Apenas 26% das empresas de óleo e gás utilizam as tecnologias digitais

Uma pesquisa da KPMG apontou que apenas 26% das companhias de petróleo e gás, que participaram do levantamento, aplicam tecnologias disponíveis. Alguns desses recursos são drones, visualização 3D, análise de dados e inteligência artificial utilizados para melhorar a forma como é feita a gestão de ativos, reduzindo o tempo de parada das unidades de processamento e a exposição a riscos. Essas são as principais conclusões do relatório denominado Nos trilhos da jornada digital que tem como objetivo mostrar de forma inédita como essa a indústria está lidando, na era pós-pandemia, com temas como a digitalização, uso de novas tecnologias e de dados.

Segundo o estudo, 29% dos entrevistados possuem uma equipe bem preparada para implantação de um processo de automação na indústria contra 48% que consideram não estarem aptos para aplicar esse método. Quase metade dos entrevistados (42%) afirma que as organizações estão prontas para uma mudança na matriz energética, sendo capazes de repor o portfólio de ativos pelos originados de fontes alternativas de energia.

“O relatório mostrou que um percentual pequeno de empresas de petróleo e gás utiliza as tecnologias disponíveis. Por isso, a indústria ainda tem muito a fazer com relação ao processo de transformação digital que pode aprimorar a gestão do negócio”, afirma o sócio do setor de energia e recursos naturais da KPMG, Anderson Dutra.

Na verdade, as empresas de petróleo e gás estão repensando as suas estratégias, buscando a oportunidade perfeita para reavaliar sua infraestrutura e fazer investimentos inteligentes em tecnologia para trazer seus sistemas para a era moderna. Por exemplo, os investimentos certos em tecnologia da informação e comunicação (TIC) e outras soluções digitais podem contribuir muito para aumentar a lucratividade e impulsionar a eficiência da organização para criar uma operação mais robusta.

De acordo com a McKinsey, investir em tecnologias digitais pode economizar às empresas de gás até 20% em despesas de capital e 5% em custos operacionais upstream. Com isso em mente, pode-se descrever algumas tecnologias nas quais as empresas de petróleo e gás estão cada vez mais investindo.

– Big data e análises – As empresas de petróleo e gás não podem se dar ao luxo de tomar decisões com base em seus instintos. Os projetos de perfuração são empreendimentos que exigem muito capital e maquinário pesado, e as organizações não podem se dar ao luxo de nenhuma margem de erro. É por isso que um número crescente de organizações está coletando mais e mais dados e executando análises para determinar o caminho mais inteligente a seguir. Com big data, pode ser mais fácil tomar as decisões certas.

– IIoT e computação de ponta – A internet das coisas industrial (IIoT) promete otimizar grande parte do setor de petróleo e gás, com dispositivos conectados coletando dados na origem e executando cargas de trabalho de computação de ponta para fornecer às organizações as informações de que precisam para garantir operações eficientes.

– Computação na nuvem – As empresas de petróleo e gás continuam a alavancar o poder da nuvem, aumentando a acessibilidade e disponibilidade de dados e, ao mesmo tempo, criando redundâncias em suas redes.

Inteligência artificial (IA) e aprendizado de máquina – A IA e o aprendizado de máquina estão mudando todos os setores, incluindo petróleo e gás. A IA, por exemplo, permite que as organizações transformem uma realidade prática acessível para qualquer pessoa.

– Robótica e drones – Devido às eficiências operacionais que fornecem, cada vez mais empresas de petróleo e gás estão investindo em robótica e drones. Esta categoria é projetada para ser a área de crescimento mais rápido para a indústria nos próximos três a cinco anos.

– Redes 5G – Na era digital, a velocidade é o que mais importa. É por isso que mais e mais organizações de petróleo e gás estão investindo em redes 5G que fornecem velocidade e conectividade incomparáveis.

– Ferramentas colaborativas – As empresas globais de petróleo e gás têm operações espalhadas por todo o mundo. Ao investir em ferramentas de colaboração, eles são capazes de garantir que todos os funcionários possam permanecer na mesma página – não importa onde estejam.

Para o setor, segundo alguns especialistas, fazer uso de conectividade digital avançada poderá otimizar o rendimento da perfuração e da produção, e melhorar a manutenção e as operações de campo. Esse processo pode agregar até US$ 250 bilhões de valor às operações upstream da indústria até 2030.

Desse valor, entre US$ 160 e US$ 180 bilhões poderiam ser realizados com a infraestrutura existente, enquanto US$ 70 bilhões adicionais poderiam ser desbloqueados com satélites em órbita terrestre baixa e tecnologias 5G de próxima geração. Além disso, as empresas poderiam reduzir custos, incluindo despesas operacionais e de capital, em 20% a 25% cento por barril, contando com conectividade para implantar as ferramentas digitais.

Para ajudar no processo de gestão das indústrias de petróleo e gás, a ABNT ISO/TS 29001 de 10/2010 – Indústrias do petróleo, gás natural e petroquímica – Sistemas de gestão da qualidade específicos do setor – Requisitos para organizações de fornecimento de produtos e serviços especifica requisitos para um sistema de gestão da qualidade, quando uma organização necessita demonstrar sua capacidade para fornecer produtos que atendam de forma consistente aos requisitos do cliente e requisitos estatutários e regulamentares aplicáveis. Esta Especificação Técnica tem como objetivo desenvolver um sistema de gestão da qualidade que promova a melhoria contínua, enfatizando a prevenção de defeitos e a redução da variabilidade e de perdas na cadeia de suprimento e na prestação de serviços.

Em conjunto com os requisitos específicos de clientes, define os requisitos fundamentais do sistema de gestão da qualidade para aqueles que adotarem esta especificação técnica que é baseada na NBR ISO 9001. Assim, pode-se evitar múltiplas auditorias de certificação e fornecer uma abordagem comum para um sistema de gestão da qualidade para as indústrias do petróleo, gás natural e petroquímica. O procedimento documentado deve identificar as funções responsáveis pela coleta e manutenção dos registros.

A NBR ISO 14224 de 10/2011 – Indústrias de petróleo e gás natural – Coleta e intercâmbio de dados de confiabilidade e manutenção para equipamentos fornece uma ampla base para a coleta de dados de confiabilidade e manutenção (RM) num formato-padrão para equipamentos em todas as instalações e operações nas indústrias de petróleo, gás natural e petroquímica durante o ciclo de vida operacional dos equipamentos. Ela descreve os princípios da coleta de dados e os termos e definições associados que constituem uma linguagem de confiabilidade que pode ser útil para a comunicação da experiência operacional.

API STD 1164: a segurança cibernética de sistemas de controle de dutos

A API STD 1164:2021 – Pipeline Control Systems Cybersecurity fornece os requisitos e a orientação para o gerenciamento de risco cibernético associado a ambientes de automação e controle industrial (industrial automation and control – IAC) para atingir os objetivos de segurança, integridade e resiliência. Dentro dessa norma, isso é realizado por meio do isolamento adequado de ambientes IAC para ajudar na sua continuidade operacional.

Mesmo com o isolamento adequado dos ambientes IAC dos ambientes de TI, ambos desempenham um papel na continuidade geral dos negócios. A continuidade operacional do IAC e a continuidade do sistema de TI são frequentemente desenvolvidas e implementadas em conjunto como parte do plano geral de continuidade de negócios.

O escopo desta norma é limitado apenas aos aspectos de segurança cibernética da IAC que podem influenciar a continuidade geral dos negócios. Ela foi feita sob medida para a indústria de dutos de petróleo e gás natural (oil and natural gas – ONG), que inclui, mas não está limitado a sistemas de dutos de transmissão de gás natural e líquidos perigosos, sistemas de dutos de distribuição de gás natural, instalações de gás natural liquefeito (GNL), instalações de ar propano e outros envolvidos nessas indústrias.

Essa norma foi desenvolvida para fornecer uma abordagem acionável para proteger as funções essenciais do IAC, gerenciando o risco de segurança cibernética para os ambientes IAC. Isso pode incluir, mas não estão limitados a soluções de controle de supervisão e aquisição de dados (Scada), controle local e internet das coisas industriais (IIoT).

A norma deve ser usada no contexto de desenvolvimento, implementação, manutenção e melhoria de um programa de segurança cibernética do IAC, que inclui as políticas, processos, e controles de procedimentos e técnicos para ambientes cibernéticos IAC. Trata-se de um conjunto de requisitos que deve ser customizado antes da implementação usando os processos de gerenciamento de riscos da empresa.

O resultado é um conjunto de requisitos personalizados e específicos da empresa para um programa de segurança cibernética IAC a fim de ajudar a gerenciar a postura de segurança cibernética e qualquer risco residual resultante para seus ambientes IAC em alinhamento com a missão, objetivos e estratégia de risco da empresa, e de acordo com as suas políticas e procedimentos. Embora a identificação de ameaças e impactos seja crítica para o desenvolvimento do programa de segurança cibernética do IAC, uma avaliação baseada no risco de cada um garantirá que o programa seja implementado, executado e sustentado de forma adequada, de acordo com a postura de risco desejada pela organização.

Essa norma se concentra nos resultados de segurança cibernética desejados, definindo requisitos para níveis de proteção de impacto de objetivos de negócios específicos. Embora os princípios definidos nesta norma possam ser aplicados a sistemas instrumentados de segurança (safety instrumented systems – SIS), eles estão fora do escopo deste documento.

Os requisitos de segurança especificados nesta norma não tentam abordar os impactos potenciais para a seleção ou determinação do nível de integridade de segurança (safety integrity level – SIL) do SIS. Qualquer uso desta norma em ambientes SIS fica por conta e risco do implementador. Para as empresas que já têm um programa de segurança cibernética IAC, incluindo uma ou mais políticas de programa aprovadas e um plano ou planos de segurança cibernética IAC documentados implementados ou em implementação, esta norma deve ser considerada um acréscimo aos elementos existentes do programa de segurança cibernética.

Nessas situações, um processo de mapeamento desta norma para os elementos atuais do programa de segurança cibernética da IAC determinará quaisquer requisitos da API 1164 que não estejam atualmente no programa existente. A implementação de quaisquer elementos ausentes deve ser adaptada e priorizada usando os processos de gerenciamento de risco da empresa. O processo de adaptação para os requisitos de segurança cibernética API 1164 é descrito em 5.5.

Conteúdo da norma

1 Escopo. . . . . .. . . . . . . . . . . 1

1.1 Objetivo. . . .. . . . . . . . . . . 1

1.2 Público-alvo. . . . . . . . . . . . 2

1.3 Como ler esta norma . . . . . . . 2

2 Referências normativas. . . . . . . 4

3 Termos, definições, acrônimos e abreviações. .  . . . 4

3.1 Termos e definições. . .. . . . . . . . . . . . . . . . 4

3.2 Siglas. . . . . . . . . . . . . . . . . . . . . . 9

4 Perfis de cibersegurança de dutos IAC de ONG. .  . . 10

4.1 Introdução ao perfil de cibersegurança IAC. …. . 10

4.2 Perfil de segurança cibernética da IAC – restrições comuns………..10

4.3 Perfil de segurança cibernética da IAC – objetivos da proteção contra ameaças. . . . . . . . . . . . . 11

4.4 Perfil de segurança cibernética da IAC – objetivos de missão e negócios. . . . . . . . . . . . . 12

4.5 IAC: perfil de segurança cibernética – objetivos e impacto no mapeamento de proteção contra ameaças. . .  . 13

5 Política, plano e programa de segurança cibernética da ONG e IAC. . . . . . . . . . . . . . . 13

5.1 Plano de desenvolvimento de segurança cibernética da IAC. . . . . . . . . . . . . . . . . . . . . 15

5.2 IAC: plano de segurança cibernética – gerenciamento de risco. . . . .. . . . . . . . 15

5.3 Plano de segurança cibernética da IAC – operacionalizando um programa de segurança cibernética . . . . . . 17

5.4 Perfis de segurança cibernética de seleção de planos de segurança cibernética da IAC. . . . . . . . . . . 18

5.5 Requisitos de perfil selecionado de personalização do plano de segurança cibernética da IAC. . . . . 27

6 ONG IAC: requisitos do perfil de cibersegurança – requirements identify (ID). . . . . . . . 28

6.1 Governança (ID.GV). .. . . . . . . . . 28

6.2 Estratégia de gerenciamento de risco (ID.RM). . 32

6.3 Ambiente de negócios (ID.BE). . . . . . . . . . . . 35

6.4 Gestão de riscos da cadeia de suprimentos (ID.SC)… . 39

6.5 Avaliação de Risco IAC (ID.RA). . . . . . . . . 42

6.6 Gerenciamento de ativos (ID.AM). . . . . . . 49

7 ONG IAC: perfil de cibersegurança – profiles protect (PR)….55

7.1 Controle de acesso (PR.AC). . .  . . . . . 56

7.2 IAC Conscientização e treinamento em segurança cibernética (PR.AT). . . . . . . . . . . . 63

7.3 Segurança de dados (PR.DS).. . . . . . . . 67

7.4 Processos e procedimentos de proteção da informação (PR.IP). . . . . . . . . . . . . . . . 75

7.5 Manutenção (PR.MA). .. . . . . . . . . . . . . 89

7.6 Tecnologia de proteção (PR.PT). . .. . . . . . . . . 92

8 ONG IAC: requisitos do perfil de cibersegurança (detecção – DE). . . .  . . . . . . . . . . . . . 97

8.1 Anomalias e eventos (DE.AE). . .. . . . . . 97

8.2 Monitoramento contínuo de segurança (DE.CM). . .. 100

8.3 Processos de detecção (DE.DP). .. . . . . . . . . . . 106

9 ONG IAC: perfil de cibersegurança dos requisitos de respostas (RS). .  . . . . . . . . . . . . . . 110

9.1 Planejamento de Resposta (RS.RP). . . . . . . . 110

9.2 Comunicações (RS.CO). . .. . . . . . . . . 111

9.3 Análise (RS.AN).. . . . . . . . . . . . . . 114

9.4 Mitigação (RS.MI). . . . . . . . . . . . . . . . 118

9.5 Melhorias (RS.IM). . . . . . . . . . . . . . . . 120

10 ONG IAC: perfil de cibersegurança dos requisitos de recuperação (RC). . . . . . . . . . . . 122

10.1 Planejamento de Recuperação (RC.RP). . . 122

10.2 Melhorias (RC.IM). . . . . . . . . . . . . . . . 122

10.3 Comunicações (RC.CO). .  . . . . . . . . . 124

Anexo A (informativo) Construção e mapeamento da norma API 1164. . . . . .  . . . . . . . 126

Anexo B (informativo) Modelo Plan-Do-Check-Act.  . 129

Anexo C (informativo) Ações recorrentes. . . . . . . . . 131

Bibliografia. . .. . . . . . . . . . . . . . . . . . . . . . . . . . 132

Em resumo, a infraestrutura de dutos – composta por milhares de empresas e mais de 2,7 milhões de quilômetros de dutos responsáveis pelo transporte de petróleo, gás natural e outras commodities – é um facilitador fundamental da segurança econômica mundial. Como os proprietários e os operadores de dutos estão cada vez mais confiando na integração de tecnologias de informação e comunicação (TIC) em tecnologia da informação (TI) e tecnologia operacional (TO) para conduzir a automação, eles também devem implementar medidas de segurança para proteger os dutos de riscos cibernéticos em evolução e emergentes. A integração de dispositivos de TIC em sistemas de dutos críticos cria uma vulnerabilidade que os hackers cibernéticos podem explorar.

IEC 60839-11-33: a interface de serviços da Web para o controle de acesso eletrônico

A IEC 60839-11-33:2021 – Alarm and electronic security systems – Part 11-33: Electronic access control systems – Access control configuration based on Web services define a interface de serviços da Web para sistemas de controle de acesso eletrônico. Isso inclui listar os componentes do sistema de controle de acesso eletrônico, sua composição lógica, monitorar seus estados e controlá-los. Também inclui um mapeamento dos requisitos obrigatórios e opcionais de acordo com a IEC 60839-11-1: 2013, conforme coberto pelo Anexo.

Este documento se aplica apenas à segurança física para evitar que pessoas não autorizadas, ladrões ou invasores acidentais acessem fisicamente um prédio, sala, etc. O uso de serviços da Web e a funcionalidade de gestão de dispositivos estão fora do escopo deste documento.

O documento especifica apenas os dados e o fluxo de controle entre um cliente e os serviços sem referência a qualquer dispositivo físico, pois os serviços necessários para implementar um sistema de controle de acesso eletrônico compatível (electronic access control system – EACS) não são necessariamente implementados em um único dispositivo, ou seja, todos os serviços podem ser executados em um painel de controle, software agregador de eventos no PC, etc.

Conteúdo da norma

PREFÁCIO …….. …………………… 8

INTRODUÇÃO ……….. ……………. 10

1 Escopo …… …………………….. 11

2 Referências normativas …………… … 11

3 Termos e definições ……………… …. 12

4 Visão geral ……… ………………… 15

4.1 Geral ……………… …………… 15

4.2 Namespaces …………… ……. 16

4.3 Tratamento de erros ………. …… 17

5 Serviço de credencial ……. ……… 17

5.1 Geral …………. …………… 17

5.2 Capacidades de serviço ………………….. 18

5.2.1 Geral ……………………………. ……… 18

5.2.2 Estrutura de dados ServiceCapabilities ………………….. 18

5.2.3 Comando GetServiceCapabilities …. ………………… 19

5.3 Informações de credencial ……………………………… 20

5.3.1 Geral …………………………… ……… 20

5.3.2 Estruturas de dados …………………….. 20

5.3.3 Comando GetCredentialInfoList …………… 23

5.3.4 Comando GetCredentials ……………………….. 24

5.3.5 Comando GetCredentialList ………………………. 25

5.3.6 Comando CreateCredential ……………………. 26

5.3.7 Comando SetCredential ………………………. 28

5.3.8 Comando ModifyCredential ………………………. 30

5.3.9 Comando DeleteCredential ……………………… 31

5.3.10 Comando GetCredentialState ……………….. 32

5.3.11 Comando EnableCredential ……………………… 32

5.3.12 Comando DisableCredential ………………………….. 33

5.3.13 Comando ResetAntipassbackViolation ……. ………….. 33

5.3.14 Comando GetSupportedFormatTypes ……………. 34

5.3.15 Comando GetCredentialIdentifiers ………………. 34

5.3.16 Comando SetCredentialIdentifier …………………….. 35

5.3.17 Comando DeleteCredentialIdentifier …. …………….. 36

5.3.18 Comando GetCredentialAccessProfiles …… ………… 36

5.3.19 Comando SetCredentialAccessProfiles …………….. 37

5.3.20 Comando DeleteCredentialAccessProfiles ……… …….. 37

5.4 Tópicos de notificação …………………………… 38

5.4.1 Geral ………………………………. ……… 38

5.4.2 Visão geral do evento (informativo) …………………… 38

5.4.3 Mudanças de status ……………….. 38

5.4.4 Mudanças de configuração …………………………….. 39

6 Serviço de regras de acesso ………………………. …… 40

6.1 Geral ………………………………….. …………… 40

6.2 Capacidades de serviço …………………………… 41

6.2.1 Geral …………………………………. ……… 41

6.2.2 Estrutura de dados ServiceCapabilities ………………….. 41

6.2.3 Comando GetServiceCapabilities …………………. 41

6.3 Acessar informações de perfil …………………………… 41

6.3.1 Geral …………………………………. ……… 41

6.3.2 Estruturas de dados ……………………………….. 42

6.3.3 Comando GetAccessProfileInfo …………………… 42

6.3.4 Comando GetAccessProfileInfoList …………………. 43

6.3.5 Comando GetAccessProfiles ………………………. 44

6.3.6 Comando GetAccessProfileList ………………….. 45

6.3.7 Comando CreateAccessProfile ………………….. 46

6.3.8 Comando SetAccessProfile ………………………… 47

6.3.9 Comando ModifyAccessProfile …………………….. 48

6.3.10 Comando DeleteAccessProfile …………………. 49

6.4 Tópicos de notificação ………………………. 50

6.4.1 Geral ………………………………. ……… 50

6.4.2 Visão geral do evento (informativo) ………………… 50

6.4.3 Alterações de configuração ……………………… 50

7 Serviço de comportamento de autenticação ………………… 51

7.1 Geral ……………………………. …………… 51

7.2 Exemplo ………………………….. ………….. 51

7.3 Capacidades de serviço ………………………. 52

7.3.1 Geral ………………………………….. ……… 52

7.3.2 Estrutura de dados ServiceCapabilities …………………. 52

7.3.3 Comando GetServiceCapabilities …………………….. 53

7.4 Informações de perfil de autenticação …………………… 53

7.4.1 Geral ………………………………… ……… 53

7.4.2 Estruturas de dados ………………………………….. 54

7.4.3 Comando GetAuthenticationProfileInfo ……. …………. 55

7.4.4 Comando GetAuthenticationProfileInfoList…….. …….. 56

7.4.5 Comando GetAuthenticationProfiles …… …………….. 57

7.4.6 Comando GetAuthenticationProfileList …………….. 58

7.4.7 Comando CreateAuthenticationProfile ……………… 59

7.4.8 Comando SetAuthenticationProfile …………………. 60

7.4.9 Comando ModifyAuthenticationProfile ………………. 61

7.4.10 Comando DeleteAuthenticationProfile ………………. 62

7.5 Informações de nível de segurança ……………………… 63

7.5.1 Geral ………………………………………… ……… 63

7.5.2 Estruturas de dados ……………………………… 64

7.5.3 Comando GetSecurityLevelInfo ……………………. 66

7.5.4 Comando GetSecurityLevelInfoList …………………. 66

7.5.5 Comando GetSecurityLevels ……………………………. 67

7.5.6 Comando GetSecurityLevelList ………………………….. 68

7.5.7 Comando CreateSecurityLevel ……………………….. 69

7.5.8 Comando SetSecurityLevel ……………………………. 70

7.5.9 Comando ModifySecurityLevel ……………………….. 71

7.6 Tópicos de notificação …………………………. 73

7.6.1 Geral …………………………………… ……… 73

7.6.2 Visão geral do evento (informativo) ………….. 73

7.6.3 Mudanças de configuração …………………….. 73

8 Agendar serviço ……………………….. ………. 74

8.1 Geral …………………………….. …………… 74

8.2 Recorrência ……………………….. ……… 76

8.2.1 Geral ………………………………. ……… 76

8.2.2 Recorrência semanal ……………………. 76

8.2.3 Recorrência estendida …………………. 77

8.2.4 Recorrência de programação padrão ……… 77

8.2.5 Recorrência de dia especial ………………….. 77

8.3 Capacidades de serviço ……………………….. 78

8.3.1 Geral …………………………….. ……… 78

8.3.2 Estrutura de dados ServiceCapabilities ………………. 78

8.3.3 Comando GetServiceCapabilities …………………. 79

8.4 Informações de programação ………………… 79

8.4.1 Geral ……………………………… ……… 79

8.4.2 Estruturas de dados ……………………….. 79

8.4.3 Comando GetScheduleInfo ………………………….. 82

8.4.4 Comando GetScheduleInfoList …………………… 83

8.4.5 Comando GetSchedules ………………………………. 84

8.4.6 Comando GetScheduleList …………………………… 85

8.4.7 Comando CreateSchedule ……………………………. 86

8.4.8 Comando SetSchedule ………………………………… 87

8.4.9 Comando ModifySchedule ………………………….. 88

8.4.10 Comando DeleteSchedule …………………………. 89

8.5 Informações do grupo de dias especiais …………………… 90

8.5.1 Geral ……………………………….. ……… 90

8.5.2 Estruturas de dados ……………………….. 90

8.5.3 Comando GetSpecialDayGroupInfo ……………….. 90

8.5.4 Comando GetSpecialDayGroupInfoList ………………. 91

8.5.5 Comando GetSpecialDayGroups …………………….. 92

8.5.6 Comando GetSpecialDayGroupList …………………. 93

8.5.7 Comando CreateSpecialDayGroup …………………… 94

8.5.8 Comando SetSpecialDayGroup …………………… 95

8.5.9 Comando ModifySpecialDayGroup ………………….. 96

8.5.10 Comando DeleteSpecialDayGroup ………………….. 97

8.6 Status da programação ………………………….. … 97

8.6.1 Estrutura de dados ScheduleState ………………. 97

8.6.2 Comando GetScheduleState ……………………… 98

8.7 Tópicos de notificação …………………………… 99

8.7.1 Geral ………………………………. ……… 99

8.7.2 Visão geral do evento (informativo) ……….. 99

8.7.3 Mudanças de status ………………………. 99

8.7.4 Mudanças de configuração …………………. 100

8.8 Exemplos …………………………. ………. 101

8.8.1 Geral ……………………………… ……. 101

8.8.2 Acesso 24 × 7 para equipe administrativa ………… 101

8.8.3 Acesso às segundas e quartas das 06:00 às 20:00 para o pessoal de limpeza………………. 101

8.8.4 Acesso de sexta-feira 18:00 às 07:00 para equipe de manutenção……………. 101

8.8.5 Acesso em dias de semana das 8h00 às 17h00 para funcionários…………….. 102

8.8.6 Acesso de 15 de janeiro de 2014 a 14 de janeiro de 2015, das 09:00 às 18:00 …………………………. ………. 103

8.8.7 Dias especiais, exemplo 1 ……………… 103

8.8.8 Dias especiais, exemplo 2 …………… 104

8.8.9 Dias especiais, exemplo 3 ……………….. 106

Anexo A (normativo) Esquemas XML da interface de controle de acesso………… …. 107

A.1 Serviço de credencial WSDL ……………………… 107

A.2 Serviço de regras de acesso WSDL ………………….. 127

A.3 Serviço de comportamento de autenticação WSDL……….. 137

A.4 Programar WSDL de serviço …………………………. 155

Anexo B (informativo) Mapeamento de funções obrigatórias na IEC 60839-11-1…………….174

Bibliografia …………………….. 182

Este documento torna possível construir um sistema de alarme e segurança eletrônica com clientes, normalmente um console de monitoramento, e dispositivos, normalmente uma unidade de controle de acesso, de diferentes fabricantes usando interfaces comuns e bem definidas. O documento especifica apenas os dados e o fluxo de controle entre um cliente e os serviços sem referência a qualquer dispositivo físico, pois os serviços necessários para implementar um sistema de controle de acesso eletrônico compatível (electronic access control system – EACS) não são necessariamente implementados em um único dispositivo, ou seja, todos os serviços podem ser executados em um painel de controle, software agregador de eventos no PC, etc.

Este documento não define a comunicação interna entre uma unidade de controle de acesso e seus componentes se eles forem implementados em um único dispositivo. Este documento é baseado no trabalho realizado pelo fórum aberto da indústria, o open network video interface forum (ONVIF). A especificação de credencial ONVIF, a especificação de regras de acesso ONVIF, o comportamento de autenticação ONVIF e a especificação ONVIF Schedule são compatíveis com este documento.

Este documento é acompanhado por um conjunto de definições de interface legíveis por computador (ver Anexo A): WSDL de serviço de credencial, consulte a Cláusula A.1; WSDL do serviço de regras de acesso, consulte a Cláusula A.2; WSDL do serviço de comportamento de autenticação, consulte a Cláusula A.3; agendar WSDL de serviço, consulte a Cláusula A.4. Devido às diferenças na terminologia usada na IEC 60839-11-1:2013 e IEC 60839-11-2:2014 e na especificação ONVIF na qual esta parte da IEC 60839 se baseia, um leitor deve prestar atenção especial aos termos e definições cláusula. Os serviços adicionais necessários para o monitoramento de portas e pontos de acesso (lados do portal) estão fora do escopo deste documento. Esses serviços são cobertos pela IEC 60839-11-32.

Os processos de ciclo de vida de software

A NBR ISO/IEC-IEEE 12207 de 08/2021 – Engenharia de sistemas e software – Processos de ciclo de vida de software estabelece uma estrutura comum para processos de ciclo de vida de software, com terminologia bem definida, que pode ser referenciada pela indústria de software. Ele contém processos, atividades e tarefas que são aplicáveis durante a aquisição, fornecimento, desenvolvimento, operação, manutenção ou desativação de sistemas, produtos e serviços de software.

Estes processos de ciclo de vida são executados com sucesso por meio do envolvimento de stakeholders, com o objetivo final de alcançar a satisfação do cliente. Este documento é aplicável à aquisição, fornecimento, desenvolvimento, operação, manutenção e desativação de sistemas de software, produtos e serviços, e a parte de software de qualquer sistema (executados tanto interna como externamente a uma organização).

O software inclui a parte de software do firmware. Os aspectos de definição de sistema necessários para prover o contexto para produtos e serviços de software estão incluídos. Este documento também fornece os processos que podem ser empregados na definição, controle e melhoria dos processos de ciclo de vida de software dentro de uma organização ou projeto.

Os processos, atividades e tarefas deste documento também podem ser aplicados durante a aquisição de um sistema que contenha software, seja individualmente ou em conjunto com a ISO/IEC 15288:2015 – Systems and software engineering – System life cycle processes. No contexto deste documento e da ISO/IEC/IEEE 15288, há um continuum de sistemas desenvolvidos por humanos desde os que usam pouco ou nenhum software, até aqueles nos quais o software é o principal componente.

É raro encontrar um sistema complexo sem software e todos os sistemas de software exigem que os componentes do sistema físico (hardware) funcionem, ou seja, como parte do sistema de software de interesse. Assim, a escolha de quando aplicar este documento para os processos de ciclo de vida de software, ou a ISO/IEC/IEEE 15288: 2015 – Systems and software engineering–System life cycle processes, depende do sistema de interesse.

Os processos em ambos os documentos têm os mesmos propósitos e resultados de processo, mas diferem em atividades e tarefas para executar a engenharia de software ou a engenharia de sistemas, respectivamente. Assim, o propósito deste documento é fornecer um conjunto definido de processos para facilitar a comunicação entre adquirentes, fornecedores e outros stakeholders no ciclo de vida de um sistema de software.

Este documento foi escrito para adquirentes, fornecedores, desenvolvedores, integradores, operadores, mantenedores, gestores, gerentes de garantia de qualidade e usuários de sistemas, produtos e serviços de software. Ele pode ser usado por uma única organização de forma autoimposta ou em uma situação que envolva várias organizações. As partes podem ser da mesma organização ou de diferentes organizações, podendo variar para a realização de um acordo informal a um acordo formal.

Os processos neste documento podem ser usados como base para estabelecer ambientes de negócios, por exemplo, métodos, procedimentos, técnicas, ferramentas e pessoal treinado. O Anexo A fornece orientação normativa para a adaptação destes processos de ciclo de vida de software. Este documento é aplicável a todo o ciclo de vida de sistemas, produtos e serviços de software, incluindo concepção, desenvolvimento, produção, utilização, suporte e desativação, e à sua aquisição e fornecimento, sejam estes processos executados interna ou externamente a uma organização.

Os processos do ciclo de vida deste documento podem ser aplicados de forma concorrente, iterativa e recursiva a um sistema de software e de forma incremental aos seus elementos. Há uma grande variedade de sistemas de software em termos de propósito, domínio de aplicação, complexidade, tamanho, novidade, adaptabilidade, quantidade, localizações, vida útil e evolução.

Este documento descreve os processos que compõem o ciclo de vida de sistemas de software criados pelo homem. Portanto, aplica-se aos sistemas de software únicos, sistemas de software para ampla distribuição comercial ou pública e sistemas de software adaptáveis e customizados. Também se aplica a um sistema de software independente completo e aos sistemas de software que são incorporados e integrados a sistemas maiores, mais complexos e completos.

Este documento fornece um modelo de referência de processo caracterizado em termos de propósito e resultados de processo, que são consequência da execução bem-sucedida das tarefas da atividade. O Anexo B lista exemplos de artefatos e itens de informação que podem estar associados a vários processos. Este documento pode, portanto, ser usado como um modelo de referência para apoiar a avaliação de processo, conforme especificado na ISO/IEC 33002:2015.

O Anexo C fornece informações sobre o uso dos processos de ciclo de vida do software como um modelo de referência de processo. O Anexo D descreve os construtos do processo para uso no modelo de referência de processo. O Anexo I fornece a correspondência entre este documento e a ISO/IEC/IEEE 12207:2009 no nível de nome e resultado de processo.

Este documento não prescreve um modelo específico de ciclo de vida de software, metodologia de desenvolvimento, método, abordagem de modelagem ou técnica. Os usuários deste documento são responsáveis por selecionar um modelo de ciclo de vida para o projeto e por mapear os processos, atividades e tarefas deste documento naquele modelo. As partes também são responsáveis pela seleção e aplicação de metodologias, métodos, modelos e técnicas apropriados para o projeto.

Este documento não estabelece um sistema de gestão ou requer o uso de qualquer norma de sistema de gestão. No entanto, destina-se a ser compatível com o sistema de gestão da qualidade especificado pela NBR ISO 9001, com o sistema de gestão de serviços especificado pela NBR ISO/IEC 20000-1 (IEEE Std 20000-1) e com o sistema de gestão de segurança da informação especificado pela ISO/IEC 27000. Este documento não detalha itens de informação em termos de nome, formato, conteúdo explícito e mídia de registro. A ISO/IEC/IEEE 15289 aborda o conteúdo dos itens de informação de processo de ciclo de vida (documentação).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

O que representam os sistemas habilitadores?

Quais são os processos do ciclo de vida para o sistema de software?

Por que fazer a adoção em nível de projeto e organização?

Qual é o modelo de ciclo de vida para o sistema de software?

A complexidade dos sistemas de software aumentou a um nível sem precedentes. Isto levou a novas oportunidades, mas também aumentou os desafios para as organizações que criam e utilizam os sistemas. Estes desafios existem ao longo do ciclo de vida de um sistema e em todos os níveis de detalhes arquiteturais.

Este documento fornece uma estrutura de processo comum para descrever o ciclo de vida de sistemas criados por seres humanos, adotando uma abordagem de engenharia de software que é uma abordagem interdisciplinar e propicia a produção bem-sucedida de sistemas de software.

Ela foca a definição das necessidades dos stakeholders e a funcionalidade requerida no início do ciclo de desenvolvimento, a documentação dos requisitos, a execução da síntese do design e a validação do sistema, considerando o problema completo. Ela integra todas as disciplinas e grupos de especialidade em um esforço de equipe, formando um processo de desenvolvimento estruturado que passa do conceito à produção, operação e manutenção.

Ela considera tanto as necessidades de negócio quanto técnicas de todos os stakeholders, com o objetivo de fornecer um produto de qualidade que atenda às necessidades dos usuários e outros stakeholders aplicáveis. Este ciclo de vida abrange da concepção de ideias até a desativação de um sistema. Ela provê os processos para aquisição e fornecimento de sistemas.

Ela ajuda a melhorar a comunicação e a cooperação entre as partes que criam, utilizam e gerenciam sistemas de software modernos para que possam trabalhar de forma integrada e coerente. Além disso, a estrutura proposta contribui para a avaliação e melhoria dos processos do ciclo de vida.

Os processos neste documento formam um conjunto abrangente a partir do qual uma organização pode construir modelos de ciclo de vida de software apropriados para seus produtos e serviços. Uma organização, dependendo da sua finalidade, pode selecionar e aplicar um subconjunto apropriado para alcançar este propósito.

Este documento pode ser usado de uma ou mais das seguintes formas: por uma organização – para ajudar a estabelecer um ambiente de processos desejados. Estes processos podem ser sustentados por uma infraestrutura de métodos, procedimentos, técnicas, ferramentas e pessoal treinado. A organização pode então empregar este ambiente para executar e gerenciar seus projetos e evoluir sistemas de software ao longo as fases do ciclo de vida.

Dessa forma, este documento é usado para avaliar a conformidade de um ambiente declarado e estabelecido em relação ao que ele provê. Também pode ser usado por um projeto – para ajudar a selecionar, estruturar e utilizar os elementos de um ambiente estabelecido para fornecer produtos e serviços. Dessa forma, este documento é usado na avaliação da conformidade do projeto em relação ao ambiente estabelecido e declarado.

Pode ser utilizado por um adquirente e um fornecedor – para ajudar a desenvolver um acordo relativo a processos e atividades. Por meio desse acordo, os processos e atividades deste documento são selecionados, negociados, acordados e executados. Dessa forma, este documento é usado para orientar o desenvolvimento do acordo.

Pode ser usado por avaliadores de processo – para servir como um modelo de referência de processo utilizado na execução de avaliações de processo, que podem ser usadas para apoiar a melhoria do processo organizacional. Este documento fornece os requisitos para uma variedade processos adequados para uso durante o ciclo de vida de um sistema ou produto de software.

É reconhecido que projetos ou organizações específicos podem não precisar usar todos os processos fornecidos por este documento. Portanto, a implementação deste documento geralmente envolve a seleção e a declaração de um conjunto de processos adequados à organização ou projeto. Existem duas formas de reivindicar a conformidade com as disposições deste documento ‒ conformidade total e conformidade personalizada.

Existem dois critérios para reivindicar a conformidade total. Atingir qualquer destes critérios é suficiente para conformidade, embora o critério (ou critérios) escolhido (s) deva (m) ser declarado (s) na reivindicação. Reivindicar conformidade total com as tarefas afirma que todos os requisitos das atividades e tarefas do conjunto declarado de processos são alcançados.

Alternativamente, reivindicar conformidade total com os resultados afirma que todos os resultados requeridos do conjunto declarado de processos são alcançados. A conformidade total com resultados permite maior liberdade na implementação de processos e pode ser útil para implementar processos a serem usados no contexto de um modelo inovador de ciclo de vida.

Opções para conformidade são fornecidas para a flexibilidade necessária na aplicação deste documento. Cada processo tem um conjunto de objetivos (expressos como resultados) e um conjunto de atividades e tarefas que representam uma maneira de alcançar os objetivos. Os usuários que implementam as atividades e tarefas do conjunto declarado de processos podem afirmar conformidade total com as tarefas dos processos selecionados.

Alguns usuários, no entanto, podem ter variantes inovadoras de processos que atinjam os objetivos (ou seja, os resultados) do conjunto declarado de processos sem implementar todas as atividades e tarefas. Estes usuários podem afirmar conformidade total com os resultados do conjunto declarado de processos.

Os dois critérios – conformidade com tarefa e conformidade com resultado – não são necessariamente equivalentes, pois a execução específica de atividades e tarefas pode requerer, em alguns casos, um nível mais alto de capacidade do que apenas o alcance de resultados. Quando este documento é usado para auxiliar o desenvolvimento de um acordo entre um adquirente e um fornecedor, seções deste documento podem ser selecionadas para incorporação ao acordo, com ou sem modificação.

Neste caso, é mais apropriado que o adquirente e o fornecedor reivindiquem a conformidade com o acordo do que com este documento. Uma organização (por exemplo, pública, associação industrial, corporação) que impõe este documento, como condição comercial, pode especificar e tornar público o conjunto mínimo de processos, resultados, atividades e tarefas exigidos, que constituem a conformidade dos fornecedores com as condições do negócio.

Os requisitos deste documento são assinalados pelo uso do verbo deve. As recomendações são assinaladas pelo uso da expressão convém que. As permissões são assinaladas pelo uso do verbo pode. No entanto, apesar do termo usado, os requisitos de conformidade são selecionados conforme descrito anteriormente.

Uma reivindicação de conformidade total declara o conjunto de processos com os quais a conformidade é requerida. A conformidade total com resultados é alcançada pela demonstração que todos os resultados do conjunto declarado de processos foram alcançados. Nesta situação, as disposições para atividades e tarefas do conjunto declarado de processos são orientações e não requisitos, independentemente da expressão ou forma verbal usada na disposição.

Um uso pretendido deste documento é facilitar a avaliação e a melhoria do processo. Para este fim, os objetivos de cada processo são escritos na forma de resultados compatíveis com as disposições da ISO/IEC 33002 que fornece a avaliação dos processos deste documento, fornecendo uma base para melhorias. Os usuários que pretendem avaliar e melhorar processos podem usar os resultados de processo escritos no presente documento como o modelo de referência de processo requerido pela ISO/IEC 33002.

Uma reivindicação de conformidade total declara o conjunto de processos para os quais a conformidade é reivindicada. A conformidade total com tarefas é alcançada pela demonstração que todos os requisitos das atividades e tarefas do conjunto declarado de processos foram satisfeitos. Nesta situação, as disposições para os resultados do conjunto declarado de processos são orientações e não requisitos, independentemente da expressão ou forma verbal usada na disposição.

Uma reivindicação de conformidade total com tarefas pode ser apropriada em situações contratuais em que um adquirente ou um regulador requer um entendimento detalhado dos processos dos fornecedores. Quando este documento é utilizado como base para estabelecer um conjunto de processos que não se qualificam para conformidade total, as seções deste documento são selecionadas ou modificadas de acordo com o processo de adaptação prescrito no Anexo A.

O texto adaptado, para o qual a conformidade personalizada é reivindicada, é declarado. A conformidade personalizada é obtida pela demonstração de que foram alcançados os resultados, atividades e tarefas, conforme adaptados. As elaborações adicionais destes conceitos relativos à aplicação do gerenciamento do ciclo de vida podem ser encontradas nas ISO/IEC TS 24748-1, ISO/IEC TR 24748-2 e ISO/IEC TR 24748-3.

Os sistemas de software considerados neste documento são feitos, criados e utilizados por pessoas para fornecer produtos ou serviços em ambientes definidos para o benefício dos usuários e de outros stakeholders. Estes sistemas de software podem incluir os seguintes elementos de sistema: hardware, software, dados, pessoas, processos (por exemplo, processos para fornecer serviços aos usuários), procedimentos (por exemplo, instruções do operador), instalações, serviços, materiais e entidades.

Conforme vistos pelo usuário, eles são considerados produtos ou serviços. Este documento se aplica a sistemas para os quais o software é de primordial importância para os stakeholders. Este documento é baseado nos princípios gerais da engenharia de sistemas e engenharia de software.

É uma premissa fundamental deste documento que o software sempre exista no contexto de um sistema. Como o software não opera sem hardware, o processador no qual o software é executado pode ser considerado como parte do sistema. Como alternativa, o hardware ou serviços que hospedam o sistema de software e lidam com as comunicações com outros sistemas também podem ser vistos como sistemas habilitadores ou sistemas externos no ambiente operacional.

A percepção e a definição de um sistema de software específico, sua arquitetura e seus elementos dependem dos interesses e responsabilidades de um stakeholder. O sistema de interesse de um stakeholder pode ser visto como um elemento do sistema de interesse de outro stakeholder. Além disso, pode ser visto também como parte do ambiente de um sistema de interesse de outro stakeholder.

A seguir, são apresentados os principais pontos sobre as características de sistemas de interesse. Os limites definidos encapsulam necessidades significativas e soluções práticas; existem hierarquias ou outros relacionamentos entre os elementos do sistema. Uma entidade em qualquer nível no sistema de interesse pode ser vista como um sistema.

Um sistema compreende um conjunto integrado e definido de elementos de sistema subordinados e as pessoas podem ser vistas como usuários externos a um sistema e como elementos internos ao sistema (isto é, operadores); e um sistema pode ser visto isoladamente como uma entidade, isto é, um produto; ou como um conjunto de funções capazes de interagir com o ambiente ao seu redor, isto é, um conjunto de serviços. Quaisquer que sejam os limites escolhidos para definir o sistema, os conceitos neste documento são genéricos e permitem correlacionar ou adaptar instâncias individuais dos ciclos de vida aos princípios de sistema de um profissional.

Os processos do ciclo de vida neste documento são descritos em relação a um sistema de software que é composto por um conjunto de elementos que interagem (incluindo elementos de software), cada um dos quais pode ser implementado para satisfazer os respectivos requisitos especificados (figura abaixo). A responsabilidade pela implementação de qualquer elemento do sistema pode, portanto, ser delegada a outra parte por meio de um acordo.

O relacionamento entre o sistema de software e o conjunto completo de seus elementos geralmente pode ser representado mostrando os relacionamentos entre os elementos ‒ frequentemente descritos como uma hierarquia para o mais simples dos sistemas de interesse. A decomposição é uma abordagem para algumas atividades de software.

Outras abordagens incluem a orientação a objetos, na qual os elementos do sistema são dispostos em um mesmo plano (não hierárquica), como em um diagrama de rede. Para sistemas de interesse de software mais complexos, pode ser necessário considerar um futuro elemento como um sistema (que por sua vez é composto por outros elementos) antes que um conjunto completo possa ser definido de forma confiável.

Dessa forma, os processos apropriados de ciclo de vida de sistema são aplicados recursivamente a um sistema de interesse para resolver sua estrutura, até que elementos compreensíveis e gerenciáveis do sistema de software possam ser implementados (criados, adaptados, adquiridos ou reutilizados). Pode-se dizer que todo sistema de software tem um ciclo de vida. Um ciclo de vida pode ser descrito usando um modelo funcional abstrato que representa a conceituação de uma necessidade do sistema, sua realização, utilização, evolução e desativação.

Um sistema de software evolui no seu ciclo de vida como resultado de ações das atividades dos processos. Estas ações são executadas e gerenciadas por pessoas nas organizações. Os detalhes no modelo de ciclo de vida são expressos em termos destes processos, seus resultados, relacionamentos e sequência.

O uso da manufatura aditiva nos projetos de produtos

A NBR ISO/ASTM 52910 de 05/2021 – Manufatura aditiva – Projetos – Requisitos, diretrizes e recomendações contém requisitos, diretrizes e recomendações para o uso da manufatura aditiva (MA) nos projetos de produtos. contém requisitos, diretrizes e recomendações para o uso da manufatura aditiva (MA) nos projetos de produtos. Aplica-se à etapa de projetos de todos os tipos de produtos, dispositivos, sistemas, componentes ou peças que são fabricadas por qualquer método de MA. Este documento ajuda a determinar quais tipos de considerações podem ser utilizadas durante o projeto, para melhor aplicação dos recursos dos processos de MA.

São abordadas orientações gerais e identificação de problemas; soluções específicas de projeto, processos e materiais não fazem parte deste documento. O público-alvo compreende três tipos de usuários: projetistas e gerentes que estão desenvolvendo produtos a serem fabricados por sistemas de MA; estudantes que estão aprendendo projeto mecânico e desenho assistido por computador; e desenvolvedores de diretrizes de projeto e de sistemas de orientação de MA.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as considerações de produto?

Quais as considerações do ambiente térmico que o projeto deve se basear?

Quais são as considerações de sustentabilidade do produto?

Quais são as considerações comerciais para decidir se a MA é o melhor método para a produção de uma peça?

Este documento fornece requisitos, diretrizes e recomendações para os projetos de peças e produtos a serem produzidos por processos de MA. As condições da peça ou do produto que favorecem a MA são destacadas. Da mesma forma, as condições que favorecem os processos de fabricação convencionais também são destacadas. Os principais elementos incluem: as oportunidades e liberdade de projeto que a MA oferece aos projetistas (Seção 5); as características ou questões que os projetistas devem considerar ao projetar as peças para MA, que compreendem o principal conteúdo destas diretrizes (Seção 6); e os avisos ou questões críticas para os projetistas, que indiquem situações que frequentemente levem a problemas em muitos dos sistemas de MA (Seção 7).

A estratégia geral para um projeto de MA é apresentada na figura abaixo. Esta é uma representação de um processo que projeta peças mecânicas para aplicações estruturais, em que o custo é o principal critério de decisão. O projetista pode substituir prazo por qualidade, prazo de entrega ou outro critério de decisão, se aplicável.

Além de considerações técnicas relacionadas às características funcionais, mecânicas ou de processos, o projetista também deve considerar os riscos associados à seleção dos processos de MA. O processo para identificação da potencialidade geral de fabricação com MA é apresentado na figura abaixo.

Esta é uma expansão da caixa identificação de potencial de aplicação da MA, no lado esquerdo da figura abaixo. Como apresentado, os principais critérios de decisão focam na disponibilidade do material, se a peça cabe ou não no volume de fabricação da máquina e na identificação de pelo menos uma característica da peça (personalização, redução de peso, geometria complexa) em que a MA seja particularmente recomendada.

Esses critérios representam muitas aplicações de engenharia mecânica para peças técnicas, mas não têm pretensão de serem únicos. Uma expansão para a caixa seleção do processo de MA a ser utilizado da Figura abaixo é representada na outra figura abaixo, indicando que a escolha do material é crítica na identificação do processo ou dos processos recomendados.

Se o material e o processo recomendados forem identificados, a consideração de outros requisitos de projeto pode prosseguir, incluindo considerações sobre características da superfície, geométricas, propriedades físicas, estáticas e dinâmicas, entre outros. Essas figuras apresentam uma abordagem típica para muitas peças mecânicas, mas não convém que sejam interpretadas como prática necessária prescrita.

A manufatura aditiva se diferencia de outros processos de manufatura por muitas razões, e estas diferenças proporcionam liberdades e oportunidades únicas de projeto que são destacadas nesta Seção. Em regras gerais, se uma peça puder ser fabricada de forma economicamente viável usando um processo de manufatura convencional, provavelmente esta peça não será fabricada utilizando a MA.

Entretanto, as peças que são boas candidatas para a MA tendem a ter geometrias complexas, geometrias customizadas, baixos volumes de produção, combinações especiais de propriedades ou características, ou combinações destas características. À medida que os processos e os materiais são melhorados, a ênfase nestas características provavelmente mudará. Na Seção 5, algumas oportunidades de projeto são destacadas e algumas limitações típicas são identificadas.

Para as oportunidades de projeto, deve-se entender o descrito a seguir. Contexto – A MA fabrica peças adicionando material camada por camada. Devido à própria natureza dos processos de MA, a MA tem muito mais grau de liberdade que outros processos de manufatura. Por exemplo, uma peça pode ser constituída por milhões de gotículas, se fabricada por um processo de jateamento de material.

O controle discreto sobre milhões de operações em micro e nanoescalas é, ao mesmo tempo, uma oportunidade e um desafio. Níveis de interdependência sem precedentes são evidentes entre as considerações e as variáveis do processo de manufatura, o que distingue a MA dos processos de manufatura convencionais. A capacidade de tirar a vantagem das oportunidades de projeto pode ser limitada pelas complexidades do planejamento de processo.

Visão global – A natureza aditiva, baseada em camadas, significa que qualquer formato de peça pode ser virtualmente fabricado sem ferramental, como moldes, matrizes ou dispositivos de fixação. Geometrias customizadas para indivíduos (clientes ou pacientes) podem ser fabricadas economicamente. Formas geométricas muito sofisticadas são possíveis com o uso de estruturas celulares (colmeia, lattice, esponja) ou estruturas convencionais. Frequentemente, múltiplos componentes de um conjunto fabricado por processos convencionais podem ser substituídos por uma única peça ou por um número menor de peças que sejam geometricamente mais complexas que os componentes sendo substituídos.

Isto pode levar ao desenvolvimento de peças mais leves e com melhor desempenho do que as montagens originais. Além disso, a redução do número de peças (chamada de consolidação de peças) tem vários benefícios para as atividades subsequentes. O tempo de montagem e de manutenção, a complexidade no chão de fábrica e o estoque de peças de reposição e ferramental podem ser reduzidos, levando à economia de custos ao longo da vida do produto.

Uma consideração adicional é que modelos para aplicações médicas com geometrias complexas podem ser facilmente fabricados a partir de dados de imagens médicas. Em muitos processos de MA, as composições e as propriedades do material podem ser variadas por meio de uma peça. Esta característica possibilita peças com gradiente funcional, nas quais as distribuições de propriedades mecânicas desejadas podem ser projetadas, variando-se a composição do material ou a sua microestrutura.

Sendo desejadas variações efetivas das propriedades mecânicas por meio de uma peça, o projetista pode fazer isso, tirando vantagem da capacidade dos processos de MA quanto à complexidade geométrica. Sendo desejadas variações na composição ou na microestrutura do material, estas variações podem ser alcançadas, mas com limites que dependem do processo ou do equipamento específico. Considerando todos os processos de MA, alguns deles permitem o controle de variação de material ponto a ponto, alguns fornecem controle discreto dentro de uma camada e a maioria permite controle discreto entre as camadas (a fotopolimerização em cuba é a exceção).

No processo de jateamento de material e de jato de aglutinante, a composição do material pode ser variada de maneira praticamente contínua, gota a gota, ou mesmo por mistura de gotículas. Do mesmo modo, o processo de deposição de energia direcionada pode produzir várias composições de materiais, variando a composição do pó que é injetado na poça de fusão (melt pool).

O controle discreto da composição de materiais utilizados pode ser implementado em processo de extrusão de material, utilizando, por exemplo, múltiplos bicos extrusores. O processo de fusão em leito de pó (PBF) pode ter limitações, uma vez que podem surgir dificuldades na separação dos pós não fundidos.

É importante notar que os recursos específicos dos equipamentos vão mudar e evoluir continuamente com o tempo, mas a tendência geral é aumentar a flexibilidade da composição do material e a capacidade de controle das propriedades. Existe uma importante oportunidade de otimizar o projeto de peças, para atingir propriedades estruturais sem precedentes.

O conceito de projeto para funcionalidade pode ser concretizado, o que significa que, se as funções de uma peça puderem ser matematicamente determinadas, a peça pode ser otimizada para adquiri-las. Novos métodos de otimização topológica e de forma foram desenvolvidos a este respeito.

Os projetos resultantes podem possuir geometrias muito complexas, utilizando estruturas internas tipo colmeia, lattice ou esponja, que, por sua vez, podem possuir combinações e variações complexas de materiais ou uma combinação de ambas. É necessária pesquisa nesta área, mas alguns exemplos práticos já estão surgindo.

Outras oportunidades envolvem algumas considerações comerciais. Como na MA nenhum ferramental é necessário para a fabricação de peças, os prazos de entrega podem ser reduzidos, quando comparados à manufatura convencional de novos projetos. É necessário pouco investimento em infraestrutura, o que permite a customização em massa e o incremento da capacidade de resposta às mudanças de mercado.

No caso de manutenção, a fabricação de componentes para reposição pode ser vantajosa em relação tanto aos custos quanto ao prazo de entrega. Visão global – É usual apontar as características do projeto que indicam situações em que a MA provavelmente não seria utilizada. Em termos concisos, se uma peça puder ser economicamente fabricada utilizando um processo de fabricação convencional e se puder atender aos requisitos, é improvável que seja uma boa candidata para a MA. Convém que o projetista considere custo, tempo de entrega e riscos ao decidir pela MA.

Uma importante vantagem dos processos de MA é a flexibilidade de fabricar uma variedade de peças com formatos complexos e personalizados, e a possibilidade de distribuições complexas de materiais. Se alguém desejar a produção em massa e em larga escala de peças simples, a MA pode não ser adequada sem melhorias significativas no tempo e no custo de produção.

O projetista deve estar atento às opções de materiais disponíveis, à variedade e à qualidade do material de alimentação, e a como as propriedades mecânicas e as outras propriedades físicas variam, quando comparadas entre a manufatura aditiva e a convencional. Os materiais para MA possuem diferentes características e propriedades, porque eles são processados de maneira diferente que os utilizados para fabricação convencional.

Convém que os projetistas estejam cientes de que as propriedades das peças fabricadas por MA são altamente sensíveis aos parâmetros de processo e que a estabilidade do processo é um problema significativo que pode limitar a liberdade do projeto. Além disto, convém que os projetistas entendam as anisotropias frequentemente presentes em materiais processados por MA.

Em alguns processos, as propriedades no plano de fabricação (direções X, Y) são diferentes das propriedades no eixo de fabricação (eixo Z). Com alguns metais, é possível obter propriedades mecânicas superiores às obtidas por processo de conformação mecânica. No entanto, normalmente, as propriedades de fadiga e de resistência ao impacto das peças fabricadas por MA, na condição de como fabricadas, são inferiores às de materiais processados convencionalmente.

Todas as máquinas de MA discretizam a geometria da peça antes de fabricá-la. A discretização pode ser feita de diversas formas. Por exemplo, muitas máquinas de MA fabricam peças em um modo camada por camada. Em jateamento de material e em jato aglutinante, gotas discretas de material são depositadas.

Em outros processos, percursos vetoriais discretos (por exemplo, de um laser) são usados para processar o material. Devido a esta discretização da geometria das peças, geralmente a superfície externa da peça não é lisa, uma vez que as divisões entre as camadas ficam evidentes. Em outros casos, as peças podem ter pequenos vazios internos.

A discretização da geometria gera muitos outros efeitos. Características pequenas podem ser mal formadas. Paredes ou estruturas finas, inclinadas em relação à direção de fabricação, podem ser mais espessas que o desejado. Além disso, se a parede ou a estrutura for quase horizontal, ela pode ser muito fraca, pois pode ocorrer pouca sobreposição de camadas. Da mesma forma, pequenas características negativas, como furos, podem sofrer o efeito oposto, ficando menores que o desejado e com formas distorcidas.

O pós-processamento das peças é requerido por muitos processos de MA ou pode ser solicitado pelo usuário final. Uma variedade de métodos mecânicos, químicos e térmicos pode ser aplicada. Vários tipos de processo de MA utilizam estruturas de suporte na fabricação das peças que precisam ser removidas.

Em alguns casos, os suportes podem ser removidos usando solventes, mas, em outros, os suportes precisam ser removidos mecanicamente. Convém que o usuário considere o trabalho, o tratamento manual do componente e o tempo adicionais que estas operações requerem. Adicionalmente, convém que os projetistas entendam que a presença de estruturas de suporte pode afetar o acabamento ou a precisão das superfícies suportadas.

Além da remoção da estrutura de suporte, outras operações de pós-processamento podem ser necessárias ou solicitadas, incluindo a remoção de pó em excesso, melhoria no acabamento da superfície, usinagem, tratamentos térmicos e revestimentos. Se uma peça tiver cavidades internas, convém que o projetista considere as características na peça que permitam remover das cavidades as estruturas de suporte, o pó não sinterizado (PBF) ou a resina líquida (fotopolimerização em cuba).

Dependendo dos requisitos de precisão e de acabamento da superfície, a peça pode requerer usinagem de acabamento, polimento, retificação, jateamento de esferas ou jateamento com granalha. Peças de metal podem requerer, por exemplo, um tratamento térmico para alívio de tensões residuais. Podem ser requeridos revestimentos, como pintura, galvanoplastia ou infiltração de resina.

As operações de pós-processamento aumentam o custo das peças fabricadas por MA. Cada processo de MA possui um envelope de fabricação limitado. Se uma peça for maior que o envelope de fabricação de um processo de MA, ela pode ser dividida em várias peças, a serem montadas após a fabricação. Em alguns casos, isto não é tecnicamente ou economicamente viável.

REVISTA DIGITAL ADNORMAS – Edição 159 | Ano 4 | 20 de Maio 2021

Acesse a versão online: https://revistaadnormas.com.br     Revista AdNormas - Ed 159 Ano 3
Edição 159 | Ano 4 | 20 de Maio 2021
ISSN: 2595-3362 Acessar edição
Capa da edição atual
  Confira os 12 artigos desta edição:
Os parâmetros dos interruptores para os sistemas eletrônicos de edificações
A bomba de combustível não conforme pode representar riscos aos veículos
A conformidade dos materiais utilizados em sistema de aterramento
A liderança de equipes de alta performance na indústria da construção civil
A integridade do limite de pressão de uma válvula metálica industrial
A logística reversa no segmento de produtos eletroeletrônicos Target Adnormas
Como criar um ambiente de trabalho mais diverso e inclusivo

Como o setor público pode garantir a segurança dos dados
Máquinas de movimentação de solo: a remanufatura e a avaliação das usadas
O ensaio da pressão de estouro nos preservativos masculinos
A pandemia contribuiu para o aumento do estresse e peso da população
Protegendo a privacidade e minimizando os dados

IEC 62061: a validação dos sistemas de controle relacionados à segurança de máquinas

A IEC 62061:2021 – Safety of machinery – Functional safety of safety-related control systems especifica os requisitos e faz recomendações para o projeto, a integração e a validação de sistemas de controle relacionados à segurança (safety-related control systems – SCS) de máquinas. É aplicável a sistemas de controle usados, individualmente ou em combinação, para realizar as funções de segurança em máquinas que não são portáteis durante o trabalho, incluindo um grupo de máquinas trabalhando juntas de maneira coordenada.

Este documento é uma norma específica do setor de máquinas dentro da estrutura da IEC 61508 (todas as partes). O projeto de subsistemas eletrônicos programáveis complexos ou elementos de subsistema não está dentro do escopo deste documento.

O corpo principal desta norma do setor especifica os requisitos gerais para o projeto e verificação de um sistema de controle relacionado à segurança destinado a ser usado no modo de demanda alta/contínua. Este documento trata apenas dos requisitos de segurança funcional destinados a reduzir o risco de situações perigosas; se restringe aos riscos decorrentes diretamente dos perigos da própria máquina ou de um grupo de máquinas trabalhando em conjunto de maneira coordenada.

Não inclui os riscos elétricos decorrentes do próprio equipamento de controle elétrico (por exemplo, choque elétrico – consulte IEC 60204-1); outros requisitos de segurança necessários no nível da máquina, como proteção; e medidas específicas para aspectos de segurança – consulte IEC TR 63074. Não se destina a limitar ou inibir o avanço tecnológico.

A IEC 62061: 2021 cancela e substitui a primeira edição, publicada em 2005, Alteração 1: 2012 e Alteração 2: 2015. Esta edição constitui uma revisão técnica e algumas mudanças técnicas significativas em relação à edição anterior. A estrutura foi alterada e o conteúdo foi atualizado para refletir o processo de projeto da função de segurança. A norma estendeu o seu escopo para as tecnologias não elétricas.

As definições foram atualizadas e ficaram alinhadas com a IEC 61508-4. Foi introduzido um plano de segurança funcional e o gerenciamento de configuração foi atualizado (Cláusula 4) e os requisitos de parametrização foram expandidos (Cláusula 6). Houve uma referência aos requisitos de segurança (Subcláusula 6.8) e os requisitos de teste periódico foram adicionados (Subcláusula 6.9).

Incluídas várias melhorias e esclarecimentos sobre arquiteturas e cálculos de confiabilidade (Cláusula 6 e Cláusula 7), houve uma mudança de “SILCL” para “SIL máximo” de um subsistema (Cláusula 7). Descreveu-se o uso casos para software, incluindo os seus requisitos (Cláusula 8) e os requisitos de independência para verificação de software (Cláusula 8) e atividades de validação (Cláusula 9) foram adicionados. Acrescentou um novo anexo informativo com exemplos (Anexo G), e novos anexos informativos sobre valores MTTFD típicos, diagnósticos e métodos de cálculo para as arquiteturas (Anexo C, Anexo D e Anexo H).

O projeto de subsistemas eletrônicos programáveis complexos ou elementos de subsistema não está dentro do escopo deste documento. Isso está no escopo da IEC 61508 ou dos padrões a ela vinculados; consulte a Figura 1. Os elementos como sistemas em chip ou placas de microcontrolador são considerados subsistemas eletrônicos programáveis complexos.

O corpo principal desta norma do setor especifica os requisitos gerais para o projeto e verificação de um sistema de controle relacionado à segurança destinado a ser usado no modo de demanda alta/contínua. Esse documento está preocupado apenas com os requisitos de segurança funcional destinados a reduzir o risco de situações perigosas; se restringe aos riscos decorrentes diretamente dos perigos da própria máquina ou de um grupo de máquinas trabalhando juntas de maneira coordenada.

Os requisitos para mitigar riscos decorrentes de outros perigos são fornecidos em normas setoriais relevantes. Por exemplo, onde uma máquina (s) faz parte de uma atividade de processo, informações adicionais estão disponíveis em IEC 61511. Este documento não cobre os riscos elétricos decorrentes do próprio equipamento de controle elétrico (por exemplo, choque elétrico – consulte IEC 60204-1); outros requisitos de segurança necessários no nível da máquina, como proteção; as medidas específicas para aspectos de segurança – ver IEC TR 63074. Este documento não tem como objetivo limitar ou inibir o avanço tecnológico. A figura 1 ilustra o escopo deste documento.

Inserir figura 1

A produção e a redução do esforço físico do operador, os sistemas de controle relacionados à segurança (chamados de SCS) das máquinas desempenham um papel cada vez maior na obtenção da segurança geral da máquina. Além disso, os próprios SCS empregam cada vez mais tecnologia eletrônica complexa. A IEC 62061 especifica os requisitos para o projeto e implementação de sistemas de controle de máquinas relacionados à segurança. Este documento é específico do setor de máquina dentro da estrutura da IEC 61508.

Embora a IEC 62061 e a ISO 13849-1 estejam usando metodologias diferentes para o projeto de sistemas de controle relacionados à segurança, eles pretendem alcançar a mesma redução de risco. Esta norma internacional destina-se ao uso por projetistas de máquinas, fabricantes e integradores de sistemas de controle e outros envolvidos na especificação, projeto e validação de um SCS. Ele estabelece uma abordagem e fornece requisitos para atingir o desempenho necessário e facilita a especificação das funções de segurança destinadas a atingir a redução de risco.

Este documento fornece uma estrutura específica do setor de máquinas para a segurança funcional de um SCS de máquinas. Abrange apenas os aspectos do ciclo de vida de segurança que estão relacionados à alocação de requisitos de segurança até a validação de segurança. Os requisitos são fornecidos para informações para o uso seguro do SCS de máquinas que também podem ser relevantes para as fases posteriores do ciclo de vida de um SCS.

Existem muitas situações em máquinas onde o SCS é empregado como parte das medidas de segurança que foram fornecidas para atingir a redução de risco. Um caso típico é o uso de uma proteção de intertravamento que, quando aberta para permitir o acesso à zona de perigo, sinaliza às partes relacionadas à segurança do sistema de controle da máquina para interromper a operação perigosa da máquina. Na automação, o sistema de controle da máquina que é usado para atingir a operação correta do processo da máquina muitas vezes contribui para a segurança ao mitigar os riscos associados aos perigos decorrentes diretamente das falhas do sistema de controle.

Este documento fornece uma metodologia e requisitos para atribuir a integridade de segurança necessária para cada função de segurança a ser implementada pela SCS; habilitar o projeto do SCS apropriado para a (s) função (ões) de segurança (controle) atribuída (s); integrar subsistemas relacionados à segurança projetados de acordo com outros funcionais das normas aplicáveis relacionadas à segurança (ver 6.3.4); validar o SCS.

Este documento se destina a ser usado dentro da estrutura de redução de risco sistemático, em conjunto com a avaliação de risco descrita na ISO 12100. As metodologias sugeridas para uma atribuição de integridade de segurança são fornecidas no Anexo A (informativo).

REVISTA DIGITAL ADNORMAS – Edição 157 | Ano 4 | 6 de Maio 2021

Acesse a versão online: https://revistaadnormas.com.br     Revista AdNormas - Ed 157 Ano 4
Edição 157 | Ano 4 | 6 de Maio 2021
ISSN: 2595-3362 Acessar edição
Capa da edição atual
Confira os 12 artigos desta edição:  
A gestão da proteção de dados pessoais (DP) em nuvens públicas
A segurança dos equipamentos em processos de solda e corte a gás
Os riscos da utilização do hidrogênio em suas formas gasosa e líquida
Como fazer uma migração segura para a nuvem na transformação digital
A determinação do coeficiente de permeabilidade de solos argilosos
A economia como ciência Target Adnormas
A Qualidade dos produtos à base de orto e polifosfatos para saneamento básico
Com tecnologias, o Brasil poderia transformar mais lixo em energia
A conformidade das fibras poliméricas para uso em concreto e argamassa
Mercado empresarial adota inteligência artificial (IA)
Os robôs colaborativos estão revolucionando a indústria
Por que o explante de mama está em evidência?

BS EN 13321-1: os sistemas eletrônicos residencial e predial

A BS EN 13321-1:2021 – Open data communication in building automation, controls and building management. Home and building electronic system. Product and system requirements especifica, tanto para os sistemas eletrônicos domésticos ou de edifícios (HBES) como para o domínio da automação de edifícios e aplicação de sistemas de controle e gerenciamento de edifícios (BACS), as regras comuns para uma classe de sistemas de barramento de múltiplas aplicações onde as funções são descentralizadas e vinculadas através de um processo de comunicação comum. Essa norma europeia define os requisitos básicos para produtos e sistemas.

Os requisitos também podem se aplicar às funções distribuídas de qualquer equipamento conectado em um sistema de controle residencial ou predial, se não houver uma norma específica para este equipamento ou sistema. Devido à sua referência à série EN 50090, ela define os requisitos para a área de BACS em relação à arquitetura e hardware e aplicação e comunicação de sistemas baseados em HBES, entre outras áreas. Também especifica os requisitos básicos de interoperabilidade (entre produtos e sistemas).

Conteúdo da norma

Prefácio europeu……. iii

Introdução…………….4

1 Escopo…………… 5

2 Referências normativas ….5

3 Termos e definições………….. 5

4 Requisitos………………. 6

O objetivo permanente do CENELEC/TC 205 é preparar padrões para todos os aspectos dos sistemas eletrônicos para casas e edifícios (home and building electronic systems – HBES) em relação à sociedade da informação. Essas normas HBES garantem a integração de um amplo espectro de aplicações de controle e os aspectos de controle e gerenciamento de outras aplicações dentro e ao redor de casas e edifícios, incluindo os gateways para diferentes transmissões em mídia e redes públicas.

Além disso, eles levam em consideração todas as questões de compatibilidade eletromagnética (electromagnetic compatibility – EMC), segurança elétrica e funcional. Portanto, eles são a pré-condição para que os produtos em conformidade interajam e sejam fáceis de instalar para facilitar a tarefa dos projetistas e instaladores do sistema de fornecer as redes necessárias de acordo com as necessidades de serviço de seus clientes.

Estender esses requisitos normalizados de sistemas eletrônicos para casa e prédios (HBES) para automação de prédios e aplicação de sistema de controle e gerenciamento de prédios (building automation and control system – BACS) gera sinergia em funcionalidade e aumenta ainda mais a economia de escala neste mercado crescente e aberto de vários fornecedores de produtos BACS interoperáveis. Este documento deve ser usado por todos os envolvidos nas atividades de projeto, fabricação, engenharia, instalação e comissionamento.

Além disso, e de acordo com a visão corregulatória da UE sobre a padronização europeia, este documento apoia os objetivos europeus e ajuda os usuários a cumprir importantes diretivas da UE, como os regulamento dos produtos de construção e diretiva do desempenho energético dos edifícios.

Aspectos como condições ambientais/influências externas, segurança elétrica, EMC, etc. também costumavam ser cobertos pela EN 50090-2-2, que foi substituída pela agora disponível série EN 50491. Esta última série de normas europeia foi desenvolvida em conjunto pelo CENELEC/TC 205 e CEN/TC 247 e também inclui aspectos como segurança funcional em uso normal. A série EN 50491 se aplica, junto com o padrão de produto relevante para dispositivos, se aplicável.

BS EN 50131-1: os sistemas de alarme de intrusão e contenção

Essa norma europeia, publicada pela BSI, define os requisitos dos sistemas de alarme de intrusão e contenção (intrusion and hold-up alarm systems – I & HAS) instalados em edifícios usando interconexões com fio específicas ou não específicas ou interconexões sem fio. Também se aplica a sistemas de alarme de intrusão que incluem apenas detectores de intrusão e a sistemas de alarme de bloqueio que incluem apenas dispositivos de bloqueio.

A BS EN 50131-1:2018+A3:2020 – Alarm systems – Intrusion and hold-up systems. System requirements define os requisitos dos sistemas de alarme de intrusão e contenção (intrusion and hold-up alarm systems – I & HAS) instalados em edifícios usando interconexões com fio específicas ou não específicas ou interconexões sem fio. Também se aplica a sistemas de alarme de intrusão que incluem apenas detectores de intrusão e a sistemas de alarme de bloqueio que incluem apenas dispositivos de bloqueio.

Essa norma pode ser usada pelos compradores e especificadores de I & HAS em qualquer setor, fabricantes, consultores, projetistas, instaladores e mantenedores de I & HAS no setor de segurança eletrônica, seguradoras, polícia e organismos de certificação relacionados. Esta norma europeia especifica os requisitos de desempenho para sistemas de alarme de intrusão e contenção (I & HAS) instalados em edifícios e inclui quatro graus de segurança e quatro classes ambientais.

Essa é a especificação fundamental para a indústria de sistemas de alarme de intrusão e contenção e é reconhecida em todo o Reino Unido e na Europa, e em outras partes do mundo. A BS EN 50131-1: 2018 + A3: 2020 é significativa para instaladores onde a conformidade é exigida pelo National Police Chiefs Council e pelas políticas da Police Scotland para sistemas de segurança; e é freqüentemente solicitada por seguradoras e outros especificadores.

O objetivo de um I & HAS é aumentar a segurança das instalações supervisionadas. Para maximizar sua eficácia, um I & HAS deve ser integrado com dispositivos e procedimentos de segurança física apropriados. Isso é particularmente importante para graus I e HAS superiores.

A norma tem como objetivo auxiliar as seguradoras, empresas de alarme contra intrusos, clientes e a polícia a alcançar uma especificação completa e precisa da supervisão necessária em instalações específicas, mas não especifica o tipo de tecnologia, a extensão ou grau de detecção, nem cobre necessariamente todos os requisitos para uma instalação particular. Uma característica fundamental é que a norma descreve os quatro graus de sistema de alarme.

O Grau 1: baixo risco – espera-se que um intruso ou ladrão tenha pouco conhecimento do I & HAS e esteja restrito a uma gama limitada de ferramentas facilmente disponíveis. O Grau 2: risco baixo a médio – espera-se que um intruso ou ladrão tenha um conhecimento limitado de I & HAS e o uso de uma variedade geral de ferramentas e instrumentos portáteis (por exemplo, um multímetro).

O Grau 3: risco médio a alto – espera-se que um intruso ou ladrão esteja familiarizado com um I & HAS e tenha uma ampla variedade de ferramentas e equipamentos eletrônicos portáteis. O Grau 4: alto risco – para ser usado quando a segurança tem precedência sobre todos os outros fatores. Espera-se que um intruso ou ladrão tenha a habilidade ou recurso para planejar uma intrusão ou roubo em detalhes e tenha uma gama completa de equipamentos, incluindo meios de substituição de componentes em um I & HAS.

Isso permite que os fabricantes, instaladores, compradores e usuários tenham certeza de que um sistema de alarme é adequado para o propósito e atende aos critérios de avaliação de risco. No Reino Unido, a norma também é usada por organismos de certificação credenciados para a indústria. Essa norma cumpre com as recomendações para projeto, planejamento, operação, instalação e manutenção são fornecidas nas Diretrizes de Aplicação CLC / TS 50131-7 e contribui para o Objetivo de Desenvolvimento Sustentável 9 da ONU sobre a indústria, inovação e infraestrutura porque apoia a proteção de infraestruturas.

Esta terceira alteração trata das preocupações levantadas pelos comités nacionais durante a preparação da alteração 2, de modo a incluir um tipo específico de monitorização da interligação não abrangido nas edições anteriores. Uma estrutura também foi adicionada para um método cada vez mais comum de conectar e controlar sistemas de alarme remotamente. Outras pequenas alterações incluem atualizações de referências normativas, abreviações e definições.

Conteúdo da norma

Introdução …………………………… 6

1 Escopo………………………………. 7

2 Referências normativas…………… 7

3 Definições e abreviações……… …. 8

3.1 Definições………………… 8

3.2 Abreviações………….. 15

4 Funções do sistema ………………. 15

5 Componentes do sistema………….. 15

6 Classificação de segurança………………… 16

7 Classificação ambiental…………….. 16

7.1 Classe Ambiental I – Interno…….. 17

7.2 Classe Ambiental II – Interno – Geral…………….. 17

7.3 Classe Ambiental III – Externo – Protegido ……………. 17

7.4 Classe Ambiental IV – Externo – Geral…………….. 17

8 Requisitos funcionais………………. 17

8.1 Detecção de intrusos, disparo, adulteração e reconhecimento de falhas……………. 17

8.2 Outras funções…………. 18

8.3 Operação……………….. 19

8.4 Processamento…………….. 24

8.5 Indicações………………. 27

8.6 Notificação………………. 28

8.7 Segurança contra adulteração……….. 30

8.8 Interconexões…………………… 32

8.9 Desempenho de temporização I & HAS ………………….. 34

8.10 Gravação de eventos………. ………… 34

9 Fonte de alimentação…………………….. 36

9.1 Tipos de fonte de alimentação…………. 36

9.2 Requisitos…………………….. 36

10 Confiabilidade operacional………….. 37

10.1 Componentes I & HAS ………… …… 37

11 Confiabilidade funcional………………… 37

12 Requisitos ambientais…………………. 37

12.1 Geral………………….. 37

12.2 Ambiental…………. 37

12.3 Compatibilidade eletromagnética ………………… 37

13 Segurança elétrica. …………………. 38

14 Documentação………………… 38

14.1 Documentação do sistema de alarme de intrusão e assalto ………………………………….. ……………. 38

14.2 Documentação do componente do sistema de alarme de intrusão e contenção……………………….. 38

15 Marcação/Identificação……… ………….. 38

Anexo A (normativo) Condições nacionais especiais……………………. 39

Anexo B (normativo) Requisitos aplicáveis quando um I & HAS é acessado remotamente ……………………. 40

Anexo C (normativo) Ameaças comuns à segurança cibernética ………………………… 41

Bibliografia ………………………….. 42

Essa norma europeia se aplica a sistemas de alarme de intrusão e contenção. A norma também se destina a ser aplicada a sistemas de alarme de intrusão que incluem apenas detectores de intrusão e a sistemas de alarme de retenção que incluem apenas dispositivos de retenção. Esta norma europeia é uma especificação para sistemas de alarme de intrusão e contenção (I & HAS) instalados em edifícios, inclui quatro graus de segurança e quatro classes ambientais.

O objetivo de um I & HAS é aumentar a segurança das instalações supervisionadas. Para maximizar sua eficácia, um I & HAS deve ser integrado a dispositivos e procedimentos de segurança física apropriados. Isso é particularmente importante para graus I e sistemas superiores.

Esta norma tem como objetivo auxiliar as seguradoras, empresas de alarme contra intrusos, clientes e a polícia a atingir uma especificação completa e precisa da supervisão necessária em instalações particulares, mas não especifica o tipo de tecnologia, a extensão ou o grau de detecção, nem ele necessariamente cobre todos os requisitos para uma instalação particular. Todas as referências aos requisitos para I & HAS referem-se aos requisitos mínimos básicos e os projetistas de tais I & HAS instalados devem levar em consideração a natureza das instalações, o valor dos conteúdos, o grau de risco de intrusão, a ameaça ao pessoal e quaisquer outros fatores o que pode influenciar a escolha da nota e do conteúdo de um I & HAS.

As recomendações para projeto, planejamento, operação, instalação e manutenção são fornecidas nas Diretrizes de Aplicação CLC/TS 50131-7. Esta norma não se destina a ser usada para testar componentes I & HAS individuais. Os requisitos para testar componentes I & HAS individuais são fornecidos nas normas de componentes relevantes.

I & HAS e seus componentes são classificados para fornecer o nível de segurança necessário. Os graus de segurança levam em consideração o nível de risco que depende do tipo de local, do valor dos conteúdos e do típico intruso ou ladrão esperado.