A galvanização conforme por imersão a quente de produtos de aço e ferro fundido

A ideia do revestimento galvanizado é proteger o ferro e o aço subjacentes contra corrosão, sendo recomendado que os aspectos de estética ou decoração sejam considerados secundários. Quando tais aspectos secundários também forem importantes, é altamente recomendável que o galvanizador e o cliente cheguem a um acordo no que diz respeito ao padrão de acabamento que pode ser obtido no ferro e aço (no todo ou em parte), considerando-se a variedade de materiais usados para formar o produto.

Isso é particularmente importante quando o padrão de acabamento requerido está além daquele estabelecido na norma e deve-se observar que a rugosidade e a suavidade são termos relativos e a rugosidade dos revestimentos nos produtos galvanizados após a fabricação difere daquela de produtos submetidos à limpeza mecânica, como chapas, tubos e fios galvanizados. Na prática, não é possível estabelecer uma definição de aparência e acabamento abrangendo todos os requisitos.

Os materiais revestidos pelo processo de galvanização por imersão a quente podem apresentar variações em seu aspecto superficial. Por exemplo, o aspecto acinzentado localizado ou generalizado, bem como as diferenças de brilho, tonalidade ou de cristalização do revestimento de zinco, não podem ser motivo de rejeição. A composição química do aço-carbono interfere nas características do revestimento de zinco, sobretudo no tocante ao brilho, à espessura e à rugosidade.

Por exemplo, a presença de elementos como silício (Si) e fósforo (P) prolonga a reação entre o ferro e o zinco fundido, durante o processo de galvanização por imersão a quente. Isso, por sua vez, pode provocar desuniformidade no brilho e na rugosidade do revestimento. É também relevante na formação do revestimento de zinco o modo como o aço sofreu a laminação, se a quente ou a frio.

Assim sendo, ao confeccionar os produtos, o cliente dos serviços de galvanização deve levar em conta esses fatores, caso tenha critérios especiais quanto à espessura, rugosidade ou nuanças no brilho do revestimento. Excesso de zinco, inclusão de fluxo e corrosão branca somente devem ser considerados motivos de rejeição se comprometer a funcionalidade e/ou a durabilidade do material.

Quando houver risco de empenamento, devem ser estabelecidos entre as partes interessadas os níveis de aceitação. O empenamento pode ocorrer devido ao alívio de tensão do metal-base; à conformação mecânica; à geometria da peça; e dos conjuntos soldados com diferentes espessuras ou materiais.

Durante o processo normal de proteção do material-base, o zinco sofre as ações do meio ambiente, transformando-se em óxido de zinco e posteriormente em hidróxido de zinco, conhecido como corrosão branca. Esta não é prejudicial à durabilidade do material, quando não diminuir a espessura do revestimento abaixo do especificado na norma.

As áreas não revestidas da peça em aço-carbono, menores ou iguais a 8 mm², são protegidas catodicamente. Para ferro fundido, as áreas devem ser menores ou iguais a 2 mm². Os aços e ferros fundidos altamente reativos, além de produzirem revestimentos mais espessos, tendem a adotar uma aparência cinza fosca, em vez de revestimento brilhante típico.

A diferença na aparência é resultado do rápido crescimento intermetálico zinco-ferro. Este crescimento da camada intermetálica não pode ser controlado pelo galvanizador. Entretanto, se ele souber de antemão a composição do aço, ele pode utilizar alguns controles de processo para minimizar esse efeito.

A composição química da superfície do aço tem efeito considerável sobre sua reatividade, quando imerso no zinco fundido. A espessura do revestimento e aparência produzida pela galvanização por imersão a quente a temperaturas normais entre 445 °C a 455 °C são influenciadas pelo silício e, em determinadas circunstâncias, mas menos frequentemente, pelo teor de fósforo do aço.

É também possível que o silício e o fósforo ajam em combinação, podendo assim resultar em um aço-carbono muito reativo. Consequentemente determinadas composições da superfície do aço e ferro fundido podem conseguir uma qualidade mais consistente de revestimento no que diz respeito à aparência, espessura e rugosidade. A norma fornece um guia de composições enviadas para a galvanização, que não representa uma garantia para o desenvolvimento de revestimentos mais uniformes, visto que existe a influência de outras características de composição ou de fabricação; por exemplo, particularmente na variação da composição da solda, existe uma influência na espessura e na aparência do revestimento de zinco/liga zinco-ferro.

O fósforo na composição química da superfície de aço e ferro fundido também tem um efeito sobre sua reatividade com o zinco fundido. Desta forma, para controle deste aspecto e limite do efeito no revestimento, o fósforo deve ser < 0,02% e, se possível, < 0,01%. Excesso de fósforo resulta em um revestimento frágil/quebradiço (> 300 μm) que está sujeito a danos mecânicos.

Recomenda-se que um certificado de análise química do aço seja obtido do fornecedor, ou a composição química (silício e fósforo) do aço especificada, principalmente quando grandes quantidades de material forem galvanizadas. Na prática, não é possível para um galvanizador monitorar a composição química do aço do material recebido e, na maioria dos casos, esta informação não é fornecida.

No processo de fabricação do aço ao alumínio ou ao silício, estes elementos são usados para remover o oxigênio e os contaminantes do aço. Isto é definido como aço acalmado ao alumínio ou aço acalmado ao silício. O efeito é que o aço acalmado ao alumínio tem baixo teor de silício e mais alumínio. Com aço acalmado ao silício o inverso se aplica.

O aço acalmado ao alumínio (Si entre 0,01% a 0,04%) tende a ser menos reativo quando imerso no zinco fundido. O aço acalmado ao silício, Si > 0,05%, é mais reativo e, portanto, deve ser controlado pela forma de especificação do aço. O alumínio no aço tem pouco efeito na reatividade com zinco fundido.

A NBR 6323 de 07/2016 – Galvanização por imersão a quente de produtos de aço e ferro fundido – Especificação estabelece os requisitos para a galvanização por imersão a quente de produtos de aço e ferro fundido pelo processo não contínuo. Esta norma não se aplica às seguintes condições: galvanização contínua por imersão a quente de chapas, fios e telas trançadas ou soldadas; galvanização por imersão a quente de tubos em plantas automatizadas; galvanização por imersão a quente de outros produtos para os quais existam normas específicas.

Esta norma não abrange os pós-tratamentos sobre o revestimento de produtos galvanizados por imersão a quente. Esta norma não especifica os procedimentos relacionados aos critérios de segurança, saúde e preservação do meio ambiente. É necessário que o executor possua conhecimento adequado destes procedimentos, métodos, manuseio e utilização dos produtos, que garantam a sua integridade e a preservação do meio ambiente, de acordo com a legislação vigente.

O zinco, quando fundido para composição do banho, utilizado no processo de galvanização por imersão a quente, deve ter pureza maior ou igual a 98%. Fica a critério do galvanizador adicionar elementos de liga ao banho de zinco. O uso destes elementos é permitido, desde que a composição química do banho de galvanização atenda ao grau de pureza estabelecido na norma.

Em casos de aplicação onde a composição do zinco no banho seja inferior a 98%, estes casos não são objetos desta norma. Para fins de condução de água para consumo humano, o teor máximo de elementos pesados não pode ultrapassar os limites da tabela abaixo.

Para ferro fundido maleável, a composição do zinco no banho a ser usado deve ser de no mínimo 99,50%. Nas peças em aço-carbono, convém que o projeto do produto e os materiais usados permitam uma boa preparação da superfície, pois isso é essencial para a produção de um revestimento de alta qualidade.

Para isso, resumidamente, é importante que os produtos sejam enviados ao galvanizador conforme a seguir: com ventilação adequada nas montagens enclausuradas, para evitar explosões; onde necessário, com perfurações apropriadas para se evitarem bolsões de ar, que possam resultar em superfícies não galvanizadas e material flutuando no zinco; com cordões de solda livres de escória e de fluxo. Os respingos devem ser em quantidades mínimas.

As peças soldadas com alumínio ou que tenham insertos de alumínio devem ser rejeitadas devido ao fato de que estes metais reagirão com o zinco durante o processo de galvanização e serão destruídos (para exemplo, ver Anexo E); que as estruturas fabricadas tenham os cantos rebarbados para permitir o fluxo e a drenagem livre do zinco durante o processo de imersão e extração do banho de zinco; isenção de pintura (com exceção da pintura solúvel em água) presente na superfície dos produtos; que as estruturas sejam dimensionadas de forma a minimizar a ocorrência de distorções durante o processo de galvanização por imersão a quente.

Um exemplo do que deve ser evitado pode ser visto na Figura A.15 na norma, onde pode ser observado um conjunto soldado de chapas de espessuras diferentes. Os materiais que forem danificados mecanicamente ou distorcidos em consequência de soldagem devem ser excluídos do lote, devendo então ser reparados ou substituídos antes da galvanização.

Não é permitido que qualquer material não ferroso passe pelo processo, com exceção do bronze e do cobre. A influência dos elementos químicos silício e fósforo nas ligas de aço sobre o acabamento dos respectivos revestimentos pode ser visualizada no Anexo B da norma.

Os aços estruturais normalmente não são fragilizados pela absorção do hidrogênio durante a decapagem, e o hidrogênio remanescente (se houver), em geral, não afeta os aços estruturais. Com aços estruturais, o hidrogênio absorvido é liberado durante a galvanização por imersão a quente.

Os aços com dureza superior a 34 HRC podem apresentar problema de absorção do hidrogênio durante a preparação da superfície com ácidos. As soldas e a zona afetada termicamente (heat affected zone – HAZ) dos aços estruturais normalmente não ultrapassam um valor de dureza de 34 HRC. Consequentemente, tais zonas normalmente não são fragilizadas pela absorção do hidrogênio durante a decapagem.

Para as peças em ferro fundido, convém que o projeto do produto e os materiais usados permitam uma boa preparação da superfície, pois isso é essencial para a produção de um revestimento de alta qualidade (ver Anexos A e B). Convém que as peças fundidas estejam livres de porosidade superficial, molde mole, sinterização do metal, casca de recozimento, óleo, graxa e outros defeitos/impregnações que dificultem a galvanização.

Caso não estejam, recomenda-se a limpeza por desengraxe e/ou jateamento com granalha de aço, que deve ser aplicado sobre superfícies de peças fundidas, em grau Sa 2 ½ ou superior, e inspecionadas. Na falta de um padrão visual adequado, pode-se utilizar a ISO 8501-1. Após, fazer uma limpeza final por decapagem química apropriada, para remover depósitos de areia de molde, grafite ou grafite de recozimento da superfície do ferro fundido, a fim de garantir um revestimento de boa aparência e operabilidade.

A grafite exposta na superfície de peças de ferro fundido e o resíduo em pó, oriundo da máquina de limpeza, interferem na decapagem e fluxagem do metal fundido, pois contaminam os banhos e interferem na galvanização. A limpeza de superfícies de formatos complexos pode ser realizada por empresas de galvanização especializadas.

Os devidos cuidados devem ser tomados no projeto de seções de ferro fundido. As pequenas peças fundidas de formato simples e seção transversal sólida não apresentam problemas para a galvanização, desde que o material e as condições da superfície sejam adequados.

Recomenda-se que as peças fundidas maiores tenham um projeto equilibrado com espessuras de seções uniformes, para evitar distorções e trincas devido à tensão térmica. Convém que grandes raios de arredondamento e números de modelo sejam usados e cantos vivos e rebaixos profundos sejam evitados.

As peças em ferro fundido com acabamento rugoso em sua superfície podem resultar em revestimentos galvanizados mais espessos do que em componentes laminados. Para isto, o controle da rugosidade pode ser necessário antes da decapagem.

No processo normal de limpeza, os ferros fundidos não são fragilizados pela absorção do hidrogênio durante a decapagem, e o hidrogênio remanescente (se houver), em geral, não afeta os ferros fundidos. Todavia, o excesso de tempo de limpeza por granalha e/ou decapagem ácida e o reprocessamento da peça podem levar os ferros fundidos ao processo de fragilização, principalmente quando utilizados em baixas temperaturas.

As informações para o serviço de galvanização ou as informações essenciais do cliente são as seguintes: a massa total dos produtos a serem galvanizados; a descrição do produto; o número desta norma registrado na ordem de compra; e os requisitos especiais, caso necessário. As peças devem ter projeto, soldagem e acabamento adequados.

Devem estar preparadas para facilitar a passagem do zinco fundido por toda a superfície e drenagem, durante a imersão e extração do banho, conforme exemplificado no Anexo A. O cliente deve informar: a composição química e quaisquer propriedades do metal-base que possam interferir na galvanização por imersão a quente; as especificações que alertem sobre a obrigatoriedade de marcações (alto ou baixo-relevo, tipagens, gravações, etc.) que devam aparecer na superfície já galvanizada; um desenho ou outro meio de identificação das áreas em que irregularidades na superfície, como excessos de zinco ou marcas de contato, tornarem o produto revestido inaceitável para a finalidade a que se destina; uma amostra ou outro meio de determinar o acabamento requerido, incluindo espessura de revestimento que fuja ao especificado como aceitável nesta Norma, bem como pós-tratamentos especiais; o galvanizador não é obrigado a assumir esse serviço; critérios de inspeção e amostragem (ver Anexo C).

Os critérios especiais devem ser previamente acordados. Devem ser incluídas as espessuras de camada fora das estabelecidas nas tabelas da norma e devem ser previamente acordadas. Ambas as partes (cliente e galvanizador) devem considerar os itens listados a seguir, que interferem no resultado final da galvanização: a composição química do aço e do ferro fundido (para exemplo, ver Anexo B); as condições da superfície do aço e do ferro fundido (para exemplo, ver Anexo A); o projeto do produto (tamanho, peso e formato) (para exemplo, ver Anexo A); as tensões no produto (para exemplo, ver Anexo A); e o método de galvanização praticado.

Cabe ao galvanizador, quando previamente solicitado, fornecer os seguintes dados: o método usado para retocar áreas não revestidas; um certificado de qualidade do revestimento de zinco, contendo os aspectos avaliados, acordados de antemão. O somatório das áreas a serem retocadas não pode ultrapassar 0,5% da área total da peça galvanizada, sendo que cada área individualmente não pode ultrapassar 10 cm².

Caso ultrapasse esses limites, a peça deve ser novamente galvanizada, a menos que acordado em contrário entre cliente e o galvanizador. Em áreas com falhas no revestimento de zinco dentro dos limites citados pode ser realizado o retoque, com no mínimo 100 μm e utilizando-se um dos seguintes processos: aspersão térmica – metalização; e tinta com teor mínimo de 85% de zinco, na película seca.

A superfície a ser retocada deve estar isenta de óleo, graxas, oxidação e umidade, e deve ser livre de elementos prejudiciais ao processo de retoque. As áreas retocadas podem apresentar diferenciação na coloração, não sendo passíveis de rejeição.

Para conexões em ferros fundidos maleáveis, não é permitido retoque no revestimento defeituoso. Para as demais peças em ferro fundido, este retoque de revestimento deve ser acordo entre galvanizador e cliente.

As técnicas de segurança na execução das escavações a céu aberto

As falhas em uma escavação são particularmente perigosas porque podem ocorrer rapidamente, limitando a capacidade de fuga dos trabalhadores (e, em alguns casos, de outras pessoas próximas), especialmente se o colapso for extenso. A velocidade do desabamento de uma escavação aumenta o risco associado a este tipo de trabalho. As consequências são significativas, pois a queda da terra pode enterrar ou esmagar qualquer pessoa em seu caminho, resultando em morte por asfixia ou ferimentos internos por esmagamento.

As medidas de proteção aos operários no tráfego na área de escavação incluem os pontos de acesso de veículos e equipamentos à área de escavação devem ter sinalização de advertência permanente. O tráfego próximo às escavações deve ser desviado. Quando não for possível, deve ser reduzida a velocidade dos veículos.

Os andaimes devem ser dimensionados e construídos de modo a suportar, com segurança, as cargas de trabalho a que estão sujeitos. Os estrados de andaimes devem ter largura mínima de 1,20 m e ser formados por pranchas de madeira de 0,025 m de espessura mínima, ser de boa qualidade, isentas de nós, rachaduras e outros defeitos capazes de diminuir a sua resistência.

As pranchas devem ser colocadas lado a lado, sem deixar intervalos, de modo a cobrir todo o comprimento da travessa. As pranchas não devem ter mais de 0,20 m de balanço, e sua inclinação não deve ser superior a 15%. Os andaimes devem ser amarrados a estruturas firmes, estaiados e ancorados em pontos que apresentem resistência.

Os montantes dos pontaletes devem se apoiar em partes resistentes, e as cargas transmitidas ao solo devem ser compatíveis com a sua resistência. s andaimes devem dispor de guarda-corpo de 0,90 m a 1,20 m de altura e rodapé de 0,20 m de altura mínima. Quando o vento ameaçar a segurança dos operários, deve ser determinada a suspensão do trabalho no andaime.

É obrigatório o uso de corda e cinto de segurança, nos operários que trabalham em andaimes. As escadas, passagens e rampas provisórias, para circulação de operários, devem ser de construção sólida com 0,80 m de largura mínima, dotadas de rodapé e guarda-corpo laterais. As escadas de mão sem guarda-corpo devem ser firmemente apoiadas no plano inferior e superior, ultrapassando o plano de acesso, no mínimo, de 0,90 m.

As vias de circulação devem ser mantidas limpas e desimpedidas, visando a livre circulação dos operários em caso de emergência. Todas as instalações elétricas no canteiro de obra devem ser executadas e mantidas por pessoal habilitado, empregando-se material de boa qualidade. As partes vivas expostas dos circuitos e equipamentos elétricos devem ser protegidas contra contatos acidentais.

As redes de alta-tensão devem ser instaladas em altura e posição de modo a evitar contatos acidentais com veículos, equipamentos e operários. O sistema de iluminação do canteiro de obra deve fornecer iluminamento suficiente e em condição de segurança. Atenção especial deve ser dada à iluminação de escadas, aberturas, passagens e rampas.

É obrigatório o uso de equipamentos de proteção individual pelos operários. Os equipamentos de proteção individual utilizados pelos operários em uma obra de escavação são: capacete de segurança, todos os operários; cinto de segurança, nos trabalhos em que houver perigo de queda; máscara de soldador, luvas, mangas, perneiras e avental de raspa de couro, nos trabalhos de solda elétrica; óculos de segurança, nos trabalhos com ferramentas de apicoamento; luva de couro ou lona plastificada, para a proteção das mãos no manuseio de materiais abrasivos ou cortantes; luva de borracha, para trabalho em circuitos e equipamentos elétricos; botas impermeáveis, para trabalho em terrenos encharcados; e sapatos adequados que ofereçam proteção contra pregos.

Quando as condições de vizinhança permitirem (construções vizinhas, redes de utilidades públicas, etc.), bem como a ausência do nível d’água no trecho a ser escavado, pode-se utilizar essas prescrições sem que seja feito um cálculo mais rigoroso. Estas prescrições, a serem utilizadas, pressupõem um solo homogêneo; se houver dúvida quanto à homogeneidade do solo, então o cálculo deve ser realizado, e estas prescrições não devem ser utilizadas.

A NBR 9061 de 09/1985 – Segurança de escavação a céu aberto fixa as condições de segurança exigíveis a serem observadas na elaboração do projeto e execução de escavações de obras civis, a céu aberto, em solos e rochas, não incluídas escavações para mineração e túneis. O empuxo de terra é a ação produzida pelo maciço terroso sobre as obras com ele em contato e a variação dos empuxos se relaciona com a função dos deslocamentos e a escora é uma peça estrutural para amparar e suster, e trabalha fundamentalmente à compressão. A ficha é um trecho da cortina que fica enterrada no solo abaixo da cota máxima da escavação em contato com a cortina. O talude é a superfície inclinada do terreno natural, de uma escavação ou de um aterro, conforme a figura abaixo.

As investigações geotécnicas-geológicas são necessárias para a determinação das condições geológicas e dos parâmetros geotécnicos do terreno onde será executada a escavação. Devem ser executadas de acordo com as normas técnicas aplicáveis, levando-se em consideração as peculiaridades da obra. Esta norma pressupõe que a presença de lençóis aquíferos, existentes na região onde será executada a escavação, já foi devidamente estudada e equacionada de acordo com as normas técnicas aplicáveis.

É indispensável o levantamento topográfico do terreno, o levantamento das edificações vizinhas (tipo de fundações, cotas de assentamento das fundações, distância à borda da escavação) e das redes de utilidades públicas, não só para a determinação das sobrecargas como, também, no estudo das condições de deslocabilidade e deformabilidade que podem ser provocadas pela execução da escavação. Os levantamentos devem abranger uma faixa, em relação às bordas, de pelo menos duas vezes a maior profundidade a ser atingida na escavação.

O controle das edificações vizinhas e da escavação deve obedecer a um plano de acompanhamento, por meio de inspeção e de instrumentação adequada ao porte da obra e das edificações vizinhas. Assim, a inspeção tem por finalidade observar qualquer evento cuja análise permite medidas preventivas ou considerações especiais para a segurança da obra. A instrumentação visa a medida direta de grandezas físicas necessárias à interpretação e previsão do desempenho das obras, com referência aos critérios de segurança e econômicos adotados na fase de projeto.

Quando a proteção da parede da escavação, pela sua própria rigidez e pelo sistema de apoios previsto, puder ser considerada indeslocável, o empuxo deve ser calculado no estado de repouso. Em caso contrário, o empuxo é calculado no estado ativo. Qualquer proteção da parede da escavação, que vier a ser incorporada a uma estrutura permanente, deve ser verificada também para o empuxo no estado de repouso.

No cálculo do empuxo passivo, é fundamental considerar a compatibilidade entre a sua mobilização e a deformação da proteção da parede da escavação. As pressões decorrentes do empuxo das terras, nos estados de repouso, ativo e passivo, são consideradas com uma distribuição triangular nos casos da proteção da parede da escavação em balanço ou com um único ponto de apoio.

Quando a proteção da parede da escavação tiver dois ou mais apoios, a distribuição do empuxo deve ser admitida segundo um diagrama trapezoidal ou retangular equivalente. As condições de estabilidade das paredes de escavações devem ser garantidas em todas as fases de execução e durante a sua existência, devendo-se levar em consideração a perda parcial de coesão pela formação de fendas ou rachaduras por ressecamento de solos argilosos, influência de xistosidade, problemas de expansibilidade e colapsibilidade.

A verificação de estabilidade deve atender aos seguintes casos: ruptura localizada do talude; ruptura geral do conjunto; ruptura de fundo; ruptura hidráulica. A verificação de estabilidade deve ser feita pelos métodos de análise das tensões, métodos de equilíbrio limites ou outros consagrados pela mecânica dos solos. As superfícies de ruptura podem ser consideradas como formas planas, curvas ou poligonais.

Nas escavações em encostas, devem ser tomadas precauções especiais para evitar escorregamentos ou movimentos de grandes proporções no maciço adjacente, devendo merecer cuidados a remoção de blocos e pedras soltas. O projeto de escavações deve adotar fatores de segurança, globais ou parciais, compatíveis em cada fase de seu desenvolvimento, considerando o grau de conhecimento das solicitações e materiais a serem utilizados; a caracterização do subsolo pelos dados disponíveis e sua dispersão; a complexidade das condições geotécnicas; a complexidade da execução do projeto; a confiabilidade dos métodos adotados, cálculos e execução; a permanência das condições previstas durante o tempo da existência da escavação; as consequências em caso de acidentes envolvendo danos materiais e humanos; o caráter transitório ou permanente.

No projeto de escavações, devem ser escolhidos métodos e processos de execução, tendo-se em vista obter o máximo grau de segurança. Para os casos gerais, os coeficientes de segurança devem atingir no mínimo o valor de 1,5, sendo necessária a justificativa técnica para a adoção deste valor. Para os casos especiais, os fatores de segurança menores que 1,5 (no mínimo 1,2) podem ser aceitos se devidamente comprovadas as características geotécnicas, geológicas e hidrológicas do terreno.

No projeto de escavações devem ser considerados os seguintes fenômenos: escoamento ou ruptura do terreno de fundação; descompressão do terreno de fundação; carregamento pela água; rebaixamento do nível d’água. Quando a escavação atinge nível abaixo da base de fundações num terreno vizinho, este terreno pode se deslocar para o lado da escavação produzindo recalques ou rupturas. Se a escavação não ultrapassa a cota de base das fundações vizinhas, pode ocorrer diminuição da pressão normal confinante, causando deformação do terreno vizinho.

Quando a proteção das paredes de uma escavação se deslocar ou se deformar, pode causar perturbação no terreno de fundação vizinho, produzindo recalques prejudiciais à construção. Quando a escavação tiver de atingir cota abaixo do nível d’água natural e houver necessidade de esgotamento, esta pode causar instabilidade ou mesmo carreamento das partículas finais do solo e solapamento do terreno das fundações vizinhas.

Quando o terreno for constituído de camada permeável sobrejacente a camadas moles profundas, deve ser verificada a possibilidade de efeitos prejudiciais de recalques nas construções vizinhas, decorrentes do adensamento das camadas moles, provocadas pelo aumento, sobre estas, da pressão efetiva da eliminação da água na camada permeável.

Durante toda a fase de execução e durante a existência da escavação, é indispensável ter-se no canteiro de obra um arquivo contendo os seguintes documentos: os resultados das investigações geotécnicas; os perfis geotécnicos do solo; a profundidade e as dimensões da escavação, bem como as etapas a serem atingidas durante a execução e reaterro; as condições da água subterrânea; o levantamento das fundações das edificações vizinhas e redes de serviços públicos; o projeto detalhado do tipo de proteção das paredes da escavação. Caso haja necessidade de as ancoragens penetrarem em terrenos vizinhos, deve-se ter autorização dos proprietários para permitir a sua instalação.

As cortinas são elementos estruturais e se destinam a resistir às pressões laterais devidas ao solo e à água. As cortinas diferem estruturalmente dos muros de sustentação por serem flexíveis e terem peso próprio desprezível, em face das demais forças atuantes.

Baseado em seu tipo estrutural e esquema de carregamento, as cortinas se classificam em dois grupos principais: cortinas sem apoio ou em balanço; cortinas apoiadas ou ancoradas. Conforme a cortina tenha ou não uma pequena profundidade (ficha) abaixo da escavação, são ditas: de extremidade livre; e de extremidade fixa.

Para o cálculo estrutural das cortinas, admite-se para os esforços atuantes a distribuição das pressões ativas e passivas, tal como preveem as teorias consagradas da mecânica dos solos. Os elementos fundamentais a serem determinados são: o comprimento da ficha; os esforços atuantes nos apoios; os momentos fletores, esforços cortantes e normais. Conhecidos estes valores, escolhe-se o tipo de cortina a ser utilizado bem como as suas dimensões, o que deve ser detalhado para todas as fases de execução.

As medidas de proteção das paredes das escavações devem ser adotadas com a finalidade de que, durante a execução das escavações, não ocorram acidentes que possam ocasionar danos materiais e humanos. As proteções adotadas são classificadas quanto à forma da proteção; quanto ao tipo de apoio das cortinas; quanto à rigidez estrutural das cortinas. Quanto à forma da proteção das paredes da escavação, para fins desta norma, são classificadas em três grupos, a saber: escavação taludada – com as paredes em taludes; escavação protegida – com as paredes protegidas com estruturas denominadas cortinas; escavação mista – com as paredes em taludes e paredes protegidas por cortinas.

As escavações taludadas são executadas com as paredes em taludes estáveis, podendo ter patamares (bermas ou plataformas), objetivando somente melhorar as condições de estabilidade dos taludes. A fixação do ângulo de inclinação dos taludes depende fundamentalmente das condições geotécnicas do solo. As escavações protegidas são as que não permitem ou justifiquem o emprego de taludes, e as paredes são protegidas por cortinas como meio de assegurar a estabilidade das paredes da escavação.

As cortinas usuais de proteção das paredes das escavações são dos seguintes tipos: cortinas com peças de proteção horizontal apoiadas em elementos verticais introduzidos no solo, antes da escavação; cortinas de estacas-pranchas, constituídas pela introdução no solo, antes da escavação, de peças que se encaixam umas nas outras; cortinas de estacas justapostas, constituídas por estacas executadas uma ao lado da outra, antes da escavação; cortinas de concreto armado executadas com a utilização de lamas, antes da escavação; cortinas e concreto armado ancoradas, executadas à medida que a escavação vai sendo executada. As escavações mistas são as que usam paredes em taludes e paredes protegidas.

Quanto à forma de apoio das cortinas de proteção das escavações, para fins desta norma são classificadas em quatro grupos: cortinas escoradas; cortinas ancoradas; cortinas chumbadas; cortinas em balanço. As escoradas utilizam como apoio elementos estruturais horizontais ou inclinados dentro da área escavada, denominadas escoras. As ancoradas utilizam como apoio elementos estruturais horizontais ou inclinados ancoradas no terreno através de injeções e protensão-ancoragens.

As cortinas chumbadas utilizam como apoio elementos estruturais horizontais ou inclinados, ancorados no terreno através de injeções, não protendidos, atuando passivamente. As em balanço não utilizam apoios, possuem o topo livre. A sua estabilidade é garantida pelo trecho que fica enterrado no solo abaixo da cota máxima de escavação, ou seja, pela ficha da cortina. Neste tipo de cortina é necessário que seja calculada a deformação no seu topo, a fim de ser verificado se esta deformação não introduz descompressão no terreno.

Quanto à rigidez da cortina, para fins desta norma, são classificadas em: cortinas flexíveis; cortinas semirrígidas; cortinas rígidas. As flexíveis são aquelas que permitem deformações sem se romperem. As semirrígidas são aquelas onde as deformações são limitadas a pequenos valores. As rígidas são aquelas que não permitem, ou são mínimas, as deformações.

O uso de escavações com as paredes em taludes pressupõe que se possa obter taludes estáveis que não interfiram com construções vizinhas, bem como as redes de utilidades públicas. A fixação do ângulo de inclinação dos taludes depende fundamentalmente das condições geotécnicas do subsolo. As formas de instabilidade das paredes das escavações nem sempre se apresentam bem caracterizadas e definidas.

Entretanto, pode-se classificar estes tipos de movimento nos seguintes grupos: desprendimentos; escorregamento; rastejo; complexo. O desprendimento é uma porção de um maciço terroso ou fragmentado de rocha que se destaca do resto do maciço, caindo livre e rapidamente, acumulando-se onde estaciona. O escorregamento é o deslocamento de uma massa de solo ou de rocha que, rompendo-se do maciço, desliza para baixo e para o lado, ao longo de uma superfície de deslizamento, predominantemente por uma rotação ou por uma translação, denominando-se respectivamente: escorregamento rotacional; e escorregamento translacional.

O rastejo é o deslocamento lento e contínuo de camadas superficiais sobre camadas mais profundas, com ou sem limite definido entre a massa do terreno que se desloca e a que permanece estacionária. O complexo é o deslocamento que não pode ser classificado em nenhum dos casos anteriores. Os taludes das escavações devem ser convenientemente protegidos, em todas as fases executivas, e durante toda a sua existência, contra os efeitos de erosão interna e superficial.

A gestão da qualidade do ar interno

Quanto às atividades, usos e leiaute da edificação, é recomendado que as atividades que ocorrem no espaço interno da edificação sejam consideradas como potenciais fontes de poluição. Por exemplo, shopping centers, restaurantes, lanchonetes, laboratórios, hospitais e prédios com obras de restauração são fontes típicas de odores e produtos de combustão.

Todas as atividades potencialmente poluidoras devem ser listadas como aspectos pertinentes e controladas, normalmente mantendo as áreas sob pressão negativa. É importante considerar as diferentes fontes de poluentes que resultam das atividades diárias, como, por exemplo, cozinhar, acender velas ou lareiras.

Recomenda-se que dados históricos e atuais de atividades dentro da edificação em estudo sejam coletados e analisados, se disponíveis. Recomenda-se que o uso e distribuição originais da edificação sejam comparados com seu uso e distribuição atuais, pois reformas inadequadas são uma fonte comum de problemas da qualidade do ar interno, por exemplo, salas sem difusores de ar ou grelhas de exaustão.

Recomenda-se que o tipo da edificação seja considerado, incluindo se é um arranha-céu ou uma casa isolada, a altura do andar, possíveis opções de ventilação natural, como, por exemplo, leiaute, existência de pátios, tipo de janelas e tamanhos, conhecimento da estanqueidade da edificação, tipo de fachada, como, por exemplo, radiação, transferência de calor e proteção solar, e a estanqueidade da envoltória da edificação como o telhado e janela. Além disso, recomenda-se que sejam consideradas as características da vida útil da edificação, incluindo o tipo de usuários (por exemplo, idade, sexo predominante, tipo de vestuário, atividades, duração média de permanência, densidade de ocupação) e o tipo de uso (por exemplo, trabalho, moradia ou atividade física).

Os materiais de construção, mobiliários e bens de consumo elétricos são um elemento-chave que afeta a qualidade do ar interno. Podem ser fontes de emissão de poluentes, pois potencialmente liberam fibras, compostos orgânicos voláteis (VOC), odores e micro-organismos, etc. Os materiais não apresentam aspecto homogêneo. Recomenda-se que cada material seja considerado separadamente e convém que seu impacto seja considerado em termos de: composição do material: presença de substâncias tóxicas (por exemplo, VOC, amianto, formaldeído ou radônio) e características (por exemplo, porosidade e capacidade de sorção); idade e condição do material; danos causados pela água (por exemplo, contaminação microbiológica ou liberação de fibras); áreas diretamente expostas que impactam as áreas ocupadas; fluxo de ar forçado em contato com materiais; potenciais emissões secundárias resultantes de reações químicas entre diferentes materiais ou outras condições de construção (intrusão de ozônio, condições térmicas, umidade, pressão, etc.).

As instalações são elementos concebidos para ajudar na funcionalidade e conforto dos espaços internos, e acomodá-los aos seus usos pretendidos. É importante avaliar as características técnicas das várias instalações e estudar o seu impacto na qualidade do ar interno.

As instalações mais importantes, embora possivelmente não as únicas, que podem afetar a qualidade do ar interno são as instalações de ar-condicionado, instalações de água, instalações sanitárias e outras áreas em que a contaminação é provável. As instalações de ar-condicionado destinam-se ao controle e ajuste do conforto térmico, ventilação, poluição ambiental e/ou umidade.

Os principais aspectos deste tipo de equipamento são: o projeto e dimensionamento, que devem ser adequados aos usos e características das áreas ocupadas; a manutenção mecânica para assegurar funcionalidade e eficiência; as condições mecânicas e higiênicas para que não se tornem fonte poluidora; e condições de operação para assegurar o uso adequado. É importante verificar alguns pontos em relação a esses sistemas. Caso a edificação tenha alterado o uso, distribuição e/ou cargas térmicas para as quais foi

originalmente projetado, deve-se verificar a adequação do sistema de climatização para o novo uso; os critérios de desempenho devem estar em conformidade com a especificação do projeto. Se forem feitas alterações nas compartimentações da edificação, isso deve ser levado em consideração, pois pode afetar a zona térmica da edificação.

A manutenção é um dos processos-chave para assegurar uma boa qualidade do ar interno. Tradicionalmente, a manutenção tem focado em aspectos mecânicos para assegurar a operacionalidade das instalações, entretanto, a manutenção e limpeza inadequadas podem acarretar diversos tipos de problemas de qualidade do ar. Os itens mais importantes a serem considerados em relação à manutenção são: o treinamento específico sobre qualidade do ar interno para o pessoal de manutenção; os procedimentos escritos para manutenção preditiva, preventiva e corretiva no controle integrado de pragas; o desenvolvimento e aplicação da legislação e normas técnicas existentes no uso de produtos químicos; a listagem e registro de fichas de segurança de produtos químicos utilizados para manutenção, especialmente produtos de decoração, limpeza e biocidas; os procedimentos escritos para manutenção preditiva, preventiva e corretiva para assegurar a qualidade do ar interno; os registros e a documentação das instalações de tratamento obrigatórias, sujeitas à legislação em vigor, que afetem a saúde pública e o ar interno (por exemplo, Legionella, potabilidade da água, radônio, piscinas); os registros de outros processos e outros documentos considerados pertinentes (por exemplo, reclamações de usuários, problemas anteriores, plano de ação corretiva, plano de monitoramento e controle); os procedimentos escritos para limpeza do edifício a fim de melhorar a qualidade do ar interno, por exemplo, material particulado suspenso no ar, emissões de VOC de produtos de manutenção e limpeza).

As atividades de reforma são operações que podem gerar altas concentrações de partículas em suspensão no ar, dispersão de fungos, emissão de compostos voláteis, formaldeído, etc. Portanto, recomenda-se que as reformas sejam planejadas adequadamente para evitar possíveis efeitos adversos de contaminação cruzada.

Os itens mais importantes a serem considerados nas reformas são: avaliar previamente materiais que contenham amianto, tinta à base de chumbo ou quaisquer outros poluentes nocivos; treinar o pessoal envolvido no trabalho de qualidade do ar interno; documentar os procedimentos de reforma; selecionar os materiais de baixo impacto na qualidade do ar interno; listar e registrar FISPQ de segurança dos produtos químicos utilizados (especialmente produtos de decoração e limpeza); avaliar o impacto das alterações nas instalações técnicas da edificação; e implementar métodos de trabalho de baixa emissão de contaminantes.

A NBR ISO 16000-40 de 10/2023 – Ar interno – Parte 40: Sistema de gestão da qualidade do ar interno especifica os requisitos para um sistema de gestão da qualidade do ar interno. É aplicável a qualquer organização que pretenda: estabelecer um sistema de gestão da qualidade do ar interno; implementar, manter e melhorar continuamente o sistema de gestão da qualidade do ar interno; assegurar a conformidade com o sistema de gestão da qualidade do ar interno; demonstrar conformidade com esta norma. Aplica-se aos ambientes internos de todo o tipo de infraestruturas prediais, edifícios, exceto os que se dedicam exclusivamente às atividades industriais e/ou agrícolas. É aplicável a todos os tipos de ambientes internos ocupados por todos os perfis de pessoas, incluindo usuários regulares, clientes, trabalhadores, etc.

Quando não estão em casa, as populações urbanas passam a maior parte do tempo em ambientes internos trabalhando em edifícios comerciais, desfrutando do lazer em hotéis ou shopping centers, ou talvez utilizando serviços em hospitais e centros de transporte, entre outros tipos de infraestruturas prediais. Há muitos estudos científicos que mostram que as características especiais da poluição do ar interno tornam os ambientes internos diferentes dos exteriores em termos de qualidade do ar.

Existe muito conhecimento sobre a poluição do ar interno, no entanto, existe uma falta generalizada de aplicação prática da maior parte desta informação na vida cotidiana do público em geral, esta norma visa auxiliar os gestores de ambientes internos a aplicarem protocolos e programas de manutenção destinados a melhorar a qualidade do ar interno.

Esta norma auxilia os gestores de infraestruturas prediais a aplicar protocolos e processos de manutenção projetados para melhorar a qualidade do ar interno. Controlar a qualidade do ar interno pode trazer enormes benefícios sociais em termos de conforto e saúde da população, aumentando, assim, a produtividade e minimizando o absenteísmo em estabelecimentos comerciais, bem como minimizando as infecções nosocomiais em ambientes hospitalares.

Pode-se afirmar que a qualidade do ar interno de uma edificação é descrita em termos de odor, parâmetros físicos, poluentes químicos e biológicos. A qualidade do ar interno está diretamente relacionada à taxa de ventilação, padrões de distribuição do ar e fontes de poluição. A qualidade do ar interno é importante para assegurar a saúde humana, o conforto olfativo e o conforto percebido. Adaptada da ISO 16813:2006, 3.21, a definição foi simplificada para se referir a uma edificação em geral, versus apenas a edificações não industriais, e as características não essenciais, porém pertinentes, agora são referenciadas em notas.

Por isso, a organização deve determinar as questões externas e internas que sejam pertinentes para seu propósito e que afetem sua capacidade de alcançar o(s) resultado(s) pretendido(s) de seu sistema de gestão da qualidade do ar interno. Para compreender as necessidades e expectativas das partes interessadas, a organização deve determinar: as partes interessadas pertinentes para o sistema de gestão da qualidade do ar interno; e os requisitos pertinentes dessas partes interessadas. A organização deve determinar os limites e a aplicabilidade do sistema de gestão da qualidade do ar interno para estabelecer o seu escopo.

Ao determinar esse escopo, a organização deve considerar: as questões externas e internas; e o os requisitos referidos na norma. O escopo deve estar disponível como informação documentada. Por isso, a organização deve estabelecer, documentar, implementar, manter e melhorar continuamente um sistema de gestão da qualidade do ar interno, incluindo os processos necessários e suas interações, de acordo com os requisitos desta norma, determinando o método de cumprimento destes.

Quando uma organização opta por terceirizar qualquer atividade que afete a conformidade com esses requisitos, a organização deve assegurar o controle sobre estas atividades. Convém que as responsabilidades e controles necessários às atividades terceirizadas sejam identificados no sistema de gestão.

Uma atividade terceirizada da qualidade do ar interno é aquela que a organização precisa para seu sistema de gestão do ar interno e escolhe ser realizada por uma parte externa. A garantia do controle das atividades terceirizadas não isenta a organização da responsabilidade de estar em conformidade com todos os requisitos, incluindo requisitos normativos e regulamentares.

A administração deve demonstrar liderança e compromisso com relação ao sistema de gestão da qualidade do ar interno de forma a: assegurar que as políticas, os objetivos e as metas de padrão da qualidade do ar interno sejam estabelecidos e sejam compatíveis com a direção estratégica da organização; assegurar a integração dos requisitos do sistema de gestão da qualidade do ar interno nos processos de negócio da organização; assegurar a disponibilidade dos recursos necessários ao sistema de gestão da qualidade do ar interno; comunicar a importância de um sistema eficaz e da conformidade com os requisitos do sistema de gestão da qualidade do ar interno; assegurar que o sistema de gestão da qualidade do ar interno atinja o(s) resultado(s) pretendido(s); orientar e apoiar pessoas que contribuam para a eficácia do sistema de gestão da qualidade do ar interno; promover a melhoria contínua; apoiar outras funções gerenciais pertinentes para demonstrar sua liderança conforme se aplica às suas áreas de responsabilidade; e realizar revisões de gerenciamento.

Convém que a organização defina funções, responsabilidades e autoridade. Convém que estas sejam documentadas e comunicadas dentro da organização, para facilitar a gestão eficaz da qualidade do ar interno. A organização deve estabelecer os canais de comunicação apropriados para: a comunicação interna entre seus diversos níveis e funções; o recebimento, a documentação e a resposta a comunicações de partes interessadas externas.

Deve assegurar que a eficácia do sistema de gestão da qualidade do ar interno seja comunicada. Como parte da medição do desempenho do sistema de gestão da qualidade do ar interno, a organização pode monitorar periodicamente a percepção dos ocupantes quanto ao cumprimento de suas expectativas da qualidade do ar interno, bem como a gestão das atividades relacionadas da organização. Se for tomada a decisão de realizar monitoramento periódico, a organização deve determinar e documentar os métodos para obter e utilizar essas informações.

A alta direção deve nomear um membro da gestão da organização que, independentemente de outras responsabilidades, tenha a responsabilidade e autoridade para assegurar: que o sistema de gestão da qualidade do ar interno seja estabelecido, implementado e mantido de acordo com os requisitos desta norma; a elaboração de relatórios à administração sobre o desempenho da revisão do sistema de gestão, incluindo recomendações para melhoria; a conscientização das atividades de gestão da qualidade do ar interno a todos os níveis da organização. A responsabilidade do representante da gestão pode incluir a colaboração com partes externas em assuntos relacionados ao sistema de gestão da qualidade do a r interno.

A alta direção deve estabelecer políticas de qualidade do ar interno que: sejam adequadas ao propósito da organização; forneçam uma estrutura para estabelecer objetivos de qualidade do ar interno; considerem os requisitos legais aplicáveis e outros subscritos pela organização; e incluam um compromisso com a melhoria contínua do sistema de gestão da qualidade do ar interno. As políticas de gestão da qualidade do ar interno devem: estar disponíveis como informação documentada; ser implementadas, mantidas e revisadas para adequação contínua; ser comunicadas dentro da organização; e estar à disposição dos interessados, conforme o caso.

A alta direção deve assegurar que as responsabilidades e autoridades para funções pertinentes sejam atribuídas e comunicadas dentro da organização. Deve atribuir a responsabilidade e autoridade para: assegurar que o sistema de gestão da qualidade do ar interno esteja em conformidade com os requisitos desta norma; e relatar à alta direção o desempenho do sistema de gestão da qualidade do ar interno.

A alta direção deve assegurar que haja um procedimento estabelecido, implementado e mantido que: identifique e atenda aos requisitos legais aplicáveis vigentes e outros requisitos subscritos pela organização relacionados à qualidade do ar interno; determine como estes requisitos se aplicam aos procedimentos relativos à qualidade do ar interno e ao sistema de gestão da qualidade do ar interno. Deve manter essas informações atualizadas e deve comunicar informações pertinentes sobre os requisitos legais e outros requisitos a toda organização e partes interessadas.

Assim, identificar, determinar o nível de risco e avaliar os aspectos da qualidade do ar interno em uma edificação é o primeiro passo para estabelecer um sistema de gestão. Um possível plano de ação para esses processos pode ser realizado de acordo com as seguintes fases: fazer um levantamento: trata-se simplesmente de uma lista de aspectos que podem ter impacto na qualidade do ar interno; determinar o nível de risco: as características específicas de cada edificação são consideradas para determinar se os aspectos listados no levantamento têm influência relevante na qualidade do ar interno.

A decisão de considerar o risco potencial de um aspecto da qualidade do ar interno como relevante ou não pode ser feita com base em uma matriz de risco de frequência/severidade, ver o seguinte exemplo. Recomenda-se que no mínimo os aspectos da qualidade do ar interno que apresentam um nível de risco médio a extremo sejam considerados como pertinentes. (ver tabela abaixo)

Deve-se ressaltar que a localização da edificação pode afetar a qualidade do ar interno de várias maneiras. Por exemplo, quando a ventilação da edificação depende do ar fresco externo, a qualidade do ar externo é a principal influência na qualidade final do ar interno que a edificação pode alcançar.

A má qualidade do ar externo pode ser melhorada por meio de sistemas de filtragem e purificação. As características da área, urbana ou rural, definem os tipos de poluentes externos, por exemplo, artificiais (como gases poluentes ou partículas em suspensão no ar) em zonas urbanas ou, principalmente, biológicos (como solo natural, partículas do mar, fungos, pólen ou insetos) em áreas rurais.

As condições climáticas, especialmente umidade relativa, temperatura, condições de vento, macro e microclima afetam a qualidade do ar interno. Por exemplo, superfícies úmidas devido à condensação podem levar ao crescimento de mofo.

A verificação experimental das condições de iluminação natural interna

Em relação à iluminação natural, as avaliações técnicas ambientais (ATA) podem ser de interpretação complexa, especialmente em edifícios reais ocupados, onde é difícil controlar as condições ambientais. A avaliação de projetos de iluminação baseada apenas em instrumentos técnicos pode então ser complementada pela avaliação do comportamento e preferência dos usuários.

Embora seja recomendável configurar um monitoramento contínuo de longo prazo para entender uma fonte de luz dinâmica como luz do dia, não é possível colocar isso em prática para a maioria dos edifícios ocupados reais. Nessa perspectiva, a avaliação ambiental baseada em observadores (AABO) fornece uma conclusão satisfatória e adequada para as ATA, formando uma avaliação pós-ocupação (APO).

As AABO podem aprimorar a compreensão do espaço e da opinião e comportamento do usuário, especialmente quando poucas medições ponto no tempo estiverem disponíveis. A calculadora de estímulo circadiano (CS – circadian stimulus) fornece um coeficiente para expressar até que ponto uma determinada fonte de luz de intensidade e espectro conhecidos provoca respostas circadianas, ou seja, a supressão da secreção de melatonina.

Para as faixas de coeficiente de 0 a 0,7, considerar a supressão mínima de melatonina (0) até a supressão máxima observada (0,7), respectivamente. Embora os dados de saída sejam diferentes dos outros métodos, a calculadora CS é semelhante à planilha de Lucas na forma como os valores relativos de energia espectral importados de um arquivo .csv (descrevendo a distribuição espectral da fonte de luz) precisam ser introduzidos, ou na seleção de uma fonte de luz de uma lista com características predefinidas.

A calculadora CS funciona com incrementos de comprimento de onda de 2 nm. Os valores podem ser introduzidos na calculadora com incremento de 1 nm ou 5 nm, o que requer uma extrapolação de dados operados pela calculadora CS, respectivamente, para se adequar ao seu incremento de 2 nm. Uma diferença importante entre as duas ferramentas é a capacidade da calculadora CS compilar dados espectrais de várias fontes.

Por exemplo, o padrão de distribuição espectral (SPD) de uma luminária pré-codificada pode ser combinado com dados codificados manualmente extraídos de uma medição. Uma vez que todas as fontes de luz, combinadas com seus respectivos níveis de iluminação fotópica, sejam codificadas, os dados obtidos após o cálculo são fornecidos em três partes, juntamente com uma exibição de distribuição de energia espectral relativa correspondente a incrementos de comprimento de onda de 2 nm.

Existe uma versão online da calculadora CS que propõe uma interface mais didática da ferramenta, indicando os passos a seguir e facilitando a escolha de uma fonte de luz e a entrada manual de dados espectrais. Para a avaliação da iluminância em postos de trabalho, fazer medições em uma quantidade de pontos suficiente, para caracterizar adequadamente o plano.

Isso pode ser feito determinando-se pontos estratégicos em um ambiente, como o centro das mesas de trabalho ou pela determinação de uma malha de pontos que abranja o ambiente como um todo. Quando da determinação de uma malha, é necessária a determinação de um número mínimo de pontos a serem medidos para a caracterização da distribuição de luz em um ambiente.

Os modelos em escala reduzida são ferramentas de projeto que podem ser utilizadas para a avaliação de vários aspectos do projeto do edifício, bem como a sua forma, orientação, fachadas e, principalmente, para o estudo da iluminação natural nos espaços internos, visto que as considerações sobre a iluminação de ambientes constituem a medida mais efetiva no controle das qualidades visuais destes ambientes. Ao contrário de outros modelos físicos nos quais o comportamento do fenômeno físico (transmitância térmica, tensões estruturais, fluxo de ar, etc.) sofre distorções pelo efeito da escala, o modelo para iluminação não requer compensações em função da escala.

Como o comprimento de onda da luz visível é extremamente reduzido em comparação ao tamanho dos modelos em escala, um modelo arquitetônico que represente com fidelidade um espaço real, exposto às mesmas condições de céu e mantendo a mesma geometria e as mesmas características das superfícies, apresenta um padrão idêntico de distribuição da iluminação interna. Portanto, como a luz não sofre distorções, as medições, neste caso, têm como objetivo avaliar as condições de iluminação do ambiente ainda em fase de projeto, por meio da execução de maquetes, permitindo a adoção de sistemas de aberturas mais eficientes e uma melhor orientação dos componentes construtivos.

A NBR 15215-4 de 07/2023 – Iluminação natural – Parte 4: Verificação experimental das condições de iluminação natural interna especifica as ferramentas e as técnicas quantitativas e qualitativas, como medições e monitoramentos físicos e métodos subjetivos e interativos separados em estímulos visuais e não visuais. Os estímulos visuais abordados por esta norma consideram: a disponibilidade de luz natural; a distribuição de luz natural; a iluminação natural de objetos; a direcionalidade da luz natural; o ofuscamento; a temperatura de cor da luz natural; a modulação temporal da luz natural; a vista exterior; e os estímulos não visuais (potencial circadiano).

Esta parte apresenta os métodos relativos à verificação experimental (monitoramento) no ambiente construído com ferramentas consideradas atuais e apropriadas, podendo estas ser utilizadas em diversas situações, como avaliações de desempenho e avaliações pós-ocupação. É destinada aos profissionais do setor, por exemplo, arquitetos, projetistas de iluminação, gestores de edifícios, pesquisadores e/ou proprietários, e fornece uma estrutura para avaliar as condições de iluminação natural em ambientes internos.

A norma apresenta uma estrutura e ferramentas para avaliar ambientes e projetos de iluminação natural para edifícios residenciais e não residenciais. Ela apresenta um conjunto de ferramentas quantitativas e qualitativas: medições físicas e monitoramento, bem como métodos subjetivos e interativos.

A sua estrutura aborda aspectos relativos aos estímulos visuais e não visuais e aspectos relativos ao comportamento e à preferência dos usuários. Pode-se apresentar a tabela abaixo que traz as etapas possíveis de serem realizadas quando de um levantamento in loco juntamente com a sua descrição.

A etapa 1 e envolve o estabelecimento do objetivo do monitoramento estabelece o foco do monitoramento e a identificação das estratégias a serem usadas para a avaliação. O objetivo do monitoramento pode ser o cumprimento de normas ou certificações, a verificação da efetividade de melhorias implementadas, o atendimento às necessidades visuais e de conforto visual, ou o estabelecimento de comparações com simulações computacionais (ver NBR 15215-3).

A etapa 2 estabelece o tipo de espaço a ser avaliado e que tipo de acesso é necessário para a realização do monitoramento. De forma geral, uma investigação preliminar do local é necessária para coletar informações sobre o tipo de espaço a ser monitorado. A seleção do espaço depende também do contexto, das características de construção e ocupação, dos aspectos que são objeto de investigação, bem como de questões pragmáticas como acessibilidade e capacidade de funcionamento.

Para alguns estudos de caso, pode ser necessário dividir o espaço em diferentes zonas de iluminação. Como exemplo, grandes escritórios de planta livre têm características distintas de iluminação ao longo do perímetro do edifício versus a área central. Nesse cenário, é mais adequado monitorar as duas zonas separadamente e identificar problemas de desempenho característicos de cada zona.

Em alguns casos, pode ser útil monitorar mais de um espaço para analisar, por exemplo, o desempenho em diferentes condições de iluminação, devido à orientação e às configurações espaciais. A etapa 3 abrange monitoramento realizado para escolher ferramentas adequadas, levando em conta o espaço a ser investigado e os recursos disponíveis (pessoal, equipamento e tempo). No desenvolvimento de um escopo de monitoramento, é importante primeiro priorizar o foco e o nível de monitoramento desejado para cada um dos aspectos (de básico a abrangente) e esforço (incluindo tempo e recursos disponíveis).

Os resultados das etapas 1 a 3 auxiliam na determinação das ferramentas mais indicadas para o monitoramento. As ferramentas de monitoramento são apresentadas na Seção 10). Na etapa 4, as medições podem ser contínuas, ponto no tempo, ou ambas. As medidas ponto no tempo são feitas em dias e horários específicos e as medidas longitudinais (contínuas) são registradas continuamente em um período prolongado (por exemplo, semana, mês ou ano).

As medidas ponto no tempo caracterizam as condições em um determinado momento no tempo (instantâneo). Quando tomadas em períodos significativos do dia, de forma que o ângulo solar esteja no seu nível mais baixo e/ou mais alto durante o horário de ocupação (por exemplo, 9:00, 12:00 e 15:00), as medidas podem indicar problemas de desempenho nessa hora do dia.

Os dias de céu típicos devem ser definidos, dependendo do objetivo de monitoramento (por exemplo, verificar o desempenho de sistemas de controle ligados à luz direta). As medidas devem ser feitas em horários que forneçam diferentes condições de iluminação natural do ambiente durante o dia (por exemplo, durante a manhã e à tarde para aberturas laterais voltadas para leste ou oeste, ou nos horários de maior e menor iluminação em ambientes para o norte e sul, ou ainda sob diferentes condições de céu).

As medições contínuas são mais abrangentes e precisas na caracterização do desempenho geral da instalação, porque as variações e a duração da iluminação ao longo do(s) dia(s) podem identificar os períodos específicos em que ocorram problemas de desempenho. Da mesma forma, as medidas longitudinais devem ser tomadas a partir da determinação de uma malha de pontos ou em posições de tarefa durante o horário de trabalho e por no mínimo um dia, mas idealmente em um período de uma semana ou mais, durante períodos significativos do ano, conforme o clima e o uso da edificação.

Como as medidas abrangem uma ampla gama de situação, a equipe de monitoramento deve planejar minuciosamente o monitoramento para que abranja tanto os casos de maior ocorrência quanto as condições extremas de operação, como risco de ofuscamento e posições suscetíveis, escurecimento da luz do dia, etc. A equipe de monitoramento também pode considerar a execução de simulações computacionais de luz natural complementares à medição como forma de verificação. Esta abordagem deve ser considerada quando o espaço não for de fácil acesso.

A etapa 5 envolve a instrumentação e, para a medição de grandezas fotométricas, são utilizados fotômetros, que são instrumentos que possuem um sensor fotométrico para medição de radiação visível (luz). Recomenda-se o uso de aparelhos cuja resposta espectral apresente um erro máximo de 6%, em relação à sensibilidade do olho humano. Recomenda-se o uso de sensores de silício.

Os luxímetros são instrumentos para medição de iluminância que consistem em um sensor fotométrico, geralmente de silício ou selênio, com um filtro de correção óptica, conectado a um circuito de tratamento do sinal (linearização e amplificação) com um visor digital ou analógico. Os luminancímetros são os instrumentos para medição de luminâncias que consistem essencialmente nos mesmos elementos que os luxímetros, mas com a adição de elementos óticos (lentes) apropriados para captar o brilho de objetos contidos em um determinado ângulo sólido e medir a intensidade luminosa proveniente deste ângulo sólido.

A resolução ótica dos luminancímetros varia de 20° (95 msr) a 1/3° (26,5 μsr). Recomenda-se o uso de instrumentos com resolução menor ou igual a 1° (239 μsr) de ângulo sólido. Para a dimensão dos sensores, as medições das condições internas de iluminação, verificadas por meio de sensores fotométricos, caracterizam condições pontuais de iluminação. Portanto, as fotocélulas devem ter as menores dimensões possíveis.

Recomenda-se, para modelos arquitetônicos em escala reduzida, que não sejam utilizados sensores maiores do que 0,03 m² na escala do modelo. Os sensores circulares não podem ter diâmetro superior a 20 cm na escala do modelo.

A dosimetria da radiação para a esterilização de produtos para a saúde

O sistema de dosimetria de radiação envolve os elementos inter-relacionados usados para determinar a dose absorvida, incluindo dosímetros, instrumentos, normas de referência associadas e procedimentos para seu uso. A calibração de sistemas de dosimetria para uso em esterilização por radiação é uma atividade significativa. A resposta da maioria dos dosímetros é influenciada por uma ou mais condições de irradiação e mensuração (por exemplo, temperatura, umidade, exposição à luz, taxa de dose e intervalo de tempo entre o término da irradiação e a medição).

Além disso, os efeitos destas condições estão comumente inter-relacionados e podem variar de lote para lote de dosímetros. Portanto, a calibração deve ser realizada sob condições que correspondam tanto quanto possível às condições reais de uso. Isto significa que calibrações ou verificações de calibração podem ser necessárias para cada circuito do irradiador.

É inadequado aplicar a curva de calibração fornecida pelo fabricante do dosímetro sem a verificação de sua validade. Entretanto, a curva do fornecedor pode fornecer informações úteis sobre a resposta esperada do sistema de dosimetria. Quando praticável, a calibração deve ser fundamentada em irradiações realizadas no irradiador de uso destinado, em vez de derivada de irradiações realizadas em um irradiador diferente.

Modelos matemáticos podem ser usados para estimar doses em certas aplicações e os resultados de cálculos devem ser verificados com mensurações de dose. Modelos matemáticos também podem ser úteis na otimização da aplicação de mensurações de dose.

Modelos matemáticos podem simular de perto o transporte de fótons ou elétrons através do irradiador e do produto, levando em conta a atenuação e dispersão causados por materiais entre a fonte de radiação e o produto. A modelagem matemática de distribuição de dose para irradiadores gama requer conhecimento preciso da distribuição de atividade da fonte e da composição e posição das cápsulas da fonte no suporte da fonte, dos recipientes de irradiação, estruturas de suporte do irradiador e do produto.

Para irradiadores de feixe de elétrons e de raio X, a energia do feixe, a corrente do feixe e a composição e posição do produto, dos recipientes de irradiação e dos materiais dispersores adjacentes devem ser precisamente conhecidos. Erros em qualquer parâmetro de entrada para o cálculo podem resultar em erros nas doses calculadas e, portanto, as distribuições de doses calculadas devem ser verificadas por meio de estudos de mapeamento de dose.

Há diversos métodos para a modelagem matemática de transporte de radiação. Entretanto, a maior parte das modelagens é realizada usando-se tanto o método de Ponto Kernel ou o método de Monte Carlo. O método de Ponto Kernel é usado para calcular a distribuição de dose em irradiadores gama e de raio X. Ele não é usado para irradiadores de feixe de elétrons.

O método de Monte Carlo pode ser usado para irradiadores gama, de raio X e de feixe de elétrons. No método de Monte Carlo, o transporte de cada fóton ou elétron a partir da fonte através dos materiais do produto e do irradiador é simulado pelo uso de números aleatórios para determinar a deposição de energia e alteração de caminho após interações diferentes. A probabilidade para cada interação é obtida a partir de tabelas publicadas.

Teoricamente, o método Monte Carlo pode simular de maneira confiável o transporte real dos fótons e elétrons. Entretanto, uma vez que cada fóton ou elétron segue um caminho único, determinado pelas probabilidades para cada interação individual, a contribuição de dose proveniente de um grande número de fótons ou elétrons somente pode ser determinada a partir de um grande número de históricos de fótons ou elétrons.

A incerteza associada às flutuações estatísticas aleatórias é estimada e os cálculos são continuados até que uma incerteza estatística aceitável na dose calculada seja alcançada. Mesmo com os rápidos computadores modernos, entretanto, cálculos exatos podem requerer grandes quantidades de tempo de computação. Portanto, as aproximações são geralmente usadas.

No método de Ponto Kernel, uma fonte de gama ou raio X (por exemplo, uma fonte gama consistindo em uma série de cápsulas de fonte distribuídas por uma placa retangular ou por um cilindro) é aproximado por uma série de fontes pontuais. O material interveniente entre cada fonte pontual e cada ponto em que a dose deve ser calculada é determinado a partir das coordenadas da fonte, irradiador e volumes do produto.

O efeito desse material interveniente sobre a taxa de dose é estimado pressupondo-se que os fótons atingindo o ponto da dose sejam reduzidos pela relação do quadrado do inverso com a distância e por redução exponencial com base na massa do material. As contribuições de fótons dispersos degradados são aproximadas por meio do uso de um fator chamado de fator de acumulação.

Ele é calculado para diferentes materiais e energias de fótons para diferentes para fontes diferentes até geometrias de produto. Entretanto, os valores publicados se aplicam apenas para geometrias simples e homogêneas (por exemplo, uma fonte

pontual num meio infinito). Em irradiadores gama e de raio X reais, as geometrias da fonte ao produto não são tão simples assim, e os efeitos de delimitações e misturas de materiais limitam a precisão da estimativa de dose na aplicação de fatores de acumulação.

A NBR ISO 11137-3 de 05/2023 – Esterilização de produtos para saúde — Radiação Parte 3: Orientação sobre os aspectos dosimétricos no desenvolvimento, validação e controle de rotina fornece orientações para atender aos requisitos das ISO 11137-1, NBR ISO 11137-2 e ISO/TS 13004 em relação à dosimetria e ao seu uso no desenvolvimento, validação e controle de rotina de um processo de esterilização por radiação. Uma parte integrante da esterilização por radiação é a capacidade de mensurar a dose. A dose é mensurada durante todos os estágios de desenvolvimento, validação e monitoramento de rotina do processo de esterilização.

Tem que ser demonstrado que a medida de dose é rastreável a uma norma internacional ou nacional, que a incerteza da medida é conhecida, e que a influência da temperatura, umidade e outras considerações ambientais sobre a resposta do dosímetro é conhecida e levada em conta. Os parâmetros do processo são estabelecidos e aplicados com base em mensurações de dose. Este documento fornece orientações sobre o uso de mensurações de dose (dosimetria) durante todos os estágios de desenvolvimento, validação e controle de rotina do processo de esterilização por radiação.

Os requisitos com relação à dosimetria são apresentados nas ISO 11137-1 e NBR ISO 11137-2 e ISO/TS 13004. Este documento fornece orientações para estes requisitos. As orientações dadas não são normativas e não são apresentadas como uma lista de verificação para auditores.

As diretrizes fornecem explicações e métodos que são aceitos como meios apropriados de conformidade com os requisitos. Os métodos diferentes daqueles fornecidos nas orientações podem ser utilizados, se forem efetivos na aquisição de conformidade com os requisitos das ISO 11137-1, NBR ISO 11137-2 e ISO/TS 13004. O termo medida de dose é usado neste documento como um termo geral para indicar a determinação de dose absorvida.

Pode se referir tanto a uma medida de dose direta por um dosímetro no local de interesse quanto a uma medida de dose indireta que se relacione ao cálculo da dose absorvida em um local distante de uma dose medida diretamente pela aplicação de fatores. Os fatores associados a uma medida de dose indireta geralmente são determinados durante os estudos de qualificação operacional (QO) e qualificação de desempenho (QD) e refletem proporções de doses em locais diferentes para um determinado processo de irradiação.

Se os fatores e suas incertezas associadas tiverem sido determinados com o uso de medidas de dose rastreáveis, então a medida indireta pode, ela mesma, ser considerada rastreável e atender aos requisitos da ISO 11137-1 em termos de rastreabilidade e incerteza de medição. As NBR ISO 10012 ou a NBR ISO 13485 (ver também ISO 11137-1) apresentam os requisitos para todos os aspectos do (s) sistema (s) de dosimetria usado (s). O (s) sistema (s) de dosimetria precisa (m) ser incluído (s) em um sistema de gestão de medição formal, conforme definido na NBR ISO 10012, que estabelece procedimentos de qualidade para alcançar confirmação metrológica e controle contínuo dos processos de medição.

Um aspecto importante disso é a competência e treinamento da equipe envolvida, tanto na calibração quanto na operação do (s) sistema (s) de dosimetria, e também no desempenho e análise das medidas de dose. As atividades como a escolha do local dos dosímetros para mapeamento de dose e a análise de dados resultantes requerem habilidades e treinamento específicos.

As medidas de dose absorvida em conexão com a esterilização por radiação de produtos para saúde são expressas em termos de dose absorvida para água e, portanto, convém que sistemas de dosimetria sejam calibrados em termos de dose absorvida para água. Com a conclusão da calibração do sistema de dosimetria e o estabelecimento da rastreabilidade da medida, o resultado de cada medida de dose, direta e indireta, representa a melhor estimativa de dose. Não convém que os valores provenientes de medidas de dose sejam corrigidos pela aplicação da incerteza da medida associada.

Os sistemas de dosimetria usados no desenvolvimento, validação e controle de rotina de um processo de esterilização por radiação devem ser capazes de fornecer medidas exatas e precisas ao longo de toda a faixa de doses de interesse e sob as condições de uso. As medidas de dose diretas são requeridas no desenvolvimento, validação e controle de rotina de esterilização por radiação; diferentes sistemas de dosimetria podem ser necessários para estas três tarefas distintas.

Por exemplo, na determinação de doses de esterilização, a faixa de doses requerida para uma verificação ou um experimento de dose incremental pode estar fora da faixa calibrada do sistema de dosimetria usado para a medida de dose no processamento de rotina e, em tais circunstâncias, um sistema diferente teria que ser empregado. As orientações quanto à seleção de sistemas de dosimetria apropriados usados no desenvolvimento, validação e controle de rotina de esterilização por radiação podem ser encontradas na ISO/ASTM 52628.

As propriedades de sistemas de dosimetria individuais são apresentadas na Referência [28] nessa norma e os procedimentos para seu uso são dados nas Práticas ISO/ASTM listadas nas Referências [5], [7] a [11], [13] e [15]. A calibração de sistemas de dosimetria para uso em esterilização por radiação é uma atividade significativa. A resposta da maioria dos dosímetros é influenciada por uma ou mais condições de irradiação e mensuração (por exemplo, temperatura, umidade, exposição à luz, taxa de dose e intervalo de tempo entre o término da irradiação e a medição).

Além disso, os efeitos destas condições estão comumente inter-relacionados e podem variar de lote para lote de dosímetros; ver ICRU 80 [28] e ISO/ASTM 52701 [20] para detalhes adicionais. Portanto, a calibração deve ser realizada sob condições que correspondam tanto quanto possível às condições reais de uso.

Isto significa que calibrações ou verificações de calibração podem ser necessárias para cada circuito do irradiador. É inadequado aplicar a curva de calibração fornecida pelo fabricante do dosímetro sem a verificação de sua validade. Entretanto, a curva do fornecedor pode fornecer informações úteis sobre a resposta esperada do sistema de dosimetria. Quando praticável, convém que a calibração seja fundamentada em irradiações realizadas no irradiador de uso destinado, em vez de derivada de irradiações realizadas em um irradiador diferente.

A fim de garantir rastreabilidade da medida de dose, as irradiações de calibração e de dosímetros padrão de referência usados como parte de uma calibração devem ser fornecidas por um instituto nacional de metrologia reconhecido pelo Comitê Internacional para Pesos e Medidas (CIPM – International Committee for Weights and Measures) ou outro laboratório de calibração de acordo com a NBR ISO/IEC 17025. Um certificado de calibração fornecido por um laboratório que não possua reconhecimento ou acreditação formal pode não ser necessariamente uma prova de rastreabilidade para uma norma internacional ou nacional, e uma evidência documental adicional será requerida (ver ISO/ASTM 51261).

A capacidade de fazer medidas de dose diretas com precisão depende da calibração e consistência de desempenho de todo o sistema de dosimetria. Isto significa que convém que todos os equipamentos associados com o procedimento de medição, não apenas os dosímetros, sejam controlados e calibrados ou, caso os equipamentos não possam ser calibrados, seu desempenho seja verificado.

É importante que a validade da calibração seja mantida ao longo de todo o período de uso dos resultados de calibração. Isto pode implicar na realização de verificação da calibração, usando-se um sistema de dosimetria de referência (ver ISO/ASTM 52628) em intervalos regulares e também quando uma alteração significativa nas condições de irradiação tiver ocorrido, por exemplo, após a reposição da fonte.

As variações sazonais em temperatura e umidade podem potencialmente afetar a resposta do dosímetro. Convém que seja realizada uma avaliação periódica para quantificar essas variações e seus efeitos na resposta do dosímetro, se houver, por meio de um exercício de verificação de calibração, se necessário. Sabe-se que a resposta de alguns tipos de dosímetros é influenciada pelo período de tempo entre o término da irradiação e a medida.

A magnitude deste efeito pode depender das condições de armazenamento durante esse período, e convém que as recomendações do fabricante para armazenamento sejam seguidas, particularmente em relação à temperatura, umidade e exposição à luz. Convém que o efeito das condições de armazenamento seja levado em conta ao determinar o intervalo de tempo aceitável entre o término da irradiação e a medida dos dosímetros, e ao interpretar as medidas de dose. Para mais informações sobre fatores que podem influenciar a resposta do dosímetro, ver ISO/ASTM 52701.

Os procedimentos de calibração detalhados são apresentados na ISO/ASTM 51261. As informações sobre estimativa e relatório da incerteza de medida de dose podem ser encontradas na ISO/ASTM 51707. Orientações adicionais são dadas na Referência [30]. Conforme discutido na ISO/ASTM 51261, convém que a estimativa de incerteza leve em consideração as diferenças entre a calibração e o processamento de rotina, por exemplo, diferenças em quantidades de influência como temperatura de irradiação ou taxa de dose absorvida, ou diferenças em práticas de medida como uso de média versus valor individual para espessura do dosímetro ou absorção de fundo.

A incerteza da medida de dose é um requisito na ISO 11137-1 que as medidas de dose sejam rastreáveis a uma norma internacional ou nacional apropriada, e que o nível de incerteza das medições seja conhecido. Consequentemente, todas as fontes potencialmente significativas de incerteza de medida devem ser identificadas e suas magnitudes avaliadas. Entretanto, dependendo do método escolhido para quantificar a incerteza da medida, é possível determinar as magnitudes de combinações de componentes de incerteza, em vez de quantificar cada componente individualmente.

Os parâmetros normativos de medição predial remota do consumo de água e gás

O sistema de medição remota (SMR) se constitui por medidores providos de geradores de pulsos ou outra tecnologia substituta, dispositivos auxiliares de medição, dispositivos adicionais de medição e prescrições documentadas, que permitem a medição e outras funcionalidades, como acionamento de válvulas de bloqueio digital à distância. Basicamente, podem ser um sistema de medição remota constituído por linhas variáveis discretas; um sistema de medição remota constituído por linhas de comunicação digital; e um sistema de medição remota misto.

O comissionamento do SMR envolve um conjunto de ensaios e inspeções para assegurar a sua conformidade com a norma e minimizar a ocorrência de anomalias. O comissionamento do SMR deve ser realizado em duas etapas, tendo em vista as exigências preconizadas para a realização de ensaio de verificação da integralização de pulsos dos medidores pelo SMR.

Os seguintes documentos devem ser entregues ao proprietário e/ou operador do SMR pelo seu fornecedor na ocasião do comissionamento: manual de operação e manutenção do SMR; declaração de inspeção de componentes de SMR adquiridos de terceiros; certificados dos ensaios e simulações e inspeções feitas no SMR instalado no local; cópia das anotações de responsabilidade técnica (ART) de projeto, equipamentos e sistemas, e execução da instalação do SMR; projeto final (desenho esquemático) das instalações do SMR, para o edifício em questão, detalhando a localização dos componentes situados em área comum, assim como o tipo de material utilizado, seguindo as prescrições da ISA 5.1; e as prescrições documentadas. A discriminação dos ensaios e os respectivos planos de amostragem encontram-se na tabela abaixo.

Igualmente, deve-se entender uma metodologia de dimensionamento da infraestrutura predial civil necessária (eletrodutos, eletrocalhas, caixas de passagem, etc.) que possibilite a futura instalação de quaisquer das três modalidades de sistema de medição remota prediais, as quais estão comumente disponíveis no mercado brasileiro. Isso se preferencialmente à elaboração do projeto da edificação, para o qual existe a necessidade de se prever a infraestrutura civil para a futura instalação de SMR após a conclusão das obras e cuja modalidade e fornecedor ainda não foram definidos. Para edificações já construídas ou para o caso de já se ter definido por ocasião da elaboração do projeto da edificação o fornecedor do SMR, recomenda-se consultá-lo para efeito de dimensionamento da infraestrutura civil necessária.

A NBR 15806 de 02/2010 – Sistemas de medição predial remota e centralizada de consumo de água e gás estabelece os requisitos mínimos necessários para implementação de sistemas de medição prediais remotos e centralizados de consumo de água e gás, tipicamente utilizados em edificações residenciais e comerciais. Esta norma se aplica aos sistemas com medidores de água e gás regularmente utilizados em medições residenciais e análogas (hidrômetros e medidores de paredes deformáveis) conforme descritos nas normas NBR NM 212 e NBR 12127.

O sistema de medição remota (SMR) é usado para a medição e é constituído por medidores providos de geradores de pulsos ou outra tecnologia substituta, dispositivos auxiliares de medição, dispositivos adicionais de medição e prescrições documentadas, que permitem a medição e outras funcionalidades, como acionamento de válvulas de bloqueio digital à distância (figura abaixo). Os componentes do SMR, particularmente os dispositivos auxiliares de medição, podem constituir-se em elementos únicos situados em locais determinados ou em vários elementos localizados ao longo de uma rede digital de comunicações em função da solução tecnológica adotada.

Para exemplificar os dispositivos de memórias (dispositivo auxiliar de medição) tanto podem estar localizados de forma distribuída nos andares dos edifícios, como também podem se constituir em um elemento único localizado nas centrais de controle instaladas em área comum. Os sistemas de medição remota prediais para água e gás são classificados em três modalidades, de acordo com a tipologia das redes de comunicação de dados.

O Anexo A apresenta uma metodologia de dimensionamento da infraestrutura predial civil (eletrodutos, eletrocalhas, caixas de passagem, etc.) que possibilita no âmbito do projeto da edificação a previsão dos meios necessários para a instalação de quaisquer das três modalidades de sistema de medição remota prediais, após a sua construção. O sistema de medição remota constituído por linhas variáveis discretas – SMR 01 usa predominantemente linhas variáveis discretas (pulsos) para a transmissão de dados, sem o uso de protocolos de comunicação. A integração de pulsos digitais dos medidores, bem como o envio de pulsos de comando para acionamento das válvulas de bloqueio são realizados no dispositivo calculador do SMR (concentrador), o qual é normalmente localizado na central de operações e coleta de dados do SMR.

Eventualmente, em função das necessidades do edifício, dois ou mais calculadores podem ser interligados. O SMR é considerado um sistema de medição eletrônico, tendo em vista a sua concepção. O SMR deve ser protegido contra campos magnéticos externos, descargas eletrostáticas e interferências eletromagnéticas de acordo com as resoluções Anatel nº 442 e 238.

Recomenda-se que o SMR seja concebido de forma a não ocasionar qualquer tipo de interferência em sistemas e/ou aparelhos típicos de uso urbano normalmente existentes nos edifícios. O SMR deve ser concebido de tal maneira que o restabelecimento do fornecimento de gás não possa ser realizado remotamente.

Os componentes elétricos/eletrônicos devem ser protegidos contra a ignição no caso de contato direto com gases combustíveis. O SMR deve ser concebido de tal maneira que não gere temperaturas superiores a 85 °C e choques elétricos por contato. Deve assegurar a integridade dos dados nele coletados e armazenados.

O SMR deve ser integralmente protegido contra surtos de tensão e corrente elétrica, através de dispositivos apropriados (DPS – dispositivo de proteção contra surtos). A especificação da classe do DPS deve estar de acordo com a NBR 5410, referente à especificidade de cada sistema. Deve ser protegido contra descargas atmosféricas, levando em conta as características locais da instalação e as interfaces com outros sistemas existentes.

A especificação da classe contra descargas atmosféricas deve estar de acordo com a NBR 5410 e com a especificidade de cada sistema. Os componentes do SMR instalados em área aberta devem ser protegidos contra ação dos agentes atmosféricos e da corrosão. Os invólucros que venham a ser utilizados devem possuir classificação mínima de proteção IP 65 em conformidade com a NBR IEC 60529.

O SMR deve garantir a continuidade da aquisição de dados de medição em casos de falta de alimentação principal por um período mínimo de 24 h. O SMR deve possibilitar a medição dos consumos individuais referente às economias e ao medidor coletivo (se houver). Deve possuir dispositivo indicador local, de livre acesso, que permita a visualização dos dados de leitura e alarmes disponíveis.

O SMR deve ter a capacidade de atualização manual das leituras remotas de acordo com as leituras indicadas nos totalizadores dos medidores, sempre que essa se fizer necessária. O SMR deve ter a capacidade de disponibilizar pelo menos uma leitura por dia. O SMR deve ter a capacidade de realizar testes periódicos de funcionamento da VBRP de água ou de gás.

Os protocolos para comunicação externa do SMR devem ser abertos de forma a garantir a sua total intercambiabilidade e interoperabilidade. Recomenda-se adotar as diretrizes preconizadas no Anexo B para a sua especificação. O SMR deve emitir alarmes em casos de falta de alimentação principal por um período superior a 3 h.

O SMR deve ter a capacidade de geração, registro e visualização de alarmes relativos a rompimento da selagem eletrônica. Para se obter acesso aos componentes do SMR, no caso de uso de selos mecânicos, cada selo deve ser removido, danificado ou quebrado. O SMR deve ser capaz de emitir alarmes de consumo ininterrupto de água ou gás por no mínimo 24 h.

O SMR deve emitir alarme quando ocorrer falta de integridade da comunicação desde os medidores e a válvula de bloqueio remoto acionada por pulso (VBRP) até o concentrador, de acordo com o ensaio descrito nessa norma. Se na rede interna da economia existir um VBRP operando em conjunto com SMR, este deve enviar um alarme se o transdutor de medição enviar dados ao SMR enquanto a VBRT estiver na posição fechada, o que representaria um vazamento de gás.

O SMR, quando submetido ao ensaio de verificação da integralização de pulsos dos medidores pelo SMR, não deve apresentar nenhuma variação entre as leituras coletadas no totalizador do medidor e no dispositivo indicador remoto. Os medidores devem atender às Portarias nº 31 (medidores de gás) e nº 246 (medidores de água) do Inmetro.

Os medidores devem ser dimensionados e instalados de acordo com as normas vigentes e os requisitos específicos dos fabricantes. Recomenda-se que os medidores a serem instalados na entrada da edificação e/ou nas áreas comuns sejam pré-equipados para interligação ao SMR. O transdutor de medição deve garantir a integridade da transmissão do sinal do medidor ao SMR. Deve atender rigorosamente às normas vigentes e aos requisitos específicos dos fabricantes.

Deve possuir características de funcionamento prolongado no mínimo iguais às do medidor no qual ele será instalado. O SMR, no que tange à sua operação associada com o transdutor de medição para medidores de gás, deve estar em conformidade com a NBR15526. O SMR, no que tange à a sua operação associada com o transdutor de medição, não deve ser afetado por violações magnéticas ou eletromagnéticas. Caso seja violado deve gerar um alarme para esta ocorrência.

Para o caso do uso de transdutores de medição tipo ampola de contato (reed switch), este requisito deve ser comprovado, por ocasião do comissionamento do SMR, através da execução de ensaio de influência de campo magnético externo. O transdutor de medição deve ser solidariamente fixado ao medidor e respeitar os requisitos mínimos de proteção IP65, de acordo com a NBR IEC 60529.

O subconjunto constituído por medidores, transdutores de medição, conexões dos transdutores dos medidores aos meios físicos e VBRP deve estar devidamente selado através de lacres apropriados. O subconjunto constituído por medidores, transdutores de medição, conexões dos transdutores dos medidores aos meios físicos e VBRP deve estar devidamente protegido contra choques mecânicos ou avarias de qualquer natureza.

Os dispositivos auxiliares não podem afetar as funções metrológicas do medidor e tão pouco a correta operação do SMR. O SMR deve possuir interface para comunicação com equipamentos de coleta de dados conforme protocolo delineado no Anexo B. O concentrador deve ser instalado permanentemente em área comum de livre acesso, protegida de intempéries, de forma a permitir sua conexão com sistemas de coleta de dados e auditagem.

O invólucro do concentrador deve possuir classificação mínima IP65 segundo a NBR IEC 60529. O concentrador deve armazenar de forma não volátil os dados de medição, permitindo sua conferência com o totalizador do medidor. A altura dos dígitos do indicador deve ser igual ou superior a 5 mm. Deve ser possível a leitura de maneira clara e sem ambiguidades a um ângulo de 55° tomando como referência um eixo perpendicular ao visor. O dispositivo indicador remoto deve possuir interfaces homem-máquina amigáveis e de simples operação. O dispositivo indicador remoto deve ser alojado em local protegido de intempéries.

A Qualidade das trenas de fita de aço para medições lineares

As trenas são instrumentos importantes para realizar medições e teste. Bastante utilizada na construção civil e em serviços que envolvem elétrica, a trena podem ser muito versátil e apresentar modelos diferenciados que trazem praticidade e conforto. São bem simples de serem utilizadas e dispõe de mais que uma versão de modelo. Possuem um sistema de trava e é bastante ergonômica, sendo muito fácil e confortável utilizá-la para realizar as medições. Para quem realiza trabalhos envolvendo eletricidade, o ideal é utilizar as trenas de fibra de vidro, um material que não conduz eletricidade e traz muito mais segurança para o seu usuário, além da alta durabilidade, sendo resistente a intempéries.

Uma trena de fita de aço é um instrumento de medição que contém uma fita graduada ao longo de seu comprimento, com marcas transversais, que pode ser acoplada a uma caixa dotada de mecanismo para recolhimento automático ou manual da fita, conforme ilustrado nas figuras abaixo. A fita também pode ser acoplada a um suporte dotado de mecanismo para recolhimento manual, conforme a figura abaixo.

As fitas podem ser do tipo plana ou do tipo curva. As trenas de fita de aço são classificadas quanto à exatidão como classe I ou classe II. A resistência ao desgaste das fitas de aço deve atender aos requisitos especificados na ASTM D 968. A aderência da tinta, esmalte ou outro filme protetor deve atender aos requisitos da ASTM D 3359:2009, classificação 3B a 5B, subseção 14.

As marcas da fita devem ser nítidas, regulares e indeléveis. Quando houver marcas antes do início da faixa nominal da escala, este comprimento deve ser menor do que 500 mm. Quando houver segmento sem marcas fora da faixa nominal da escala, este deve ter comprimento maior do que 50 mm para as fitas do tipo curva e maior do que 100 mm para as fitas do tipo plana.

Para trena com faixa nominal menor ou igual a 5 m, o comprimento sem marcas na extremidade final da fita deve ser superior a 50 mm, a partir da caixa ou suporte. Para trena com faixa nominal acima de 5 m, esse comprimento deve ser superior a 100 mm.

As trenas de fita de aço com largura acima de 6 mm devem conter as inscrições a seguir, conforme a figura abaixo: nome do fabricante ou marca; comprimento nominal; classe de exatidão, inscrita em uma figura oval ou entre dois traços paralelos, unidos por dois semicírculos; temperatura de referência 20 °C; e a força de tração. Essas inscrições devem ser feitas a partir da extremidade inicial, preferencialmente dentro dos primeiros 500 mm da fita. Quando houver número de série, este pode ser inscrito no final da fita, logo após o final das marcas, ou no início da fita, no seu verso.

A NBR 10123 de 09/2012 – Instrumento de medição e controle — Trena de fita de aço — Requisitos estabelece as condições requeridas para as trenas de fita de aço utilizadas para medições lineares na indústria e para uso geral, onde não são exigidas medições de grande exatidão. É aplicável às trenas fabricadas em fita de aço e não se propõe a tratar dos problemas de segurança envolvidos. É de responsabilidade do usuário desta norma estabelecer práticas apropriadas de segurança e saúde, bem como determinar a aplicabilidade de limitações da regulamentação, antes do uso.

As trenas de fita de aço devem ser fabricadas conforme esta norma. Casos especiais devem ser acordados com o fabricante. A caixa ou suporte da fita deve ser fabricado em aço, plástico ou material sintético, podendo ser do tipo fechado (caixa) ou aberto (suporte). A fita deve atender ao ensaio de rigidez, bem como ao ensaio de flexibilidade.

A dureza da fita de aço-carbono deve estar na faixa de 360 HV até 560 HV e a da fita de aço inoxidável deve estar acima de 360 HV. A medição de dureza da fita deve ser conforme a NBR ISO 6507-1. A fita graduada deve sair da caixa, ou do suporte, em toda a extensão da faixa de medição, mais 50 mm no mínimo, a fim de facilitar a medição.

Para o ensaio de rigidez da fita de aço, a trena com retorno automático e com fita de aço tipo curva deve ser posicionada no limite da borda de uma superfície plana, ou de uma bancada de ensaio. A fita deve ser estendida, com a sua superfície da escala voltada para cima (superfície côncava), até o limite de dobra devido ao seu próprio peso, sendo o comprimento L denominado ponto de dobra

A fita de aço deve ser tratada superficialmente contra oxidação, através de pintura, esmaltação ou aplicação de outros produtos para essa finalidade. A camada de tratamento na superfície com escala deve ser maior que 0,03 mm. Se as marcações forem feitas por processo eletrolítico, a camada pode ser menor ou igual a 0,03 mm.

A marcação na fita pode ser em alto ou baixo-relevo. A unidade de medida de comprimento é o metro. As marcas devem ser uniformes ao longo do comprimento e perpendiculares ao eixo longitudinal da fita. O comprimento das marcas deve ser decrescente para as subdivisões: decímetro, centímetro e milímetro.

As marcas da fita devem ser nítidas, regulares e indeléveis. Quando houver marcas antes do início da faixa nominal da escala, este comprimento deve ser menor do que 500 mm. Quando houver segmento sem marcas fora da faixa nominal da escala, este deve ter comprimento maior do que 50 mm para as fitas do tipo curva e maior do que 100 mm para as fitas do tipo plana.

Para trena com faixa nominal menor ou igual a 5 m, o comprimento sem marcas na extremidade final da fita deve ser superior a 50 mm, a partir da caixa ou suporte. Para trena com faixa nominal acima de 5 m, esse comprimento deve ser superior a 100 mm.

Os atributos do projeto e o desempenho das próteses acetabulares

As próteses acetabulares, principalmente em artroplastia de quadril, é destinada a substituir o acetábulo biológico na artroplastia total de quadril. Ela compreende a superfície de suporte articular acetabular e a superfície de fixação à estrutura óssea acetabular. Em uma prótese acetabular modular, o sistema é composto pelo suporte acetabular ou acetabular shell que é a estrutura côncava externa da prótese acetabular modular que proporciona suporte ou reforço mecânico adicional para um inserto acetabular e cuja estrutura externa faz interface diretamente com os ossos da cavidade pélvica ou com o agente para a sua fixação (cimento ósseo) e pelo inserto acetabular ou acetabular liner que é o elemento interno da prótese acetabular modular com um encaixe hemisférico côncavo, projetado para articular com a cabeça femoral, destinado a ser acoplado ao suporte acetabular.

A prótese acetabular deve ser avaliada de acordo com a NBR 16359, para assegurar que as amplitudes de movimento de projeto não resultem em colisão com o componente femoral. As características de fadiga, deformação e desgaste do componente acetabular, e a luxação, sob condições dinâmicas de colisão, devem ser estabelecidas de acordo com a NBR 16359.

A prótese acetabular deve ser submetida a análises de modos de falha que é a avaliação da segurança e a eficácia que devem considerar pelo menos os modos de falha clínica reconhecidos, conforme a seguir: dissociação de componentes de próteses modulares; afrouxamento de elementos de fixação na interface com o osso ou com o cimento ósseo; fratura do suporte acetabular, do inserto acetabular ou da copa acetabular; e desgaste da (s) superfície (s) de articulação. Os modos de falha devem ser avaliados com base em resultados de ensaios físicos, quando disponíveis, ou de análises mecânicas pertinentes aos carregamentos a que o componente seja submetido.

A avaliação da resistência de acoplamento dos componentes acetabulares modulares deve ser determinada de acordo com a NBR 15670-2. O desgaste excessivo da superfície articular do suporte articular resulta em resíduos particulados que podem comprometer a segurança e a eficácia da prótese acetabular.

Os ensaios funcionais (simulados) podem ser executados para avaliar o desgaste da superfície articular acetabular, de acordo com a NBR ISO 14242-1 ou NBR ISO 14242-3. Adicionalmente, podem ser realizados os ensaios com variação de posicionamento no componente, que resultam em carregamento direto na borda, e podem ser realizados conforme a NBR ISO 14242-4.

Uma vez que seja impraticável a simulação de todos os aspectos da função do quadril utilizando apenas um conjunto de condições de ensaio, diversas condições de ensaio devem ser consideradas, podendo envolver efeitos como: a interação abrasiva por terceiro corpo; alto ângulo do inserto; microsseparação de componentes; movimentação específica, tipo parada-acomodação-partida. A parada-acomodação-partida refere-se a um protocolo de movimento para avaliação de desgaste, específico para a avaliação de implantes, que envolve ciclos de parada, acomodação sob uma carga constante por determinado período curto (por exemplo, 1 min), seguida por uma sessão longa (por exemplo, 10 min) em que se aplicam as condições de carregamento de caminhada contínua.

Este protocolo procura avaliar o efeito do atrito estático no mecanismo de desgaste. O fornecedor ou processador de material destinado à fabricação de implante deve estabelecer os controles apropriados aos processamentos conduzidos sob sua responsabilidade e manter um sistema de gestão da qualidade abrangente e reconhecido, que assegure as rastreabilidades de materiais e componentes e de processo.

Um sistema de gestão da qualidade abrangente pode ser reconhecido pelo atendimento aos requisitos estabelecidos na NBR ISO 9001. O fabricante de implante deve estabelecer controles apropriados para o recebimento de materiais e componentes para uso na fabricação do implante, bem como para os processos de fabricação, de modo a assegurar a qualidade do implante aprovado para comercialização.

Os requisitos para sistemas de gestão da qualidade aplicáveis à fabricação de implantes podem ser encontrados na NBR ISO 13485. A contratação para fornecimentos e serviços, as verificações de material e de componentes recebidos e a aceitação de declarações de fornecimento e de relatórios de ensaio pelo fabricante devem atender aos requisitos da NBR ISO 13485.

Quando aplicável, convém que as declarações de fornecimento ou os relatórios de ensaio apresentem resultados com rastreabilidade metrológica a padrões reconhecidos. O laboratório de ensaio, próprio ou terceirizado, destinado a fornecer resultados para a avaliação de projeto ou para controle de processo para a fabricação do implante, deve manter um sistema de gestão da qualidade reconhecido. Os requisitos gerais para a competência de laboratórios de ensaio e calibração podem ser encontrados na NBR ISO/IEC 17025.

A NBR 15719 de 01/2023 – Implantes para ortopedia — Prótese de quadril — Requisitos para prótese acetabular estabelece requisitos para materiais, fabricação, avaliação de projeto, avaliação de desempenho, marcação, embalagem, rotulagem e esterilização, bem como identifica os tipos de prótese, a designação de dimensões e atributos de projeto e o desempenho pretendido de próteses acetabulares. Não se aplica às próteses acetabulares fabricadas sob medida (projetadas individualmente para um único paciente), de revisão ou constritas. A prótese acetabular, em artroplastia de quadril é destinada a substituir o acetábulo biológico na artroplastia total de quadril. A prótese acetabular compreende a superfície de suporte articular acetabular e a superfície de fixação à estrutura óssea acetabular. Em uma prótese acetabular modular, o sistema é composto pelo suporte acetabular e pelo inserto acetabular

Os componentes acetabulares utilizados em artroplastia total de quadril destinam-se ao uso em pacientes com esqueleto maduro, em situações de imposição de cargas dinâmicas, em ambiente corrosivo e com movimento virtualmente contínuo das superfícies de articulação. Os componentes para artroplastia total de quadril destinam-se aos indivíduos com degeneração tanto da cabeça femoral, quanto do acetábulo.

Os requisitos da norma baseiam-se em mais de 40 anos de experiências clínicas bem-sucedidas com este tipo de implante, sendo considerados importantes para proporcionar longevidade e segurança às próteses. Os limites específicos de desempenho foram estabelecidos com base em dados in vitro relacionados aos materiais e implantes que apresentaram experiência clínica aceitável.

Vale observar a possibilidade de falha de uma artroplastia como resultado de fatores completamente não relacionados às características das próteses, podendo ocorrer até em componentes intactos. Devido à natureza complexa do procedimento cirúrgico abrangendo componentes da implantação, como implantes e cimento (se necessário), e características do ambiente hospedeiro, como ossos, tecidos moles e fluidos de corpo, a falha pode ocorrer unicamente como resultado de fatores de ambiente, que não são influenciados pelas propriedades dos componentes do implante.

Ou, ainda, pode ocorrer como resultado de limitações da amplitude de movimento, que podem ser causadas pelo dimensionamento ou posicionamento inapropriados dos implantes, associados ou não à influência de tecidos moles. Sob este aspecto, recomenda-se que seja realizada uma análise da amplitude de movimento sobre o caso mais crítico para a combinação de componente acetabular, cabeça e haste femoral.

A NBR ISO 21535 estabelece o procedimento para avaliação do movimento angular relativo dos componentes de próteses femorais. Os ensaios de laboratório, mesmo com simulação de carregamentos impostos em meio corrosivo de eletrólitos e elementos complexos dos fluidos corpóreos, não possibilitam predizer com exatidão o desempenho sobre muitas décadas de uso in vivo.

O desempenho clínico é influenciado por muitos fatores e é importante que seja considerado, ainda, em relação à anatomia e à atividade do paciente. Os esforços físicos resultantes de eventos ou atividades extraordinárias, como acidentes ou esportes especialmente enérgicos, possivelmente excedem os níveis de esforço permitidos em qualquer componente.

Além disto, outras formas de falhas de artroplastia podem ocorrer, relacionadas principalmente a fatores do paciente, como osteoporose, mau uso ou falta de uso, entre outros. Os materiais referenciados nesta norma têm sido empregados com sucesso em aplicações de implantes humanos em contato com tecidos moles e ósseos por mais de uma década, documentando o estado da arte daqueles usos clínicos para esta aplicação.

Nenhum material para implante cirúrgico mostra ser completamente livre de reações adversas no corpo humano. Entretanto, as experiências clínicas prolongadas do emprego do material referenciado na norma mostram que um nível aceitável de resposta biológica pode ser esperado quando o material é usado em aplicações apropriadas. O uso destes materiais não garante, por si só, um projeto bem-sucedido.

Outros materiais que se mostrarem apropriados serão inseridos em futuras revisões, por atenderem aos requisitos de resistência à corrosão e biocompatibilidade necessários para assegurar a aceitabilidade de novos materiais pelo corpo humano. Embora os materiais estabelecidos em algumas normas brasileiras sejam quimicamente similares àqueles estabelecidos em normas correspondentes da ASTM, as normas podem não ser idênticas.

Cabe ao fabricante de implante, no desenvolvimento do projeto do produto, identificar e estabelecer a conveniência de empregar uma, outra ou ambas na qualificação da matéria prima a ser utilizada no processo de fabricação. No momento, o desempenho de um componente só pode ser previsto indiretamente, relacionado a níveis de resistência e a outros parâmetros. As referências a parâmetros aplicáveis aos materiais podem ou não descrever adequadamente as estruturas fabricadas a partir deles.

Na transição entre normas de especificação para implantes e normas de desempenho para implantes, ambos os métodos podem ser apropriados. O desgaste entre dois materiais pode provocar efeitos adversos e prejudiciais, tanto mecânicos, quanto biológicos. As dimensões e tolerâncias estão estabelecidas conforme os documentos para projetos de engenharia da American National Standards Institute (ANSI) para esfericidade, concentricidade e acabamento superficial.

Devido à característica modular dos projetos, convém que a nomenclatura e o dimensionamento normalizado de partes sejam mantidos, de forma a auxiliar o cirurgião na seleção apropriada de componentes complementares combinados. As próteses acetabulares podem ser classificadas como: tipo I: prótese acetabular monobloco, também denominada copa acetabular; tipo II: prótese acetabular modular unipolar, constituída por um suporte acetabular e um inserto acetabular; e tipo III: prótese acetabular modular com dupla mobilidade, constituída por um suporte acetabular, inserto externo, inserto de dupla mobilidade e, quando pertinente, anel de travamento do inserto de dupla mobilidade. Para a constituição dos sistemas protéticos acetabulares, conferir a NBR 16994-1.

Quando as dimensões das próteses acetabulares não forem estabelecidas de outra forma na NBR ISO 7206-1, convém que elas sejam designadas de acordo com as figuras disponíveis na norma ou por método igualmente detalhado e aceitável. Para atributos de projeto, aplica-se o estabelecido na NBR ISO 21535. A prótese acetabular deve ser projetada de modo que as amplitudes de movimentos angulares com o componente femoral atendam aos requisitos para desempenho pretendido estabelecidos na NBR ISO 21535.

Os procedimentos de fabricação de componentes metálicos das próteses acetabulares devem atender aos requisitos estabelecidos na NBR 16874. Caso um dos componentes não seja radiopaco, ele deve ser apropriadamente marcado para avaliação radiográfica. Se um marcador radiográfico for utilizado, ele deve ser colocado em uma área não crítica, de modo a evitar a degradação das propriedades estruturais e funcionais do implante.

Para os materiais, aplica-se o estabelecido na NBR ISO 21535 e o seguinte. A seleção de material apropriado é necessária, mas não suficiente para garantir a função pretendida para o componente a ser fabricado, uma vez que projeto e os processos de fabricação podem influenciar fortemente as propriedades do material. O componente acetabular deve ser fabricado empregando materiais com biocompatibilidade, resistência mecânica, durabilidade e, se aplicável, resistência à corrosão apropriadas, que atendam aos requisitos para materiais estabelecidos na NBR ISO 14630.

A conformidade de um material selecionado às exigências de sua norma e o sucesso do uso clínico do material em projetos existentes de implantes não são suficientes para assegurar os requisitos de resistência de um implante específico. O material sem histórico, ou com histórico limitado, de uso bem-sucedido para aplicações em implantes ortopédicos deve apresentar, quando submetido aos ensaios estabelecidos na NBR ISO 10993-1, uma resposta biológica igual ou superior a algum dos materiais reconhecidos para uso na fabricação do produto.

Os materiais para suportes articulares devem atender aos requisitos estabelecidos na NBR ISO 21534. Os componentes de próteses acetabulares têm sido fabricados com sucesso clínico, empregando-se os materiais identificados nessa norma. No entanto, ressalta-se que nem todos estes materiais apresentam resistência mecânica suficiente, como requerido para os componentes críticos submetidos a altas tensões ou para as superfícies de articulação.

O processo de triagem da toxicidade de nanomateriais manufaturados

Um nanomaterial (NM) pode ser um material natural, incidental ou manufaturado contendo partículas, em um estado não ligado ou como um agregado ou um aglomerado e onde, para 50% ou mais das partículas na distribuição numérica de tamanho, uma ou mais dimensões externas estão na faixa de tamanho 1 nm – 100 nm. Foi feita uma compilação de métodos destinados a auxiliar o processo de triagem da toxicidade de nanomateriais projetados e manufaturados em um momento anterior aos ensaios toxicológicos e respectivas análise e avaliação de risco, em grande escala.

Os métodos de triagem da toxicidade se concentram em fornecer informações e ferramentas que podem ser utilizadas nos processos de tomada de decisão. Desta maneira, existem variadas informações sobre os métodos que podem ser utilizados para a triagem de nanomateriais, a fim de determinar se o desenvolvimento de um nanomaterial em si e/ou um produto que contém um nanomaterial seja continuado; determinar se precisa assumir o custo de execução das etapas restantes dentro de uma estratégia de testagem em etapas completas; ou determinar se os controles apropriados estão em vigor para continuar a pesquisa de nanomateriais em escala laboratorial.

Assim como qualquer outra substância química, alguns nanomateriais são perigosos e outros não. A nanoescala das partículas não implica em si um perigo. Em vez disso, os efeitos potenciais são baseados nos efeitos adversos que um nanomaterial pode causar e na quantidade absorvida por um organismo (humano ou animal).

No entanto, vários nanomateriais manufaturados têm sido associados a riscos à saúde. Alguns nanomateriais podem ser absorvidos pelos pulmões, causando inflamação e danos aos tecidos, fibrose e geração de tumores. O sistema cardiovascular também pode ser afetado. Alguns tipos de nanotubos de carbono podem levar a efeitos semelhantes aos do amianto.

Além dos pulmões, descobriu-se que os nanomateriais atingem outros órgãos e tecidos, incluindo fígado, rins, coração, cérebro, esqueleto e tecidos moles. Como resultado de seu pequeno tamanho e grande área de superfície, os nanomateriais particulados em forma de pó podem apresentar riscos de explosão, enquanto versões não nanométricas da mesma substância podem não apresentar.

Deve-se alertar que o uso de nanomateriais está se expandindo rapidamente e um grande número de produtos de uso diário já contém nanomateriais. Os consumidores podem ser expostos a nanomateriais manufaturados contidos em tintas, protetores solares e outros cosméticos, alimentos e embalagens de alimentos, têxteis, equipamentos esportivos, eletrônicos e baterias. Sua função pode ser: bloqueador de UV, autolimpante, antibacteriano, repelente de água, isolamento térmico, força aprimorada, cor, textura, sabor e consistência aprimorados dos alimentos, e purificação da água.

O destino e a distribuição ambiental dos NM dependem de muitos fatores, como a via de liberação por meio da qual os NM inicialmente entram no ambiente (por exemplo, em biossólidos de uma estação de tratamento de águas residuais para aplicação no solo ou degradação de produtos de consumo). Após a liberação, a mobilidade do NM depende das características ambientais do meio, como as propriedades do solo ou dos sedimentos, ou a química aquosa de um corpo de água.

As características do NM são tipicamente também muito pertinentes, como seus revestimentos de superfície ou falta deles, forma e morfologia (hastes versus esferas), composição das partículas e afinidade por outras moléculas no ambiente, como matéria orgânica natural. Os potenciais de degradação e transformações diferem para NM baseados em carbono e inorgânicos. As nanopartículas de carbono (por exemplo, fulerenos e nanotubos de carbono) podem, em última análise, ser mineralizadas em dióxido de carbono por vias bióticas (biodegradação) ou abióticas.

As nanopartículas carbonáceas também podem ser modificadas, por meio de oxidação e alterações na química da superfície das partículas. Os NM inorgânicos também podem ser transformados por meio da dissolução em seus íons característicos, processos de oxidação (por exemplo, ferro zero-valente em óxidos de ferro) e reações químicas, que de outra forma alteram a composição dos NM (por exemplo, nanopartículas de prata sendo transformadas em cloreto de prata ou sulfeto de prata).

Outro tópico pertinente para alguns NM diz respeito a mudanças em seus revestimentos de superfície, como biodegradação, troca do revestimento de superfície (por exemplo, matéria orgânica natural por citrato) ou modificação de revestimentos de superfície por processos bióticos, ou abióticos (por exemplo, fotólise). A biopersistência e a bioacumulação dos NM dependem das características do NM (por exemplo, tamanho, composição das nanopartículas, revestimentos de superfície), características dos meios ambientais (com diferentes fatores sendo mais importantes para meios aquáticos, meios terrestres ou sedimentos) e características dos organismos.

A ABNT ISO/TR16197 de 12/2022 – Nanotecnologias – Compilação e descrição de métodos de triagem da toxicidade para nanomateriais manufaturados fornece uma compilação e descrição de métodos in vitro e in vivo que podem ser utilizados para a triagem da toxicidade, incluindo triagem ecotoxicólogica, de nanomateriais engenheirados e manufaturados. Os ensaios de triagem da toxicidade podem ser utilizados para fins como a tomada de decisão proativa em pesquisa e desenvolvimento de produto, resposta rápida sobre potenciais preocupações toxicológicas/de segurança ou para a avaliação preliminar de nanomateriais manufaturados. Este relatório técnico está dividido entre os ensaios de triagem para efeitos em humanos e ensaios de triagem relacionados ao meio ambiente.

Um ensaio de triagem é relativamente simples e de baixo custo, que pode ser realizado facilmente e fornece uma indicação de possíveis resultados adversos e efeitos na saúde humana ou no meio ambiente. O relatório técnico pretende complementar outros esforços internacionais que abordam a toxicologia dos nanomateriais, concentrando-se em métodos de triagem adequados para avaliação preliminar e não pretende duplicar esforços semelhantes com outras organizações internacionais, como a Organização para Cooperação e Desenvolvimento Econômico (OCDE). Caso a triagem forneça uma indicação precoce de perigo, a orientação indicará a necessidade do uso de abordagens de outras organizações para avaliação toxicológica completa ou estudos em etapas adicionais.

É um desafio acompanhar o número de NM emergentes com novas propriedades e avaliar toxicologicamente novos materiais antes da exposição humana, incluindo exposição ocupacional e ambiental. Como praticamente todos os elementos da tabela periódica poderiam ser explorados na nanotecnologia, a potencial diversidade de NM torna impraticável utilizar os paradigmas atuais de testagem para avaliar cada novo nanomaterial. A triagem da toxicidade de alto rendimento é essencial para acompanhar a taxa de NM atualmente emergentes no mercado.

Essa triagem é normalmente realizada utilizando cultura de células ou outras técnicas in vitro devido a restrições de custo, infraestrutura e tempo. Estas considerações impedem a maioria dos estudos em modelos animais. Além disso, há um esforço mundial para diminuir o uso de estudos in vivo em animais, conforme apresentado nos princípios dos 3R (substituição, redução, refinamento).

O objetivo de um ensaio de triagem é fornecer um indicador de potenciais resultados adversos e efeitos sobre a saúde humana ou o meio ambiente. Embora existam muitas definições disponíveis para o termo ensaio de triagem, para efeitos deste relatório técnico, um ensaio de triagem pode ser geralmente definido como relativamente simples e de baixo custo, que pode ser administrado facilmente e fornece resultados rápidos.

Um ensaio de triagem pode incluir o seguinte: não utiliza (ou usa um número muito limitado de) animais sencientes; produz um desfecho quantificável ou uma resposta sim/não que seja bem aceita e confiável; demonstrou repetibilidade em vários laboratórios; e é reprodutível com controles positivos e negativos apropriados. Os ensaios de triagem geralmente fornecem dados mecanísticos específicos para que sejam utilizados no contexto de uma estrutura de vias de resultados adversos ou de uma análise de assinatura química. Este relatório técnico trata apenas dos ensaios de triagem que foram utilizados para fins de avaliação da toxicidade de nanomateriais, portanto, os resultados deste tipo de ensaio de triagem poderiam ser utilizados para determinar se irá ou não prosseguir com o desenvolvimento contínuo de um determinado produto nanomaterial.

Por exemplo, NM previstos para serem particularmente perigosos podem ter seu desenvolvimento paralisado. Quando utilizados em uma estratégia de testagem hierárquica, os métodos de triagem de alto rendimento têm o potencial de eliminar mais ensaios in vivo ou identificar materiais perigosos para investigação in vitro ou in vivo direcionada, simplificando assim o processo de identificação de riscos.

O fato de que os ensaios de triagem podem ser conduzidos em um modelo de alto rendimento, tem implicações especialmente importantes para a saúde humana, considerando a complexidade e o grande número de NM já no mercado e atualmente em desenvolvimento. No entanto, há também limitações de ensaios de triagem relativos a ensaios mais detalhados e confirmatórios. Portanto, convém que os ensaios de triagem sejam projetados para serem incorporados em uma estratégia de testagem integrada. As limitações dos ensaios de triagem incluem os ensaios de triagem muitas vezes carecem de previsibilidade humana validada, a extrapolação das relações dose-resposta dos ensaios de triagem à exposição humana é complexa, e a predição do perigo de exposição crônica humana de uma triagem de exposição aguda é difícil.

Embora os ensaios de triagem não tenham o objetivo de serem utilizados como métodos independentes, eles podem eliminar outros estudos se os resultados sugerirem que um NM é particularmente tóxico ou não tóxico. Isso significa que os ensaios de triagem em alguns casos, sem dúvida, superestimarão ou subestimarão os perigos ao ser humano. Uma abordagem de testagem hierárquica se baseia em uma avaliação etapa por etapa, com cada etapa da avaliação fornecendo dados/informações que podem ser necessárias para a etapa subsequente ou serão utilizadas para toda a abordagem de ensaio.

Muitas vezes os ensaios de triagem são incluídos em uma estratégia de testagem hierárquica, e geralmente são realizados em um dos primeiros níveis. Isso permite um uso eficiente de recursos em vários níveis, por exemplo, tanto para identificar novas necessidades de testagem quanto para decisões sobre o desenvolvimento de produtos, tendo em vista um perfil de perigo precoce. A triagem da toxicidade faz parte da maioria dos primeiros níveis em estratégias de testagem inteligentes (ETI) baseadas em peso de evidências.

A ETI leva em conta os dados disponíveis para o nanomaterial de interesse e fornece uma estratégia de testagem racional para entender as propriedades de periculosidade desse nanomaterial sem recorrer a ensaios indevidos em animais. Além dos métodos in vitro e in vivo, métodos in silico poderiam fazer parte do ETI. Em princípio, os métodos de análise de relação quantitativa estrutura-atividade (QSAR) podem ser aplicados a nanopartículas, desde que descritores adequados possam associar as características estruturais e físico-químicas das nanopartículas com sua atividade biológica. Estes podem resultar em modelos que fazem predições qualitativas (por exemplo, o potencial de estresse oxidativo) ou predições quantitativas (por exemplo, potência citotóxica), dependendo da abordagem de dados e modelagem.

Até o momento, no entanto, apenas alguns estudos foram publicados, provavelmente devido à falta de conjuntos de dados adequados. Os desafios e os sucessos recentes do desenvolvimento de QSAR para nanopartículas são descritos mais profundamente em outros lugares. Os seres humanos e o meio ambiente são expostos a NM por meio de um número limitado de rotas, por exemplo, inalação, ingestão, contato dérmico ou, pelo meio ambiente, água, ar e solo.

As concentrações de exposição para alguns desses cenários de exposição podem ser determinadas, por exemplo, NM transportados pelo ar no local de trabalho ou partículas por grama de emulsões de óleo em água aplicadas à pele. Atualmente, as concentrações de exposição de NM engenheirados para o meio ambiente são desconhecidas. Embora a certeza dessas concentrações seja necessária para a avaliação quantitativa do risco, não é necessária para a caracterização de perigo tipicamente associada aos ensaios de nível de triagem.

Como em todos os estudos, convém que tanto o pesquisador que conduz os ensaios de triagem quanto os assessores que avaliam os dados tenham cautela para que a relação entre efeito e dose não seja excessivamente interpretada. Sempre que possível, convém que os pesquisadores utilizem níveis de dose que se aproximem da dose estimada à qual as espécies de interesse podem estar expostas; assim, para estudos in vitro de culturas celulares do trato respiratório, convém utilizar concentrações relacionadas à carga pulmonar observada após a inalação, ou, para estudos in vitro de queratinócitos, convém que sejam utilizados níveis de dose consistentes com concentrações aplicadas à pele.

O tamanho e a distribuição das partículas em relação à área de superfície também foram identificados como parâmetros críticos na avaliação dos aspectos ambientais, de saúde e segurança dos NM. A especificidade do tamanho em relação à toxicidade de um material já foi discutida em relação à sua área de superfície.

Inserir nano3

As reações químicas ocorrem em superfícies; portanto, pode-se esperar que um material com uma grande área de superfície tenha uma maior reatividade em uma base de massa do que o mesmo material com uma baixa relação de área de superfície para volume. A agregação/aglomeração também pode afetar a ingestão de partículas por macrófagos alveolares. As partículas inaladas para o pulmão são geralmente reconhecidas e eliminadas pelos macrófagos.

Algumas pesquisas demonstraram que os macrófagos reconhecem mais facilmente as partículas agregadas ou aglomeradas do que as nanopartículas individuais e eliminam as partículas agregadas ou aglomeradas em uma taxa muito mais rápida do que as partículas individuais em nanoescala. Os efeitos da forma na toxicidade dos NM não foram totalmente investigados, mas publicações recentes indicaram que as nanofibras com alta razão de aspecto (HARN) demonstraram ter o potencial de causar uma resposta semelhante ao amianto em estudos com animais.

Em 2007, uma edição abrangente de métodos foi publicada, dedicada à avaliação da imunotoxicidade em modelos animais. Para a sensibilização da pele (hipersensibilidade do tipo retardado), três ensaios in vivo estão disponíveis atualmente, sendo o ensaio de maximização na cobaia (GPMT), o teste de Beuhler (BT) e o ensaio de linfonodo local (LLNA). Os dois últimos ensaios dependem da penetração do agente a ser ensaiado na pele antes de ocorrer a sensibilização. No entanto, para NM, a penetração da pele é geralmente considerada baixa ou ausente.

Atualmente, para produtos químicos, os ensaios alternativos in vitro estão sendo desenvolvidos para ensaios de sensibilização da pele. Ainda não se sabe se eles são aplicáveis aos NM. Um conjunto bem definido e padronizado de métodos para avaliar a imunotoxicidade é realizado pelo sistema modular imune construído in vitro (construto). Este sistema é um conjunto proprietário de culturas e ensaios in vitro baseados em células humanas que imitam o sistema imunológico humano.

A Qualidade normativa dos cilindros hidráulicos

Em sistemas de energia de fluido hidráulico, a energia é transmitida e controlada através de um líquido sob pressão que circula dentro de um circuito fechado. Um componente de tal sistema é o cilindro de potência do fluido hidráulico. É um dispositivo que converte energia fluida em força mecânica linear e movimento. Consiste em um elemento móvel, ou seja, um pistão e haste do pistão, operando dentro de um furo cilíndrico.

Eles podem ser encontrados em quase todas as máquinas hidráulicas que requerem uma forte força de empurrão ou tração e são usados ​​em uma infinidade de indústrias, incluindo manufatura, construção, mineração e offshore. Um cilindro hidráulico é um atuador mecânico usado para converter energia hidráulica em movimento linear para realizar a ação desejada da máquina, como levantar, pressionar ou mover.

A carcaça de um cilindro hidráulico consiste em um barril com portas separadas para entrada e saída de fluido e um pistão dentro do qual separa o tubo em duas câmaras. O pistão está conectado a uma haste que se move para frente e para trás dentro do cilindro quando exposta à pressão.

A câmara é parcialmente preenchida com fluido hidráulico, deixando espaço suficiente para o pistão operar. O fluido alimenta o cilindro, transmitindo uma força que retrai ou estende o pistão. À medida que a primeira câmara é preenchida com fluido hidráulico, ela atua no pistão forçando-o a se estender e expelindo fluido da segunda câmara. Se a segunda câmara for então preenchida, o pistão se retrai e o fluido é expelido da primeira câmara.

Esse processo gera movimentos de empurrar e puxar, fornecendo a grande força linear necessária para que uma máquina execute a operação necessária. Tal como acontece com todos os outros componentes e aplicações hidráulicas, os cilindros hidráulicos funcionam com base na lei de Pascal. A teoria por trás disso é que, como os fluidos hidráulicos são incompressíveis, a força gerada no pistão transmite uma pressão igual por todo o cilindro. Portanto, a força aplicada internamente será igual à força de saída especificada.

Para a preparação para o ensaio, o cilindro sob análise deve ser montado horizontalmente sem nenhuma carga móvel adicional. A proporção de pressão entre as duas câmaras deve ser inversamente proporcional às áreas do embolo de modo a balancear as forças em ambas as câmaras.

O ensaio pode ser montado verticalmente, caso requerido pela aplicação ou acordado. Neste caso, o peso deve ser considerado nos cálculos de força de atrito. A velocidade máxima de ensaio vk deve ser de 0,05 m/s e deve ser atingida dentro dos primeiros 5 % da amplitude.

No caso de a potência disponível ser insuficiente para atingir a velocidade máxima de ensaio, vk, a velocidade máxima de ensaio será resultado da vazão de óleo disponível. É recomendado que os fabricantes utilizem uma das seguintes declarações, conforme aplicável, em relatórios de ensaios, catálogos e literatura de vendas quando decidirem estar de acordo com este documento.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L e P.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação para cilindros ensaiados com o Módulo L e F.

– Cilindros hidráulicos ensaiados de acordo com a NBR ISO 10100:2022, Sistemas hidráulicos – Cilindros – Ensaios de aceitação” para cilindros ensaiados com o Módulo L, P e F.

Enfim, a maioria dos tipos de cilindros se enquadram em duas categorias. Os cilindros de simples ação, em um cilindro de simples ação, o fluido só pode atuar em um lado da haste do pistão. Para operar o cilindro da extremidade oposta, outra força, como a pressão da mola ou o peso da carga, deve ser aplicada.

Os cilindros de dupla ação podem exercer força em duas direções, permitindo que a haste atinja movimentos de ida e volta sob a força do líquido de ambos os lados da câmara. Nestas categorias, existem muitas variações na construção para criar diferentes tipos de cilindros. A diferença entre eles depende principalmente de como as duas tampas são presas ao cano, juntamente com os materiais e a espessura da parede.

A NBR ISO 10100 de 09/2022 – Sistemas hidráulicos – Cilindros – Ensaios de aceitação especifica a aceitação e os ensaios funcionais para cilindros hidráulicos. Em sistemas hidráulicos, a energia é transmitida e controlada por meio da circulação de um líquido sob pressão dentro de um circuito fechado. Um componente desse sistema é o cilindro hidráulico. Esse é o dispositivo que converte a energia hidráulica em uma força linear mecânica e em movimento.

Ele consiste em um elemento móvel, por exemplo, um pistão e haste, operando dentro de um cilindro. As seguintes informações sobre o cilindro a ser ensaiado devem ser registradas: tipo; tamanho, tipo e orientação do pórtico; se o cilindro possuir amortecimento, verificação da localização e orientação adequada dos parafusos de regulagem; curso do cilindro; etiqueta do modelo; diâmetro interno do cilindro; diâmetro da haste; extensão e configuração da haste do pistão; e o tipo ou estilo de fixação e, onde aplicável, posição da superfície variável de fixação. Na figura abaixo pode-se conferir a identificação de um cilindro de haste dupla (passante) e a identificação de cilindros de haste simples.

Inserir cilindro2

O óleo hidráulico (ou outro líquido cujo fabricante do cilindro e usuário concorde), que esteja em conformidade com as ISO 6743-4, ISO 7745 ou ISO 15380 e seja compatível com os materiais de vedação usados no cilindro ensaiado, deve ser o meio de ensaio. O fluido usado no circuito de ensaio deve estar de acordo com o descrito a seguir. O nível de contaminação do fluido deve ser 19/16 ou 19/16/13, expresso de acordo com a ISO 4406:2017, ou inferior.

Para aquelas aplicações que requerem um elevado nível de limpeza do fluido, por exemplo, para cilindros com servoválvulas ou elementos de vedação sensíveis a contaminação, o nível de contaminação do fluido deve ser 16/13 ou 16/13/10 de acordo com o especificado na ISO 4406:2017. A temperatura do fluido durante o ensaio deve ser mantida entre 35 °C e 55 °C. Outras faixas de temperatura devem ser acordadas entre o fabricante e o usuário.

Os inibidores de oxidação que previnem a corrosão dentro do cilindro podem ser adicionados ao fluido, desde que sejam compatíveis com os materiais de vedação usados no cilindro sob ensaio. Para o ensaio de estanqueidade em baixa pressão, deve-se realizar o ciclo do cilindro com no mínimo 500 kPa (5 bar) para cilindros com diâmetro interno maior do que 32 mm e com até 1.000 kPa (10 bar) para cilindros com diâmetro interno menor ou igual a 32 mm, três ou mais vezes até a posição final.

Parar em uma das posições finais por no mínimo 10 s. É recomendado que a pressão seja aplicada por mais tempo durante as pausas em cilindros de diâmetros maiores. Para o ensaio visual, verificar a ausência de vibração ou irregularidades durante o movimento. Quando o pistão chegar ao curso final, o curso total deve ser medido. Observar o vazamento do fluido na vedação da haste.

Quando o ensaio terminar, qualquer camada de óleo presente na haste deve ser insuficiente para formar uma gota ou um anel de óleo na haste. Verificar a ausência de vazamento de fluido em todas as vedações estáticas e verificar a ausência de vazamento de fluido nos parafusos de regulagem ou nas válvulas de retenção ou nos amortecedores de fim de curso.

Se quaisquer componentes do cilindro forem vedados por uma solda, verificar a ausência de vazamento de fluido no cordão de solda. Se o cilindro incorporar um amortecimento ou amortecimentos de fim de curso e possuir parafusos de regulagem, os parafusos devem ser ajustados fixados a uma posição ligeiramente aberta. Verificar se a montagem do pistão com a haste mostra um efeito de desaceleração antes do seu contato com o (s) cabeçotes (s) do cilindro.

Um ensaio de pressão de 1,5 vez a pressão nominal do cilindro ou pressão de operação recomendada deve ser aplicado alternadamente em ambas as extremidades do cilindro e mantido por pelo menos 10 s.

É recomendado que a pressão seja aplicada por mais tempo em ambas extremidades em cilindros de diâmetros maiores. No ensaio visual, deve ser verificada a integridade estrutural do cilindro e a ausência de vazamento de fluido em todas as vedações estáticas. Deve ser verificada a ausência de vazamento de fluido no parafuso de regulagem ou na válvula de retenção de amortecimento de fim de curso, quando aplicável.

Se quaisquer componentes do cilindro forem vedados por uma solda, deve ser verificada a ausência de vazamento de fluido no cordão de solda (s). O módulo P, ensaio de estanqueidade da vedação do êmbolo (opcional) é um ensaio é requerido somente se especificado pelo usuário. Uma pressão de ensaio igual à pressão nominal do cilindro ou uma pressão de ensaio especificada pelo usuário deve ser aplicada ao cilindro. No ensaio visual, deve ser verificada a ausência de vazamento do fluido na vedação do pistão.

O módulo F, ensaio de força de atrito (opcional) é requerido se especificado pelo usuário. As forças de atrito em cilindros hidráulicos devem ser determinadas pela medição de pressão diferencial em um circuito eletro-hidráulico. Para este propósito, as hastes dos cilindros hidráulicos devem ser movimentadas com controle de posição em malha fechada com válvulas de controles e transdutores de posição apropriados.

Os transdutores de pressão adequados devem ser integrados as duas câmaras do cilindro. Ambas as pressões das câmaras e a posição da haste devem ser continuamente medidas em cada estágio de pressão pa = 5 MPa,10 MPa, 15 MPa, 20 MPa e 25 Mpa2) durante dois ciclos de avanço e recuo completos. Se a pressão de trabalho permitida for menor do que a pressão de ensaio mencionada neste documento, nenhuma medição deve ser efetuada com estas altas pressões.