção foi realizada e, portanto, são sempre associados à data da vistoria que a embasou.

A atividade de inspeção predial estabelecida nesta norma tem por objetivo constatar o estado de conservação e funcionamento da edificação, seus sistemas e subsistemas, de forma a permitir um acompanhamento sistêmico do comportamento em uso ao longo da vida útil, para que sejam mantidas as condições mínimas necessárias à segurança, habitabilidade e durabilidade da edificação. Trata-se, portanto, de trabalho com finalidade de instruir a gestão de uso, operação e manutenção da edificação, sendo certo que não se presta ao objetivo de instruir ações judiciais para asserção de responsabilidades por eventuais irregularidades construtivas.

Conforme as especificidades de cada edificação, serão determinados os sistemas, subsistemas, elementos e componentes construtivos a serem contemplados na inspeção predial. A atividade de inspeção predial, pelo seu caráter de análise global da condição de conservação e funcionamento da edificação, inerentemente possui características multidisciplinares e pode demandar equipes com profissionais de diferentes formações.

A inspeção predial considerada nesta norma não tem a finalidade de avaliar de forma exaustiva o cumprimento de todas as normas técnicas que se aplicam às edificações e, no caso dos empreendimentos imobiliários, não tem a finalidade de avaliar a aderência do empreendimento ao que foi vendido ou avaliar o atendimento aos requisitos da NBR 15575, pois se baseia na premissa de que, no ato de recebimento da edificação por parte do proprietário, é responsabilidade das construtoras e incorporadoras entregar o imóvel em consonância a todas as normas técnicas vigentes. Considera-se, também, que a mesma tem caráter fundamentalmente sensorial, destacando-se, assim, não ser parte do processo a identificação de problemas que não tenham manifestado funcionamento inadequado, sintomas ou sinais aparentes, ou que somente possam ser identificados por ensaios específicos.

A inspeção predial objeto desta norma também não substitui as atividades de inspeções periódicas que são parte dos programas de manutenção, conforme estabelecido na NBR 5674, que devem ser previstas nos manuais elaborados de acordo com a NBR 14037. As inspeções prediais devem ser realizadas apenas por profissionais habilitados, devidamente registrados nos conselhos profissionais pertinentes e dentro das respectivas atribuições profissionais contempladas na legislação vigente.

Exemplos de conselhos profissionais são Conselho Regional de Engenharia e Agronomia – CREA e Conselho de Arquitetura e Urbanismo – CAU. As respectivas atribuições profissionais são contempladas nas Leis Federais nº 5.194, de 21/12/1966, e nº 12.378, de 31/12/2010, e resoluções do Conselho Federal de Engenharia e Agronomia (CONFEA) e Conselho de Arquitetura e Urbanismo do Brasil (CAU-BR).

A atividade de inspeção predial, pelo seu caráter de análise global da condição de conservação e funcionamento da edificação, inerentemente possui características multidisciplinares e pode demandar equipes de profissionais de diferentes formações. A inspeção predial baseia-se na avaliação das condições técnicas, de uso, operação, manutenção e funcionalidade da edificação e de seus sistemas e subsistemas construtivos, de forma sistêmica e predominantemente sensorial (na data da vistoria), considerando os requisitos dos usuários.

A avaliação consiste na constatação da situação da edificação quanto à sua capacidade de atender às suas funções segundo os requisitos dos usuários, com registro das anomalias, falhas de manutenção, uso e operação e manifestações patológicas identificadas nos diversos componentes de uma edificação. Recomenda-se que as normas técnicas utilizadas como referência para análise de requisitos ou análise das características de projeto da edificação sejam consideradas, levando em conta a época do projeto e a construção da edificação.

A abrangência da avaliação de desempenho na inspeção predial deve considerar no mínimo o seguinte subconjunto de requisitos dos usuários: segurança: segurança estrutural; segurança contra incêndio; segurança no uso e na operação. Habitabilidade: estanqueidade; saúde, higiene e qualidade do ar; funcionalidade e acessibilidade. Sustentabilidade: durabilidade; manutenibilidade.

As atividades que compõem o procedimento de inspeção predial, descrito a seguir, devem observar esta abrangência. O processo de inspeção predial envolve as seguintes etapas: levantamento de dados e documentação; análise dos dados e documentação solicitados e disponibilizados; anamnese para a identificação de características construtivas da edificação, como idade, histórico de manutenção, intervenções, reformas e alterações de uso ocorridas; vistoria da edificação de forma sistêmica, considerando a complexidade das instalações existentes; classificação das irregularidades constatadas; recomendação das ações necessárias para restaurar ou preservar o desempenho dos sistemas, subsistemas e elementos construtivos da edificação afetados por falhas de uso operação ou manutenção, anomalias ou manifestações patológicas constatadas e/ou não conformidade com a documentação analisada (considerando, para tanto, o entendimento dos mecanismos de deterioração atuantes e as possíveis causas das falhas, anomalias e manifestações patológicas); organização das prioridades, em patamares de urgência, tendo em conta as recomendações apresentadas pelo inspetor predial; avaliação da manutenção, conforme a NBR 5674; avaliação do uso; redação e emissão do laudo técnico de inspeção.

O desenvolvimento das etapas deve ser planejado conforme o tipo da edificação, consideradas suas características construtivas, idade da construção, instalações e equipamentos e qualidade da documentação entregue ao profissional habilitado. Os objetivos para cada uma das etapas descritas na metodologia são estabelecidos a seguir. Para o levantamento de dados e documentação, o profissional habilitado deve solicitar acesso para consulta aos documentos que devem servir à análise, conforme recomendado no Anexo A. A listagem dos documentos solicitados deve ser confrontada com a fornecida, consignando-se no laudo técnico de inspeção predial.

Para a análise dos dados e documentação solicitados e disponibilizados, o profissional habilitado deve verificar se os documentos técnicos, em geral, estão devidamente arquivados e em poder do responsável legal, proprietário, síndico ou gestor predial, conforme NBR 5674 e NBR 14037. As não conformidades e falhas constatadas na análise da documentação devem estar relacionadas e descritas no laudo técnico de inspeção predial.

Para a anamnese para a identificação de características construtivas da edificação (idade, histórico de manutenção, intervenções, reformas e alterações de uso ocorridas, etc.), deve-se obter informações e coletar dados, por meio de entrevistas, sobre a edificação e seu histórico, para instruir o profissional habilitado na realização da inspeção predial. As vistorias da edificação de formas sistêmicas, considerando a complexidade das instalações existentes devem constatar as anomalias e falhas de manutenção, uso e operação (e de suas eventuais repercussões em termos de sinais e sintomas de deterioração), considerando os requisitos dos usuários.

As vistorias devem considerar: as características construtivas; a idade das instalações e da construção e vida útil prevista; a exposição ambiental da edificação; os agentes (e processos) de degradação (atuantes); a expectativa sobre o comportamento em uso. As recomendações técnicas para correção das anomalias, falhas de uso, operação ou manutenção e/ou não conformidades com a documentação analisada, constatadas durante o processo de inspeção predial devem ser apresentadas de forma clara e acessível, possibilitando fácil compreensão ao responsável legal, gestor, síndico ou proprietário.

Recomenda-se indicar manuais, ilustrações e normas pertinentes para facilitar as futuras providências do contratante. As recomendações técnicas podem indicar a necessidade de contratação adicional de profissional especialista (para inspeção predial especializada) e/ou serviços técnicos com ensaios e avaliações específicas, para emissão de relatórios e pareceres complementares ao laudo técnico de inspeção predial entregue, especialmente quando as manifestações patológicas não puderem ser classificadas em anomalias ou falhas por prescindirem de análise mais detalhada.

Os ensaios em solos

Há vários ensaios em solos e um deles é a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas.

A NBR 16843 de 05/2020 – Solo — Determinação do índice de vazios mínimo de solos não coesivos especifica o método de determinação do índice de vazios mínimo (mín.) de solos granulares, não coesivos, contendo no máximo 12 % (em massa) de material que passa na peneira de 0,075 mm. Esta norma também especifica o método para o cálculo de compacidade relativa correspondente a um determinado índice de vazio mínimo do material ensaiado.

A NBR 16853 de 05/2020 – Solo — Ensaio de adensamento unidimensional especifica o método de ensaio para determinação das propriedades de adensamento do solo, caracterizadas pela velocidade e magnitude das deformações, quando o solo é lateralmente confinado e axialmente carregado e drenado. A NBR 16867 de 05/2020 – Solo – Determinação da massa específica aparente de amostras indeformadas — Método da balança hidrostática especifica um método para determinação da massa específica aparente de amostras indeformadas de solo, com emprego da balança hidrostática. Esta norma é aplicável somente a materiais que possam ser adequadamente talhados.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o método do enchimento com água para a determinação do índice de vazios?

Como deve ser a mesa vibratória para realizar peneiramento para a determinação do índice de vazios?

Como deve ser os corpos de prova para determinação das propriedades de adensamento do solo?

Como deve ser feito a montagem do corpo de prova na célula de adensamento?

Como fazer a determinação da massa específica aparente da parafina?

Para a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas. Nesta norma, o índice de vazios mínimo absoluto não é necessariamente obtido.

Para os solos não coesivos, os índices de vazios máximo e mínimo constituem-se nos parâmetros básicos para avaliação do estado de compacidade. Para tanto, a compacidade relativa, como especificada em 7.4, fornece uma indicação do estado de compacidade de uma determinada massa de solo, seja uma ocorrência natural, seja construída pelo homem. No entanto, as propriedades de engenharia, como a resistência ao cisalhamento, compressibilidade e permeabilidade de um dado material, compactado por métodos distintos, para um mesmo estado de compacidade, podem variar consideravelmente.

Por outro lado, solos distintos, no mesmo estado de compacidade, podem apresentar diferenças ainda mais acentuadas dessas propriedades, dependendo da granulometria, formato dos grãos, etc. Por esse motivo, discernimento considerável deve ser usado ao se relacionarem as propriedades de engenharia dos solos com o estado de compacidade. A amplitude dupla de vibração vertical tem efeito significativo no índice de vazios obtido. Para uma mesa vibratória e molde específicos, o menor índice de vazios de um dado material pode ser obtido para uma amplitude dupla diferente das especificadas nesta norma, ou seja, o índice de vazios pode inicialmente diminuir com o aumento da amplitude dupla de vibração, atingir um mínimo e então aumentar com o incremento da amplitude dupla.

Portanto, a relação entre o menor índice de vazios e a amplitude dupla de vibração ótima pode variar com o tipo de solo. A aparelhagem necessária para a execução do ensaio é a seguinte: estufa capaz de manter a temperatura entre 105 °C e 110 °C; peneiras de 75 mm, 38 mm, 19 mm, 9,5 mm, 4,8 mm e 0,075 mm, de acordo com as NBR NM ISO 2395 e NBR NM ISO 3310-1; balanças que permitam pesar nominalmente 40 kg, 10 kg e 1,5 kg, com precisões de 5 g, 1g e 0,1 g, respectivamente; outros equipamentos, como bandeja metálica, conchas metálicas, pá, escova de cerdas macias, cronômetro com indicação de minutos e segundos, e paquímetro que possibilite leituras de no mínimo 30 mm, com precisão de 0,2 mm.

O conjunto para a realização do ensaio pelo método A deve conter o seguinte: moldes cilíndricos metálicos padrões, com volumes nominais de 2.830 cm³ e 14.200 cm³; tubo-guia com dispositivo de fixação ao molde, para cada tamanho de molde. Para facilitar a centralização do tubo-guia acima do molde, ele deve ser dotado de três dispositivos de fixação. Incluir um disco-base da sobrecarga, para cada tamanho de molde, perfurado e dotado de três pinos para centralização da sobrecarga; sobrecarga de seção circular dotada de alça para cada tamanho de molde.

A massa total do disco-base e sobrecarga deve ser suficiente para a aplicação de uma pressão de (13,8 ± 0,1) kPa. Incorporar uma alça dotada de rosca para colocação e retirada do disco-base; suporte encaixável no guia do molde, ao qual fica acoplado um deflectômetro, para medir a diferença de elevação entre o topo do molde e o disco-base da sobrecarga, após a densificação. O deflectômetro deve possibilitar medições de no mínimo 50 mm, com resoluções de 0,02 mm, devendo ser instalado de modo que a sua haste fique paralela ao eixo barra de calibração metálica (opcional), com largura de aproximadamente 7 cm, altura de 0,5 cm e comprimento adequado.

Incluir uma mesa vibratória eletromagnética de aço, com vibração vertical acionada por um vibrador eletromagnético do tipo impacto sólido, com massa maior que 45 kg. A mesa deve ser instalada em ambiente acusticamente isolado do restante do laboratório, sobre um piso ou laje de concreto, com massa de 500 kg, de modo que vibrações excessivas não sejam transmitidas a outras áreas onde estejam sendo realizados outros ensaios. O tampo da mesa deve ter dimensões adequadas, que confiram rigidez suficiente, de forma que o conjunto molde + tubo-guia + sobrecarga fique firmemente fixado e rigidamente apoiado durante o ensaio, devendo por este motivo ser dotado de dispositivo de fixação ao conjunto mencionado.

O conjunto para a realização do ensaio pelo método B deve conter o seguinte: cilindro de Proctor, com volume nominal de 1.000 cm³, de acordo com a NBR 7182, soldado à base, de modo que o conjunto resulte estanque. A base do molde deve ser mais espessa que a normalmente utilizada no ensaio de compactação, além de ser dotada de dispositivo de fixação à mesa vibratória. Deve-se dispor de um tubo-guia, constituído por outro cilindro de Proctor solidário ao colarinho; disco-base da sobrecarga, perfurado e dotado de dispositivo para centralização da sobrecarga; sobrecarga de seção circular dotada de alça. A massa total do disco-base e da sobrecarga deve ser suficiente para aplicação de uma pressão de (13,8 ± 0,1) kPa.

Deve-se incluir uma mesa vibratória, do tipo utilizado para realizar o peneiramento de amostras na análise granulométrica. Este método de ensaio para determinação das propriedades de adensamento do solo requer que um elemento de solo, mantido lateralmente confinado, seja axialmente carregado em incrementos, com pressão mantida constante em cada incremento, até que todo o excesso de pressão na água dos poros tenha sido dissipado. Durante o processo de compressão, medidas de variação de altura da amostra são feitas, e estes dados são usados no cálculo do parâmetro que descreve a relação entre a pressão efetiva e o índice de vazios, bem como a evolução das deformações em função do tempo.

Os dados de ensaio de adensamento podem ser utilizados na estimativa, tanto da magnitude dos recalques totais e diferenciais de uma estrutura ou de um aterro, como da velocidade desses recalques. Como aparelhagem, usar um sistema de aplicação de carga (prensa de adensamento), que permite a aplicação e manutenção das cargas verticais especificadas, ao longo do período necessário de tempo, e com uma precisão de 0,5% da carga aplicada. Quando da aplicação de um incremento de carga, a transferência para o corpo de prova deve ocorrer em um intervalo de tempo não superior a 2 s e sem impacto significativo.

Usar uma célula de adensamento apropriada para conter o corpo de prova e que proporcione meios para aplicação de cargas verticais, medida da variação da altura do corpo de prova e sua eventual submersão. Esta célula consiste em uma base rígida, um anel para manter o corpo de prova, pedras porosas e um cabeçote rígido de carregamento. O anel pode ser do tipo fixo (indeslocável em relação à base rígida) ou flutuante (deslocável em relação à base, sendo suportado pelo atrito lateral desenvolvido entre o corpo de prova e o anel), conforme os esquemas indicados na figura abaixo.

Incluir um anel de adensamento, conforme a seguir: o diâmetro interno do anel deve ser no mínimo de 50 mm (preferencialmente 100 mm) e, no caso de amostras extrudadas e talhadas, no mínimo 5 mm (preferencialmente 10 mm) menor do que o diâmetro interno do tubo de amostragem; a altura do anel deve ser no mínimo de 13 mm e não inferior a dez vezes o máximo diâmetro de partícula do corpo de prova; a relação entre o diâmetro interno e a altura do anel deve ser no mínimo de 2,5 (preferencialmente 3,0); a rigidez do anel deve ser tal que, sob a condição de pressão hidrostática igual à máxima pressão axial a ser aplicada ao corpo de prova, a variação do diâmetro do anel não exceda 0,03%; o anel de adensamento deve ser feito de material não corrosível (preferencialmente aço inoxidável), e sua superfície interna deve ser altamente polida ou recoberta com material de baixo atrito, por exemplo, politetrafluoroetileno (PTFE).

Recomenda-se, antes do ensaio, untar a superfície interna do anel com graxa de silicone. O anel fixo permite a execução de ensaios de permeabilidade, junto com o ensaio de adensamento. Quando o solo a ser ensaiado se constituir de material muito mole, não se utiliza anel flutuante. Usar pedras porosas, conforme a seguir. As pedras porosas devem ser confeccionadas com material quimicamente inerte em relação ao solo e à água dos poros. Devem ser constituídas de poros com dimensões suficientemente pequenas, de forma a se evitar a intrusão de partículas de solo.

Se necessário, papel-filtro resistente pode ser utilizado entre o corpo de prova e a pedra porosa para impedir a infiltração de solo e facilitar a limpeza posterior da pedra. O conjunto pedra porosa e papel-filtro deve apresentar permeabilidade suficientemente alta, de modo a não retardar a drenagem do corpo de prova. As pedras porosas devem ser uniformes e estar sempre limpas e livres de trincas.

A adequabilidade de pedra porosa sob o ponto de vista de permeabilidade e limpeza pode ser comprovada por meio de ensaios expeditos, submetendo-a a uma carga hidráulica da ordem de 10 cm e observando-se o gotejamento em sua face inferior. o diâmetro da pedra porosa do topo deve ser 0,2 mm a 0,5 mm menor que o diâmetro interno do anel. Se for utilizado anel flutuante, a pedra de base deve apresentar o mesmo diâmetro da pedra do topo. Recomenda-se a utilização de pedras biseladas, com a face de maior diâmetro em contato com o solo. As pedras porosas devem ser espessas o suficiente para se evitar a sua quebra, sendo de topo, na sua face superior, protegida por um disco metálico (cabeçote) rígido, resistente à corrosão e com diâmetro igual ao da pedra.

Já a aparelhagem necessária para o ensaio para determinação da massa específica aparente de amostras indeformadas de solo é a seguinte: estufa capaz de manter a temperatura de 60 °C a 65 °C e de 105 °C a 110 °C; balança que permita pesar nominalmente 1,5 kg, com precisão de 0,1 g e sensibilidade compatível; moldura que possa ser acoplada ao prato da balança, sendo que balanças que disponham de dispositivo adequado para realização deste ensaio prescindem de tal moldura. Incluir um recipiente contendo água, de dimensões adequadas, para imersão do corpo de prova; fogareiro ou aquecedor para derreter a parafina; linha comum, ou preferencialmente de náilon, e utensílios como panela, faca, espátula, pincel, etc.; parafina isenta de impurezas e com massa específica aparente, no estado sólido, conhecida e verificada a cada mudança de lote.

A conformidade das portas e vedadores resistentes ao fogo, do tipo de enrolar

Conheça a classificação, avaliação, fabricação, instalação, aceitação técnica da instalação, funcionamento e manutenção de portas e vedadores resistentes ao fogo, do tipo de enrolar, confeccionados em aço e dotados de fechamento automatizado.

A NBR 16829 de 04/2020 – Portas e vedadores de aço de enrolar resistentes ao fogo estabelece os requisitos para classificação, avaliação, fabricação, instalação, aceitação técnica da instalação, funcionamento e manutenção de portas e vedadores resistentes ao fogo, do tipo de enrolar, confeccionados em aço e dotados de fechamento automatizado. Estes elementos são destinados à proteção de aberturas em paredes que integram a compartimentação horizontal e vertical, onde são requeridos valores de resistência ao fogo de até 240 min.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os requisitos específicos das portas de aço de enrolar resistentes ao fogo?

Como deve ser previsto o fechamento automático?

Como deve ser feita a manutenção desse tipo de porta?

Quais as dimensões do vão-luz?

A porta de aço de enrolar resistente ao fogo é composta por folha de aço que, na posição aberta, permanece enrolada sobre a abertura e que, em situação de incêndio, se desenrola, fechando automaticamente a abertura, sendo dotada de um reforço enrijecedor na extremidade inferior, um eixo cilíndrico sobre o qual a porta permanece enrolada, quando na posição aberta, molas de contrabalanço e fechamento, suportes, guias, dispositivo de fechamento automático e uma caixa metálica de proteção da folha enrolada. A porta resistente ao fogo é um dispositivo móvel que, fechando aberturas em parede, retarda a propagação do incêndio de um ambiente para outro, sendo utilizado no nível do piso e destinado à passagem de pessoas e veículos.

As portas e vedadores de aço de enrolar resistentes ao fogo são classificadas em três classes, segundo o seu tempo de resistência ao fogo determinado em ensaio, realizado de acordo com os procedimentos estabelecidos na NBR 6479: classe PE-120: porta de enrolar cujo tempo de resistência ao fogo, atendendo ao critério de integridade, correspondente à resistência mecânica, de acordo com a NBR 6479, é de 120 min; classe PE-180: porta de enrolar cujo tempo de resistência ao fogo, atendendo ao critério de integridade, correspondente à resistência mecânica, de acordo com a NBR 6479, é de 180 min; classe PE-240: porta de enrolar cujo tempo de resistência ao fogo, atendendo ao critério de integridade, correspondente à resistência mecânica, de acordo com a NBR 6479, é de 240 min.

Não são admitidas classificações intermediárias. A classificação da porta ou do vedador de aço de enrolar resistente ao fogo, ensaiado em parede de alvenaria, vale apenas para instalações reais em paredes de alvenaria e de concreto. A instalação em outros tipos de elementos construtivos deve ser avaliada e classificada, reproduzindo a condição de instalação no elemento construtivo específico.

O tempo de resistência ao fogo das portas e vedadores de aço de enrolar deve ser igual ou superior à resistência ao fogo das paredes onde serão instalados, atendendo a uma das três classes estabelecidas. Cada porta ou vedador deve receber uma identificação indelével e permanente, por gravação ou por plaqueta de aço, fixada por meio de parafusos ou rebites também de aço. Adicionalmente às exigências legais, tal identificação deve conter as seguintes informações, em língua portuguesa: porta ou vedador de aço de enrolar resistente ao fogo conforme esta norma; identificação do fabricante; classificação conforme o disposto acima; número de ordem de fabricação; e mês e ano de fabricação.

A identificação com plaqueta metálica deve ser afixada com rebite sobre a caixa metálica de proteção da porta ou do vedador e sobre seu reforço enrijecedor. A identificação por gravação deve ser localizada nos mesmos locais indicados de fixação das plaquetas metálicas. Caso a porta ou vedador apresente selo de conformidade, este deve ser fixado ao lado ou abaixo da identificação.

A folha da porta ou vedador, quando instalada, deve receber, ao lado da sua ombreira, fixada em ambas as faces da parede onde está instalada, entre 1,50 m e 1,80 m acima do piso, uma sinalização complementar de orientação e salvamento, fotoluminescente, de acordo com as NBR 13434-1, NBR 13434-2 e NBR 13434-3, com os seguintes dizeres: PORTA (ou VEDADOR) DE ENROLAR RESISTENTE AO FOGO É OBRIGATÓRIO MANTER O VÃO DESOBSTRUÍDO.

Esta sinalização deve ser fornecida pelo instalador e ser composta por placas fixadas sobre as superfícies da parede onde a porta ou vedador estiverem instalados. O formato deve ser retangular, com a maior dimensão na horizontal e área mínima de 200 cm². É proibida a veiculação de qualquer outra informação ou propaganda, que não a orientação estabelecida, ao lado de ambas as faces da porta ou vedador.

A unidade de compra é a porta ou vedador completo, que inclui a folha, o respectivo reforço enrijecedor, o eixo cilíndrico sobre o qual a folha é enrolada, as guias, as estruturas de sustentação do conjunto, a caixa metálica de proteção da folha enrolada, os dispositivos de fechamento automático e manual, bem como todos os dispositivos complementares necessários ao perfeito funcionamento do conjunto. Os vedadores devem incluir, adicionalmente, um quadro de montagem com guias e soleira incorporadas.

Cada porta ou vedador de aço de enrolar resistente ao fogo fornecido deve estar acompanhado de um manual técnico contendo informações referentes aos cuidados no transporte, embalagem, armazenamento, instalação, funcionamento, manutenção e acabamento. Todas estas informações devem estar em língua portuguesa e rigorosamente de acordo com o disposto nesta norma. As partes que compõem a porta ou o vedador, quando armazenadas na obra, devem permanecer em locais secos e limpos, e ao abrigo de intempéries, obedecendo às instruções do fabricante.

Todos os componentes de montagem da porta ou vedador de aço de enrolar resistente ao fogo devem ser entregues no local de instalação devidamente acabados e em condições de serem montados, compondo a unidade de compra. As portas ou vedadores de aço de enrolar resistentes ao fogo devem ser dotados de caixa metálica de proteção da folha que, quando aberta, permanece enrolada sobre um eixo cilíndrico e que contém molas de contrabalanço e fechamento.

Caso esta caixa seja dotada de defletor interno, este deve ser composto por uma chapa de aço pendente e travada por um sensor (detector ou fusível térmico), que deve ser liberado com o fechamento da porta ou vedador, fechando o espaço entre o topo da porta ou vedador e a abertura da caixa. A liberação do defletor pode ser independente dos detectores ou fusíveis térmicos que promovem a ativação do mecanismo de fechamento automático da porta ou vedador.

A folha da porta ou vedador deve ser composta por réguas de aço com comprimento suficiente para vedar todo o vão. A folha deve ser dotada de um reforço enrijecedor na extremidade inferior. A folha da porta ou vedador, na posição aberta, permanece enrolada sobre um eixo cilíndrico que deve conter molas de contrabalanço e fechamento.

O dispositivo de fechamento automático deve estar instalado no interior da caixa ou ao seu lado. Componentes necessários à instalação, compostos por guias e peças destinadas à sustentação e fixação das portas e vedadores de aço de enrolar resistentes ao fogo. Quando a porta ou vedador de aço de enrolar resistente ao fogo for instalado em paredes de fachada, deve ser protegido contra as ações do meio externo para assegurar o fechamento em situação de emergência ou ser capaz de resistir a estas ações.

Os vedadores de aço de enrolar resistentes ao fogo devem ser dotados de um quadro de instalação fechado contendo ombreiras, travessa e soleira, compostos por perfis de aço confeccionados com chapa com espessura mínima de 4,76 mm. Neste caso, devem ser fornecidos juntamente com os demais componentes do vedador. Ao contrário do disposto em 4.6.1.6.1, as portas de aço de enrolar resistentes ao fogo não podem ser dotadas de quadros e soleiras incorporados.

O fusível térmico empregado para a liberação da porta em caso de incêndio deve apresentar temperatura de acionamento de (70 ± 3) °C. É permitido o uso de mais de um fusível térmico, caso a carga a que esteja submetido exceda a capacidade de um único destes dispositivos. A instalação das portas e vedadores de aço de enrolar resistentes ao fogo deve reproduzir todas as condições determinadas no projeto destes elementos, que atendam a todos os requisitos desta norma e que tenham sido previamente avaliadas por ensaios laboratoriais de funcionamento e de resistência ao fogo.

A instalação da porta ou vedador de aço de enrolar resistentes ao fogo deve ser executada pelo fabricante ou por firma especializada, credenciada pelo fabricante. As portas e vedadores de aço de enrolar resistentes ao fogo, após a instalação, devem comprovar bom desempenho de abertura e fechamento, de acordo com o disposto em 4.7.2.3 e 4.7.3, considerando a ativação por calor do fusível térmico ou a sua retirada.

Itens que não fizerem parte da montagem da porta ou vedador de aço de enrolar resistentes ao fogo não podem ser fixados posteriormente em campo a quaisquer componentes destes elementos, sem a anuência devidamente documentada do fabricante ou do seu credenciado. O espaço e as folgas entre as ombreiras e travessa e a porta ou vedador de aço de enrolar resistentes ao fogo devem permitir acesso aos procedimentos de ensaios e manutenção necessários.

As portas de aço de enrolar resistentes ao fogo são indicadas para proteção de aberturas em paredes resistentes ao fogo que integram a compartimentação horizontal e vertical nos seguintes locais: edificações industriais e de depósito; áreas técnicas, incluindo salas de motores, salas de transformadores e sala de motogeradores; compartimentação de áreas. Os vedadores de aço de enrolar resistentes ao fogo são indicados para proteção de aberturas em paredes resistentes ao fogo que integram a compartimentação horizontal e vertical nos seguintes locais: sobre balcões e em aberturas que dão acesso a áreas de risco, como cozinhas em restaurantes e lanchonetes; sobre parapeitos ou em aberturas por meio dos quais os pavimentos da edificação se intercomunicam com átrios; aberturas de passagem de esteiras transportadoras; aberturas, dotadas ou não de vidros, destinadas à observação de setores das edificações.

Outras aplicações são admitidas, desde que devidamente justificadas em projeto integrado de segurança contra incêndio e desde que atendam aos requisitos de compartimentação horizontal e vertical da regulamentação de segurança contra incêndio aplicável. Os detectores para comando do fechamento podem fazer parte de um sistema específico ou ser parte integrante de um sistema de detecção de incêndio que proteja a edificação como um todo. Caso seja parte de um sistema específico, os detectores devem ser pontuais do tipo de fumaça iônicos e devem ser posicionados de ambos os lados da parede, junto ao teto ou sobre a parede, de acordo com as indicações da figura abaixo.

Os detectores deste sistema específico ou os fusíveis térmicos devem ser posicionados em ambos os lados da parede e devem ser interconectados de tal forma que a operação de um único detector ou fusível térmico libere o fechamento da porta ou vedador. A temperatura de acionamento dos fusíveis térmicos deve ser de (70 ± 3) °C. Quando estas portas ou vedadores forem instalados em paredes de fachada, os sensores devem ser instalados apenas no interior da edificação.

Os fusíveis térmicos devem ser localizados próximo ao topo da abertura protegida. Fusíveis térmicos adicionais podem ser instalados próximos ao teto em ambos os lados da parede, atendendo às condições apresentadas na figura acima. As portas e vedadores de aço de enrolar resistentes ao fogo devem ser dotados de dispositivo regulador de velocidade, fechando à velocidade média na faixa de 100 mm/s a 400 mm/s.

As portas e vedadores de aço de enrolar resistentes ao fogo dotados de fechamento motorizado devem ser equipados com dispositivo de fechamento automático que, ao ser ativado, promova o fechamento, mesmo em caso de falta de energização da motorização. Após a ativação do dispositivo de fechamento automático, a porta ou vedador deve permanecer na posição fechado até que o dispositivo seja resetado.

Caso a porta ou vedador sejam dotados de dispositivo de fechamento motorizado, eles devem permanecer na posição fechada em situação de incêndio, porém se admite que parem e abram automaticamente e voltem a fechar, caso apresentem sensor de obstrução e se uma obstrução ao fechamento estiver presente. Nesta situação, as tentativas de fechamento devem ser repetidas por três vezes, depois das quais o reforço enrijecedor na extremidade inferior deve permanecer encostado na obstrução. O sensor de obstrução deve ser instalado no reforço enrijecedor.

A classificação das chapas de gesso diferenciadas para drywall

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra.

A NBR 16831 de 05/2020 – Chapas de gesso diferenciadas para drywall — Classificação e requisitos estabelece a classificação e os requisitos das chapas de gesso diferenciadas para com suas características para aplicação e inspeção. Não é aplicável às chapas de gesso para drywall dos tipos standard (ST), resistente à umidade (RU) e resistente ao fogo (RF), sendo seus requisitos encontrados na NBR 14715-1.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os valores da carga de ruptura?

Qual é a densidade superficial de massa em função das espessuras das chapas?

Como deve ser feita a identificação das chapas?

Quais são os critérios para aceitação e rejeição?

As chapas de gesso diferenciadas para drywall são as fabricadas industrialmente mediante um processo de laminação contínua de uma mistura de gesso, água e aditivos, entre duas lâminas de cartão ou véu de fibra de vidro, onde uma é virada sobre as bordas longitudinais e colada sobre a outra. A lâmina ou véu podem variar em função da aplicação de um determinado tipo de chapa, e o núcleo pode conter aditivos a fim de proporcionar características adicionais à NBR 14715-1.

As chapas de gesso diferenciadas para drywall são selecionadas de acordo com o seu tipo, tamanho e espessura. São aplicáveis a ambientes construídos com características específicas demandadas. Devem ser classificadas pelos seguintes tipos indicados na EN 520 2004+A1 e descritas a seguir. As chapas de gesso diferenciadas para drywall do Tipo A para utilização em áreas secas, chapas produzidas para utilização em áreas secas classificadas de acordo com o seu peso e a espessura.

As chapas de gesso diferenciadas do Tipo A devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo standard (ST), especificadas na NBR 14715-1. As chapas de gesso diferenciadas para drywall do Tipo H com absorção d’água reduzida, chapas com capacidade reduzida de absorção d’água adequadas para aplicações em locais sujeitos à umidade por tempo limitado e intermitente ou esporádico. As chapas de gesso diferenciadas do Tipo H devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declarados pelo fabricante, que as distinguem das chapas de gesso do tipo resistente à umidade (RU), especificadas na NBR 14715-1.

As chapas de gesso para drywall do Tipo E para utilização em exteriores, chapas produzidas para utilização em áreas externas. Devem sempre ser especificadas com o uso de algum tipo de revestimento ou proteção, a ser indicado pelo fabricante. A exposição da chapa sem revestimento é por tempo limitado, a ser indicado pelo fabricante.

Esta norma não prevê os tipos de revestimento ou proteção. A permeabilidade ao vapor d’água deve ser mínima, bem como a capacidade de absorção d’água reduzida. As chapas de gesso para drywall do Tipo F com coesão do núcleo de gesso para altas temperaturas, chapas que contêm fibras minerais e/ou outros aditivos no núcleo de gesso para melhorar sua coesão às altas temperaturas. Essas características são dependentes dos sistemas construtivos.

As chapas de gesso diferenciadas do Tipo F devem possuir espessura e/ou densidade superficial de massa e/ou algum requisito adicional, a serem declaradas pelo fabricante, que as distinguem das chapas de gesso do tipo resistente ao fogo (RF), especificadas na NBR 14715-1. As chapas de gesso para drywall do Tipo P chapas para serem combinadas mediante colagem a outros materiais em forma de chapas ou painéis ou películas. Esse tipo pode também apresentar furos a fim de melhorar as características acústicas do ambiente construído.

As chapas de gesso para drywall do Tipo D com densidade controlada, chapas que possuem densidade controlada que permitem melhorar algumas aplicações, entre elas as características acústicas do ambiente construído; chapas de gesso para drywall do Tipo R com resistência aumentada, chapas utilizadas para aplicações diferenciadas que requeiram resistência mais elevada às cargas de ruptura tanto no sentido longitudinal quanto no transversal. As chapas de gesso para drywall do Tipo I com dureza superficial aumentada, chapas utilizadas para aplicações diferenciadas que requeiram maior dureza superficial.

As utilizações dos diversos tipos de chapas de gesso diferenciadas para drywall, constantes nesta norma, podem ser combinadas em uma única chapa, neste caso a designação da chapa deve incluir a letra que identifica cada tipo de aplicação. Os tipos D, E, F, H, I, R podem ser combinados e os tipos A e P não podem ser combinados. EXEMPLO: Tipo A3, Tipo A1, Tipo F-H, ou seja, chapa resistente ao fogo com absorção de água reduzida, Tipo D-F-H, ou seja, chapa com densidade controlada, resistente ao fogo e com absorção de água reduzida.

Todos os tipos de chapas de gesso diferenciadas para drywall devem atender à classe IIA de reação ao fogo de acordo com NBR14432 e podem receber em uma das faces acabamentos. Os tipos das chapas de gesso diferenciadas para drywall são classificados nesta norma, de acordo com os requisitos descritos na Seção 5. A carga de ruptura à flexão das chapas de gesso diferenciadas para drywall, constantes nesta norma para os tipos A, D, E, F, H e I, devem estar conforme a NBR 14715-2, não podendo ser inferior aos valores indicados na tabela abaixo. Nenhum resultado individual do ensaio pode ser inferior em mais de 10% dos valores indicados na tabela abaixo.

A densidade da chapa diferenciada para drywall do tipo D ou sua combinação, determinada conforme o método descrito na NBR 14715-2, deve ser no mínimo 0,8 × 103 kg/m³. A dureza superficial aumentada da chapa de gesso diferenciada do Tipo I ou sua combinação é determinada medindo o diâmetro da mossa produzida na superfície, quando ensaiada conforme o método descrito na NBR 14715-2. O diâmetro da mossa não pode ser superior a 15 mm.

As características dimensionais das chapas de gesso diferenciadas para drywall, seus valores e tolerâncias estão especificadas na NBR 14715-1, sendo verificadas conforme a NBR 14715-2. A tolerância na espessura para as chapas de 6,0 mm a 6,5 mm é de ± 0,2 mm. A tolerância na espessura para as chapas de 6,6 mm a 15,0 mm é de ± 0,5 mm.

Outras espessuras nominais são também possíveis, de acordo com a mínima espessura de 6,0 mm. Para espessuras nominais maiores ou iguais a 15,1 mm, as tolerâncias devem ser ± 0,04 × t, arredondadas para o próximo 0,1 mm. A critério do comprador e do fornecedor as análises dimensionais e pesos, podem ser avaliados em função da NBR 5426. Para a amostragem, dez chapas (amostras) devem ser retiradas aleatoriamente do lote declarado pelo fornecedor, constituindo as amostras, sendo cinco chapas à guisa de prova e cinco chapas à guisa de contraprova.

As testemunhas ou contraprovas devem ficar sob a guarda do fabricante. As amostras devem ser identificadas de forma a permitir, inclusive, a rastreabilidade do lote de produção. O local de inspeção deve ser previamente acordado entre o fornecedor e o comprador, podendo ser ou no pátio da fábrica, no distribuidor ou na obra.

Para a inspeção visual, todas as chapas diferenciadas para drywall devem ser submetidas às inspeções conforme determinado na norma, rejeitando-se apenas as chapas que não estiverem conforme. Para as chapas, de per si, devem ser verificadas e comparadas as características expressas indicadas na seção 5, com as Instruções ou declaração do fabricante. Para os sistemas construtivos executados com chapas diferenciadas para drywall, podem ser avaliados por meio de ensaios tipo, estabelecidos de comum acordo entre fabricante e consumidor.