A segurança para a construção dos elevadores unifamiliares

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado para atender a pessoas em edificações residenciais unifamiliares, melhorando o conforto na habitação e proporcionando uma previsão para eventual necessidade futura; tem uma função social ao prover acesso a pessoas com mobilidade reduzida, pessoas idosas, doentes ou com dificuldade de locomoção, permanente ou temporária, eliminando a limitação de acesso aos espaços físicos e provendo integração com a comunidade. Diferentemente de um elevador de passageiros para transporte de pessoas em geral, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida é projetado com características peculiares

que se destinam a ocupar menor espaço horizontal e vertical; viabilizar a instalação em edificações existentes; reduzir o custo total envolvido na sua implantação e manutenção; requerer pouca potência instalada e ser energeticamente econômico.

A estrutura da edificação deve ser construída de modo a suportar às cargas e forças exercidas pelo equipamento do elevador. Salvo especificado em contrário na norma, para aplicações particulares, estas cargas e forças são os valores resultantes das massas estáticas; e os valores resultantes de massas móveis e suas operações de emergência. O efeito dinâmico é representado por um fator 2. É importante que as guias do elevador sejam suportadas de modo que os efeitos da movimentação da estrutura da edificação à qual estão ligados sejam minimizados.

Ao considerar as edificações construídas de concreto, blocos pré-moldados ou tijolos, pode-se presumir que os suportes de guia não serão submetidos ao deslocamento causado pela movimentação das paredes da caixa, com exceção da compressão. No entanto, quando os suportes de guia estiverem fixados à estrutura da edificação por vigas de aço, ou por fixação a estruturas de madeira, pode haver deformação desta estrutura, devido à carga imposta pelo carro por meio das guias e suportes de guias.

Além disso, pode haver movimento da estrutura de apoio do elevador devido às forças externas, como carga de vento, carga de neve, etc. Devem ser consideradas qualquer deflexão dessas vigas ou estruturas durante os cálculos requeridos e a deflexão total admissível das guias para a operação segura do freio de segurança, etc. deve incluir qualquer deslocamento da guia devido à deflexão da estrutura da edificação e a deflexão da própria guia devido à carga imposta pelo carro. Portanto, é importante que as pessoas responsáveis pelo projeto e fabricação das estruturas se comuniquem com o fornecedor do elevador, a fim de assegurar que as estruturas atendam a todas as condições de carga.

O requisito para ventilar adequadamente a caixa e a casa de máquinas está, muitas vezes, inserido nos regulamentos locais sobre edificações que se aplicam, especificamente, como requisito geral que seria dado para qualquer espaço da edificação onde maquinaria seja instalada ou pessoas sejam acomodadas (para o lazer, trabalho etc.). A norma não pode prover orientação específica para os requisitos de ventilação para estas áreas, tendo em vista que a caixa e a casa de máquinas são frequentemente partes de um ambiente maior e mais complexo da edificação. Caso isto seja feito, pode trazer conflito com estes requisitos nacionais. No entanto, algumas orientações gerais podem ser providas.

A segurança e o conforto das pessoas que viajam no elevador, trabalham na caixa ou aqueles que podem ficar presos na cabina ou na caixa quando o carro para entre os andares depende de muitos fatores: a temperatura ambiente da caixa, como parte da edificação, ou independente dela; a exposição à luz solar direta; o componente orgânico volátil, CO2, qualidade do ar; o acesso de ar fresco na caixa; o tamanho da caixa, tanto na área da seção transversal quanto na altura; o número, tamanho e folgas das aberturas em torno das portas de pavimento; a produção de calor dos equipamentos instalados; as estratégias de evacuação no combate a incêndios e fumaça, relacionadas ao sistema de gerenciamento da edificação; a umidade, poeira e vapores; o fluxo de ar (calor/frio) e tecnologia aplicada de economia de energia na edificação; e a estanqueidade do ar na caixa e em toda edificação.

É recomendado que o carro seja provido com aberturas de ventilação suficientes para assegurar um fluxo adequado de ar para o número máximo de ocupantes permitidos. Durante a operação normal e a manutenção do elevador, geralmente as aberturas em torno das portas de pavimento, a abertura/fechamento destas portas e o efeito pistão, devido ao deslocamento do elevador dentro da caixa, podem ser suficientes para prover as necessidades humanas de troca de ar, entre as escadas, saguões e a caixa.

No entanto, para as necessidades técnicas e, em alguns casos, para as necessidades humanas, o estancamento do ar na caixa e em toda edificação, as condições ambientais, particularmente superior à temperatura ambiente, radiação, umidade, qualidade do ar, irá resultar em necessidade permanente ou demanda de abertura (s) de ventilação e/ou (combinado com) ventilação forçada e/ou a entrada de ar fresco. Isso somente pode ser decidido caso a caso.

Além disso, no caso de parada prolongada do carro (considerando as condições normais e acidentais), é recomendado que seja fornecida ventilação suficiente. Em particular, deve ser dada atenção para aquelas edificações (novas e no caso de renovação) nas quais o projeto tecnológico de eficiência energética esteja presente. As caixas não se destinam a serem utilizadas como meios para ventilar outras áreas da edificação.

Em alguns casos, isso pode ser uma prática extremamente perigosa, como ambientes industriais ou estacionamentos subterrâneos, onde a extração de gases perigosos através da caixa pode causar risco adicional para as pessoas que viajam na cabina. De acordo com estas considerações, não é recomendado utilizar o ar viciado a partir de outras áreas da edificação para ventilar a caixa.

Quando a caixa fizer parte da segurança contra incêndio, cuidados especiais devem ser tomados. Nestes casos, as orientações devem ser obtidas por aqueles que se especializam nesse tipo de equipamento ou em regulamentos locais de construção e combate a incêndio.

A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A ventilação da casa de máquinas é normalmente realizada para fornecer um ambiente de trabalho apropriado ao técnico e ao equipamento instalado em tais espaços. Por esta razão, é recomendado que a temperatura ambiente da casa de máquinas seja mantida conforme provido nas premissas. Recomenda-se cuidados adicionais em relação à umidade e qualidade do ar para evitar problemas técnicos, por exemplo, condensação.

A falha em manter estas temperaturas pode resultar na retirada do elevador de serviço automaticamente até que a temperatura volte a ter seus níveis pretendidos. A fim de permitir que a pessoa responsável pelo projeto e construção da edificação determine se/qual ventilação precisa ser fornecida relacionando todas as instalações de elevadores como parte da edificação, é recomendado que o instalador do elevador forneça as informações necessárias para permitir o cálculo adequado do projeto de construção a ser realizado. Em outras palavras, recomenda-se que eles se mantenham mutuamente informados dos fatos necessários e por outro lado, tomem as medidas adequadas para garantir o bom funcionamento e utilização segura e manutenção do elevador dentro da edificação.

A NBR 12892 de 10/2022 – Elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida – Requisitos de segurança para construção e instalação especifica os requisitos de segurança para instalação permanente de novos elevadores unifamiliares ou de uso por pessoas com mobilidade reduzida com limitação de capacidade, velocidade e percurso, com acionamento por tração ou acionamento hidráulico, servindo níveis de pavimento definidos, sendo o carro projetado para o transporte de pessoas e objetos, suspenso por cabos, cintas ou pistões e movimentando-se entre guias inclinadas não mais que 15° em relação à vertical. Em casos especiais, em complementação aos requisitos desta norma, devem ser considerados os requisitos suplementares (condições climáticas extremas, umidade, salinidade, etc.).

Esta norma não é aplicável: a elevadores com outros sistemas de acionamento diferentes dos mencionados na NBR 12892; a segurança durante as operações de transporte, montagem, reparação e desmontagem de elevadores; a ruídos e vibrações; ao uso de elevadores em caso de incêndio; e aos elevadores de passageiros instalados antes da data de sua publicação.

Com o propósito de preservar a segurança, foram impostos requisitos de desempenho no sentido de eliminar ou minimizar riscos para o uso peculiar a que se destina. Percurso, velocidade, capacidade, área da cabina, entre outras, são grandezas objeto de restrição para atender ao disposto nessa norma.

Quanto à instalação, são estabelecidas somente as seguintes aplicações: instalação em edificações unifamiliares; o elevador, conforme esta norma, não pode ser considerado para o cálculo de tráfego da NBR 5665, mas pode ser utilizado como meio de transporte de pessoas e como meio de acesso das pessoas com mobilidade reduzida à edificação; quando o elevador, conforme esta norma, for projetado para uso por pessoas com mobilidade reduzida, esta condição de uso deve ser sinalizada; capacidade de até oito passageiros; velocidade nominal até 0,35 m/s; percurso até 12 m; portas de pavimentos do tipo eixo vertical são aplicáveis somente em elevador residencial unifamiliar; e porta de cabina do tipo dobrável é aplicável somente em elevador residencial unifamiliar.

Devem ser feitas negociações para cada contrato entre o cliente e o fornecedor/instalador sobre: a finalidade do uso do elevador; condições ambientais; problemas de engenharia civil; outros aspectos relacionados à edificação e ao local da instalação; a resistência ao fogo para as portas de pavimento nas aplicações unifamiliares. Não é intenção de esta norma limitar o desenvolvimento tecnológico do produto. Entretanto, um projeto novo deve atender, pelo menos de maneira equivalente, aos requisitos de segurança desta norma.

Foram considerados possíveis riscos atribuíveis a cada componente que podem ser incorporados em uma instalação completa de elevador. Regras adequadas foram estabelecidas, considerando-se o descrito a seguir. Os componentes são: projetados de acordo com a prática usual de engenharia e os códigos de cálculos, incluindo todos os critérios de falha; de construção adequada tanto mecânica como eletricamente; fabricados com materiais de resistência e qualidade adequadas; e livres de defeitos. Materiais nocivos, como amianto, não podem ser utilizados.

Os componentes são mantidos em bom estado de conservação e funcionamento, de modo que as dimensões se mantenham, apesar do desgaste. Considera-se que todos os componentes do elevador requerem inspeção para garantir a operação segura e contínua durante a sua utilização. As folgas operacionais especificadas na norma devem ser mantidas não somente durante a inspeção e ensaios antes de o elevador ser colocado em serviço, porém também ao longo da vida útil do elevador.

Os componentes que não requerem manutenção (por exemplo, livre de manutenção, lacrado por toda vida útil) ainda são obrigados a estar disponíveis para inspeção. Os componentes são selecionados e instalados de modo que as influências ambientais previsíveis e as condições especiais de trabalho não afetem a operação segura do elevador. Por projeto dos elementos que suportam carga, uma operação segura do elevador é considerada para cargas variando de 0% até 100% da carga nominal, acrescida da sobrecarga mínima de 10% e deve atender aos ensaios desta norma.

Os requisitos desta norma sobre os dispositivos elétricos de segurança são tais que a possibilidade de falha de um dispositivo elétrico de segurança, que atenda a todos os requisitos dessa norma, não precisa ser considerada. Os usuários devem ser protegidos contra a sua negligência e descuido inconscientes ao utilizar o elevador do modo estabelecido. Considerou-se que um usuário pode, em certos casos, cometer um ato imprudente.

A possibilidade de cometer dois atos imprudentes simultâneos e/ou a má utilização de instruções de uso não foi considerada. Se durante o desenvolvimento do trabalho de manutenção um dispositivo de segurança, normalmente não acessível aos usuários for deliberadamente neutralizado, a operação segura do elevador não é mais assegurada, porém medidas compensatórias devem ser tomadas para garantir a segurança dos usuários de acordo com as instruções de manutenção.

Foi considerado que o pessoal de manutenção está instruído e trabalha de acordo com as instruções. Para reproduzir forças horizontais que uma pessoa pode exercer, foram utilizados os seguintes valores de forças estáticas: 300 N; 1.000 N, onde um impacto pode ocorrer. Com exceção dos itens listados, um dispositivo mecânico construído de acordo com as boas práticas e com os requisitos desta norma não irá deteriorar-se a ponto de criar perigo sem que a falha seja detectada.

As seguintes falhas mecânicas foram consideradas nesta norma: quebra da suspensão; deslizamento sem controle dos cabos na polia motriz; quebra e afrouxamento de toda a ligação dos seguintes elementos auxiliares: cabos; correntes; e correias. Inclui a falha de um dos componentes mecânicos do freio eletromecânico que toma parte na ação de frenagem no tambor ou disco; a falha de um componente associado com os elementos de acionamento principais e a polia motriz; a ruptura no sistema hidráulico (cilindro excluído); e pequenos vazamentos no sistema hidráulico (cilindro incluso).

Ocorrendo a queda livre do carro a partir do pavimento extremo inferior, a possibilidade de o freio de segurança não atuar, antes que o para-choque seja atingido, é considerada aceitável. Em caso de elevadores com acionamento hidráulico, providos de dispositivos contra queda livre ou a descida com velocidade excessiva, que parem o carro completamente (por exemplo, freio de segurança, válvula de queda), a possibilidade de o carro bater no para-choque com velocidade excedendo 115% da velocidade nominal de descida não pode ser considerada.

Quando a velocidade do carro está vinculada com a frequência elétrica da rede até o momento da aplicação do freio mecânico, é considerado que a velocidade não exceda 115% da velocidade nominal. Desde que nenhuma das falhas mencionadas ocorra, supõe-se que a velocidade do carro no sentido de descida com qualquer carga (até a carga nominal) não excede a velocidade nominal de descida em mais de 8%.

A caixa está devidamente ventilada, conforme regulamento da construção nacional, considerando a dissipação do calor conforme especificado pelo fabricante. Os acessos às áreas de trabalho devem ser adequadamente iluminados. O sistema de fixação das proteções utilizadas especificamente para proteção das pessoas contra riscos mecânicos, elétricos ou qualquer outro, por meio de uma barreira física, que tenha que ser removida durante a manutenção e inspeção regular, permanece solidário à proteção ou ao equipamento quando a proteção for removida.

O elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve atender aos requisitos de segurança e medidas de proteção desta norma. Além disso, o elevador unifamiliar ou de uso por pessoas com mobilidade reduzida deve ser projetado de acordo com os princípios da NBR ISO 12100, para perigos relevantes, porém não significativos, que não são tratados por esta norma (por exemplo, arestas vivas).

Esta norma foi desenvolvida tendo por base as formas construtivas usuais. Não é intenção desta norma limitar o ingresso de novas tecnologias, como por exemplo, manutenção de equipamento a partir do interior da cabina, desde que comprovadas sua eficiência, segurança e aplicação por órgão certificador reconhecido. Todos os rótulos, avisos, marcações e instruções de operação devem ser afixados permanentemente, indeléveis, legíveis e facilmente compreensíveis (se necessário, auxiliados por sinais ou símbolos). Eles devem ser de material durável, colocados em uma posição visível e redigidos no idioma do país onde o elevador está instalado (ou, se necessário, em vários idiomas).

Quando o peso, as dimensões e/ou a forma dos componentes impedirem que estes sejam movimentados manualmente, eles devem ser: equipados com fixadores para mecanismo de levantamento; ou projetados de modo que possam ser montados tais fixadores (por exemplo, por meio de furos roscados); ou projetados de modo que um mecanismo de levantamento padronizado possa facilmente ser acoplado. As forças horizontais e/ou energias a serem consideradas estão indicadas nas seções aplicáveis desta norma.

Normalmente, quando não especificada nesta norma, a energia exercida por uma pessoa resulta em uma força estática equivalente a: 300 N; 1.000 N onde o impacto pode ocorrer.

Deve-se atentar para os requisitos referentes à caixa que se destina a proteger o carro do elevador e todas as suas partes móveis, bem como servir de estrutura para fixação de componentes e partes do elevador, como guias, suportes, dispositivos de segurança, portas de pavimento e portas de emergência. É desejável que a caixa ocupe pouco espaço e se constitua em elemento arquitetônico de integração do elevador ao ambiente.

O contrapeso (se provido) do elevador deve estar na mesma caixa do carro. Em todos os casos em que houver, embaixo do poço, recinto utilizado por pessoas, o fundo do poço deve ser calculado conforme descrito a seguir. Se os espaços abaixo do carro ou do contrapeso (se provido) forem acessíveis, a base do poço deve ser projetada para resistir a uma carga de no mínimo 5.000 N/m² e o contrapeso (se provido) deve ser equipado com freio de segurança. O pistão do elevador com acionamento hidráulico deve estar na mesma caixa do carro. Ele pode prolongar-se sob o poço ou outros espaços.

A caixa deve ser totalmente fechada por paredes, piso e teto sem perfurações. As únicas aberturas permitidas são as aberturas para portas de pavimento; as aberturas para portas de inspeção e emergência da caixa; as aberturas para saída de gases e fumaça em caso de incêndio; as aberturas de ventilação; as aberturas necessárias para o funcionamento do elevador entre a caixa e as casas de máquina ou de polias.

Quando não for requerido que a caixa contribua na proteção da edificação contra a propagação do fogo, pode-se admitir proteção de vidro. As folhas de vidro, plano ou conformado, devem ser laminadas. As folhas de vidro e os seus meios de fixação devem resistir a uma força estática horizontal de 1.000 N em uma área de 0,30 m x 0,30 m, em qualquer ponto, tanto de dentro como de fora da caixa, sem deformação permanente.

A caixa deve ser convenientemente ventilada e não pode ser utilizada para ventilação de locais alheios ao serviço do elevador. Se não houver meios de fuga para pessoa (s) presa (s) na caixa para conseguir auxílio externo, um sistema de alarme deve ser instalado quando existir o risco de aprisionamento, operado a partir do (s) espaço (s) de refúgio, garantindo comunicação por voz de duas vias. Este sistema deve permitir contato com o serviço de resgate de forma: direta, via sistema remoto, conforme NBR 16756, ou indireta, via intercomunicação com a portaria.

Quando for aplicado o bloqueio mecânico eliminando o risco de aprisionamento na área de trabalho no topo da cabina ou no poço, não há necessidade de instalação do sistema de alarme. Se houver riscos de enclausuramento em áreas fora da caixa, esses riscos devem ser discutidos com o proprietário da edificação.

Advertisement

A Qualidade normativa dos cilindros hidráulicos

Em sistemas de energia de fluido hidráulico, a energia é transmitida e controlada através de um líquido sob pressão que circula dentro de um circuito fechado. Um componente de tal sistema é o cilindro de potência do fluido hidráulico. É um dispositivo que converte energia fluida em força mecânica linear e movimento. Consiste em um elemento móvel, ou seja, um pistão e haste do pistão, operando dentro de um furo cilíndrico.

Eles podem ser encontrados em quase todas as máquinas hidráulicas que requerem uma forte força de empurrão ou tração e são usados ​​em uma infinidade de indústrias, incluindo manufatura, construção, mineração e offshore. Um cilindro hidráulico é um atuador mecânico usado para converter energia hidráulica em movimento linear para realizar a ação desejada da máquina, como levantar, pressionar ou mover.

A carcaça de um cilindro hidráulico consiste em um barril com portas separadas para entrada e saída de fluido e um pistão dentro do qual separa o tubo em duas câmaras. O pistão está conectado a uma haste que se move para frente e para trás dentro do cilindro quando exposta à pressão.

A câmara é parcialmente preenchida com fluido hidráulico, deixando espaço suficiente para o pistão operar. O fluido alimenta o cilindro, transmitindo uma força que retrai ou estende o pistão. À medida que a primeira câmara é preenchida com fluido hidráulico, ela atua no pistão forçando-o a se estender e expelindo fluido da segunda câmara. Se a segunda câmara for então preenchida, o pistão se retrai e o fluido é expelido da primeira câmara.

Esse processo gera movimentos de empurrar e puxar, fornecendo a grande força linear necessária para que uma máquina execute a operação necessária. Tal como acontece com todos os outros componentes e aplicações hidráulicas, os cilindros hidráulicos funcionam com base na lei de Pascal. A teoria por trás disso é que, como os fluidos hidráulicos são incompressíveis, a força gerada no pistão transmite uma pressão igual por todo o cilindro. Portanto, a força aplicada internamente será igual à força de saída especificada.

Para a preparação para o ensaio, o cilindro sob análise deve ser montado horizontalmente sem nenhuma carga móvel adicional. A proporção de pressão entre as duas câmaras deve ser inversamente proporcional às áreas do embolo de modo a balancear as forças em ambas as câmaras.

O ensaio pode ser montado verticalmente, caso requerido pela aplicação ou acordado. Neste caso, o peso deve ser considerado nos cálculos de força de atrito. A velocidade máxima de ensaio vk deve ser de 0,05 m/s e deve ser atingida dentro dos primeiros 5 % da amplitude.

No caso de a potência disponível ser insuficiente para atingir a velocidade máxima de ensaio, vk, a velocidade máxima de ensaio será resultado da vazão de óleo disponível. É recomendado que os fabricantes utilizem uma das seguintes declarações, conforme aplicável, em relatórios de ensaios, catálogos e literatura de vendas quando decidirem estar de acordo com este documento.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L e P.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L e F.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação” para cilindros ensaiados com o Módulo L, P e F.

Enfim, a maioria dos tipos de cilindros se enquadram em duas categorias. Os cilindros de simples ação, em um cilindro de simples ação, o fluido só pode atuar em um lado da haste do pistão. Para operar o cilindro da extremidade oposta, outra força, como a pressão da mola ou o peso da carga, deve ser aplicada.

Os cilindros de dupla ação podem exercer força em duas direções, permitindo que a haste atinja movimentos de ida e volta sob a força do líquido de ambos os lados da câmara. Nestas categorias, existem muitas variações na construção para criar diferentes tipos de cilindros. A diferença entre eles depende principalmente de como as duas tampas são presas ao cano, juntamente com os materiais e a espessura da parede.

A NBR ISO 10100 de 09/2022 – Sistemas hidráulicos – Cilindros – Ensaios de aceitação especifica a aceitação e os ensaios funcionais para cilindros hidráulicos. Em sistemas hidráulicos, a energia é transmitida e controlada por meio da circulação de um líquido sob pressão dentro de um circuito fechado. Um componente desse sistema é o cilindro hidráulico. Esse é o dispositivo que converte a energia hidráulica em uma força linear mecânica e em movimento.

Ele consiste em um elemento móvel, por exemplo, um pistão e haste, operando dentro de um cilindro. As seguintes informações sobre o cilindro a ser ensaiado devem ser registradas: tipo; tamanho, tipo e orientação do pórtico; se o cilindro possuir amortecimento, verificação da localização e orientação adequada dos parafusos de regulagem; curso do cilindro; etiqueta do modelo; diâmetro interno do cilindro; diâmetro da haste; extensão e configuração da haste do pistão; e o tipo ou estilo de fixação e, onde aplicável, posição da superfície variável de fixação. Na figura abaixo pode-se conferir a identificação de um cilindro de haste dupla (passante) e a identificação de cilindros de haste simples.

Inserir cilindro2

O óleo hidráulico (ou outro líquido cujo fabricante do cilindro e usuário concorde), que esteja em conformidade com as ISO 6743-4, ISO 7745 ou ISO 15380 e seja compatível com os materiais de vedação usados no cilindro ensaiado, deve ser o meio de ensaio. O fluido usado no circuito de ensaio deve estar de acordo com o descrito a seguir. O nível de contaminação do fluido deve ser 19/16 ou 19/16/13, expresso de acordo com a ISO 4406:2017, ou inferior.

Para aquelas aplicações que requerem um elevado nível de limpeza do fluido, por exemplo, para cilindros com servoválvulas ou elementos de vedação sensíveis a contaminação, o nível de contaminação do fluido deve ser 16/13 ou 16/13/10 de acordo com o especificado na ISO 4406:2017. A temperatura do fluido durante o ensaio deve ser mantida entre 35 °C e 55 °C. Outras faixas de temperatura devem ser acordadas entre o fabricante e o usuário.

Os inibidores de oxidação que previnem a corrosão dentro do cilindro podem ser adicionados ao fluido, desde que sejam compatíveis com os materiais de vedação usados no cilindro sob ensaio. Para o ensaio de estanqueidade em baixa pressão, deve-se realizar o ciclo do cilindro com no mínimo 500 kPa (5 bar) para cilindros com diâmetro interno maior do que 32 mm e com até 1.000 kPa (10 bar) para cilindros com diâmetro interno menor ou igual a 32 mm, três ou mais vezes até a posição final.

Parar em uma das posições finais por no mínimo 10 s. É recomendado que a pressão seja aplicada por mais tempo durante as pausas em cilindros de diâmetros maiores. Para o ensaio visual, verificar a ausência de vibração ou irregularidades durante o movimento. Quando o pistão chegar ao curso final, o curso total deve ser medido. Observar o vazamento do fluido na vedação da haste.

Quando o ensaio terminar, qualquer camada de óleo presente na haste deve ser insuficiente para formar uma gota ou um anel de óleo na haste. Verificar a ausência de vazamento de fluido em todas as vedações estáticas e verificar a ausência de vazamento de fluido nos parafusos de regulagem ou nas válvulas de retenção ou nos amortecedores de fim de curso.

Se quaisquer componentes do cilindro forem vedados por uma solda, verificar a ausência de vazamento de fluido no cordão de solda. Se o cilindro incorporar um amortecimento ou amortecimentos de fim de curso e possuir parafusos de regulagem, os parafusos devem ser ajustados fixados a uma posição ligeiramente aberta. Verificar se a montagem do pistão com a haste mostra um efeito de desaceleração antes do seu contato com o (s) cabeçotes (s) do cilindro.

Um ensaio de pressão de 1,5 vez a pressão nominal do cilindro ou pressão de operação recomendada deve ser aplicado alternadamente em ambas as extremidades do cilindro e mantido por pelo menos 10 s.

É recomendado que a pressão seja aplicada por mais tempo em ambas extremidades em cilindros de diâmetros maiores. No ensaio visual, deve ser verificada a integridade estrutural do cilindro e a ausência de vazamento de fluido em todas as vedações estáticas. Deve ser verificada a ausência de vazamento de fluido no parafuso de regulagem ou na válvula de retenção de amortecimento de fim de curso, quando aplicável.

Se quaisquer componentes do cilindro forem vedados por uma solda, deve ser verificada a ausência de vazamento de fluido no cordão de solda (s). O módulo P, ensaio de estanqueidade da vedação do êmbolo (opcional) é um ensaio é requerido somente se especificado pelo usuário. Uma pressão de ensaio igual à pressão nominal do cilindro ou uma pressão de ensaio especificada pelo usuário deve ser aplicada ao cilindro. No ensaio visual, deve ser verificada a ausência de vazamento do fluido na vedação do pistão.

O módulo F, ensaio de força de atrito (opcional) é requerido se especificado pelo usuário. As forças de atrito em cilindros hidráulicos devem ser determinadas pela medição de pressão diferencial em um circuito eletro-hidráulico. Para este propósito, as hastes dos cilindros hidráulicos devem ser movimentadas com controle de posição em malha fechada com válvulas de controles e transdutores de posição apropriados.

Os transdutores de pressão adequados devem ser integrados as duas câmaras do cilindro. Ambas as pressões das câmaras e a posição da haste devem ser continuamente medidas em cada estágio de pressão pa = 5 MPa,10 MPa, 15 MPa, 20 MPa e 25 Mpa2) durante dois ciclos de avanço e recuo completos. Se a pressão de trabalho permitida for menor do que a pressão de ensaio mencionada neste documento, nenhuma medição deve ser efetuada com estas altas pressões.

Apenas 26% das empresas de óleo e gás utilizam as tecnologias digitais

Uma pesquisa da KPMG apontou que apenas 26% das companhias de petróleo e gás, que participaram do levantamento, aplicam tecnologias disponíveis. Alguns desses recursos são drones, visualização 3D, análise de dados e inteligência artificial utilizados para melhorar a forma como é feita a gestão de ativos, reduzindo o tempo de parada das unidades de processamento e a exposição a riscos. Essas são as principais conclusões do relatório denominado Nos trilhos da jornada digital que tem como objetivo mostrar de forma inédita como essa a indústria está lidando, na era pós-pandemia, com temas como a digitalização, uso de novas tecnologias e de dados.

Segundo o estudo, 29% dos entrevistados possuem uma equipe bem preparada para implantação de um processo de automação na indústria contra 48% que consideram não estarem aptos para aplicar esse método. Quase metade dos entrevistados (42%) afirma que as organizações estão prontas para uma mudança na matriz energética, sendo capazes de repor o portfólio de ativos pelos originados de fontes alternativas de energia.

“O relatório mostrou que um percentual pequeno de empresas de petróleo e gás utiliza as tecnologias disponíveis. Por isso, a indústria ainda tem muito a fazer com relação ao processo de transformação digital que pode aprimorar a gestão do negócio”, afirma o sócio do setor de energia e recursos naturais da KPMG, Anderson Dutra.

Na verdade, as empresas de petróleo e gás estão repensando as suas estratégias, buscando a oportunidade perfeita para reavaliar sua infraestrutura e fazer investimentos inteligentes em tecnologia para trazer seus sistemas para a era moderna. Por exemplo, os investimentos certos em tecnologia da informação e comunicação (TIC) e outras soluções digitais podem contribuir muito para aumentar a lucratividade e impulsionar a eficiência da organização para criar uma operação mais robusta.

De acordo com a McKinsey, investir em tecnologias digitais pode economizar às empresas de gás até 20% em despesas de capital e 5% em custos operacionais upstream. Com isso em mente, pode-se descrever algumas tecnologias nas quais as empresas de petróleo e gás estão cada vez mais investindo.

– Big data e análises – As empresas de petróleo e gás não podem se dar ao luxo de tomar decisões com base em seus instintos. Os projetos de perfuração são empreendimentos que exigem muito capital e maquinário pesado, e as organizações não podem se dar ao luxo de nenhuma margem de erro. É por isso que um número crescente de organizações está coletando mais e mais dados e executando análises para determinar o caminho mais inteligente a seguir. Com big data, pode ser mais fácil tomar as decisões certas.

– IIoT e computação de ponta – A internet das coisas industrial (IIoT) promete otimizar grande parte do setor de petróleo e gás, com dispositivos conectados coletando dados na origem e executando cargas de trabalho de computação de ponta para fornecer às organizações as informações de que precisam para garantir operações eficientes.

– Computação na nuvem – As empresas de petróleo e gás continuam a alavancar o poder da nuvem, aumentando a acessibilidade e disponibilidade de dados e, ao mesmo tempo, criando redundâncias em suas redes.

Inteligência artificial (IA) e aprendizado de máquina – A IA e o aprendizado de máquina estão mudando todos os setores, incluindo petróleo e gás. A IA, por exemplo, permite que as organizações transformem uma realidade prática acessível para qualquer pessoa.

– Robótica e drones – Devido às eficiências operacionais que fornecem, cada vez mais empresas de petróleo e gás estão investindo em robótica e drones. Esta categoria é projetada para ser a área de crescimento mais rápido para a indústria nos próximos três a cinco anos.

– Redes 5G – Na era digital, a velocidade é o que mais importa. É por isso que mais e mais organizações de petróleo e gás estão investindo em redes 5G que fornecem velocidade e conectividade incomparáveis.

– Ferramentas colaborativas – As empresas globais de petróleo e gás têm operações espalhadas por todo o mundo. Ao investir em ferramentas de colaboração, eles são capazes de garantir que todos os funcionários possam permanecer na mesma página – não importa onde estejam.

Para o setor, segundo alguns especialistas, fazer uso de conectividade digital avançada poderá otimizar o rendimento da perfuração e da produção, e melhorar a manutenção e as operações de campo. Esse processo pode agregar até US$ 250 bilhões de valor às operações upstream da indústria até 2030.

Desse valor, entre US$ 160 e US$ 180 bilhões poderiam ser realizados com a infraestrutura existente, enquanto US$ 70 bilhões adicionais poderiam ser desbloqueados com satélites em órbita terrestre baixa e tecnologias 5G de próxima geração. Além disso, as empresas poderiam reduzir custos, incluindo despesas operacionais e de capital, em 20% a 25% cento por barril, contando com conectividade para implantar as ferramentas digitais.

Para ajudar no processo de gestão das indústrias de petróleo e gás, a ABNT ISO/TS 29001 de 10/2010 – Indústrias do petróleo, gás natural e petroquímica – Sistemas de gestão da qualidade específicos do setor – Requisitos para organizações de fornecimento de produtos e serviços especifica requisitos para um sistema de gestão da qualidade, quando uma organização necessita demonstrar sua capacidade para fornecer produtos que atendam de forma consistente aos requisitos do cliente e requisitos estatutários e regulamentares aplicáveis. Esta Especificação Técnica tem como objetivo desenvolver um sistema de gestão da qualidade que promova a melhoria contínua, enfatizando a prevenção de defeitos e a redução da variabilidade e de perdas na cadeia de suprimento e na prestação de serviços.

Em conjunto com os requisitos específicos de clientes, define os requisitos fundamentais do sistema de gestão da qualidade para aqueles que adotarem esta especificação técnica que é baseada na NBR ISO 9001. Assim, pode-se evitar múltiplas auditorias de certificação e fornecer uma abordagem comum para um sistema de gestão da qualidade para as indústrias do petróleo, gás natural e petroquímica. O procedimento documentado deve identificar as funções responsáveis pela coleta e manutenção dos registros.

A NBR ISO 14224 de 10/2011 – Indústrias de petróleo e gás natural – Coleta e intercâmbio de dados de confiabilidade e manutenção para equipamentos fornece uma ampla base para a coleta de dados de confiabilidade e manutenção (RM) num formato-padrão para equipamentos em todas as instalações e operações nas indústrias de petróleo, gás natural e petroquímica durante o ciclo de vida operacional dos equipamentos. Ela descreve os princípios da coleta de dados e os termos e definições associados que constituem uma linguagem de confiabilidade que pode ser útil para a comunicação da experiência operacional.

API STD 1164: a segurança cibernética de sistemas de controle de dutos

A API STD 1164:2021 – Pipeline Control Systems Cybersecurity fornece os requisitos e a orientação para o gerenciamento de risco cibernético associado a ambientes de automação e controle industrial (industrial automation and control – IAC) para atingir os objetivos de segurança, integridade e resiliência. Dentro dessa norma, isso é realizado por meio do isolamento adequado de ambientes IAC para ajudar na sua continuidade operacional.

Mesmo com o isolamento adequado dos ambientes IAC dos ambientes de TI, ambos desempenham um papel na continuidade geral dos negócios. A continuidade operacional do IAC e a continuidade do sistema de TI são frequentemente desenvolvidas e implementadas em conjunto como parte do plano geral de continuidade de negócios.

O escopo desta norma é limitado apenas aos aspectos de segurança cibernética da IAC que podem influenciar a continuidade geral dos negócios. Ela foi feita sob medida para a indústria de dutos de petróleo e gás natural (oil and natural gas – ONG), que inclui, mas não está limitado a sistemas de dutos de transmissão de gás natural e líquidos perigosos, sistemas de dutos de distribuição de gás natural, instalações de gás natural liquefeito (GNL), instalações de ar propano e outros envolvidos nessas indústrias.

Essa norma foi desenvolvida para fornecer uma abordagem acionável para proteger as funções essenciais do IAC, gerenciando o risco de segurança cibernética para os ambientes IAC. Isso pode incluir, mas não estão limitados a soluções de controle de supervisão e aquisição de dados (Scada), controle local e internet das coisas industriais (IIoT).

A norma deve ser usada no contexto de desenvolvimento, implementação, manutenção e melhoria de um programa de segurança cibernética do IAC, que inclui as políticas, processos, e controles de procedimentos e técnicos para ambientes cibernéticos IAC. Trata-se de um conjunto de requisitos que deve ser customizado antes da implementação usando os processos de gerenciamento de riscos da empresa.

O resultado é um conjunto de requisitos personalizados e específicos da empresa para um programa de segurança cibernética IAC a fim de ajudar a gerenciar a postura de segurança cibernética e qualquer risco residual resultante para seus ambientes IAC em alinhamento com a missão, objetivos e estratégia de risco da empresa, e de acordo com as suas políticas e procedimentos. Embora a identificação de ameaças e impactos seja crítica para o desenvolvimento do programa de segurança cibernética do IAC, uma avaliação baseada no risco de cada um garantirá que o programa seja implementado, executado e sustentado de forma adequada, de acordo com a postura de risco desejada pela organização.

Essa norma se concentra nos resultados de segurança cibernética desejados, definindo requisitos para níveis de proteção de impacto de objetivos de negócios específicos. Embora os princípios definidos nesta norma possam ser aplicados a sistemas instrumentados de segurança (safety instrumented systems – SIS), eles estão fora do escopo deste documento.

Os requisitos de segurança especificados nesta norma não tentam abordar os impactos potenciais para a seleção ou determinação do nível de integridade de segurança (safety integrity level – SIL) do SIS. Qualquer uso desta norma em ambientes SIS fica por conta e risco do implementador. Para as empresas que já têm um programa de segurança cibernética IAC, incluindo uma ou mais políticas de programa aprovadas e um plano ou planos de segurança cibernética IAC documentados implementados ou em implementação, esta norma deve ser considerada um acréscimo aos elementos existentes do programa de segurança cibernética.

Nessas situações, um processo de mapeamento desta norma para os elementos atuais do programa de segurança cibernética da IAC determinará quaisquer requisitos da API 1164 que não estejam atualmente no programa existente. A implementação de quaisquer elementos ausentes deve ser adaptada e priorizada usando os processos de gerenciamento de risco da empresa. O processo de adaptação para os requisitos de segurança cibernética API 1164 é descrito em 5.5.

Conteúdo da norma

1 Escopo. . . . . .. . . . . . . . . . . 1

1.1 Objetivo. . . .. . . . . . . . . . . 1

1.2 Público-alvo. . . . . . . . . . . . 2

1.3 Como ler esta norma . . . . . . . 2

2 Referências normativas. . . . . . . 4

3 Termos, definições, acrônimos e abreviações. .  . . . 4

3.1 Termos e definições. . .. . . . . . . . . . . . . . . . 4

3.2 Siglas. . . . . . . . . . . . . . . . . . . . . . 9

4 Perfis de cibersegurança de dutos IAC de ONG. .  . . 10

4.1 Introdução ao perfil de cibersegurança IAC. …. . 10

4.2 Perfil de segurança cibernética da IAC – restrições comuns………..10

4.3 Perfil de segurança cibernética da IAC – objetivos da proteção contra ameaças. . . . . . . . . . . . . 11

4.4 Perfil de segurança cibernética da IAC – objetivos de missão e negócios. . . . . . . . . . . . . 12

4.5 IAC: perfil de segurança cibernética – objetivos e impacto no mapeamento de proteção contra ameaças. . .  . 13

5 Política, plano e programa de segurança cibernética da ONG e IAC. . . . . . . . . . . . . . . 13

5.1 Plano de desenvolvimento de segurança cibernética da IAC. . . . . . . . . . . . . . . . . . . . . 15

5.2 IAC: plano de segurança cibernética – gerenciamento de risco. . . . .. . . . . . . . 15

5.3 Plano de segurança cibernética da IAC – operacionalizando um programa de segurança cibernética . . . . . . 17

5.4 Perfis de segurança cibernética de seleção de planos de segurança cibernética da IAC. . . . . . . . . . . 18

5.5 Requisitos de perfil selecionado de personalização do plano de segurança cibernética da IAC. . . . . 27

6 ONG IAC: requisitos do perfil de cibersegurança – requirements identify (ID). . . . . . . . 28

6.1 Governança (ID.GV). .. . . . . . . . . 28

6.2 Estratégia de gerenciamento de risco (ID.RM). . 32

6.3 Ambiente de negócios (ID.BE). . . . . . . . . . . . 35

6.4 Gestão de riscos da cadeia de suprimentos (ID.SC)… . 39

6.5 Avaliação de Risco IAC (ID.RA). . . . . . . . . 42

6.6 Gerenciamento de ativos (ID.AM). . . . . . . 49

7 ONG IAC: perfil de cibersegurança – profiles protect (PR)….55

7.1 Controle de acesso (PR.AC). . .  . . . . . 56

7.2 IAC Conscientização e treinamento em segurança cibernética (PR.AT). . . . . . . . . . . . 63

7.3 Segurança de dados (PR.DS).. . . . . . . . 67

7.4 Processos e procedimentos de proteção da informação (PR.IP). . . . . . . . . . . . . . . . 75

7.5 Manutenção (PR.MA). .. . . . . . . . . . . . . 89

7.6 Tecnologia de proteção (PR.PT). . .. . . . . . . . . 92

8 ONG IAC: requisitos do perfil de cibersegurança (detecção – DE). . . .  . . . . . . . . . . . . . 97

8.1 Anomalias e eventos (DE.AE). . .. . . . . . 97

8.2 Monitoramento contínuo de segurança (DE.CM). . .. 100

8.3 Processos de detecção (DE.DP). .. . . . . . . . . . . 106

9 ONG IAC: perfil de cibersegurança dos requisitos de respostas (RS). .  . . . . . . . . . . . . . . 110

9.1 Planejamento de Resposta (RS.RP). . . . . . . . 110

9.2 Comunicações (RS.CO). . .. . . . . . . . . 111

9.3 Análise (RS.AN).. . . . . . . . . . . . . . 114

9.4 Mitigação (RS.MI). . . . . . . . . . . . . . . . 118

9.5 Melhorias (RS.IM). . . . . . . . . . . . . . . . 120

10 ONG IAC: perfil de cibersegurança dos requisitos de recuperação (RC). . . . . . . . . . . . 122

10.1 Planejamento de Recuperação (RC.RP). . . 122

10.2 Melhorias (RC.IM). . . . . . . . . . . . . . . . 122

10.3 Comunicações (RC.CO). .  . . . . . . . . . 124

Anexo A (informativo) Construção e mapeamento da norma API 1164. . . . . .  . . . . . . . 126

Anexo B (informativo) Modelo Plan-Do-Check-Act.  . 129

Anexo C (informativo) Ações recorrentes. . . . . . . . . 131

Bibliografia. . .. . . . . . . . . . . . . . . . . . . . . . . . . . 132

Em resumo, a infraestrutura de dutos – composta por milhares de empresas e mais de 2,7 milhões de quilômetros de dutos responsáveis pelo transporte de petróleo, gás natural e outras commodities – é um facilitador fundamental da segurança econômica mundial. Como os proprietários e os operadores de dutos estão cada vez mais confiando na integração de tecnologias de informação e comunicação (TIC) em tecnologia da informação (TI) e tecnologia operacional (TO) para conduzir a automação, eles também devem implementar medidas de segurança para proteger os dutos de riscos cibernéticos em evolução e emergentes. A integração de dispositivos de TIC em sistemas de dutos críticos cria uma vulnerabilidade que os hackers cibernéticos podem explorar.

IEC 60839-11-33: a interface de serviços da Web para o controle de acesso eletrônico

A IEC 60839-11-33:2021 – Alarm and electronic security systems – Part 11-33: Electronic access control systems – Access control configuration based on Web services define a interface de serviços da Web para sistemas de controle de acesso eletrônico. Isso inclui listar os componentes do sistema de controle de acesso eletrônico, sua composição lógica, monitorar seus estados e controlá-los. Também inclui um mapeamento dos requisitos obrigatórios e opcionais de acordo com a IEC 60839-11-1: 2013, conforme coberto pelo Anexo.

Este documento se aplica apenas à segurança física para evitar que pessoas não autorizadas, ladrões ou invasores acidentais acessem fisicamente um prédio, sala, etc. O uso de serviços da Web e a funcionalidade de gestão de dispositivos estão fora do escopo deste documento.

O documento especifica apenas os dados e o fluxo de controle entre um cliente e os serviços sem referência a qualquer dispositivo físico, pois os serviços necessários para implementar um sistema de controle de acesso eletrônico compatível (electronic access control system – EACS) não são necessariamente implementados em um único dispositivo, ou seja, todos os serviços podem ser executados em um painel de controle, software agregador de eventos no PC, etc.

Conteúdo da norma

PREFÁCIO …….. …………………… 8

INTRODUÇÃO ……….. ……………. 10

1 Escopo …… …………………….. 11

2 Referências normativas …………… … 11

3 Termos e definições ……………… …. 12

4 Visão geral ……… ………………… 15

4.1 Geral ……………… …………… 15

4.2 Namespaces …………… ……. 16

4.3 Tratamento de erros ………. …… 17

5 Serviço de credencial ……. ……… 17

5.1 Geral …………. …………… 17

5.2 Capacidades de serviço ………………….. 18

5.2.1 Geral ……………………………. ……… 18

5.2.2 Estrutura de dados ServiceCapabilities ………………….. 18

5.2.3 Comando GetServiceCapabilities …. ………………… 19

5.3 Informações de credencial ……………………………… 20

5.3.1 Geral …………………………… ……… 20

5.3.2 Estruturas de dados …………………….. 20

5.3.3 Comando GetCredentialInfoList …………… 23

5.3.4 Comando GetCredentials ……………………….. 24

5.3.5 Comando GetCredentialList ………………………. 25

5.3.6 Comando CreateCredential ……………………. 26

5.3.7 Comando SetCredential ………………………. 28

5.3.8 Comando ModifyCredential ………………………. 30

5.3.9 Comando DeleteCredential ……………………… 31

5.3.10 Comando GetCredentialState ……………….. 32

5.3.11 Comando EnableCredential ……………………… 32

5.3.12 Comando DisableCredential ………………………….. 33

5.3.13 Comando ResetAntipassbackViolation ……. ………….. 33

5.3.14 Comando GetSupportedFormatTypes ……………. 34

5.3.15 Comando GetCredentialIdentifiers ………………. 34

5.3.16 Comando SetCredentialIdentifier …………………….. 35

5.3.17 Comando DeleteCredentialIdentifier …. …………….. 36

5.3.18 Comando GetCredentialAccessProfiles …… ………… 36

5.3.19 Comando SetCredentialAccessProfiles …………….. 37

5.3.20 Comando DeleteCredentialAccessProfiles ……… …….. 37

5.4 Tópicos de notificação …………………………… 38

5.4.1 Geral ………………………………. ……… 38

5.4.2 Visão geral do evento (informativo) …………………… 38

5.4.3 Mudanças de status ……………….. 38

5.4.4 Mudanças de configuração …………………………….. 39

6 Serviço de regras de acesso ………………………. …… 40

6.1 Geral ………………………………….. …………… 40

6.2 Capacidades de serviço …………………………… 41

6.2.1 Geral …………………………………. ……… 41

6.2.2 Estrutura de dados ServiceCapabilities ………………….. 41

6.2.3 Comando GetServiceCapabilities …………………. 41

6.3 Acessar informações de perfil …………………………… 41

6.3.1 Geral …………………………………. ……… 41

6.3.2 Estruturas de dados ……………………………….. 42

6.3.3 Comando GetAccessProfileInfo …………………… 42

6.3.4 Comando GetAccessProfileInfoList …………………. 43

6.3.5 Comando GetAccessProfiles ………………………. 44

6.3.6 Comando GetAccessProfileList ………………….. 45

6.3.7 Comando CreateAccessProfile ………………….. 46

6.3.8 Comando SetAccessProfile ………………………… 47

6.3.9 Comando ModifyAccessProfile …………………….. 48

6.3.10 Comando DeleteAccessProfile …………………. 49

6.4 Tópicos de notificação ………………………. 50

6.4.1 Geral ………………………………. ……… 50

6.4.2 Visão geral do evento (informativo) ………………… 50

6.4.3 Alterações de configuração ……………………… 50

7 Serviço de comportamento de autenticação ………………… 51

7.1 Geral ……………………………. …………… 51

7.2 Exemplo ………………………….. ………….. 51

7.3 Capacidades de serviço ………………………. 52

7.3.1 Geral ………………………………….. ……… 52

7.3.2 Estrutura de dados ServiceCapabilities …………………. 52

7.3.3 Comando GetServiceCapabilities …………………….. 53

7.4 Informações de perfil de autenticação …………………… 53

7.4.1 Geral ………………………………… ……… 53

7.4.2 Estruturas de dados ………………………………….. 54

7.4.3 Comando GetAuthenticationProfileInfo ……. …………. 55

7.4.4 Comando GetAuthenticationProfileInfoList…….. …….. 56

7.4.5 Comando GetAuthenticationProfiles …… …………….. 57

7.4.6 Comando GetAuthenticationProfileList …………….. 58

7.4.7 Comando CreateAuthenticationProfile ……………… 59

7.4.8 Comando SetAuthenticationProfile …………………. 60

7.4.9 Comando ModifyAuthenticationProfile ………………. 61

7.4.10 Comando DeleteAuthenticationProfile ………………. 62

7.5 Informações de nível de segurança ……………………… 63

7.5.1 Geral ………………………………………… ……… 63

7.5.2 Estruturas de dados ……………………………… 64

7.5.3 Comando GetSecurityLevelInfo ……………………. 66

7.5.4 Comando GetSecurityLevelInfoList …………………. 66

7.5.5 Comando GetSecurityLevels ……………………………. 67

7.5.6 Comando GetSecurityLevelList ………………………….. 68

7.5.7 Comando CreateSecurityLevel ……………………….. 69

7.5.8 Comando SetSecurityLevel ……………………………. 70

7.5.9 Comando ModifySecurityLevel ……………………….. 71

7.6 Tópicos de notificação …………………………. 73

7.6.1 Geral …………………………………… ……… 73

7.6.2 Visão geral do evento (informativo) ………….. 73

7.6.3 Mudanças de configuração …………………….. 73

8 Agendar serviço ……………………….. ………. 74

8.1 Geral …………………………….. …………… 74

8.2 Recorrência ……………………….. ……… 76

8.2.1 Geral ………………………………. ……… 76

8.2.2 Recorrência semanal ……………………. 76

8.2.3 Recorrência estendida …………………. 77

8.2.4 Recorrência de programação padrão ……… 77

8.2.5 Recorrência de dia especial ………………….. 77

8.3 Capacidades de serviço ……………………….. 78

8.3.1 Geral …………………………….. ……… 78

8.3.2 Estrutura de dados ServiceCapabilities ………………. 78

8.3.3 Comando GetServiceCapabilities …………………. 79

8.4 Informações de programação ………………… 79

8.4.1 Geral ……………………………… ……… 79

8.4.2 Estruturas de dados ……………………….. 79

8.4.3 Comando GetScheduleInfo ………………………….. 82

8.4.4 Comando GetScheduleInfoList …………………… 83

8.4.5 Comando GetSchedules ………………………………. 84

8.4.6 Comando GetScheduleList …………………………… 85

8.4.7 Comando CreateSchedule ……………………………. 86

8.4.8 Comando SetSchedule ………………………………… 87

8.4.9 Comando ModifySchedule ………………………….. 88

8.4.10 Comando DeleteSchedule …………………………. 89

8.5 Informações do grupo de dias especiais …………………… 90

8.5.1 Geral ……………………………….. ……… 90

8.5.2 Estruturas de dados ……………………….. 90

8.5.3 Comando GetSpecialDayGroupInfo ……………….. 90

8.5.4 Comando GetSpecialDayGroupInfoList ………………. 91

8.5.5 Comando GetSpecialDayGroups …………………….. 92

8.5.6 Comando GetSpecialDayGroupList …………………. 93

8.5.7 Comando CreateSpecialDayGroup …………………… 94

8.5.8 Comando SetSpecialDayGroup …………………… 95

8.5.9 Comando ModifySpecialDayGroup ………………….. 96

8.5.10 Comando DeleteSpecialDayGroup ………………….. 97

8.6 Status da programação ………………………….. … 97

8.6.1 Estrutura de dados ScheduleState ………………. 97

8.6.2 Comando GetScheduleState ……………………… 98

8.7 Tópicos de notificação …………………………… 99

8.7.1 Geral ………………………………. ……… 99

8.7.2 Visão geral do evento (informativo) ……….. 99

8.7.3 Mudanças de status ………………………. 99

8.7.4 Mudanças de configuração …………………. 100

8.8 Exemplos …………………………. ………. 101

8.8.1 Geral ……………………………… ……. 101

8.8.2 Acesso 24 × 7 para equipe administrativa ………… 101

8.8.3 Acesso às segundas e quartas das 06:00 às 20:00 para o pessoal de limpeza………………. 101

8.8.4 Acesso de sexta-feira 18:00 às 07:00 para equipe de manutenção……………. 101

8.8.5 Acesso em dias de semana das 8h00 às 17h00 para funcionários…………….. 102

8.8.6 Acesso de 15 de janeiro de 2014 a 14 de janeiro de 2015, das 09:00 às 18:00 …………………………. ………. 103

8.8.7 Dias especiais, exemplo 1 ……………… 103

8.8.8 Dias especiais, exemplo 2 …………… 104

8.8.9 Dias especiais, exemplo 3 ……………….. 106

Anexo A (normativo) Esquemas XML da interface de controle de acesso………… …. 107

A.1 Serviço de credencial WSDL ……………………… 107

A.2 Serviço de regras de acesso WSDL ………………….. 127

A.3 Serviço de comportamento de autenticação WSDL……….. 137

A.4 Programar WSDL de serviço …………………………. 155

Anexo B (informativo) Mapeamento de funções obrigatórias na IEC 60839-11-1…………….174

Bibliografia …………………….. 182

Este documento torna possível construir um sistema de alarme e segurança eletrônica com clientes, normalmente um console de monitoramento, e dispositivos, normalmente uma unidade de controle de acesso, de diferentes fabricantes usando interfaces comuns e bem definidas. O documento especifica apenas os dados e o fluxo de controle entre um cliente e os serviços sem referência a qualquer dispositivo físico, pois os serviços necessários para implementar um sistema de controle de acesso eletrônico compatível (electronic access control system – EACS) não são necessariamente implementados em um único dispositivo, ou seja, todos os serviços podem ser executados em um painel de controle, software agregador de eventos no PC, etc.

Este documento não define a comunicação interna entre uma unidade de controle de acesso e seus componentes se eles forem implementados em um único dispositivo. Este documento é baseado no trabalho realizado pelo fórum aberto da indústria, o open network video interface forum (ONVIF). A especificação de credencial ONVIF, a especificação de regras de acesso ONVIF, o comportamento de autenticação ONVIF e a especificação ONVIF Schedule são compatíveis com este documento.

Este documento é acompanhado por um conjunto de definições de interface legíveis por computador (ver Anexo A): WSDL de serviço de credencial, consulte a Cláusula A.1; WSDL do serviço de regras de acesso, consulte a Cláusula A.2; WSDL do serviço de comportamento de autenticação, consulte a Cláusula A.3; agendar WSDL de serviço, consulte a Cláusula A.4. Devido às diferenças na terminologia usada na IEC 60839-11-1:2013 e IEC 60839-11-2:2014 e na especificação ONVIF na qual esta parte da IEC 60839 se baseia, um leitor deve prestar atenção especial aos termos e definições cláusula. Os serviços adicionais necessários para o monitoramento de portas e pontos de acesso (lados do portal) estão fora do escopo deste documento. Esses serviços são cobertos pela IEC 60839-11-32.

Os processos de ciclo de vida de software

A NBR ISO/IEC-IEEE 12207 de 08/2021 – Engenharia de sistemas e software – Processos de ciclo de vida de software estabelece uma estrutura comum para processos de ciclo de vida de software, com terminologia bem definida, que pode ser referenciada pela indústria de software. Ele contém processos, atividades e tarefas que são aplicáveis durante a aquisição, fornecimento, desenvolvimento, operação, manutenção ou desativação de sistemas, produtos e serviços de software.

Estes processos de ciclo de vida são executados com sucesso por meio do envolvimento de stakeholders, com o objetivo final de alcançar a satisfação do cliente. Este documento é aplicável à aquisição, fornecimento, desenvolvimento, operação, manutenção e desativação de sistemas de software, produtos e serviços, e a parte de software de qualquer sistema (executados tanto interna como externamente a uma organização).

O software inclui a parte de software do firmware. Os aspectos de definição de sistema necessários para prover o contexto para produtos e serviços de software estão incluídos. Este documento também fornece os processos que podem ser empregados na definição, controle e melhoria dos processos de ciclo de vida de software dentro de uma organização ou projeto.

Os processos, atividades e tarefas deste documento também podem ser aplicados durante a aquisição de um sistema que contenha software, seja individualmente ou em conjunto com a ISO/IEC 15288:2015 – Systems and software engineering – System life cycle processes. No contexto deste documento e da ISO/IEC/IEEE 15288, há um continuum de sistemas desenvolvidos por humanos desde os que usam pouco ou nenhum software, até aqueles nos quais o software é o principal componente.

É raro encontrar um sistema complexo sem software e todos os sistemas de software exigem que os componentes do sistema físico (hardware) funcionem, ou seja, como parte do sistema de software de interesse. Assim, a escolha de quando aplicar este documento para os processos de ciclo de vida de software, ou a ISO/IEC/IEEE 15288: 2015 – Systems and software engineering–System life cycle processes, depende do sistema de interesse.

Os processos em ambos os documentos têm os mesmos propósitos e resultados de processo, mas diferem em atividades e tarefas para executar a engenharia de software ou a engenharia de sistemas, respectivamente. Assim, o propósito deste documento é fornecer um conjunto definido de processos para facilitar a comunicação entre adquirentes, fornecedores e outros stakeholders no ciclo de vida de um sistema de software.

Este documento foi escrito para adquirentes, fornecedores, desenvolvedores, integradores, operadores, mantenedores, gestores, gerentes de garantia de qualidade e usuários de sistemas, produtos e serviços de software. Ele pode ser usado por uma única organização de forma autoimposta ou em uma situação que envolva várias organizações. As partes podem ser da mesma organização ou de diferentes organizações, podendo variar para a realização de um acordo informal a um acordo formal.

Os processos neste documento podem ser usados como base para estabelecer ambientes de negócios, por exemplo, métodos, procedimentos, técnicas, ferramentas e pessoal treinado. O Anexo A fornece orientação normativa para a adaptação destes processos de ciclo de vida de software. Este documento é aplicável a todo o ciclo de vida de sistemas, produtos e serviços de software, incluindo concepção, desenvolvimento, produção, utilização, suporte e desativação, e à sua aquisição e fornecimento, sejam estes processos executados interna ou externamente a uma organização.

Os processos do ciclo de vida deste documento podem ser aplicados de forma concorrente, iterativa e recursiva a um sistema de software e de forma incremental aos seus elementos. Há uma grande variedade de sistemas de software em termos de propósito, domínio de aplicação, complexidade, tamanho, novidade, adaptabilidade, quantidade, localizações, vida útil e evolução.

Este documento descreve os processos que compõem o ciclo de vida de sistemas de software criados pelo homem. Portanto, aplica-se aos sistemas de software únicos, sistemas de software para ampla distribuição comercial ou pública e sistemas de software adaptáveis e customizados. Também se aplica a um sistema de software independente completo e aos sistemas de software que são incorporados e integrados a sistemas maiores, mais complexos e completos.

Este documento fornece um modelo de referência de processo caracterizado em termos de propósito e resultados de processo, que são consequência da execução bem-sucedida das tarefas da atividade. O Anexo B lista exemplos de artefatos e itens de informação que podem estar associados a vários processos. Este documento pode, portanto, ser usado como um modelo de referência para apoiar a avaliação de processo, conforme especificado na ISO/IEC 33002:2015.

O Anexo C fornece informações sobre o uso dos processos de ciclo de vida do software como um modelo de referência de processo. O Anexo D descreve os construtos do processo para uso no modelo de referência de processo. O Anexo I fornece a correspondência entre este documento e a ISO/IEC/IEEE 12207:2009 no nível de nome e resultado de processo.

Este documento não prescreve um modelo específico de ciclo de vida de software, metodologia de desenvolvimento, método, abordagem de modelagem ou técnica. Os usuários deste documento são responsáveis por selecionar um modelo de ciclo de vida para o projeto e por mapear os processos, atividades e tarefas deste documento naquele modelo. As partes também são responsáveis pela seleção e aplicação de metodologias, métodos, modelos e técnicas apropriados para o projeto.

Este documento não estabelece um sistema de gestão ou requer o uso de qualquer norma de sistema de gestão. No entanto, destina-se a ser compatível com o sistema de gestão da qualidade especificado pela NBR ISO 9001, com o sistema de gestão de serviços especificado pela NBR ISO/IEC 20000-1 (IEEE Std 20000-1) e com o sistema de gestão de segurança da informação especificado pela ISO/IEC 27000. Este documento não detalha itens de informação em termos de nome, formato, conteúdo explícito e mídia de registro. A ISO/IEC/IEEE 15289 aborda o conteúdo dos itens de informação de processo de ciclo de vida (documentação).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que representam os sistemas habilitadores?

Quais são os processos do ciclo de vida para o sistema de software?

Por que fazer a adoção em nível de projeto e organização?

Qual é o modelo de ciclo de vida para o sistema de software?

A complexidade dos sistemas de software aumentou a um nível sem precedentes. Isto levou a novas oportunidades, mas também aumentou os desafios para as organizações que criam e utilizam os sistemas. Estes desafios existem ao longo do ciclo de vida de um sistema e em todos os níveis de detalhes arquiteturais.

Este documento fornece uma estrutura de processo comum para descrever o ciclo de vida de sistemas criados por seres humanos, adotando uma abordagem de engenharia de software que é uma abordagem interdisciplinar e propicia a produção bem-sucedida de sistemas de software.

Ela foca a definição das necessidades dos stakeholders e a funcionalidade requerida no início do ciclo de desenvolvimento, a documentação dos requisitos, a execução da síntese do design e a validação do sistema, considerando o problema completo. Ela integra todas as disciplinas e grupos de especialidade em um esforço de equipe, formando um processo de desenvolvimento estruturado que passa do conceito à produção, operação e manutenção.

Ela considera tanto as necessidades de negócio quanto técnicas de todos os stakeholders, com o objetivo de fornecer um produto de qualidade que atenda às necessidades dos usuários e outros stakeholders aplicáveis. Este ciclo de vida abrange da concepção de ideias até a desativação de um sistema. Ela provê os processos para aquisição e fornecimento de sistemas.

Ela ajuda a melhorar a comunicação e a cooperação entre as partes que criam, utilizam e gerenciam sistemas de software modernos para que possam trabalhar de forma integrada e coerente. Além disso, a estrutura proposta contribui para a avaliação e melhoria dos processos do ciclo de vida.

Os processos neste documento formam um conjunto abrangente a partir do qual uma organização pode construir modelos de ciclo de vida de software apropriados para seus produtos e serviços. Uma organização, dependendo da sua finalidade, pode selecionar e aplicar um subconjunto apropriado para alcançar este propósito.

Este documento pode ser usado de uma ou mais das seguintes formas: por uma organização – para ajudar a estabelecer um ambiente de processos desejados. Estes processos podem ser sustentados por uma infraestrutura de métodos, procedimentos, técnicas, ferramentas e pessoal treinado. A organização pode então empregar este ambiente para executar e gerenciar seus projetos e evoluir sistemas de software ao longo as fases do ciclo de vida.

Dessa forma, este documento é usado para avaliar a conformidade de um ambiente declarado e estabelecido em relação ao que ele provê. Também pode ser usado por um projeto – para ajudar a selecionar, estruturar e utilizar os elementos de um ambiente estabelecido para fornecer produtos e serviços. Dessa forma, este documento é usado na avaliação da conformidade do projeto em relação ao ambiente estabelecido e declarado.

Pode ser utilizado por um adquirente e um fornecedor – para ajudar a desenvolver um acordo relativo a processos e atividades. Por meio desse acordo, os processos e atividades deste documento são selecionados, negociados, acordados e executados. Dessa forma, este documento é usado para orientar o desenvolvimento do acordo.

Pode ser usado por avaliadores de processo – para servir como um modelo de referência de processo utilizado na execução de avaliações de processo, que podem ser usadas para apoiar a melhoria do processo organizacional. Este documento fornece os requisitos para uma variedade processos adequados para uso durante o ciclo de vida de um sistema ou produto de software.

É reconhecido que projetos ou organizações específicos podem não precisar usar todos os processos fornecidos por este documento. Portanto, a implementação deste documento geralmente envolve a seleção e a declaração de um conjunto de processos adequados à organização ou projeto. Existem duas formas de reivindicar a conformidade com as disposições deste documento ‒ conformidade total e conformidade personalizada.

Existem dois critérios para reivindicar a conformidade total. Atingir qualquer destes critérios é suficiente para conformidade, embora o critério (ou critérios) escolhido (s) deva (m) ser declarado (s) na reivindicação. Reivindicar conformidade total com as tarefas afirma que todos os requisitos das atividades e tarefas do conjunto declarado de processos são alcançados.

Alternativamente, reivindicar conformidade total com os resultados afirma que todos os resultados requeridos do conjunto declarado de processos são alcançados. A conformidade total com resultados permite maior liberdade na implementação de processos e pode ser útil para implementar processos a serem usados no contexto de um modelo inovador de ciclo de vida.

Opções para conformidade são fornecidas para a flexibilidade necessária na aplicação deste documento. Cada processo tem um conjunto de objetivos (expressos como resultados) e um conjunto de atividades e tarefas que representam uma maneira de alcançar os objetivos. Os usuários que implementam as atividades e tarefas do conjunto declarado de processos podem afirmar conformidade total com as tarefas dos processos selecionados.

Alguns usuários, no entanto, podem ter variantes inovadoras de processos que atinjam os objetivos (ou seja, os resultados) do conjunto declarado de processos sem implementar todas as atividades e tarefas. Estes usuários podem afirmar conformidade total com os resultados do conjunto declarado de processos.

Os dois critérios – conformidade com tarefa e conformidade com resultado – não são necessariamente equivalentes, pois a execução específica de atividades e tarefas pode requerer, em alguns casos, um nível mais alto de capacidade do que apenas o alcance de resultados. Quando este documento é usado para auxiliar o desenvolvimento de um acordo entre um adquirente e um fornecedor, seções deste documento podem ser selecionadas para incorporação ao acordo, com ou sem modificação.

Neste caso, é mais apropriado que o adquirente e o fornecedor reivindiquem a conformidade com o acordo do que com este documento. Uma organização (por exemplo, pública, associação industrial, corporação) que impõe este documento, como condição comercial, pode especificar e tornar público o conjunto mínimo de processos, resultados, atividades e tarefas exigidos, que constituem a conformidade dos fornecedores com as condições do negócio.

Os requisitos deste documento são assinalados pelo uso do verbo deve. As recomendações são assinaladas pelo uso da expressão convém que. As permissões são assinaladas pelo uso do verbo pode. No entanto, apesar do termo usado, os requisitos de conformidade são selecionados conforme descrito anteriormente.

Uma reivindicação de conformidade total declara o conjunto de processos com os quais a conformidade é requerida. A conformidade total com resultados é alcançada pela demonstração que todos os resultados do conjunto declarado de processos foram alcançados. Nesta situação, as disposições para atividades e tarefas do conjunto declarado de processos são orientações e não requisitos, independentemente da expressão ou forma verbal usada na disposição.

Um uso pretendido deste documento é facilitar a avaliação e a melhoria do processo. Para este fim, os objetivos de cada processo são escritos na forma de resultados compatíveis com as disposições da ISO/IEC 33002 que fornece a avaliação dos processos deste documento, fornecendo uma base para melhorias. Os usuários que pretendem avaliar e melhorar processos podem usar os resultados de processo escritos no presente documento como o modelo de referência de processo requerido pela ISO/IEC 33002.

Uma reivindicação de conformidade total declara o conjunto de processos para os quais a conformidade é reivindicada. A conformidade total com tarefas é alcançada pela demonstração que todos os requisitos das atividades e tarefas do conjunto declarado de processos foram satisfeitos. Nesta situação, as disposições para os resultados do conjunto declarado de processos são orientações e não requisitos, independentemente da expressão ou forma verbal usada na disposição.

Uma reivindicação de conformidade total com tarefas pode ser apropriada em situações contratuais em que um adquirente ou um regulador requer um entendimento detalhado dos processos dos fornecedores. Quando este documento é utilizado como base para estabelecer um conjunto de processos que não se qualificam para conformidade total, as seções deste documento são selecionadas ou modificadas de acordo com o processo de adaptação prescrito no Anexo A.

O texto adaptado, para o qual a conformidade personalizada é reivindicada, é declarado. A conformidade personalizada é obtida pela demonstração de que foram alcançados os resultados, atividades e tarefas, conforme adaptados. As elaborações adicionais destes conceitos relativos à aplicação do gerenciamento do ciclo de vida podem ser encontradas nas ISO/IEC TS 24748-1, ISO/IEC TR 24748-2 e ISO/IEC TR 24748-3.

Os sistemas de software considerados neste documento são feitos, criados e utilizados por pessoas para fornecer produtos ou serviços em ambientes definidos para o benefício dos usuários e de outros stakeholders. Estes sistemas de software podem incluir os seguintes elementos de sistema: hardware, software, dados, pessoas, processos (por exemplo, processos para fornecer serviços aos usuários), procedimentos (por exemplo, instruções do operador), instalações, serviços, materiais e entidades.

Conforme vistos pelo usuário, eles são considerados produtos ou serviços. Este documento se aplica a sistemas para os quais o software é de primordial importância para os stakeholders. Este documento é baseado nos princípios gerais da engenharia de sistemas e engenharia de software.

É uma premissa fundamental deste documento que o software sempre exista no contexto de um sistema. Como o software não opera sem hardware, o processador no qual o software é executado pode ser considerado como parte do sistema. Como alternativa, o hardware ou serviços que hospedam o sistema de software e lidam com as comunicações com outros sistemas também podem ser vistos como sistemas habilitadores ou sistemas externos no ambiente operacional.

A percepção e a definição de um sistema de software específico, sua arquitetura e seus elementos dependem dos interesses e responsabilidades de um stakeholder. O sistema de interesse de um stakeholder pode ser visto como um elemento do sistema de interesse de outro stakeholder. Além disso, pode ser visto também como parte do ambiente de um sistema de interesse de outro stakeholder.

A seguir, são apresentados os principais pontos sobre as características de sistemas de interesse. Os limites definidos encapsulam necessidades significativas e soluções práticas; existem hierarquias ou outros relacionamentos entre os elementos do sistema. Uma entidade em qualquer nível no sistema de interesse pode ser vista como um sistema.

Um sistema compreende um conjunto integrado e definido de elementos de sistema subordinados e as pessoas podem ser vistas como usuários externos a um sistema e como elementos internos ao sistema (isto é, operadores); e um sistema pode ser visto isoladamente como uma entidade, isto é, um produto; ou como um conjunto de funções capazes de interagir com o ambiente ao seu redor, isto é, um conjunto de serviços. Quaisquer que sejam os limites escolhidos para definir o sistema, os conceitos neste documento são genéricos e permitem correlacionar ou adaptar instâncias individuais dos ciclos de vida aos princípios de sistema de um profissional.

Os processos do ciclo de vida neste documento são descritos em relação a um sistema de software que é composto por um conjunto de elementos que interagem (incluindo elementos de software), cada um dos quais pode ser implementado para satisfazer os respectivos requisitos especificados (figura abaixo). A responsabilidade pela implementação de qualquer elemento do sistema pode, portanto, ser delegada a outra parte por meio de um acordo.

O relacionamento entre o sistema de software e o conjunto completo de seus elementos geralmente pode ser representado mostrando os relacionamentos entre os elementos ‒ frequentemente descritos como uma hierarquia para o mais simples dos sistemas de interesse. A decomposição é uma abordagem para algumas atividades de software.

Outras abordagens incluem a orientação a objetos, na qual os elementos do sistema são dispostos em um mesmo plano (não hierárquica), como em um diagrama de rede. Para sistemas de interesse de software mais complexos, pode ser necessário considerar um futuro elemento como um sistema (que por sua vez é composto por outros elementos) antes que um conjunto completo possa ser definido de forma confiável.

Dessa forma, os processos apropriados de ciclo de vida de sistema são aplicados recursivamente a um sistema de interesse para resolver sua estrutura, até que elementos compreensíveis e gerenciáveis do sistema de software possam ser implementados (criados, adaptados, adquiridos ou reutilizados). Pode-se dizer que todo sistema de software tem um ciclo de vida. Um ciclo de vida pode ser descrito usando um modelo funcional abstrato que representa a conceituação de uma necessidade do sistema, sua realização, utilização, evolução e desativação.

Um sistema de software evolui no seu ciclo de vida como resultado de ações das atividades dos processos. Estas ações são executadas e gerenciadas por pessoas nas organizações. Os detalhes no modelo de ciclo de vida são expressos em termos destes processos, seus resultados, relacionamentos e sequência.

O uso da manufatura aditiva nos projetos de produtos

A NBR ISO/ASTM 52910 de 05/2021 – Manufatura aditiva – Projetos – Requisitos, diretrizes e recomendações contém requisitos, diretrizes e recomendações para o uso da manufatura aditiva (MA) nos projetos de produtos. contém requisitos, diretrizes e recomendações para o uso da manufatura aditiva (MA) nos projetos de produtos. Aplica-se à etapa de projetos de todos os tipos de produtos, dispositivos, sistemas, componentes ou peças que são fabricadas por qualquer método de MA. Este documento ajuda a determinar quais tipos de considerações podem ser utilizadas durante o projeto, para melhor aplicação dos recursos dos processos de MA.

São abordadas orientações gerais e identificação de problemas; soluções específicas de projeto, processos e materiais não fazem parte deste documento. O público-alvo compreende três tipos de usuários: projetistas e gerentes que estão desenvolvendo produtos a serem fabricados por sistemas de MA; estudantes que estão aprendendo projeto mecânico e desenho assistido por computador; e desenvolvedores de diretrizes de projeto e de sistemas de orientação de MA.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as considerações de produto?

Quais as considerações do ambiente térmico que o projeto deve se basear?

Quais são as considerações de sustentabilidade do produto?

Quais são as considerações comerciais para decidir se a MA é o melhor método para a produção de uma peça?

Este documento fornece requisitos, diretrizes e recomendações para os projetos de peças e produtos a serem produzidos por processos de MA. As condições da peça ou do produto que favorecem a MA são destacadas. Da mesma forma, as condições que favorecem os processos de fabricação convencionais também são destacadas. Os principais elementos incluem: as oportunidades e liberdade de projeto que a MA oferece aos projetistas (Seção 5); as características ou questões que os projetistas devem considerar ao projetar as peças para MA, que compreendem o principal conteúdo destas diretrizes (Seção 6); e os avisos ou questões críticas para os projetistas, que indiquem situações que frequentemente levem a problemas em muitos dos sistemas de MA (Seção 7).

A estratégia geral para um projeto de MA é apresentada na figura abaixo. Esta é uma representação de um processo que projeta peças mecânicas para aplicações estruturais, em que o custo é o principal critério de decisão. O projetista pode substituir prazo por qualidade, prazo de entrega ou outro critério de decisão, se aplicável.

Além de considerações técnicas relacionadas às características funcionais, mecânicas ou de processos, o projetista também deve considerar os riscos associados à seleção dos processos de MA. O processo para identificação da potencialidade geral de fabricação com MA é apresentado na figura abaixo.

Esta é uma expansão da caixa identificação de potencial de aplicação da MA, no lado esquerdo da figura abaixo. Como apresentado, os principais critérios de decisão focam na disponibilidade do material, se a peça cabe ou não no volume de fabricação da máquina e na identificação de pelo menos uma característica da peça (personalização, redução de peso, geometria complexa) em que a MA seja particularmente recomendada.

Esses critérios representam muitas aplicações de engenharia mecânica para peças técnicas, mas não têm pretensão de serem únicos. Uma expansão para a caixa seleção do processo de MA a ser utilizado da Figura abaixo é representada na outra figura abaixo, indicando que a escolha do material é crítica na identificação do processo ou dos processos recomendados.

Se o material e o processo recomendados forem identificados, a consideração de outros requisitos de projeto pode prosseguir, incluindo considerações sobre características da superfície, geométricas, propriedades físicas, estáticas e dinâmicas, entre outros. Essas figuras apresentam uma abordagem típica para muitas peças mecânicas, mas não convém que sejam interpretadas como prática necessária prescrita.

A manufatura aditiva se diferencia de outros processos de manufatura por muitas razões, e estas diferenças proporcionam liberdades e oportunidades únicas de projeto que são destacadas nesta Seção. Em regras gerais, se uma peça puder ser fabricada de forma economicamente viável usando um processo de manufatura convencional, provavelmente esta peça não será fabricada utilizando a MA.

Entretanto, as peças que são boas candidatas para a MA tendem a ter geometrias complexas, geometrias customizadas, baixos volumes de produção, combinações especiais de propriedades ou características, ou combinações destas características. À medida que os processos e os materiais são melhorados, a ênfase nestas características provavelmente mudará. Na Seção 5, algumas oportunidades de projeto são destacadas e algumas limitações típicas são identificadas.

Para as oportunidades de projeto, deve-se entender o descrito a seguir. Contexto – A MA fabrica peças adicionando material camada por camada. Devido à própria natureza dos processos de MA, a MA tem muito mais grau de liberdade que outros processos de manufatura. Por exemplo, uma peça pode ser constituída por milhões de gotículas, se fabricada por um processo de jateamento de material.

O controle discreto sobre milhões de operações em micro e nanoescalas é, ao mesmo tempo, uma oportunidade e um desafio. Níveis de interdependência sem precedentes são evidentes entre as considerações e as variáveis do processo de manufatura, o que distingue a MA dos processos de manufatura convencionais. A capacidade de tirar a vantagem das oportunidades de projeto pode ser limitada pelas complexidades do planejamento de processo.

Visão global – A natureza aditiva, baseada em camadas, significa que qualquer formato de peça pode ser virtualmente fabricado sem ferramental, como moldes, matrizes ou dispositivos de fixação. Geometrias customizadas para indivíduos (clientes ou pacientes) podem ser fabricadas economicamente. Formas geométricas muito sofisticadas são possíveis com o uso de estruturas celulares (colmeia, lattice, esponja) ou estruturas convencionais. Frequentemente, múltiplos componentes de um conjunto fabricado por processos convencionais podem ser substituídos por uma única peça ou por um número menor de peças que sejam geometricamente mais complexas que os componentes sendo substituídos.

Isto pode levar ao desenvolvimento de peças mais leves e com melhor desempenho do que as montagens originais. Além disso, a redução do número de peças (chamada de consolidação de peças) tem vários benefícios para as atividades subsequentes. O tempo de montagem e de manutenção, a complexidade no chão de fábrica e o estoque de peças de reposição e ferramental podem ser reduzidos, levando à economia de custos ao longo da vida do produto.

Uma consideração adicional é que modelos para aplicações médicas com geometrias complexas podem ser facilmente fabricados a partir de dados de imagens médicas. Em muitos processos de MA, as composições e as propriedades do material podem ser variadas por meio de uma peça. Esta característica possibilita peças com gradiente funcional, nas quais as distribuições de propriedades mecânicas desejadas podem ser projetadas, variando-se a composição do material ou a sua microestrutura.

Sendo desejadas variações efetivas das propriedades mecânicas por meio de uma peça, o projetista pode fazer isso, tirando vantagem da capacidade dos processos de MA quanto à complexidade geométrica. Sendo desejadas variações na composição ou na microestrutura do material, estas variações podem ser alcançadas, mas com limites que dependem do processo ou do equipamento específico. Considerando todos os processos de MA, alguns deles permitem o controle de variação de material ponto a ponto, alguns fornecem controle discreto dentro de uma camada e a maioria permite controle discreto entre as camadas (a fotopolimerização em cuba é a exceção).

No processo de jateamento de material e de jato de aglutinante, a composição do material pode ser variada de maneira praticamente contínua, gota a gota, ou mesmo por mistura de gotículas. Do mesmo modo, o processo de deposição de energia direcionada pode produzir várias composições de materiais, variando a composição do pó que é injetado na poça de fusão (melt pool).

O controle discreto da composição de materiais utilizados pode ser implementado em processo de extrusão de material, utilizando, por exemplo, múltiplos bicos extrusores. O processo de fusão em leito de pó (PBF) pode ter limitações, uma vez que podem surgir dificuldades na separação dos pós não fundidos.

É importante notar que os recursos específicos dos equipamentos vão mudar e evoluir continuamente com o tempo, mas a tendência geral é aumentar a flexibilidade da composição do material e a capacidade de controle das propriedades. Existe uma importante oportunidade de otimizar o projeto de peças, para atingir propriedades estruturais sem precedentes.

O conceito de projeto para funcionalidade pode ser concretizado, o que significa que, se as funções de uma peça puderem ser matematicamente determinadas, a peça pode ser otimizada para adquiri-las. Novos métodos de otimização topológica e de forma foram desenvolvidos a este respeito.

Os projetos resultantes podem possuir geometrias muito complexas, utilizando estruturas internas tipo colmeia, lattice ou esponja, que, por sua vez, podem possuir combinações e variações complexas de materiais ou uma combinação de ambas. É necessária pesquisa nesta área, mas alguns exemplos práticos já estão surgindo.

Outras oportunidades envolvem algumas considerações comerciais. Como na MA nenhum ferramental é necessário para a fabricação de peças, os prazos de entrega podem ser reduzidos, quando comparados à manufatura convencional de novos projetos. É necessário pouco investimento em infraestrutura, o que permite a customização em massa e o incremento da capacidade de resposta às mudanças de mercado.

No caso de manutenção, a fabricação de componentes para reposição pode ser vantajosa em relação tanto aos custos quanto ao prazo de entrega. Visão global – É usual apontar as características do projeto que indicam situações em que a MA provavelmente não seria utilizada. Em termos concisos, se uma peça puder ser economicamente fabricada utilizando um processo de fabricação convencional e se puder atender aos requisitos, é improvável que seja uma boa candidata para a MA. Convém que o projetista considere custo, tempo de entrega e riscos ao decidir pela MA.

Uma importante vantagem dos processos de MA é a flexibilidade de fabricar uma variedade de peças com formatos complexos e personalizados, e a possibilidade de distribuições complexas de materiais. Se alguém desejar a produção em massa e em larga escala de peças simples, a MA pode não ser adequada sem melhorias significativas no tempo e no custo de produção.

O projetista deve estar atento às opções de materiais disponíveis, à variedade e à qualidade do material de alimentação, e a como as propriedades mecânicas e as outras propriedades físicas variam, quando comparadas entre a manufatura aditiva e a convencional. Os materiais para MA possuem diferentes características e propriedades, porque eles são processados de maneira diferente que os utilizados para fabricação convencional.

Convém que os projetistas estejam cientes de que as propriedades das peças fabricadas por MA são altamente sensíveis aos parâmetros de processo e que a estabilidade do processo é um problema significativo que pode limitar a liberdade do projeto. Além disto, convém que os projetistas entendam as anisotropias frequentemente presentes em materiais processados por MA.

Em alguns processos, as propriedades no plano de fabricação (direções X, Y) são diferentes das propriedades no eixo de fabricação (eixo Z). Com alguns metais, é possível obter propriedades mecânicas superiores às obtidas por processo de conformação mecânica. No entanto, normalmente, as propriedades de fadiga e de resistência ao impacto das peças fabricadas por MA, na condição de como fabricadas, são inferiores às de materiais processados convencionalmente.

Todas as máquinas de MA discretizam a geometria da peça antes de fabricá-la. A discretização pode ser feita de diversas formas. Por exemplo, muitas máquinas de MA fabricam peças em um modo camada por camada. Em jateamento de material e em jato aglutinante, gotas discretas de material são depositadas.

Em outros processos, percursos vetoriais discretos (por exemplo, de um laser) são usados para processar o material. Devido a esta discretização da geometria das peças, geralmente a superfície externa da peça não é lisa, uma vez que as divisões entre as camadas ficam evidentes. Em outros casos, as peças podem ter pequenos vazios internos.

A discretização da geometria gera muitos outros efeitos. Características pequenas podem ser mal formadas. Paredes ou estruturas finas, inclinadas em relação à direção de fabricação, podem ser mais espessas que o desejado. Além disso, se a parede ou a estrutura for quase horizontal, ela pode ser muito fraca, pois pode ocorrer pouca sobreposição de camadas. Da mesma forma, pequenas características negativas, como furos, podem sofrer o efeito oposto, ficando menores que o desejado e com formas distorcidas.

O pós-processamento das peças é requerido por muitos processos de MA ou pode ser solicitado pelo usuário final. Uma variedade de métodos mecânicos, químicos e térmicos pode ser aplicada. Vários tipos de processo de MA utilizam estruturas de suporte na fabricação das peças que precisam ser removidas.

Em alguns casos, os suportes podem ser removidos usando solventes, mas, em outros, os suportes precisam ser removidos mecanicamente. Convém que o usuário considere o trabalho, o tratamento manual do componente e o tempo adicionais que estas operações requerem. Adicionalmente, convém que os projetistas entendam que a presença de estruturas de suporte pode afetar o acabamento ou a precisão das superfícies suportadas.

Além da remoção da estrutura de suporte, outras operações de pós-processamento podem ser necessárias ou solicitadas, incluindo a remoção de pó em excesso, melhoria no acabamento da superfície, usinagem, tratamentos térmicos e revestimentos. Se uma peça tiver cavidades internas, convém que o projetista considere as características na peça que permitam remover das cavidades as estruturas de suporte, o pó não sinterizado (PBF) ou a resina líquida (fotopolimerização em cuba).

Dependendo dos requisitos de precisão e de acabamento da superfície, a peça pode requerer usinagem de acabamento, polimento, retificação, jateamento de esferas ou jateamento com granalha. Peças de metal podem requerer, por exemplo, um tratamento térmico para alívio de tensões residuais. Podem ser requeridos revestimentos, como pintura, galvanoplastia ou infiltração de resina.

As operações de pós-processamento aumentam o custo das peças fabricadas por MA. Cada processo de MA possui um envelope de fabricação limitado. Se uma peça for maior que o envelope de fabricação de um processo de MA, ela pode ser dividida em várias peças, a serem montadas após a fabricação. Em alguns casos, isto não é tecnicamente ou economicamente viável.

REVISTA DIGITAL ADNORMAS – Edição 159 | Ano 4 | 20 de Maio 2021

Acesse a versão online: https://revistaadnormas.com.br     Revista AdNormas - Ed 159 Ano 3
Edição 159 | Ano 4 | 20 de Maio 2021
ISSN: 2595-3362 Acessar edição
Capa da edição atual
  Confira os 12 artigos desta edição:
Os parâmetros dos interruptores para os sistemas eletrônicos de edificações
A bomba de combustível não conforme pode representar riscos aos veículos
A conformidade dos materiais utilizados em sistema de aterramento
A liderança de equipes de alta performance na indústria da construção civil
A integridade do limite de pressão de uma válvula metálica industrial
A logística reversa no segmento de produtos eletroeletrônicos Target Adnormas
Como criar um ambiente de trabalho mais diverso e inclusivo

Como o setor público pode garantir a segurança dos dados
Máquinas de movimentação de solo: a remanufatura e a avaliação das usadas
O ensaio da pressão de estouro nos preservativos masculinos
A pandemia contribuiu para o aumento do estresse e peso da população
Protegendo a privacidade e minimizando os dados

IEC 62061: a validação dos sistemas de controle relacionados à segurança de máquinas

A IEC 62061:2021 – Safety of machinery – Functional safety of safety-related control systems especifica os requisitos e faz recomendações para o projeto, a integração e a validação de sistemas de controle relacionados à segurança (safety-related control systems – SCS) de máquinas. É aplicável a sistemas de controle usados, individualmente ou em combinação, para realizar as funções de segurança em máquinas que não são portáteis durante o trabalho, incluindo um grupo de máquinas trabalhando juntas de maneira coordenada.

Este documento é uma norma específica do setor de máquinas dentro da estrutura da IEC 61508 (todas as partes). O projeto de subsistemas eletrônicos programáveis complexos ou elementos de subsistema não está dentro do escopo deste documento.

O corpo principal desta norma do setor especifica os requisitos gerais para o projeto e verificação de um sistema de controle relacionado à segurança destinado a ser usado no modo de demanda alta/contínua. Este documento trata apenas dos requisitos de segurança funcional destinados a reduzir o risco de situações perigosas; se restringe aos riscos decorrentes diretamente dos perigos da própria máquina ou de um grupo de máquinas trabalhando em conjunto de maneira coordenada.

Não inclui os riscos elétricos decorrentes do próprio equipamento de controle elétrico (por exemplo, choque elétrico – consulte IEC 60204-1); outros requisitos de segurança necessários no nível da máquina, como proteção; e medidas específicas para aspectos de segurança – consulte IEC TR 63074. Não se destina a limitar ou inibir o avanço tecnológico.

A IEC 62061: 2021 cancela e substitui a primeira edição, publicada em 2005, Alteração 1: 2012 e Alteração 2: 2015. Esta edição constitui uma revisão técnica e algumas mudanças técnicas significativas em relação à edição anterior. A estrutura foi alterada e o conteúdo foi atualizado para refletir o processo de projeto da função de segurança. A norma estendeu o seu escopo para as tecnologias não elétricas.

As definições foram atualizadas e ficaram alinhadas com a IEC 61508-4. Foi introduzido um plano de segurança funcional e o gerenciamento de configuração foi atualizado (Cláusula 4) e os requisitos de parametrização foram expandidos (Cláusula 6). Houve uma referência aos requisitos de segurança (Subcláusula 6.8) e os requisitos de teste periódico foram adicionados (Subcláusula 6.9).

Incluídas várias melhorias e esclarecimentos sobre arquiteturas e cálculos de confiabilidade (Cláusula 6 e Cláusula 7), houve uma mudança de “SILCL” para “SIL máximo” de um subsistema (Cláusula 7). Descreveu-se o uso casos para software, incluindo os seus requisitos (Cláusula 8) e os requisitos de independência para verificação de software (Cláusula 8) e atividades de validação (Cláusula 9) foram adicionados. Acrescentou um novo anexo informativo com exemplos (Anexo G), e novos anexos informativos sobre valores MTTFD típicos, diagnósticos e métodos de cálculo para as arquiteturas (Anexo C, Anexo D e Anexo H).

O projeto de subsistemas eletrônicos programáveis complexos ou elementos de subsistema não está dentro do escopo deste documento. Isso está no escopo da IEC 61508 ou dos padrões a ela vinculados; consulte a Figura 1. Os elementos como sistemas em chip ou placas de microcontrolador são considerados subsistemas eletrônicos programáveis complexos.

O corpo principal desta norma do setor especifica os requisitos gerais para o projeto e verificação de um sistema de controle relacionado à segurança destinado a ser usado no modo de demanda alta/contínua. Esse documento está preocupado apenas com os requisitos de segurança funcional destinados a reduzir o risco de situações perigosas; se restringe aos riscos decorrentes diretamente dos perigos da própria máquina ou de um grupo de máquinas trabalhando juntas de maneira coordenada.

Os requisitos para mitigar riscos decorrentes de outros perigos são fornecidos em normas setoriais relevantes. Por exemplo, onde uma máquina (s) faz parte de uma atividade de processo, informações adicionais estão disponíveis em IEC 61511. Este documento não cobre os riscos elétricos decorrentes do próprio equipamento de controle elétrico (por exemplo, choque elétrico – consulte IEC 60204-1); outros requisitos de segurança necessários no nível da máquina, como proteção; as medidas específicas para aspectos de segurança – ver IEC TR 63074. Este documento não tem como objetivo limitar ou inibir o avanço tecnológico. A figura 1 ilustra o escopo deste documento.

Inserir figura 1

A produção e a redução do esforço físico do operador, os sistemas de controle relacionados à segurança (chamados de SCS) das máquinas desempenham um papel cada vez maior na obtenção da segurança geral da máquina. Além disso, os próprios SCS empregam cada vez mais tecnologia eletrônica complexa. A IEC 62061 especifica os requisitos para o projeto e implementação de sistemas de controle de máquinas relacionados à segurança. Este documento é específico do setor de máquina dentro da estrutura da IEC 61508.

Embora a IEC 62061 e a ISO 13849-1 estejam usando metodologias diferentes para o projeto de sistemas de controle relacionados à segurança, eles pretendem alcançar a mesma redução de risco. Esta norma internacional destina-se ao uso por projetistas de máquinas, fabricantes e integradores de sistemas de controle e outros envolvidos na especificação, projeto e validação de um SCS. Ele estabelece uma abordagem e fornece requisitos para atingir o desempenho necessário e facilita a especificação das funções de segurança destinadas a atingir a redução de risco.

Este documento fornece uma estrutura específica do setor de máquinas para a segurança funcional de um SCS de máquinas. Abrange apenas os aspectos do ciclo de vida de segurança que estão relacionados à alocação de requisitos de segurança até a validação de segurança. Os requisitos são fornecidos para informações para o uso seguro do SCS de máquinas que também podem ser relevantes para as fases posteriores do ciclo de vida de um SCS.

Existem muitas situações em máquinas onde o SCS é empregado como parte das medidas de segurança que foram fornecidas para atingir a redução de risco. Um caso típico é o uso de uma proteção de intertravamento que, quando aberta para permitir o acesso à zona de perigo, sinaliza às partes relacionadas à segurança do sistema de controle da máquina para interromper a operação perigosa da máquina. Na automação, o sistema de controle da máquina que é usado para atingir a operação correta do processo da máquina muitas vezes contribui para a segurança ao mitigar os riscos associados aos perigos decorrentes diretamente das falhas do sistema de controle.

Este documento fornece uma metodologia e requisitos para atribuir a integridade de segurança necessária para cada função de segurança a ser implementada pela SCS; habilitar o projeto do SCS apropriado para a (s) função (ões) de segurança (controle) atribuída (s); integrar subsistemas relacionados à segurança projetados de acordo com outros funcionais das normas aplicáveis relacionadas à segurança (ver 6.3.4); validar o SCS.

Este documento se destina a ser usado dentro da estrutura de redução de risco sistemático, em conjunto com a avaliação de risco descrita na ISO 12100. As metodologias sugeridas para uma atribuição de integridade de segurança são fornecidas no Anexo A (informativo).

REVISTA DIGITAL ADNORMAS – Edição 157 | Ano 4 | 6 de Maio 2021

Acesse a versão online: https://revistaadnormas.com.br     Revista AdNormas - Ed 157 Ano 4
Edição 157 | Ano 4 | 6 de Maio 2021
ISSN: 2595-3362 Acessar edição
Capa da edição atual
Confira os 12 artigos desta edição:  
A gestão da proteção de dados pessoais (DP) em nuvens públicas
A segurança dos equipamentos em processos de solda e corte a gás
Os riscos da utilização do hidrogênio em suas formas gasosa e líquida
Como fazer uma migração segura para a nuvem na transformação digital
A determinação do coeficiente de permeabilidade de solos argilosos
A economia como ciência Target Adnormas
A Qualidade dos produtos à base de orto e polifosfatos para saneamento básico
Com tecnologias, o Brasil poderia transformar mais lixo em energia
A conformidade das fibras poliméricas para uso em concreto e argamassa
Mercado empresarial adota inteligência artificial (IA)
Os robôs colaborativos estão revolucionando a indústria
Por que o explante de mama está em evidência?