IEC 62003: os ensaios de compatibilidade eletromagnética em equipamentos em usinas nucleares

Essa norma internacional, publicada em 2020 pela International Electrotechnical Commission (IEC), estabelece os requisitos para os ensaios de compatibilidade eletromagnética de instrumentação, controle e equipamentos elétricos fornecidos para uso em sistemas importantes para a segurança em usinas nucleares e outras instalações nucleares.

A IEC 62003:2020 – Nuclear power plants – Instrumentation, control and electrical power systems – Requirements for electromagnetic compatibility testing estabelece os requisitos para os ensaios de compatibilidade eletromagnética de instrumentação, controle e equipamentos elétricos fornecidos para uso em sistemas importantes para a segurança em usinas nucleares e outras instalações nucleares. O documento lista as normas IEC aplicáveis, principalmente a série IEC 61000, que definem os métodos gerais de ensaio e fornece os parâmetros e critérios específicos da aplicação necessários para garantir que os requisitos de segurança nuclear sejam atendidos.

Esta segunda edição cancela e substitui a primeira edição publicada em 2009. Esta edição inclui várias alterações técnicas significativas em relação à edição anterior. Por exemplo, o título foi modificado, o escopo foi expandido para abranger as considerações de compatibilidade eletromagnética magnética (electromagnetic magnetic compatibility – EMC) para equipamentos elétricos e passou a fornecer orientação para abordar o uso da tecnologia sem fio.

O texto buscou aprimorar a descrição do ambiente eletromagnético para fornecer esclarecimentos ao selecionar níveis de ensaios personalizados ou para isenções de ensaio, incluiu as informações de exemplo a serem contidas em um plano de ensaio de EMC e passou a fornecer as orientações para a caracterização do ambiente eletromagnético no ponto de instalação dentro de uma instalação nuclear.

Conteúdo da norma

PREFÁCIO…………………… 4

INTRODUÇÃO ……………… 6

1 Escopo……………………… 8

2 Referências normativas…………. 8

3 Termos e definições…………….. 10

4 Termos abreviados………. …….. 11

5 Requisitos do ensaio de EMC……… 12

6 Ambiente eletromagnético………… 13

7 Ensaio de imunidade…….. ……….. 15

7.1 Geral…………………. …………… 15

7.2 Aplicabilidade……………… …….. 15

7.3 Incerteza da medição…………….. 15

7.4 Requisitos do ensaio………………. 16

7.5 Considerações sobre ensaios de imunidade para tecnologia sem fio……………. 19

8 Ensaio de emissões……………….. ……… 20

9 Considerações sobre o ensaio………. …… 21

10 Documentação do relatório de ensaio……………. 22

Anexo A (normativo) Critérios de qualidade funcional de I&C nuclear e ESE elétrica para imunidade…………….. 23

Anexo B (informativo) Características de qualidade que definem a classificação de severidade do ambiente eletromagnético nos locais onde I&C nuclear e energia elétrica do equipamento de força deve ser instalado……………. 24

Anexo C (informativo) Explicação dos graus de severidade dos ensaios para EMC…………………. 27

C.1 Geral…………….. …………….. 27

C.2 Imunidade a descargas eletrostáticas de acordo com a IEC 61000-4-2…………….. 27

C.3 Imunidade ao campo eletromagnético de radiofrequência de acordo com a IEC 61000-4-3 (ou IEC 61000-4-20) …….27

C.4 Imunidade a transientes elétricos rápido/rajadas de acordo com a IEC 61000-4-4……………. 28

C.5 Imunidade a surtos de distúrbios de grande energia, de acordo com a IEC 61000-4-5 ……… 28

C.6 Imunidade a distúrbios induzidos por campos de radiofrequência de acordo com a IEC 61000-4-6……………… 28

C.7 Imunidade ao campo magnético da frequência de potência de acordo com a IEC 61000-4-8…………. 28

C.8 Imunidade ao pulso do campo magnético de acordo com a IEC 61000-4-9…………………… 29

C.9 Imunidade a um campo magnético oscilatório amortecido de acordo com a IEC 61000-4-10………………… …… 29

C.10 Imunidade a quedas de tensão e interrupções curtas de tensão de acordo com a IEC 61000-4-11, IEC 61000-4-29 e IEC 61000-4-34………… 29

C.11 Imunidade a um pico de onda de anel de acordo com a IEC 61000-4-12………………. 29

C.12 Imunidade à distorção de harmônicos e inter-harmônicos, incluindo a sinalização da rede elétrica na porta de alimentação CA de acordo com a IEC 61000-4-13…….. 30

C.13 Imunidade a flutuações da tensão da fonte de alimentação de acordo com a IEC 61000-4-14…………………. 30

C.14 Imunidade a distúrbios conduzidos no modo comum na faixa de frequências de 0 Hz a 150 kHz, de acordo com a IEC 61000-4-16…………… 30

C.15 Imunidade a ondulações nas portas de energia de entrada CC de acordo com a IEC 61000-4-17……….. 30

C.16 Imunidade a distúrbios oscilatórios amortecidos de acordo com a IEC 61000-4-18……….. 31

C.17 Imunidade à variação da frequência de potência de acordo com a IEC 61000-4-28……….. 31

Anexo D (informativo) Diretrizes para os ensaios e avaliação do ambiente do sistema eletromagnético em uma usina nuclear…………………….. 32

Anexo E (informativo) Diretrizes para ensaios e avaliação de conformidade com os requisitos para emissões e imunidade da operação de I&C nuclear e eletricidade do equipamento………………. 33

Anexo F (informativo) Exemplo de forma de plano de ensaio para I&C nuclear e elétrica e para os ensaios de equipamentos para emissões e imunidade…………………… 34

Anexo G (informativo) Exemplo de forma de relatório de ensaio para I&C nuclear e elétrica dos ensaios de equipamentos para emissões e imunidade……………….. 35

Anexo H (informativo) Ensaio EMC da eletrônica de potência e dos acionamentos de velocidade ajustável……… 36

Bibliografia…………. ………………….. 38

Figura 1 – Exemplos de portas………………. 11

Figura 2 – Exemplo da situação de uma central elétrica…. 14

Tabela 1 – Descrição dos ensaios de imunidade e emissões CEM aplicáveis para I&C nuclear e dos equipamentos elétricos importantes para a segurança……………….. 13

Tabela 2 – Especificações de imunidade – Porta do gabinete………………… 16

Tabela 3 – Especificações de imunidade – Portas de sinal e controle………… ……… 17

Tabela 4 – Especificações da imunidade – Portas de entrada e saída ca de baixa tensão……………. 18

Tabela 5 – Especificações de imunidade – Portas de entrada e saída de baixa tensão CC……………. 19

Tabela 6 – Limites para emissões irradiadas de I&C nuclear e equipamento elétrico ………… 20

Tabela 7 – Limites para emissões conduzidas de I&C nuclear e equipamento elétrico……….. 21

Tabela A.1 – Critérios de qualidade funcional de I&C nuclear e ESE elétrico para imunidade……… 23

Tabela B.1 – Características de qualidade que definem a classificação eletromagnética e severidade do meio ambiente nos locais onde I&C nuclear e equipamentos elétricos devem ser instalados………………….. 24

Tabela H.1 – IEC 61800-3, limites de emissões conduzidos para a categoria C3 e sistema de distribuição no segundo ambiente (industrial típico) …………………………….. 36

Tabela H.2 – Limites de emissões irradiadas pela IEC 61800-3 para distribuição de energia da categoria C3 no sistema no segundo ambiente (industrial típico) ………………. 37

Esta norma internacional foi preparada e baseada, em grande medida, na aplicação atual da série IEC 61000 para qualificação de equipamentos comerciais para compatibilidade eletromagnética (EMC). Pretende-se que esta norma seja usada por operadores de usinas nucleares (concessionárias), avaliadores de sistemas e licenciadores.

A situação da norma atual na estrutura da série padrão SC 45A IEC 62003 é o documento SC 45A de terceiro nível que trata da questão da qualificação para compatibilidade eletromagnética (EMC) aplicável a Instrumentação e Controle (I&C) e sistemas elétricos importantes para segurança em instalações nucleares. Para mais detalhes sobre a estrutura da série padrão SC 45A, veja o texto abaixo desta introdução.

A recomendação e a limitação em relação à aplicação desta norma: é importante observar que esta norma não estabelece requisitos funcionais adicionais para sistemas de segurança, mas esclarece os critérios a serem aplicados para a qualificação de interferência eletromagnética e de radiofrequência (EMI/RFI) do mercado comercial. Os aspectos para os quais requisitos e recomendações especiais foram produzidos são: série IEC 61000 com qualificações específicas para aplicações nucleares em todo o mundo; interpretações regulatórias para requisitos no nível de qualificação necessário e tipos de ensaios recomendados para lidar com todos os estressores ambientais em potencial, relacionados a esse tipo de qualificação; IEC 61000-6-2, Compatibilidade eletromagnética (EMC) – Parte 6-2: Padrões genéricos – Imunidade para ambientes industriais, atende aos requisitos para todos os ambientes industriais, enquanto esse padrão trata especificamente de ambientes em instalações nucleares.

Esta norma visa se alinhar com as orientações contidas nas normas IEC 61000-6-5 e IEC 61000-6-7, sempre que possível. As considerações adicionais dessas normas podem ser usadas em conjunto com esta norma ao abordar a EMC de eletricidade e I&C equipamentos em instalações nucleares. A descrição da estrutura da série padrão IEC SC45A e relações com outros documentos IEC e outros documentos de organismos (IAEA, ISO) Os documentos de nível superior da série padrão IEC SC45A são IEC 61513 e IEC 63046.

A IEC 61513 fornece requisitos gerais para sistemas e equipamentos de I&C que são usados para executar funções importantes para a segurança nas plantas nucleares. A IEC 63046 fornece requisitos gerais para sistemas de energia elétrica de centrais nucleares; abrange sistemas de fornecimento de energia, incluindo os sistemas de fornecimento dos sistemas de I&C. As normas IEC 61513 e IEC 63046 devem ser consideradas em conjunto e no mesmo nível. As normas IEC 61513 e IEC 63046 estruturam a série padrão IEC SC45A e formam uma estrutura completa, estabelecendo requisitos gerais para instrumentação, controle e sistemas elétricos para usinas nucleares.

A IEC 61513 e a IEC 63046 se referem diretamente a outros padrões da IEC SC45A para tópicos gerais relacionados à categorização de funções e classificação de sistemas, qualificação, separação, defesa contra falha de causa comum, design da sala de controle, compatibilidade eletromagnética, segurança cibernética, aspectos de software e hardware para programação. sistemas digitais, coordenação de requisitos de segurança e gestão do envelhecimento. As normas referenciadas diretamente neste segundo nível devem ser consideradas em conjunto com a IEC 61513 e a IEC 63046 como um conjunto consistente de documentos.

Em um terceiro nível, as normas IEC SC45A não referenciadas diretamente pela IEC 61513 ou IEC 63046 são as normas relacionadas a equipamentos, métodos técnicos ou atividades específicas. Geralmente esses documentos, que fazem referência a documentos de segundo nível para tópicos gerais, podem ser usados por si próprios. Um quarto nível, estendendo a série IEC SC45, corresponde aos relatórios técnicos que não são normativos.

A série de normas IEC SC45A implementa e detalha consistentemente os princípios de segurança e proteção e os aspectos básicos fornecidos nas normas de segurança da IAEA relevantes e nos documentos relevantes da série de segurança nuclear da IAEA (NSS). Em particular, isso inclui os requisitos da AIEA SSR-2/1, estabelecendo requisitos de segurança relacionados ao

projeto de usinas nucleares, o guia de segurança da IAEA SSG-30, que trata da classificação de segurança de estruturas, sistemas e componentes em centrais nucleares, o guia de segurança da AIEA SSG-39, que trata do projeto de sistemas de instrumentação e controle para centrais nucleares, o Guia de segurança da IAEA SSG-34, que trata do projeto de sistemas de energia elétrica para centrais nucleares e o guia de implementação NSS17 para segurança de computadores em instalações nucleares. A terminologia e definições de segurança usadas pelas normas SC45A são consistentes com as usadas pela IAEA.

A IEC 61513 e a IEC 63046 adotaram um formato de apresentação semelhante à publicação básica de segurança IEC 61508, com uma estrutura de ciclo de vida geral e uma estrutura de ciclo de vida do sistema. Em relação à segurança nuclear, as normas IEC 61513 e IEC 63046 fornecem a interpretação dos requisitos gerais das normas IEC 61508-1, IEC 61508-2 e IEC 61508-4, para o setor de aplicações nucleares.

Nesta estrutura, as IEC 60880, IEC 62138 e IEC 62566 correspondem à IEC 61508-3 para o setor de aplicações nucleares. As normas IEC 61513 e IEC 63046 referem-se à ISO, bem como à IAEA GS-R parte 2 e IAEA GS-G-3.1 e IAEA GS-G-3.5 para tópicos relacionados à garantia de qualidade (QA). No nível 2, em relação à segurança nuclear, a IEC 62645 é o documento de entrada para os padrões de segurança IEC/SC45A. Baseia-se nos princípios válidos de alto nível e nos principais conceitos das normas genéricas de segurança, em particular ISO/IEC 27001 e ISO/IEC 27002; adapta-os e os completa para se ajustarem ao contexto nuclear e coordenar com a série IEC 62443. No nível 2, a IEC 60964 é o documento de entrada para os padrões das salas de controle IEC/SC45A e a IEC 62342 é o documento de entrada para as normas de gestão de envelhecimento.

IEC TR 61511-4: a segurança instrumental na indústria de processo

Esse Relatório Técnico, editado em 2020 pela International Electrotechnical Commission (IEC), aborda os sistemas instrumentalizados de segurança (safety instrumented systems – SIS) para a indústria de processo. Ele foi escrito para usar uma terminologia familiar neste setor e para definir os requisitos práticos de implementação com base nas cláusulas independentes do setor apresentadas na norma básica de segurança IEC 61508. A IEC 61511-1 é reconhecida como uma boa prática de engenharia em muitos países e um requisito regulatório em um número crescente de países.

A IEC TR 61511-4:2020 – Functional safety – Safety instrumented systems for the process industry sector – Part 4: Explanation and rationale for changes in IEC 61511-1 from Edition 1 to Edition 2 especifica a lógica por trás de todas as cláusulas e o relacionamento entre elas, aumenta a conscientização sobre os equívocos mais comuns e interpretações errôneas das cláusulas e das mudanças relacionadas a elas, explica as diferenças entre a ed. 1 e a ed. 2 da IEC 61511-1 e as razões por trás das alterações, apresenta os resumos de alto nível de como cumprir os requisitos das cláusulas, e explica as diferenças na terminologia entre a IEC 61508-4: 2010 e a IEC 61511-1 ed. 2.

CONTEÚDO…………………… 2

PREFÁCIO. ………………….. 5

INTRODUÇÃO.. ……………… 7

1 Escopo………………………. 8

2 Referências normativas…… ….. 8

3 Termos, definições e termos abreviados………………… 8

3.1 Termos e definições………………………………… 8

3.2 Termos abreviados……………………….. .. 9

4 Antecedentes………………. …………….. 10

5 Gerenciamento da segurança funcional (IEC 61511-1 Ed. 2, cláusula 5) … 10

5.1 Por que essa cláusula é importante?… ……………………….. 10

5.2 Equívocos comuns……… ………………………………… 10

5.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?……… …. 11

5.3.1 Sistemas existentes……………………………………. 11

5.3.2 Gerenciamento de mudanças……………………. 11

5.3.3 Métricas de desempenho e garantia de qualidade……… ……… 11

5.3.4 Competência…………………………………. ..12

5.3.5 Mais requisitos para fornecedores de produtos e serviços de segurança funcional…….. 12

5.4 Resumo de como………………………….. ..12

6 Ciclo de vida da segurança (IEC 61511-1 Ed. 2, cláusula 6)………. 12

6.1 Por que essa cláusula é importante? ……………………….. 12

6.2 Conceitos errôneos comuns………………………………. 12

6.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?….. …. 13

6.4 Resumo de como…………………………………. ..13

7 Verificação (IEC 61511-1 Ed. 2, Cláusula 7)…………………. 13

7.1 Por que essa cláusula é importante?………………………. 13

7.2 Equívocos comuns………………………………. 13

7.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?………… …. 13

7.4 Resumo de como………………………….. ..13

8 Análise de perigos e riscos (IEC 61511-1 Ed. 2, cláusula 8)…………… 13

8.1 Por que essa cláusula é importante? ……………………….. 13

8.2 Equívocos comuns. ………………………………… 14

8.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?………………. …. 14

8.4 Resumo de como………………………………….. ..15

9 Alocação de funções de segurança para camadas de proteção (IEC 61511-1 Ed. 2, cláusula 9) ……….. 15

9.1 Por que essa cláusula é importante?……………………… 15

9.2 Equívocos comuns…. ………………………………… 15

9.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?………. …. 16

9.3.1 Limites nas camadas de proteção BPCS…………………. 16

9.3.2 Requisitos para reivindicar RRF> 10.000 no total para as proteções dos instrumentos………………………………… .16

9.4 Resumo de como…………………………. ..16

10 Especificação dos requisitos de segurança do SIS (IEC 61511-1 Ed. 2, cláusula 10)………………….. 17

10.1 Por que essa cláusula é importante?……………………… 17

10.2 Equívocos comuns. ………………………………… 17

10.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?…………… …. 18

10.4 Resumo de como…………………………………….. ..18

11 Projeto e engenharia (IEC 61511-1 Ed. 2, cláusula 11)……………. 18

11.1 Por que essa cláusula é importante?…………………….. 18

11.2 Equívocos comuns……………………………….. 18

11.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?…… …. 19

11.3.1 Tolerância a falhas de hardware……………………….. 19

11.3.2 Requisitos de risco à segurança…………………… 20

11.3.3 Manual de segurança …………………………. 20

11.3.4 Requisitos para o comportamento do sistema na detecção de uma falha…………….. 20

11.3.5 Limitações no projeto de comunicação do dispositivo de campo………….. .21

11.4 Resumo de como………………………….. ..21

12 Desenvolvimento de programa de aplicativo (IEC 61511-1 Ed. 2, cláusula 12)…………….. 21

12.1 Por que essa cláusula é importante?………………… 21

12.2 Equívocos comuns………………………………… 22

12.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?……………. …. 22

12.4 Resumo de como…………………………………… ..22

13 Ensaio de aceitação da fábrica (IEC 61511-1 Ed. 2, cláusula 13)……….. 22

13.1 Por que essa cláusula é importante?……………… 22

13.2 Equívocos comuns………………………………… 23

13.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?…… …. 23

13.4 Resumo de como ………………………. ..23

14 Instalação (IEC 61511-1 Ed. 2, cláusula 14)……………….. 23

14.1 Por que essa cláusula é importante?. ……………………….. 23

14.2 Equívocos comuns………………………… 24

14.3 O que foi alterado em Ed. 1 a Ed. 2 e por quê?…………… …. 24

14.4 Resumo de como……………………………………. ..24

15 Validação (IEC 61511-1 Ed. 2, Cláusula 15)……………. 24

15.1 Por que essa cláusula é importante?…………….. 24

15.2 Equívocos comuns………………………… 24

15.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?…………….. …. 24

15.4 Resumo de como…………………………………….. ..24

16 Operação e manutenção (IEC 61511-1 Ed. 2, cláusula 16)…. ……. 25

16.1 Por que essa cláusula é importante?………………………. 25

16.2 Equívocos comuns…… ………………………………… 25

16.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?……… …. 26

16.3.1 Medidas de detecção, desvio e compensação de falhas……… 26

16.3.2 Ensaio de prova após reparo e alteração……………….. 26

16.4 Resumo de como……………………………………. ..26

17 Modificação (IEC 61511-1 Ed. 2, cláusula 17)…………….. 26

17.1 Por que essa cláusula é importante?……………………… 26

17.2 Equívocos comuns………………………………. 26

17.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?……… …. 27

Planejando e concluindo alterações….. …………………………… 27

17.4 Resumo de como…………………………………… ..27

18 Desativação (IEC 61511-1 Ed. 2, Cláusula 18)……….. 27

18.1 Por que essa cláusula é importante?…………………… 27

18.2 Equívocos comuns.. ………………………………… 27

18.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?…….. …. 28

18.3.1 Planejando e concluindo as alterações…….. ……………….. 28

18.4 Resumo de como………………………………….. ..28

19 Documentação (IEC 61511-1 Ed. 2, cláusula 19)……………….. 28

19.1 Por que essa cláusula é importante?……………………….. 28

19.2 Equívocos comuns… ………………………………… 28

19.3 O que foi alterado de Ed. 1 a Ed. 2 e por quê?……………… …. 28

19.4 Resumo de como…………………………………………. ..28

20 Definições (IEC 61511-1 Ed. 2, Cláusula 3)…………………… 29

20.1 Por que essa cláusula é importante?………………………. 29

20.2 Equívocos comuns. ………………………………… 29

20.3 O que foi alterado a partir de Ed. 1 a Ed. 2 e por quê?…. …. 29

20.4 Resumo de como………………………. ..37

Bibliografia……………………………… ………………….. 38

Tabela 1 – Termos abreviados usados na IEC TR 61511-4…………… 9

Tabela 2 – Justificativa para IEC 61511-1 Ed. 2 termos e definições……………….. 29

A IEC 61511 (todas as partes) trata dos sistemas instrumentados de segurança (SIS) para a indústria de processo. Ela foi escrita para usar a terminologia familiar neste setor e para definir os requisitos práticos de implementação com base nas cláusulas independentes do setor apresentadas na norma básica de segurança IEC 61508. A IEC 61511-1 é reconhecida como uma boa prática de engenharia em muitos países e um requisito regulatório em um número crescente de países.

No entanto, os padrões evoluem com a experiência do aplicativo no setor afetado. A segunda edição da IEC 61511-1 foi editada com base em uma década de experiência no setor de processos internacionais na aplicação dos requisitos da primeira edição da IEC 61511-1: 2003. As mudanças da Edição 1 à Edição 2 foram iniciadas por comentários dos Comitês Nacionais, representando um amplo espectro de usuários do padrão em todo o mundo.

Na Edição 1: 2003 (Ed. 1) 1, os requisitos que tratam da prevenção e controle de erros sistemáticos que ocorrem durante o projeto, engenharia, operação, manutenção e modificação foram adaptados principalmente para suportar funções de segurança independentes até um SIL 3 de meta de desempenho. Por outro lado, a Edição 2: 2016 (Ed. 2) precisava abordar a tendência predominante de compartilhar sistemas de automação em várias funções de segurança.

A Ed. 2 também precisava abordar as más interpretações comuns do Ed. 1 requisitos que ficaram evidentes para a equipe de manutenção da IEC 61511 (MT 61511) nos anos intermediários. Por exemplo, a ed. 2 reforçou a necessidade de projetar para gerenciamento de segurança funcional, em vez de um foco restrito em um cálculo e gerenciar o desempenho real do tempo no SIS.

A IEC TR 61511-4 foi criada para fornecer uma breve introdução das questões acima para o público em geral, com o conteúdo mais detalhado restante nas principais partes da série IEC 61511. A IEC TR 61511-4 descreve a lógica subjacente das cláusulas primárias na IEC 61511-1, esclarece alguns conceitos errôneos comuns de aplicativos, fornece uma lista das principais diferenças entre a primeira e a segunda edições da IEC 61511-1 e fornece uma breve explicação de o setor de processo típico aborda a aplicação de cada cláusula primária.

IEC 62443-4-2: a segurança para a automação industrial e os sistemas de controle

Essa norma internacional, editada pela International Electrotechnical Commission (IEC) em 2019, fornece os requisitos detalhados de componentes do sistema de controle técnico (component requirements – CR) associados aos sete requisitos fundamentais (foundational requirements – FR) descritos na IEC TS 62443-1-1, incluindo a definição dos requisitos para os níveis de segurança da capacidade do sistema de controle e seus componentes, SL-C (componente).

A IEC 62443-4-2:2019 – Security for industrial automation and control systems – Part 4-2: Technical security requirements for IACS components fornece os requisitos detalhados de componentes do sistema de controle técnico (component requirements – CR) associados aos sete requisitos fundamentais (foundational requirements – FR) descritos na IEC TS 62443-1-1, incluindo a definição dos requisitos para os níveis de segurança da capacidade do sistema de controle e seus componentes, SL-C (componente).

Conforme definido na IEC TS 62443-1-1, existem sete requisitos fundamentais (FR): controle de identificação e autenticação (IAC), controle de uso (UC), integridade do sistema (SI), confidencialidade dos dados (DC), fluxo restrito de dados (RDF), resposta oportuna a eventos (TRE) e disponibilidade de recursos (RA). Esses sete FR são a base para definir os níveis de capacidade de segurança do sistema de controle. Definir os níveis de capacidade de segurança para o componente do sistema de controle é a meta e o objetivo deste documento, em oposição ao SL-T ou SLs alcançados (SL-A), que estão fora do escopo.

As organizações de sistemas de automação e controle industrial (industrial automation and control systems – IACS) usam cada vez mais dispositivos de rede comerciais prontos para uso (comercial off-the-shelf – COTS) que são baratos, eficientes e altamente automatizados. Os sistemas de controle também estão cada vez mais interconectados com redes não IACS por razões comerciais válidas. Esses dispositivos, tecnologias abertas de rede e maior conectividade oferecem uma maior oportunidade para ataques cibernéticos contra o hardware do sistema de controle e programas.

Essa fraqueza pode levar a consequências de saúde, segurança e meio ambiente (SMS), financeiras e/ou de reputação nos sistemas de controle implantados. As organizações que optam por implantar soluções de segurança cibernética de tecnologia da informação comercial (TI) para lidar com a segurança do IACS podem não compreender completamente os resultados de sua decisão. Embora muitos aplicativos de negócios de TI e soluções de segurança possam ser aplicados ao IACS, eles devem ser aplicados de maneira apropriada para eliminar consequências inadvertidas. Por esse motivo, a abordagem usada para definir os requisitos do sistema é baseada em uma combinação de requisitos funcionais e avaliação de riscos, muitas vezes incluindo a conscientização de questões operacionais.

As contramedidas de segurança do IACS não devem ter o potencial de causar perda de serviços e funções essenciais, incluindo procedimentos de emergência (as contramedidas de segurança de TI, como frequentemente implantadas, têm esse potencial). As metas de segurança do IACS concentram-se na disponibilidade do sistema de controle, proteção da planta, operações da planta (mesmo em modo degradado) e resposta do sistema com tempo crítico.

As metas de segurança de TI geralmente não dão a mesma ênfase a esses fatores; eles podem estar mais preocupados em proteger as informações do que em ativos físicos. Esses diferentes objetivos devem ser claramente definidos como objetivos de segurança, independentemente do grau de integração da planta alcançado. Uma etapa fundamental na avaliação de riscos, conforme exigido pela IEC 62443‑2‑11, deve ser a identificação de quais serviços e funções são realmente essenciais para operações (por exemplo, em algumas instalações, o suporte de engenharia pode ser determinado como um serviço ou função não essencial). Em alguns casos, pode ser aceitável que uma ação de segurança cause perda temporária de um serviço ou função não essencial, diferentemente de um serviço ou função essencial que não deve ser afetado adversamente.

Este documento fornece os requisitos técnicos de segurança cibernética para os componentes que compõem um IACS, especificamente os dispositivos incorporados, componentes de rede, componentes host e aplicativos de software. O anexo A descreve categorias de dispositivos comumente usados em SIGC. Este documento deriva dos requisitos de segurança do sistema IACS descritos na IEC 62443‑3‑3. O objetivo deste documento é especificar recursos de segurança que permitam que um componente atenue ameaças para um determinado nível de segurança (SL) sem a ajuda de compensar contramedidas. O anexo B fornece uma tabela que resume os SL de cada um dos requisitos e aprimoramentos de requisitos definidos neste documento.

O objetivo principal da série IEC 62443 é fornecer uma estrutura flexível que facilite o enfrentamento de vulnerabilidades atuais e futuras no IACS e aplique as mitigações necessárias em um ambiente de maneira sistemática e defensável. É importante entender que a intenção da série IEC 62443 é criar extensões para a segurança corporativa que adaptam os requisitos para sistemas de TI comerciais e os combinam com os requisitos exclusivos para integridade e integridade para os IACS.

O público da comunidade IACS deste documento deve ser proprietário de ativos, integradores de sistemas, fornecedores de produtos e, quando apropriado, autoridades de conformidade. As autoridades de conformidade incluem agências governamentais e reguladores com autoridade legal para realizar auditorias para verificar a conformidade com as leis e regulamentos.

Os integradores de sistemas usarão este documento para ajudá-los a adquirir componentes do sistema de controle que compõem uma solução IACS. A assistência estará na forma de ajudar os integradores de sistemas a especificar o nível apropriado de capacidade de segurança dos componentes individuais necessários. Os principais padrões para integradores de sistemas são IEC 62443‑2‑1, IEC 62443‑2‑4, IEC 62443‑3‑2 e IEC 62443‑3‑3, que fornecem requisitos organizacionais e operacionais para um sistema de gerenciamento de segurança e os orientam através do processo de definição de zonas de segurança para um sistema e os níveis de capacidade de segurança de destino (SL-T) para essas zonas. Uma vez definido o SL-T para cada zona, os componentes que fornecem os recursos de segurança necessários podem ser usados para obter o SL-T para cada zona.

Os fornecedores de produtos usarão este documento para entender os requisitos impostos aos componentes do sistema de controle para níveis específicos de capacidade de segurança (SL-C) desses componentes. Um componente pode não fornecer a capacidade necessária em si, mas pode ser projetado para integrar-se a uma entidade de nível superior e, assim, se beneficiar da capacidade dessa entidade – por exemplo, um dispositivo incorporado pode não estar mantendo um diretório de usuário, mas pode se integrar a um sistema amplo serviço de autenticação e autorização e, portanto, ainda atendem aos requisitos para fornecer recursos de autenticação, autorização e gerenciamento de usuários individuais.

Este documento orientará os fornecedores de produtos sobre quais requisitos podem ser alocados e quais devem ser nativos nos componentes. Conforme definido na Prática 8 da IEC 62443‑4‑1, o fornecedor do produto fornecerá documentação sobre como integrar adequadamente o componente em um sistema para atender a um SL-T específico. Os requisitos de componentes (CR) neste documento são derivados dos requisitos de sistema (SR) da IEC 62443‑3‑3. Os requisitos da IEC 62443‑3‑3 são referidos como SR, derivados dos requisitos gerais (FR) definidos na IEC 62443‑1‑1. Os CR também podem incluir um conjunto de aprimoramentos de requisitos (RE). A combinação de CR e RE é o que determinará o nível de segurança de destino de que um componente é capaz.

Este documento fornece requisitos de componentes para quatro tipos de componentes: aplicativo de software, dispositivo incorporado, dispositivo host e dispositivo de rede. Assim, os CR para cada tipo de componente serão designados da seguinte maneira: requisitos de aplicativos de software (SAR); requisitos de dispositivo incorporado (EDR); requisitos de dispositivo host (HDR); e requisitos de dispositivo de rede (NDR).

A maioria dos requisitos deste documento são os mesmos para os quatro tipos de componentes e, portanto, são designados simplesmente como CR. Quando houver requisitos específicos de componentes exclusivos, o requisito genérico indicará que os requisitos são específicos de componentes e estão localizados nas cláusulas de requisitos específicos de componentes deste documento. A figura 1 mostra uma representação gráfica da série IEC 62443 quando este documento foi escrito.

As peças compradas e fabricadas por manufatura aditiva

Pretende-se que este documento seja utilizado pelos fornecedores de peças e/ou pelos clientes de peças fabricadas por manufatura aditiva. Este documento é uma norma de nível superior na hierarquia de normas de manufatura aditiva, destinado a ser aplicado às peças fabricadas por qualquer processo de manufatura aditiva e qualquer tipo de material.

A NBR ISO/ASTM 52901 de 11/2019 – Manufatura aditiva — Princípios gerais — Requisitos para peças compradas, fabricadas por manufatura aditiva define e especifica os requisitos para peças compradas, fabricadas por manufatura aditiva. Fornece as diretrizes para os elementos a serem trocados entre o cliente e o fornecedor da peça no momento do pedido de compra, incluindo as informações da solicitação do cliente, dados de definição da peça, requisitos de material de alimentação, características e propriedades da peça final, requisitos de inspeção e métodos de aceitação da peça. É aplicável ao uso como uma base para obter peças fabricadas por manufatura aditiva que atendam aos requisitos mínimos de aceitação. Requisitos mais rigorosos da peça podem ser especificados por meio da adição de um ou mais requisitos complementares no momento do pedido de compra.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que as características da peça devem atender?

Como deve ser feita a inspeção das peças?

Qual deve ser a documentação de aceitação?

Quais são as informações do pedido de compra da peça?

Este documento abrange a definição e a comunicação de requisitos para peças compradas, fabricadas por manufatura aditiva. Ele é destinado a permitir uma comunicação eficiente e inequívoca entre os fornecedores de peças e os clientes de peças fabricadas por manufatura aditiva, assegurando que a peça resultante atenda aos requisitos do cliente.

Pretende-se que este documento seja utilizado pelos fornecedores de peças e/ou pelos clientes de peças fabricadas por manufatura aditiva. Este documento é uma norma de nível superior na hierarquia de normas de manufatura aditiva, destinado a ser aplicado às peças fabricadas por qualquer processo de manufatura aditiva e qualquer tipo de material.

Este documento permite diferentes requisitos com base na classificação da criticidade e do uso final esperado das peças fabricadas por manufatura aditiva. O pedido de compra da peça deve incluir os seguintes elementos: organização e informações de contato do cliente (de preferência com pontos de contato para pedidos de compra, pagamento e entrega); definição da (s) peça (s) a ser (em) fabricada (s); condições associadas de entrega ao cliente; outros requisitos de compra; uma identificação de referência deste documento, ou seja, NBR ISO/ASTM 52901, e outros regulamentos nacionais/internacionais pertinentes; identificação do pedido de compra da peça do cliente (número de requisição, data de requisição etc.); designação ou descrição da (s) peça (s) desejada (s) (número/identificação da peça, índice de revisão, etc.); quantidade desejada de peças; data de entrega requerida, se for um único pedido de compra; quantidade de entrega, frequência e período de duração requeridos do pedido de compra, se for um pedido com entrega programada ou múltiplos pedidos; marcação ou etiquetagem requerida das peças, incluindo, por exemplo, rótulos, número de série, número de lote, tipo de material de alimentação, referência do fornecedor da peça, identificador de inspeção, referência de rastreabilidade, etc.; requisitos da embalagem da peça para entrega ao cliente; endereço de entrega do cliente.

Os valores específicos dos elementos estão sujeitos a um acordo entre o cliente e o fornecedor da peça. A definição da peça deve incluir os seguintes elementos: geometria da peça; tolerâncias; textura superficial; orientação de fabricação, se necessário, para atender aos requisitos do cliente; material de alimentação para a peça a ser fabricada, se necessário, para atender aos requisitos do cliente; métodos de reparo (levando em consideração as categorias de ensaio definidas na NBR ISO 17296-3); imperfeições ou desvios aceitáveis; informações de controle do processo.

A divulgação de informações confidenciais está sujeita a um acordo entre o cliente e o fornecedor da peça. A definição da peça deve incluir os seguintes elementos: referência do desenho de engenharia (número, índice e versão), se aplicável; referência do arquivo digital (nome, formato, versão), se aplicável; descrição da geometria por um desenho de engenharia que defina completamente a peça, ou um arquivo digital contendo o modelo 3D ou as informações de geometria da peça.

Para troca de dados eletrônicos, o cliente e o fornecedor da peça devem assegurar que os sistemas utilizados sejam compatíveis e devem definir o método de fornecimento de arquivos digitais, incluindo o nível de confidencialidade e os métodos de proteção de dados, o formato dos dados eletrônicos, e os procedimentos para criação do arquivo digital (incluindo a fonte dos dados eletrônicos e os requisitos de conversão necessários para produzir o arquivo digital). Os documentos de descrição da geometria da peça podem ser fornecidos pelo cliente ou pelo fornecedor da peça.

O formato de arquivo STL utilizado por muitas máquinas de manufatura aditiva não contém unidades de medida como metadados. Quando somente arquivos STL forem fornecidos pelo cliente, as informações do pedido de compra especificam as unidades de medida da peça juntamente com o arquivo digital. Mais informações sobre arquivos digitais podem ser encontradas na ISO/ASTM 52915.

As tolerâncias devem ser especificadas (por exemplo, tolerâncias gerais, ver NBR ISO 2768-1 e NBR ISO 2768-2, e/ou tolerâncias específicas, ver ISO 1101), incluindo a definição de zonas funcionais (por exemplo, sobremetal para usinagem para acabamento ou retrabalho) e zonas estéticas ou cosméticas, de modo que o fornecedor da peça possa orientar a peça de acordo com os requisitos e decidir sobre a localização e o tipo de estruturas de suporte da peça, se necessário. Convém que a textura superficial (também conhecida como acabamento superficial) da peça seja especificada, se possível por referência a normas existentes (por exemplo, utilizando a ISO 1302 e/ou a ISO 25178-1).

O requisito de textura superficial pode ser especificado por um valor máximo de rugosidade/ondulação para toda a peça ou por uma rugosidade/ondulação específica para uma ou mais superfícies críticas. A textura superficial geralmente depende de diversos parâmetros do processo, incluindo a orientação da peça e a espessura de camada.

O processo de fabricação desejado para construir a peça deve ser identificado, incluindo as etapas de pós-processamento necessárias (por exemplo, tratamento térmico, acabamento superficial). A orientação de fabricação deve seguir as regras fornecidas na ISO/ASTM 52921. A orientação de fabricação geralmente é escolhida pelo fornecedor da peça para atender aos requisitos; entretanto, o cliente pode especificar a orientação de fabricação da peça, se necessário, para obter as propriedades mecânicas específicas.

O tipo e/ou os limites da composição química do material de alimentação para a peça a ser fabricada devem ser especificados por referência a normas e/ou especificações existentes do material. O pedido de compra deve mencionar ou referenciar especificações apropriadas para as características do material de alimentação para a peça a ser fabricada, os requisitos de armazenamento, manuseio e processamento para o uso adequado do material de alimentação e para o controle de suas propriedades, e se for necessário atender aos requisitos do cliente, informações sobre o uso permitido do material de alimentação reciclado (reutilizado).

Se o cliente tiver preocupações sobre o país de origem do material de alimentação ou do produtor do material de alimentação, a fonte desejada do material de alimentação pode ser especificada. Qualquer reparo deve ser comunicado ao cliente e autorizado antes de ser realizado. Os métodos de reparo autorizados (como reparo por deposição de material, soldagem, colagem ou aglutinação) e as condições de reparo correspondentes devem ser especificados, se necessário, e devem ser aprovados pelo cliente.

As tolerâncias para trincas, defeitos, descontinuidades, material estranho, inclusões, imperfeição (ões) ou desvio (s) aceitável (eis), descolorações e porosidade devem ser acordadas entre o fornecedor da peça e o cliente. Os requisitos para a repetibilidade do processo de fabricação devem ser identificados, incluindo referência a normas ou métodos de medição relevantes para avaliar a repetibilidade, particularmente para pedidos de compra de peças múltiplas ou pedidos de compra múltiplos esperados da mesma peça.

Os requisitos para documentar as informações de controle do processo durante a fabricação devem ser identificados. As informações requeridas, conforme acordado entre o fornecedor da peça e o cliente, devem ser documentadas durante a fabricação e incluídas no registro de qualidade para a peça de manufatura aditiva como retidas pelo fornecedor da peça. O período de retenção do registro de qualidade e as informações de controle do processo a serem transmitidas ao cliente devem ser acordados entre o cliente e o fornecedor.

Se prestadores de serviços externos autorizados forem requeridos (por exemplo, para pós-tratamento, inspeção, etc.), eles devem ser acordados entre o fornecedor da peça e o cliente, e devem ser documentados. O pedido de compra deve especificar se a inspeção deve ser realizada em uma ou mais peças finais ou de referência (por exemplo, em um turno completo de produção, em amostras dos turnos de produção ou em peças de referência que tenham características similares, porém geometria ou escala diferentes).

Se os resultados do ensaio especificado no pedido de compra estiverem em conformidade com os critérios de aceitação, a peça deve ser aceita. Se os resultados dos ensaios não estiverem em conformidade com os valores definidos no pedido de compra, amostras adicionais do mesmo turno de produção devem ser submetidas a ensaios adicionais para aceitação.

Qualquer peça que não esteja em conformidade com os requisitos, porém que atenda às condições para retrabalho estipuladas no pedido de compra, pode ser reparada ou aceita. Qualquer não conformidade remanescente com os requisitos do pedido de compra, se o retrabalho for realizado ou não, deve ser revisada pelo cliente para determinar se um desvio específico dos requisitos pode ser aceito. Caso contrário, as peças devem ser rejeitadas.

Identificação por rádio frequência deve ser feita conforme a norma técnica

rfi

A Identificação por Rádio Frequência (RFID – Radio-Frequency IDentification) foi usado pela primeira vez pelo físico escocês Robert Alexander Watson-Watt que desenvolveu, em conjunto com o exército britânico, um sistema para identificação de aeronaves amigas no radar, para tornar realmente efetiva a preparação contra ataques inimigos. Assim, foram implantados transmissores em aviões ingleses que davam respostas diferentes ao radar, indicando-os como amigos. Deste modo, estava implantado o primeiro sistema de identificação por rádio frequência.

Um sistema de RFID é composto, basicamente, de uma antena, um transceptor, que faz a leitura do sinal e transfere a informação para um dispositivo leitor, e também um transponder ou etiqueta de RF (rádio frequência), que deverá conter o circuito e a informação a ser transmitida. Estas etiquetas podem estar presentes em pessoas, animais, produtos, embalagens, enfim, em equipamentos diversos.

Assim, a antena transmite a informação, emitindo o sinal do circuito integrado para transmitir suas informações para o leitor, que por sua vez converte as ondas de rádio do RFID para informações digitais. Depois de convertidas, poderão ser lidas e compreendidas por um computador para então ter seus dados analisados.

As etiquetas passivas utilizam a rádio frequência do leitor para transmitir o seu sinal e normalmente têm com suas informações gravadas permanentemente quando são fabricadas. Contudo, algumas destas etiquetas são regraváveis. Já as ativas são muito mais sofisticadas e caras e contam com uma bateria própria para transmitir seu sinal sobre uma distância razoável, além de permitir armazenamento em memória RAM capaz de guardar até 32 KB.

As frequências usadas em um sistema RFID podem variar muito de acordo com a sua utilização. Um sistema de radar possui frequência e alcances muito maiores que um sistema de pagamento via telefone celular, por exemplo. O sistema de identificação por rádio frequência pode atuar em diversas frentes, que podem ir desde aplicações médicas e veterinárias até uso para pagamento e substituição de códigos de barras.

Em supermercados e lojas seria usado para o controle de estoque. Com etiquetas RFID presentes em todos os produtos, por meio das ondas de rádio seria possível ter um relato completo e preciso de tudo que está em estoque, evitando erros e dispensando a necessidade de fazer balanços mensais demorados e manuais.

Para conferir mais segurança e evitar roubo de cargas, empresas de transporte e logística já vêm implantando o sistema de RFID para rastrear as cargas. Isso é, acima de tudo, uma medida de segurança, visto que o rastreamento pretende coibir a ação de ladrões, afinal, não importa para onde vá, a carga terá sua posição localizada em tempo real.

Com a crescente ameaça de extinção que sofrem diversas espécies de animais em todo o mundo, o sistema RFID é bastante útil para este tipo de controle, pois etiquetas inseridas em animais criados em cativeiros e soltos na floresta podem dar sua exata posição. Isso facilita em muito o trabalho de biólogos na hora de verificar como foi a adaptação do animal em seu “novo” habitat.

Além disso, os chips inseridos em animais domésticos (como cães e gatos) podem acabar com o grande número de bichos abandonados nas grandes cidades, afinal, desta forma se tem um controle sobre quem é o dono do animal, facilitando a aplicação de medidas legais para coibir este tipo de atos.

Atualmente, algumas modalidades de corridas utilizam este sistema para medir com precisão o tempo de cada participante. Esta tecnologia também pode facilitar a vida das pessoas através de identificações biométricas, como passaportes e documentos de identidades. Desta forma, um chip de RFID seria implantando em um único documento e ali estariam contidas todas as informações básicas a seu respeito: números de documentos, cor dos olhos, altura, impressões digitais, etc.

Mas, há muita controvérsia quando o assunto é implante de chips em seres humanos. Isso porque se por um lado um chip poderá facilitar a realização de pagamentos, diagnósticos médicos e também a localização de vítimas de sequestros, por exemplo, por outro esta tecnologia pode ser usada para espionagem e invasão de privacidade de qualquer um.

A NBR 15006 de 08/2016 – Identificação de animais por radiofrequência – Conceitos técnicos especifica como um transponder é ativado e como as informações armazenadas são transferidas a um transceptor. O conceito técnico descrito para identificação animal é baseado no princípio da identificação por radiofrequência (RFID). Esta norma deve ser aplicada em conjunto com a NBR 14766:2012, a qual descreve a estrutura e o conteúdo da informação dos códigos armazenados no transponder. O cumprimento da Seção 6 pode envolver o uso de patentes relativas a métodos de transmissão.

A comprovação, a validade e os objetivos desses direitos de patentes, assim como seu uso, devem ser tratados diretamente entre as partes interessadas. O sistema deve ser definido de tal forma que um transceptor leia tanto os transponders FDX (dúplex pleno) quanto os HDX (meio dúplex).

Um transceptor fixo deve ativar transponders usando um campo de ativação com uma frequência de ativação de (134,2 ± 13,42 x 10-3) kHz. O período de ativação deve ser de 50 ms. Se um sinal FDX for recebido durante a ativação, mas não for validado, o período de ativação deve ser aumentado até que o telegrama de identificação seja validado, mas não superior a 100 ms. Consecutivamente, deve haver uma pausa no sinal de ativação. Se for recebido um sinal HDX, a pausa deve durar 20 ms. Se não for detectado qualquer sinal HDX dentro de 3 ms após uma atenuação de 3 dB do campo de ativação, a ativação deve ser reiniciada.

Para fins de sincronização, cada décimo ciclo de ativação deve ter um padrão fixo composto de uma ativação de 50 ms, seguida de uma pausa de 20 ms (ver Anexo B), que indica o início do novo período de transmissão. Um transceptor móvel deve ser capaz de detectar a presença de transceptores ativos adicionais através do recebimento de sinais de ativação.

Se não for detectado qualquer sinal de ativação dentro de 30 ms, o transceptor móvel está fora de alcance do campo de outros transceptores ativos e deve usar o protocolo de ativação definido acima para um transceptor fixo. Se o transceptor móvel detectar um sinal de ativação, ele deve aguardar a borda de subida do próximo sinal de ativação e deve ficar ativo durante um período fixo de 50 ms.

O código de identificação deve estar de acordo com a NBR 14766. O código de identificação, os bits de detecção de erro CRC (ver Anexo A) e o trailer devem ser transmitidos iniciando-se com os LSB e terminando com os MSB. Tendo em vista futuros aperfeiçoamentos, como, por exemplo, transponders multipáginas incorporando sensores e/ou memória gravável, o telegrama de identificação deve terminar em 24 bits de trailer, nos quais, por exemplo, as informações vindas dos sensores ou os conteúdos das páginas de trailer podem ser armazenados.

Se o flag para blocos de dados adicionais, especificado na NBR 14766, for 0 (zero) binário, o valor dos bits de trailer será não especificado. O valor dos bits de trailer para blocos de dados adicionais não é definido nesta norma. Não é necessário ler esses bits para detectar corretamente o código de identificação, uma vez que os erros no trailer não serão detectados pelo protocolo de detecção de erro do telegrama de identificação.

Para o sistema dúplex pleno, um transponder FDX que receba o campo de ativação deve transmitir o seu código durante o período de ativação. O transponder FDX usa uma subportadora modificada DBP, cuja amplitude é modulada sobre a portadora de radiofrequência.

Devido ao fato da inclinação de uma transição baixo-alto não ser infinitamente íngreme, toda transição baixo-alto avança no tempo em um máximo de oito ciclos para obter desempenho ótimo. O transponder deve enviar sua mensagem de volta, utilizando as faixas de frequência 129,0 kHz a 133,2 kHz e 135,2 kHz a 139,4 kHz. A duração de um bit é de 32 ciclos de campo de ativação. Isto corresponde a uma taxa de transmissão de 4 194 bits/s.

Para o sistema meio dúplex, se não for recebido qualquer sinal FDX durante a ativação, ou se um sinal FDX for recebido e validado, a ativação deve cessar após 50 ms e uma interrupção do campo de ativação deve ser mantida durante pelo menos 3 ms. A atenuação do campo de ativação de – 3 dB para – 80 dB é concluída dentro de 1 ms.

Um transponder HDX carregado com energia durante a ativação usa a interrupção para transmitir o seu sinal. O transponder HDX deve responder entre 1 ms e 2 ms após uma atenuação de 3 dB do sinal de ativação. Se não for detectado qualquer sinal HDX dentro de 3 ms após uma atenuação de 3 dB do sinal de ativação, a ativação deve ser retomada.

ISO Survey 2015

The ISO Survey of Certifications é uma pesquisa anual do número de certificados válidos para as normas ISO de sistema de gestão em todo o mundo. Para compilar a informação nesta pesquisa, houve contatos com os organismos de certificação credenciados e foram solicitadas as informações sobre o número de certificados válidos em 31 de dezembro de 2015.

O resultado foi uma visão abrangente das certificações nessas normas atualmente disponíveis, apesar das flutuações no número de certificados de ano para ano, devido a diferenças no número de participantes de organismos de certificação e o número de certificados comunicados.

Clique na figura para uma melhor visualização

survey

O estado da arte da calibração de um instrumento analógico

Elcio Cruz de Oliveira

Os sistemas de medição normalmente incluem dispositivos para compensação automática das variações de pressão estática. Estes instrumentos devem ser calibrados, devendo a exatidão das medições estar dentro dos limites para se atingir uma incerteza, no resultado da medição, menor que a especificada para esta aplicação.

De maneira simplificada, o Inmetro [1] recomenda que a calibração de medidores analógicos de pressão com sensor de elemento elástico seja efetuada com aplicação crescente (carregamento) de pressão ou vácuo, nos pontos específicos, até que o instrumento a ser calibrado indique esses valores. Em seguida, os valores correspondentes do padrão são registrados. Em um segundo momento, se deve aliviar continuamente (descarregamento) a pressão ou vácuo, registrando os valores de indicação nos mesmos pontos definidos no carregamento.

Entretanto, outros métodos diferentes do recomendado neste documento [1] podem ser utilizados pelo laboratório, desde que apropriadamente validados, conforme requerido na NBR ISO/IEC 17025 [2]. Dentro deste contexto, observa-se que vários laboratórios realizam calibrações internas fixando o valor do instrumento padrão e fazendo leituras no objeto, a ser calibrado. O objetivo deste trabalho é avaliar o impacto metrológico desta prática em detrimento à calibração conforme a orientação do Inmetro.

Calibração [3] “é a operação que estabelece, sob condições especificadas, numa primeira etapa, uma relação entre os valores e as incertezas de medição fornecidos por padrões, e as indicações correspondentes com as incertezas associadas; numa segunda etapa, utiliza esta informação para estabelecer uma relação, visando a obtenção de um resultado de medição a partir de uma indicação”. A recomendação do Inmetro deixa abertura quanto a qual instrumento deve ser fixado e onde a leitura deve ser feita. Além do mais, em se tratando de instrumentos analógicos, outra fonte de dúvidas é a leitura da escala do medidor.

Escala [3] de um instrumento de medição mostrador “é parte de um instrumento de medição mostrador que consiste num conjunto ordenado de marcas, eventualmente associadas a números ou a valores de grandezas”. A resolução da escala do manômetro em calibração a ser considerada no cálculo de incerteza pode ser preferencialmente escolhida igual a 1, 1/2, 1/5 ou 1/10 do valor de uma divisão da escala [4], a depender da habilidade do operador. Resolução [3] de um dispositivo mostrador “é a menor diferença entre indicações mostradas que pode ser significativamente percebida”.

A incerteza de medição das calibrações é calculada, a partir do GUM [5]. As principais fontes de incerteza levadas em consideração, neste trabalho, são: incerteza do padrão, resolução, repetibilidade, histerese, ajuste da curva e erro sistemático remanescente ou residual.

A incerteza do padrão é obtida pela relação entre a incerteza expandida proveniente do certificado de calibração e o fator de abrangência. A incerteza da resolução é a relação entre a menor divisão da escala e , onde R é a quantidade de vezes que o operador consegue dividir esta menor divisão da escala. A incerteza proveniente da repetibilidade é o próprio desvio padrão das leituras. A incerteza proveniente da histerese é a maior diferença entre um ciclo ascendente e descendente dividida por . A incerteza padrão do ajuste da curva é dada pelo desvio padrão da regressão.

Como estas fontes de incerteza estão na mesma unidade, a incerteza padrão combinada é calculada pela raiz quadrada da soma dos quadrados destes valores. A incerteza expandida é o produto entre esta incerteza padrão combinada e o fator de abrangência, para um nível de confiança de 95%.

A incerteza final da calibração é uma soma linear em módulo entre a incerteza expandida e o erro sistemático remanescente ou residual. Existe um limite abaixo do qual não é possível reduzir o erro sistemático de uma medição. Um destes erros é o de calibração, diretamente associado ao instrumento com o qual se faz a medição. Este tipo de erro é também chamado erro sistemático residual. Geralmente, o erro de calibração (residual) vem indicado no instrumento ou manual, pelo fabricante; é o limite dentro do qual o fabricante garante os erros do instrumento.

Estudo de caso

O objeto, manômetro classe A1, fabricante FAMABRAS, escala de 0 a 42 kgf/cm2, Figura 1, foi calibrado contra um padrão calibrador de pressão, modelo PC-507, fabricante PRESYS, Figura 2. A calibração foi efetuada em 0, 25, 50, 75 e 100% da escala, com quatro leituras em cada ponto, sendo duas ascendentes e duas descendentes.

metrologia1

Figura 1. Manômetro a ser calibrado

metrologia2

Figura 2. Instrumento padrão

Dois procedimentos de calibração foram realizados, que geraram três resultados distintos. O primeiro procedimento foi realizado segundo a recomendação do Inmetro: fixar a leitura no objeto a ser calibrado e fazer leituras no padrão.

O segundo procedimento foi realizado, fixando a leitura no padrão e fazendo leituras no objetivo a ser calibrado. Nesta abordagem, dois diferentes operadores realizaram a atividade, concomitantemente. O primeiro operador fez leituras mais conservadoras, considerando a resolução de 0,5 kgf/cm2 (igual a divisão da escala) e o segundo tomou a postura de um operador mais experiente, considerando a resolução como 0,125 kgf/cm2 (1/4 da divisão da escala). Os resultados das três abordagens da calibração são apresentados na Tabela 1.

CLIQUE NA FIGURA PARA UMA MELHOR VISUALIZAÇÃO

figura 1_metrologia

Os valores em negrito são as contribuições de incerteza mais relevantes, para cada abordagem e suas respectivas porcentagens entre parênteses em relação à incerteza padrão combinada. A repetibilidade é uma fonte de incerteza muito relevante, nas três abordagens.

Na abordagem em que a leitura é feita no instrumento a ser calibrado, sem aumentar a resolução da escala, esta contribuição é tão significativa quanto à repetibilidade. Os valores destacados (3,5; 3,0 e 2,6) se referem à relação entre a incerteza expandida e o erro sistemático remanescente e demostram que esta diminui, quando a leitura é realizada no instrumento padrão.

Enfim, a análise crítica da calibração de um manômetro analógico mostrou a importância de se seguir à orientação normativa em se fazer leituras no instrumento padrão; entretanto, caso sejam feitas leituras no instrumento a se calibrar, este trabalho recomenda que se aumente a resolução do dispositivo mostrador, a fim se de alcançar resultados metrologicamente compatíveis. Estudos futuros serão realizados com outros instrumentos analógicos, variando a resolução de leitura, a fim de se observar se existe uma relação de compatibilidade entre esta prática e a recomendada pelas normas; ou seja, leitura no instrumento padrão.

Agradecimentos

Aos Técnicos de Manutenção do Terminal de Cabiúnas, PETROBRAS TRANSPORTE S.A. – TRANSPETRO, onde a parte experimental deste trabalho foi executada, especialmente à Iziana Dutra Souza, Júlio César Santos Rodrigues, Cláudio Francisco Mota e Alexander Sardemberg da Silva.

Referências

[1] Orientação para realização de calibração de medidores analógicos de pressão. DOQ-CGCRE-017, Revisão 03 – dez/2013.

[2] Requisitos gerais para a competência de laboratórios de ensaio e calibração (2005). Segunda edição. NBR ISO/IEC 17025.

[3] Vocabulário Internacional de Metrologia – Conceitos fundamentais e gerais e termos associados (VIM 2012) – Rio de Janeiro: ABNT, Inmetro.

[4] Medidores de pressão Parte 1: Medidores analógicos de pressão com sensor de elemento elástico — Requisitos de fabricação, classificação, ensaios e utilização (2013). NBR 14105-1.

[5] Guia Para a Expressão da Incerteza de Medição (2003). Terceira edição brasileira em língua portuguesa – Rio de Janeiro: ABNT, Inmetro, SBM.

Elcio Cruz de Oliveira é doutor em ciências, mestre em Metrologia e licenciado em química e consultor da Petrobras Transpetro S.A  – elciooliveira@petrobras.com.br

O que é rastreabilidade

REGULAMENTOS TÉCNICOS

Os Regulamentos Técnicos, estabelecidos por órgãos oficiais nos níveis federal, estadual ou municipal, de acordo com as suas competências específicas, estabelecidas legalmente e que contém regras de observância obrigatórias às quais estabelecem requisitos técnicos, seja diretamente, seja pela referência a uma Norma Brasileira ou por incorporação do seu conteúdo, no todo ou em parte, também estão disponíveis no Portal Target: https://www.target.com.br/produtossolucoes/regulamentos/regulamentos.aspx

Cristiano Bertulucci Silveira e Guilherme Cano Lopes

Atualmente, com a alta competitividade e grandes exigências quanto à qualidade, confiabilidade dos produtos e a transparência dos serviços oferecidos, os sistemas automáticos de rastreamento da cadeia de suprimentos se tornaram uma tendência global. Diversas empresas tem adotado programas de rastreabilidade para aprimorar sua produtividade e procurar ficar a frente dos concorrentes.

rastreabilidade rastreabilidade O que é Rastreabilidade rastreabilidade

Figura 1. Etiquetas utilizadas para rastreabilidade (RFID, Código de barras, 2D Datamatrix).

Rastrear a produção de forma manual não é uma maneira eficaz de atender as necessidades dos processos, pois a probabilidade de erros na identificação e o tempo de resposta às necessidades do processo são maiores. Por outro lado, os sistemas de rastreabilidade automática permitem a documentação da cadeia produtiva em tempo real, melhorando o gerenciamento dos regulamentos de qualidade, flexibilizando as linhas de montagem e aprimorando a logística da empresa. Tendo como objetivo ampliar a margem de lucro, reduzir custos e retrabalhos e, por fim, garantir a satisfação do cliente.

De forma geral, para desenvolver um programa de rastreabilidade é necessário primeiramente desenvolver um mapa de dados, no qual será definido o tipo dos dados a serem rastreados automaticamente. Para definir a origem dos dados é preciso identificar o ativo a com o auxílio de RFID ou códigos de barras fixados aos produtos.

Muitas vezes os portadores de dados de radiofrequência e os códigos de barras são utilizados de forma complementar no sistema. Porque apesar de a identificação por radiofrequência ser muito mais vantajosa quando se trata de um sistema de dados descentralizados, os códigos de barra ainda são muito utilizados para aplicações “somente leitura”, em ambientes não agressivos e com boa visibilidade.

Todas as aplicações dos programas de rastreabilidade visam o aumento da produtividade, assim como o melhor controle e gerenciamento dos processos de produção.

GERENCIAMENTO DE ATIVOS NA FÁBRICA

Os ativos são definidos como toda a forma de bem físico que uma empresa pode controlar. A gestão de um ativo consiste no controle do seu ciclo de vida, registrando suas informações e valores em um mapa de dados. Na indústria, os ativos que são geralmente rastreados consistem em máquinas operatrizes, pallets, containers, ferramentas, tanques de armazenamento e outros componentes industriais. O gerenciamento ou rastreabilidade de ativos consiste em identificar e documentar de forma precisa as mudanças de estado dos ativos.

A rastreabilidade permite, por exemplo, controlar as mudanças de localização, monitorar a disponibilidade e o estado de conformidade de uma série de suprimentos da fábrica. O intuito deste programa é reduzir as perdas dos mesmos e diminuir ao mínimo possível o tempo improdutivo, visando o melhor aproveitamento dos ativos.

MANUFATURA AUTOMATIZADA E INTEGRAÇÃO COM SISTEMAS MES

Os sistemas de execução de fabricação (do inglês Manufacturing Execution Systems, ou MES) são sistemas computacionais que documentam o progresso de um suprimento desde o estado de matéria prima até o produto final, operando em tempo real para manter o controle dos diversos elementos de um processo produtivo. Neste caso,  etiquetas RFID podem interagir com o sistema de manufatura automatizada de formas diferentes.

As tags podem ser utilizadas para o armazenamento de dados da construção de diferentes produtos a serem fabricados, tornando possível a implementação de uma linha de montagem flexível. Ou seja, onde uma única linha de produção realiza a fabricação de peças diferentes a partir das informações de construção contidas na etiqueta ou em um banco de dados centralizado.

As informações referentes aos resultados do processo produtivo também podem ser armazenadas nos portadores de dados para a realização do controle de fluxo e controle de arquivos. No controle de fluxo ocorre a verificação dos testes realizados durante determinado estágio da produção para certificar-se que o produto está apto a continuar no processo ou se precisa ser dirigido ao local de retrabalho. Já o controle de arquivo, é realizado para o armazenamento dos dados do processo. Mantendo assim um histórico no sistema, com informações detalhadas da fabricação de cada produto manufaturado. O que se torna muito útil em eventuais situações de recall ou quando a documentação é solicitada para questões de regulamentação.

LOGÍSTICA INTERNA

As etiquetas RFID podem ser fixadas em pallets e contêineres para auxiliar na logística interna de uma empresa. Ao realizar o transporte de um determinado número de produtos, é possível gravar no portador de dados do pallet a quantidade e a categoria do produto transportado. Evitando perdas e organizando a intralogística de forma rápida e prática.

KANBAN ELETRÔNICO

O Kanban é um sistema que foi desenvolvido a com o intuito de administrar o fluxo de produção a partir de cartões de sinalização que indicavam a entrega ou requisição de um material em determinado setor de uma fábrica. Com o avanço da tecnologia, tornou-se possível automatizar este padrão. Sendo denominado E-Kanban ou simplesmente Kanban eletrônico.

Com o uso do RFID, é possível tornar o mapeamento do movimento dos materiais de uma indústria totalmente automático, a partir da comunicação entre processos por radiofrequência. De forma que os processos se tornam mais rápidos e confiáveis. Além disso, o E-Kanban oferece outras vantagens. Este sistema solicita materiais de forma a equilibrar o inventário. Evitando a escassez da cadeia de suprimentos, assim como o excesso.

Adicionalmente, um sistema de planejamento de recurso corporativo permite integrar as solicitações do E-Kanban com os fornecedores externos. Garantindo o abastecimento adequado para a máxima produtividade.

A rastreabilidade tem sido muito discutida no Brasil, tendo em vista que o Sistema Nacional de Controle de Medicamentos (SNCM) está sendo implantado na indústria farmacêutica. O programa de rastreabilidade de medicamentos visa trazer mais qualidade e segurança para o consumidor, pois de acordo com a Agência Nacional de Vigilância Sanitária (Anvisa), estima-se que cerca de 30% dos medicamentos comercializados no Brasil se encontram em determinada situação de informalidade.

Como, por exemplo, medicamentos falsificados, não registrados, adulterados, roubados ou de origem desconhecida. Além do fato destes medicamentos não pagarem tributos e estarem fora dos padrões regulamentais, o consumo oferece altos riscos de agravar o quadro do paciente, causando danos que podem ser irreversíveis. Com o aumento deste problema na última década, a rastreabilidade de medicamentos foi a solução encontrada para melhorar a segurança do consumidor. Adicionalmente, em casos de problemas excepcionais, tais como o surgimento de efeitos adversos de um medicamento, a rastreabilidade auxiliará na identificação do lote irregular.

rastreabilidade-2 rastreabilidade O que é Rastreabilidade rastreabilidade 2

Figura 2. Etiqueta 2D datamatrix utilizada no SNCM.

Com o programa de rastreabilidade de medicamentos definido como SNCM, todas as embalagens primárias e secundárias deverão ser rastreáveis, sendo que, nas etiquetas devem estar contidas as informações relativas à sua produção, comercialização e descarte. A identificação das embalagens primárias ocorrerá por meio de um código alfanumérico denominado IUM (Identificador Único de Medicamentos), armazenado em etiquetas de código de barras 2D desenvolvidas pela ANVISA e fabricadas pela casa da moeda, com o intuito de evitar fraudes no sistema.

O IUM é composto necessariamente por: código de registro do medicamento segundo a ANVISA, com 13 dígitos; número de série; data de validade; e identificação do lote. Quanto às embalagens secundárias, a identificação poderá ser realizada com códigos de barras convencionais, de uma dimensão.

Segundo estudos da Anvisa, a implantação das etiquetas é um processo mais barato e seguro do que a impressão do código na própria embalagem do medicamento. Os preços das etiquetadoras manuais variam de R$ 50,00 a R$ 300,00, enquanto as automáticas e de alto desempenho possuem uma média de preço em torno de R$ 5000,00 e R$ 14000,00 respectivamente. Além disso, segundo o estudo, 57% das indústrias produtoras de medicamentos já possuem etiquetadoras. Portanto, o impacto nos setores de produção das embalagens dos medicamentos será pequeno. Adicionalmente, não ocorrerá aumento nos preços dos medicamentos além do reajuste anual regulado pela Câmara de Regulação do Mercado de Medicamentos.

Logo, a partir das informações contidas neste artigo, é possível notar a importância que os programas de rastreabilidade possuem atualmente na indústria. A rastreabilidade tem garantido diversos benefícios para as empresas como, por exemplo, um melhor controle de qualidade, maior segurança para os consumidores, eventuais processos de recall facilitados e um aumento considerável da produtividade e competitividade.

Cristiano Bertulucci Silveira é engenheiro eletricista pela Unesp com MBA em Gestão de Projetos pela FVG e certificado pelo PMI. Atuou em gestão de ativos e gestão de projetos em grandes empresas como CBA-Votorantim Metais, Siemens e Votorantim Cimentos. Atualmente é diretor de projetos da Citisystems –cristiano@citisystems.com.br – Skype: cristianociti; e Guilherme Cano Lopes é estudante de engenharia de controle e automação pela Unesp e técnico em mecatrônica pela ETEc Getúlio Vargas. Durante a faculdade foi bolsista de iniciação científica e membro da equipe de pesquisa em robótica móvel da UNESP, participando em competições como a Robocup.  Atualmente é estagiário na empresa Citisystems.