A locação topográfica e o acompanhamento dimensional de obra metroviária

Devido à grande expansão das obras metroviárias e assemelhadas, é necessária a aplicação de procedimentos específicos para trabalhos topográficos, trazendo como principal benefício a normalização mínima necessária para execução destes trabalhos. Por exemplo, a via permanente envolve os conjuntos e componentes coordenados entre si de forma a permitir o tráfego de composições ferroviárias e metroviárias. Para a locação de uma obra metroviária há requisitos normativos exigíveis para execução das obras metroviárias e assemelhadas, devendo se utilizar os procedimentos e os equipamentos topográficos que resultem em pleno atendimento aos quesitos exigidos nos trabalhos de cadastro, anteprojeto, projeto, implantação, acompanhamento e levantamento das obras como construídas, visando a melhor qualidade.

Para os túneis e estações em Shield e NATM (new austrian tunneling method), para as operações na superfície do terreno planimétricas, o transporte de direção do túnel tem início na rede GPS, triangulação, trilateração ou poligonal principal ou básica. Destes pontos, quando necessário, medir os ângulos pelo método das direções e as distâncias recíprocas, para no mínimo dois pontos ao nível da superfície e próximos ao poço de emboque do túnel, constituindo assim uma base de primeira ordem.

Da poligonal principal ou da base de primeira ordem implantar um ponto próximo ao poço e medir os ângulos pelo método das direções e as distâncias recíprocas, para dois fios de aço pendurados da superfície ao fundo do poço. Com esta operação determinam-se as coordenadas planas dos fios. Os fios de aço são posicionados através de roldanas afixadas em cavaletes metálicos, tensos com pesos compatíveis com a profundidade do poço, imersos em óleo para evitar o efeito pêndulo.

Para as operações altimétricas, a partir da rede de referência de nível metroviária, o transporte de referência de nível no interior do túnel deve ser feito pelo método de nivelamento e contranivelamento geométrico, com referências de nível (RRNN) espaçadas em no máximo 60 m, sendo realizada uma verificação geral da rede a cada duas referências implantadas. As estações projetadas na superfície e/ou elevadas são referenciadas a eixos longitudinais e transversais, sendo que os eixos longitudinais são demarcados a partir dos pontos notáveis do eixo da via permanente e os transversais a partir dos eixos dos pilares.

Deve-se implantar marcos topográficos no prolongamento destes eixos para locar e/ou verificar toda a obra. Estes marcos têm origem na poligonal principal. Implantar RRNN, na obra, em lugares sem influência de recalque, a partir da rede de referência de nível e com os mesmos critérios de sua implantação.

Para o aparelho de mudança de via (AMV), a locação deve ser feita pelo método da irradiação de pontos a partir de dois vértices da poligonal de entrevias, que caminha próxima ao eixo a ser locado, de modo que o AMV fique contido entre eles. O método consiste no cálculo das projeções das estacas neste intervalo, obtendo as ordenadas, as abscissas, as distâncias e os ângulos dessas estacas do eixo da via. Com essa planilha (anexo E), locar as estacas do eixo de via, a partir do primeiro vértice da poligonal de entrevias até próximo da metade do intervalo considerado. Em seguida, locar as demais estacas a partir do vértice seguinte, conferindo a última estaca locada pelo vértice anterior para que não ocorra eventual descontinuidade da via, conforme figura abaixo.

As estacas de eixo de via são materializadas com piquetes de madeira, sendo que o espaçamento adotado entre elas é o definido na planta de instalação do AMV. Os pontos de começo de mudança de via (CMV) e fim de mudança de via (FMV) são materializados com marcos definitivos em perfil metálico.

A inspeção em uma obra metroviária deve ser realizada com o objetivo de assegurar o desenvolvimento dos serviços segundo as prescrições e recomendações desta norma e o estabelecido na seção 7 da NBR 13133:1994, no que couber. Os marcos da rede GPS, triangulação e/ou trilateração são inspecionados anualmente e, se constatada alguma anomalia (destruído, removido, deslocado, não intervisível), estes marcos devem ter tratamento adequado, ou seja, reimplantado, substituído ou eliminado.

Os vértices da poligonal principal são inspecionados visualmente a cada três meses. Caso seja encontrada alguma irregularidade, fazer as correções mantendo as precisões originais. Os marcos da rede de referência de nível são inspecionados antes de sua utilização.

A NBR 15309 de 12/2005 – Locação topográfica e acompanhamento dimensional de obra metroviária e assemelhada – Procedimento fixa os requisitos exigíveis para locação topográfica e acompanhamento dimensional de obra metroviária e assemelhada em vala a céu aberto, túnel, estação, superfície e elevado, destinada a: apoiar a construção e atualizar o cadastro de obras metroviárias e assemelhadas; controlar todos os serviços topográficos de cadastramento, anteprojeto, projeto, implantação, acompanhamento e levantamento de obras como construídas (as built) no sistema metroviário e assemelhados; servir de parâmetro para todos os serviços de topografia, os quais envolvem obras referentes ao sistema metroviário e assemelhadas. Os equipamentos de medição empregados devem ter precisão compatível, segundo a NBR 13133, com as exigências dos serviços contemplados por esta norma. Devem ter sua precisão real atestada por instituição oficial, não devendo ser aceita sua precisão nominal. Os equipamentos de medição devem ser apresentados ao órgão fiscalizador com os devidos atestados de revisão/retificação, no início dos trabalhos.

Os requisitos exigíveis para execução de obras metroviárias e assemelhadas devem utilizar procedimentos e equipamentos topográficos que resultem em pleno atendimento aos quesitos exigidos nos trabalhos de cadastro, anteprojeto, projeto, implantação, acompanhamento e levantamento das obras como construídas, visando a melhor qualidade, e devem atender aos procedimentos estabelecidos nesta norma. Para a adequada gestão da obra, deve ser projetada e realizada uma rede de apoio geodésico vinculada ao sistema geodésico brasileiro (SGB) oficialmente em vigor. Deve ser realizado o projeto básico e executivo da rede, antevendo as necessidades em termos de apoio, localização dos marcos, tipo de monumentação, condicionamento da rede, metodologia de observação, equipamentos e logística.

A tolerância em posição dos vértices desta rede, considerando o ajustamento livre, é de 5 ppm, observando o limite máximo de 0,05 m para o desvio em posição, considerando um nível de confiança de 95% após o ajustamento vetorial pelo método dos mínimos quadrados. O espaçamento máximo entre os vértices deve ser de 2 km.

A monumentação deve ser realizada por pilar de concreto armado e centragem forçada, marco de concreto armado com chapa convexa de latão ou aço inox, ou ainda somente a chapa cravada em estrutura considerada estável. Da quantidade de injunções do SGB, proceder conforme descrito a seguir. Para a rede distante até 100 km dos pontos de apoio do SGB, o apoio deve ser realizado por no mínimo dois pontos das redes, global positioning system (GPS), estaduais ou da Rede Brasileira de Monitoramento Contínuo (RBMC). Nas redes distantes até 100 km dos pontos do SGB, a tolerância em posição é de 10 ppm, observando-se o limite máximo de 0,10 m para o desvio em posição, considerando-se um nível de confiança de 95% após o ajustamento vetorial pelo método dos mínimos quadrados.

Para as redes distantes mais de 100 km dos pontos do SGB, a tolerância é de 10 ppm, observando-se o limite máximo de 0,50 m para o desvio em posição, considerando-se um nível de confiança de 95% após o ajustamento vetorial pelo método dos mínimos quadrados. Na integração ao SGB de duas ou mais redes de apoio geodésico, deve-se contemplar também como injunções os vértices da rede do SGB já empregados no ajustamento anterior.

É parte integrante da rede de apoio geodésico a rede altimétrica ou rede de referência de nível metroviária, materializada por pontos distintos da rede planimétrica. A monumentação da referência de nível (RN) deve ser feita por marco de concreto, pino convexo de aço inox ou chapa convexa de latão ou aço inoxidável.

A altitude ortométrica de cada RN da rede altimétrica tem tolerância de 6 mm √K, considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. Após os ajustamentos da rede de apoio geodésico, deve ser definido um número conveniente de planos topográficos locais (PTL), com dimensão máxima de 30 km, conforme a NBR 14166.

Os elementos constantes já descritos são representados em planta na escala 1:25 000 ou maior, contendo cada marco indicação da intervisibilidade entre eles, seu número de monografia e o perímetro do plano topográfico, sempre representados por convenções adequadas, tendo como finalidade principal a visualização de conjunto. Na região ao longo da obra deve ser materializada uma rede de apoio topográfico definindo as linhas básicas para a execução da obra.

A monumentação deve ser realizada por marco de concreto armado ou chapa convexa de latão ou aço inox, de acordo com a finalidade. A rede de apoio topográfico, quando executada por metodologia topográfica clássica, deve seguir os critérios da classe IIP da NBR 13133. Qualquer que seja a tecnologia empregada, os lados da rede topográfica devem medir no mínimo 50 m e no máximo 300 m.

A posição planimétrica de cada ponto do apoio topográfico tem tolerância de 33 ppm, observando o limite máximo de 0,035 m para o desvio em posição, considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. Todos os pontos do apoio topográfico devem ter a altitude ortométrica no SGB.

A altitude ortométrica de cada ponto de apoio topográfico tem tolerância de 12 mm √K (nivelamento I N da NBR 13133), considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. A poligonal destinada ao trabalho de locação de projeto e levantamento como construído é apoiada na rede de apoio topográfico e desenvolvida conforme a classe IIP da NBR 13133, observando-se as adequações descritas a seguir.

A monumentação deve ser realizada por chapa convexa de latão ou aço inox, ou pino de aço cravado em estrutura. O comprimento mínimo dos lados deve ser de 30 m e suas medidas lineares devem ser realizadas com leituras recíprocas. A medida angular deve ser realizada através do método das direções em três séries de leituras conjugadas.

O desvio em posição planimétrica de cada ponto de apoio topográfico deve ter tolerância de 50 ppm e no limite máximo de 0,015 m, considerando-se um nível de confiança de 95% após o ajustamento pelo método dos mínimos quadrados. Em situações especiais, quando a única alternativa para o levantamento for o emprego de ponto polar ou auxiliar, constituindo um polígono aberto ou lado irradiado da poligonal do apoio topográfico, devem ser implantados no máximo dois pontos e adotados os procedimentos descritos a seguir.

A medida angular é determinada através do método das direções com duas séries de leituras conjugadas (direta e inversa), horizontal e vertical, com teodolito classe 2. A medida linear é realizada com leituras recíprocas (vante e ré) com distanciômetro eletrônico classe 1 trena de aço aferida com correções de dilatação, tensão, catenária e redução ao horizonte. A extensão máxima entre pontos é de 100 m.

Deve-se materializar com marcos de concreto ou pinos de aço. As monografias, tanto da rede de apoio geodésico quanto da rede de apoio topográfico, devem conter as seguintes informações: identificação do vértice; localização, contendo estado, município, bairro, etc.; especificação de mapa ou carta que contenha a área (maior escala); data da observação; responsável técnico; contratante; coordenadas cartesianas e geodésicas no Datum WGS 84; coordenadas geodésicas, UTM, topográficas locais com sua origem no sistema geodésico brasileiro; desvio-padrão após ajustamento por mínimos quadrados, com nível de confiança de 95%; azimutes geodésicos e distância zenital, para as miras e marcos intervisíveis; duas fotos do marco, uma próxima contendo a identificação e outra panorâmica; croqui de localização que pode ser parte de aerofoto, guia, carta, etc.; duas miras de azimute com respectivas fotografias (panorâmicas) tomadas do ponto de vista do marco monografado.

O ensaio de correntes parasitas pulsadas em componentes metálicos ferromagnéticos

O pulsed eddy current (PEC) ou o ensaio de correntes parasitas pulsadas possui algumas características incluindo: o método não requer a remoção do isolamento do componente a ser ensaiado; pode ser executado enquanto o componente estiver em operação; e não é necessário o acoplamento para a realização do ensaio. Para o ajuste apropriado do instrumento como, por exemplo, o comprimento do pulso de excitação e frequência da taxa de repetição, a geometria do componente precisa ser conhecida.

Existe um número de fatores influenciadores da técnica que precisam ser controlados ou considerados durante a execução do ensaio. Um deles é a capa externa, pois a sua natureza pode ter influência na precisão e na sensibilidade da técnica. Devem ser consideradas as propriedades da capa externa e do isolamento, como condutividade elétrica, permeabilidade magnética e espessura.

Os materiais condutores e/ou magnéticos do revestimento influenciam o ensaio de PEC, reduzindo potencialmente a sensibilidade e a precisão da medição. O efeito depende principalmente da condutividade elétrica, permeabilidade magnética e espessura da capa metálica, mas também da espessura do isolamento, espessura da parede da tubulação, distância entre a capa metálica e a sonda PEC, além da vibração e uniformidade da capa.

Os fixadores de revestimento, cintas, fivelas, parafusos e outros itens metálicos usados para fixar a camisa podem afetar o sinal, se forem feitos de materiais ferromagnéticos. Muitas vezes, cintas, fivelas, fechos, etc. são feitos de aço inoxidável não ferromagnético e de baixa condutividade e, portanto, invisíveis para o ensaio de PEC.

Uma capa metálica não ferromagnética e condutora afeta o sinal das três maneiras: o pulso PEC induz correntes parasitas na capa, que são detectadas como um sinal parasita aditivo que pode dominar os primeiros milissegundos da curva de decaimento; o sinal da capa metálica pode causar saturação do sinal no início da curva de decaimento. Uma capa ferromagnética condutora, como uma capa de aço galvanizado, afeta o sinal da mesma maneira que a capa não ferromagnética, ou seja, induzindo um ruído no sinal e deformando a curva de decaimento.

O sinal perturbado pode ser particularmente forte com capas ferromagnéticas, aumentando o risco de saturação do sinal. Além disso, as capas ferromagnéticas afetam a medição PEC: a capa absorve e espalha tanto a excitação quanto os campos magnéticos secundários, efetivamente ampliando a região sensível da sonda (footprint) e diminuindo a intensidade do sinal detectado; a capa metálica pode vibrar em resposta ao pulso de excitação PEC, causando ruído adicional no sinal.

Diversas medidas têm sido utilizadas para melhorar as medidas sobre revestimentos de aço galvanizado, contudo, seu sucesso depende de detalhes da capa. Exemplos de tais medidas incluem o uso de ímãs permanentes ou eletroímãs para saturar a capa, empregando uma amplitude de pulso de excitação diferente, aumentando o lift-off e reduzindo a capa. O reforço com malha de arame, também chamado vulgarmente de aramado, pode ser usado para manter o isolamento fixo na tubulação.

Embora a maioria dos reforços de malha de arame não influencie o sinal de ensaio de PEC, o reforço de malha de arame feito com materiais ferromagnéticos pode ser atraído magneticamente para a sonda quando ela estiver aplicando o pulso de excitação e pode reverberar depois. Essa reverberação pode interferir no sinal de resposta do ensaio de PEC.

As medidas que podem aumentar esse problema incluem o uso de um pulso de excitação com tensão baixa, restringindo-se à malha de arame e aumentando o efeito lift-off (implicando em uma região sensível da sonda (footprint) maior). Na inspeção por concreto e por revestimento à prova de fogo, uma fonte de interferência é a presença de barras de reforço.

Embora a interferência possa ser resolvida movendo suavemente a sonda lateralmente em torno da posição original do problema, isso pode ter um impacto na área coberta pelo ensaio. Outra possibilidade é inspecionar com uma malha mais estreita (maior densidade de pontos) e distinguir o padrão de posicionamento da barra no C-scan.

As áreas de corrosão sob a barra podem, portanto, ser identificadas com algoritmos de detecção personalizados. O usuário é responsável por atribuir o ensaio por correntes parasitas pulsadas a profissionais qualificados de acordo com os requisitos das normas e códigos aplicáveis à situação.

A qualificação de pessoal deve estar de acordo com a NBR NM ISO 9712 ou outra norma internacionalmente reconhecida e apropriada ao nível requerido nos setores industriais relevantes. Somente pessoal treinado deve conduzir o ensaio, no uso do aparelho e que tenha demonstrado a capacidade de: adquirir corretamente os dados do ensaio, definir a malha de inspeção, executar a avaliação da viabilidade técnica, escolher uma localização de referência e analisar os dados da inspeção. As orientações do fabricante do aparelho para os requisitos de treinamento para diferentes aplicações devem ser seguidas e estar descritas no procedimento do ensaio.

O ensaio utiliza um instrumento de PEC, uma sonda e cabos de conexão. Essa combinação, junto com o acessório para portar a sonda, compõe o sistema de ensaio. Todas as partes essenciais do sistema devem ser especificadas em um procedimento escrito, acordado entre as partes quando da solicitação ou contratação do ensaio.

O aparelho de PEC deve ter a frequência de repetição e a duração de pulso do sinal de excitação devem ser ajustados e o tempo de subida do pulso deve ser significativamente menor que o tempo de decaimento do sinal; a resolução e a frequência de amostragem da parte do aparelho que faz a coleta de dados deve ser compatíveis com a precisão de ensaio requerida, e o número de pontos coletados deve ser suficiente para permitir a detecção da descontinuidade do objeto do ensaio; o sistema deve ter uma duração do tempo de detecção ajustável para assegurar que a forma de onda adquirida seja suficientemente grande para obter a informação necessária para a medição de espessura da parede.

O instrumento deve ser capaz de transmitir e receber sinais ao longo de um período de tempo suficiente para coletar a curva de decaimento da corrente parasita. Isto deve ser estabelecido na avaliação da viabilidade técnica. Também deve exibir a curva de decaimento em um gráfico com escala log-log e/ou log-lin e ter uma rotina para determinar as características da curva de decaimento, além de exibir as medições na forma de uma malha ou outra representação gráfica das medições sobre o componente.

A NBR 17046 de 05/2022 – Ensaios não destrutivos – Correntes parasitas – Ensaio de correntes parasitas pulsadas em componentes metálicos ferromagnéticos descreve a técnica de ensaio de correntes parasitas pulsadas para encontrar áreas com anomalias ocorridas em serviço (corrosão ou erosão) e avaliar a espessura de componentes metálicos ferromagnéticos, para detecção de regiões críticas com perda de espessura (internas ou externas), com ou sem a presença de revestimento, isolamento ou cobertura metálica protetora contra intempéries. Aplica-se ao ensaio de componentes em serviço feitos em aço-carbono e aço baixa liga, na faixa de temperatura de -100 °C a 500 °C (temperatura medida na superfície do metal), com espessura do componente de 3 mm a 100 mm e espessura do revestimento de 0 mm a 300 mm. Este documento se aplica também às tubulações com diâmetro não menor que 50 mm.

A técnica descrita neste documento é sensível à geometria do componente, e sua aplicação fora do escopo deste documento pode resultar em imprecisões. Não se aplica ao ensaio para detecção de descontinuidades do tipo trinca e perda localizada de metal por pites ou alvéolos. Não estabelece critérios de avaliação a serem especificados por acordo contratual entre as partes.

O princípio do ensaio de PEC é ilustrado na figura abaixo. O ensaio de PEC destina-se aos componentes em aço-carbono ou ferro fundido. É usualmente executado sobre um revestimento e é empregado para encontrar áreas com anomalias ocorridas em serviço (normalmente corrosão ou erosão), tanto internas como externas.

A principal vantagem do ensaio de PEC é sua capacidade de inspecionar os componentes de aço-carbono até uma distância significativa entre a sonda e o objeto ensaiado. Essa distância é chamada de lift-off (acoplamento eletromagnético).

A distância que pode ser alcançada no ensaio depende da configuração geométrica do objeto e do projeto da sonda, podendo alcançar vários centímetros. O ensaio de PEC pode fazer suas medições no material-base (objeto da inspeção) em muitos materiais, incluindo a maioria dos materiais empregados como isolantes térmicos, concreto, barras de reforço estrutural, betume, revestimentos protetores da corrosão, sujeira e incrustações marinhas.

Inserir pec2

A principal limitação do ensaio de PEC é que ele mede a espessura média da região sensível da sonda (footprint). Isso implica que o ensaio de PEC pode detectar perda generalizada de espessura, mas tem grandes limitações na detecção de perda localizada de espessura. O ensaio de PEC é considerado um método de definição de regiões críticas (screening). Uma vez que uma zona de interesse é identificada com PEC, o acompanhamento com um método de inspeção complementar é recomendado.

O sistema de ensaio de PEC consiste em uma sonda que possui um dispositivo para gerar um campo magnético (primário) e um dispositivo para detectar o campo secundário que emana do componente, resultante das correntes parasitas geradas pelo campo primário. O dispositivo empregado para detecção pode ser o mesmo usado para geração do campo magnético primário.

Em ensaios de PEC usuais, o campo primário é um campo magnético de corrente contínua (cc) que é ligada (condição transiente ou variável) para gerar correntes parasitas. O tempo após ligar, ou seja, o tempo em que o campo magnético contínuo está ligado, é chamado de pulso de excitação.

Por isso é que se diz que as PEC são geradas por um campo magnético pulsado. O pulso é caracterizado por sua duração (T), que permite a geração de correntes induzidas com uma intensidade muito alta. Devido à variação do campo magnético, correntes parasitas são geradas. Depois da variação do campo magnético, as correntes parasitas decairão.

O campo magnético secundário é registrado e exibido em um gráfico. Em um ensaio bem-sucedido, as características da forma da curva de decaimento são extraídas. Essas características correspondem à espessura da parede do componente. Similarmente às correntes parasitas senoidais, as PEC são influenciadas por qualquer variação local das propriedades do material.

O intervalo de tempo entre as duas medidas tem correlação com a espessura do material. O ensaio de PEC é geralmente realizado como uma medição relativa, em que o sistema é calibrado em um ponto de referência (espessura) do componente. O ensaio de PEC fornece uma estimativa do volume de material sob a região sensível da sonda (footprint).

As medições normais irão produzir um resultado mais ou menos proporcional à espessura média de parede na área em que as correntes parasitas são geradas. O sinal de transmissão da sonda apresenta um amplo espectro de frequências. O sinal recebido também possui um espectro de frequência (ou tempo), cuja análise fornece as informações vindas de diferentes profundidades ao longo da espessura do material.

A técnica de medição pode utilizar, por exemplo: o tempo característico do ponto de inflexão; o tempo requerido para um decaimento específico; a inclinação angular da curva de decaimento. O elemento sensor pode ser constituído por bobinas receptoras ou medidores de campo magnético (hall sensors). A intensidade do sinal pode ser representada graficamente em função do tempo, produzindo uma curva de decaimento (também conhecida como A-scan).

Se nenhum material condutor ou magnético estiver entre a sonda e o objeto inspecionado, o sinal tem dois regimes: um regime de propagação, exibido como um trecho reto em um gráfico log-log (escala logarítmica no eixo das abscissas e das ordenadas) e um trecho curvo em um gráfico log-linear (escala linear no eixo das abscissas e logarítmica nos eixos das ordenadas); um regime de propagação, exibido como um trecho curvo em um gráfico log-log e um trecho reto em um gráfico log-linear.

O momento em que o sinal muda de um regime para outro é chamado de ponto de inflexão e está relacionado ao quadrado da espessura da peça inspecionada. Existem vários algoritmos para determinar a espessura da parede a partir do sinal de ensaio. A velocidade na qual as correntes parasitas se propagam e decaem depende da condutividade elétrica e da permeabilidade magnética do objeto inspecionado.

Essas propriedades do material eletromagnético não são as mesmas para dois objetos diferentes, mesmo que de mesma especificação de material, podendo, por exemplo, ser influenciadas pelo tratamento térmico do material. Como resultado, uma calibração em bloco de referência não é válida para o ensaio de PEC. Em vez disso, o ensaio de PEC deve ser calibrado na própria amostra ensaiada.

Além disso, uma vez que as propriedades eletromagnéticas são geralmente desconhecidas, as medições de espessura do ensaio de PEC são medições relativas. Um ponto de referência na amostra de ensaio precisa ser selecionado e a espessura da parede em outros locais deve ser apresentada como uma porcentagem da espessura da parede no ponto de referência.

Somente se a espessura da parede em um ponto do objeto ensaiado for conhecida, por exemplo, empregando ensaio ultrassônico para medição, as medições PEC podem ser convertidas em milímetros. Os resultados do ensaio de PEC são geralmente relatados em uma matriz C-scan, na qual as medições pontuais no A-scan podem ser visualizadas quando um ponto da matriz é selecionado. O valor exibido no C-scan é geralmente a porcentagem da espessura da parede remanescente para aquele ponto.

A conformidade dos projetos de válvulas para cilindros recarregáveis de cloro

A corrosão é apenas um fato da vida quando se trata de válvulas de cloro, pois elas sofrem corrosão, por isso é importante sempre fazer uma inspeção visual periódica das válvulas. Embora as válvulas sejam feitas com materiais da mais alta qualidade, a corrosão pode ocorrer devido à natureza do gás cloro e aos ambientes onde o cilindro e as válvulas estão sendo usados e armazenados.

Uma preocupação comum é que os operadores na planta tenham medo de serem expostos ao gás cloro. O gás cloro é altamente tóxico e pode ser muito perigoso quando os materiais de armazenamento não são mantidos. Alguns operadores tendem a ser cautelosos demais e acreditam que é melhor apertar demais as válvulas.

Embora isso possa parecer uma ideia lógica, não é. Quando se aperta demais (torque) uma válvula, pode-se colocar pressão excessiva na válvula. A tensão excessiva ao longo do tempo fará com que a porca da gaxeta rache. O aperto excessivo da válvula também pode sobrecarregar o corpo da válvula, causando rachaduras e liberando gás cloro.

Deve-se apertar a válvula de acordo com as especificações fornecidas pelo fabricante. Algumas pessoas tendem a borrifar amônia na válvula para testar se há vazamentos. O problema com este método é que a amônia também é corrosiva e é por isso que às vezes se vê válvulas de cor esverdeada. Nas conexões de entrada da válvula, os orifícios nos cilindros pequenos e grandes destinados às válvulas possuem originalmente a rosca padrão 3/4” 14NGT (CL)-0.

Com o tempo, a rosca dos cilindros se desgasta devido às constantes retiradas e recolocações das válvulas. Para aumentar o tempo de vida do cilindro, é necessário o alargamento dos orifícios e das roscas com outras dimensões. Com isto, nos cilindros pequenos, as válvulas da série 3/4” 14NGT (CL)-1 a 3/4” 14NGT (CL)-4 podem ser utilizadas.

Nos cilindros grandes, além destas, as válvulas da série 1–11½” NGT (CL)-4 também podem ser utilizadas. O padrão NGT é um padrão americano para roscas cônicas. Quando empregado em válvulas para cilindros de cloro, elas são denominadas NGT (CL). Estas roscas podem ser fabricadas em diversos tamanhos padronizados para uso com cloro.

Historicamente, o padrão NGT (CL) tem sido utilizado no Brasil para as válvulas de cloro. Tomando como exemplo a rosca 3/4” 14 NGT (CL)-0, é possível descrever o significado da expressão que caracteriza estas roscas: 3/4” – É a dimensão nominal da conexão de entrada da válvula para cilindro de cloro; 14 – Significa a quantidade de fios de rosca por polegada; NGT – National Gas Taper (rosca cônica de entrada das válvulas para cilindros de gás); (CL) – Significa o uso em cilindros de cloro; (CL) – 0 Corresponde à válvula padrão com a quantidade mínima de roscas para uso nos cilindros novos.

As demais roscas (CL)-1 a (CL)-4 possuem maior quantidade de roscas para emprego em cilindros em uso com roscas alargadas. Os aspectos da modificação de um projeto, que podem afetar a válvula, devem ser identificados pelo responsável do projeto.

Quando forem realizadas mudanças em um projeto de válvula aprovado e documentado conforme os requisitos da norma técnica, é necessário aplicar os seguintes critérios: as conexões de entrada e saída: o emprego de outro tipo de conexão CGA, ISO ou outras de diferentes tamanhos de roscas conforme 5.5.1 não configura alteração de projeto; corpo da válvula: as mudanças nas dimensões internas ou externas e/ou as mudanças nos materiais construtivos do corpo da válvula exigem que todos os ensaios atendam aos demais requisitos da norma.

Este tipo de mudança deve ser tratado como um novo projeto. Outras modificações, por exemplo, na concepção de outros componentes (anéis, gaxetas, hastes, entre outros) exigem a verificação de conformidade com os requisitos da norma e a realização de novos ensaios de desempenho que podem ser afetados pela mudança. Todas as modificações no projeto devem ser documentadas, incluindo os registros dos ensaios de qualificação.

Todas as variantes de projeto de válvula e/ou modificações introduzidas no projeto devem ser registradas e anexadas à documentação do projeto. Um projeto aprovado de válvula, para uso em cilindros contendo outros gases, somente pode ser utilizado para uso em cilindros de cloro se for objeto de um projeto variante que atenda aos requisitos da norma. Um projeto de válvula aprovado para uso em cilindros pequenos de cloro, mas ainda não aprovado de acordo com a norma para uso em cilindros grandes de cloro (ou vice-versa), também deve ter um projeto variante que atenda aos requisitos da norma.

A NBR 17016 de 03/2022 – Válvulas para cilindros de cloro – Especificação e ensaio de protótipo se aplica às válvulas empregadas em cilindros recarregáveis de cloro, aos tubos coletores (manifolds) e às válvulas empregadas nos kits de emergência dos tipos A, B e C. Estabelece os requisitos para o projeto de válvulas para cilindros recarregáveis de cloro, incluindo dimensões, materiais de construção, conexões, qualificação do projeto e documentação. O cloro líquido é o cloro gás liquefeito por aplicação de pressão, caracterizado como um líquido claro, de cor âmbar e aproximadamente 1,5 vez mais pesado que a água.

Os cilindros pequenos e grandes de cloro são utilizados por estações de tratamento de água, nas indústrias e outros consumidores do produto. As válvulas destes cilindros são peças de engenharia que precisam ser de alta confiabilidade, visto que sua falha pode levar a vazamentos significativos de cloro durante seu carregamento, uso e transporte.

O cloro é um produto tóxico, oxidante e corrosivo. No Brasil, ele é transportado como um produto da classe 2.3 (gás tóxico), com riscos subsidiários 5.1 (oxidante) e 8 (corrosivo), conforme a ANTT N° 5.232/2016. As válvulas em cilindros recarregáveis para cloro devem ter a qualidade e a resistência requeridas nessa norma para assegurar tanto o desempenho adequado como a segurança nas operações de envasamento, armazenamento, movimentação, transporte e esvaziamento dos cilindros.

As válvulas nacionais devem ser projetadas e manufaturadas em conformidade com esta norma. As válvulas importadas devem atender aos requisitos de desempenho, construção, qualificação e manufatura equivalentes aos desta norma, por exemplo, as válvulas manufaturadas conforme os requisitos da CGA V-9. Todas as marcações nas válvulas devem ser indeléveis.

As válvulas para cilindros de cloro devem ter um projeto elaborado e aprovado conforme os requisitos dessa norma. O projeto deve ser elaborado considerando os seguintes aspectos: as propriedades químicas e físicas e os perigos do cloro; as operações a que habitualmente os cilindros de cloro são submetidos, como preparação para o enchimento, armazenamento, transporte, esvaziamento e uso.

O projeto da válvula para cilindro de cloro deve atender aos requisitos específicos relacionados a: dimensões; materiais de construção e lubrificantes; corpo da válvula, mecanismo operacional e dispositivo operacional; conexão de entrada e saída da válvula; bujão fusível (somente na válvula para cilindro pequeno de cloro); e tampa (cap) da saída da válvula. O projeto deve prever as marcações mínimas requeridas na válvula e nos componentes, de acordo com essa norma.

Os protótipos do projeto da válvula devem ser submetidos aos ensaios relacionados nessa norma e atender aos requisitos descritos. O projeto deve ser documentado, incluindo as informações necessárias para a manufatura da válvula, de acordo com o projeto qualificado (aprovado), conforme os requisitos dessa norma. A documentação do projeto, incluindo as suas modificações, deve ser conservada por até dez anos após o encerramento da manufatura da válvula.

As dimensões externas máximas da válvula devem estar de acordo com as figuras abaixo, para assegurar a sua compatibilidade com: a fixação do capacete de proteção da válvula colocado no cilindro pequeno ou grande; a operação dos equipamentos e a operação de enchimento e de esvaziamento dos cilindros; e a fixação dos dispositivos do kit de emergência do tipo A ou B nos cilindros pequenos ou grandes. O kit de emergência é um conjunto de peças, ferramentas e acessórios, destinado a conter vazamentos de cloro que podem ocorrer nas válvulas ou no corpo do cilindro de cloro líquido.

O orifício de passagem do fluxo de gás da válvula deve ter dimensões adequadas para atender à vazão requerida sem que haja comprometimento da resistência mecânica da válvula. A seleção de materiais construtivos deve ser conforme os critérios estabelecidos nas ISO 11114-1 (materiais metálicos) e ISO 11114-2 (materiais não metálicos), demonstrando sua compatibilidade química com o cloro.

Isto inclui, no caso de materiais metálicos, a resistência à corrosão em condições secas e úmidas, a corrosão por impurezas, as reações violentas e de trincas devido à corrosão sob tensão (stress corrosion cracking), e, no caso de materiais não metálicos, as condições relacionadas a reações violentas, a perda de massa por extração ou por ataque químico, o inchaço, a perda das propriedades mecânicas, a reação de formação de substâncias indesejáveis e o envelhecimento. Para a determinação da suscetibilidade da formação de trinca devido à corrosão sob tensão (stress corrosion cracking) de ligas de cobre, podem ser utilizados os métodos das ISO 6957, ASTM B858, e ASTM B154.

Os materiais metálicos já ensaiados e aprovados, que habitualmente são utilizados na manufatura de válvulas para cilindros de cloro, estão relacionados no Anexo C. Os lubrificantes não podem ser empregados nas válvulas para cilindros de cloro. Os materiais metálicos e não metálicos devem atender aos requisitos dos ensaios requeridos, conforme descritos nessa norma. O material do corpo da válvula deve ser forjado ou laminado.

O material do corpo da válvula deve atender às especificações de dureza, resistência à tração, escoamento e alongamento, comprovadas por ensaios estabelecidos na ASTM B16. No descritivo e/ou nos desenhos de projeto, devem estar claramente relacionados e especificados os materiais construtivos do corpo e os demais componentes da válvula.

O fechamento da válvula deve ocorrer no sentido horário. As válvulas para cilindros de cloro não podem empregar volantes. Para sua abertura e seu fechamento, deve ser empregada uma chave especial com um comprimento não superior a 20 cm e com bocal quadrado na extremidade que se encaixe na haste da válvula.

A haste da válvula deve ter, na sua extremidade superior, uma seção quadrada de 9,525 mm (3/8”), para encaixar a chave utilizada para a abertura e o fechamento da válvula. A abertura e o fechamento da válvula devem ser possíveis na pressão de projeto de 3 450 kPa (500 psig). O mecanismo de operação da válvula deve ser projetado de modo que seja evitada a alteração inadvertida na sua montagem.

A elevação da extremidade da haste deve estar limitada a 3,175 mm (1/8”) para 360º de rotação. Não podem ser utilizados lubrificantes no mecanismo de operação da válvula. A conexão de entrada das válvulas de cilindros novos pequenos e grandes, em uso no Brasil, deve ser uma conexão 3/4” – NGT(CL)-0 (ver o Anexo D).

A conexão de entrada das válvulas de cilindros pequenos e grandes, em uso no Brasil, deve ser uma das conexões da série 3/4” – NGT(CL)-0 à série 3/4” – NGT(CL)-4 (ver o Anexo D). As medidas de construção das conexões 3/4” – NGT(CL) devem estar de acordo com essa norma. A válvula também pode ser projetada com a conexão de entrada no padrão 25E da ISO 11363-1, para fins de exportação.

O uso da conexão 25E (ISO 11363-1) também é possível, porém podem ocorrer vazamentos de cloro, caso ocorra troca de válvulas na conexão com os cilindros, como, por exemplo, válvula com conexão 3/4” – NGT (CL) conectada em cilindros com conexão 25E. O projeto de uma válvula para uso em cilindro de cloro deve ser documentado, incluindo as suas eventuais modificações e revisões.

A documentação do projeto deve referenciar essa norma. O projeto deve possuir um número e/ou uma denominação para distingui-lo de outros projetos. A documentação deve ser suficiente para a reprodução fidedigna do protótipo de válvula aprovada conforme os requisitos dessa norma, contendo: um desenho da válvula com suas partes, suas dimensões relevantes e suas modificações, se for o caso, ver o exemplo no Anexo A; um desenho das partes com as medidas e suas tolerâncias, bem como as marcações na válvula e na haste.

Também, devem constar, na documentação, no desenho ou em uma lista separada, as especificações dos materiais utilizados em cada parte da válvula (ver o exemplo no Anexo B) e o nome do responsável pela aprovação do projeto da válvula para uso em cilindros de cloro, ou do responsável pela aprovação da variante da válvula para este uso. A documentação do projeto deve permitir a rastreabilidade do processo empregado para sua qualificação, incluindo: a seleção de materiais que atendam aos requisitos dessa norma, ou aqueles listados no Anexo C, sejam novos materiais que foram ensaiados e aprovados; os registros de todos os ensaios de qualificação da válvula para uso em cilindros de cloro, incluindo o nome do executante dos ensaios, os resultados e a avaliação e aprovação da válvula pelo responsável do projeto.

A conformidade dos cabos de aço em equipamentos de içamento

O cabo de aço para elevar carga é importante para as grandes cargas e deve ser fabricado por fios e arames que são enrolados em um torno de núcleo central. Existem os mais diversos tipos de cabo de aço para elevar carga para as mais diversas aplicações.

A instalação do cabo de aço para elevar carga tem que ser feita para trazer maior conforto, comodidade, segurança e suporte que a carga a precisa. Sabendo que cargas são elevadas diariamente é necessário a aplicação do cabo de aço correto para elevar carga.

Assim, antes de adquirir o cabo de aço para elevar carga deve-se verificar o diâmetro do cabo; conferir se o seu comprimento é o ideal; analisar se a sua aplicação é a indicada para a elevação que vai realizar; e analisar o acabamento que é necessário, pois ele pode ser galvanizado, polido ou inox. Outras características são necessárias ser analisadas para que se tenha o cabo de aço para elevar carga ideal para a necessidade, porém independente disso tudo o cabo de aço para elevar carga precisa ter qualidade para que se suporte a carga exigida e o ritmo de utilização que é solicitado.

A NBR ISO 4309 de 03/2022 – Equipamentos de movimentação de carga – Cabos de aço – Cuidados e manutenção, inspeção e descarte estabelece princípios gerais para cuidados, manutenção, inspeção e descarte de cabos de aço em serviço em dispositivos de içamento, como equipamentos de movimentação de carga e guinchos. Além das instruções sobre armazenamento, manuseio, instalação e manutenção, este documento relaciona os critérios de descarte para os cabos usados que estão sujeitos ao enrolamento com muitas camadas, onde a experiência de campo como também ensaios demonstram que a deterioração é significativamente maior nas zonas de cruzamento no tambor do que outras seções do cabo no sistema.

Ela fornece também critérios de descarte aplicáveis cobrindo corrosão e redução do diâmetro, e apresenta um método para avaliar o efeito combinado de deterioração em qualquer posição do cabo. A NBR ISO 4309 é aplicável aos seguintes tipos de equipamento de movimentação de carga, a maioria dos quais são definidos na ISO 4306-1: pórticos de cabo; equipamentos de movimentação de carga em balanço (equipamento de movimentação de carga de coluna, equipamento de movimentação de carga móvel de parede e equipamento de movimentação de carga velocípede); equipamentos de movimentação de carga de convés; equipamentos estacionários de movimentação de carga estacionárias; equipamentos estacionários de movimentação de carga estacionárias com suporte rígido; equipamentos de movimentação de carga flutuante; equipamentos de movimentação de carga móvel; pontes rolantes; pórticos e semipórticos rolantes; equipamentos de movimentação de cargas com pórtico ou com semipórtico; equipamentos de movimentação de carga locomotiva; gruas; equipamentos de movimentação de carga oceânicos, por exemplo, equipamento de movimentação de cargas montado em uma estrutura fixa apoiada no leito marinho ou em uma unidade flutuante sustentada por forças de empuxo.

É aplicável a cabos de equipamentos de movimentação de carga, guinchos e talhas que utilizam gancho, garra, eletroímã e caçamba, assim como para escavação ou empilhamento, podendo ser operados manual, mecânica, elétrica ou hidraulicamente. Também é aplicável em talhas e moitões que utilizam cabos de aço. O uso exclusivo de roldanas sintéticas ou roldanas metálicas com revestimentos sintéticos não é recomendado para cabos enrolados em camada única no tambor, devido à inevitabilidade de rupturas de arame ocorrendo internamente em grande número antes que haja qualquer evidência visível de qualquer ruptura de arame ou sinais de desgaste substancial na parte externa do cabo, nenhum critério de descarte é dado para esta combinação.

Um cabo de aço em um equipamento de movimentação de carga é considerado como um componente descartável, exigindo substituição quando os resultados da inspeção indicam que sua condição atingiu o ponto em que o uso posterior pode ser inseguro. Por isso, deve-se seguir alguns princípios bem estabelecidos, como os detalhados neste documento, juntamente com quaisquer instruções específicas adicionais fornecidas pelo fabricante do equipamento de movimentação de carga ou guincho e/ou pelo fabricante do cabo, convém que este ponto nunca seja excedido.

Quando corretamente aplicados, os critérios de descarte de cabos neste documento visam reter uma margem de segurança adequada. Não os reconhecer pode ser extremamente prejudicial, perigoso e causar danos. Para auxiliar aqueles que são responsáveis pelo cuidado e manutenção, distintos daqueles que são responsáveis pela inspeção e descarte, os procedimentos são convenientemente separados.

Para a manutenção e cuidados, na ausência de quaisquer instruções fornecidas pelo fabricante do equipamento de movimentação de carga em seu manual de operação ou pelo fabricante ou fornecedor do cabo, os princípios gerais descritos a seguir devem ser seguidos. Para a substituição do cabo, a menos que um cabo alternativo tenha sido aprovado pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, apenas um cabo com o comprimento, o diâmetro, a construção, a torção e a resistência (ou seja, carga de ruptura mínima), conforme especificado pelo fabricante do equipamento deve ser instalado no equipamento. Um registro da substituição do cabo deve ser arquivado.

No caso de cabos resistentes à rotação de grande diâmetro, pode ser necessário aplicar meios adicionais para fixar as extremidades do cabo, por exemplo, através da utilização de braçadeiras ou amarrilhos de arames, em especial quando se preparam as amostras de ensaio. Se o comprimento de cabo requerido para uso for removido de uma bobina com cabo de comprimento maior, amarrilhos devem ser aplicados em ambos os lados do ponto de corte com o objetivo de impedir o destorcimento do cabo após o corte.

A figura abaixo é um exemplo de recomendação de aplicação de amarrilho em um cabo de aço de uma camada de pernas, antes do corte. Para cabos resistentes à rotação e cabos de pernas paralelas, múltiplos amarrilhos podem ser necessários. Um método alternativo para cabos de grande diâmetro e cabos resistentes à rotação é apresentado na figura 3 da norma. Os cabos que são apenas ligeiramente pré-formados são mais propensos ao destorcimento após o corte, se o amarrilho for inadequado ou insuficiente.

Deve-se observar que a amarração é às vezes referida como amarrilho. A menos que uma terminação de cabo alternativa tenha sido aprovada pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, somente o mesmo tipo de terminal, conforme especificado pelo fabricante do equipamento no manual de operação, deve ser utilizado para prender um cabo a um tambor, moitão ou ponto de ancoragem na estrutura da máquina. É recomendável fazer um registro-base de inspeção eletromagnética (MRT) antes da instalação ou logo que possível após a instalação.

Para evitar acidentes, o cabo deve ser descarregado com cuidado. As bobinas ou rolos não podem sofrer quedas, nem os cabos podem ser atingidos por ganchos metálicos, garfos de empilhadeiras ou qualquer outro agente externo que possa deformar o cabo. Convém que os cabos sejam armazenados em local arejado, seco e não podem ficar em contato com o piso.

Não convém que os cabos sejam armazenados onde possam ser afetados por agentes químicos, vapor ou outros agentes corrosivos. Se o armazenamento ao ar livre não puder ser evitado, convém que os cabos sejam cobertos para que a umidade não provoque corrosão. Os cabos armazenados devem ser inspecionados periodicamente para detectar quaisquer sinais de deterioração, como corrosão e, se for considerado necessário pela pessoa qualificada, revestido com uma capa de preservação ou lubrificante adequado, compatível com o lubrificante utilizado pelo fabricante do cabo.

Em ambientes quentes, convém que a bobina seja periodicamente rotacionada em meia volta para prevenir a drenagem do lubrificante do cabo. Convém que antes da instalação do cabo, e de preferência no recebimento, o cabo e seu certificado sejam verificados para assegurar que este está de acordo com o especificado no pedido. A carga de ruptura mínima do cabo não pode ser menor do que a especificada pelo fabricante do equipamento de movimentação de carga.

O diâmetro do cabo novo deve ser medido com o cabo livre de tensões e este valor (dm) registrado. Quando um cabo de aço é armazenado por um período de tempo, durante o qual possa ter ocorrido corrosão, pode ser vantajoso realizar inspeção visual e inspeção eletromagnética. Verificar a condição de todos os canais das roldanas e do tambor para assegurar que eles são capazes de receber o diâmetro do cabo novo, que não contêm quaisquer irregularidades, como ondulações ou marcas de cabo, e tem espessura suficiente para suportar a carga com segurança.

Convém que o diâmetro dos canais da roldana esteja entre 5% e 10% maior que o diâmetro nominal do cabo. Para um desempenho ideal, convém que o diâmetro dos canais seja pelo menos 1% maior que o diâmetro real do novo cabo. Ao desenrolar e/ou instalar um cabo, toda a precaução deve ser tomada para evitar a torção ou destorção do cabo. Esta condição pode resultar na formação de laçadas, nós ou dobras, tornando-o impróprio para o uso.

Para evitar que algum destes se desenvolva, o cabo deve ser desenrolado em linha reta com um mínimo de folga permitido. O cabo acondicionado em bobina deve ser desenrolado utilizando uma mesa giratória, em linha reta. Entretanto, quando o comprimento da bobina é curto, a extremidade externa do cabo pode ficar livre e o restante do cabo desenrolado ao longo do solo.

Um cabo nunca pode ser desenrolado retirando as voltas com o rolo ou o flange da bobina posicionado sobre o piso ou pelo rolamento da bobina sobre o piso. Para os comprimentos de cabos fornecidos em bobinas, colocar a bobina de alimentação e sua base de apoio ou suporte, o mais longe possível do equipamento de movimentação de carga ou guincho, a fim de limitar os efeitos da variação do ângulo de enrolamento, evitando assim quaisquer efeitos de torção indesejáveis.

Deve-se proteger o cabo de potenciais fontes de contaminação manuseando-o em superfícies com revestimento adequado (por exemplo, esteira transportadora), em vez de permitir a movimentação direta no solo. Uma bobina girando pode ter uma grande inércia, que nesse caso deve ser controlada por um desenrolamento em uma velocidade baixa e uniforme.

Para bobinas menores isto é conseguido com um freio simples. Bobinas maiores têm inércias significativamente maiores e uma vez que comecem a girar pode ser necessário um dispositivo de frenagem maior. Tanto quanto possível, certificar-se de que o cabo sempre enrole na mesma direção durante a instalação, ou seja, remover o cabo da parte superior bobina de suprimento até a parte superior do tambor no equipamento de movimentação de carga ou guincho (conhecido como de cima para cima), ou desde a parte de baixo da bobina de suprimento até a parte de baixo do tambor no equipamento de movimentação de carga ou guincho (conhecido como de baixo para baixo).

Para a inspeção visual diária, pelo menos o trecho do cabo a ser utilizado para aquele dia específico deve ser observado com o objetivo de detectar sinais de deterioração ou dano mecânico. Isso deve incluir os pontos de fixação do cabo no equipamento de movimentação de carga. O cabo deve também ser verificado para assegurar que ele está corretamente enrolado no tambor e sobre a (s) roldana (s) e não foi deslocado de sua posição normal de trabalho.

Qualquer mudança perceptível na sua condição deve ser registrada e o cabo deve ser examinado por uma pessoa qualificada. Se, em qualquer instante, a condição de trabalho for alterada, tal quando o equipamento de movimentação de carga é deslocado para um novo local e reestabelecido, o cabo deve ser submetido a uma inspeção visual como descrito nesta subseção. O operador do equipamento de movimentação de carga pode ser designado para realizar verificações diárias na medida em que o operador seja suficientemente treinado e considerado competente para realizar essa ação.

Os ensaios dos projetos de implantes ortopédicos em UHMWPE

O polietileno de ultra-alto peso molecular (ultra-high-molecular-weight polyethylene – UHMWPE) tem um peso molecular cerca de dez vezes mais elevado do que o de resinas de polietileno de alta densidade (HDPE). O ultra-alto peso molecular confere propriedades mecânicas, tais como a elevada resistência à abrasão, resistência ao impacto e baixo coeficiente de atrito. Estas propriedades especiais permitem que o produto seja utilizado em várias aplicações de alto desempenho. Pode ser encontrado na forma de pó, em grades que variam de acordo com o peso molecular e o tamanho médio de partícula. O peso molecular está disponível em três faixas: baixa (3 milhões de g/mol), média (5 milhões de g/mol) ou alta (7 a 10 milhões de g/mol). Os produtos com esses pesos moleculares diferentes estão disponíveis em duas faixas de tamanhos de partícula: pequenos (diâmetro médio em torno de 150 μm) ou grandes (diâmetro médio em torno de 205 μm). A vida de prateleira de um componente de UHMWPE que não tenha sido exposto a uma radiação ionizante, ou que tenha sido irradiado, mas embalado em ambiente inerte, é limitada pela integridade do material de embalagem. Podem ser aplicados em implantes ortopédicos, elementos filtrantes, fibras, equipamentos esportivos de neve, recobrimento de vagões. As propriedades únicas do UHMW-PE estão diretamente relacionadas à sua cadeia molecular muito longa, resultando em uma viscosidade muito alta da massa fundida. A maioria dos tipos não apresenta fluidez e mantém sua forma mesmo no estado fundido. Deve-se entender as informações, os requisitos e os ensaios apropriados para a identificação e a caracterização do polietileno de ultra-alto peso molecular em projetos de implante ortopédico.

Os implantes ortopédicos são categorizados em dois grupos, incluindo as substituições permanentes de articulações e dispositivos temporários de fixação de fraturas. Os permanentes incluem as articulações do quadril, joelho, tornozelo, ombro, cotovelo, punho e dedos, que devem servir no corpo humano durante toda a vida dos pacientes. Por outro lado, os temporários, incluindo placas, parafusos, pinos, fios e hastes intramedulares são necessários para corrigir ossos quebrados ou fraturados e devem servir por um tempo relativamente curto, apenas o suficiente para permitir que os ossos se curem.

Uma vez que os implantes ortopédicos devem funcionar em diferentes condições de trabalho in vivo, uma boa compreensão dos requisitos fundamentais dos materiais ortopédicos e da resposta biológica subsequente é crucial para o projeto e otimização dos implantes em condições fisiológicas no corpo humano. A seleção dos materiais adequados para o implante ortopédico depende das aplicações específicas.

As ligas metálicas, cerâmicas e polímeros são comumente usados em implantes ortopédicos. Esses materiais possuem diferentes propriedades físicas, químicas e biológicas que atendem a aplicações específicas. Apesar do sucesso dos materiais tradicionais, novos biomateriais estão sendo desenvolvidos continuamente para satisfazer a demanda cada vez maior.

A demanda por polietileno de ultra-alto peso molecular (UHMWPE) para a fabricação de implantes ortopédicos e cardiovasculares está impulsionando o crescimento do material nos mercados globais. Alguns pesquisadores projetam uma taxa de crescimento anual de mais de 9%, já que o UHMWPE é um polietileno (PE) inodoro, insípido e não tóxico.

Possui todas as características do PE de alta densidade, mas com a vantagem adicional de ser resistente a ácidos, álcalis e outros solventes orgânicos. O UHMWPE está disponível em várias formas e formatos, tornando-o adequado para uma variedade de aplicações, mas o segmento médico é um dos principais mercados, respondendo por quase 30% da participação de mercado. As outras aplicações principais são vestuário e equipamentos de proteção e baterias recarregáveis.

Para a caracterização do UHMWPE, algumas das propriedades, como propriedades de tração, resistência ao impacto e densidade, critérios de aceitação, estão estabelecidos na NBR ISO 5834-2. Se o material atender aos critérios de aceitação, nenhuma informação adicional é necessária. No entanto, se as propriedades do material estiverem abaixo dos critérios de aceitação estabelecidos na NBR ISO 5834-2, algumas informações adicionais devem ser estabelecidas para comprovar que o material é apropriado ao uso pretendido do implante.

São justificativas aceitáveis: a comparação com um dispositivo predicado que utilize o mesmo material ou material com propriedades semelhantes para o mesmo uso pretendido; as informações que demonstrem a segurança do material para o uso pretendido, com base em dados da literatura técnica e científica, incluindo, por exemplo, comparação com controles, estudos em animais, etc.; e para um implante novo, uma justificativa científica consistente, com base na literatura, resultados de estudos clínicos, etc., que possam demonstrar que o implante fabricado com o material avaliado é seguro e eficaz.

A caracterização do material pode envolver a determinação e a avaliação das seguintes propriedades: a densidade de ligações cruzadas; o índice de transvinileno; o índice de oxidação; a cristalinidade; o ponto de fusão; e a concentração de radicais livres. Se os valores determinados estiverem dentro de faixas normais, estabelecidas em normas ou em documentos técnicos e/ou científicos disponíveis na literatura, ou comparáveis com os resultados de um dispositivo predicado com o mesmo uso pretendido, normalmente, não são necessárias informações adicionais. A tabela abaixo identifica as principais propriedades e indica os critérios de aceitação para a caracterização dos UHMWPE.

Clique na figura para uma melhor visualização

O UHMWPE altamente reticulado, em princípio, difere do UHMWPE convencional pela absorção de uma dose de radiação relativamente maior e pelas etapas requeridas de processamento pós-radiação (tratamentos térmicos e/ou mecânicos). Estas diferenças alteram as propriedades químicas, físicas e mecânicas do material, de modo que, complementarmente às caracterizações requeridas para o UHMWPE convencional, a caracterização do UHMWPE altamente reticulado deve incluir: comparação da dose total de radiação absorvida em relação à dose de um dispositivo predicado com o mesmo uso pretendido; porcentagem de cristalinidade; ponto de fusão; propriedades mecânicas biaxiais (resistência à tração no escoamento, resistência à tração na ruptura, e alongamento na ruptura); o índice de oxidação após envelhecimento acelerado ao longo do material ensaiado; o índice de transvinileno ao longo do material ensaiado; a densidade de ligações cruzadas; a resistência à propagação de trinca sob fadiga (ΔKlimiar, coeficiente de Paris, constante de Paris); e a concentração de radicais livres.

Atualmente, não há qualquer método de ensaio normalizado para determinar a concentração de radicais livres, que é normalmente avaliada utilizando espectroscopia de ressonância paramagnética de elétrons (EPR), também conhecida como espectroscopia de ressonância de spin de elétron (ESR). O método de ensaio selecionado deve ser integralmente descrito e justificado, e os resultados dos ensaios devem incluir os espectros obtidos.

Para materiais recozidos acima da temperatura de fusão, não é esperada a detecção de radicais livres. A menos que os resultados obtidos para o material do implante em análise possam ser apropriadamente comparados com os resultados de um dispositivo predicado para o mesmo uso pretendido, os resultados dos ensaios de concentração de radicais livres e os seus impactos esperados ou conhecidos no desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica.

Para a classe de UHMWPE altamente reticulado contendo vitamina E ou outro antioxidante, na caracterização do material devem ser complementadas as informações específicas e concernentes à adição do antioxidante (α-tocoferol, vitamina E). É possível que o antioxidante adicionado possa, ao longo do tempo, ser lixiviado do material, devido à ação de carregamentos e/ou fluidos in vivo que atuem como solvente do antioxidante, cuja perda pode comprometer a resistência à oxidação do material.

Este aspecto pode ser abordado pela demonstração de um nível de resistência adequado após o ensaio de desgaste em que o material é exposto a cargas e solventes clinicamente relevantes, ou por meio de justificativa científica comparando a concentração do antioxidante, a dose de radiação e o tipo de radiação, isto é, os raios gama ou o feixe de elétrons de um dispositivo predicado para o mesmo uso pretendido. Os resultados de ensaios de resistência à oxidação após os ensaios de desgaste podem ser apropriadamente comparados com os resultados de um dispositivo predicado para o mesmo uso pretendido.

No caso de materiais ou novos implantes, os resultados dos ensaios de resistência à oxidação e seus impactos previstos ou conhecidos sobre o desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica. O α-tocoferol é uma molécula pequena que pode atuar como um plastificante e, portanto, pode afetar o mecanismo pelo qual o material se desgasta.

A alteração do mecanismo de desgaste pode ser avaliada pela caracterização das partículas de desgaste oriundas do ensaio de desgaste in vitro, conduzida de acordo com a NBR ISO 17853. Além disto, devem ser realizados os ensaios de desgaste em condições normais e abrasivas, e elaborada uma análise das superfícies de desgaste em termos de tipo e extensão dos modos de danos.

Alternativamente aos ensaios in vitro, os aspectos dos efeitos do antioxidante no mecanismo de desgaste podem ser tratados com base em uma fundamentação científica, comparando a concentração do antioxidante, a dose de radiação e o tipo de radiação (isto é, raios gama ou feixe de elétrons) a um dispositivo predicado contendo o antioxidante. No caso de materiais ou novos implantes, deve ser avaliada a alteração do mecanismo de desgaste pela caracterização das partículas de desgaste oriundas do ensaio de desgaste do implante, conduzida de acordo com a NBR ISO 17853, e deve ser elaborada uma análise das superfícies de desgaste em termos de tipo e extensão dos modos de danos com base em ensaios de desgaste conduzidos em condições normais e abrasivas.

Os resultados dos ensaios de desgaste e seus impactos previstos ou conhecidos sobre o desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica. A classe de UHMWPE não convencional engloba uma ampla gama de materiais, portanto não é possível determinar claramente os ensaios específicos necessários às suas caracterizações.

Além dos ensaios identificados nessa norma, devem ser consideradas as avaliações dos seguintes aspectos: as propriedades de compressão do material; o tamanho de cristais e estrutura; a resistência à fluência; e a durabilidade de superfícies modificadas. Os dados clínicos podem ser necessários para suporte à comprovação da segurança e eficácia de um UHMWPE não convencional para o uso pretendido.

Deve ser ressaltado que, sempre que requerida, a avaliação de biocompatibilidade do material e, se aplicável, do produto acabado deve ser conduzida de acordo com a ISO 10993-1. No estabelecimento de uma equivalência essencial, se demonstrado que o processamento do material para um implante a ser avaliado é idêntico ao processamento do material de um dispositivo predicado empregado para o mesmo uso pretendido, o dispositivo predicado pode ser identificado como parte da avaliação de biocompatibilidade, em substituição à condução dos ensaios específicos para este

fim.

No caso de qualquer diferença das características do material ou do processo de fabricação entre o implante e o dispositivo predicado, devem ser conduzidos os ensaios pertinentes à avaliação da biocompatibilidade. No caso da adição de antioxidantes, como o α-tocoferol, à composição do UHMWPE na forma moldada, a biocompatibilidade deve ser analisada tanto sob o ponto de vista do próprio antioxidante como de produtos de degradação induzida pela radiação.

Como a resposta do organismo aos debris oriundos do desgaste do material pode ser crítica, deve ser investigado o efeito destes debris sobre a resposta biológica esperada do implante. Esta investigação pode ser realizada em ensaios in vitro ou in vivo. O objetivo dos ensaios in vitro é demonstrar que o antioxidante e seus produtos de degradação não estão disponíveis para ações biológicas.

Isto pode ser atingido por meio da realização de extrações exaustivas sobre o material do produto acabado na forma de pó. As extrações devem empregar solventes tanto polares como não polares, e os extratos devem ser comparados com os extratos correspondentes de um dispositivo predicado para determinar se não ocorre a extração de novos extratos.

A análise deve ser realizada por espectroscopia de massa de cromatografia líquida (LCMS) e por espectroscopia de massa de cromatografia gasosa (GCMS) para capturar todos os resíduos não voláteis e semivoláteis e voláteis. Se novos extratos ou quantidades maiores de extratos forem encontrados, os efeitos podem ser avaliados por meio de uma avaliação de risco toxicológico.

Se não for possível que os extratos sejam adequadamente identificados ou se não existirem dados toxicológicos adequados para os extratos identificados, devem ser conduzidos ensaios in vivo para as avaliações e análises requeridas. Os ensaios in vivo devem ser conduzidos mediante o uso de partículas de desgaste oriundas de um ensaio em um simulador de desgaste do material ou do implante, ou outras partículas representativas destes debris e injetadas na articulação pertinente de um modelo animal apropriado. Os resultados do ensaio devem ser comparados com um controle.

A NBR 16610 de 12/2021 – Projeto de implante ortopédico — Identificação e caracterização de polietileno de ultra-alto peso molecular estabelece informações, requisitos e ensaios apropriados para a identificação e a caracterização do polietileno de ultra-alto peso molecular (UHMWPE) em projetos de implante ortopédico. Não aborda os ensaios funcionais específicos de implantes, como ensaios destinados às avaliações de desgaste, bloqueio de movimento ou resistência de acoplamento de componentes de implantes. Quando não especificado de outra forma, o termo implante é utilizado para designar implantes ortopédicos, componentes dos implantes ortopédicos ou sistemas ortopédicos.

Este documento tem por objetivo auxiliar os fabricantes na identificação de requisitos e ensaios apropriados para a caracterização das diversas classes de polietileno de ultra-alto peso molecular, utilizadas na fabricação de implantes ou componentes de implantes destinados ao uso em ortopedia, de modo que atendam aos requisitos para materiais estabelecidos na NBR ISO 14630 e àqueles importantes para o estabelecimento da segurança e eficácia. As informações apresentadas estão restritas à caracterização do material, incluindo descrição do material, biocompatibilidade, esterilização, características químicas e propriedades mecânicas, portanto, não são abordados ensaios funcionais para implantes ou componentes de implantes específicos, como os ensaios para as avaliações de desgaste, resistência de acoplamento de componentes, resistência à colisão de componentes etc., a serem estabelecidos complementarmente em cada projeto, em função do uso pretendido para o implante.

As normas referenciadas para as caracterizações recomendadas são aquelas reconhecidas como instrumento para a comprovação de segurança e eficácia de materiais e produtos para a saúde. As recomendações apresentadas aplicam-se aos implantes e componentes de implantes destinados ao uso em aplicações ortopédicas. No Anexo A encontram-se os códigos de identificação e os nomes técnicos, conforme a Codificação e Nomenclatura de Produtos Médicos, da Anvisa, aplicáveis aos produtos para a saúde constituídos ou que incluem ou podem incluir componente (s) de polietileno de ultra-alto peso molecular, destinados ao uso como implantes ortopédicos, e exemplos da descrição de próteses abrangidas em diversos sistemas ortopédicos, em cujos projetos, atualmente, este documento se aplica.

No desenvolvimento de um novo implante a ser fabricado empregando outras classes de polietileno de ultra-alto peso molecular, outros níveis de caracterização para este material podem ser necessários. O UHMWPE pode ser classificado em quatro classes de material. Na classe dos UHMWPE convencional, incluem-se as formas moldadas a partir do pó de UHMWPE, que não são intencionalmente reticuladas antes da esterilização final e que, quando esterilizadas por radiação gama ou por feixe ionizante, são expostas a uma dose total menor que 40 kGy. As especificações para UHMWPE em pó destinado à fabricação de formas moldadas estão disponíveis na NBR ISO 5834-1 e ASTM F648.

Na classe dos UHMWPE altamente reticulados, também identificados como highly crosslinked UHMWPE, incluem-se as formas moldadas a partir do pó de UHMWPE e que são submetidas a uma dose total de radiação gama e/ou de feixe ionizante maior que 40 kGy, especificamente, com o propósito de promover ligações cruzadas das cadeias poliméricas dentro do material e, posteriormente, a um recozimento, associado ou não à compressão mecânica, para redução de radicais livres, que possam promover a oxidação do material. Neste caso, o recozimento térmico pode ser conduzido tanto abaixo como acima do ponto de fusão dos cristais (normalmente, 130 ºC).

Na área de materiais, o termo recozimento mecânico é empregado para designar o tratamento mecânico destinado a reduzir a densidade de defeitos no corpo de um material, em similaridade com o propósito dos tratamentos térmicos tradicionais de recozimento. Na estrutura de materiais metálicos, o recozimento mecânico, proporcionado puramente por aplicação de tensões mecânicas, atua no nível da microestrutura, promovendo a ativação e o colapso das fontes de discordâncias na estrutura cristalina.

Em materiais poliméricos cristalinos, o tratamento refere-se ao processo de recozimento isotérmico que, associado à alta pressão, permite atingir elevadas temperaturas sem que ocorra a fusão do polietileno, onde há um relativo ganho na cristalinidade, promovendo uma maior efetividade na remoção dos radicais livres. As orientações para formas fabricadas com UHMWPE com estruturas altamente reticuladas, com ligações cruzadas obtidas por extensiva irradiação, estão disponíveis na NBR 15723-2.

Na classe dos UHMWPE altamente reticulados contendo antioxidante, incluem-se as formas moldadas, às quais é adicionado um antioxidante de material, que são submetidos a uma dose total de radiação gama e/ou de feixe ionizante maior que 40 kGy. O α-tocoferol (um isômero da vitamina E) é um composto normalmente empregado como antioxidante do UHMWPE.

As especificações para pós e formas fabricadas com UHMWPE contendo α-tocoferol estão disponíveis na NBR 15723-5. Os antioxidantes de material são normalmente adicionados de duas maneiras: por mistura ao pó de UHMWPE antes da consolidação do material; ou por encharque da forma moldada de UHMWPE em uma solução contendo o antioxidante.

Analogamente ao XLPE, após a irradiação para promoção das ligações cruzadas, o material é submetido a uma etapa de recozimento para redução de radicais livres. Neste caso, o tratamento térmico é normalmente conduzido abaixo do ponto de fusão dos cristais, uma vez que não é necessária a eliminação total dos radicais livres como meio de prevenir a oxidação do material, devido à presença do antioxidante.

Na classe dos UHMWPE não convencionais, incluem-se todos os materiais não abrangidos já descritos e qualquer outro material de UHMWPE, atualmente, sem amplo uso clínico em ortopedia. Nesta classe estão inseridos, sem se limitar a, os materiais feitos de polietilenos de peso molecular mais baixo, com estruturas altamente reticuladas, polietilenos porosos ou polietilenos com superfícies modificadas. Estes materiais podem ou não ser estabilizados com um antioxidante.

O UHMWPE deve atender aos requisitos para materiais estabelecidos na NBR ISO 14630. Caso alguma informação ou ensaio identificado neste documento não se aplique ao implante projetado, uma justificativa deve ser apresentada no relatório de análise do projeto.

Os sistemas de designação e determinação de propriedades de UHMWPE e prescrições para preparação de espécimes para ensaio e para a determinação de propriedades de UHMWPE encontram-se, respectivamente, nas ISO 21304-1e ISO 21304-2. Dependendo da classe do material, devem ser fornecidas diferentes caracterizações mecânica e química, como apresentado a seguir.

Algumas das propriedades, como propriedades de tração, resistência ao impacto e densidade, critérios de aceitação estão estabelecidos na NBR ISO 5834-2. Se o material atender aos critérios de aceitação, nenhuma informação adicional é necessária. No entanto, se as propriedades do material estiverem abaixo dos critérios de aceitação estabelecidos na NBR ISO 5834-2, informações adicionais devem ser estabelecidas para comprovar que o material é apropriado ao uso pretendido do implante.

São justificativas aceitáveis: a comparação com um dispositivo predicado que utilize o mesmo material ou material com propriedades semelhantes para o mesmo uso pretendido; as informações que demonstrem a segurança do material para o uso pretendido, com base em dados da literatura técnica e científica, incluindo, por exemplo, comparação com controles, estudos em animais, etc.; e para um implante novo, uma justificativa científica consistente, com base na literatura, resultados de estudos clínicos, etc., que possam demonstrar que o implante fabricado com o material avaliado é seguro e eficaz.

A caracterização do material pode envolver a determinação e a avaliação das seguintes propriedades: densidade de ligações cruzadas; índice de transvinileno; índice de oxidação; cristalinidade; ponto de fusão; e concentração de radicais livres. Se os valores determinados estiverem dentro de faixas normais, estabelecidas em normas ou em documentos técnicos e/ou científicos disponíveis na literatura, ou comparáveis com os resultados de um dispositivo predicado com o mesmo uso pretendido, normalmente, não são necessárias informações adicionais.

A menos que estabelecido de outra forma em uma norma específica, convém que os seguintes resultados sejam atingidos, a fim de ser desconsiderada a necessidade de uma justificativa para a aceitação dos resultados obtidos: os ensaios do índice de transvivileno demonstrem que a dose de radiação foi absorvida consistentemente ao longo de toda a amostra ensaiada; os ensaios do índice de oxidação mostrem que os níveis de oxidação são estáveis quando comparados resultados pré- e pós-envelhecimento acelerado antes, e que não são esperados efeitos adversos das propriedades mecânicas do material; e não seja detectada a concentração de radicais livres em materiais recozidos acima do ponto de fusão.

As propriedades usualmente analisadas por comparação, como as propriedades mecânicas biaxiais, resistência de propagação de trinca sob fadiga e consolidação do material, devem ser analisadas em relação às propriedades de dispositivos predicados com o mesmo uso pretendido. No caso de materiais ou novos implantes, os resultados para estas propriedades e seus impactos previstos sobre o desempenho do implante devem ser cuidadosamente discutidos e sustentados por literatura disponível e por fundamentação científica, e incorporados na análise risco/benefício para o implante.

A Qualidade das bombas de cavidade progressiva para a indústria de petróleo e gás natural

As bombas de cavidade progressiva (BCP) são constituídas de um conjunto de estator e rotor, cuja geometria gera duas ou mais séries de cavidades separadas, lenticulares e helicoidais e as bombas insertáveis são as BCP onde o estator é instalado por meio do interior da coluna de produção. Quanto à conformidade, o usuário/comprador deve especificar os graus de avaliação funcional, como F1: teste de bancada da bomba, em que o usuário/comprador deve especificar a faixa de eficiência volumétrica, fluido utilizado, rotação da bomba, temperatura e pressão do fluido para a utilização no teste de bancada.

Alternativamente, o usuário/comprador pode especificar a faixa de pressão de shut off, fluido utilizado, rotação da bomba, temperatura e pressão do fluido para a utilização no teste de bancada. O F2: avaliação funcional sem teste de bancada é a que o usuário/comprador deve especificar a faixa de eficiência volumétrica, fluido utilizado, rotação da bomba, temperatura e pressão do fluido para a utilização na avaliação funcional que é feita a partir da medição das dimensões de rotor e estator da BCP.

O usuário/comprador deve especificar um dos graus de controle de qualidade definidos, como o Q1: grau mais alto de controle de qualidade; Q2: grau intermediário de controle de qualidade; e Q3: grau básico de controle de qualidade. As BCP são bombas de deslocamento positivo e, como tal, suas vazões de fluidos são função de suas vazões e rotações.

As vazões da BCP, em termos de volume bombeado por rotação, podem ser determinadas por meio de cálculos baseados nas dimensões geométricas ou de uma interpretação dos resultados dos testes de desempenho. Entretanto, a convenção para BCP, quando instaladas em poços de petróleo, se referencia à vazão em termos de rpm com unidades como metros cúbicos por dia por 100 rpm.

Isso permite que os usuários/compradores convenientemente multipliquem a capacidade por rpm pela rotação desejada para determinar a vazão máxima em unidades usuais. Os materiais metálicos e não metálicos devem ser especificados pelo fornecedor/fabricante e devem estar de acordo com os requisitos da especificação operacional.

O fornecedor/fabricante deve ter especificações para todos os materiais. Todos os materiais utilizados devem estar em conformidade com estas especificações. As substituições de materiais em projetos validados de equipamentos são permitidas sem o teste de validação, contanto que a seleção de materiais do fornecedor/fabricante seja documentada e aprovada por pessoa qualificada

Em uma BCP, os principais componentes metálicos são o tubo estator, conexões associadas e o rotor, que normalmente é revestido com cromo. As especificações do fornecedor/fabricante devem definir os materiais para o tubo estator e barra para conformação do rotor, que são apropriados para a aplicação, levando em consideração o seguinte: os limites de composição química; os limites de propriedades mecânicas, como a tensão de ruptura; a tensão de escoamento; o alongamento; e a dureza.

A barra para conformação do rotor deve ter resistência suficiente para que o perfil e a conexão possam suportar as cargas axiais e de torção combinadas na faixa especificada para o modelo de bomba. Quando são previstas cargas de flexão e alternadas, a avaliação da resistência do rotor deve considerar o efeito de fadiga.

As aplicações em alta temperatura devem também restringir a resistência do material de acordo com a aplicação. O resultado da verificação do projeto deve ser aprovado por pessoa qualificada. Os relatórios de teste de material apresentados pelo fornecedor do material ou fabricante podem ser utilizados para verificar a conformidade do material ante as especificações.

O revestimento do rotor ou tipo de tratamento de superfície e espessura (quando aplicável) deve levar em consideração as características do fluido do ambiente de operação especificado nos requisitos funcionais, em particular a abrasividade, assim como quaisquer tratamentos químicos especiais previstos. As especificações do fornecedor/fabricante devem definir as características e os critérios de aceitação do revestimento ou tratamento do rotor, incluindo o revestimento-base ou a composição do tratamento superficial; a dureza superficial efetiva; a espessura mínima do revestimento na crista e no vale do rotor, quando aplicável, e a rugosidade da superfície.

Como diretriz operacional, é muito importante confirmar se a bomba gira na direção correta quando dada a partida. Uma vez que a BCP é uma bomba de deslocamento positivo, ela pode bombear em ambas as direções, logo secando a tubulação, se operada no sentido contrário. Se for permitido que a bomba opere seca, o estator pode ser danificado devido à falta de lubrificação. A coluna de transmissão também tende a se desenroscar, se girada na direção contrária.

Os passos descritos a seguir devem ser seguidos antes de dar a partida em um sistema de BCP. Ligar o motor por um curto período de tempo para verificar a direção correta de rotação do transmissor de superfície; garantir que as seguintes condições foram atingidas: o grampo da haste polida está adequadamente apertado; o comprimento máximo da haste polida que ultrapassa o grampo não excede a recomendação do fornecedor/fabricante (normalmente menos que 0,3 m); todas as proteções foram instaladas sobre as partes girantes no cabeçote de acionamento de superfície; os mancais e a caixa de vedação estão adequadamente lubrificados e selados; as gaxetas não estão apertadas demais; todas as válvulas na linha de fluxo da cabeça do poço para tanques ou para linhas de coleta estão abertas; o sistema de freio está funcional; o cabeçote de acionamento de superfície está instalado de acordo com as especificações do fornecedor/fabricante com os níveis apropriados de óleo e tensão da correia, se aplicável; os parâmetros de fechamento de emergência estão definidos corretamente no sistema de controle da bomba, com a pressão de fechamento de emergência baseada no status do sistema de coleta.

Por exemplo, se o sistema de coleta estiver fechado, o sinal de interrupção é enviado diretamente para o poço, evitando o bombeamento com o sistema de coleta fechado. Deve-se registrar o nível de fluido no poço ou registrar a leitura do sensor de fundo do poço para ter uma referência da pressão de fundo antes da partida.

A NBR 16464 de 04/2016 – Industria de petróleo e gás natural — Sistemas de bombas de cavidades progressivas para elevação artificial — Bombas estabelece requisitos para o projeto, verificação e validação de projeto, controle de fabricação e de dados, classificações de desempenho, avaliação funcional, reparos, manuseio e armazenamento de bombas de cavidades progressivas (BCP), para utilização na indústria do petróleo e gás natural. Esta norma se aplica aos produtos que atendem à definição de BCP. As conexões à coluna de produção ou à coluna de transmissão não fazem parte desta norma. Ela inclui anexos normativos que estabelecem os requisitos para a caracterização e testes de elastômeros, validação de projeto e avaliação funcional.

Adicionalmente, os anexos informativos fornecem informações para a seleção e teste de elastômero de BCP, instalação, diretrizes de partida e operação, diretrizes de seleção e aplicação de equipamentos, formulário de especificação operacional, avaliação de bomba utilizada, seleção e utilização da coluna de transmissão, procedimento de reparo e recondicionamento e equipamentos auxiliares. Os equipamentos não abrangidos pelos requisitos desta norma incluem os sistemas com transmissão de fundo, exceto para os componentes BCP, componentes da coluna de transmissão e equipamentos auxiliares, como separadores de gás e âncoras de torque. Estes itens podem ou não estar cobertos por outras normas.

A bomba de cavidade progressiva (BCP) é constituída de um conjunto de estator e rotor, cuja geometria gera duas ou mais séries de cavidades separadas, lenticulares e helicoidais. Essa norma foi desenvolvida por usuários/compradores e fornecedores/fabricantes de bombas de cavidades progressivas, para utilização na indústria de petróleo e gás natural. Esta norma fornece os requisitos e as informações relativas à seleção, à fabricação, aos testes e à utilização de bombas de cavidades progressivas, conforme definido no escopo.

Além disso, esta norma trata dos requisitos de fornecedores, que estabelecem os parâmetros mínimos a serem atendidos por eles para declararem a conformidade com ela. Foi estruturada para permitir incrementos dos requisitos na documentação de controle de qualidade. Estas variações permitem que o usuário/comprador selecione o grau necessário para uma aplicação específica.

Existem três graus de validação de projeto (V1, V2 e V3) e de controle de qualidade (Q1, Q2 e Q3), e dois graus de avaliação funcional (F1 e F2). O grau V3 de validação de projeto é restrito a produtos de legado, sendo V2 o grau básico e o grau mais alto o V1. O controle de qualidade grau Q3 é o padrão e os graus Q2 e Q1 fornecem requisitos adicionais.

Entre os graus de avaliação funcional, apenas o F1 exige teste hidráulico da bomba BCP em bancada. O usuário/comprador tem a opção de especificar os requisitos adicionais a estes graus. Recomenda-se que os usuários estejam cientes de que podem ser necessários requisitos além daqueles previstos para aplicações individuais.

Esta norma não pretende impedir que o fornecedor/fabricante ofereça, ou que o usuário/comprador aceite, equipamentos ou soluções de engenharia alternativas. Isso pode aplicar-se, particularmente, no caso de uma tecnologia inovadora ou em desenvolvimento. Quando uma alternativa é oferecida, recomenda-se que o fornecedor identifique quaisquer mudanças em relação a esta Norma e que apresente detalhes. Pode-se acrescentar que diferencial de pressão admitido por estágio seria o valor de diferencial de pressão estabelecido em função das seguintes características: número de lóbulos, distribuição da espessura do elastômero (constante ou variável), material do elastômero, configuração de passo (ver tabela abaixo).

O usuário/comprador deve preparar uma especificação operacional para encomendar uma BCP em conformidade com esta norma, bem como deve especificar os requisitos e condições operacionais apropriadas, e/ou identificar a BCP específica do fornecedor/fabricante. Esta informação é utilizada pelo fornecedor/fabricante para recomendar a BCP e/ou outros componentes para a aplicação.

Estes requisitos e condições de operação podem ser transmitidos por meio de um formulário de especificação operacional pelo usuário/comprador (Anexo A) e diretrizes operacionais (Anexo B). O usuário/comprador deve especificar as unidades de medida para os dados fornecidos.

As BCP são projetadas para aplicações específicas; as suas utilizações em aplicações novas ou diferentes exigem uma avaliação detalhada pelo usuário/comprador para garantir que o sistema possa operar adequadamente em todos os aspectos de uma nova aplicação. Os Anexos B e C contêm as diretrizes de instalação e operação que podem ser relevantes nesta consideração.

O processo utilizado para avaliar a nova aplicação não pode ser menos restrito do que o necessário para a aplicação inicial. São considerados os seguintes tipos de BCP: quanto ao material do estator (metálico ou elastomérico); quanto à espessura do elastômero (constante ou variável); quanto ao número de lóbulos (singlelobe ou duallobe); quanto ao assentamento (insertável ou tubular).

O usuário/comprador deve selecionar uma BCP baseado nas seguintes condições: os requisitos de produção; as características dos fluidos; a configuração do equipamento de superfície; o tipo de assentamento do estator, como coluna de transmissão, coluna de produção e tubos contínuos (coiled tubing). Quando instalada, a BCP deve operar de acordo com os seus requisitos operacionais, que são normalmente determinados com base nos parâmetros de aplicação.

Estes parâmetros incluem, mas não são limitados a aqueles listados nessa norma, quando aplicável. As seguintes informações do poço devem ser especificadas, quando aplicável: ambiente de operação, métodos térmicos de recuperação, condições abrasivas, ambientes corrosivos, produção de óleo convencional e pesado, e no processo de produção de metano nas jazidas de carvão; tipo de poço, como o vertical, inclinado, desviado ou horizontal; perfil direcional do poço, quando aplicável; localização da cabeça do poço, em terra, plataforma ou submarina; tipo de reservatório, como de carbonato, arenito consolidado, arenito não consolidado, carvão ou xisto; mecanismo de produção e recuperação de reservatório, como influxo de água, gás em solução, injeção de água, métodos térmicos, drenagem da água das jazidas de carvão, recuperação avançada de petróleo, como injeção de CO2, injeção alternada de água e gás, ou injeção de polímeros; tipo de completação, como revestimento canhoneado, poço aberto, tubo rasgado, empacotamento de areia (gravel pack) ou tela de contenção de areia; histórico de produção utilizando BCP e outras práticas operacionais, como outros métodos de elevação artificial e surgência; e expectativa de vida útil, como produção acumulada, número de rotações, dias e anos.

As seguintes informações de completação devem ser especificadas, quando aplicável: a profundidade de assentamento da bomba em termos de profundidade medida (MD) e profundidade vertical (TVD) na admissão da bomba; a profundidade do intervalo produtor em termos de MD e TVD; a profundidade atual total do poço, como profundidade de BPP, em termos de MD e TVD; nos casos onde não é fornecido o perfil direcional do poço: inclinação (ângulo do poço) e curvatura do poço (quando aplicável) na profundidade de assentamento da bomba; máxima curvatura do poço (máximo dogleg) desde a cabeça do poço até a profundidade de assentamento da bomba, por meio do qual é necessário que a BCP passe durante a instalação.

Deve-se incluir o diâmetro do revestimento, incluindo o diâmetro externo e o peso linear, tipo de rosca e grau do material do revestimento de produção; o diâmetro mínimo de passagem entre a cabeça do poço e a profundidade de assentamento da bomba; o diâmetro mínimo de passagem na profundidade de assentamento da bomba; o diâmetro da coluna de produção, incluindo diâmetro externo, peso linear, tipo de rosca e grau do material do tubo; o tipo e espessura do revestimento interno da coluna de produção; tipo de admissão da bomba, como tubo rasgado, tubo perfurado/telado, âncora de gás, tubo de cauda; o tipo de âncora de torque; a profundidade medida no topo da âncora de torque; e outras dimensões do poço que possam restringir a instalação ou operação do poço.

As seguintes informações de produção e operação devem ser especificadas, quando aplicável: a vazão total de líquido nas condições-padrão (20 °C, pressão atmosférica); o corte de água por porcentagem do volume dos líquidos produzidos ou vazões de óleo e água produzidos; o teor de areia, expresso em porcentagem por volume; a rotação máxima e mínima de operação, expressa em rotações por minuto; a pressão na cabeça do poço; a temperatura do fluido na cabeça do poço; a pressão do revestimento; a pressão na admissão da bomba na condição de pressão estática ou parada; a pressão na profundidade de referência do reservatório na condição de pressão estática ou parada.

Além disso, deve ser incluída a temperatura na admissão da bomba na condição de pressão estática ou parada; a temperatura na profundidade de referência do reservatório na condição de pressão estática ou parada; a razão gás/óleo de produção ou vazão de gás, medida em condições-padrão (20 °C, pressão atmosférica); a razão entre a vazão de gás produzida pelo revestimento e a vazão de gás produzida pela coluna de produção em condições-padrão (20 °C, pressão atmosférica) e/ou eficiência de separação de gás livre na condição de fundo. Especificar, ainda, a pressão na admissão da bomba (PIP), podendo ser expresso como a pressão na admissão da bomba nas condições de produção; a altura de fluido em condições de produção (submergência da bomba), gradiente/densidade do fluido do anular e pressão do revestimento; a pressão estática do reservatório, índice de produtividade, gradiente/densidade do fluido e vazão; a altura de fluido em condições estáticas, índice de produtividade, gradiente/densidade do fluido e vazão

Importante definir a tendência de golfada, como de gás, água, sólidos e vapor. O usuário/comprador deve especificar os requisitos de compatibilidade ambiental. Os seguintes parâmetros devem ser fornecidos, quando aplicável: para óleo: grau API para temperatura e pressão-padrão (20 °C, pressão atmosférica); análise de composição, incluindo, mas não restrita ao tipo e concentração de espécies aromáticas; ponto de anilina; viscosidade em condições de teste e/ou operacionais; e pressão de bolha na temperatura do reservatório.

Para a água, deve-se indicar o pH; a massa específica; e a concentração de cloretos. Para gás, descrever a composição como a concentração de CO2, expressa em porcentagem molar; a concentração de H2S, expressa em porcentagem molar; a temperatura, pressão e qualidade do vapor e a densidade.

Para sólidos, um histórico de problemas relacionados a sólidos, como erosão, tamponamento e desgaste; morfologia, como tamanho, estrutura, forma geométrica e composição; tendência de incrustação; tendência de deposição de parafina e/ou asfalteno; outros como a propriedades da emulsão, como o ponto de inversão (corte de água – %); viscosidade da emulsão em condições de fundo do poço durante a vida útil prevista para a bomba; tendência de formação de emulsão. Indicar o comportamento do óleo com espuma; outros tipos e concentrações de fluidos, como diluentes, inibidor de corrosão/incrustação, fluido de completação, dispersantes e pontos de injeção no poço.

O usuário/comprador deve especificar, quando aplicável, os requisitos de compatibilidade dos projetos das interfaces, materiais e limitações dimensionais externas, necessárias para garantir que os equipamentos estejam de acordo com a aplicação. O seguinte tópico deve ser considerado para a aplicação: tipo: cabeçote de acionamento ou transmissão de fundo. Os sistemas de transmissão por cabeçote de acionamento são tratados na NBR 16304. Também considerar as limitações de torque, rotação e carga axial.

Para sistemas de transmissão de fundo, o tipo de motor, como elétrico ou hidráulico; as limitações operacionais, como geração de calor, restrição de fluxo na admissão ou na descarga; o máximo diâmetro externo, comprimento e posição, acima ou abaixo da BCP; e o fator de redução do redutor. Para a coluna de transmissão, os seguintes tópicos devem ser considerados para a aplicação: tipo, como convencional, contínua, oca; grau do material; diâmetro do corpo; descrição e tipo da conexão; capacidade de torque e carga axial; o tipo e a descrição de centralizadores e quantidade instalada; e o tipo e a descrição de guias e quantidade instalada.

A conformidade dos transformadores de potencial indutivos

A NBR IEC 61869-3 de 09/2021 – Transformadores para instrumento – Parte 3: Requisitos adicionais para transformadores de potencial indutivos é aplicável aos transformadores de potencial indutivos novos para utilização em instrumentos elétricos de medição e em dispositivos elétricos de proteção com frequência nominal de 15 Hz a 100 Hz. Os requisitos específicos para os transformadores de potencial trifásicos não estão incluídos nessa norma, mas, na medida em que sejam aplicáveis, os requisitos das Seções 4 a 10 se aplicam a esses transformadores e algumas referências a eles são incluídas nessas seções. Todos os transformadores devem ser adequados para fins de medição, mas, adicionalmente, certos tipos podem ser também adequados para fins de proteção. Os transformadores para dupla aplicação de medição e proteção devem cumprir com todos as seções dessa norma.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as marcações na placa de características?

Qual seria um exemplo típico de placa de características?

Como deve ser feito o ensaio de elevação de temperatura?

Como deve ser executado o ensaio de tensão suportável de impulso nos terminais primários?

A tensão suportável à frequência industrial nominal de curta duração deve ser de 3 kV (valor eficaz). Os valores padronizados de potência nominal a um fator de potência de 1, expressos em volt-ampères, são: 1,0 – 2,5 – 5,0 – 10 VA (faixa de carga I). Os valores padronizados de potência nominal a um fator de potência de 0,8 atrasado, expressos em volt-ampères, são: 10 – 25 – 50 – 100 VA (faixa de carga II).

A potência nominal de um transformador trifásico deve ser a potência nominal por fase. Para um determinado transformador, desde que um dos valores de potência nominal seja padronizado e associado a uma classe de exatidão padronizada, a declaração de outras potências nominais, que podem ser valores não padronizados, mas associados a outras classes de exatidão padronizadas, não é excluída.

A potência térmica limite nominal deve ser especificada em volt-ampères e os valores padronizados são: 25 – 50 – 100 VA e seus múltiplos decimais, referenciados à tensão secundária nominal com fator de potência unitário.

A potência nominal de enrolamentos destinados a serem conectados em delta quebrado com enrolamentos similares para produzir uma tensão residual deve ser especificada em volt-ampères e o valor deve ser escolhido a partir dos valores especificados nessa norma. A potência térmica limite nominal para enrolamento de tensão residual deve ser especificada em volt-ampères e os valores padronizados são: 25 – 50 – 100 VA e seus múltiplos decimais, referenciados à tensão secundária nominal com fator de potência unitário.

Onde uma potência térmica limite é atribuída a um enrolamento de tensão residual conectado em delta quebrado, convém notar que estes enrolamentos somente são carregados sob condições de falta e, portanto, por uma duração limitada. Como exceção à definição da potência térmica limite, é indicado que a potência térmica nominal de um enrolamento de tensão residual seja referenciada a uma duração de 8 h.

A classe de exatidão nominal inclui os requisitos de exatidão para transformadores de potencial indutivos monofásicos para serviços de medição. Para a designação de classe de exatidão para transformadores de potencial para serviços de medição, para os transformadores de potencial para serviços de medição, a classe de exatidão é designada pela porcentagem mais alta permitida do erro de relação à tensão nominal e carga nominal, especificada para a classe de exatidão considerada.

As classes de exatidão padronizadas para transformadores de potencial indutivos monofásicos para serviços de medição são: 0,1 – 0,2 – 0,5 – 1,0 – 3,0. As orientações sobre as classes de exatidão apropriadas serão incluídas em um anexo futuro. Os limites de erro de tensão e defasagem angular para transformadores de potencial para serviços de medição é o erro de tensão e defasagem angular à frequência nominal e não pode exceder os valores dados na tabela abaixo a qualquer tensão entre 80% e 120% da tensão nominal e com cargas

Qualquer valor de 0 VA a 100 % da carga nominal, a um fator de potência igual a 1 para a faixa de carga I. Entre 25% e 100% da carga nominal a um fator de potência de 0,8 atrasado para a faixa de carga II.

Os erros devem ser determinados nos terminais do transformador e devem incluir os efeitos de quaisquer fusíveis ou resistores que sejam uma parte integral do transformador. Para os transformadores com derivações no enrolamento secundário, os requisitos de exatidão se referem à maior relação de transformação, a menos que especificado de outra forma.

Para todos os transformadores de potencial destinados aos serviços de proteção, com exceção dos enrolamentos de tensão residual, deve ser atribuída uma classe de exatidão de medição de acordo com o especificado nessa norma. Adicionalmente, deve-se atribuir uma das classes de exatidão especificadas nessa norma.

A classe de exatidão para um transformador de potencial para serviços de proteção é designada pela porcentagem de erro de tensão mais alta especificada para a classe de exatidão considerada, de 5% da tensão nominal a uma tensão correspondente ao fator de tensão nominal. Esta expressão é seguida pela letra P.

As classes de exatidão padronizadas para transformadores de potencial para serviços de proteção são 3P e 6P, e os mesmos limites de erro de tensão e defasagem angular se aplicarão normalmente a ambos, 5% da tensão nominal e à tensão correspondente ao fator de tensão nominal. A 2% da tensão nominal, os limites de erro serão duas vezes os limites a 5 % da tensão nominal.

O erro de tensão e a defasagem angular à frequência nominal não podem exceder os valores da Tabela 302 disponível na norma, a 5% da tensão nominal e à tensão nominal multiplicada pelo fator de tensão nominal (1,2, 1,5 ou 1,9), com cargas de: qualquer valor de 0 VA a 100% da carga nominal, a um fator de potência igual a 1 para a faixa de carga I e entre 25 % e 100 % da carga nominal a um fator de potência de 0,8 atrasado para a faixa de carga II.

Os valores padronizados de tensão primária nominal de transformadores trifásicos e de transformadores monofásicos para uso em um sistema monofásico ou entre fases em um sistema trifásico devem ser um dos valores de tensão primária nominal, designados como sendo valores usuais na IEC 60038. Os valores padronizados de tensão primária nominal de um transformador monofásico conectado entre uma fase de um sistema trifásico e terra, ou entre um ponto neutro do sistema e terra, deve ser 1/√3 vezes um dos valores de tensão nominal do sistema.

O desempenho de um transformador de potencial como um transformador para serviços de medição ou proteção é baseado em sua tensão primária nominal, enquanto o nível de isolamento nominal está baseado em uma das tensões máximas para equipamento da IEC 60038. A tensão secundária nominal deve ser escolhida de acordo com a prática do local onde o transformador é utilizado.

Os valores dados abaixo são considerados valores padronizados para transformadores monofásicos em sistemas monofásicos ou conectados entre fases em sistemas trifásicos e para transformadores trifásicos. Com base na prática atual de um grupo de países europeus: 100 V e 110 V; 200 V para circuitos secundários estendidos. Com base na prática atual nos Estados Unidos e Canadá: 120 V para sistemas de distribuição; 115 V para sistemas de transmissão; 230 V para circuitos secundários estendidos.

Para os transformadores monofásicos destinados a serem utilizados em conexão fase-terra em sistemas trifásicos em que a tensão primária nominal é um número dividido por √3, a tensão secundária nominal deve ser um dos valores mencionados divididos por √3, retendo assim o valor da relação de transformação nominal. Quando o transformador for equipado com um tanque conservador ou tiver um gás inerte acima do óleo, ou for hermeticamente selado, a elevação de temperatura do óleo na parte superior do tanque ou da carcaça não pode exceder 55 K. Quando o transformador não possuir estes dispositivos, a elevação de temperatura do óleo na parte superior do tanque ou da carcaça não pode exceder 50 K.

REVISTA DIGITAL ADNORMAS – Edição 178 | Ano 4 | 30 Setembro 2021

Acesse a versão online: https://revistaadnormas.com.br       Revista AdNormas - Ed 178 Ano 4
Edição 178 | Ano 4 | 30 Setembro 2021
ISSN: 2595-3362 Acessar edição
Capa da edição atual
Confira os 12 artigos desta edição:
A gestão da instalação de laboratórios para análises e controle de águas
A Qualidade dos carrinhos de mão empregados na construção civil
O que o gambito da rainha e a estruturação ESG têm em comum
A gestão das denúncias de irregularidades em uma empresa
A conformidade dos diafragmas de borracha natural e de silicone
A avaliação da vibração no corpo do operador de máquinas rodoviárias
Target Adnormas
O impacto dos lubrificantes no desenvolvimento da atividade mineradora
Empresas varejistas perdem até 7% do lucro por falhas no fluxo de informações
A gestão das características do produto em sistemas espaciais
O gerenciamento do ciclo de vida do software é estratégico para os negócios
A conformidade dos sistemas de videomonitoramento em segurança
Os fatores importantes na hora de contratar uma transportadora para a indústria

A determinação das características de permeabilidade à água de geotêxteis

A NBR ISO 11058 de 09/2021 – Geotêxteis e produtos correlatos – Determinação das características de permeabilidade hidráulica normal ao plano e sem confinamento especifica dois métodos de ensaio para a determinação das características de permeabilidade à água normal ao plano, de uma camada única de geotêxtil ou produto correlato: o método da carga constante; e o método da carga variável.

Confira algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como calcular a velocidade de fluxo?

Qual deve ser a aparelhagem para método de carga variável?

Quais são os exemplos de aparelhagens para o método da carga constante?

Qual o exemplo de variação do nível de água registrado com impressora analógica?

Para o manuseio dos corpos de prova, a amostra não pode ser dobrada e deve ser menos manuseada possível, a fim de evitar alteração na sua estrutura. A amostra deve ser mantida na posição horizontal, sem qualquer sobrecarga. Os corpos de prova devem ser retirados da amostra de acordo com a NBR ISO 9862.

Cinco corpos de prova devem ser cortados da amostra, e adequados às dimensões necessárias a serem utilizadas na aparelhagem de permeabilidade de água. Se for necessário determinar os resultados da média populacional por intervalo de confiança, o número de corpos de prova deve ser determinado de acordo com a ISO 2854.

Os corpos de prova devem estar limpos, livres de deposições na superfície e sem danos visíveis ou marcas de dobras. O princípio do método da carga constante envolve uma camada única de geotêxtil ou produto correlato sem carregamento mecânico é submetida a um fluxo unidirecional de água, normal ao seu plano, em um intervalo de cargas hidráulicas constantes.

Deve-se contar com uma aparelhagem que permita observar a presença de bolhas de ar na superfície do corpo de prova, com diâmetro interno mínimo de 50 mm, conforme os requisitos a seguir. A aparelhagem deve ser capaz de aplicar uma perda de carga hidráulica máxima de pelo menos 70 mm e manter uma carga hidráulica constante durante todo o ensaio, com água em ambos os lados do corpo de prova. Alguns exemplos de aparelhagens são mostrados na figura abaixo.

O diâmetro médio interno da aparelhagem deve ser conhecido, com exatidão de pelo menos 0,1 mm. O diâmetro da área ensaiada do corpo de prova deve ser igual ao diâmetro interno da aparelhagem. O diâmetro da aparelhagem deve permanecer constante a jusante e a montante do corpo de prova, em uma extensão de pelo menos duas vezes o seu valor. Mudanças abruptas no diâmetro interno devem ser evitadas.

Alternativamente, o fluxo de jusante pode ser descarregado em um reservatório com diâmetro de pelo menos quatro vezes o diâmetro da área ensaiada do corpo de prova. Neste caso, a distância entre o corpo de prova e a base do reservatório deve ser de pelo menos 1,5 vez o diâmetro da área ensaiada do corpo de prova.

Se o produto apresentar descontinuidades-padrão, estas devem aparecer pelo menos três vezes no diâmetro da área ensaiada do corpo de prova. Quando necessário, para evitar deformações visíveis, deve-se utilizar uma tela rígida de suporte, com fios de aproximadamente 1 mm de diâmetro e tamanho de malha de (10 ± 1) mm, posicionada a jusante do corpo de prova, durante o ensaio.

A perda de carga, medida em um ensaio sem o corpo de prova, mas incluindo a tela de suporte, deve ser menor que 1 mm para qualquer velocidade de fluxo. A água deve estar a uma temperatura entre 18 °C e 22 °C. Como a correção de temperatura (ver Anexo A) é válida somente para a condição de fluxo laminar, convém trabalhar o mais próximo possível dos 20 °C, para minimizar inexatidões associadas a fatores de correção inapropriados, no caso de fluxo não laminar.

A água não pode ser alimentada na aparelhagem diretamente de uma fonte principal, pois podem ocorrer problemas causados pela liberação de bolhas de ar, que podem ficar retidas na estrutura do corpo de prova. É recomendado que a água seja preferencialmente desaerada ou alimentada a partir de um reservatório de repouso. Não é recomendado que a água seja continuamente reciclada.

O oxigênio dissolvido na água não pode exceder a 10 mg/kg e deve ser medido no ponto de entrada da água na aparelhagem. A água deve ser filtrada se forem observadas partículas em suspensão ou deposições sobre o corpo de prova que possam inibir o fluxo ao longo do tempo. Deve-se usar um medidor de oxigênio dissolvido, ou aparelhagem de acordo com a ISO 5813, um cronômetro, com exatidão de 0,2 s, termômetro, com exatidão de 0,5 °C e recipiente de medida, de tamanho apropriado, para determinar o volume de água com exatidão de 1% da capacidade do recipiente.

Quando a vazão de água é determinada por medida de volume, um recipiente para determinação de volume com exatidão de 1% é requerido. Quando um medidor de vazão é utilizado, a vazão deve ser medida com exatidão de 5%. Quando o volume de água é determinado por sua massa, esta deve ser determinada com exatidão de 1%.

Para um sistema de medida para determinar a carga hidráulica aplicada, com exatidão de 3%, colocar os corpos de prova imersos em água com um agente surfactante não iônico em volume de 0,1% (1 mL/L), à temperatura do laboratório, agitar suavemente para remover as bolhas de ar e deixar em saturação por pelo menos 12 h. Colocar o corpo de prova na aparelhagem e assegurar-se da estanqueidade de todas as juntas.

Carregar a aparelhagem com água até uma diferença de carga hidráulica de 50 mm entre a jusante e a montante do corpo de prova. Cortar o suprimento de água e verificar se a carga hidráulica se equaliza em ambos os lados do corpo de prova em até 5 min. Caso isto não ocorra, investigar a possibilidade de existirem bolhas de ar retidas nas superfícies do corpo de prova e repetir a operação.

Se a equalização não puder ser alcançada em 5 min, indicar este fato no relatório. Se as características de permeabilidade completas de um geotêxtil ou produto correlato tiverem sido previamente determinadas, para efeito de controle, apenas um ensaio a perda de carga de 50 mm pode ser suficiente para determinar a velocidade-índice.

Ajustar o fluxo até atingir uma perda de carga hidráulica de (70 ± 5) mm e registrar este valor com precisão de 1 mm. Quando esta altura permanecer estável por um tempo mínimo de 30 s, realizar uma medida de vazão. Com um recipiente de medida, coletar a água passando em um período fixo de tempo e registrar o volume de água coletado com aproximação de 10 cm3 e o tempo com aproximação de 1 s.

É recomendado que o volume de água coletado seja no mínimo de 1.000 cm³ e o tempo de coleta no mínimo de 30 s. Quando a vazão for determinada por volume, o volume do recipiente não pode exceder duas vezes o volume de água coletado. Se um medidor de vazão for utilizado, recomenda-se que uma velocidade máxima proporcionando uma perda de carga de aproximadamente 70 mm seja selecionada.

A velocidade real deve ser obtida por meio da média de três leituras consecutivas, em um intervalo de tempo mínimo de 15 s entre leituras. Repetir o já descrito para quatro outros valores de perda de carga de aproximadamente 0,8; 0,6; 0,4 e 0,2 vez a máxima perda de carga, começando com o maior valor e terminando com o menor.

O mesmo princípio se aplica à velocidade, ao usar um medidor de vazão. Registrar a temperatura da água com exatidão de 0,5 °C. Repetir o descrito para cada um dos corpos de prova remanescentes.

O relatório deve conter as informações indicadas a seguir: número e ano de publicação desta norma brasileira, isto é, NBR ISO 11058:2021; laboratório de ensaio e, se requerido, o operador responsável; uma descrição do produto ensaiado de acordo com a NBR ISO 10320; área ensaiada do corpo de prova; quando da determinação plena das características de permeabilidade, um gráfico contendo as curvas plotadas para as velocidades de fluxo, v, e as perdas de carga, H, obtidas para cada corpo de prova; valor da velocidade-índice para a perda de carga de 50 mm (v-index) e, quando solicitado, os valores medidos para cada corpo de prova, a média amostral e os valores máximo e mínimo dos corpos de prova (ver Anexo C).

Deve-se incluir, ainda no arquivo: o intervalo de variação da temperatura da água; o tipo de água utilizada (destilada, desaerada, desmineralizada, filtrada) e valores do teor de oxigênio dissolvido; o tipo do medidor de vazão, quando utilizado; qualquer desvio observado em relação a esta norma; qualquer anomalia observada no comportamento hidráulico do produto. Adicionalmente, se requerido: os detalhes da aparelhagem utilizada, incluindo um diagrama; os dados experimentais e cálculos para cada corpo de prova podem ser tabelados. Exemplos são dados no Anexo D.

O ensaio de emissão acústica para a detecção de corrosão em fundos de tanques metálicos

A NBR 16997 de 09/2021 – Ensaios não destrutivos – Emissão acústica – Detecção de corrosão em fundos de tanques metálicos de armazenamento descreve o método de ensaio de emissão acústica (EA) para detecção e localização de áreas com processos corrosivos em fundos de tanques atmosféricos metálicos, construídos em aço-carbono, para armazenamento em serviço. Não se aplica à detecção de vazamentos.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Por que fazer a manutenção e a verificação do sistema de medição de emissão acústica (EA)?

Para o ensaio, como deve ser feita a montagem dos sensores?

Como deve ser feito o processamento e a análise dos dados coletados?

O que deve ser incluído no relatório de ensaio?

Esse método de ensaio consiste em monitorar o fundo de tanques de armazenamento durante um período determinado, utilizando sensores de emissão acústica (EA) para detectar o processo corrosivo. Nessa norma são descritos os instrumentos e as técnicas para detectar e analisar a EA.

Outros métodos de ensaios não destrutivos (END) devem ser utilizados para confirmar a presença do processo corrosivo detectado por EA. Todas as etapas do ensaio devem ser descritas em um procedimento escrito e qualificado por profissional nível 3.

O excesso de ruído de fundo pode distorcer os dados de EA, impedindo a avaliação. O pessoal qualificado que realiza o ensaio deve estar atento às fontes comuns de ruído de fundo: contato mecânico do tanque com objetos (impacto, fricção, atrito); interferência eletromagnética (motores, máquinas de solda, guindastes) e interferência de radiofrequência; vazamentos em conexões de mangueiras ou tubulações; vazamentos no fundo ou no costado do tanque; partículas em suspensão no ar; contato de insetos, gotas de chuva, aquecedores, sprinklers, agitadores, detectores de nível, válvulas abertas e outros componentes dentro do tanque; reações químicas que ocorrem dentro do tanque e movimento hidrodinâmico de bolhas de gás; gotejamento proveniente do teto, devido à condensação de gases.

Se o ruído de fundo não for eliminado ou controlado, não é permitido utilizar este método de ensaio. Para as condições de ensaio, o tanque deve estar com o nível do produto adequado ao seu diâmetro e altura para a realização do ensaio. O tempo de repouso a ser adotado antes da coleta de dados deve ser conforme a tabela abaixo.

Para os tanques com isolamento térmico, deve ser aberta uma janela no isolamento para a instalação dos sensores ou guias de onda. A pessoa que executa o ensaio de emissão acústica deve atender aos requisitos da NBR NM ISO 9712.

Para o sistema de medição de EA, os requisitos para os sensores de EA são os seguintes: o pico da resposta em frequência dos sensores deve estar entre 20 kHz e 90 kHz; a sensibilidade mínima deve ser equivalente ou maior que 60 dB em referência a 1 V/(m∙s-1), para ondas superficiais ou ondas longitudinais, em situações de campo; os sensores devem ser protegidos contra radiofrequência e interferência eletromagnética por blindagem adequada ou por projeto de entradas diferenciais, ou ambos.

O invólucro metálico do sensor de EA deve estar isolado eletricamente da parede do tanque de armazenamento a ser ensaiado, seja por suas características próprias ou pela sua montagem no tanque. Os sensores devem ser estáveis na resposta em frequência e faixa de temperatura, e não podem exibir variações de sensibilidade maiores que 3 dB nesta faixa.

A quebra de uma barra de grafite com 0,5 mm de diâmetro, dureza 2H, a 50 mm do sensor (alternativamente 0,3 mm de diâmetro e à distância de 20 mm) deve gerar um sinal com amplitude de no mínimo 85 dB e a verificação dos sensores deve ser realizada conforme a NBR NM 341. Para os cabos de sinal, quando for utilizado sensor com pré-amplificador integrado, este requisito não se aplica.

Os requisitos para cabos de sinal acústico utilizados para conectar os sensores aos pré-amplificadores são os seguintes: os cabos de sinal conectados aos sensores e pré-amplificadores devem ser protegidos contra interferência eletromagnética; o comprimento não pode exceder 2 m, a menos que a perda de sinal seja aceitável. O acoplante utilizado deve fornecer transferência de sinal constante.

O método de verificação da qualidade da montagem deve ser informado. Os pré-amplificadores podem ser separados ou integrados ao sensor. Os requisitos para os pré-amplificadores são os seguintes: o ruído RMS do circuito do pré-amplificador deve ser menor que 7 μV; os pré-amplificadores devem ser estáveis na resposta em frequência e faixa de temperatura, e não podem exibir variações de sensibilidade maiores que 3 dB nesta faixa; a resposta em frequência dos pré-amplificadores deve ser compatível com a dos sensores, e o ganho dos pré-amplificadores não pode saturar a medição.

Os cabos de força e de sinal que fornecem força para o pré-amplificador e conduzem o sinal amplificado para o processador principal são os seguintes: os cabos de força e de sinal devem ser protegidos contra interferência eletromagnética; a perda de sinal não pode ser maior que 1 dB por 30 m de comprimento de cabo; para evitar a atenuação excessiva de sinal, recomenda-se que o comprimento do cabo não seja superior a 150 m.

A resposta em frequência dos filtros nos pré-amplificadores e no sistema de medição de EA deve ser compatível com os sensores de EA. Os requisitos para o sistema de medição de EA são os seguintes: número suficiente de canais para o tanque sob ensaio; para cada canal, registrar no mínimo os seguintes parâmetros: tempo de chegada, limiar, amplitude, contagem, MARSE, tempo de subida, duração e sinais; a coleta e o registro de sinais elétricos externos, como nível do líquido e temperatura; a frequência de amostragem individual de cada canal não pode ser menor que 10 vezes a resposta em frequência central do sensor; a incerteza da medição para o limiar acima de 40 dBEA deve ser de até ± 1 dB; a incerteza da medição para contagens deve ser de até ± 5%; a incerteza da medição para amplitude de pico acima de 40 dBEA deve ser de até ± 1 dB; a incerteza da medição para energia (MARSE) acima de 40 dBEA deve ser de até ±5%.

A incerteza da medição para as entradas paramétricas deve ser de até 2% da faixa total da escala. Se a localização da fonte delta T for usada, a resolução do tempo de subida, duração e tempo de chegada para cada canal deve ser pelo menos de 1 μs e o erro do tempo de chegada entre cada canal deve ser de até ± 3 μs.

O nível de ruído deve ser igual ou menor que 20 dBEA, na faixa de frequência entre 20 kHz a 90 kHz; a faixa dinâmica utilizável deve ser de até 65 dB. O instrumento deve ser capaz de processar, armazenar e exibir no mínimo 20 sinais por segundo em todos os canais.

O atraso e a exibição da chegada dos sinais de EA não podem exceder 10 s e o tempo de atualização em tempo real para todos os diagramas não pode ser superior a 5 s. Um alarme deve ocorrer se a taxa de sinais exceder a capacidade de processamento do sistema de medição;

Um aviso deve ocorrer quando o espaço de armazenamento estiver próximo do seu limite. Durante a aquisição de dados, o software de EA deve ser capaz de exibir os seguintes diagramas: qualquer parâmetro de EA versus tempo; um parâmetro de EA versus outro parâmetro de EA; e localizações planares do fundo do tanque.

O software de análise de EA deve fornecer funções para reproduzir e analisar os dados de ensaio de EA gravados. Antes de instalar os sistemas de medição de EA, o inspetor deve dispor de algumas informações. A especificação dos materiais do tanque sob ensaio, incluindo informações sobre revestimentos internos e/ou externos, e a presença ou não de anodos de sacrifício e serpentina.

Um desenho do tanque com detalhes suficientes para estabelecer as dimensões, localização das conexões e espessuras dos materiais e as condições de operação, como o tipo de conteúdo líquido, o nível máximo alcançado, a faixa de temperatura de operação e qualquer condição de sobrecarga ou anormalidade que possa ter ocorrido.

A medição e o registro do nível de produto durante o ensaio de EA, na maioria dos casos, podem ser utilizados sistemas de medição existentes. Deve-se verificar a existência de sprinklers de vapor ou de gás dentro do tanque, agitadores ou bombas submersas, válvulas abertas, movimento de sólidos em suspensão no líquido e reações químicas. Para temperatura ambiente inferior a 0 °C, deve-se ter o cuidado de eliminar o acúmulo de gelo, que pode causar EA durante o ensaio

O ruído de fundo deve ser o menor possível. O inspetor deve verificar e identificar todas as fontes potenciais de ruídos acústicos externos. Além disso, o inspetor responsável pela coleta de dados de EA deve restringir e controlar o acesso ao tanque sob ensaio.