IEC 61400-27-2: a validação de modelos de simulação elétrica em energia eólica

Essa norma, editada pela International Electrotechnical Commission (IEC) em 2020, especifica os procedimentos para validação de modelos de simulação elétrica para turbinas eólicas e usinas eólicas, destinados a serem usados em análises de sistema de energia e estabilidade de rede. Os procedimentos de validação são baseados nos ensaios especificados na IEC 61400-21 (todas as partes).

A IEC 61400-27-2:2020 – Wind energy generation systems – Part 27-2: Electrical simulation models – Model validation especifica os procedimentos para validação de modelos de simulação elétrica para turbinas eólicas e usinas eólicas, destinados a serem usados em análises de sistema de energia e estabilidade de rede. Os procedimentos de validação são baseados nos ensaios especificados na IEC 61400-21 (todas as partes). Os procedimentos de validação são aplicáveis aos modelos genéricos especificados na IEC 61400-27-1 e a outros modelos de usinas eólicas de frequência fundamental e modelos de turbinas eólicas.

Os procedimentos de validação para modelos de turbinas eólicas focam no controle de falhas por meio de capacidade e desempenho de controle. A capacidade de ultrapassar falhas inclui resposta a quedas de tensão balanceadas e não balanceadas, bem como a aumentos de tensão. O desempenho inclui o controle de potência ativa, controle de frequência, controle de inércia sintética e controle de potência reativa.

Os procedimentos de validação para modelos de turbinas eólicas referem-se aos ensaios especificados na IEC 61400-21-1. Os procedimentos de validação para modelos de turbinas eólicas referem-se aos terminais das turbinas eólicas. Os procedimentos de validação para modelos de usinas eólicas não são especificados em detalhes porque a IEC 61400-21-2, que tem o escopo para especificar testes de usinas eólicas, está em um estágio inicial.

Os procedimentos de validação para modelos de usinas eólicas referem-se ao ponto de conexão da usina eólica. Os procedimentos de validação especificados na IEC 61400-27-2 são baseados em comparações entre medições e simulações, mas são independentes da escolha da ferramenta de simulação de software.

A IEC 61400-27-2 especifica os procedimentos de validação de modelo para modelos de simulação elétrica de turbinas eólicas e usinas eólicas. A crescente penetração da energia eólica nos sistemas de potência implica que os operadores do sistema de transmissão (transmission system operators – TSO) e os operadores do sistema de distribuição (distribution system operators – DSO) precisam usar modelos dinâmicos de geração de energia eólica para estudos de estabilidade do sistema de potência. O objetivo desta norma é especificar procedimentos de validação para modelos dinâmicos, que podem ser aplicados em estudos de estabilidade de sistemas de potência. A Força-Tarefa Conjunta IEEE/CIGRE sobre termos e definições de estabilidade classificou a estabilidade do sistema de energia em categorias de acordo com a Figura 1.

Referindo-se a essas categorias, os modelos a serem validados foram desenvolvidos para representar a geração de energia eólica em estudos de fenômenos de estabilidade de curto prazo de grande perturbação, isto é, estabilidade de tensão de curto prazo, estabilidade de frequência de curto prazo e estudos de estabilidade transitória de curto prazo referentes às definições de Força-Tarefa Conjunta IEEE/CIGRE sobre termos e definições de estabilidade na Figura 1.

Assim, os modelos são aplicáveis para simulações dinâmicas de eventos do sistema de potência, como curtos-circuitos (passagem de baixa tensão), perda de geração ou cargas e separação do sistema de uma área síncrona em áreas mais síncronas. O procedimento de validação especificado neste documento avalia a precisão da resposta de frequência fundamental de modelos de usinas eólicas e modelos de turbinas eólicas. Isso inclui a validação dos modelos genéricos de sequência positiva especificados na IEC 61400-27-1 e validação da sequência positiva, bem como a resposta de sequência negativa de modelos mais detalhados desenvolvidos pelos fabricantes de turbinas eólicas.

O procedimento de validação tem as seguintes limitações:

– O procedimento de validação não especifica nenhum requisito para a precisão do modelo. Ele apenas especifica medidas para quantificar a precisão do modelo.

– O procedimento de validação não especifica procedimentos de teste e medição, pois se destina a ser baseado em testes especificados em IEC 61400-21-1 e IEC 61400-21-24.

– O procedimento de validação não se destina a justificar a conformidade com qualquer requisito do código da rede, requisitos de qualidade de energia ou legislação nacional.

– O procedimento de validação não inclui a validação das capacidades de estado estacionário, por exemplo de potência reativa, mas centra-se na validação do desempenho dinâmico dos modelos.

– O procedimento de validação não cobre a análise de estabilidade de longo prazo.

– O procedimento de validação não cobre fenômenos de interação subsíncrona.

– O procedimento de validação não cobre a investigação das flutuações originadas da variabilidade da velocidade do vento no tempo e no espaço.

– O procedimento de validação não cobre fenômenos como harmônicos, cintilação ou quaisquer outras emissões EMC incluídas na série IEC 61000.

– O procedimento de validação não cobre cálculos de valor próprio para análises de estabilidade de pequenos sinais.

– Este procedimento de validação não aborda as especificações dos cálculos de curto-circuito.

– O procedimento de validação é limitado pelas especificações funcionais na Cláusula 5.

As seguintes partes interessadas são usuários potenciais dos procedimentos de validação especificados neste documento: TSO e DSO precisam de procedimentos para validar a precisão dos modelos que eles usam em estudos de estabilidade de sistemas de potência; os proprietários de usinas eólicas são normalmente responsáveis por fornecer a validação de seus modelos de usinas eólicas ao TSO e/ou DSO antes do comissionamento da usina; os fabricantes de turbinas eólicas normalmente fornecerão validação dos modelos de turbinas eólicas ao proprietário; os desenvolvedores de software moderno para ferramentas de simulação de sistemas de energia podem usar o padrão para implementar procedimentos de validação como parte da biblioteca de software; os organismos de certificação em caso de validação independente do modelo; e as comunidades de educação e pesquisa, que também podem se beneficiar de procedimentos de validação de modelo padrão.

O desempenho de motores de indução de baixa tensão

Conheça os parâmetros de desempenho para motores de indução de baixa tensão (≤ 1.000 V) alimentados por conversores de frequência PWM tipo fonte de tensão e as características de projeto para motores especificamente projetados para aplicações com conversor de frequência.

A NBR 16881 de 09/2020 – Motores de indução alimentados por conversores de frequência — Parâmetros de desempenho e critérios de aplicação fornece parâmetros de desempenho para motores de indução de baixa tensão (≤ 1.000 V) alimentados por conversores de frequência PWM tipo fonte de tensão e as características de projeto para motores especificamente projetados para aplicações com conversor de frequência. Também são especificados parâmetros de interface e interação entre o motor e o conversor de frequência, incluindo boas práticas de instalação como parte do sistema de acionamento.

Esta norma é aplicável tanto a motores especificamente projetados para uso com o conversor de frequência quanto a motores projetados para partida direta (alimentação senoidal) alimentados por conversor de frequência. Para motores que operam em atmosferas explosivas, devem ser observados os requisitos especificados na NBR IEC 60079-0. Quando o fabricante do conversor de frequência fornecer recomendações específicas para a instalação do sistema de acionamento, estas prevalecem sobre as recomendações desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as considerações para o projeto do motor?

Quais são os parâmetros do circuito equivalente do motor para ajuste do conversor de frequência?

Quais as características do conversor de frequência para reduzir as perdas no motor?

Qual é a influência da temperatura na expectativa de vida?

O desempenho e os dados de operação de motores de indução alimentados por conversores de frequência são influenciados por todo o sistema de acionamento, incluindo a fonte de alimentação, o conversor de frequência, os cabos elétricos, o motor, a carga acionada e o equipamento de controle. Existem inúmeras variações para cada um destes componentes. Assim, quaisquer valores mencionados nesta norma são meramente indicativos.

Em face das complexas interações técnicas existentes entre os componentes do sistema de acionamento e das possíveis variações das condições de operação, está além do escopo desta norma especificar valores ou limites numéricos para todas as grandezas relevantes para o projeto do sistema de acionamento. Cada vez mais é comum que o sistema de acionamento seja constituído por equipamentos e componentes produzidos por diferentes fabricantes.

O objetivo desta norma é explicar, tanto quanto possível, a influência destes componentes no projeto do motor e nas suas características de desempenho. Esta norma, a princípio, não enfoca questões relacionadas à segurança. No entanto, algumas recomendações contidas no documento podem ter implicações no aspecto da segurança. Embora as etapas de especificação das características do motor e do conversor de frequência sejam semelhantes para qualquer aplicação, a escolha dos equipamentos mais apropriados a cada caso é muito influenciada pelo tipo de aplicação.

A seguir são descritas as etapas de seleção dos equipamentos constituintes do PDS. Por conveniência, os efeitos dos diferentes tipos de carga acionada existentes são discutidos no Anexo A. A informação completa de uma aplicação considera a carga acionada, o motor elétrico, o conversor de frequência e a rede elétrica. O conhecimento de todas essas informações é fundamental para que o desempenho requerido de todo o sistema seja alcançado.

Os dados requeridos incluem: a faixa de operação; a potência ou o conjugado requerido em toda a faixa de operação; as taxas de aceleração e desaceleração do processo que está sendo controlado; os requisitos de partida incluindo o número (frequência) de partidas e a descrição da carga (a inércia vista do eixo do motor e o conjugado da carga durante a partida); ciclo de trabalho da aplicação; a descrição das funcionalidades adicionais que não podem ser satisfeitas somente com o motor elétrico e conversor de frequência (por exemplo: monitoramento da temperatura do motor elétrico, dispositivos para permitir a partida direta (bypass), se necessário, circuitos especiais de sequenciamento ou sinais de referência de velocidade para controlar o PDS, etc.); a descrição da fonte de alimentação elétrica disponível e do tipo de ligação.

As figuras abaixo resumem as características típicas do comportamento de um motor alimentado por conversor de frequência. Elas não mostram possíveis faixas evitadas. A figura abaixo mostra a curva de conjugado versus rotação de um motor alimentado por conversor de frequência. O conjugado máximo permitido é limitado pela característica do motor e pela corrente do conversor de frequência. Acima da frequência de enfraquecimento de campo f0 e da rotação n0, o motor pode operar com potência constante com um valor proporcional de 1/n. Se o valor de conjugado máximo (que é proporcional à 1/n2) atingir o valor de conjugado nominal, a potência tem de ser reduzida proporcionalmente a 1/n resultando em um conjugado proporcional a 1/n2 (faixa estendida).

A rotação máxima utilizável (nmáx.) é limitada não apenas pela redução de conjugado devido ao enfraquecimento do campo em rotações superiores a n0, mas também pela rigidez e estabilidade mecânica do rotor, pela capacidade de rotação dos mancais e por outros parâmetros mecânicos. Em baixas frequências, o conjugado disponível pode ser reduzido em motores autoventilados a fim de se evitar sobreaquecimento. Em algumas aplicações, é possível aplicar um incremento de conjugado na partida.

A figura abaixo mostra a capacidade de corrente de saída (I) do conversor de frequência.

Conforme indicado na figura acima, o tipo de resfriamento influencia a capacidade máxima de conjugado versus rotação do PDS. Motores elétricos com potência na faixa de megawatts muitas vezes têm um sistema de resfriamento composto por um circuito de resfriamento primário (geralmente tendo ar como refrigerante primário) e um circuito de resfriamento secundário (tendo ar ou água como refrigerante secundário). As perdas são transferidas do circuito primário para o secundário por meio de um trocador de calor.

Quando os fluidos refrigerantes primário e secundário são movidos por um dispositivo separado, tornando o seu fluxo independente da rotação do motor (por exemplo, IC656 conforme a NBR IEC 60034-6), a curva da figura acima para ventilação separada é aplicável. Quando o fluido refrigerante secundário é movido por um dispositivo separado e o fluido refrigerante primário é movido por um dispositivo acionado pelo eixo (por exemplo, IC81W ou IC616), a curva da figura para autorresfriamento é aplicável.

Quando os fluidos refrigerantes primário e secundário são movidos por um dispositivo acionado pelo próprio eixo do motor elétrico, o conjugado de saída não deve exceder a curva T/TN = n2/n02 e recomenda-se que a mínima rotação de operação seja ≥ 70 % da rotação nominal. Para aplicações que excedam esta faixa, o fabricante do motor deve ser consultado.

A faixa de operação de um motor alimentado por conversor de frequência pode incluir rotações que podem excitar ressonâncias em partes do estator, no eixo, no sistema de acoplamento do motor com a carga acionada, ou na própria carga acionada. Dependendo do conversor de frequência, pode ser possível evitar as frequências ressonantes. No entanto, mesmo que as frequências ressonantes sejam evitadas, a carga é acelerada através dela, caso o motor seja operado em qualquer rotação acima da rotação de ressonância.

Diminuir o tempo de aceleração pode ajudar a minimizar o intervalo de tempo em que se opera na rotação de ressonância. A faixa de operação deve ser acordada com o fabricante do motor e da máquina acionada. Como motores aplicados com conversor de frequência costumam trabalhar em uma faixa de operação e não apenas em um ponto de operação fixo, normalmente não se aplica o conceito de condição nominal de operação para esses motores.

O ponto-base de operação do motor alimentado por conversor de frequência geralmente é considerado o ponto em que o motor entrega o máximo conjugado e a máxima potência. Neste ponto, o motor opera com rotação-base, tensão-base, corrente-base, conjugado-base e potência-base, correspondendo ao ponto da figura acima em que n = n0. A máxima rotação de operação pode ser maior do que a rotação-base e, dependendo das características de tensão e frequência, a máxima tensão de operação pode exceder a tensão-base.

Para um motor elétrico operado por conversor de frequência, o fabricante deve informar os limites de rotação para operação segura nos dados de placa. Para motores de indução de gaiola de baixa tensão com partida direta, o limite de rotação para operação segura deve ser definido de acordo com a NBR 17094-1. Os critérios de sobrevelocidade para motores são especificados na NBR 17094-1, mas os ensaios de sobrevelocidade não são normalmente considerados necessários.

Os ensaios especiais, porém, podem ser realizados mediante acordo, para que se verifique a integridade do projeto do rotor em relação às forças centrífugas. Para motores alimentados por conversor de frequência, uma aceleração até uma rotação maior de que a máxima rotação de operação determinada pelo controle do conversor de frequência é improvável. Especialmente para motores grandes, geralmente é benéfico projetar o motor para uma rotação limite de 1,05 vez a rotação máxima de operação. Ensaios também podem ser realizados a 1,05 vez a rotação máxima de operação.

Deve-se considerar que, para operação em alta rotação, um balanceamento fino do rotor pode ser necessário. No caso de operação nesta condição por longos períodos, a vida dos rolamentos pode ser reduzida, requerendo redução do intervalo de relubrificação. As aplicações com regimes cíclicos são aquelas nas quais existem variações periódicas ou intermitentes de rotação e/ou carga (ver NBR 17094-1).

Vários aspectos deste tipo de aplicação afetam o motor e o conversor de frequência, como a dissipação térmica do motor é variável, dependendo da rotação e do método de resfriamento; operação acima de conjugado nominal do motor pode ser requerida para acelerar, desacelerar e atender picos de carga. Operação acima da corrente nominal aumenta o aquecimento do motor. Isso pode requerer uma classe de isolação mais elevada, um motor sobredimensionado ou a avaliação do regime de serviço para determinar se o motor possui reserva térmica suficiente para a aplicação (ver regime de serviço S10 da NBR 17094-1).

A frenagem por injeção de corrente contínua dinâmica ou regenerativa pode ser requerida para reduzir a rotação do motor. Independentemente de o motor estar fornecendo conjugado para acionar a carga, estar gerando potência reversa para o conversor de frequência devido a estar sendo acionado pela carga, ou estar fornecendo conjugado de frenagem durante a desaceleração pela aplicação de corrente contínua nos enrolamentos, o aquecimento do motor ocorre de forma aproximadamente proporcional ao quadrado da corrente enquanto aplicada. Este aquecimento deve ser incluído na análise do regime de serviço.

Além disso, os conjugados transitórios impostos no eixo pela frenagem devem ser controlados de forma que não cause danos. A IEC 61800-6 fornece informações sobre regime de carga e determinação de corrente para todo o PDS. As cargas de alto impacto são um caso especial de regime e são encontradas em certas aplicações com conjugado intermitente (por exemplo, regime de serviço S6 da NBR 17094-1).

Nestas aplicações, a carga é aplicada ou removida do motor muito rapidamente. É também possível para este conjugado de carga ser positivo (contrário à direção de rotação do motor) ou negativo (na mesma direção de rotação do motor). A carga de impacto provoca um rápido aumento ou redução na demanda de corrente do conversor de frequência. Se o conjugado for negativo, o motor pode gerar corrente de volta para o conversor de frequência. Estas correntes transitórias estressam os enrolamentos do estator e sua amplitude depende das características da carga e do dimensionamento do conversor de frequência e do motor.

O desempenho dos perfis de PVC rígido para a fabricação de esquadrias

Conheça as especificações de desempenho para os perfis de poli(cloreto de vinila) não plastificados (PVC rígido), utilizados na fabricação de esquadrias.

A NBR 16851-1 de 08/2020 – Esquadrias — Perfis de PVC rígido para a fabricação de esquadrias – Parte 1: Requisitos para perfis de cores claras especifica os requisitos de desempenho para os perfis de poli(cloreto de vinila) não plastificados (PVC rígido), utilizados na fabricação de esquadrias. Aplica-se apenas aos perfis com superfícies claras, com valores de coordenadas cromáticas dentro das seguintes faixas: L* ≥ 82; –2,5 ≤ a* ≤ 5; –5 ≤ b* ≤ 15. Não se aplica a qualquer outra tecnologia de fabricação de perfis de PVC rígido para esquadrias que não a mencionada em 1.2. Exemplos de outras tecnologias de fabricação de PVC rígidos para esquadrias que não estão contempladas nesta norma são: perfis pintados, perfis colaminados (com película decorativa), perfis com acabamento colorido obtidos por coextrusão e perfis de PVC rígidos reforçados (por exemplo, com fibra de vidro).

A NBR 16851-2 de 08/2020 – Esquadrias — Perfis de PVC rígido para a fabricação de esquadrias – Parte 2: Métodos de ensaio para perfis de cores claras especifica os métodos de ensaio para os perfis de poli(cloreto de vinila) não plastificados (PVC rígido), utilizados na fabricação de esquadrias. Aplica-se apenas aos perfis com superfícies claras, com valores de coordenadas cromáticas dentro das seguintes faixas: L* ≥ 82; –2,5 ≤ a* ≤ 5; –5 ≤ b* ≤ 15. Não se aplica a qualquer outra tecnologia de fabricação de perfis de PVC rígido para esquadrias que não a mencionada em 1.2. Exemplos de outras tecnologias de fabricação de PVC rígidos para esquadrias que não estão contempladas nesta Norma são: perfis pintados, perfis colaminados (com película decorativa), perfis com acabamento colorido obtidos por coextrusão e perfis de PVC rígido reforçado (por exemplo, com fibra de vidro).

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser a resistência de cantos soldados e de juntas “T” soldadas de perfis principais?

Qual é a classificação dos perfis de acordo com a resistência ao impacto de queda de massa?

Como deve ser executada a determinação da massa linear?

Como deve ser feita a determinação da estabilidade dimensional?

Uma esquadria, ao ser fabricada com perfis de PVC rígido, assegura ao produto final a resistência ao ataque das intempéries permitindo aos fabricantes de esquadrias e ao consumidor final o uso adequado deste produto. A resistência às intempéries é um ponto de atenção para qualquer produto aplicado na construção civil. As alterações químicas podem comprometer o desempenho estrutural dos perfis de PVC rígido utilizados em uma esquadria.

Além disso, as normas NBR 10821-2 e NBR 10821-4, estabelecem o desempenho das esquadrias. Portanto, a falta de atenção aos agentes agressivos das intempéries pode expor os usuários das esquadrias a riscos a sua saúde e segurança, bem como pode ocasionar prejuízo econômico, em função da necessidade de reparos ou da substituição da esquadria fabricada com perfis de PVC rígido. A partir das premissas mencionadas anteriormente, houve a solicitação à Comissão de Estudos Especial de Esquadrias (ABNT/CEE-191) para a criação de uma norma técnica que trate deste assunto. Diante do seu escopo de atuação esta demanda foi apresentada e aprovada, e esta norma foi elaborada tomando por base o seguinte documento técnico: a BS EN 12608-1:2016, que é referência em técnicas de resistência ao intemperismo consagrada mundialmente, estudando e avaliando produtos na Europa nos últimos 60 anos.

Para avaliação da conformidade de produtos finais com perfis de PVC, como esquadrias, guarda-corpos, entre outros, devem ser considerados os requisitos constantes em 4.2.1, 4.2.2 e 4.3 a 4.9. Os demais requisitos previstos nesta norma aplicam-se para avaliações de composições de matérias-primas para a fabricação de perfis cujos efeitos não podem ser previstos baseados em experiências anteriores.

Entende-se como mudança fundamental tais como: introdução ou supressão de insumos; alteração relevante de dosagem de insumos da formulação; alteração relevante do processo de manufatura. Os compostos de PVC rígido utilizados na fabricação de perfis, quando ensaiados por espectrometria de raios X, de acordo com a IEC 62321-3-1, não podem indicar concentração de chumbo superior a 0,1%. O teor de dióxido de titânio dos compostos de PVC rígido utilizados na fabricação de perfis não pode ser inferior a 5,0%. A verificação deve ser realizada conforme a NBR 16851-2:2020, Seção 14.

A temperatura média de amolecimento Vicat obtida no ensaio deve ser ≥ 75 °C, e cada valor individual deve ser ≥ 73 °C. O ensaio deve ser realizado de acordo com a NBR NM 82, com taxa de aquecimento de (50 ± 5) °C/h e carga de (50 ± 1) N. Quando as amostras forem extraídas diretamente do perfil extrudado de PVC, e durante a realização dos ensaios, caso sejam obtidas temperaturas Vicat inconsistentes e não necessariamente diferentes entre diferentes amostras, proceder conforme a seguir: descartar as amostras extraídas diretamente dos perfis e que já foram ensaiadas; coletar novas amostras para obtenção das placas prensadas conforme a NBR 16851-2:2020, Seção 4; realizar novamente o ensaio de temperatura de amolecimento Vicat; e, em caso de disputa, o ensaio em placas prensadas é o método de referência.

O módulo de elasticidade na flexão média (Ef), obtido no ensaio, deve ser ≥ 2 200 N/mm², e cada valor individual deve ser > 2.000 N/mm². O ensaio deve ser realizado de acordo com a ISO 178, à temperatura de (23 ± 2) °C. Os resultados díspares e as inconsistências no ensaio de determinação do módulo de elasticidade na flexão podem ser causados pela ausência de correto alinhamento no momento do corte do perfil, ou em virtude da alteração da espessura da parede quando de sua extrusão.

Ambos os casos podem ser solucionados mediante preparação de placas prensadas conforme NBR 16851-2:2020, Seção 4, garantindo obtenção de amostras planas e desprovidas de imperfeições geométricas. Em caso de disputa, o ensaio em placas prensadas é o método de referência. A resistência média ao impacto na tração obtida no ensaio deve ser ≥ 600 kJ/m², e cada valor individual deve ser ≥ 450 kJ/m². O ensaio deve ser realizado conforme a ISO 8256, utilizando corpos de prova do tipo 5, à temperatura de (23 ± 2) °C. Os corpos de prova para realização deste ensaio devem ser retirados diretamente dos perfis.

A resistência média do perfil ao impacto de Charpy deve atender aos requisitos descritos a seguir. A resistência ao impacto Charpy, antes da exposição em câmara de UV, deve ser ≥ 55 kJ/m² e a redução da resistência ao impacto Charpy, após exposição por 2.000 h em câmara de UV, deve ser ≤ 40 %. Este ensaio deve ser realizado de acordo com a NBR 16851-2:2020, Seção 13, e com a ISO 179-1, utilizando-se o método designado ISO 179-1/1fA, à temperatura de (23 ± 2) °C.

Após 6.000 h de exposição, a diferença de cor entre o corpo de prova exposto e o não exposto à câmara dotada de lâmpada de arco de xenônio, expressa em ΔE*, deve ser menor ou igual a 5, e │Δb*│ deve ser menor ou igual a 3. O ensaio deve ser realizado conforme a NBR 16851-2:2020, Seção 11. A cor do perfil deve ser a mesma e uniforme em todas as paredes externas. As superfícies do perfil devem ser lisas e livres de pite, impurezas, cavidades ou outros defeitos. As arestas do perfil não podem ter rebarbas.

Os acordos posteriores relacionados à aparência do perfil, como tolerâncias na cor de referência, podem ser feitos entre o cliente e o fabricante, e não fazem parte dos requisitos desta norma, desde que os demais requisitos sejam obedecidos. A aparência do perfil é determinada observando-o à vista normal ou corrigida a uma distância de 1 m, com grau de iluminação do ambiente entre 750 lux e 1.500 lux. As dimensões da seção do perfil devem estar de acordo com o declarado pelo fabricante. As tolerâncias das dimensões externas do perfil, em relação ao seu formatonominal, devem estar de acordo com a tabela abaixo.

O desvio de linearidade, determinado conforme a NBR 16851-2:2020, Seção 6, deve ser ≤ 1 mm para o comprimento de 1 m. A determinação das dimensões deve ser realizada conforme a NBR 16851-2:2020, Seção 5. A massa linear dos perfis principais deve ser ≥ 95 % de sua massa linear nominal. O ensaio deve ser realizado conforme a NBR 16851-2:2020, Seção 7.

As variações longitudinais para perfis principais devem atender aos requisitos a seguir: a variação longitudinal (R) para cada par de marcas de cada corpo de prova deve ser ≤ 2,0 %; a diferença de variação longitudinal entre as superfícies visíveis opostas (ΔR), deve ser ≤ 0,4 % em todos os corpos de prova. O ensaio deve ser realizado conforme a NBR 16851-2:2020, Seção 8.

Pode-se especificar um procedimento de preparo de amostras a partir de perfis de PVC rígido, de grânulos ou pó, para a determinação das características do material empregado na fabricação de perfis. Para as placas para ensaio, preparar as placas prensadas de acordo com a ISO 21306-2, Seção 4. As placas prensadas devem ser provenientes de: perfil de PVC rígido extrudado moído; grânulos; ou pó. As placas prensadas devem passar por calandra ou moinho de rolos e então devem ser prensadas. A velocidade diferencial entre os dois rolos do misturador deve ser de 1:1,2. A placa prensada deve possuir espessura de (4 ± 0,2) mm.

Resfriar a placa, conforme a ISO 21306-2:2019, Tabela 2. O resfriamento deve ocorrer preferencialmente à taxa de (15 ± 3) °C/min. Para a determinação das dimensões da seção, o método de ensaio determina as dimensões externas e as espessuras das paredes externas de um perfil de PVC rígido utilizado na fabricação de esquadrias. O corpo de prova consiste em uma seção de perfil de PVC rígido com no mínimo 50 mm de comprimento.

Usa-se como aparelhagem, um instrumento de medição de distâncias com precisão mínima de 0,05 mm. Deve-se condicionar o corpo de prova na temperatura de (23 ± 2) °C por no mínimo 1 h antes do ensaio. Medir as dimensões externas (altura e profundidade) a (23 ± 2) °C. As medições devem ser realizadas em pontos ao menos 1 mm distantes de cantos ou junções. Para a expressão dos resultados, devem ser anotadas todas as dimensões medidas.

Recomenda-se que as medidas sejam anotadas em uma figura representativa da seção do perfil. O relatório do ensaio deve conter as seguintes informações: número desta norma; laboratório responsável pelo ensaio; identificação completa do perfil; data da realização do ensaio; aparelhagem utilizada; altura do perfil; profundidade do perfil; espessura das paredes externas em todos os pontos medidos; qualquer incidente que possa ter influenciado ou não o resultado do ensaio.

Para a determinação do desvio de linearidade, o corpo de prova consiste em uma seção de perfil de PVC rígido com (1.000 ± 1) mm de comprimento. A aparelhagem a ser utilizada no ensaio está relacionada a seguir: instrumento de medição de distâncias com precisão mínima de 0,1 mm; base de apoio plana.

O valor do desvio de linearidade, expresso em milímetros por metro (mm/m), é obtido dividindo-se a maior distância medida entre a base plana e o corpo de prova pelo comprimento do corpo de prova. O relatório do ensaio deve conter as seguintes informações: número desta norma; laboratório responsável pelo ensaio; identificação completa do perfil; data da realização do ensaio; aparelhagem utilizada; comprimento do corpo de prova; distância máxima entre a base plana e o corpo de prova nas duas direções medidas; valor do desvio de linearidade; qualquer incidente que possa ter influenciado ou não o resultado do ensaio.

A instalação dos sistemas de alívio de deflagração de gases e/ou vapores inflamáveis

Entenda quais são os parâmetros para o projeto, instalação, inspeção e manutenção de dispositivos e sistemas de alívio de deflagração de gases e/ou vapores inflamáveis e de pós combustíveis e de seus componentes. especifica os requisitos para projeto, instalação, inspeção e manutenção de dispositivos e sistemas de alívio de deflagração de gases e/ou vapores inflamáveis e de pós combustíveis e de seus componentes.

A NBR 16893 de 08/2020 – Sistemas de alívio de deflagrações – Requisitos especifica os requisitos para projeto, instalação, inspeção e manutenção de dispositivos e sistemas de alívio de deflagração de gases e/ou vapores inflamáveis e de pós combustíveis e de seus componentes. especifica os requisitos para projeto, instalação, inspeção e manutenção de dispositivos e sistemas de alívio de deflagração de gases e/ou vapores inflamáveis e de pós combustíveis e de seus componentes. Aplica-se para todas as fases de fabricação, processamento, mistura, transporte pneumático, estocagem, embalagem e manuseio de gases ou vapores inflamáveis e de partículas sólidas combustíveis ou misturas híbridas, independentemente da concentração e do tamanho de partícula, quando as substâncias apresentam perigo de incêndio ou explosão.

Não se aplica a: detonações, autoignição de gases ou deflagrações não confinadas, como explosões externas ou de nuvens de vapor ou de gases; dispositivos projetados e instalados para proteger vasos de estocagem contra o aumento de pressão interna devido à exposição a fogo externo ou outras fontes de calor; alívios de emergência de pressões geradas por embalo de reações exotérmicas, reações de autodecomposição, geração de vapor interno devido a falhas elétricas ou outros mecanismos de geração de pressão diferente de deflagração; alívio de deflagração de atmosferas ricas em oxigênio ou outros oxidantes a não ser que estejam baseados em dados específicos de ensaios técnicos; substâncias ou sistemas relacionados a seguir, que devem ser contemplados por documento específico: materiais explosivos, por exemplo: dinamite, pólvora, TNT, etc.; produtos pirotécnicos e fogos de artifício; combustíveis sólidos para foguetes; enxofre sólido; caldeiras e geradores de vapor; minas de carvão; área nuclear. As disposições estabelecidas nesta norma não se aplicam às instalações, equipamentos ou estruturas existentes ou cuja construção ou implantação tenha sido aprovada antes da data em que esta norma entrou em vigor.

Porém, quando da substituição de sistemas e equipamentos, estes passam a atender a esta norma que não impede a utilização de sistemas, métodos ou dispositivos que possuam qualidade, poder de resistência ao fogo, eficiência, durabilidade e segurança equivalentes ou superiores aos requisitos recomendados. Em caso de não conformidade entre esta norma e outra específica, aplica-se a norma específica. Os sistemas desenvolvidos de prevenção e de proteção contra deflagração, tanto para projetos industriais como para instalações existentes, são para projetar, dimensionar, instalar, inspecionar e manter os alívios de deflagração para atender aos seguintes princípios: prevenção para evitar formação de atmosferas explosivas; prevenção para evitar a presença de fontes de ignição; proteção para limitar os efeitos de uma deflagração. Esta norma apresenta as medidas de segurança para prevenção, proteção e mitigação de incêndios e deflagração de gases ou vapores inflamáveis e de pós combustíveis em instalações industriais que manuseiam estas substâncias. A deflagração propagação de uma zona de combustão a uma velocidade inferior à velocidade do som, em um meio isento de reação.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os símbolos e abreviaturas usados nessa norma?

Quais são os requisitos de seleção da pressão de projeto?

Qual o requisito para suporte do espaço confinado?

Como deve ser executada a operação de alívio de espaço confinado?

Qual é o esquema de instalação de defletor em vaso com painel de explosão?

O projeto, construção, processo, instalação e operação dos equipamentos de alívio de deflagração, bem como o treinamento de pessoas, devem assegurar a proteção dos ocupantes que não estejam na proximidade imediata dos efeitos do fogo, deflagração e explosão, pelo tempo necessário para abandonar o local, realocar, ou se refugiar em local seguro. As instalações e os processos de alívio de deflagração devem ser projetados, instalados e mantidos de modo a proteger contra a explosão, que possa causar falha em compartimentos, de modo a assegurar a sua integridade estrutural e o seu funcionamento.

A descarga do alívio de deflagração deve ser projetada e instalada de modo a não provocar ferimentos em pessoas próximas a ela. Quando houver a possibilidade de a descarga de alívio liberar produtos tóxicos classes 3 ou 4, conforme classificação da NFPA 704, o direcionamento seguro deste alívio não pode ser para o interior de edificações, mesmo contendo corta-chamas ou dispositivos de retenção de partículas na descarga. O projeto de instalações de alívio de deflagração deve atender às normas específicas, bem como à legislação vigente. Recomenda-se que os requisitos para um sistema de gestão de segurança à vida e saúde ocupacional atendam a ISO 45001. Tanto os requisitos de projeto como as informações de processos devem ser mantidos em arquivo pelo tempo útil de operação da instalação.

O projeto e a instalação devem atender aos seguintes requisitos: o alívio de deflagração deve ser concebido para limitar os danos ao espaço confinado ou ao vaso com dispositivo de alívio; o alívio de deflagração deve ser disposto para evitar a inflamação de propriedades adjacentes ou próximas e para evitar ferimento do público em geral em suas proximidades; o alívio de deflagração deve ser instalado para evitar danos da explosão às propriedades adjacentes ou próximas e para evitar ferimento do público em geral em suas proximidades (ver Anexo F); o alívio de deflagração deve ser instalado para evitar danos de projeção de fragmentos para a propriedade adjacente/ou próxima e para evitar ferimento do público em geral em suas proximidades. Pode-se apresentar uma série de equações e procedimentos de cálculo que devem ser usados para tratar de uma variedade de aplicações de dimensionamento de alívios. O esquema geral é apresentado na figura abaixo e deve ser usado para selecionar os métodos de dimensionamento de alívio que forem aplicáveis.

Os cenários de perigo de deflagração devem ser identificados pelo método de análise de risco, ainda na fase de projeto básico da instalação. O projeto e o dimensionamento de dispositivos contra deflagração devem se basear no estudo de análise de risco efetuado para o processo e a instalação, conforme a NBR 15662. A análise de riscos deve ser revisada e atualizada a cada cinco anos ou a qualquer tempo em que houver modificação no processo e/ou no equipamento na instalação. Estes documentos devem ser mantidos em arquivo pelo tempo útil de operação da instalação.

O projeto, a operação e a desativação de processos, vasos e instalações com risco potencial de explosão devem atender à NBR 15662. A base do projeto do sistema de alívio de deflagração deve atender ao descrito nessa norma e deve considerar no projeto por desempenho descrito na Seção 6 e nos conceitos e cálculos das Seções 7 a 11. O projeto, a construção e a instalação de equipamentos de alívio de deflagração devem ser supervisionados por técnico especialista em explosão.

O projeto com base em desempenho deve ser elaborado por técnico com qualificações aceitáveis pelo proprietário e/ou operador, atendendo à legislação vigente. A validação final do projeto deve ser efetuada por uma organização ou um profissional habilitado. O projeto com base em desempenho deve ser documentado com todos os cálculos, referências, hipóteses, estimativas, fontes de dados e de características dos materiais e respectivas especificações técnicas. A fonte de todos os métodos de cálculos e modelos deve ser documentada com os seus limites de aplicabilidade.

Deve ser realizada uma análise crítica para cada hipótese, que não seja fornecida por uma referência aceitável pela autoridade constituída. Este procedimento deve ser adotado para mostrar que a variação em relação à hipótese apresentada não resulta em discordância com os requisitos do projeto. Todas as fontes de dados diferentes dos requisitos de projeto para áreas de riscos de incêndio ou explosão, hipóteses ou especificações de projeto de edificações devem ser identificadas e documentadas.

A confiabilidade deste dado deve ser especificada e deve ser apresentada uma justificativa para o dado utilizado. A revisão do projeto por uma organização independente pode ser solicitada pela autoridade constituída, cuja aprovação do projeto esteja sob sua responsabilidade. O projeto com base no desempenho e documentações, se alguma das hipóteses do projeto for modificada, deve ser atualizado e submetido à nova aprovação por organização ou profissional competente, bem como atender à NBR 15662.

Os requisitos gerais de desempenho são: o projeto de sistema de alívio de deflagração ou sua instalação deve atender a 6.1; o alívio de deflagração deve limitar o nível de pressão reduzida (Pred) dentro do espaço confinado, vaso confinado, duto ou tubulação para atender ao descrito. A descarga resultante do sistema de alívio de deflagração deve atender aos seguintes requisitos: os materiais combustíveis externos ao espaço confinado não podem atingir a temperatura da chama ou a descarga de gases quentes derivados do alívio de deflagração; o resultado da descarga do alívio de deflagração deve limitar os riscos de danos a estruturas próximas a ele; o acesso a espaços onde pode haver descarga de alívio de deflagração deve ser restrito ao mínimo para circulação de pessoas, considerando a possibilidade de ferimentos por chama, gases quentes, partículas quentes e fragmentos.

A inspeção e a manutenção devem atender aos seguintes requisitos de desempenho: os sistemas de alívio de deflagração devem ser inspecionados e mantidos periodicamente, de modo a garantir sua funcionalidade segura, conforme projetado; a Seção 12 deve ser atendida, nos casos onde não houver indicação de procedimentos de inspeção e manutenção na especificação técnica do sistema de alívio de deflagração; a inspeção e manutenção do sistema de alívio de deflagração deve ser documentada e guardada por um ano ou pelo menos o registro das três últimas inspeções.

Os conceitos desta norma se aplicam a todos os projetos de sistemas de alívio de deflagração. As partículas achatadas, com forma de plaquetas; flocos ou partículas de fibras e fibrilas, com comprimento considerado maior do que o comum, que não passem através de peneiras de 500 μm, podem ainda ser consideradas perigo de deflagração. Além disso, muitas partículas acumulam cargas eletrostáticas durante o manuseio, fazendo com que se atraiam, formando aglomerados.

Se aglomeradas, com frequência comportam-se como se fossem partículas maiores, porém, quando são dissipadas, apresentam risco considerável de ignição ou de deflagração. Consequentemente, pode-se afirmar que qualquer partícula sólida com granulometria igual ou inferior a 500 μm, quando estiver suspensa no ar, em forma de nuvem, pode ter o comportamento de um pó combustível. Sempre que uma partícula sólida combustível é manuseada ou processada, existe potencial de deflagração. O grau do risco de deflagração varia, dependendo do tipo de pó ou poeira combustível e dos métodos de processamento utilizados.

O material descarregado do espaço confinado durante o alívio de uma deflagração deve ser direcionado para área externa segura. Os danos à propriedade e lesões pessoais devido à projeção deste material durante o alívio devem ser minimizados ou evitados pela localização do equipamento de alívio para fora de edificações e afastado de áreas normalmente ocupadas. Os alívios de deflagração não podem ser localizados próximos a tomadas de ar, conforme a distância resultante da dimensão da bola de fogo. A localização de alívios de deflagração pode ser permitida próxima à edificação e áreas normalmente ocupadas, de acordo com as distancias determinadas nessa norma e desde que o estudo de análise de risco seja aprovado pela autoridade competente.

Os ensaios em lãs de politereftalato de etileno (PET) para isolamento

Saiba quais são os requisitos e métodos de ensaio para as lãs de PET utilizadas em sistemas construtivos em chapas de gesso para drywall destinadas ao isolamento acústico e térmico entre ambientes construídos. Esta norma também estabelece os critérios para aceitação e rejeição, as condições para armazenagem, manuseio, transporte, uso e orientações gerais. 

A NBR 16832 de 08/2020 – Sistemas construtivos em chapas de gesso para drywall — Lãs de PET para isolamento térmico e acústico — Requisitos e métodos de ensaio estabelece os requisitos e métodos de ensaio para as lãs de PET utilizadas em sistemas construtivos em chapas de gesso para drywall destinadas ao isolamento acústico e térmico entre ambientes construídos. Esta norma também estabelece os critérios para aceitação e rejeição, as condições para armazenagem, manuseio, transporte, uso e orientações gerais. A lã de PET é formada por fibras de PET distribuídas aleatoriamente de forma tridimensional apresentada em forma de painéis ou rolos. O PET é um polímero termoplástico da cadeia dos poliésteres denominado politereftalato de etileno/polietilenotereftalato (poliéster)

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executado o plano de amostragem para os ensaios de análise dimensional, gramatura, absorção de umidade, resistência à tração longitudinal e estabilidade dimensional?

Como deve ser a embalagem e a marcação das lãs de PET?

Como deve ser feito o ensaio das dimensões da lã de PET em rolo?

Como deve ser a preparação dos corpos de prova para a determinação da gramatura?

A tabela abaixo apresenta os requisitos, critérios e os métodos de ensaio das lãs de PET para isolamento térmico e acústico em sistemas construtivos em chapas de gesso para drywall.

As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem apresentar os valores médios de largura e comprimento conforme tolerâncias estabelecidas na tabela acima, quando avaliadas de acordo com o Anexo A. As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem apresentar as gramaturas nominais constantes em 8.1, conforme tolerâncias estabelecidas na tabela acima, quando avaliadas de acordo com o Anexo B.

As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem apresentar uma absorção de umidade máxima de 2% em relação ao peso bruto do produto, quando avaliadas de acordo com o Anexo C. As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem apresentar uma resistência à tração longitudinal mínima equivalente a quatro vezes o valor médio do peso de três trechos de lã de PET com área igual a 1,50 m², quando avaliadas de acordo com o Anexo D. As lãs de PET para sistemas construtivos em chapas de gesso para drywall podem apresentar variações dimensionais de ± 3,5 % em relação às medidas iniciais determinadas nas seções longitudinal e transversal, quando avaliadas de acordo com o Anexo E.

As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem apresentar uma condutividade térmica máxima de 0,049 W/m.K, a uma temperatura média de 24 °C, quando avaliadas de acordo com a ASTM C518. O ensaio de condutividade térmica deve ser realizado com uma frequência mínima de cinco anos. Caso seja feita alguma alteração na composição do produto, informada na ficha técnica fornecida pelo fabricante, este ensaio deve ser realizado independentemente da data de realização dos ensaios anteriores.

As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem ser classificadas como II-A quando submetidas ao ensaio de reação ao fogo conforme a NBR 9442 e ASTM E 662 ou EN 13823. O ensaio de reação ao fogo deve ser realizado com uma frequência mínima de cinco anos. Caso seja feita alguma alteração na composição do produto, informada na ficha técnica fornecida pelo fabricante, este ensaio deve ser realizado independentemente da data de realização dos ensaios anteriores. A inspeção para recebimento de lotes é realizada pelo comprador ou seu preposto e tem como característica que a aceitação ou reprovação da amostra implique na aceitação ou rejeição do lote.

O local de inspeção deve ser previamente acordado entre fornecedor e comprador, podendo ser no pátio da fábrica ou no distribuidor ou na obra. Todo lote de entrega deve ser dividido em lotes de inspeção conforme acordado entre fornecedor e comprador. Cada lote de inspeção deve seguir o plano de amostragem expresso na unidade de comercialização, de uma mesma gramatura, proveniente da mesma unidade fabril. Os ensaios para recebimento devem ser feitos conforme estabelecido nesta norma e são limitados aos lotes de entrega do produto acabado apresentados pelo fornecedor.

De cada lote de inspeção, formado dos lotes de entrega, deve ser retirada a amostra e as lãs de PET constituintes das amostras devem ser submetidas ao seguinte ensaio não destrutivo para recebimento: análise dimensional, conforme 4.2; e aos ensaios destrutivos para recebimento: gramatura, conforme 4.3; absorção de umidade, conforme 4.4, resistência à tração longitudinal, conforme 4.5, e estabilidade dimensional.

A aceitação e a rejeição do lote de inspeção, quando for efetuada inspeção no recebimento dos lotes, devem ser conforme 5.3.2 a 5.3.7, aplicada para cada tipo de ensaio. Se o número de unidades defeituosas (aquelas que contêm uma ou mais não conformidades) na primeira amostragem for igual ou menor que o primeiro número de aceitação, o lote deve ser considerado aceito. Se o número de unidades defeituosas na primeira amostragem for igual ou maior que o primeiro número de rejeição, o lote deve ser rejeitado.

Se o número de unidades defeituosas encontrado na primeira amostragem for maior que o primeiro número de aceitação e menor que o primeiro número de rejeição, uma segunda amostragem de tamanho indicado pelo plano de amostragem deve ser retirada. As quantidades de unidades defeituosas encontradas na primeira e na segunda amostragem devem ser acumuladas. Se a quantidade acumulada de unidades defeituosas for igual ou menor que o segundo número de aceitação, o lote deve ser aceito.

Se a quantidade acumulada de unidades defeituosas for igual ou maior que o segundo número de rejeição, o lote deve ser rejeitado. Para cada lote de inspeção, o relatório de resultados deve conter no mínimo as seguintes informações: identificação do produto; identificação do lote; tamanho do lote inspecionado; resultados dos ensaios de recebimento; resultados dos últimos ensaios de condutividade térmica e reação ao fogo apresentados pelo fornecedor; declaração de que o lote atende ou não às especificações desta norma.

As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem estar com a identificação do produto legível. As embalagens devem estar íntegras e o produto seco. Devem ser armazenadas em local coberto e seco, de preferência sobre um estrado que as separe do chão, para evitar a contaminação do produto por água ou outros materiais. Devem ser manuseadas, transportadas e acondicionadas sem o auxílio de ganchos ou cordas, de forma a não sofrerem danos.

As lãs de PET, quando fornecidas em rolos, devem ser armazenadas preferencialmente na vertical e, quando armazenadas na horizontal, não podem ser compactadas em mais de 30% do diâmetro do rolo. As lãs de PET para sistemas construtivos em chapas de gesso para drywall devem ser comercializadas com instruções de uso, contendo no mínimo as seções “ADVERTÊNCIAS” e “ORIENTAÇÕES”. As instruções de uso devem conter o seguinte texto: “IMPORTANTE LER COM ATENÇÃO E GUARDAR PARA EVENTUAIS CONSULTAS”, em letras com tamanho não inferior a 5 mm de altura e com destaque em negrito.

As lãs de PET para sistemas construtivos em chapas de gesso para drywall, quando fabricadas em atendimento a esta norma, são recicláveis, não tóxicas e não requerem equipamento de proteção individual (EPI) específico para o manuseio e instalação. Deve-se ressaltar que os segmentos de lã de PET devem ser cortados preferencialmente com auxílio de tesoura para produtos em rolo e faca ondulada para produtos em placa. Em seguida, devem ser posicionados manualmente nos vãos existentes entre os perfis de aço, de maneira que todos os perfis metálicos estejam em contato com a lã de PET e, se necessário, deve-se utilizar as pontas dos parafusos passantes como ancoragem.

O operador deve estar atento a arestas e pontas metálicas cortantes. Para a aplicação das lãs de PET, é necessário que as chapas de gesso sejam previamente fixadas à estrutura metálica (no caso de paredes, as chapas de gesso que compõem uma das faces). Para a fixação de cargas suspensas no sistema drywall montado com lã de PET em seu interior, é imprescindível a utilização de dispositivo que limite o comprimento da broca, de maneira a perfurar somente a chapa de gesso, evitando o possível contato da ferramenta utilizada com a lã de PET instalada. Recomenda-se utilizar a bucha adequada, respeitando o limite de carga. As lãs de PET não podem ser instaladas caso apresentem alguma contaminação ou estejam molhadas. As lãs de PET não necessitam de manutenção específica após a sua aplicação, salvo eventos fortuitos referentes a reformas e/ou vazamentos.

A segurança das instalações de sistemas de gás natural veicular (GNV)

Deve-se conhecer os requisitos mínimos de segurança para injetores, indicadores, misturadores, dosadores, injeção e controle e linha de baixa pressão. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), por exemplo, sistemas policombustíveis ou como uso combinado com diesel.

A NBR 11353-1 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 1: Terminologia estabelece os termos, definições e abreviaturas utilizados nas instalações veiculares de gás natural veicular (GNV). A NBR 11353-2 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 2: Indicadores, injetores, misturadores, dosadores, injeção e controle estabelece os requisitos mínimos de segurança para injetores, indicadores, misturadores, dosadores, injeção e controle e linha de baixa pressão. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), por exemplo, sistemas policombustíveis ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está localizada no veículo de tração. Não trata de temas relativos à capacitação do instalador ou conversor e dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-3 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 3: Redutores de Pressão estabelece os requisitos mínimos técnicos e de segurança para os redutores de pressão de gás natural veicular (GNV). é aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores, para a utilização deste combustível de forma exclusiva (dedicada), como uso alternativo a outros combustíveis (gasolina e/ou álcool), como sistemas policombustível ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV estiver localizada no veículo de tração. Não aborda os temas relativos à capacitação do instalador ou convertedor, nem relativos aos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-4 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 4: Cilindro, válvulas, sistema de ventilação, linha de alta pressão e conexões estabelece os requisitos mínimos de segurança, os métodos de ensaio e os critérios para aceitação de cilindros, válvulas, sistema de ventilação, linha de alta pressão e conexões. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e em veículos automotores para a utilização deste combustível de forma exclusiva (dedicada), como uso alternativo a outros combustíveis (gasolina e ou álcool), como sistemas policombustíveis ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está localizada no veículo de tração. Não trata de temas relativos à capacitação do instalador ou convertedor, nem dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-5 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 5: Suportes em geral estabelece os requisitos mínimos de segurança para os suportes na instalação de sistemas de gás natural veicular (GNV). É aplicável à instalação de sistemas de gás natural veicular em veículos rodoviários e veículos automotores para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), como sistemas policombustíveis ou como uso combinado com diesel. No caso da aplicação de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está localizada no veículo de tração. Não trata de temas relativos à capacitação e registro do instalador e dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

A NBR 11353-6 de 08/2020 – Veículos rodoviários e veículos automotores — Sistemas de gás natural veicular (GNV) – Parte 6: Instalação estabelece os requisitos mínimos para executar a instalação de sistemas de gás natural veicular, para uso exclusivo do GNV comercial, visando a segurança do veículo adaptado, a qualidade do serviço de instalação e o bem-estar do usuário. É aplicável à instalação de sistemas para gás natural veicular em veículos rodoviários e veículos automotores, para a utilização deste combustível de forma exclusiva (dedicado), como uso alternativo a outros combustíveis (gasolina e/ou álcool), como sistema policombustível ou como uso combinado com diesel. No caso de veículos rodoviários combinados, esta parte é aplicável quando a instalação de GNV está no veículo de tração. Não trata de temas relativos à capacitação do instalador ou convertedor, nem dos mecanismos institucionais para garantia de qualidade dos veículos a GNV.

Acesse algumas questões relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser constituído o injetor?

Como devem ser constituídas as conexões de baixa pressão?

Quais os métodos de ensaios e aceitação dos redutores de pressão?

Quais os requisitos da válvula de abastecimento e da válvula de fechamento rápido?

Quais são as configurações de montagem dos cilindros?

Como deve ser executada a instalação dos componentes do sistema de GNV?

Para as amostragens, se nenhum outro requisito específico for definido, deve ser aplicada a NBR 5426:1985, Tabelas A.1 e A.2, com os seguintes critérios: disponíveis na Tabela 1: os níveis especiais (ensaios destrutivos), aplicar a coluna S2; os níveis gerais (ensaios não destrutivos), aplicar a coluna 2; na Tabela 2: NQA = 0,01 (zero defeito). O indicador de pressão e o indicador de quantidade de GNV devem ser especificados de acordo com os requisitos de segurança e resistência ao funcionamento.

Para o indicador de pressão e o indicador de quantidade de GNV providos de dispositivo elétrico de leitura indireta, os componentes elétricos devem ser compatíveis para utilização automotiva em relação à resistência mecânica, ao isolamento, à capacidade de condução elétrica e ao risco de incêndio e/ou acidentes. O indicador de pressão do tipo por elemento sensor Bourdon deve possuir um dispositivo de alívio de pressão blow-out. Quaisquer alterações no indicador de pressão só podem ser implementadas após a aprovação pelo fabricante.

O fabricante deve apresentar o memorial descritivo com as instruções de aplicação, operação e montagem. O indicador de pressão deve ser capaz de operar pelo menos 1,5 vez a pressão de serviço. O indicador de pressão deve atender aos ensaios estabelecidos na parte 2 da NBR 11353 (ver Anexo A). Devem der exibidas as seguintes marcações no produto e/ou na embalagem: nome ou marca do fabricante; código do modelo; pressão máxima de serviço e limites de temperatura de serviço; indicação que o uso é para GNV; especificações elétricas de tensão e potência (quando aplicáveis); identificação da conformidade (quando aplicável); número de série ou de lote de fabricação; referência à parte 2 da NBR 11353.

Os componentes indicados na Tabela B.1 (na norma) que operem em baixas pressões de serviço (PS) devem conduzir o GNV sem comprometimento de suas resistências. Devem der exibidas as seguintes marcações no produto e/ou na embalagem: identificação do modelo (código do fabricante); pressão de serviço (PS); temperatura de operação; sentido do fluxo; tipo de combustível; tensão de operação; aplicações (motor e veículo); materiais empregados nos componentes. Os componentes devem ser classificados conforme a tabela abaixo.

O fabricante deve apresentar o memorial descritivo com as instruções de aplicação, operação e montagem. O componente deve ser capaz de operar pelo menos 1,5 vez a pressão de serviço. Devem ser exibidas as seguintes marcações no produto e/ou na embalagem: nome ou marca do fabricante; código do modelo; pressão máxima de serviço e limites de temperatura de serviço; indicação que o uso é para GNV; especificações elétricas de tensão e potência (quando aplicáveis); sentido do fluxo quando este for requerido na instalação; identificação da conformidade (quando aplicável); número de série ou de lote de fabricação; referência à parte 2 da NBR 11353.

A linha de baixa de pressão deve ser especificada quanto aos requisitos de segurança e resistência. A linha de baixa pressão deve ser compatível para utilização automotiva em relação à resistência mecânica e compatibilidade com o GNV. O fabricante deve apresentar o memorial descritivo com as instruções de aplicação, operação e montagem. A linha de baixa pressão deve atender aos ensaios estabelecidos na parte 2 da NBR 11353 (ver Anexo C).

Devem ser exibidas as seguintes marcações no produto e/ou na embalagem: nome ou marca do fabricante; código do modelo; pressão máxima de serviço e limites de temperatura de serviço; indicação que o uso é para GNV; especificações elétricas (quando aplicáveis); identificação da conformidade (quando aplicável); número de lote de fabricação; referência a esta parte 2 NBR 11353.

O redutor de pressão deve ser projetado para pressão máxima de serviço de 22,0 Mpa e para operar no intervalo de temperaturas entre – 40 °C ou – 20 °C a 120 °C. Quando o redutor de pressão possuir válvula de corte na entrada de alta pressão, não é necessária a utilização de dispositivo de alívio de pressão. Quando o redutor de pressão possuir válvula de corte entre os estágios, deve possuir dispositivo de alívio de pressão com canal de descarga direcionado para a atmosfera.

Todos os redutores de pressão devem ser providos de sistemas que impeçam o bloqueio do fluxo de gás por congelamento. O redutor deve possuir dreno para remoção de óleos e condensados. Pode-se ressaltar que o cilindro deve atender aos requisitos da NBR NM ISO 11439. A pressão máxima de serviço deve ser de 20,0 Mpa, com gás à temperatura uniforme de 21 ºC.

Em cilindros cuja rosca utilizada seja cônica, a rosca do pescoço deve ser 3/4” – 14 NGT conforme a ANSI/CSA/CGA V-1 (FED-STD-H28/9A), ou 25E, conforme a ISO 11363-1. Em cilindros cuja rosca utilizada seja paralela, a rosca do pescoço deve ser 30P (M30 x 2), conforme a ISO 15245-1, 2-12 UN ou 1 1/8 – 12 UNF, conforme a ANSI/ASME B1.1 e 4.3.14. É facultativa a utilização de cilindro com dois pescoços, desde que atendidos os requisitos. Em hipótese alguma o cilindro pode ter suas características físicas, dimensionais, estruturais ou de tratamento térmico alteradas após a manufatura do produto.

O cilindro não pode ser utilizado como elemento estrutural do veículo ou de suas partes. O cilindro deve atender à NBR 12176 quanto ao padrão de pintura estabelecido para a utilização do GNV. As marcações aplicadas no cilindro, referentes à fabricação e/ou requalificação periódica, e outros requisitos aplicáveis devem atender à NBR NM ISO 11439 para a pressão máxima de serviço, incluindo o tipo de rosca referente ao acoplamento com a válvula ou outros componentes, quando se tratar de cilindro com dois pescoços.

O cilindro deve possuir pescoço com altura paralela mínima de 10 mm para a fixação do sistema de ventilação incorporado ou não à válvula, visando à segurança na exaustão de eventuais vazamentos entre o cilindro e a válvula. A válvula de cilindro deve ser especificada quanto aos requisitos de segurança e resistência ao funcionamento. A rosca de entrada da válvula, se do tipo cônica, deve ser 3/4” – 14 NGT, conforme a ANSI/CSA/CGA V-1 (FED-STD-H28/9A), ou 25E, conforme a ISO 11363-1. A rosca de entrada da válvula, se do tipo paralela, deve ser 30P (M30 x 2), conforme a ISO 15245-1, 2-12 UM ou 1 1/8 – 12 UNF, conforme a ANSI/ASME B1.1 e 4.3.14. Não é permitido adaptador algum entre a válvula e o cilindro.

Nos casos de rosca paralela 30P (M30 x 2), 2-12 UN ou 1 1/8–12 UNF, convém que a válvula seja fornecida com o anel de vedação (o’ring) acoplado a ela. As especificações das conexões (acessórios) são dadas em 4.6 e devem atender aos requisitos ali estabelecidos. O suporte deve ser compatível com os veículos, ou família de veículos, para os quais foi projetado desde que de mesma plataforma. Seus pontos de fixação devem ser dimensionados de acordo com os locais apropriados da estrutura do veículo.

Nos cilindros com fixação por cintas, o suporte deve garantir a fixação do cilindro em pelo menos duas seções de apoio. Os elementos do conjunto do suporte (abraçadeiras, cintas, batentes ou cintas limitadoras, elementos de proteção e elementos de fixação) devem garantir a rigidez da montagem, de forma a impedir o deslocamento do cilindro. O suporte deve ser fabricado de forma a não proporcionar locais de concentração de tensões, desgaste ou corrosão no cilindro, e este não pode ser considerado seu elemento estrutural.

O suporte deve ser compatível com os veículos, ou família de veículos, para os quais foi projetado. Seus pontos de fixação devem ser dimensionados de acordo com os locais apropriados da estrutura do veículo. Todas as soldas do suporte devem ser realizadas por meio de cordões contínuos. Toda estrutura metálica do suporte deve ser isolada do cilindro por meio de elementos de borracha ou material equivalente.

Nos cilindros com fixação tipo boss, pelo pescoço, o suporte deve garantir que a fixação sempre seja realizada pelos pontos de fixação no pescoço frontal e traseiro do cilindro, utilizando blocos de montagem aprovados pelo fabricante do cilindro. Um dos pontos de fixação do cilindro deve ser móvel, de maneira a compensar variações de movimento do cilindro durante condições normais de operação. O ponto de apoio fixo, rígido, deve ser capaz de prevenir a rotação do cilindro durante condições normais de operação.

O suporte deve ser capaz de prevenir qualquer contato entre os cilindros e seus acessórios, ou entre o cilindro e a estrutura do conjunto do suporte ou qualquer parte do veículo. Todas as soldas do suporte devem ser realizadas por meio de cordões contínuos. O suporte deve ser fabricado de forma a não proporcionar locais de concentração de tensões, desgaste ou corrosão no cilindro, e este não pode ser considerado seu elemento estrutural.

Toda a estrutura metálica do suporte deve ser confeccionada com material tratado com proteção superficial contra corrosão. Os elementos de proteção de borracha ou material equivalente devem ser instalados entre o berço e o cilindro de GNV, entre as cintas e o cilindro de GNV e, quando existente, entre os batentes limitadores e o cilindro de GNV. Os materiais elastômeros devem ser resistentes à ação do ozônio, fluidos do veículo e produtos de limpeza. Estes materiais devem ser capazes de manter suas características mecânicas durante todo o tempo de vida útil do suporte.

Para a estrutura metálica, qualquer material pode ser utilizado desde que tenha sido verificado por meio de cálculo estrutural ou ensaios de deformação, que este resiste à aplicação das cargas padrão, conforme estabelecido em A.2. Caso o suporte não possua cálculo estrutural, toda a estrutura metálica deve ser confeccionada em material ASTM A36, ou equivalente. O veículo a ser adaptado para o uso de GNV deve estar em perfeito estado de conservação e operação, tanto no conjunto motopropulsor, como também em sua estrutura. A estrutura do veículo a ser adaptado para o uso de GNV deve permitir a instalação segura dos suportes necessários à fixação dos componentes de GNV.

Os elementos da suspensão devem estar em condições de operação regular, conforme as especificações e recomendações do fabricante do veículo. Os cuidados com o motor do veículo automotor devem ser tomados, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: funcionamento do conjunto motor, considerando as partes fixas e móveis e todos os elementos de vedação e complementos do conjunto; aspecto do bloco do motor, cabeçote, cárter e tampa do cabeçote, quanto à existência de trincas e vazamentos de óleo lubrificante e/ou líquido de arrefecimento; aspecto da ponteira do escapamento quanto à formação de borra de óleo queimado ou lavagem por vapor d’água, sintomas clássicos de desgaste ou defeito grave de funcionamento do motor; catalisador e abafadores do sistema de escapamento, quanto a entupimentos e/ou vazamentos de gases de combustão; pressão de compressão dos cilindros, certificando-se de que haja equilíbrio entre eles e conforme as especificações do fabricante.

A maior diferença de pressão entre os cilindros não pode ser superior a 10% da pressão dinâmica efetiva, devendo ser consultado o manual do instrumento de medição utilizado. As condições do óleo lubrificante, filtro de óleo lubrificante e funcionamento geral do sistema de lubrificação devem estar em conformidade e o funcionamento do conjunto motor que, em temperatura normal de funcionamento, não pode apresentar fumaça visível, exceto vapor d’água. Deve-se ter cuidados com o sistema de arrefecimento, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: as condições do radiador, reservatório de expansão (se aplicável), ventilador, sensores de temperatura, válvulas termostáticas, mangueiras e nível do líquido de arrefecimento e aditivos recomendados (se aplicável); funcionamento geral do sistema e ocorrência de eventuais vazamentos e/ou superaquecimento.

Cuidados com os sistemas de partida e de carga do motor do veículo automotor devem ser tomados, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: tensão nominal, tensão de partida e estado de conservação da bateria; condições de funcionamento do alternador (carga); condições de conservação e isolamento dos cabos e terminais elétricos; condições de conservação, fixação e isolamento da bateria. Devem ser tomados cuidados com o sistema de alimentação de combustível do motor do veículo automotor, antes e após a instalação do sistema de GNV, devendo ser verificado o seguinte: condições do filtro de ar e seu elemento; filtro de combustível; ocorrências de entradas falsas de ar pelas juntas e acoplamentos dos sistemas de filtragem e coleta de ar, verificando os elementos de vedação e ocorrência de empenamento das superfícies dos acoplamentos secos; as condições de conservação das mangueiras de combustível e de seus acoplamentos; o carburador ou corpo de borboleta, quanto à fixação e vedação em relação ao coletor de admissão; a ocorrência de eventuais vazamentos de combustível, antes e após instalação do sistema de GNV.

Devem ser tomados cuidados com o sistema de gerenciamento eletrônico de combustível do motor e de demais sistemas do veículo automotor, antes e após a instalação do sistema de GNV, devendo ser verificado o estado de conservação e funcionamento dos sensores, quanto aos itens a seguir, quando aplicáveis: posição da borboleta – TPS; temperatura do ar admitido – ACT; temperatura do motor – ECT; rotação do motor – HALL; rotação do motor – ESS; válvula de controle da marcha lenta; válvula de purga do canister; sensor de oxigênio; bobinas ou transformadores de ignição; velas e cabos de velas; sensor de velocidade; módulo de ignição; válvulas (bicos) injetoras; sensor de detonação – KS; sensor da massa de ar admitido – MAF; sensor da pressão do ar admitido – MAP; codificador de octanas; conjunto de circulação de gases – EGR; sensor de fase.

Deve-se realizar a verificação das condições de funcionamento do sistema de injeção eletrônica e sistemas de controle de emissões de gases poluentes (catalisador) e verificar o funcionamento de todos os dispositivos de sensoriamento das condições do sistema de alimentação e gerenciamento da mistura de combustível líquido e ar, utilizando o programa correspondente à marca e modelo do veículo automotor em processo de instalação do sistema de GNV. Verificar, pelo tempo de injeção, se o combustível reconhecido pelo modulo é o mesmo que está no tanque.

Verificar o estado geral do sistema de exaustão, compreendendo coletor, escapamento, silencioso, catalisador, entre outros componentes aplicáveis, quanto ao seu estado de conservação e possíveis adulterações. Verificar no painel de instrumentos do veículo se a lâmpada da luz indicadora de mau funcionamento (LIM) permanece acesa após a partida do motor. Caso permaneça acesa, verificar a existência de possível avaria no sistema de injeção eletrônica, ocorrida antes ou após a instalação do sistema.

Verificar, pelo ensaio de emissões de gases de combustão, se os índices de referência legais aplicáveis são atendidos. Quaisquer anormalidades e/ou desvios observados nas verificações descritas em 4.2 e 4.3 devem ser corrigidas conforme as instruções prescritas no manual de manutenção do fabricante do veículo automotor e/ou nos manuais técnicos dedicados à marca e ao modelo do veículo em processo de instalação. As correções necessárias são de responsabilidade do proprietário do veículo automotor.

Os componentes do sistema de GNV devem ser fixados dentro do perímetro do veículo, com exceção do compartimento de passageiros ou cabine e para-choques, nas regiões de atuação e nos componentes móveis ou de deformação. Este requisito não é aplicável aos componentes eletrônicos específicos. Os componentes do sistema de GNV devem ser fixados ao chassi ou à carroçaria do veículo, de forma que ofereçam rigidez de fixação e segurança aos usuários do veículo e à sua da carga.

As especificações para a fabricação dos cabos ópticos internos

Deve-se entender os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

A NBR 14771 de 07/2020 – Cabo óptico interno — Especificação especifica os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o código de cores das unidades básicas, dos elementos ópticos e dos cordões ópticos?

Quais são as cores das fibras ópticas?

Como deve ser executado o revestimento externo?

Quais devem ser os requisitos ópticos desses cabos?

O cabo óptico interno é um conjunto constituído por unidades básicas de cordões ópticos, elementos ópticos ou fibras ópticas, elemento de tração dielétrico, eventuais enchimentos e núcleo seco, protegidos por uma capa externa de material termoplástico retardante à chama. prontos satisfaçam os requisitos especificados nesta norma. Os cabos ópticos internos são designados pelo seguinte código: CFOI – X – Y – Z – W, onde CFOI é o cabo óptico interno; X é o tipo de fibra óptica, conforme a tabela abaixo; Y é a formação do núcleo, conforme a tabela abaixo; Z é o número de fibras ópticas, conforme a tabela abaixo; W é o grau de proteção do cabo quanto ao comportamento frente à chama, conforme a tabela abaixo e ao comportamento frente à chama.

Os materiais constituintes dos cabos ópticos internos devem ser dielétricos. Os materiais utilizados na fabricação do cabo devem ser compatíveis entre si. Os materiais utilizados na fabricação dos cabos com função estrutural devem ter suas características contínuas ao longo de todo o comprimento do cabo.

As fibras ópticas tipo multimodo índice gradual, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13487. As fibras ópticas tipo monomodo com dispersão normal, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13488. As fibras ópticas tipo monomodo com dispersão deslocada e não nula, utilizadas na fabricação dos cabos, devem estar conforme a NBR 14604.

As fibras ópticas tipo monomodo com baixa sensibilidade à curvatura, utilizadas na fabricação dos cabos, devem estar conforme a NBR 16028. Não são permitidas emendas nas fibras ópticas durante o processo de fabricação do cabo. O núcleo deve ser constituído por unidades básicas de fibras ópticas, cordões ópticos ou elementos ópticos. Os cabos ópticos internos devem ser fabricados com unidades básicas de 2, 4, 6, 8, 12, 16, 24, 36 ou 48 fibras ópticas. O núcleo deve ser constituído por unidades básicas.

As unidades básicas devem ser dispostas em elementos de proteção adequados, de modo a atender aos requisitos especificados nesta norma. Os elementos de proteção podem ser constituídos por tubos de material polimérico encordoados em uma ou mais coroas ou de forma longitudinal. Os elementos de proteção encordoados devem ser reunidos com passo e sentido escolhidos pelo fabricante, de modo a satisfazer as características previstas nesta norma.

No caso de cabos ópticos constituídos por elementos de proteção encordoados dispostos em mais de uma coroa, opcionalmente estas coroas podem ser separadas por fitas, a fim de facilitar a sua identificação. É recomendado que os cabos ópticos compostos por elementos de proteção de até 12 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter duas ou seis fibras ópticas. Para os cabos ópticos de 18 a 36 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha seis ou 12 fibras ópticas.

Para os cabos ópticos de 48 a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 12 ou 24 fibras ópticas. Para os cabos ópticos superiores a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 24, 36 ou 48 fibras ópticas. Para o núcleo constituído por fibras ópticas dispostas em tubo único (central loose tube), a construção deve conter um único tubo central de material polimérico contendo uma ou mais unidades básicas.

Os cabos ópticos de até 48 fibras ópticas devem ser constituídos por fibras ópticas reunidas. Os cabos ópticos acima de 48 até 72 fibras ópticas devem ser constituídos por unidades básicas. Para o núcleo constituído por unidades básicas de cordões ópticos monofibra, o cordão óptico deve ser conforme a NBR 14106. A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada das unidades básicas, dos elementos ópticos e dos cordões ópticos.

Os cabos de até 12 fibras ópticas devem ser constituídos por cordões ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis cordões ópticos. Para cabos ópticos de 48 a 72 fibras, é recomendado que cada unidade básica contenha 12 cordões ópticos. O cordão óptico deve ser conforme a NBR 14106.

A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada conforme essa norma e os cabos de até 12 fibras ópticas devem ser constituídos por um ou mais cordões ópticos. Para cabos de 18 a 288 fibras ópticas, é recomendado que cada unidade básica contenha seis ou 12 cordões ópticos.

Para o núcleo constituído por unidades básicas de elementos ópticos, a unidade básica de elementos ópticos deve ser constituída por até 12 elementos agrupados e deve ser identificada conforme essa norma. Os cabos de até 12 fibras ópticas devem ser constituídos por elementos ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis elementos ópticos.

Para cabos ópticos de 48 a 144 fibras, é recomendado que cada unidade básica contenha 12 elementos ópticos. Podem ser colocados enchimentos de material polimérico compatível com os demais materiais do cabo, a fim de formar o núcleo cilíndrico. No núcleo do cabo pode haver uma identificação legível e indelével, contendo impressos o nome do fabricante e o ano de fabricação, em intervalos não superiores a 50 cm, ao longo do eixo do cabo.

Sobre o revestimento externo devem ser gravados o nome do fabricante, a designação do cabo, o número do lote e o ano de fabricação, de forma legível e indelével, em intervalos de 1 m ao longo do eixo do cabo. A pedido do comprador, podem ser impressas informações adicionais. A marcação métrica sequencial deve ser feita em intervalos de 1 m ao longo do revestimento externo do cabo óptico interno. A marcação deve ser feita com algarismos de altura, forma, espaçamento e método de gravação ou impressão tais que se obtenha legibilidade perfeita e permanente. Não são permitidas marcações ilegíveis adjacentes.

Na medida da marcação do comprimento ao longo do eixo do cabo, é tolerada uma variação para menos de até 0,5%, não havendo restrição de tolerância para mais. A marcação inicial deve ser feita em contraste com a cor da capa do cabo, sendo preferencialmente azul ou preta para cabos de cores claras, e branca para cabos de cores escuras ou em relevo. Se a marcação não satisfizer os requisitos anteriores, é permitida a remarcação na cor amarela.

A remarcação deve ser feita de forma a não se sobrepor à marcação inicial defeituosa. Cada lance de cabo deve ser fornecido acondicionado em um carretel de madeira com diâmetro mínimo do tambor de 22 vezes o diâmetro externo do cabo. A largura total do carretel não pode exceder 1,5 m e a altura total não pode ser superior a 2,1 m.

Os carretéis devem conter um número de voltas tal que entre a camada superior e as bordas dos discos laterais exista um espaço livre mínimo de 6 cm. Os carretéis utilizados devem estar conforme a NBR 11137. As extremidades do cabo devem ser solidamente presas à estrutura do carretel, de modo a não permitir que o cabo se solte ou se desenrole durante o transporte.

A extremidade interna do cabo na bobina deve estar protegida para evitar danos durante o transporte, ser acessível para ensaios, possuir um comprimento livre de no mínimo 2 m e ser acomodada com diâmetro de no mínimo 22 vezes o diâmetro externo do cabo. Após efetuados todos os ensaios requeridos para o cabo, as extremidades do lance devem ser fechadas, a fim de prevenir a entrada de umidade. Cada lance do cabo óptico interno deve ter um comprimento nominal de 1.000 m, podendo, a pedido do comprador, ser fornecido em comprimento específico. A tolerância de cada lance deve ser de + 3%, não sendo admitidos comprimentos inferiores ao especificado.

Devem ser identificadas em cada bobina, com caracteres perfeitamente legíveis e indeléveis, as seguintes informações: nome do comprador; nome do fabricante; número da bobina; designação do cabo; comprimento real do cabo na bobina, expresso em metros (m); massa bruta e massa líquida, expressas em quilogramas (kg); uma seta ou marcação apropriada para indicar o sentido em que o cabo deve ser desenrolado; identificação de remarcação, quando aplicável. O transporte, armazenamento e utilização das bobinas dos cabos ópticos internos devem ser feitos conforme a NBR 7310.

IEC TR 63099-2: as tecnologias de rádio sobre fibra para detecção de campo elétrico

Esse relatório técnico (Technical Report – TR), editado em 2020 pela International Electrotechnical Commission (IEC), fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos.

A IEC TR 63099-2:2020 – Transmitting equipment for radiocommunication – Radio-over-fibre technologies for electromagnetic-field measurement – Part 2: Radio-over-fibre technologies for electric-field sensing fornece informações sobre as aplicações atuais e as mais recentes para medição de campo elétrico que usam tecnologias de rádio sobre fibra. As configurações de sistema, as especificações e os exemplos de medição de cada sistema de medição de campo elétrico estão incluídos. Os fundamentos teóricos de medição de campo elétrico e método de calibração de sensores de campo elétrico estão além do escopo deste documento.

Conteúdo da norma

PREFÁCIO……………………. 3

INTRODUÇÃO…………….. 5

1 Escopo……………………… 6

2 Referências normativas……. ….. 6

3 Termos, definições e termos abreviados………………… 6

3.1 Termos e definições……………………………. 6

3.2 Termos abreviados………………………. .. 7

4 Exemplos práticos de sistema de detecção de campo elétrico usando tecnologias RoF…………… 7

4.1 Visão geral………… …………… 7

4.2 Características do sistema de detecção de campo elétrico usando tecnologias RoF……………… 7

4.3 Lista de exemplos de implementação………………….. 7

4.4 Sensor de campo elétrico de 3 eixos usando moduladores ópticos LN …… 7

4.4.1 Configuração do sistema…………….. 7

4.4.2 Especificações………………………….. 9

4.4.3 Exemplo de resultados de medição……………. 10

4.5 Sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe………….. 13

4.6 Sondas de campo elétrico usando VCSEL………………….. 14

Bibliografia……………. ………………….. 16

Figura 1 – Diagrama do sistema do sensor óptico de campo E……………… 8

Figura 2 – Estrutura da unidade principal do sensor……………….. 9

Figura 3 – Sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 10

Figura 4 – Resultados da avaliação de sensibilidade e faixa dinâmica de medição……………. 11

Figura 5 – Avaliação da isotropia do sensor na célula TEM até 1 GHz……………… 11

Figura 6 – Configuração de medição para isotropia do campo elétrico tipo diodo convencional com sensor de campo elétrico usando modulador LN…….. ……………….. 12

Figura 7 – Resultados da medição do padrão de sensibilidade do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador LN de acordo com norma IEEE 1309…. ……………… 13

Figura 8 – Características de frequência de isotropia do tipo de diodo convencional com sensor de campo elétrico e sensor de campo elétrico usando modulador óptico LN………………….. 13

Figura 9 – Representação esquemática do sensor de campo elétrico do tipo bulk usando moduladores ópticos ZnTe…………… 14

Figura 10 – Representação esquemática do sensor de campo elétrico usando VCSEL, consistindo em uma cabeça de sensor em miniatura que está exclusivamente ligada por meio de fibra óptica a uma unidade remota……………………. 15

Tabela 1 – Especificação do sistema de detecção de campo elétrico de três eixos usando modulador óptico LN……………………… 9

Tabela 2 – Especificação do sistema de detecção de campo elétrico de 3 eixos usando modulador óptico LN……………….. 12

Este documento fornece informações sobre as aplicações atuais e mais recentes para detecção do campo elétrico usando a tecnologia de rádio sobre fibra. Os sistemas de medição de campo elétrico são cobertos e eles estão praticamente em uso ou serão usados em breve. Seria benéfico para desenvolvedores de sistema e usuários de sistema nas áreas de medição de campo elétrico. Por ser um Relatório Técnico, este documento não contém requisitos e é apenas informativo.

A tubulação em polietileno para líquidos inflamáveis e combustíveis

Saiba quais são os requisitos de desempenho da tubulação não metálica, fabricada em polietileno de alta densidade (PEAD), aplicada às instalações subterrâneas de transferência de combustível líquido, seus vapores e ARLA 32, em sistemas de armazenamento subterrâneo de combustíveis (SASC) e em sistemas de armazenamento aéreo de combustíveis (SAAC).

A NBR 14722 de 07/2020 – Armazenamento de líquidos inflamáveis e combustíveis — Tubulação não metálica subterrânea — Polietileno especifica os requisitos de desempenho da tubulação não metálica, fabricada em polietileno de alta densidade (PEAD), aplicada às instalações subterrâneas de transferência de combustível líquido, seus vapores e ARLA 32, em sistemas de armazenamento subterrâneo de combustíveis (SASC) e em sistemas de armazenamento aéreo de combustíveis (SAAC), estabelecendo ensaios que garantam sua funcionalidade, segurança e proteção ambiental. Não é aplicável à tubulação destinada à condução de Gás Natural (GN) e Gás Liquefeito de Petróleo (GLP). A tubulação deve ser um conjunto de tubo, conexão e transição, projetados e ensaiados em conjunto, conforme estabelecido nesta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual deve ser o método para o ensaio de pressão negativa?

Qual deve ser o método para ensaio de compressão diametral em temperatura elevada?

Como deve ser executado o ensaio de resistência à perfuração?

Qual é a máxima permeabilidade aos fluidos de ensaio?

Todo tubo, conexão e transição devem ser submetidos aos ensaios de qualificação para demonstrar a sua adequabilidade a esta norma. Os ensaios de qualificação devem ser efetuados sempre que houver qualquer alteração na matéria prima, no processo de fabricação ou no projeto. Os tubos, conexões e transições disponibilizados para uso devem ser produzidos conforme processo e materiais aprovados nos ensaios de qualificação. Considerar o Anexo A para avaliação da conformidade, listando ensaios para qualificação, ensaios de controle de fabricação e ensaios de auditoria. A matéria prima para fabricação dos tubos deve ser o composto de polietileno, contendo somente aditivos e pigmentos necessários para atender aos requisitos desta norma na fabricação e aplicação do tubo, incluindo processabilidade, homogeneidade e uniformidade do composto.

O composto de polietileno deve ser o fornecido pelo fabricante do polímero, de forma que o fabricante do tubo nada acrescente à matéria prima adquirida. A classificação do composto deve ser comprovada pelo seu fabricante com a apresentação da curva de regressão, para cada código de composto. Os compostos de polietileno devem ser classificados como PE 80 ou PE 100, conforme a ISO 12162, utilizando-se o método de extrapolação da ISO 9080, onde: PE 80: MRS = 8 MPa, quando 8 ≤ LPL < 10 MPa; PE 100: MRS = 10 MPa, quando LPL ≥ 10 MPa. MRS – Minimum required strength/LPL – Lower confidence limit of the predicted hydrostatic strength.

O fabricante do composto deve comprovar que o seu produto atende às características das tabelas abaixo, exceto para o teor de negro de fumo, quando a cor do tubo for diferente de preto. O fabricante do composto de polietileno deve comprovar os resultados dos ensaios indicados nas tabelas por meio de um certificado da qualidade de cada lote produzido, de forma que todas as amostras atendam aos seus requisitos.

O material utilizado para fabricação da camada de barreira físico-química interna (liner) fica a critério de cada fabricante. Os tubos, para os efeitos desta norma, são classificados em classe 1: tubo primário com tubo de contenção secundária, onde o tubo primário é encamisado pelo tubo de contenção secundária no processo de fabricação; classe 2: tubo primário de parede simples. O tubo primário das classes 1 e 2 deve atender aos requisitos descritos abaixo e o tubo secundário (contenção ou segunda parede) da classe 1 deve atender aos requisitos descritos abaixo.

O tubo primário deve ser fabricado com múltiplas camadas, sendo uma camada estrutural de polietileno de alta densidade (PEAD), PE80 ou PE100, e no mínimo uma segunda camada interna visível como barreira físico-química interna contra permeabilidade (liner). O tubo de contenção secundária deve ser fabricado em polietileno de alta densidade (PEAD), PE80 ou PE100, e deve ser capaz de conter e possibilitar a detecção de vazamento. O tubo de contenção secundário não pode ser fornecido separadamente do tubo primário.

Toda tubulação deve possuir conexão que permita a interligação sem vazamento com componentes do SASC. A conexão, seja mecânica ou eletrossoldável, deve ter projeto compatível com o projeto da tubulação que se deseja aplicar. Os tipos de interligações entre tubo, conexão e/ou transição são descritos a seguir. A conexão mecânica e/ou transição mecânica é aplicável à interligação sem aplicação de calor, que assegure estanqueidade e resistência a esforços axiais. A conexão e/ou transição para interligação mecânica deve ser feita em aço inoxidável ou metal niquelado. Os selos de vedação, quando aplicáveis, devem ser de elastômero, polímero, plástico ou metais macios maleáveis, resistentes a combustíveis e fluidos de ensaio.

O processo é executado com conexão que possua filamentos elétricos, nos quais é aplicada uma diferença de potencial elétrico, gerando calor que possibilite a soldagem por fusão da conexão ao tubo ou outra conexão. O diâmetro externo e a espessura da parede do tubo devem ser estabelecidos pelo fabricante, desde que a relação diâmetro externo nominal por espessura mínima da base estrutural (SDR) seja igual ou menor que 17, quando fabricado em PE100, e 13,6, quando fabricado em PE80, para tubo primário, e 26 para tubo secundário. O diâmetro externo e a ovalização máxima permitida devem ser de acordo com a ISO 4427-2. A espessura da camada estrutural do tubo deve ser marcada em milímetros, conforme a Seção 7.

A tubulação deve ser totalmente operacional entre – 20 °C e + 50 °C. A tubulação primária deve ser projetada e fabricada para operar com classe de pressão nominal mínima de PN8 (8 bar). As conexões e transições correspondentes ao tubo devem suportar pressão igual ou superior ao tubo. A classe de pressão do tubo deve ser marcada no tubo conforme a Seção 7.

Pode-se acrescentar que os ensaios de qualificação são realizados para comprovar que o sistema de tubulação (composto por tubos, conexões, transições e respectiva montagem) está em conformidade com os requisitos indicados nesta norma. Os ensaios de qualificação devem ser considerados válidos até que ocorra alteração em algum dos itens a seguir: matéria prima (por exemplo, composto, adesivo e liner): todos os ensaios de qualificação devem ser repetidos; projeto (por exemplo, espessura, diâmetros, transição e conexão): todos os ensaios de qualificação devem ser repetidos; processo de fabricação (por exemplo, alteração de equipamentos e sistema de produção): apenas os ensaios mecânicos devem ser repetidos.

Os ensaios de controle de fabricação (BRT – Batch Release Tests) devem ser realizados pelo fabricante em cada lote de fabricação de tubo. Um lote de fabricação de tubo deve ser liberado para fornecimento quando todos os ensaios e inspeções especificados tiverem sido realizados nas frequências especificadas e forem considerados conformes.

Se um tubo falhar em relação a quaisquer características, o lote de fabricação de tubo deve ser rejeitado ou os procedimentos de reensaio devem ser executados para a característica na qual o tubo falhou. Para cada lote de fabricação de tubo, o fabricante deve gerar um relatório com os resultados dos ensaios, contendo no mínimo o seguinte: diâmetro externo nominal (DE) do tubo; pressão nominal (PN); código de rastreabilidade; data de início da fabricação do lote; identificação do composto de polietileno utilizado e demais matérias primas, com respectivos lotes e certificados do fornecedor; quantidade do lote de fabricação, em metros.

BS EN 10217-1: os tubos de aço soldados para pressão

Essa norma europeia, editada em 2019 pelo BSI, abrange os tubos e tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais.

A BS EN 10217-1:2019 – Welded steel tubes for pressure purposes – Technical delivery conditions. Part 1: Electric welded and submerged arc welded non-alloy steel tubes with specified room temperature properties abrange os tubos de aço que podem ser usados para uma ampla gama de aplicações, incluindo serviços de construção, produtos químicos, processos industriais, refino e distribuição de processamento de petróleo e gás, construção naval, fabricação de válvulas e acessórios, bem como para desenvolvimento de produtos e questões comerciais. Os usuários dessa norma podem ser os projetistas e produtores de tiras de aço, chapas, tubos e tubulações; especificadores, acionistas e distribuidores de tubos de aço; fornecedores de instalações de ensaio e avaliação; e organismos notificados no âmbito do Pressure Equipment Directive (PED).

Conteúdo da norma

Prefácio europeu……………………. 5

1 Escopo……… ……………………. 6

2 Referências normativas…………… 6

3 Termos e definições……………….. 7

4 Símbolos…………. ……………….. 8

5 Classificação e designação……….. 8

5.1 Classificação…………….. ………. 8

5.2 Designação…………….. …………. 8

6 Informações a serem fornecidas pelo comprador……………. …. 9

6.1 Informação obrigatória………………………………… 9

6.2 Opções…………………………….. ………………… 9

6.3 Exemplo de um pedido……………………………….. 10

7 Processo de fabricação………………………………… 10

7.1 Processo siderúrgico………………………………. 10

7.2 Condições de fabricação e entrega do tubo……………. 10

7.3 Requisitos do pessoal de ensaio não destrutivo………….. 12

8 Requisitos………………………….. 12

8.1 Geral……………… 12

8.2 Composição química……………… 12

8.2.1 Análise do fundido…………… 12

8.2.2 Análise do produto……………. 14

8.3 Propriedades mecânicas……………. 14

8.4 Aparência e solidez interna …………… 15

8.4.1 Junção da solda……… …………… 15

8.4.2 Superfície do tubo……….. ……….. 16

8.4.3 Solidez interna…………………….. 16

8.5 Confiabilidade……………. ……… 16

8.6 Preparação dos fins……………………… 16

8.7 Dimensões, massas e tolerâncias… …………….. 17

8.7.1 Diâmetro e espessura da parede………………….. 17

8.7.2 Massa……………………….. …………………….. 17

8.7.3 Comprimentos………………….. ……………….. 17

8.7.4 Tolerâncias………………………. …………. 22

9 Inspeção………………………….. …………. 24

9.1 Tipos e documentos de inspeção …………….. 24

9.2 Conteúdo dos documentos de inspeção…………. 25

9.3 Resumo da inspeção e ensaios. ……………… 26

10 Amostragem…………………. …………… 28

10.1 Frequência dos ensaios…………………. 28

10.1.1 Unidade de ensaio…… ………………. 28

10.1.2 Número de tubos de amostra por unidade de ensaio…………….. 28

10.2 Preparação de amostras e provetes……………. ……….. 28

10.2.1 Seleção e preparação de amostras para análise do produto…………. 28

10.2.2 Localização, orientação e preparação de amostras e provetes para ensaios mecânicos…………………… ………………….. 28

11 Verificação dos métodos de ensaio…………………….. 30

11.1 Análise química……………………………………. 30

11.2 Ensaio de tração no corpo do tubo…………………. 30

11.3 Ensaio de tração transversal na solda…………… 30

11.4 Ensaio de nivelamento………………………… …… 30

11.5 Ensaio de expansão da derivação…………………. 31

11.6 Ensaio de dobra de solda……………………. …… 31

11.7 Ensaio de impacto…………………. ……….. 31

11.8 Ensaio de estanqueidade………………………. 32

11.8.1 Ensaio hidrostático………………………. ….. 32

11.8.2 Ensaio eletromagnético……………………….. 33

11.9 Inspeção dimensional……………………………. 33

11.10 Exame visual…………………………………… 33

11.11 Ensaios não destrutivos……………………. 33

11.11.1 Geral………………………… ………… 33

11.11.2 Tubos EW e HFW…………………………. 33

11.11.3 Tubos SERRA……………………….. ……. 33

11.11.4 Soldas de extremidade de tira em tubos SAWH………………… 34

11.12 Ensaio, classificação e reprocessamento………………….. 34

12 Marcação………………………………………. …………….. 34

12.1 Marcação a ser aplicada……………………………. 34

12.2 Marcação adicional………………………………….. 35

13 Proteção………………………………….. …………. 35

Anexo A (normativo) Qualificação do procedimento de soldagem para tubo de serra TR2 para produção com qualidade………….. 36

A.1 Geral…………………………. ……………….. 36

A.2 Especificação do procedimento de soldagem…………….. 36

A.2.1 Geral………………………….. ……………….. 36

A.2.2 Metal principal…………………… ……….. 36

A.2.3 Preparação da solda…………………………. 36

A.2.4 Fios e fluxos de enchimento…………………. 36

A.2.5 Parâmetros elétricos………………………………….. 37

A.2.6 Parâmetros mecânicos……………………………….. 37

A.2.7 Entrada de calor (kJ/mm) ……………………………. 37

A.2.8 Temperatura de pré-aquecimento …………………..37

A.2.9 Temperatura de interpasse……………………………… 37

A.2.10 Tratamento térmico pós-soldagem………………………. 37

A.2.11 Exemplo de formulário de especificação do procedimento de soldagem………………………. 37

A.3 Preparação do tubo de amostra e avaliação da amostra……….. 38

A.3.1 Tubo para amostra……………………………… ………… 38

A.3.2 Avaliação da amostra………………………………………. 38

A.4 Inspeção e ensaio da solda………. ………………….. 38

A.5 Provas de solda…………………………………… …… 39

A.5.1 Provas de dobra de solda………………….. 39

A.5.2 Macroexame……………………………………….. 39

A.5.3 Ensaio de tração de solda transversal……………. 39

A.5.4 Ensaio de impacto da solda………………….. …. 39

A.6 Métodos de ensaio……………………… ………. 39

A.6.1 Exame visual………………………………….. 39

A.6.2 Ensaio não destrutivo (END)…. ………………. 39

A.6.3 Ensaio de dobra de solda……………… …….. 39

A.6.4 Macroexame………………………………….. 39

A.6.5 Ensaio de tração de solda transversal………… 40

A.6.6 Ensaio de impacto da solda…………………….. 40

A.7 Níveis de aceitação do ensaio…………………….. 40

A.7.1 Exame visual……………………………………. 40

A.7.2 END……………………… ………………. 40

A.7.3 Ensaio de dobra de solda………. …….. 40

A.7.4 Macroexame………………………………… 40

A.7.5 Ensaio de tração de solda transversal………………… 40

A.7.6 Ensaio de impacto da solda………………………. …. 40

A.7.7 Exemplo de documento de resultado do ensaio…………….. 40

A.8 Gama de uso de procedimentos qualificados………… 42

A.8.1 Grupos de materiais…………………………….. … 42

A.8.2 Espessura dos materiais………………………. 42

A.8.3 Classificação do fio de enchimento……………… 42

A.8.4 Fluxo de soldagem………………….. ……….. 42

A.8.5 Outros parâmetros…………………………. 42

A.9 Registro de qualificação………………………..42

Anexo B (informativo) Alterações técnicas da edição anterior……. 43

B.1 Introdução………………………………………. 43

B.2 Alterações técnicas……………………………….. 43

Anexo ZA (informativo) Relação entre esta norma europeia e os requisitos das normas essenciais de 2014/68/UE………………….. 45

Bibliografia………………………… ………………… 46

Essa ajudará os especificadores, designers e outros, definindo as notas para uso nas condições especificadas. Foi preparada sob um mandato conferido ao CEN pela Comissão Europeia e pela Associação Europeia de Comércio Livre para alinhar-se com os requisitos essenciais da Diretiva Equipamentos de Pressão (PED) (2014/68 / UE). As classes de aço e as propriedades das classes de aço carbono e de baixa liga estão alinhadas com as dos tubos sem costura da série BS EN 10216, permitindo que tubos sem costura ou soldados sejam usados em muitos casos.

Os tubos de aço soldados de alta frequência (HFW), às vezes chamados de tubos de aço soldados por resistência elétrica (ERW), e soldados por arco submerso (SAW), estão são cobertos por essa norma. Os tubos HFW são produzidos a partir de tiras de aço e são soldados eletricamente sem o uso de metal de adição. Os tubos SAW são produzidos a partir de chapa de aço e são soldados por fusão usando consumíveis de soldagem apropriados. Em geral, os tubos HFW são produzidos com até 610 mm de diâmetro externo, enquanto os tubos SAW normalmente não são produzidos em diâmetros abaixo de 406,4 mm.

Os tubos e canos de aço BS EN 10217 podem ser usados para uma ampla gama de aplicações, desde serviços de construção a requisitos industriais críticos que envolvam gás ou produtos químicos ou produção de válvulas ou conexões. Portanto, é muito importante que o especificador, projetista ou usuário selecione o tipo e a classe de tubo mais adequados para atender aos seus requisitos das sete partes dessa série dessa norma. A atualização de 2019 buscou refletir as práticas atuais do setor, buscou atualizar as referências, em particular no que diz respeito aos requisitos de ensaio e avaliação. Além das classes TR1, está alinhado com os requisitos essenciais do PED (2014/68/EU).