Os ensaios de reação ao fogo de cortinas, persianas, etc.

As cortinas e persianas, aliadas a almofadas e tapetes, procuram dar um toque final em qualquer ambiente e buscam trazer a sensação de aconchego e de ambiente finalizado. Além disso, se utilizadas de maneira adequada garantem privacidade e proteção contra a luz do dia e raios UV. Mas, elas podem aumentar os riscos no caso de incêndio devido à sua inflamabilidade.

Elas são fabricadas em voil ou voal que é um tecido leve, fino e translúcido que permite passagem parcial de luz. Utilizado em salas sem forro e quartos de bebê com forro blackout por exemplo. Quando constituídos de material sintético, não amassam fácil e são mais fáceis de lavar.

Há os tipos blackout ou blecaute que bloqueiam a iluminação totalmente e por isso é mais utilizada em quartos e ambientes onde a luminosidade do dia é indesejada. Fácil de lavar por ser constituído de material impermeável, como o PVC. É interessante utilizar como forro para qualquer cortina, pois sozinho ele tem um visual emborrachado de brilho acetinado.

Os tecidos das cortinas sob medida mais utilizados além do voil são a renda, seda, sarja, linho puro ou linho poliéster, crepe, veludos e tafetá de poliéster. Os tecidos mais fáceis de lavar e que não amassam são os sintéticos constituídos totalmente de poliéster, ou de tecido misto. Os tecidos naturais, de linho puro ou seda pura, apesar de amassarem mais fácil, possuem toque mais macio e garantem um visual mais rústico e elegante. Cortinas com forros protegem o tecido dos raios solares e melhoram o caimento dependendo do tipo de prega. Os forros podem ser de tergal, blackout, flanela, etc.

A NBR 16625 de 10/2017 – Método de ensaio e de classificação da reação ao fogo de cortinas – Avaliação das características de ignitabilidade descreve a execução de dois métodos de ensaio para avaliação de cortinas, persianas e produtos complementares, como bandôs, xales e artefatos equivalentes, constituídos por malha, tecido plano, tecido não tecido, membranas poliméricas compósitas ou não, por meio dos quais será possível aceitar ou rejeitar seus materiais constituintes, tendo em conta suas características de ignitabilidade. O método de ensaio 1 se aplica aos tecidos e outros materiais utilizados em cortinas, bandôs, xales ou outros artefatos equivalentes. Estes tecidos e materiais assemelhados podem ser compostos por camadas simples ou múltiplas unidas por costura ou outros meios.

Este método de ensaio se aplica aos corpos de prova que apresentam gramatura menor ou igual a 700g/m², exceto onde se requeira a aplicação do método de ensaio 2. O método de ensaio 2 se aplica a tecidos e outros materiais, com camadas simples ou múltiplas, utilizados em cortinas, persianas, bandôs, xales ou outros artefatos equivalentes. Estes tecidos e materiais assemelhados podem ser compostos por camadas simples ou múltiplas unidas por costura ou outros meios.

Este método de ensaio se aplica a tecidos e materiais assemelhados que apresentem gramatura maior que 700g/m². O método de ensaio 2 também deve ser empregado para forros blackout com ou sem cobertura polimérica, independentemente de sua gramatura.

Os têxteis e películas plásticas a serem aplicados a superfícies de edificações ou materiais de forro com finalidade de acabamento interno e cortinas destinadas à divisão de ambientes não são objeto desta norma. A avaliação obtida por meio da aplicação dos métodos de ensaio 1 e 2 não permite determinar o comportamento dos materiais em situações reais de incêndio quando as condições de exposição superarem as indicadas nesta norma.

Esta norma avalia a ignitabilidade de cortinas e não pretende esgotar as possibilidades de como podem responder a uma situação de incêndio real. Esta avaliação visa estabelecer parâmetros normativos do comportamento de cortinas, com base nas fontes de ignição definidas e nos métodos de ensaio propostos nesta norma. A avaliação da ignitabilidade por meio dos métodos de ensaio desta norma é feita na forma de aceitação ou rejeição do produto analisado.

Considerando-se as características de solidez de ignitabilidade, os produtos abrangidos nesta norma podem ser enquadrados em três categorias: reprovados; aprovados com restrição de solidez; aprovados sem restrição de solidez. Os produtos reprovados são aqueles que, submetidos aos procedimentos de ensaio, conforme definido nos métodos de ensaio 1 e 2, como apropriado, sem que sejam submetidos a procedimentos de lavagem ou limpeza, não atendem às condições requeridas de ignitabilidade.

Os produtos aprovados com restrição de solidez são aqueles que, submetidos aos procedimentos de ensaio, conforme definido nos métodos de ensaio 1 e 2, como apropriado, sem que sejam submetidos a procedimentos de lavagem ou limpeza, atendam às condições requeridas de ignitabilidade e que após o ciclo de lavagem ou limpeza aqui propostos deixem de atender estas características.

Para estes produtos, é necessário declarar o período máximo de preservação das características de ignitabilidade que propiciam a aprovação e conformidade com os métodos de ensaio aplicados. Caso essas características sejam obtidas a partir de tratamentos retardantes de chama, deve ser definido o tempo máximo para renovação deste tratamento. Caso esta renovação não seja possível, é necessário declarar a vida útil projetada do produto.

Os produtos aprovados sem restrição de solidez são aqueles que, submetidos aos procedimentos de ensaio, conforme definido nos métodos de ensaio 1 e 2, como apropriado, sem que sejam submetidos a procedimentos de lavagem ou limpeza, atendam às condições requeridas de ignitabilidade e que após o ciclo de lavagem ou limpeza estabelecidos nesta norma continuem a atender estas características.

Para os procedimentos de lavagem para produtos têxteis onde a lavagem é aplicável, os produtos devem ser identificados pelo fabricante/fornecedor do material como laváveis. O material deve ser submetido a cinco ciclos de lavagem completo de acordo com o procedimento especificado pelo manual técnico da AATCC Test Method 124. Após estes procedimentos, os corpos de prova são cortados e submetidos a uma segunda bateria de ensaio que possibilita classificar o produto com ou sem restrição de solidez.

Quando os procedimentos de limpeza para produtos onde a lavagem não é aplicável, os produtos devem ser identificados pelo fabricante/fornecedor do material como não laváveis e os procedimentos de limpeza devem ser claramente definidos. Caso o fabricante/fornecedor não defina o procedimento de limpeza, deve-se aplicar a limpeza a seco comercial convencional usando percloroetileno ou solvente hidrocarboneto de C7 a C12.

Estes procedimentos devem ser reproduzidos três vezes seguidas em corpos de prova que são posteriormente cortados e submetidos a uma segunda bateria de ensaio, que possibilita classificar o produto com ou sem restrição de solidez. Os equipamentos para os ensaios devem incluir uma estufa de condicionamento, com corrente de ar forçada que seja capaz de manter uma temperatura de (105 ± 3) °C deve ser usada para condicionamento dos corpos de prova antes do ensaio.

Uma câmara de ensaio de largura mínima de 820 mm × 750 mm de altura × 630 mm de profundidade deve ser usada e deve propiciar um ambiente livre de corrente de ar na face aberta da câmara de ensaio. A câmara de ensaio deve ser alocada em uma capela com um exaustor, para exaurir a fumaça, conforme indicado.

A câmara de ensaio deve ter uma face aberta e deve ser construída de acordo com a figura abaixo, com placa mineral de fibrossilicato de 12 mm de espessura. Todas as superfícies interiores da câmara de ensaio devem ser pintadas com tinta preta lisa. A câmara de ensaio com o queimador e o corpo de prova posicionados deve ser preparada conforme a figura abaixo.

cortina

A barra de fixação para montagem do corpo de prova deve ser uma haste quadrada de aço inoxidável de 9 mm, 190 mm de comprimento, com pinos de aço de 0,7 mm de diâmetro e 11 mm de comprimento, montadas a distância de 37 mm, 66 mm, 95 mm, 124 mm, e 153 mm de cada extremidade da haste. Um queimador Meker (Fisher) de laboratório, com ponta em topo gradeado com canais ajustáveis, que forneça chama previamente misturada, deve ser usado como fonte de ignição.

Os corpos de prova devem ser cortados a partir de uma única amostra do material a ser avaliado com tamanho de (150 ± 5) mm × (400 ± 5) mm sendo dez corpos de prova na direção longitudinal e dez corpos de prova na direção transversal da amostra. Os corpos de prova devem ser cortados desconsiderando-se 1/10 da largura das extremidades, ou seja, as bordas do material a ser avaliado. A costura deve ser feita com linha de poliéster/algodão nº 40.

As camadas da montagem em camadas múltiplas devem ser costuradas ao longo dos quatro lados a uma distância de (5 ± 1) mm da borda. Uma quinta costura deve ser feita ao longo do centro da montagem na direção longitudinal. Esta costura central deve se estender pelo comprimento completo do corpo de prova.

Cada corpo de prova deve ser numerado e pesado com precisão de 0,1 g antes do condicionamento. A massa de cada corpo de prova deve ser registrada. Para ser aprovada de acordo com o método de ensaio 1, a cortina avaliada deve atender aos critérios definidos em 5.5.1 a 5.5.5. Fragmentos ou resíduos de corpos de prova que caírem na base da câmara de ensaio não podem continuar a queimar por mais que, em média, 2 s por corpos de prova, para a amostra de dez corpos de prova.

A média da perda de massa dos dez corpos de prova não pode ser superior a 40 % da massa média inicial. Nenhum percentual de perda de massa, de corpo de prova individual, deve desviar acima de três desvios-padrão da média para os dez corpos de prova. Quando a repetição do ensaio for necessária, nenhuma perda de massa percentual do corpo de prova no segundo lote de corpos de prova deve desviar do valor médio acima de três desvios-padrão calculados para o segundo lote.

Quando uma amostra não atender a qualquer uma das condições indicadas de 5.5.1 a 5.5.4, o material deve ser registrado como reprovado no método de ensaio 1. Os resultados de corpos de prova individuais e da média das amostras devem ser relatados: tempo de queima de qualquer material que caia na base da câmara de ensaio para cada corpo de prova. (métodos de ensaio 1 e 2); média da perda de massa dos dez corpos de prova. (método de ensaio 1); desvio padrão da perda de massa de cada corpo de prova, considerando cada amostra de dez corpos de prova (método de ensaio 1); tempo de queima com chama após a chama de ensaio ter sido removida para cada corpo de prova (método de ensaio 2); comprimento do carbonizado para cada corpo de prova (método de ensaio 2); qualquer comportamento incomum de corpos de prova e outras observações. O relatório deve especificar se o material passa ou não no ensaio com base nos resultados e requisitos da Seção 5 ou Seção 6, conforme adequado.

Anúncios

A medição da resistividade do solo para fins de aterramento elétrico

O aterramento tem como função proteger os equipamentos elétricos, usuários e garantir o bom funcionamento do circuito. Existem tipos de aterramento distintos, sendo alguns deles com variações. É uma das formas mais seguras de interferência na corrente elétrica para proteger e garantir o bom funcionamento da instalação, além de atender as exigências das normas técnicas.

Em resumo, o aterramento elétrico significa colocar as instalações e equipamentos no mesmo potencial, de modo que a diferença de potencial entre a terra e o equipamento seja o menor possível. O aterramento (terra) é o conector com diferença de potencial igual a zero, a diferença entre ele e o neutro é que ele não altera o seu valor por meio de problemas que podem ser eliminados para a terra, o que não permite que fugas de energia fiquem na superfície de aparelhos elétricos.

A NBR 7117 (NB716) de 07/2012 – Medição da resistividade e determinação da estratificação do solo estabelece os requisitos para medição da resistividade e determinação da estratificação do solo. Fornece subsídios para aplicação em projetos de aterramentos elétricos. A sua aplicabilidade pode ter restrições em instalações de grandes dimensões, onde são necessários recursos de geofísica não abordados. Não se aplica a estratificações oblíquas e verticais. Entende-se por projetos de malhas de aterramento de instalações de grandes dimensões, os parques eólicos, complexos hidrelétricos e industriais.

O solo é um meio geralmente heterogêneo, de modo que o valor de sua resistividade varia de local para local em função do tipo, nível de umidade, profundidade das camadas, idade de formação geológica, temperatura, salinidade e outros fatores naturais, sendo também afetado por fatores externos como contaminação e compactação. Exemplos de variação da resistividade em função de alguns destes parâmetros são mostrados na tabela e na figura.

A determinação dos valores das resistividades do solo e de sua estratificação é de importância fundamental para o cálculo das características de um sistema de aterramento, subsidiando o desenvolvimento de projetos, bem como a determinação de seus potenciais de passo e toque. Em geral, o solo é constituído por diversas camadas, cada uma apresentando um certo valor de resistividade e uma espessura própria.

O valor de resistividade do solo é determinado por meio de medições, cujos resultados recebem um tratamento matemático, de modo a se obter a estratificação do solo em camadas paralelas ou horizontais, de diferentes resistividades (p) e de espessuras (e) definidas. Considerando-se, portanto, a heterogeneidade do solo, verificada pela variação de sua resistividade à medida em que suas camadas são pesquisadas, há necessidade de procurar meios e métodos que determinem essas variações, sem que seja necessário lançar mão de prospecções geológicas, o que, decerto, inviabilizaria os estudos para implantação de sistemas de aterramento.

Assim sendo, foram desenvolvidos métodos de prospecção geoelétricos que se caracterizam pela facilidade operacional e precisão fornecidas. A complexidade adicional causada pelos solos não uniformes é comum, e apenas em poucos casos a resistividade é constante com o aumento da profundidade, ou seja, homogênea. Basicamente, os métodos que utilizam sondagem elétrica procuram determinar a distribuição vertical de resistividade, abaixo do ponto em estudo, resultando então em camadas horizontais, geralmente causadas por processos sedimentares.

Dispondo-se de dois eletrodos de corrente pelos quais se faz circular uma corrente I, e de dois eletrodos de potencial que detectarão uma diferença de potencial V, pode-se mostrar que a resistividade do solo é proporcional a V/I, sendo o fator de proporcionalidade uma função do método empregado. Em função de pesquisas já realizadas pode-se dizer que metade da corrente injetada no solo, circula acima de uma profundidade igual à metade da distância entre eletrodos, e que grande parte da corrente flui acima da profundidade igual à separação entre eles.

Para estas conclusões pressupõe-se a condição de solos homogêneos, não sendo as mesmas condições válidas para solos estratificados, nos quais a densidade de corrente varia de acordo com a distribuição de resistividades. Os gradientes de potencial da superfície do solo, dentro ou adjacentes a um eletrodo, são principalmente uma função da resistividade da camada superficial do solo.

Por outro lado, a resistência do eletrodo de terra é primariamente uma função de suas dimensões e das resistividades das camadas mais profundas do solo, especialmente se o eletrodo for de grandes dimensões. Estratificações oblíquas e verticais, derivadas de acidentes geológicos, não são objeto de estudo desta norma. São considerados, os seguintes métodos de medição: amostragem física do solo; método da variação de profundidade; método dos dois eletrodos; método dos quatro eletrodos, com os seguintes arranjos: arranjo do eletrodo central; arranjo de Lee; arranjo de Wenner; arranjo Schlumberger – Palmer.

O método da variação de profundidade, também conhecido como “método de três eletrodos”, consiste em um ensaio de resistência de terra executado para várias profundidades (L) do eletrodo de ensaio de diâmetro (d). O valor da resistência medida (Rm) refletirá a variação da resistividade, relativa ao incremento de profundidade. Usualmente, o eletrodo de ensaio é uma haste devido à facilidade de sua cravação no solo. As medições citadas podem ser executadas usando um dos métodos para medição da resistência de aterramento, descritos na NBR 15749.

O método de variação de profundidade fornece informações úteis sobre a natureza do solo na vizinhança da haste. Contudo, se um grande volume de solo precisar ser investigado, é preferível que se use o método dos quatros eletrodos, já que o cravamento de hastes longas não é prático. Este método supõe que o aterramento a ser ensaiado seja composto de uma haste de aterramento de comprimento L. O raio r da haste é pequeno ao se comparar com L. Os valores de resistividade obtidos com esse método são médios e não podem ser extrapolados.

O método dos quatro eletrodos (geral) é o mais aplicado para medição da resistividade média de grandes volumes de terra. Pequenos eletrodos são cravados no solo a pequenas profundidades, alinhados e espaçados em intervalos não necessariamente iguais. A corrente de ensaio I é injetada entre os dois eletrodos externos e a diferença de potencial V é medida entre os dois eletrodos internos com um potenciômetro ou um voltímetro de alta impedância.

O arranjo de Schlumberger é uma disposição para o método dos quatro pontos onde o espaçamento central é mantido fixo (normalmente igual a 1,0 m), enquanto os outros espaçamentos variam de forma uniforme. Daí uma alta sensibilidade na medição dos potenciais é necessária, especialmente se a fonte do terrômetro for de baixa potência.

O arranjo Schlumberger – Palmer é usado para medir resistividades com grandes espaçamentos, especialmente em terrenos de alta resistividade (da ordem de ou superior a 3 000 Wm), com os eletrodos de potencial situados muito próximos aos eletrodos de corrente correspondentes para melhorar a resolução da medida da tensão. Mesmo assim, os terrômetros convencionais, de baixa potência (com corrente compatível com a sensibilidade do aparelho), dificilmente operam de forma eficiente.

Deve ser considerada a variação sazonal da resistividade do solo, devendo ser realizada uma medição no período mais crítico. De maneira geral, a situação mais crítica é a de solo seco, que ocorre após um período de sete dias sem chuvas. Esse período deve ser observado sempre para comprovação da situação mais crítica, caso seja necessária.

Para estimativa de projeto ou casos especiais, podem ser efetuadas medições com o solo na situação que não seja a mais crítica. Uma medição posterior é necessária, caso acordado entre as partes. Em áreas onde seja necessário corrigir o nível do terreno, pelo menos uma das medições deve ser realizada após a conclusão da terraplenagem.

Pontos de uma mesma área em que sejam obtidos valores de resistividade com desvio superior a 50% em relação ao valor médio das medições realizadas podem caracterizar uma subárea específica, devendo ser realizadas medições complementares ao seu redor, para ratificação do resultado; se isso não for possível, considerar a conveniência de descartar a linha de medição. No caso de medições de resistividade próximas a malhas existentes, objetos condutores enterrados ou cercas aterradas, deve-se afastar a linha de medição a uma distância onde as interferências sejam reduzidas para evitar ou atenuar os efeitos da proximidade com massas metálicas enterradas próximo à linha de medição.

No caso de medições de resistividade próximas a aterramentos de redes de energia e de telecomunicações, de linhas de transmissão ou de quaisquer outras fontes de interferências, deve-se afastar a linha de medição e utilizar instrumentos que possuam filtros que separem os resultados do sinal injetado para evitar ou atenuar os efeitos da proximidade com circuitos potencialmente interferentes. Para projetos de linhas de transmissão devem ser realizadas duas medições em direções ortogonais nos pontos escolhidos, preferencialmente no sentido longitudinal ao encaminhamento da linha de transmissão e outra perpendicular, que devem coincidir com a localização das estruturas.

Cada linha de medição deve abranger diferentes distâncias entre eletrodos, que se estendam no mínimo até a maior dimensão (diagonal) do terreno a ser ocupado pela malha. A linha de medição deve ser prospectada a partir de uma distância entre eletrodos de 1 m e prosseguir, se possível, em potência de 2, a saber: 1, 2, 4, 8, 16, 32, 64 m etc. Podem ser utilizadas distâncias intermediárias entre eletrodos.

Condições diferentes das acima indicadas só podem ser definidas sob justificativas técnicas e após expressa concordância entre os agentes envolvidos, observadas as condições específicas do local. Na execução das medições devem-se anotar todas as características locais e os resultados obtidos em planilhas, como a apresentada no Anexo B.

Durante a medição de resistividade devem ser tomados alguns cuidados, como: não fazer medições sob condições atmosféricas adversas, tendo-se em vista a possibilidade de ocorrência de descargas atmosféricas; utilizar equipamentos de proteção individual (EPI) compatíveis com o tipo e o local da medição a ser realizada; evitar que pessoas estranhas e animais aproximem-se do local; não tocar nos eletrodos durante a medição.

A interpretação dos resultados obtidos no campo é a parte mais crítica do processo de medição e, consequentemente, necessita de maiores cuidados na sua validação. Como já mencionado, a variação da resistividade do solo pode ser grande e complexa por causa da sua heterogeneidade e, portanto, há necessidade de se estabelecer uma equivalência para estrutura do solo.

Esta equivalência depende: da exatidão e extensão das medições; do método usado; da complexidade matemática envolvida; da finalidade das medições. Quando o solo for do tipo não homogêneo, é recomendável a disponibilidade de ferramentas computacionais adequadas.

A interpretação do método dos quatro eletrodos é similar àquela do método de profundidade já descrito. No caso do arranjo de Wenner, a resistividade medida é registrada em função do espaçamento a do eletrodo. A curva resultante indica a estrutura do solo. A interpretação da curva obtida pode indicar desvios nas medições ou necessidade de informação adicional sobre o solo, inclusive de medições em profundidades adicionais.

A qualidade dos blocos e tijolos cerâmicos de acordo com as normas técnicas

Os blocos cerâmicos são um dos componentes básicos de qualquer construção de alvenaria, seja ela de vedação ou estrutural. São produzidos a partir da argila, geralmente sob a forma de paralelepípedo, possuem coloração avermelhada e apresentam canais/furos ao longo de seu comprimento.

Os blocos de vedação são aqueles destinados à execução de paredes que suportarão o peso próprio e pequenas cargas de ocupação (armários, pias, lavatórios) e geralmente são utilizados com os furos na posição horizontal. Os estruturais ou portantes, além de exercerem a função da vedação, também são destinados à execução de paredes que constituirão a estrutura resistente da edificação, podendo substituir pilares e vigas de concreto. Esses blocos são utilizados com os furos sempre na vertical.

Podem ser utilizados em alvenaria estrutural, em que as paredes também têm a função de sustentar a construção. Pode dispensar estruturas de concreto armado, suportando vários pavimentos.

Este tipo de bloco não pode ser cortado ou serrado e as paredes estruturais não podem ser removidas ou alteradas depois de prontas. Por isso, há uma diversificada família de blocos estruturais (que inclui peças como blocos inteiros, meios-blocos, blocos compensadores, blocos 45° e canaletas, entre outros) que tornam possível a execução de paredes com encaixes adequados.

O sistema também permite a execução de projetos racionalizados – com a redução de perdas de materiais, a diminuição de entulho e maior agilidade na obra. O fundamental é que esses materiais obedeçam às normas técnicas em sua fabricação.

A NBR 15270-1 de 11/2017 – Componentes cerâmicos – Blocos e tijolos para alvenaria – Parte 1: Requisitos especifica os requisitos dimensionais, propriedades físicas e mecânicas de blocos e tijolos cerâmicos a serem utilizados em obras de alvenaria com ou sem função estrutural e executadas de forma racionalizada ou não. Estabelece os critérios para verificação e aceitação dos blocos e tijolos cerâmicos fornecidos para a execução das obras de alvenaria. A NBR 15270-2 de 11/2017 – Componentes cerâmicos – Blocos e tijolos para alvenaria – Parte 2: Métodos de ensaios especifica métodos para a execução dos ensaios dos blocos e tijolos cerâmicos estruturais e de vedação.

O bloco/tijolo cerâmico deve ser fabricado por conformação plástica de matéria-prima argilosa, contendo ou não aditivos, e queimado a temperaturas elevadas. Os blocos e tijolos devem trazer gravada, em uma das suas faces externas, a identificação do fabricante e do bloco ou tijolo em baixo relevo ou reentrância, com caracteres de no mínimo 5 mm de altura, sem que prejudique o seu uso, com no mínimo as seguintes informações: identificação do fabricante com CNPJ e a razão social ou nome fantasia; dimensões nominais, em centímetros, na sequência largura (L), altura (H) e comprimento (C), na forma (L × H × C), podendo ser suprimida a inscrição da unidade de medida, em centímetros; indicação de rastreabilidade: lote ou data de fabricação; telefone do serviço de atendimento ao cliente ou correio eletrônico ou endereço do fabricante, importador ou revendedor/distribuidor; para blocos/tijolos da classe EST, as letras EST (indicativas de sua condição estrutural) após a indicação das dimensões nominais.

Os blocos e tijolos são comercializados conforme sua aplicação, vedação (VED) ou estrutural (EST), e de acordo com os requisitos estabelecidos nas Tabelas 1 e 2 (disponíveis na norma). A classificação VED indica uso exclusivo para vedação, podendo ser VED15 ou VED30. A classificação EST indica uso estrutural e uso como vedação racionalizada, podendo ser EST40, EST60, EST80 e outras.

As denominações 15, 30, 40, e assim por diante, indicam a resistência característica mínima do bloco ou tijolo em quilograma-força por centímetro quadrado (kgf/cm²), aproximando 1 kgf/cm² igual a 0,1 MPa. Os blocos ou tijolos não gravados com as letras EST são considerados classe VED. Para fins de comercialização, o padrão é a unidade. O bloco ou tijolo cerâmico não pode apresentar defeitos sistemáticos, como quebras, superfícies irregulares ou deformações que impeçam o seu emprego na função especificada.

As características visuais do bloco ou tijolo cerâmico com face à vista devem atender aos critérios de avaliação da aparência especificados em comum acordo entre fabricante e comprador. As determinações das características geométricas dos blocos e tijolos devem seguir os ensaios da NBR 15270-2:2017, Anexo A.

As características geométricas dos blocos de vedação e estruturais são as seguintes: medidas das faces (largura, altura e comprimento) – dimensões efetivas ou reais; espessura dos septos e paredes externas dos blocos; desvio em relação ao esquadro (D); planeza das faces (F); área bruta (Ab); e área líquida (Aliq), para blocos estruturais.

As características geométricas dos tijolos de vedação e estruturais são as seguintes: medidas das faces (largura, altura e comprimento) – dimensões efetivas ou reais; desvio em relação ao esquadro (D); planeza das faces (F); área bruta (Ab), para tijolos perfurados; e área líquida (Aliq), para tijolos perfurados estruturais.

As propriedades físicas dos blocos e tijolos cerâmicos de vedação e estruturais são as seguintes: massa seca (ms); índice de absorção d’água (AA). As determinações das características físicas dos blocos e tijolos devem seguir os ensaios da NBR 15270-2:2017, Anexo B.

A característica mecânica dos blocos e tijolos cerâmicos de vedação (classe VED) é a resistência à compressão individual (fb). A característica mecânica dos blocos e tijolos cerâmicos estruturais e de vedação racionalizada (classe EST) é a resistência à compressão característica (fbk). Para execução da inspeção geral, adotar amostragem simples para 4.2 (identificação) e dupla amostragem para 4.5 (características visuais), conforme a tabela abaixo, sendo os lotes de fornecimento constituídos de acordo com o disposto em 7.2.

Na primeira amostragem, para que o lote seja aceito na primeira amostragem, é necessário que o número de unidades não conformes para os ensaios ou verificações consideradas seja igual ou inferior ao indicado na coluna de aceitação. Para que o lote seja rejeitado na primeira amostragem, é necessário que o número de unidades não conformes para os ensaios ou verificações consideradas seja igual ou superior ao indicado na coluna de rejeição.

Caso o número de unidades não conformes para os ensaios ou verificações consideradas resulte acima do indicado na coluna de aceitação e menor que o indicado na coluna de rejeição, devem ser repetidos os ensaios ou verificações que impossibilitaram a aprovação do lote, empregando-se as unidades constituintes da segunda amostragem.

Então, na segunda amostragem, para que o lote seja aceito na segunda amostragem, é necessário que a soma das unidades não conformes da primeira e da segunda amostragens para os ensaios ou verificações consideradas seja igual ou inferior ao indicado na coluna de aceitação. Para que o lote seja definitivamente rejeitado, é necessário que a soma do número de unidades não conformes da primeira e segunda amostragens para os ensaios ou verificações consideradas seja igual ou superior ao indicado na coluna de rejeição. As tabelas abaixo indicam o sumário dos ensaios para a avaliação da conformidade dos blocos e tijolos, com a finalidade de caracterização, aceitação ou rejeição, conforme a NBR 15270-1.

Eventuais dúvidas com relação a resultados de ensaios devem ser dirimidas em laboratórios pertencentes à Rede Brasileira de Laboratórios de Ensaios (RBLE). Os blocos ou tijolos que constituem as contraprovas devem ser mantidos em condições adequadas para ensaios pelo seu proprietário, fabricante ou construtor.

Os métodos de ensaio para blocos e tijolos cerâmicos previstos nesta norma são os relacionados a seguir: determinação das características geométricas (ver Anexo A); determinação das características físicas (ver Anexo B); determinação da resistência à compressão dos blocos cerâmicos estruturais e de vedação (ver Anexo C); determinação do índice de absorção inicial (ver Anexo D); determinação de eflorescência (ver Anexo E); determinação de massa específica aparente de amostra de blocos e tijolos cerâmicos, com emprego da balança hidrostática (ver Anexo F).

Revestimentos cerâmicos devem obrigatoriamente ser fabricados conforme a norma técnica

Para a construção de um empreendimento, há um elevado número de especialistas envolvidos em todo o seu processo, desde o planejamento até o acabamento final. O projetista tem a função de conhecer e avaliar todas as etapas envolvidas no complexo sistema estrutural de uma edificação.

A elaboração dos projetos, onde nasce a edificação, pode resultar um produto de qualidade e possibilitar um planejamento eficiente com redução de custos e prazos. No que se refere ao projeto de especificação do sistema de revestimento cerâmico, a falta de conhecimento e informação sobre o sistema de revestimento cerâmico entre os profissionais da construção civil, entre eles os engenheiros, arquitetos e os assentadores, pode ser a causa principal dos problemas.

O desempenho do processo de revestimento cerâmico de um empreendimento depende da relação de todos os materiais e suas técnicas de aplicação específica, para aquela situação de projeto. Sobre a eficiência do sistema de revestimento cerâmico, precisamos considerar vários fatores para garantir um bom resultado, a apropriação dos materiais ao tipo de uso, a qualidade e o planejamento dos serviços de assentamento e a manutenção após a aplicação de acordo com o uso a que se destina.

O mais importante é que os revestimentos cerâmicos a ser utilizados na edificação cumpram, de forma obrigatória, a norma técnica. A NBR 13755 de 11/2017 – Revestimentos cerâmicos de fachadas e paredes externas com utilização de argamassa colante – Projeto, execução, inspeção e aceitação – Procedimento estabelece as condições exigíveis para projeto, execução, inspeção e aceitação de revestimentos de paredes externas e fachadas com placas cerâmicas ou pastilhas assentadas com argamassa colante. Aplica-se a paredes constituídas pelos materiais relacionados a seguir e revestidas com chapisco seguido de uma ou múltiplas camadas de argamassa (figura): concreto moldado in loco; concreto pré-moldado; alvenaria de tijolos maciços; alvenaria de blocos cerâmicos; alvenaria de blocos de concreto; alvenaria de blocos de concreto celular; e alvenaria de blocos sílico-calcáreos. Os revestimentos cerâmicos que não são contemplados neste escopo podem utilizar a NBR 15575 como orientação para avaliação de desempenho, mesmo quando não aplicados em edificações habitacionais. Não se aplica a revestimentos já existentes, ou seja, aqueles sob análise após a conclusão da obra, pois necessitam de detalhamento específico de acordo com sua idade e condições atuais de desempenho.

Esta edição da NBR 13755 foi completamente reformulada em relação à de 1996, tanto em termos de conteúdo como de abordagem. Foi consenso do comitê de revisão que este texto deveria possuir um caráter orientativo, semelhante a um guia, onde o leitor pudesse encontrar informações e conhecimento para sanar suas dúvidas e tomar decisões frente à enorme variabilidade dos projetos de revestimento.

Esta postura tornou o texto mais agradável de ler, mais acessível e ao mesmo tempo com maior espectro de aplicação, uma vez que é inviável contemplar todos os casos existentes em uma única norma. Outros aspectos importantes e consagrados no meio técnico encontram-se alocados no texto de forma prescritiva, limitando soluções reconhecidamente de maior risco. Por exemplo, a execução do painel teste foi padronizada, dado que representa valiosa fonte de informações para a confecção do projeto.

Ao mesmo tempo, o projeto precisa declarar quais variáveis foram levadas em consideração, motivo pelo qual uma lista mínima é requerida e deve ser explicitada por escrito. Foram também criados mais três anexos relevantes, um normativo e dois informativos. O Anexo B (normativo) contempla o ensaio de resistência superficial, há anos solicitado pelo meio técnico e já extensivamente utilizado nas obras.

O Anexo C (informativo) trata de explicações detalhadas da teoria das juntas de movimentação, onde o leitor pode encontrar as informações que embasaram o item sobre juntas no corpo do texto, inclusive sobre as juntas estruturais. Por fim, o Anexo D (informativo) apresenta algumas sugestões sobre técnicas de preparo da base com o objetivo de melhorar a aderência dos revestimentos.

O texto foi montado de forma que os projetos resultantes apresentem certa homogeneidade e possam ser comparados e compilados no futuro, o que proporcionará a evolução do conhecimento técnico, aumento da vida útil das fachadas cerâmicas e a elaboração de uma nova versão deste texto, paulatinamente mais precisa e completa. O recebimento de todos os insumos deve ser planejado de modo a minimizar o manuseio no canteiro de obras. Cada material deve ser armazenado segundo seu tipo (respeitando exigências ergonômicas) em locais secos, limpos, cobertos, sem contato com o piso, devidamente identificados e com controle de acesso. O cimento utilizado deve estar de acordo com as Normas Brasileiras específicas. Os agregados devem estar conforme a NBR 7211. A água potável de abastecimento público é adequada para uso como água de amassamento. Maiores detalhes podem ser encontrados na NBR 15900-1.

Tanto o chapisco como a argamassa para emboço podem ser industrializados ou preparados em obra. Manuseio, preparo e requisitos dos produtos devem estar de acordo com as prescrições da NBR 7200 e NBR 13281. As argamassas cimentícias para rejuntamento devem estar de acordo ou superar as prescrições da NBR 14992. Caso sejam utilizados outros produtos, como misturas preparadas em obra, argamassas cimentícias aditivadas (bicomponentes) ou argamassas não cimentícias, as respectivas especificações devem constar no projeto de revestimento de fachada (PRF).

Os rejuntes cimentícios, embora tenham a capacidade de atenuar a penetração de água, não são impermeáveis; assim, quando juntas impermeáveis são necessárias, outros tipos de produtos devem ser considerados, desde que compatíveis com o local de aplicação. Ainda assim, os revestimentos cerâmicos com placas e rejuntes impermeáveis não podem ser considerados sistemas de acabamento impermeável.

A argamassa colante deve estar em conformidade com a NBR 14081-1, quando aplicável, e deve estar indicada em projeto em todos os casos. O termo argamassa colante engloba não somente os produtos descritos pela NBR 14081-1, mas contempla também produtos cimentícios bicomponentes ou mesmo produtos não cimentícios. Para os produtos não contemplados pela NBR 14081-1, como os bicomponentes ou não cimentícios, as propriedades específicas devem estar indicadas em projeto desde que não inferiores às mencionadas nesta subseção.

Para o assentamento de placas cerâmicas ou pastilhas, a argamassa deve ser, no mínimo, do tipo AC III. Exceções, que permitam o uso de produtos tipo AC II, devem estar indicadas em projeto e apenas podem ser utilizadas em edifícios de altura total (computada do nível do solo ao ponto mais alto do sistema estrutural) de no máximo 15 m.

As placas cerâmicas devem atender às NBR 13818 e ABNT NBR 15463 (para porcelanatos) e devem apresentar absorção máxima de 6 %. Para regiões onde a temperatura atinja 0 °C, a absorção máxima não pode ser superior a 3 %. Também devem estar secas por ocasião do seu assentamento e a EPU (expansão por umidade), como especificado na NBR 13818:1997, Anexo J, deve ser indicada em projeto e estar limitada ao valor máximo de 0,6 mm/m.

Em casos específicos, a EPU de 0,6mm/m pode ser excessiva; então, recomenda-se o uso de placas com valores inferiores. Devem estar armazenadas na obra por lote, tonalidade, acabamento, etc., de acordo com o especificado nas embalagens e não podem apresentar engobe de muratura pulverulento em quantidade superior a 30 % (a avaliação da quantidade deve ser feita visualmente) da área do tardoz da placa.

As pastilhas devem atender aos mesmos itens indicados para placas cerâmicas (quando aplicáveis) e, além disso, caso sejam montadas em placas com auxílio de malhas, telas, pontos de cola ou outro processo que as mantenha unidas pelo tardoz, estes produtos não podem comprometer o desempenho da argamassa colante e argamassa para rejuntamento. Podem ser incorporadas ao chapisco, emboço, rejunte ou à argamassa colante para aumentar o desempenho destes materiais em alguns requisitos, como, por exemplo aderência, capacidade de deformação, impermeabilidade, etc.

O emprego destes produtos deve respeitar as especificações de uso do fabricante do rejunte ou argamassa colante, tanto em termos de tipo de aditivo como em quantidade adicionada. O desempenho final da argamassa não pode ser inferior aos requisitos mínimos do produto puro quando avaliado segundo sua norma específica. Na vedação das juntas de movimentação devem ser empregados selantes elastoméricos e as recomendações do fabricante devem ser estritamente seguidas, uma vez que suas propriedades podem variar significativamente.

Cuidados devem ser tomados, entretanto, com juntas estruturais, pois seu movimento previsto aliado à sua largura pode ultrapassar os limites de trabalho mesmo dos selantes de alta capacidade de movimento, culminando com a deterioração precoce da junta. Na etapa de aplicação, os selantes devem ser capazes de acomodar pequenas variações dimensionais toleradas em projeto; devem apresentar comportamento adequado para aplicações verticais, sem escorrimentos; devem apresentar tempo adequado de trabalhabilidade, secagem e cura (polimerização) em função das condições de utilização.

Além disto, os selantes devem apresentar uma série de propriedades que lhes garantam bom desempenho pelo tempo previsto em projeto, não sendo este menor que cinco anos. Devem ser impermeáveis à passagem de fluidos e apresentar resistência aos agentes químicos, intempéries, ação ultravioleta, temperatura, maresia (se necessário) e a demais agentes deletérios a que podem estar expostos.

Devem se manter íntegros, elásticos e coesos, sem perder a capacidade de absorver deformações; não podem causar manchas no emboço ou nas placas por exsudação de produtos químicos, como solventes e plastificantes; não podem formar gases e ondulações na superfície provenientes de materiais voláteis em sua composição; devem absorver as deformações cíclicas de contração e expansão previstas no projeto da junta sem se romper, fissurar ou perder aderência; e não podem induzir esforços deletérios nas bordas da junta.

Em caso de dúvida sobre a qualidade dos selantes, esta deve ser avaliada por laboratório especializado. A NBR 5674 apresenta diretrizes para a manutenção das fachadas com vistas a manter seu desempenho e vida útil. Alguns requisitos de desempenho dos selantes podem ser avaliados segundo a ISO 11600. Antes do início do assentamento das placas, o projeto de revestimento de fachada deve estar concluído e as equipes de obra – produção, controle e apoio logístico (almoxarifado, transporte) devem estar treinadas em todos os detalhes técnicos e estéticos envolvidos na produção.

A logística de execução e controle para aceitação do revestimento cerâmico deve estar acordada entre os envolvidos e as planilhas de verificação de serviços devem estar disponíveis. As equipes de inspeção e produção devem estar cientes dos detalhes do processo de aceitação: o que será inspecionado, como e quando, bem como as soluções a serem adotadas em caso de não conformidades.

Além da disponibilidade de equipamentos, materiais e ferramentas em quantidade suficiente e com a qualidade adequada. Uma vez que o revestimento de argamassa é afetado diretamente pelo comportamento da base, não convém que sua execução seja iniciada antes que a estrutura-suporte já esteja solicitada pelo seu peso próprio e sobrecarga de todas as alvenarias, prevenindo-se assim tensões advindas da deformação imediata, parte da deformação lenta, recalque admissível das fundações e retração das argamassas utilizadas nas alvenarias.

Dentro do contexto geral do sistema de revestimento de fachada, é apresentada na figura abaixo uma sugestão das etapas a serem seguidas no processo de assentamento, sendo estas uma sequência de subidas e descidas consecutivas dos serviços.

Após a finalização das camadas de argamassa, o assentamento das placas cerâmicas na fachada pode ser realizado de maneiras diversas, como por exemplo da cobertura ao térreo do prédio em uma visão geral do processo de assentamento; entretanto, cada pavimento, de baixo para cima; do térreo para a cobertura (pouco usual). O assentamento das placas cerâmicas só pode ocorrer após um período mínimo de 14 dias de cura do emboço.

No caso da ocorrência de chuvas, o assentamento pode ser executado desde que o emboço esteja na condição saturado superfície seca. Na fase de subida da etapa 2 pode ser executada uma primeira cheia de argamassa; porém, a verificação da qualidade do chapisco pode ser comprometida. Caso o emboço seja executado apenas na fase de descida e o mapeamento denuncie locais com espessura excessiva, especial atenção deve ser dedicada ao posicionamento de reforços.

As placas cerâmicas devem ser qualificadas conforme as normas técnicas

As placas cerâmicas para revestimento têm características próprias, determinadas por seu processo produtivo. Por isso é muito importante conhecer as principais delas. O consumidor deve escolher os produtos que atendam obrigatoriamente às normas técnicas.

Uma concorrência desleal pode ser provocada pela existência, no mercado interno, de produtos de baixa qualidade, resultantes de processos de fabricação deficientes, principalmente no que diz respeito à etapa de queima, muito importante para definição das características das placas cerâmicas. Alguns fabricantes, com o objetivo de aumentar a produção e ganhar mercado, reduzem, propositalmente, o tempo de permanência no forno, reduzindo, com isso, os custos de fabricação do produto e gerando produtos de qualidade inferior.

Assim, esses produtos, por serem comercializados a um preço mais baixo, atraem consumidores que utilizam o preço como fator decisivo no momento da compra. Deve ser ressaltado que o setor de cerâmica para revestimento engloba os produtos denominados azulejos, placas cerâmicas, pastilhas ou mosaicos.

Os azulejos são materiais cerâmicos utilizados no revestimento de paredes e são comercializados no mercado brasileiro com três tipos: decorados, coloridos e brancos. Já as placas cerâmicas são, por definição, materiais cerâmicos para revestimento de pisos, sendo um dos materiais mais importantes e amplamente usados para revestir pisos e paredes.

A placa cerâmica é um material muito antigo. O primeiro exemplo de uso para revestir e decorar superfícies foi datado por volta do século VI a.C. nas civilizações da antiga Babilônia. Ao longo dos séculos, a tecnologia de fabricação e o potencial decorativo da placa cerâmica têm sido gradualmente ampliados e melhorados.

Por cerca de 100 anos a placa cerâmica se manteve como um produto de luxo, sendo usada no revestimento de pisos e paredes de opulentas casas. No século passado, especialmente após a 2ª. Guerra, a produção de cerâmica para pisos e paredes sofreu considerável desenvolvimento com o advento da técnica de produção em massa, especialmente em alguns países tais como a Itália, que tem uma longa tradição no uso da cerâmica.

A habilidade de produzir placa numa escala industrial fez abaixar os preços e tornar a placa cerâmica um produto acessível. Os revestimentos têm grande importância na definição do padrão do edifício, na valorização econômica do imóvel e nas características estéticas do conjunto.

As vantagens que o revestimento cerâmico apresenta em comparação aos produtos concorrentes no que diz respeito à estética, design, durabilidade, manutenção e higiene, refletem num volume maior de vendas da cerâmica com relação aos produtos substitutos, como as tintas, nos revestimentos verticais; e a madeira, pedra natural e carpete, nos revestimentos horizontais. Dessa forma, a expectativa do consumidor de cerâmica para revestimento é a qualidade, ou seja, a adequação ao uso que deve ser qualificado pela obrigatoriedade das normas técnicas.

A NBR ISO 10545-1 de 10/2017 – Placas Cerâmicas – Parte 1: Amostragem e critérios para aceitação especifica regras para a formação dos lotes, amostragem, inspeção e aceitação / rejeição de placas cerâmicas para revestimento. A norma fornece um sistema de inspeção por amostragem com o planejamento de dupla amostragem, pelo método da inspeção por atributos (valores individuais) ou pelo método de inspeção pelos valores médios (variáveis). O número de placas a serem ensaiadas varia de acordo com cada propriedade considerada (ver Tabela 1 disponível na norma).

Um lote de inspeção pode consistir em uma ou mais partidas ou subpartidas homogêneas. Qualquer partida que não seja homogênea deve ser dividida em subpartidas, as quais podem ser consideradas homogêneas, para constituir os lotes de inspeção. Se a não homogeneidade não influenciar as propriedades a serem ensaiadas, a partida pode ser considerada homogênea, mediante um acordo entre o fornecedor e o cliente.

Por exemplo, uma partida de placas de mesmo modelo com esmaltes diferentes, pode ser homogênea em relação às dimensões e absorção de água, e não homogênea em relação à qualidade superficial. Do mesmo modo, as peças acessórias que diferem apenas no formato podem ser consideradas homogêneas em relação às outras propriedades.

A escolha das propriedades a serem consideradas para a inspeção deve ser acordada entre o fornecedor e o cliente e pode depender do tamanho do lote de inspeção. Em princípio, a totalidade dos ensaios será realizada somente para os lotes de inspeção superiores a 5.000 m² de placas.

Geralmente, não serão considerados necessários ensaios para lotes de inspeção menores que 1.000 m² de placas. O número de lotes de inspeção a serem programados para a realização dos ensaios deve ser acordado entre as partes interessadas. O local da amostragem deve ser acordado entre o fornecedor e o cliente.

Um ou mais representantes de cada parte interessada pode estar presente no momento da amostragem. As amostras devem ser coletadas de forma aleatória a partir do lote de inspeção. Duas amostras devem ser coletadas. Não necessariamente serão realizados ensaios na segunda amostragem. Cada amostra deve ser embalada separadamente, lacrada e identificada conforme acordado entre as partes interessadas.

A NBR ISO 10545-2 de 10/2017 – Placas Cerâmicas – Parte 2: Determinação das dimensões e qualidade superficial especifica os métodos para a determinação das características dimensionais (comprimento, largura, espessura, retitude dos lados, ortogonalidade e curvatura da superfície) e da qualidade superficial das placas cerâmicas. Peças com áreas menores que 4 cm² são excluídas das medidas de comprimento, largura, retitude dos lados, ortogonalidade e curvatura da superfície. Ao realizar as medidas de comprimento, largura, retitude dos lados e ortogonalidade, devem ser ignorados os espaçadores, pingos de esmalte e outras irregularidades dos lados, se eles ficarem ocultos nas juntas após o assentamento (instalação). Para as medidas de comprimento e largura, deve-se usar paquímetros ou outros aparelhos adequados para medidas lineares. Os corpos de prova devem ser de dez placas inteiras para ser ensaiadas. Deve-se medir, com resolução de 0,1 mm, cada lado da placa ensaiada, a 5 mm de cada canto.

A dimensão média das placas quadradas é a média das quatro medidas. A dimensão média da amostra é a média das 40 medidas. Para placas retangulares, cada par de lados paralelos da peça fornece uma dimensão média da peça, isto é, a média das duas medidas. A dimensão média de comprimento e largura da amostra é a média das 20 medidas.

O relatório de ensaio deve incluir as seguintes informações: referência a esta Parte da NBR ISO 10545; descrição das placas; todas as medidas individuais do comprimento e largura; tamanho médio de cada corpo de prova para placas quadradas e comprimento e largura média para cada placa retangular; tamanho médio dos dez corpos de prova para placas quadradas e média do comprimento e largura para placas retangulares; desvio, em porcentagem, do tamanho médio de cada placa (dois ou quatro lados) em relação ao tamanho de fabricação; desvio, em porcentagem, do tamanho médio de cada placa (dois ou quatro lados) em relação ao tamanho médio da amostra de dez placas (20 ou 40 lados).

A NBR ISO 10545-3 de 11/2017 – Placas Cerâmicas – Parte 3: Determinação da absorção de água, porosidade aparente, densidade relativa aparente e massa aparente especifica os métodos para a determinação da absorção de água, porosidade aparente, densidade relativa aparente e densidade aparente de placas cerâmicas. A NBR ISO 10545-4 de 11/2017 – Placas Cerâmicas – Parte 4: Determinação da carga de ruptura e módulo de resistência à flexão define o método de ensaio para determinação do módulo de resistência à flexão e carga de ruptura para todas as placas cerâmicas.

A NBR ISO 10545-5 de 11/2017 – Placas Cerâmicas – Parte 5: Determinação da resistência ao impacto pela medição do coeficiente de restituição especifica o método de ensaio para determinação da resistência ao impacto de placas cerâmicas pela medição do coeficiente de restituição. A NBR ISO 10545-6 de 11/2017 – Placas cerâmicas – Parte 6: Determinação da resistência à abrasão profunda para placas não esmaltadas especifica o método de ensaio para determinação da resistência à abrasão profunda de todas as placas cerâmicas não esmaltadas, utilizadas para revestimento de pisos.

A NBR ISO 10545-7 de 11/2017 – Placas Cerâmicas – Parte 7: Determinação da resistência à abrasão superficial para placas esmaltadas especifica um método para determinação da resistência à abrasão superficial de todas as placas cerâmicas esmaltadas usadas como revestimentos de pisos. A NBR ISO 10545-8 de 11/2017 – Placas Cerâmicas – Parte 8: Determinação da expansão térmica linear estabelece o método de ensaio para determinação do coeficiente de expansão térmica linear de placas cerâmicas.

A NBR ISO 10545-9 de 11/2017 – Placas Cerâmicas – Parte 9: Determinação da resistência ao choque térmico especifica o método de ensaio para determinação da resistência ao choque térmico para todas as placas cerâmicas sob condições normais de uso. A NBR ISO 10545-11 de 11/2017 – Placas Cerâmicas – Parte 11: Determinação da resistência ao gretamento de placas esmaltadas define um método de ensaio para a determinação da resistência ao gretamento de todas as placas cerâmicas esmaltadas, exceto quando o gretamento é uma característica decorativa inerente do produto.

A NBR ISO 10545-12 de 11/2017 – Placas Cerâmicas – Parte 12: Determinação da resistência ao congelamento especifica um método para determinação da resistência ao congelamento de todas as placas cerâmicas indicadas para o uso em condições de congelamento na presença de água. A NBR ISO 10545-14 de 11/2017 – Placas Cerâmicas – Parte 14: Determinação da resistência ao manchamento especifica um método para determinação da resistência ao manchamento da superfície característica de placas cerâmicas.

Enfim, a NBR ISO 10545, sob o título geral “Placas cerâmicas”, tem previsão de conter as seguintes partes: Parte 1: Amostragem e critérios para aceitação; Parte 2: Determinação das dimensões e qualidade superficial; Parte 3: Determinação da absorção de água, porosidade aparente, densidade relativa aparente e massa aparente; Parte 4: Determinação da carga de ruptura e módulo de resistência à flexão; Parte 5: Determinação da resistência ao impacto pela medição do coeficiente de restituição; Parte 6: Determinação da resistência à abrasão profunda para placas não esmaltadas; Parte 7: Determinação da resistência à abrasão superficial para placas esmaltadas; Parte 8: Determinação da expansão térmica linear; Parte 9: Determinação da resistência ao choque térmico; Parte 10: Determinação da expansão por umidade; Parte 11: Determinação da resistência ao gretamento de placas esmaltadas; Parte 12: Determinação da resistência ao congelamento; Parte 13: Determinação da resistência química; Parte 14: Determinação da resistência ao manchamento; Parte 15: Determinação de cádmio e chumbo presentes nas placas cerâmicas esmaltadas; Parte 16: Determinação de pequenas diferenças de cor.

O controle do concreto autoadensável deve ser feito obrigatoriamente conforme as normas técnicas

Este concreto, com grande variedade de aplicações, é obtido pela ação de aditivos superplastificantes, que proporcionam maior facilidade de bombeamento, excelente homogeneidade, resistência e durabilidade. Sua característica é de fluir com facilidade dentro das formas, passando pelas armaduras e preenchendo os espaços sob o efeito de seu próprio peso, sem o uso de equipamento de vibração.

Para lajes e calçadas, por exemplo, ele se auto nivela, eliminando a utilização de vibradores e diminuindo o número de funcionários envolvidos na concretagem. Possui alta fluidez, capaz de preencher a fôrma onde é aplicado, compactando-se pela ação única de seu peso próprio e sem necessitar de qualquer tipo de vibração interna ou externa.

Este concreto deve, ainda, ser capaz de sustentar os grãos do agregado graúdo, mantendo-os homogeneamente distribuídos no interior da mistura, quando o concreto flui através de obstáculos – como as barras de armaduras – e também quando o concreto se encontra em repouso. Basicamente, tem três propriedades que são essenciais a este tipo de concreto: preencher a fôrma onde é aplicado e se autocompactar, sem vibração, mantendo-se homogêneo; passar através de obstáculos, como as barras de armaduras, sem apresentar bloqueio de partículas de agregados; e se manter-se homogêneo durante a mistura, o transporte e a aplicação.

A NBR 15823-1 de 08/2017 – Concreto autoadensável – Parte 1: Classificação, controle e recebimento no estado fresco estabelece os requisitos para classificação, controle e recebimento do concreto autoadensável no estado fresco, bem como define e estabelece limites para as classes de autoadensibilidade e prescreve os ensaios para verificação das propriedades do concreto autoadensável (CAA). Esta Parte 1 define a classificação do concreto autoadensável no estado fresco em função de sua autoadensibilidade e estabelece as diretrizes para a realização do controle por ensaios e para o recebimento do concreto autoadensável no estado fresco.

Aplica-se ao concreto com massa específica normal, compreendida no intervalo entre 2 000 kg/m³ e 2 800 kg/m³ dos grupos I e II de resistência, conforme a NBR 8953. O concreto pode ser misturado na obra, dosado em central ou produzido em indústria de pré-moldados. Convém avaliar, de forma individualizada, a aplicabilidade dos requisitos desta Parte 1 para o concreto autoadensável (CAA) com incorporação intencional de ar, agregados leves, agregados pesados ou fibras, cuja massa específica classifique o concreto como leve ou pesado, conforme a NBR 8953.

Algumas definições são importantes. Por exemplo, o CAA é aquele capaz de fluir, autoadensar pelo seu peso próprio, preencher a fôrma e passar por embutidos (armaduras, dutos e insertos), enquanto mantém sua homogeneidade (ausência de segregação) nas etapas de mistura, transporte, lançamento e acabamento. Já a viscosidade plástica aparente do concreto é a propriedade relacionada à consistência da mistura (coesão) e que influencia na resistência (comportamento) do concreto ao escoamento. Quanto maior a viscosidade do concreto, maior a sua resistência ao escoamento

Uma avaliação qualitativa da viscosidade plástica aparente do concreto pode ser obtida pela medida do tempo de escoamento do CAA em ensaios que medem sua habilidade de fluir. O concreto com maior viscosidade demanda maior tempo para escoar. Os materiais constituintes do concreto autoadensável devem atender às normas e especificações vigentes, conforme estabelecido na NBR 12655. Os materiais constituintes devem ser caracterizados no mínimo pelos ensaios especificados nas NBR 5732, NBR 5733, NBR 5735, NBR 5736, NBR 11578, NBR 12989, NBR 13956-1, NBR 15894-1 e NBR 12653.

O uso de sílica ativa, metacaulim e outros materiais pozolânicos deve estar de acordo com as orientações do fabricante quanto a: forma e momento de adição na mistura; teores utilizados; e tempo de mistura. Outros ensaios podem ser requeridos, conforme acordo entre as partes. Os agregados utilizados na preparação do concreto autoadensável devem atender aos requisitos da NBR 7211. Outros ensaios podem ser requeridos conforme acordo entre as partes.

Os aditivos devem atender aos requisitos da NBR 11768 e seu uso deve estar de acordo com as orientações do fabricante, quanto a: forma e momento de adição na mistura; teores utilizados; tempo de mistura. Os ensaios de caracterização devem ser realizados conforme a NBR 10908. Os ensaios de compatibilidade entre aditivos ou aditivo/cimento são opcionais e podem ser realizados mediante solicitação do interessado.

A água utilizada para preparação do concreto deve estar de acordo com a NBR 15900-1. As operações de preparo, controle e aceitação do concreto autoadensável devem cumprir com o que estabelece a NBR 12655, exceto quanto aos requisitos de recebimento do concreto no estado fresco, bem como sua comprovação por ensaios, que devem ser verificados conforme a Seção 6. A moldagem dos corpos de prova para ensaios deve ser realizada sem adensamento manual ou mecânico e atendendo ao que estabelece a NBR 5738.

Para cada classe de concreto autoadensável a ser lançado em uma estrutura ou elemento estrutural, as propriedades e características requeridas no estado fresco devem ser previamente comprovadas por ensaios, conforme detalhado a seguir: classificação no estado fresco, conforme a Seção 5; controle de recebimento no estado fresco, conforme 6.2, para todas as aplicações do concreto autoadensável dosado em central ou preparado no canteiro de obras; controle de recebimento no estado fresco, conforme 6.3, para todas as aplicações do concreto autoadensável, na indústria de pré-fabricados ou em casos especiais; controle do lançamento, conforme 6.4, para o concreto autoadensável dosado em central ou preparado no canteiro de obras; comprovação das propriedades especiais do concreto e atendimento dos requisitos de durabilidade, conforme a NBR 12655.

O Anexo A contém um guia para o estabelecimento de requisitos do concreto autoadensável no estado fresco em função de sua aplicação, que pode ser utilizado para decidir sobre os ensaios mais adequados em cada caso e também para avaliar a classificação do concreto em função da aplicação pretendida. Para todas as aplicações, convém realizar ajustes na mistura ou o descarte do material, quando o concreto autoadensável apresentar IEV3. O controle do lançamento, conforme 6.4, para o concreto autoadensável dosado em central ou preparado no canteiro de obras.

A comprovação das propriedades especiais do concreto e atendimento dos requisitos de durabilidade, conforme a NBR 12655. O recebimento do CAA no estado fresco deve ser baseado no mínimo na comprovação das seguintes propriedades: fluidez, viscosidade plástica aparente e estabilidade visual – avaliadas pelo ensaio de espalhamento, t500 e índice de estabilidade visual, previstos na NBR 15823-2; habilidade passante – avaliada pelo ensaio utilizando o anel J, conforme a NBR 15823-3.

Caso sejam especificados os ensaios estabelecidos na NBR 15823-4 (método da caixa L) e/ou NBR 15823-5 (método do funil V), pode ser dispensada a realização dos ensaios estabelecidos na NBR 15823-3 (método do anel J) e/ou a medida do tempo de escoamento (t500), respectivamente. O concreto autoadensável deve atender aos requisitos estabelecidos nas Tabelas 1 a 4 (disponíveis na norma), conforme sua classificação no estado fresco, determinada pelos ensaios estabelecidos nas NBR 15823-2 e NBR 15823-3.

A escolha das classes em função da aplicação do CAA, pode seguir as indicações do Anexo A. Além desses requisitos, pode ser necessária a comprovação de outras propriedades do CAA em função de sua aplicação, especialmente em casos de grande complexidade estrutural, alta densidade de armadura e outros fatores tratados de forma abrangente no Anexo A. Nesses casos, as partes devem estabelecer, em comum acordo, os ensaios necessários para comprovação das propriedades adicionais, e seus resultados devem atender aos requisitos estabelecidos nas Tabelas 5 a 9 (disponíveis na norma).

Quando for necessário realizar a introdução de aditivo na obra, para atingir as propriedades requeridas no estado fresco, devem ser realizados os seguintes ensaios: antes da introdução dos aditivos na obra, deve ser coletada uma amostra de concreto e realizado o ensaio de abatimento, conforme a NBR NM 67; completada a mistura do concreto com os aditivos, deve ser coletada uma nova amostra para os ensaios estabelecidos nas NBR 15823-2 e NBR 15823-3. Quando não for necessária a introdução de aditivo na obra, deve ser coletada uma nova amostra para os ensaios estabelecidos nas NBR 15823-2 e NBR 15823-3. Quando requisitos complementares forem estabelecidos visando à comprovação das propriedades estabelecidas nas Tabelas 5 a 9, os ensaios devem ser realizados conforme as respectivas Partes desta norma.

Convém realizar todos os ensaios de classificação estabelecidos na Seção 5, para os estudos de dosagem e ajuste de traço do CAA. As determinações de espalhamento, t500 e índice de estabilidade visual do concreto devem ser realizadas a cada betonada, de acordo com o que estabelece a NBR 15823-2. A habilidade passante pelo anel J deve ser determinada conforme a NBR 15823-3, no mínimo a cada 30 m3 ou a cada jornada de trabalho, o que ocorrer primeiro, sendo realizada na primeira betonada, de modo a permitir ajustes no traço.

Outros ensaios, quando requeridos, devem ter sua frequência de realização estabelecida em comum acordo entre as partes. A aceitação do CAA no estado fresco deve ser baseada no mínimo na comprovação das seguintes propriedades: fluidez, viscosidade plástica aparente e estabilidade visual – avaliadas pelo ensaio de espalhamento, t500 e índice de estabilidade visual, previstos na NBR 15823-2; habilidade passante – avaliada pelo ensaio utilizando o anel J, conforme a NBR 15823-3.

Caso sejam especificados os ensaios estabelecidos na ABNT NBR 15823-4 (método da caixa L) e/ou na NBR 15823-5 (método do funil V), podem ser dispensadas a realização dos ensaios prescritos na NBR 15823-3 (método do anel J) e/ou a medida do tempo de escoamento (t500), respectivamente. A frequência de ensaios deve ser estabelecida considerando o processo produtivo, de forma a atender às seguintes condições: no caso de elementos estruturais armados, os ensaios previstos em 6.3.3 devem ser realizados pelo menos uma vez ao dia por traço produzido; no caso de elementos estruturais protendidos, executados em pista de protensão, os ensaios previstos em 6.3.3 devem ser realizados com o concreto destinado à concretagem de cada pista, no início dela; em ambos os casos um novo ensaio deve ser realizado sempre que houver alteração no proporcionamento dos materiais, ou paralisação e posterior retomada dos trabalhos.

O valor do espalhamento fornece indicações da fluidez do CAA e de sua habilidade de preenchimento em fluxo livre e é normalmente especificado para todas as aplicações. As classes de espalhamento são típicas para as aplicações apresentadas na tabela abaixo.

Normalmente se obtém melhor qualidade de acabamento da superfície com concreto da classe SF 3 para aplicações em geral, porém é mais difícil controlar a resistência à segregação do que se verifica no concreto de classe SF 2. Em casos especiais pode ser especificado um limite maior que 850 mm para o espalhamento, porém é importante avaliar a necessidade de utilização de agregado graúdo com dimensão máxima característica menor e igual que 12,5 mm, e os cuidados necessários para evitar a segregação.

A determinação da viscosidade plástica aparente do concreto é importante quando for requerido um bom acabamento superficial ou quando a densidade de armadura for expressiva. O CAA com baixa viscosidade apresenta um rápido espalhamento, porém de curta duração. Por sua vez, o CAA com alta viscosidade pode continuar a se mover de forma lenta e progressiva por um tempo maior.

A viscosidade pode ser avaliada igualmente pela medida do t500 (durante o ensaio de espalhamento, previsto na NBR 15823-2) ou pelo tempo medido no ensaio do funil V (NBR 15823-5). A viscosidade deve ser especificada apenas em casos especiais, mas a medida do t500, realizada durante o ensaio de espalhamento, pode auxiliar na verificação da uniformidade do CAA de diferentes betonadas.

A habilidade passante informa sobre a capacidade de o concreto fresco fluir, sem perder sua uniformidade ou causar bloqueio, através de espaços confinados e descontinuidades geométricas, como áreas de alta densidade de armadura e embutidos. Na definição da habilidade passante é necessário considerar a geometria da armadura e do elemento estrutural a ser concretado. A resistência à segregação é fundamental para a homogeneidade e a qualidade do CAA, e é particularmente importante em concretos autoadensáveis de maior fluidez e baixa viscosidade.

As classes SR1 e TP1 atendem à maioria das aplicações. O CAA sofre segregação dinâmica durante o lançamento e segregação estática após o lançamento. A segregação estática é mais danosa em elementos estruturais altos, mas também em lajes pouco espessas, podendo levar a defeitos como fissuração e enfraquecimento da superfície.

Conheça as normas que fazem parte dessa série para ensaiar corretamente esse tipo de concreto. A NBR 15823-2 de 08/2017 – Concreto autoadensável – Parte 2: Determinação do espalhamento, do tempo de escoamento e do índice de estabilidade visual – Método do cone de Abrams estabelece o método de ensaio para avaliação da fluidez do concreto autoadensável, em fluxo livre, sob a ação de seu próprio peso, pela determinação do espalhamento e do tempo de escoamento do concreto autoadensável, empregando-se o cone de Abrams. A NBR 15823-3 de 08/2017 – Concreto autoadensável – Parte 3: Determinação da habilidade passante – Método do anel J estabelece o método de ensaio para a determinação da habilidade passante do concreto autoadensável, em fluxo livre, pelo anel J. A NBR 15823-4 de 08/2017 – Concreto autoadensável – Parte 4: Determinação da habilidade passante – Métodos da caixa L e da caixa U estabelece o ensaio para a determinação da habilidade passante em fluxo confinado do concreto autoadensável usando a caixa L. A NBR 15823-5 de 08/2017 – Concreto autoadensável – Parte 5: Determinação da viscosidade – Método do funil V estabelece o ensaio para a determinação da viscosidade do concreto autoadensável, pela medida do tempo de escoamento de uma massa de concreto através do funil V. A NBR 15823-6 de 08/2017 – Concreto autoadensável – Parte 6: Determinação da resistência à segregação – Métodos da coluna de segregação e da peneira estabelece o método de ensaio para a determinação da resistência à segregação do concreto autoadensável, pela diferença das massas de agregado graúdo existentes no topo e na base da coluna de segregação.

Como diminuir o impacto dos pássaros nas edificações

Normas comentadas

NBR ISO 9001 – COMENTADA de 09/2015Sistemas de gestão da qualidade – Requisitos. Versão comentada.

Nr. de Páginas: 32

NBR ISO 14001 – COMENTADA de 10/2015Sistemas de gestão ambiental – Requisitos com orientações para uso – Versão comentada

Nr. de Páginas: 4

Adriana Noya

O uso do vidro nas fachadas dos edifícios está cada vez mais em alta. Grandes torres ou até mesmo residências quase que totalmente envidraçadas nos atraem, pois proporcionam sensação de amplitude, de infinito, dando a impressão de que os espaços internos são maiores, prolongando-se pelas vistas.

Sem dúvida, fica lindo. Mas há alguns fatores que devem ser levados em consideração. O primeiro é o conforto térmico, pois caso não sejam um dos chamados “vidros inteligentes ou de alta performance”, eles podem aquecer demais no verão, aumentando a necessidade do uso de condicionadores de ar e esfriar demais no inverno.

Mas, hoje, o foco deste artigo está nos pássaros. Eles enxergam estas grandes fachadas envidraçadas, ainda mais quando espelhadas, como a continuação do céu para voar e para onde mergulham e acabam sofrendo o impacto, muitas vezes, resultando em morte. Outra vezes, ao enxergarem o próprio reflexo nas grandes superfícies espelhadas, atacam a superfície, como se fosse um inimigo, também resultando em danos graves.

Estima-se que até um bilhão de pássaros morrem por ano nos Estados Unidos ao impactarem em janelas e paredes de vidro, tornando os edifícios a maior ameaça existente a eles. O dano é tão grande que hoje já consta na certificação LEED, como crédito piloto 55, a diminuição dos impactos dos pássaros nas edificações, criado para tentar reduzir esta mortalidade. Para este crédito existem algumas exigências.

Por exemplo, deve-se atender as solicitações referentes à fachada e estruturas do terreno, iluminação externa e um plano de monitoramento contínuo. Deve-se desenvolver uma estratégia de desenho da fachada do prédio e estruturas do terreno que se tornem visíveis e barreiras físicas para os pássaros.

Se todos os materiais das fachadas do prédio tiverem um fator de ameaça 15 ou menor, o prédio está isento dos requerimentos para as fachadas do prédio e os cálculos de ameaça para colisão não são necessários. Se qualquer material das fachadas do prédio tiver um fator de ameaça à colisão de pássaros acima de 15, então os cálculos são requeridos.

Todas as demais estruturas no terreno, incluindo, mas não se limitando a guarda corpos, telas de vento, gazebos, cercas de proteção das piscinas, abrigos de ônibus, devem ser construídos com materiais com um fator de ameaça menor do que 15. E na sequência fornece os passos para estes cálculos. Primeiro, dividir cada fachada do prédio em fachada zona 1 e fachada zona 2.

Fachada zona 1 inclui os primeiros 11 metros acima do nível do terreno em todos os pontos do PNT e também 3,7m acima de qualquer telhado vegetado. A zona 2 inclui todas as áreas acima de 11m do PNT. Depois identificar cada material e a área total de cada material para cada zona.

Não mais do que 15% da área de fachada da zona 1 pode ter um fator de ameaça maior que 75. Esta área é quantificada separadamente como fator de perigo de área envidraçada na calculadora. No entanto mais de 15% da área envidraçada da zona 2 pode ter um fator maior que 75. Todos os cantos envidraçados ou em zona de voo devem ter um fator de ameaça menor ou igual a 25.

Tipos de materiais com maior potencial de ameaça:

Vidro: Vidro altamente refletivo ou completamente transparente.

Vidro: Estrutura refletiva ou transparente interrompida por um padrão baseada na regra 2×4.

Vidro: Superfícies refletivas ou transparentes protegidas por telas, persianas ou brises, em que o vidro exposto resultante satisfaça a regra de 2×4.

Vidro: Translúcido com superfícies opacas ou texturizadas.

Como menor potencial de ameaça:

Superfícies opacas.

A regra 2 x 4 é definida no módulo de dissuasão de colisão baseado no perfil físico de um pássaro em voo. Uma pesquisa recente definiu um módulo máximo de 5 cm de altura por 10 cm de largura. As luzes externas do prédio que não sejam para segurança, entrada do prédio e circulação, devem ser automaticamente desligadas da meia noite às 6 da manhã. Caso seja necessário usar estas áreas fora destes períodos, estes sistemas devem poder ser ligados manualmente.

Mas mesmo sem optar por certificar a edificação como LEED nem optar por atender este crédito mesmo se estiver certificando LEED, existem algumas soluções que podem diminuir este problema, como por exemplo, plantar árvores altas para que o pássaro as enxergue como barreiras, não voando em direção à edificação. Há, ainda, no mercado algumas soluções consideradas amigáveis aos pássaros pelo American Bird Conservancy.

Já foram desenvolvidos vidros comum tratamento invisível aos nossos olhos, mas que os pássaros enxergam como se fosse uma teia e, consequentemente, tornam-se um obstáculo. Algumas películas aplicadas da forma correta podem ter o mesmo papel, caso o vidro esteja fora de questão. Hoje em dia é importado da Alemanha.

Outra técnica que pode funcionar é aplicar adesivos com sombras simulando pássaros grandes em voo. Os pássaros menores temem o ataque e evitam o percurso.

Estas medidas podem diminuir as fatalidades, mas não garantem que parem totalmente. Qualquer barreira visual, seja película, jateamento, tratamento com ácido, pode ajudar na diminuição destes impactos, mas não garante que pare totalmente, depende da localização, espécies de pássaros, orientação, reflexos do sol, local onde os pássaros buscam alimentos, rotas de voo, etc.

Sempre que um edifício é projetado é importante pensar nisto também: sustentabilidade não é só conservar água, energia e materiais, mas é também interferir o mínimo possível na natureza, e se possível ainda deixando um impacto positivo.

Adriana Noya é arquiteta, urbanista e designer de interiores ,com ampla experiência em projetos residenciais, comerciais e corporativos – adriana.arquiteta@globo.com – Tel. (11) 38054999 -Whatsapp (11) 999408655