Quatro pontos de atenção para melhorar a eficiência energética nas empresas

Normas comentadas

NBR 14039 – COMENTADA de 05/2005Instalações elétricas de média tensão de 1,0 kV a 36,2 kV – Versão comentada.

Nr. de Páginas: 87

NBR 5410 – COMENTADA de 09/2004Instalações elétricas de baixa tensão – Versão comentada.

Nr. de Páginas:209

Em razão das perdas por aquecimento de equipamentos e instalações elétricas, estima-se que uma parte significativa da energia gerada anualmente no Brasil seja desperdiçada. Isso poderia ser revertido pela melhora no aproveitamento e pelo uso racional das fontes de energia. O entendimento desse potencial de economia – de fazer mais com menos – é o que define eficiência energética.

Para que as empresas estejam alertas sobre como diminuir o consumo de energia, Glycon Garcia, engenheiro eletricista, diretor executivo do Instituto Brasileiro do Cobre (Procobre), relaciona os pontos-chave para ganho de eficiência energética. A eficiência energética na iluminação está diretamente relacionada ao tipo de lâmpada e luminária utilizadas. Por isso, o ideal é que seja feito um estudo luminotécnico para indicar as melhores opções em cada situação.

Uma tendência que vem ganhando força no mercado a cada dia é o uso de lâmpadas LED. “A durabilidade de uma lâmpada LED equivale a de 50 lâmpadas incandescentes. Ela rende algo entre 20 mil e 100 mil horas, enquanto a vida útil da incandescente não passa de mil horas e a fluorescente entre 5 mil e 10 mil”, explica. De acordo com Garcia, as empresas conseguiriam diminuir o peso da fatura de consumo se planejassem esse sistema e adotassem, por exemplo, fotocélulas em fachadas, sensores de presença em locais de pouca movimentação, painéis solares fotovoltaicos, para aproveitar os recursos naturais, entre outros componentes.

A substituição de motores elétricos antigos por motores de alto rendimento, com maior presença de cobre, também é uma alternativa de economia no consumo de energia elétrica e aumento da produtividade nas empresas. Hoje, de acordo com Ministério de Minas e Energia (MME), os motores representam a maior parte do consumo da energia gerada no País. Grande parte desse consumo é explicado pela prática de recondicionamento, que torna os motores antigos menos eficientes. “Os motores de alto rendimento, com maior condutividade elétrica, diminuem perdas de energia e ainda têm a vantagem de uma maior vida útil, se comparados aos motores convencionais”, afirma Garcia.

De acordo com o diretor do Procobre, a venda de motores novos no Brasil equivale à quantidade de motores reformados. A cada reforma, estima-se que a perda de eficiência energética seja de até 3% e é comum um motor ser recondicionado mais de uma vez, aumentando o custo operacional e o desperdício de energia elétrica.“Além dos motores, os sistemas elétricos e os sistemas de controles de motores, geradores, transformadores de distribuição e até eletrodomésticos, se mais eficientes, poderiam contribuir para a redução do consumo de energia elétrica a um custo menor que a do investimento em geração de energia”, diz o engenheiro. As empresas conseguiriam ainda reduzir custos de manutenção e aumentar a produtividade com a troca dos motores antigos por novos.

Ao conduzirem energia, as próprias instalações sofrem perdas elétricas. Atualmente, existe uma discussão junto à ABNT sobre quais os parâmetros que devem ser observados para redução dessas perdas. O diretor do Procobre chama a atenção para o uso de materiais de boa qualidade e também para o local de instalação de alguns componentes.

“Quanto maior o comprimento de um cabo, maior a perda. Uma mudança de posição em relação ao item de maior consumo energético, em alguns casos, pode gerar economia”, acrescenta. Também faz o alerta de que pouco adianta ter instalações bem dimensionadas e equipamentos eficientes, se o uso não for racional. Por isso, a importância de criar bons hábitos no uso da energia elétrica, evitando desperdícios.

Em um conceito abrangente, que engloba aquecimento, ventilação, ar-condicionado e refrigeração, a climatização é outro ponto chave que deve ser observado sob o conceito de eficiência energética. No caso dos aparelhos de ar-condicionado, além do correto dimensionamento para o ambiente onde será instalado, um estudo pode identificar se é mais vantajoso para a empresa manter um sistema de ar-condicionado central ou distribuído, por exemplo. “Outro item a ser observado é a classificação energética desses aparelhos”, destaca Garcia. “Em uma escala de A (mais eficientes) a G (menos eficientes), os equipamentos são classificados levando em conta a relação entre capacidade e consumo”.

Um aplicativo para saber quanto você emite de CO2

app_carbon

Já existe um aplicativo para celular que permite de uma forma prática, simples e segura, realizar o cálculo da pegada ecológica da emissão de CO2 de pessoas, empresas/indústrias e eventos, bem como realizar a sua neutralização através do plantio de árvores nativas em áreas degradadas. Ao realizar o cálculo da pegada ecológica e neutralizá-la, o usuário receberá um certificado de “Compensação de Carbono” contendo as coordenadas geográficas do local acessível que foram plantadas as árvores e receberá periodicamente atualizações da evolução do crescimento de suas árvores, além de poder visitar o local de plantio e poder caçar suas árvores por meio da câmera de seu celular, que indicará suas mudas no local com seu respectivo nome, data, espécie e outras informações.

Os usuários do CarbonZ podem utilizar os índices para consulta ou pagar para que o pesquisador e sua equipe plantem as mudas. Após baixar o app, o usuário preenche um formulário com dados sobre sua rotina, como tipo de veículo utilizado para chegar ao trabalho e a quantidade de água e energia elétrica consumida por mês.

Com a informação gerada pela ferramenta, o usuário tem a opção de realizar o plantio, caso queira, ou pagar online para que a CarbonZ faça o serviço. Em caso de adesão, o usuário recebe no prazo de uma semana as coordenadas geográficas de onde as mudas estão plantadas, de quais espécies são e uma foto do local.

Além disso, cada muda recebe um chip e o usuário tem a possibilidade de ir ao local e identificar a planta com a câmera do celular, de modo similar àquele realizado na caça de pokémons. O aplicativo foi criado por Gabriel Estevam Domingos. “A ideia surgiu da tendência seguida pelos grandes eventos de neutralizar o carbono gerado nas construções por meio do plantio. É uma ação voluntária de responsabilidade socioambiental baseada no Protocolo de Kyoto. Isso foi feito pelos organizadores do Rock in Rio e da Olimpíada do Rio, por exemplo”, explica.

Ele é diretor executivo da GED – Inovação, Engenharia e Tecnologia, empresa fundada em 2011 e que já é considerada um exemplo de empreendedorismo de sucesso, graças ao seu histórico de crescimento, sua velocidade de expansão e seu modelo de gestão. Nesses quatro anos, ela construiu um renomado histórico de 25 prêmios ,nove projetos de pesquisa e desenvolvimento concluídos, seis patentes nacionais e internacionais, e diversas ações socioambientais renomadas.

Pode-se dizer que o carbon footprint ou pegada de carbono é a pegada ambiental no mundo, ou seja, mede a quantidade de dióxido de carbono que se produz diariamente e a forma como essas emissões de gás influenciam o meio ambiente.

Todos os dias, através das atividades e rotinas habituais, o ser humano produz dióxido de carbono que é libertado para a atmosfera – a pegada de carbono. Esses gases de efeito estufa detêm o calor na atmosfera do planeta o que, por sua vez, contribui para o aquecimento global que tem efeitos prejudiciais sobre o meio ambiente, a vida humana e animal.

Em média, cada cidadão do mundo tem uma pegada de carbono de 4 toneladas por ano, ou seja, todos produzem cerca de 4 toneladas de dióxido de carbono anualmente. Curiosamente, na América do Norte, cada cidadão produz cinco vezes mais – até 20 toneladas de dióxido de carbono por ano. Na Europa, esses valores são significativamente menores: por exemplo, no Reino Unido a pegada de carbono de cada pessoa é, em média, 10 toneladas por ano; e em França, esse valor baixa para as 6 toneladas anuais.

Uma vez que a pegada de carbono está diretamente relacionada com os hábitos diários, é natural que a sua medição incida em fatores tão diversos como: a idade, o local onde vive e o tamanho da sua habitação, os seus custos energéticos mensais (água, luz, gás), a quantidade de lixo que produz em casa e os hábitos de reciclagem, os seus hábitos de compra, que tipo de alimentos consome e como é que esses alimentos são produzidos, se viaja muito e quais os meios de transporte que privilegia. Numa escala maior, os governos e as empresas também estão cada vez mais atentos às suas próprias pegadas de carbono no mundo.

Existem inúmeras maneiras de reduzir a pegada de carbono, contribuindo assim paraum planeta mais verde e mais saudável. Reduzir a quantidade de dióxido de carbono que se manda para a atmosfera diariamente passa pela alteração de hábitos como andar mais a pé ou de transportes públicos, em vez de carro; consumir menos e, sempre que possível, localmente; poupar recursos energéticos e investir em energias alternativas. Um passo de cada vez para reduzir uma pegada de carbono que não tem de ser tão prejudicial para o meio ambiente.

As auditorias e a certificação de sistemas de gestão de energia (SGE)

Os sistemas de gestão de energia capacitam uma organização a seguir uma abordagem sistemática para alcançar melhoria contínua no seu desempenho energético, incluindo eficiência energética, uso e consumo de energia. A NBR ISO 50003 de 06/2016 – Sistemas de gestão de energia – Requisitos para organismos de auditoria e certificação de sistemas de gestão de energia especifica os requisitos de competência, consistência e imparcialidade em auditorias e certificação de sistemas de gestão de energia (SGE) para organismos que prestam estes serviços.

Para garantir a eficácia da auditoria de SGE, esta norma aborda o processo de auditoria, os requisitos de competência para o pessoal envolvido no processo de certificação para sistemas de gestão de energia, a duração das auditorias e amostragem para multi-instalações. Destina-se a ser utilizada em conjunto com NBR ISO/IEC 17021:2011. Os requisitos da NBR ISO/IEC 17021:2011 também se aplicam a esta norma.

Esta norma destina-se a ser usada em conjunto com a NBR ISO/IEC 17021:2011. No momento da publicação desta norma, a NBR ISO/IEC 17021:2011 está sob revisão e será cancelada e substituída pela ISO/IEC 17021-1. Para efeitos desta norma, a NBR ISO/IEC 17021:2011 e a ISO/IEC 17021-1 são consideradas equivalentes. Após a publicação da ISO/IEC 17021-1, todas as referências nesta NBR ISO/IEC 17021:2011 serão consideradas como referências à ISO/IEC 17021-1.

Além dos requisitos da NBR ISO/IEC 17021:2011, esta norma especifica requisitos que dizem respeito à área técnica específica de SGE que são necessários para assegurar a efetividade da auditoria e certificação. Particularmente, esta norma internacional aborda os requisitos adicionais necessários para o processo de planejamento de auditoria, a auditoria de certificação inicial, a condução da auditoria no local, competência do auditor, duração das auditorias do SGE e amostragens multilocal.

A Seção 4 descreve as características da auditoria do SGE, a Seção 5 descreve os requisitos do processo de auditoria do SGE e a Seção 6 descreve os requisitos de competência para o pessoal envolvido no processo de certificação do SGE. Os Anexos A, B e C fornecem informações adicionais para complementar a NBR ISO/IEC 17021:2011.

Esta norma trata de auditorias de SGE para fins de certificação, mas não trata de diagnósticos energéticos, cujo propósito é estabelecer uma análise sistemática de consumo e uso de energia os quais são definidos na NBR ISO 50002. Os SGE capacitam uma organização a seguir uma abordagem sistemática para alcançar melhoria contínua no seu desempenho energético, incluindo eficiência energética, uso e consumo de energia.

Esta norma especifica requisitos adicionais àqueles especificados na NBR ISO/IEC 17021:2011 para uma eficaz auditoria de avaliação da conformidade do SGE. A organização deve definir o escopo e fronteiras do SGE; entretanto, o organismo de certificação deve confirmar a adequação do escopo e fronteiras em cada auditoria.

O escopo da certificação deve definir as fronteiras do SGE incluindo atividades, instalações, processos e decisões relacionados ao SGE. O escopo pode ser toda a organização com multilocais, uma instalação dentro da organização, ou um subconjunto ou subconjuntos dentro de uma instalação, como uma edificação, instalação ou processo.

Quando definir as fronteiras, uma organização não pode excluir as fontes de energia. Na determinação do tempo da auditoria, o organismo de certificação deve incluir os seguintes fatores: fontes de energia; usos significativos de energia; consumo de energia; e o número do pessoal efetivo no SGE.

A duração da auditoria inclui o tempo no local da organização, planejamento da auditoria, revisão de documentos e produção de relatórios de auditoria. As tabelas de duração da auditoria no Anexo A devem ser utilizadas para determinar a duração da auditoria.

O método de cálculo da duração da auditoria está descrito no Anexo A. Nos casos onde os processos vigentes e a estrutura organizacional forem tais que uma redução na duração da auditoria possa ser justificada, o organismo de certificação deve fornecer uma justificativa razoável para a decisão e assegurar que ela esteja registrada.

A duração da auditoria pode ser reduzida se a organização tiver um SGE integrado com outro sistema de gestão certificado. O ajuste no tempo devido a outro sistema de gestão certificado não pode exceder 20 % de redução.

Os homens/dia da auditoria são baseados em 8h por dia. Ajustes podem ser solicitados baseados em requisitos locais, regionais ou exigência legais nacionais.

O número do pessoal efetivo no SGE e o critério de complexidade, como definido no Anexo A são utilizados como base para o cálculo da duração de auditoria. O organismo de certificação deve definir e documentar um processo para determinar o número do pessoal efetivo do SGE para o escopo de certificação e para cada auditoria no programa de auditoria.

O processo para determinar o número do pessoal efetivo no SGE deve assegurar a inclusão de pessoas que contribuem ativamente para atender os requisitos do SGE. Quando regulamentações exigirem a identificação de pessoas para operação e manutenção das atividades de SGE, estas pessoas devem ser parte do pessoal efetivo do SGE.

Quando conduzir a auditoria, o auditor deve coletar e verificar a evidência de auditoria relativa ao desempenho energético que inclui no mínimo: planejamento energético (todas as seções); controle operacional; e monitoramento de medição e análise. Ao identificar não conformidades da NBR ISO 50001, a definição para não conformidade maior para o SGE (ver 3.6) será utilizada pelo auditor.

Um relatório de auditoria deve incluir: escopo e fronteiras do SGE que estão sendo auditado; e declaração da obtenção da melhoria contínua do SGE e melhoria no desempenho energético com evidências de auditoria para amparar as constatações. A auditoria fase 1 deve incluir o seguinte: confirmação do escopo e fronteiras do SGE para certificação; análise gráfica ou uma descrição narrativa das instalações, equipamentos, sistemas e processos para o escopo e fronteiras identificados; confirmação do número do pessoal efetivo do SGE, fontes de energia, uso significativo de energia e consumo anual de energia, para confirmar a duração da auditoria; revisão de resultados documentados do processo de planejamento energético; análise da relação de oportunidade de melhorias de desempenho energético identificadas assim como os objetivos, metas e planos de ação relacionados.

Durante a auditoria fase 2, o organismo de certificação deve reunir as evidências necessárias de auditoria para definir se está demonstrada ou não a melhoria do desempenho energético, antes de tomar a decisão de certificação. A confirmação da melhoria do desempenho energético é necessária para a concessão da certificação inicial. Exemplos de como a organização pode demonstrar a melhoria do desempenho energético estão apresentados no Anexo C.

Durante as auditorias de manutenção, o organismo de certificação deve analisar as necessárias evidências da auditoria para determinar se foi demonstrada ou não uma melhoria contínua do desempenho energético. Durante a auditoria de recertificação, o organismo de certificação deve analisar as evidências da auditoria necessárias para determinar se uma melhoria contínua do desempenho energético está demonstrada antes de ser tomada a decisão de recertificação.

A auditoria de recertificação também deve levar em conta qualquer alteração significativa nas instalações, equipamentos, sistemas ou processos. A confirmação de melhoria contínua de desempenho energético é necessária para que a recertificação seja concedida. A melhoria do desempenho energético pode ser influenciada por alterações nas instalações, equipamentos, sistemas ou processo, mudanças no tipo de negócio, ou outras condições que resultem em mudança ou uma necessária mudança na linha de base.

Todo o pessoal envolvido em atividade de auditoria de SGE e atividades de certificação deve possuir um nível de competência que inclui as competências genéricas descritas em NBR ISO/IEC 17021:2011 assim como os conhecimentos gerais em SGE descritos na Tabela 1, onde “X” significa que o organismo de certificação deve definir o critério.

Clique nas figuras para uma melhor visualização

energia1

A equipe de auditoria deve ser nomeada e composta por auditores e especialistas técnicos, como necessário, para cumprir os requisitos de competência técnica, bem como os requisitos de competência gerais compatíveis com o escopo da certificação. A Tabela 3 descreve as competências técnicas para um SGE, onde “X” significa que o organismo de certificação define os critérios.

energia2

Enfim, a determinação da complexidade do SGE deve ser baseada em três considerações: o consumo anual de energia, o número de fontes de energia e o número de usos significativos de energia. A complexidade é um valor calculado com base em um fator ponderado que aborda todas estas três considerações.

Para cada consideração, dois itens de informação são necessários para calcular a complexidade: o peso ou multiplicador; e o fator de complexidade, que se baseia em um intervalo. A Tabela A.1 fornece para cada consideração o peso e as faixas associadas para os fatores de complexidade necessários para calcular a complexidade.

energia3

Como base para a amostragem, os procedimentos do organismo de certificação devem assegurar que a revisão do contrato inicial inclua uma avaliação da complexidade e escala das atividades abrangidas pelo SGE e que os critérios em todas as cláusulas tenham sido cumpridos.

Algumas considerações sobre diferenças que possam afetar a amostragem podem incluir o seguinte: desempenho energético; usos significativos de energia; fontes de energia; monitoramento, medições e análises; consumo de energia; e mudanças no escopo. O organismo de certificação deve identificar as funções centrais (escritório central) da organização com a qual ele tem um acordo jurídico vinculado à prestação de atividades de certificação.

Aprendendo a medir o desempenho energético com a norma técnica

energia

A implantação de um sistema de gestão da energia requer o comprometimento da alta direção da organização, mas, também, dos diversos níveis hierárquicos da empresa. Ao primeiro grupo caberá definir os objetivos e metas a serem alcançados em termos de desempenho energético e fornecer uma visão corporativa que permita a implantação bem-sucedida do sistema de gestão.

Os demais níveis participam da operacionalização da política energética, da identificação das necessidades diárias e da proposição de melhorias nos processos, atuando como mola mestra do funcionamento de todo o programa A principal questão quanto ao sucesso da implantação do sistema está na compreensão, por todos, de que esta iniciativa resultará, em última análise, em ganhos financeiros para a empresa, pois aumenta a sua competitividade ao reduzir custos produtivos desnecessários. Outros ganhos, relacionados à sustentabilidade econômica e ambiental do negócio, também serão obtidos, sem falar na redução de investimentos na ampliação incessante da infraestrutura necessária à distribuição de determinados insumos energéticos, tais como eletricidade e gás natural, entre vários outros.

A NBR ISO 50001 especifica os requisitos de um sistema de gestão da energia (SGE) para uma organização desenvolver e implementar uma política energética, estabelecer objetivos, metas e planos de ação que considerem requisitos legais e informações relativas ao uso significativo de energia. Um SGE habilita uma organização a atender sua política energética, tomar as devidas ações de melhoria de seu desempenho energético e demonstrar conformidade aos requisitos desta norma.

Pode-se ajustar a aplicação desta norma a requisitos específicos de uma organização – incluindo complexidade do sistema, grau de documentação e recursos – e abrange as atividades sob o controle da organização. Ela se baseia na estrutura de melhoria contínua do Plan-Do-Check-Act e incorpora a gestão da energia nas práticas organizacionais diárias, melhoria da competitividade e redução de emissões de gases de efeito estufa e outros impactos ambientais relacionados.

É aplicável independentemente dos tipos de energia utilizados. Pode ser utilizada para certificação, registro ou autodeclaração do SGE de uma organização. Ela não estabelece requisitos absolutos para o desempenho energético além daqueles estabelecidos na política energética da organização e de sua obrigação de conformidade a requisitos legais aplicáveis ou outros requisitos. Assim, duas organizações realizando operações semelhantes, mas com desempenhos energéticos distintos, podem ambas estar em conformidade com seus requisitos.

Especificamente em seu item 4.3 Política energética: deve declarar o comprometimento da organização para atingir a melhoria do desempenho energético. A alta direção deve definir a política energética e garantir que esta: seja apropriada à natureza e escala do uso e consumo de energia da organização; inclua um comprometimento para melhoria contínua de desempenho energético; inclua um comprometimento para garantir a disponibilidade de informações e de recursos necessários para atingir objetivos e metas; inclua um comprometimento para cumprir com os requisitos legais aplicáveis e outros requisitos aos quais a organização subscreve em relação à eficiência, uso e consumo de energia; forneça uma estrutura para estabelecer e revisar objetivos e metas energéticas; apoie a aquisição de produtos energeticamente eficientes, assim como de serviços e projetos para melhoria do desempenho energético; seja documentada e comunicada em todos os níveis da organização; e seja regularmente revisada e atualizada se necessário.

Já a NBR ISO 50006 de 03/2016 – Sistemas de gestão de energia — Medição do desempenho energético utilizando linhas de base energética (LBE) e indicadores de desempenho energético (IDE) — Princípios gerais e orientações fornece orientações para organizações de como estabelecer, utilizar e manter indicadores de desempenho energéticos (IDE) e linhas de base energética (LBE) como parte do processo de medição de desempenho energético. As orientações nesta norma são aplicáveis a qualquer organização, independentemente do seu tamanho, tipo, localização ou nível de maturidade na área de gestão de energia.

Fornece às organizações orientações práticas sobre como atender aos requisitos da NBR ISO 50001 relacionados ao estabelecimento, uso e manutenção dos indicadores de desempenho energético (IDE) e linhas de base energética (LBE) para a medição e alterações no desempenho energético. O IDE e a LBE são dois elementos-chave inter-relacionados da NBR ISO 50001 que permitem a medição, e, logo, a gestão do desempenho energético em uma organização.

O desempenho energético é um conceito amplo relacionado ao uso e consumo de energia e eficiência energética. Para gerenciar efetivamente o desempenho energético de suas instalações, sistemas, processos e equipamentos, as organizações precisam saber como a energia é utilizada e quanto é consumida ao longo do tempo.

Um IDE é um valor ou medida que quantifica resultados relacionados à eficiência energética, uso e consumo de energia em instalações, sistemas, processos e equipamentos. As organizações utilizam IDE como medida de seus desempenhos energéticos.

A LBE é uma referência que caracteriza e quantifica o desempenho energético de uma organização durante um período de tempo específico. A LBE permite que uma organização avalie alterações do desempenho energético entre dois períodos selecionados. A LBE também é utilizada para cálculos de economia de energia, como uma referência antes e depois da implementação de ações de melhoria do desempenho energético.

As organizações definem metas para o desempenho energético como parte do processo de planejamento energético em seus sistemas de gestão de energia (SGE). A organização precisa considerar as metas específicas de desempenho energético, enquanto identifica e estabelece o IDE e a LBE. A relação entre o desempenho energético, IDE, LBE e metas energéticas é ilustrada na Figura 1.

Clique nas figuras para uma melhor visualização

energia1

Esta norma inclui quadros de ajuda desenvolvidos para fornecer ao usuário ideias, exemplos e estratégias para medição do desempenho energético utilizando o IDE e a LBE. Os conceitos e métodos nessa norma podem também ser utilizados por organizações que não possuem um SGE.

Por exemplo, o IDE e a LBE podem também ser utilizados em nível de instalação, sistema, processo ou equipamento, ou para a avaliação de ações individuais de melhoria de desempenho energético. O contínuo comprometimento e o engajamento da alta direção são essenciais para a efetiva implementação, manutenção e melhoria do SGE, de forma a alcançar os benefícios da melhoria do desempenho energético. A alta direção demonstra seu comprometimento por meio de ações de liderança e um envolvimento ativo no SGE, garantindo contínua alocação de recursos, incluindo pessoal, para implementar e manter o SGE ao longo do tempo.

Para medir e quantificar efetivamente seu desempenho energético, uma organização estabelece o IDE e a LBE. Os IDE são utilizados para quantificar o desempenho energético de toda a organização ou de suas diferentes partes. As LBE são referências quantitativas utilizadas para comparar valores do IDE ao longo do tempo e para quantificar alterações no desempenho energético.

Os resultados do desempenho energético podem ser expressos em unidades de consumo (por exemplo, GJ, kWh), consumo específico de energia (CEE) (por exemplo, kWh/unidade), potência de pico (por exemplo, kW), alteração percentual em eficiência ou proporções adimensionais etc. A relação geral entre o desempenho energético, o IDE, a LBE e metas energéticas é apresentada na Figura 1.

O desempenho energético pode ser afetado por uma série de variáveis relevantes e fatores estáticos. Eles podem estar relacionados às condições variáveis de negócio, como demanda de mercado, vendas e rentabilidade.

Uma visão geral sobre o processo de desenvolvimento, utilização e atualização dos IDE e LBE é ilustrada na Figura 2 e descrita em detalhes nas Seções 4.2 a 4.6. Este processo auxilia a organização a melhorar continuamente a medição do seu desempenho energético.

A quantificação do consumo de energia é essencial para a medição do desempenho energético e das melhorias do desempenho energético. Quando múltiplas formas de energia forem utilizadas, é útil converter todas as formas para uma unidade de medição de energia comum. Convém tomar cuidado para que a conversão seja feita de forma que represente a energia total consumida em uma organização apropriadamente, incluindo perdas em processos de conversão de energia.

A identificação dos usos da energia, como sistemas energéticos (por exemplo, ar comprimido, vapor, água fria etc.), processos e equipamentos, auxilia a categorização do consumo de energia e a focar o desempenho energético nos usos que são importantes para uma organização.  A eficiência energética é uma métrica frequentemente utilizada para se medir desempenho energético e pode ser utilizada como um IDE.

A eficiência energética pode ser expressa de diferentes maneiras, como saída de energia/entrada deenergia (eficiência de conversão); energia requerida/energia consumida (onde a energia requerida pode ser obtida a partir de um modelo teórico ou alguma outra relação); saída de produção/entradade energia (por exemplo, as toneladas de produção por unidade de energia consumida).

energia2

Convém que os IDE forneçam informações relevantes sobre o desempenho energético para permitir que vários usuários dentro de uma organização compreendam o seu desempenho energético e adotem medidas para melhorá-lo. Os IDE podem ser aplicados em nível de instalação, sistema, processo ou equipamento para proporcionar vários níveis de foco. Convém que uma organização estabeleça uma meta energética e uma linha de base energética paracada IDE.

Dessa forma, convém que uma organização compare as alterações no desempenho energético entre o período de base e o período de reporte. A LBE é apenas utilizada para determinar os valores de IDE para o período de linha de base. O tipo de informação necessária para estabelecer uma linha de base energética é determinado pelo propósito específico do IDE.

As alterações no desempenho energético podem ser calculadas utilizando-se IDE e LBE para instalações, sistemas, processos ou equipamentos. A comparação do desempenho energético entre o período de base e o período de reporte envolve o cálculo da diferença entre o valor do IDE nos dois períodos.

A Figura 3 ilustra um caso simples em que a medição direta do consumo de energia é utilizada como IDE e o desempenho energético é comparado entre o período de base e o período de reporte. Nos casos em que a organização determinar que variáveis relevantes como clima, produção, horas de operação do edifício etc. afetam o desempenho energético, convém que o IDE e sua LBE correspondente sejam normalizados para que o desempenho energético seja comparado sob condições equivalentes.

energia3

Revisão energética

A revisão energética fornece informações sobre desempenho energético úteis para o desenvolvimento dos IDE e LBE. O Anexo A ilustra a relação entre a revisão energética e as informações necessárias para se identificar o IDE e estabelecer a LBE. O estabelecimento de IDE apropriados e LBE correspondentes requer o acesso a dados organizacionais de energia disponíveis, análise dos dados e processamento da informação de energia.

O escopo e fronteira do SGE compreendem a área ou as atividades dentro das quais uma organização gerencia o desempenho energético. Para medir o desempenho energético, convém que sejam definidas as fronteiras de medição adequadas para cada IDE. Estas são chamadas de fronteiras do IDE e podem se sobrepor. Os usuários do IDE e suas necessidades precisam ser identificadas antes (ver 4.3.2), e então a fronteira do IDE correspondente é definida.

Ao se definir uma fronteira do IDE, convém considerar:  responsabilidades organizacionais relacionadas à gestão de energia; a facilidade de isolamento da fronteira do IDE medindo-se energia e variáveis relevantes; a fronteira do SGE; o uso significativo de energia (USE) ou grupos de USE que a organização designar como prioridade para controle e melhoria; e os equipamentos, processos e subprocessos específicos que a organização quiser isolar e gerenciar. Os três níveis primários da fronteira do IDE são: individual, sistema e organizacional, conforme descrito na Tabela 1.

energia4

Uma vez que uma fronteira do IDE for definida, convém que a organização identifique o fluxo de energia através da fronteira. A organização pode utilizar um diagrama como aquele apresentado na Figura 4 para determinar a informação sobre energia necessária para estabelecer o IDE. Estes diagramas fence ou mapas de energia mostram visualmente o fluxo de energia dentro e através da fronteira do IDE.

Eles podem também incluir informações adicionais, como pontos de medição e fluxos de produtos, os quais são importantes para a análise energética e o estabelecimento de IDE. Convém que a organização meça o fluxo de energia dentro da fronteira do IDE, as alterações nos níveis do estoque de combustíveis e a quantidade de qualquer energia armazenada.

O IDE e a LBE para USE requerem fronteiras bem definidas para a quantificação dos fluxos de energia. Uma importante consideração para cada USE é a medição apropriada para medir o consumo de energia que atravessa a fronteira do USE, assim como a disponibilidade de dados sobre variáveis relevantes.

energia5

De acordo com a necessidade da organização e seu SGE, convém que as variáveis relevantes que podem impactar o desempenho energético sejam definidas e quantificadas em cada fronteira de IDE. É importante isolar aquelas variáveis que são significantes em termos de desempenho energético daquelas variáveis que possuem pequena ou nenhuma influência.

A análise de dados é normalmente necessária para determinar a significância de variáveis relevantes. Algumas variáveis são mais relevantes para o consumo de energia que outras.

Por exemplo, quando o uso de energia por unidade de produção estiver sendo medido, a contagem do número de produtos finais pode fornecer um resultado errôneo se houver produção de saídas intermediárias e se estas saídas intermediárias forem desperdícios, valor agregado ou reciclados. Uma vez que variáveis relevantes tenham sido isoladas, técnicas de modelagem adicionais podem ser usadas para determinar a natureza precisa da relação.

Enfim, um sistema de gestão de energia auxilia as indústrias a otimizar o uso de energia sistematicamente, economicamente e ecologicamente. A gestão de energia ajuda a melhorar a eficiência energética de processos, equipamentos e dispositivos, além de reduzir os custos, o consumo de energia e as emissões de CO2, entre outras vantagens.

Além disso, permite a redução custos com energia e vida útil de equipamentos; a redução da emissão de gases de efeito estufa; uma política para o uso mais eficiente de energia envolvendo até a alta administração; a integração com sistemas de gestão existentes; metas para redução; rateio de custos setorizados e transparência dos consumos de energia por departamentos; e a melhoria contínua do perfil de uso da energia.

Custos e impacto econômico da energia de baixa qualidade

NORMAS COMENTADAS

NBR 14039 – COMENTADA
de 05/2005

Instalações elétricas de média tensão de 1,0 kV a 36,2 kV. Possui 140 páginas de comentários…

Nr. de Páginas: 87

NBR 5410 – COMENTADA
de 09/2004

Instalações elétricas de baixa tensão – Versão comentada.

Nr. de Páginas: 209

NBR ISO 9001 – COMENTADA
de 11/2008

Sistemas de gestão da qualidade – Requisitos. Versão comentada.

Nr. de Páginas: 28

René Guiraldo

A indústria brasileira já convive com os impactos econômicos do aumento do custo da energia elétrica e se vê obrigada a rever as suas estratégias de consumo. Ao mesmo tempo, problemas associados à qualidade da energia prejudicam os processos operacionais, gerando custos excessivos e até a obstrução total dos trabalhos.

Mensurar o custo do desperdício ocasionado por problemas na qualidade da energia foi sempre uma tarefa exclusiva para engenheiros experientes. Hoje, o mercado já dispõe de tecnologia de ponta capaz de mensurar energia X potência para que as organizações obtenham um maior controle destes custos.

A maneira mais tradicional de reduzir o consumo de energia é através do monitoramento e o direcionamento que determinam quando e onde a energia está sendo utilizada. Deste modo, consegue-se avaliar se esta está ou não sendo usada de forma eficaz. Ao inserir o custo da energia em um instrumento desta natureza, o custo total é calculado diretamente.

Atitudes muito simples, como garantir que os sistemas de aquecimento e iluminação não estejam funcionando quando um edifício está desocupado, podem representar uma economia significativa. Outros exemplos de desperdício de energia incluem a alimentação de máquinas e plantas em momentos em que não há produção.

Ou deixar equipamentos em modo de espera por longos períodos de tempo. Para otimizar o processo é fundamental que as organizações tenham capacidade de registro da energia, o que permite ao usuário monitorar e direcionar o seu uso, conquistando maior economia.

Outra maneira de determinar se os equipamentos elétricos estão funcionando ou não de forma eficiente é identificando problemas potenciais de qualidade de energia. A energia de baixa qualidade é cara. Primeiramente, ela eleva os custos de energia, tanto devido ao uso excessivo como em penalidades que a concessionária de serviços públicos pode impor pelo fator de potência baixa ou altas demandas de pico.

A baixa qualidade de energia também é prejudicial aos equipamentos, aumentando o custo com manutenção e reparos. Falhas prematuras do equipamento ou danos causados por problemas de energia resultam não apenas na despesa da substituição do equipamento em si, mas também em custos de trabalho associados ao diagnóstico e reparo.

Quando o equipamento não está funcionando por conta do tempo de inatividade, ocorre queda da produtividade e a consistência do processo sofre ou falha, o que leva ao desperdício de produto. As ferramentas que monitoram a qualidade da energia fornecem os meios para descobrir a origem e a magnitude dos problemas, permitindo que as oportunidades para economizar sejam identificadas e aproveitadas. Este tipo de equipamento auxilia as empresas a quantificar o custo real da energia desperdiçada devido à baixa qualidade, em última análise, reduzindo custos na conta de energia e evitando os efeitos de paradas não planejadas.

Como você sabe que tem problemas com a qualidade da energia? É possível reconhecer os sintomas com facilidade: luzes piscando, queda de energia, obstrução de disjuntores, PLCs e unidades de velocidade variável. Os equipamentos como motores e transformadores aquecerão e farão barulhos.

Alguns problemas são mais sutis, tais como o desempenho ruim do computador, causando travamentos e perda de dados. Todos esses problemas elevam as suas contas de energia e reduzem a eficiência.

Quais são as origens dos problemas de qualidade de energia? Mais de 80% dos problemas de qualidade de energia originam-se dentro das instalações. Os equipamentos de grande porte ligando e desligando, fiação e aterramento inadequados e circuitos sobrecarregados ou harmônicos são apenas alguns dos culpados.

Menos de 20% dos problemas de energia originam-se com o sistema de transmissão e distribuição da concessionária de serviço público. Raios, falha de equipamento, acidentes e condições meteorológicas afetam negativamente a concessionária de serviço público. Empresas próximas e a operação normal de equipamentos da concessionária de serviço público também podem afetar a qualidade da energia fornecida à instalação.

Assim, pode-se reduzir o uso de energia, eliminando ineficiências no sistema de distribuição, como altas correntes neutras devido a cargas desequilibradas e harmônicos; transformadores altamente carregados, especialmente aqueles que servem cargas não-lineares; motores velhos, mecanismos velhos e outras questões relacionadas ao motor; e potência altamente distorcida, que pode ocasionar um aquecimento excessivo no sistema de energia.

Você pode evitar a penalidade do fator de potência por meio da correção do fator de potência (power fator – PF). Em geral isto envolve a instalação de capacitores de correção. Mas corrija primeiro a distorção do sistema – os capacitores podem apresentar baixa impedância aos harmônicos e a instalação da correção de PF inadequada pode resultar em ressonância ou em capacitores queimados. Consulte um engenheiro de qualidade de energia antes de corrigir o PF se houver harmônicos.

Igualmente, pode-se reduzir as tarifas de pico de demanda por meio do controle da carga do pico. Infelizmente, muitas pessoas ignoram um dos principais componentes deste custo – o efeito da baixa qualidade de energia no uso do pico de energia e, portanto, subestimam seus pagamentos em excesso.

Para determinar os custos reais da carga do pico, você precisa saber o uso normal da energia; o uso de energia limpa e a estrutura de carga da carga do pico. Ao eliminar os problemas de qualidade de energia, você reduz o tamanho das demandas de pico e a base em que elas são iniciadas.

É fundamental que organizações tenham uma abordagem pró ativa para conseguir melhorar a qualidade da energia. A primeira linha de defesa é a inspeção regular e frequente das suas instalações com boas práticas de manutenção, usando o equipamento de inspeção correto.

Como isto deve ser um esforço contínuo, utilize as ferramentas certas para fazer seu próprio teste de qualidade de energia e monitoramento ao invés de terceirização. Atualmente, isto é surpreendentemente acessível e sempre vai custar menos do que o tempo de inatividade.

René Guiraldo é gerente nacional de vendas da Fluke do Brasil – patricia@epr.com.br

Caminhões adulterados podem poluir cinco vezes mais

CURSO PELA INTERNET

Gestão de Energia – Implantação da Nova Norma NBR ISO 50001 – Disponível pela Internet

A Nova Norma deve conduzir as reduções nos custos, nas emissões de gases de efeito estufa e outros impactos ambientais através da gestão sistemática da energia.

caminhãoO uso correto do Agente Redutor Liquido de NOx Automotivo (Arla 32) reduz as emissões de poluentes em até 98%

O desenvolvimento do mercado do Arla 32, agente líquido redutor de emissões de óxidos de nitrogênio (NOx), foi tema de workshop que reuniu executivos do setor, além de técnicos, pesquisadores, advogados e representantes de entidades de classe no Rio na última semana. Em comum, os participantes do evento têm o propósito de consolidar, no mercado nacional, o uso do produto que é obrigatório para veículos movidos a óleo diesel produzidos com a tecnologia do Sistema de Redução Catalítica Seletiva (SCR).

As emissões de gases poluentes de um caminhão adulterado para não usar Arla 32 equivalem às emissões de, aproximadamente, cinco caminhões não adulterados. O uso correto do aditivo, por sua vez, reduz essas emissões em até 98%.

O Arla 32 atua nos catalisadores do sistema de escapamento dos motores, permitindo a redução da emissão de óxidos de nitrogênio . Em reação com os gases de escape dos veículos, o Arla 32 transforma NOx em vapor d’água e nitrogênio, gases inofensivos para a saúde humana. Seu uso é regulamentado pela Resolução 214, emitida pelo Conselho Nacional do Meio Ambiente (Conama) em 28/09/2009.

O engenheiro Tadeu Cordeiro, do Centro de Pesquisas da Petrobras (Cenpes), confirma que os testes realizados comprovam o aumento das emissões em quase cinco vezes com o uso de emuladores, conhecidos como “chips”, que permitem burlar o uso do Arla 32. Representantes do Departamento Jurídico da Petrobras pontuam que a adulteração do Arla 32 pode gerar advertência e multa para usuários e suspensão das atividades para quem comercializa o produto.

Para o gerente executivo da Petrobras, Marcelo Murta, é importante dar visibilidade à questão de modo a conscientizar a sociedade, fortalecer a fiscalização e eliminar a prática lesiva, assegurando o cumprimento da resolução do Conama. O diretor da Associação dos Fabricantes de Equipamentos para Controle de Emissões Veiculares da América Latina (Affevas), Elcio Luiz Farah, manifesta preocupação com o avanço dos casos de adulteração de veículos para burlar o uso do produto.

Segundo ele, estudo da entidade mostra que, a partir de abril de 2013, houve um claro descolamento entre as vendas do Arla 32 e do óleo diesel. O Arla 32 destina-se à frota de veículos fabricados a partir de 2012 para atender a norma ambiental Euro V, criada na União Europeia para limitar a quantidade de emissões veiculares.

Farah afirmou que o uso de chips que permitem burlar o uso do Arla 32 equivale a uma regressão de 20 anos em termos de atraso ambiental. Para ele, as emissões de NOx de um caminhão Euro V adulterado para não usar o Arla 32 equivalem às emissões de 4,5 caminhões não adulterados.

A visibilidade da poluição atmosférica foi destacada, durante o evento, pelo professor do Departamento da PUC-Rio, José Marcus Godoy, que apresentou fotografias de grandes centros urbanos em São Paulo, Belo Horizonte e Rio de Janeiro encobertos por nevoeiros contaminados por fumaça (smog).Com seu uso correto, o Arla 32 reduz as emissões de óxidos de nitrogênio do veículo em até 98%, contribuindo de forma decisiva para preservar o meio ambiente, reduzindo significativamente os riscos para a saúde da população, hoje exposta a um grau elevado de poluição atmosférica.

Existem diferentes padrões de emissões veiculares no mundo, que por sua vez estabelecem limites específicos para a emissão de NOx. Os padrões mais rigorosos exigem a utilização do sistema SCR e do Arla 32. Normalmente, os principais poluentes focados pelas legislações de emissões veiculares são: os óxidos de nitrogênio (NOx), material particulado (PM), monóxido de carbono (CO) e hidrocarbonetos (HC).

Na Europa, o primeiro desses padrões, o Euro 0, entrou em vigor em 1990, com limites de NOx de 14,4 e de PM de 1,1, ambos mesurados em g/kWh. O padrão Euro III, de 2001, reduziu esses limites para 5 e 0,1, respectivamente. A utilização do ARLA 32 veio com a introdução dos padrões Euro IV, V e VI.

Os componentes regulados são o NOx, o material particulado (PM), os hidrocarbonetos (HC) e o monóxido de carbono (CO). O Euro IV foi implementado de outubro de 2005 a outubro de 2006 e as datas de implementação do Euro V foram de outubro de 2008 a outubro de 2009. O limite de emissões para NOx é de 3,5 g/kWh no Euro IV e 2,0 g/kWh no Euro V. O padrão Euro VI será implementado de  2013-14 e terá um limite de NOx de 0,4 g/kWh.

Nos Estados Unidos, as emissões de veículos são reguladas pelo Clean Air Act. A utilização do Arla 32, conhecido por lá como DEF, no controle de Nox, iniciou-se em janeiro de 2010 com a implementação do padrão de emissão conhecido como US2010, que estabelece os limites de emissão de NOx em 0,3 g/kWh. Na Austrália e na Nova Zelândia, os padrões de emissão seguem os da Europa com alguns anos de defasagem. O Euro IV foi introduzido por etapas a partir de 2007 e o Euro V está sendo implementado em 2010.

Na China, a legislação é chamada de National Standard IV e V. A partir de 2008, o padrão National VI para veículos pesados reduziu os limites de NOx para 3,5 g/kWh e os limites para material particulado para 0,02 g/kWh. Esse padrão tem sido aplicado em Pequim desde 2008.

No Brasil, a legislação é chamada de Proconve – Programa de Controle da Poluição do Ar por Veículos Automotores. Da fase P-5 que seria equivalente ao Euro III, a partir de janeiro de 2012, foi-se direto para a fase P-7.

Deve-se saber que o Arla 32 é um reagente que é usado juntamente com o o Selective Catalytic Reduction ou Redução Catalisadora Seletiva (SCR) para reduzir quimicamente as emissões de óxidos de nitrogênio presentes nos gases de escape dos veículos a diesel. É uma solução a 32,5% de uréia de alta pureza em água desmineralizada que é transparente, não tóxica e de manuseio seguro. Ele não é explosivo, nem inflamável nem danoso ao meio ambiente.

É classificado como produto de categoria de risco mínimo no transporte de fluidos. Não é um combustível, nem um aditivo de combustível e precisa ser utilizado em um tanque específico nos veículos diesel SCR. O abastecimento é feito de forma semelhante ao diesel.

O consumo médio de Arla 32 é de 5% do consumo de diesel, de maneira que será necessário abastecer muito menos dele do que diesel. Serão utilizados cerca de 5 litros para cada 100 litros de diesel. Várias ações podem afetar a qualidade do Arla 32. Para prevenir uma contaminação, é imperativo que materiais estranhos não entrem em contato com a solução. Utilizá-lo contaminado pode levar a uma dispendiosa substituição do catalisador.

O SCR representa uma tecnologia que requer a utilização de um reagente chamado Arla 32 (também conhecido como AdBlue na Europa e DEF nos Estados Unidos) para reduzir quimicamente o Nox. Quase a totalidade dos fabricantes de veículos pesados decidiu utilizar essa tecnologia para se adequar à a nova legislação de emissões de NOx. Tecnologias concorrentes oferecem menores benefícios em eficiência do combustível e emissões mais altas de CO2.

Dessa forma, o SCR é a solução de custo mais eficaz para se adequar aos padrões de emissões de Nox. Os principais componentes do sistema SCR são o catalisador SCR, a unidade de injeção do Arla 32, o tanque de Arla 32 e a unidade de controle de dosagem.

O Arla 32 é injetado no escapamento, antes do catalisador SCR e depois do motor. Aquecido no escapamento, decompõe-se em amônia e CO2. Quando o NOx reage com a amônia dentro do catalisador, as moléculas danosas de NOx no escapamento são convertidas em inofensivas moléculas de nitrogênio e água.

Os principais poluentes atmosféricos são os aldeídos (RCHO), compostos químicos resultantes da oxidação parcial dos alcoóis ou de reações fotoquímicas na atmosfera, envolvendo hidrocarbonetos. Suas fontes são emitidos na queima de combustível em veículos automotores, principalmente nos veículos que utilizam etanol. Os aldeídos emitidos pelos carros são o Formaldeído e o Acetaldeído (predominante). Seus efeitos: a irritação das mucosas, dos olhos, do nariz e das vias respiratórias em geral e podem causar crises asmáticas, são ainda compostos carcinogênicos potenciais.

O dióxido de enxofre (SO2) é um gás tóxico e incolor, pode ser emitido por fontes naturais ou por fontes antropogênicas e pode reagir com outros compostos na atmosfera, formando material particulado de diâmetro reduzido. Suas fontes podem ser naturais, como vulcões, contribuem para o aumento das concentrações de SO2 no ambiente, porém na maior parte das áreas urbanas as atividades humanas são as principais fontes emissoras. A emissão antropogênica é causada pela queima de combustíveis fósseis que contenham enxofre em sua composição. As atividades de geração de energia, uso veicular e aquecimento doméstico são as que apresentam emissões mais significativas. Seus efeitos incluem o agravamento dos sintomas da asma e aumento de internações hospitalares, decorrentes de problemas respiratórios. São precursores da formação de material particulado secundário. No ambiente, podem reagir com a água na atmosfera formando chuva ácida.

O dióxido de nitrogênio (NO2) é um gás poluente com ação altamente oxidante, sua presença na atmosfera é fator chave na formação do ozônio troposférico. Além de efeitos sobre a saúde humana apresenta também efeitos sobre as mudanças climáticas globais. Suas fontes podem ser naturais (vulcanismos, ações bacterianas, descargas elétricas) e antropogênicas (processos de combustão em fontes móveis e fixas). As emissões naturais são em maior escala que as antropogênicas, porém, em razão de sua distribuição sobre o globo terrestre, tem menor impacto sobre as concentrações deste poluente nos centros urbanos. Seus efeitos: altas concentrações podem levar ao aumento de internações hospitalares, decorrente de problemas respiratórios, problemas pulmonares e agravamento à resposta das pessoas sensíveis a alérgenos. No ambiente pode levar a formação de smog fotoquímico e a chuvas ácidas.

Os hidrocarbonetos (HC) são compostos formados de carbono e hidrogênio e que podem se apresentar na forma de gases, partículas finas ou gotas. Podem ser divididos em: THC – hidrocarbonetos totais; CH4 – hidrocarboneto simples, conhecido como metano; NMHC – hidrocarbonetos não metano, compreendem os HC totais (THC) menos a parcela de  metano (CH4). Suas fontes provêm de uma grande variedade de processos industriais e naturais. Nos centros urbanos as principais fontes emissoras são os carros, ônibus e caminhões, nos processos de queima e evaporação de combustíveis. Seus efeitos são precursores para a formação do ozônio troposférico e apresentam potencial causador de efeito estufa (metano).

O material particulado (MP) é uma mistura complexa de sólidos com diâmetro reduzido, cujos componentes apresentam características físicas e químicas diversas. Em geral o material particulado é classificado de acordo com o diâmetro das partículas, devido à relação existente entre diâmetro e possibilidade de penetração no trato respiratório. Suas fontes – as fontes principais de material particulado são a queima de combustíveis fósseis, queima de biomassa vegetal, emissões de amônia na agricultura e emissões decorrentes de obras e pavimentação de vias. Seus efeitos: câncer respiratório, arteriosclerose, inflamação de pulmão, agravamento de sintomas de asma, aumento de internações hospitalares e podem levar à morte.

O monóxido de carbono (CO) é um gás inodoro e incolor, formado no processo de queima de combustíveis. É emitido nos processos de combustão que ocorrem em condições não ideais, em que não há oxigênio suficiente para realizar a queima completa do combustível. A maior parte das emissões em áreas urbanas são decorrentes dos veículos automotores. Este gás tem alta afinidade com a hemoglobina no sangue, substituindo o oxigênio e reduzindo a alimentação deste ao cérebro, coração e para o resto do corpo, durante o processo de respiração. Em baixa concentração causa fadiga e dor no peito, em alta concentração pode levar a asfixia e morte.

O ozônio (O3) é um poluente secundário, ou seja, não é emitido diretamente, mas formado a partir de outros poluentes atmosféricos, e altamente oxidante na troposfera (camada inferior da atmosfera). O ozônio é encontrado naturalmente na estratosfera (camada situada entre 15 e 50 km de altitude), onde tem a função positiva de absorver radiação solar, impedindo que grande parte dos raios ultravioletas cheguem a superfície terrestre. A formação do ozônio troposférico ocorre através de reações químicas complexas que acontecem entre o dióxido de nitrogênio e compostos orgânicos voláteis, na presença de radiação solar.

Estes poluentes são emitidos principalmente na queima de combustíveis fósseis, volatilização de combustíveis, criação de animais e na agricultura. Entre os efeitos à saúde estão o agravamento dos sintomas de asma, de deficiência respiratória, bem como de outras doenças pulmonares (enfisemas, bronquites, etc.) e cardiovasculares (arteriosclerose). Longo tempo de exposição pode ocasionar redução na capacidade pulmonar, desenvolvimento de asma e redução na expectativa de vida.

Os poluentes climáticos de vida curta (PCVC ou em inglês SLCP) são os que têm vida relativamente curta na atmosfera (de alguns dias à algumas décadas), apresentam efeitos nocivos à saúde, ao ambiente e também agravam o efeito estufa. Os principais PCVC são o carbono negro, o metano, o ozônio troposférico e os hidrofluorocarbonetos (HFC). As fontes principais de carbono negro são a queima ao ar livre de biomassa, motores a diesel e a queima residencial de combustíveis sólidos (carvão, madeira).

As fontes de metano antropogênicas são sistemas de óleo e gás, agricultura, criação de animais, aterros sanitários e tratamentos de esgotos. Com relação aos HFCs seu uso ocorre principalmente em sistemas de ar condicionado, refrigeração, supressores de queima, solventes e aerossóis. Os PCVCs têm efeitos negativos sobre a saúde humana, sobre os ecossistemas e sobre a produção agrícola. O carbono negro é um dos componentes do material particulado, o qual apresenta efeitos nocivos sobre os sistemas respiratório e sanguíneo, podendo levar a óbito. O metano tem grande potencial de aquecimento global, além de ser precursor na formação do ozônio troposférico. Os HFCs, assim como o metano, também apresentam grande potencial de aquecimento global.

Como poupar energia elétrica

 PRÓXIMOS CURSOS
 
 

Consumidor pode economizar mais de R$ 1.200 ao tomar medidas simples em sua casa

Com a chegada do horário de verão, que começou no domingo, 19 de outubro, o Inmetro dá dicas para quem quer poupar sem ter de abrir mão de ventiladores e ar condicionado: trocar as lâmpadas, desligar aparelhos em stand by e optar por produtos eficientes, classificados pelo Programa Brasileiro de Etiquetagem (PBE), são algumas delas. Juntos, podem representar uma economia média de R$ 1.212 ao ano – cálculo feito com base em uma casa de dois quartos, com refrigerador, televisão na sala, máquina de lavar, três ventiladores de teto, um chuveiro elétrico e um ar condicionado e pontos de luz em todos os cômodos.

“A primeira dica é aproveitar luminosidade natural durante o horário de verão, reduzindo o tempo de acendimento de lâmpadas. Inclusive, trocar as lâmpadas incandescentes por fluorescentes proporciona uma economia média de R$ 310 por ano. Agora, se o consumidor for comprar um aparelho novo, é importante levar em consideração a etiqueta de eficiência energética, com a classificação de A a E feita pelo Inmetro, sendo A o mais e E o menos eficiente”, explica Marcos Borges, responsável pelo PBE.

Segundo Marcos, é possível comprar um produto novo somente com a economia gerada durante a sua vida útil. “Ao adotar uma escolha consciente ele induz o desenvolvimento tecnológico e a melhoria do produto. No caso das geladeiras de 300 litros, a economia é de R$ 100 por ano. Ao final de dez, o consumidor troca de aparelho somente com o que economizou. Comprar produtos classificados como A é sempre uma vantagem para o bolso”, ressaltou.
Confira algumas dicas do Inmetro para economia de energia:
Lâmpada incandescente: Pode parecer mais barata porque custa menos na hora da compra, mas, em geral, a fluorescente compacta é quatro vezes mais econômica e dura de oito a dez vezes mais. Em um ano, somente trocando as incandescentes por fluorescentes compactas equivalentes a economia é de cerca de R$ 310 (já incluindo o gasto com as lâmpadas novas, em um apartamento de dois quartos com 13 lâmpadas, por exemplo);

Geladeira: São classificadas quanto à eficiência energética. O modelo mais simples, de uma porta, classificado como ‘A’ em comparação a um classificado como ‘E’, representa uma economia de R$ 54 em um ano (em 10 a 12 anos, período médio de vida da geladeira, isso equivale, praticamente, a compra de uma nova). Em geladeiras maiores essa relação pode ser até superior. Um combinado, em média de 300 litros, pode economizar mais de R$ 100 por ano.
Boas dicas para manter sua geladeira eficiente: mantenha-a limpa, não seque roupas atrás do motor e verifique a borracha de vedação. E se a sua geladeira tem mais de 10 anos, comece a planejar a troca, pois ela começou a perder sua eficiência e começará a custar cada vez mais para funcionar.

Televisão: A etiquetagem de televisores refere-se ao consumo em modo espera (stand by). Um televisor ligado na tomada, em modo espera, pode gastar até R$ 2 por mês. Se somarmos todos os aparelhos de TV da casa, além do forno de micro-ondas e outros que ficam ligados direto na tomada e que possuem lâmpada em modo de espera (stand-by), a conta de energia pode aumentar bastante (cada aparelho gasta no mínimo R$ 1). Portanto, desligue seus aparelhos da tomada quando não for usar.

Chuveiro  elétrico: Esta etiquetagem é diferente pois, ao invés da eficiência energética, o Inmetro classifica a potência do aparelho. Ou seja, produtos menos potentes, que gastam menos energia elétrica, mas aquecem menos a água, são classificados nas faixas superiores da etiqueta (A, B, C). Já as mais potentes, que gastam mais energia e aquecem mais água, ficam nas classificações inferiores.
A diferença de um chuveiro B (menos potente disponível hoje no mercado) para um G (mais potente) é de aproximadamente R$ 9 por pessoa por mês, em média, em um banho de cinco a oito minutos. Em uma família de quatro pessoas, temos uma economia mensal de R$ 36, ou R$ 432 por ano.

Se você mora em uma região quente do país, um chuveiro A ou B ou C é suficiente para aquecer a água a uma temperatura confortável (lembrando que conforto é um conceito muito pessoal). Se você mora em uma região mais fria, chuveiros E, F e G, em tese, seriam mais adequados. Banhos não devem durar mais que oito minutos. Mais que isso, é desperdício de água e energia, que pesam no bolso.

Em dias mais quentes, use o chuveiro no modo “verão” ou potência mínima. Um chuveiro classificado como ‘D’, bastante comum em uma cidade como o Rio de Janeiro, consome em média 23 kWh/mês. Multiplicando pela tarifa média no Brasil (R$ 0,50 o kWh), o gasto aproximado é de R$ 12 por pessoa, em cada mês. Uma família que utiliza o aparelho na posição ‘verão’ gasta a metade deste valor.

Condicionador de ar: para iniciar o uso, feche as portas do ambiente, ligue no máximo e espere refrigerar. Depois, pode diminuir a intensidade de refrigeração para manter a temperatura confortável. É importante não deixas as portas abertas e, se não estiver usando o ambiente, desligue o aparelho.

economia