As especificações normativas para o ensaio de penetração de cone mecânico (CPTM)

O método de teste consiste em empurrar primeiro uma ponta de cone instrumentada no solo a uma taxa controlada (geralmente 2 centímetros/segundo). A resolução do CPTM no delineamento de camadas estratigráficas está relacionada ao tamanho da ponta do cone, sendo que as pontas típicas do cone possuem área de seção transversal de 10 ou 15 cm², correspondendo a diâmetros de 3,6 e 4,4 cm.

Esse ensaio consiste em cravar uma ponteira de extremidade cônica, por meio de uma série de hastes de cravação no solo, com velocidade de cravação constante. Durante a cravação, podem ser registradas medidas de resistência à penetração do cone, resistência total à penetração e/ou atrito lateral. Os resultados dos ensaios podem ser utilizados para interpretação da estratigrafia, classificação do tipo de solo e avaliação de parâmetros geotécnicos.

Antes de adicionar uma haste de cravação, convém que a linearidade (retidão) das hastes seja verificada usando um dos seguintes métodos: segurar a haste verticalmente e rotacioná-la – se a haste parecer oscilar, a linearidade é inaceitável; rolar as hastes em uma superfície plana – se, durante a rolagem, a distância entre qualquer ponto da haste e a superfície exceder as tolerâncias especificadas, a linearidade é inaceitável; deslizar a haste de cravação por dentro de um tubo reto e ligeiramente mais longo do que a haste e com diâmetro interno igual ao diâmetro da haste acrescido da tolerância especificada na norma – se a haste passar por dentro deste tubo sem travar, a linearidade é aceitável.

Se houver indícios de empeno, convém que o uso das hastes seja suspenso até que se verifique, por meio de inspeção e, se necessário, reparos, que a linearidade das hastes esteja em conformidade com os requisitos. A linearidade das hastes internas deve ser assegurada para permitir um movimento suave, sem qualquer obstrução, dentro das hastes de cravação.

As células de carga e os transdutores de pressão devem ser calibrados, e os sensores de profundidade e manômetros devem ser verificados regularmente para os seguintes intervalos de tempo: ao menos a cada seis meses para transdutores de pressão, manômetros e células de carga em uso contínuo ou após aproximadamente 500 perfis de sondagem; e depois que o sistema de medição de carga foi carregado perto de sua capacidade. As calibrações incluem todo o sistema de medição, ou seja, transdutores montados, sistema de aquisição de dados e cabos.

A calibração é realizada como calibração do sistema, ou seja, realizada utilizando o mesmo sistema de aquisição de dados, incluindo cabos, como no ensaio de campo, representando uma verificação de possíveis erros inerentes ao sistema. Durante o trabalho de campo, o equipamento deve estar sujeito às inspeções regulares de funcionamento. Convém que as inspeções regulares de funcionamento ocorram ao menos uma vez por local e/ou uma vez por dia. Se o operador suspeitar de sobrecarga dos sensores de carga (perda de calibração), a verificação de funcionamento e, possivelmente, uma recalibração deve ser realizada.

A NBR ISO 22476-12 de 09/2023 – Investigação geotécnica e ensaios — Ensaios de campo – Parte 12: Ensaio de penetração de cone mecânico (CPTM) especifica o ensaio de penetração de cone mecânico (CPTM), incluindo os requisitos de equipamentos, execução e emissão de relatórios. Os resultados destes ensaios geotécnicos são especialmente adequados à determinação qualitativa e/ou quantitativa de um perfil do subsolo – juntamente com investigações diretas – ou para comparação com outros ensaios in situ. Os resultados de um ensaio de penetração de cone podem, em princípio, ser usados para avaliar a estratigrafia, o tipo de solo e os parâmetros geotécnicos, como massa específica do solo, parâmetros de resistência ao cisalhamento, de deformabilidade e do histórico de tensões.

Esta parte especifica as seguintes características: tipo de ensaio de penetração de cone; classe de aplicação; comprimento de penetração ou profundidade de penetração; cota do nível do terreno superficial ou submerso no local do ensaio de penetração do cone em relação a um datum; locação do ensaio de penetração do cone em relação a um ponto de referência fixo e reproduzível. O planejamento e a avaliação de um programa de investigação e a aplicação de seus resultados para projeto são cobertos pelas EN 1997-1 e EN 1997-2.

O ensaio de penetração de cone mecânico (CPTM) consiste em cravar uma ponteira de extremidade cônica, por meio de uma série de hastes de cravação no solo, com velocidade de cravação constante. Durante a cravação, podem ser registradas medidas de resistência à penetração do cone, resistência total à penetração e/ou atrito lateral. Os resultados dos ensaios podem ser utilizados para interpretação da estratigrafia, classificação do tipo de solo e avaliação de parâmetros geotécnicos.

A resistência de ponta é o termo usado na prática, mas, a resistência à penetração de cone é uma descrição mais acurada do processo, e é o termo usado nesta parte da NBR ISO 22476. A ponteira cônica não tem sensores internos de carga, pois as medidas são feitas na superfície do terreno. Os eixos de todas as partes da ponteira cônica devem ser coincidentes.

As tolerâncias dimensionais mencionadas nesse item são tolerâncias operacionais. Convém que as tolerâncias de fabricação sejam mais rigorosas. A tolerância na rugosidade superficial é uma tolerância de fabricação.

A rugosidade da superfície refere-se à rugosidade média, Ra, determinada por um rugosímetro de acordo com a ISO 8503 e/ou com uma norma equivalente. A intenção de exigir uma rugosidade da superfície é evitar o uso de uma luva de atrito extremamente lisa ou extremamente rugosa. O aço, incluindo o aço endurecido, está sujeito ao desgaste no solo (em particular na areia) e a luva de atrito desenvolve sua própria rugosidade com uso.

Por isso, é importante que a rugosidade de fabricação se aproxime da rugosidade adquirida com o uso. Acredita-se que a exigência da rugosidade da superfície é, na prática, geralmente atendida para os tipos comuns de aço usados na fabricação de ponteira e para as condições usuais de solo (areia e argila).

De acordo com sua geometria, três tipos de ponteiras cônicas são consideradas: M1 (luva protetora), usado para medir a resistência à penetração do cone; M2 (luva protetora de atrito), usado para medir resistência à penetração do cone e do atrito lateral local; M4 (cone simples), usado para medir resistência à penetração do cone. A ponteira M3 não é mais utilizada na prática e, portanto, não será abordada por esta parte. Para manter a continuidade, os tipos de ponteiras cônicas relevantes não foram renomeadas.

Outros tipos de ponteiras cônicas, não consideradas nesta parte podem ser utilizadas, mas, se isso ocorrer, devem ser mencionados com os resultados do ensaio, com todas suas especificações. A geometria das ponteiras relevantes é apresentada nas Figuras constantes na norma. As posições estendidas para as ponteiras M1 e M4 são indicadas em Figuras na norma.

Para uma ponteira com uma luva de atrito, nenhuma parte da ponteira deve se projetar além do diâmetro da luva. A área transversal da extremidade superior da luva de atrito não pode ser menor do que a área transversal da extremidade inferior.

As partes móveis da ponteira (luva protetora, luva de atrito) devem ser limpas e lubrificadas para permitir o movimento livre antes do início do ensaio. Os cones das ponteiras M1 e M2 são compostos por uma parte cônica com uma base e uma extensão cilíndrica interior. O cone de uma ponteira M4 é composto por uma parte cônica com uma base diretamente conectada às hastes internas, sem uma extensão cilíndrica.

O cone deve ter um ângulo de ápice nominal de 60°. Os cones com ângulo entre 60° e 90° são permitidos para perfilagem do solo, se forem informados no relatório de ensaio. A interpretação dos resultados dos ensaios em termos de parâmetros de engenharia só pode ser realizada se forem estabelecidas correlações específicas para cada tipo de cone.

A área da seção transversal dos cones-padrão deve ser de 1.000 mm², o que corresponde a um diâmetro de 35,7 mm. A luva de atrito deve ser fabricada com rugosidade superficial média, Ra, de 0,4 μm ± 0,25 μm, medida na direção longitudinal.

A luva de atrito não pode ser usada se, em uma verificação visual, indicar que está arranhada, assimetricamente gasta ou excessivamente áspera, mesmo que cumpra os requisitos de tolerância. As luvas de atrito com diâmetro externo entre 25 mm e 80 mm são permitidas para finalidade especiais se utilizadas com cones de diâmetro correspondente, sem a aplicação de fatores de correção.

Convém que a razão do comprimento e do diâmetro seja preferencialmente de 3,75. Razões de 3 a 5 são permitidas. O desgaste do cone pode afetar a medição do atrito da luva. As hastes de cravação devem ter o mesmo diâmetro do cone por ao menos 400 mm de comprimento, medidos a partir da base do cone, para cones com uma área de base de 1 000 mm2.

Para outros tamanhos de cone, esta distância deve ser ajustada proporcionalmente em função do diâmetro. As hastes de cravação não podem apresentar partes salientes no seu interior, a fim de permitir a livre circulação das hastes internas. A linearidade das hastes de cravação deve ser determinada em intervalos regulares, conforme especificado abaixo.

Antes de cada uso, a linearidade das hastes deve ser verificada por um dos métodos apresentados na norma: nenhuma das cinco hastes inferiores deve desviar mais de 1 mm da linha central; as outras hastes não podem desviar mais de 2 mm. Esses requisitos são válidos para hastes de 1 m de comprimento. Se outros comprimentos de haste forem usados para finalidades especiais, convém que os requisitos sejam ajustados proporcionalmente.

O atrito ao longo das hastes de cravação pode ser reduzido por um aumento local no diâmetro da haste (redutor de atrito). O atrito também pode ser reduzido pelo uso de hastes com diâmetro reduzido, situadas ao menos 400 mm acima da base do cone.

Acima do nível do solo, convém que as hastes de cravação sejam guiadas por roletes, por um guia centralizador ou por um dispositivo semelhante, a fim de reduzir o risco de flambagem. As hastes de cravação também podem ser guiadas por um tubo de revestimento em água ou estratos muito moles para evitar a flambagem.

A linearidade das hastes internas deve ser assegurada para permitir um movimento suave, sem qualquer obstrução, dentro das hastes de cravação. A distância entre as hastes internas e as hastes de cravação deve ser de 0,5 mm a 1 mm. Se as hastes não estiverem conectadas umas às outras por roscas, a ponta das hastes internas deve ser plana e perpendicular ao eixo da haste interna (em ângulos retos) e ter uma superfície lisa.

A força que atua no cone e, se aplicável, a força no cone e na luva de atrito, bem como a força de penetração total, devem ser medidas por dispositivos adequados, conforme a tabela abaixo. As forças medidas no cone e, se aplicável, na luva de atrito durante a penetração são transferidas pelas hastes internas para o dispositivo de medição na superfície do terreno.

O equipamento deve ser capaz de cravar a ponteira cônica na velocidade-padrão de penetração de (20 ± 5) mm/s e deve ser lastreado ou ancorado de modo que os movimentos do sistema de cravação em relação ao nível do terreno sejam limitados enquanto ocorre a penetração. Não é permitido golpear ou girar as hastes de penetração durante as medições.

A reação necessária (contrapeso) para o sistema de cravação pode ser fornecida por ancoragens no solo e/ou lastro. O procedimento de ensaio deve ser selecionado entre aqueles especificados na tabela abaixo. O tipo de ensaio (TM1, TM2, TM3 ou TM4) deve ser selecionado de acordo com a relevância da classe de aplicação apresentado na tabela abaixo.

(clique na figura para uma melhor visualização)

Se todas as possíveis fontes de erro forem somadas, a precisão das medidas registradas deve ser melhor do que o maior dos valores indicados na tabela acima. A avaliação da falta de precisão deve incluir atrito interno, erros na aquisição de dados, efeitos de temperatura (do ambiente e transiente) e erros dimensionais.

A confirmação metrológica deve ser realizada de acordo com a NBR ISO 10012. O comprimento de penetração alcançável depende das condições do solo, da força de penetração admissível, das forças admissíveis nas hastes de cravação e nas suas conexões, da aplicação de um redutor de atrito e/ou de revestimento e da faixa de medição da ponteira cônica.

Se os tipos de ponteira cônica utilizados forem diferentes dos tipos padronizados, a interpretação em termos de parâmetros de engenharia só pode ser realizada se forem estabelecidas correlações específicas para esse tipo de ponteira cônica. Convém que a distância entre o local do ensaio e a localização de pontos de investigação anteriores seja suficiente para evitar efeitos de interferência entre eles.

Uma distância de 1 m é suficiente entre os ensaios de penetração de cone. Convém que a distância até um furo previamente realizado no terreno seja de ao menos 20 vezes o diâmetro desse furo. Algumas técnicas de perfuração, como as que empregam ar, podem exigir distâncias maiores. Convém que escavações próximas sejam evitadas.

O sistema de cravação deve cravar as hastes de modo que o eixo da força de penetração esteja tão próximo da vertical quanto possível; convém que o desvio do eixo pretendido seja inferior a 2°. O eixo da ponteira cônica deve corresponde ao eixo de carga no início da penetração.

Para a preparação, se forem utilizados sensores elétricos, as leituras iniciais e sem carga (leitura zero) da resistência à penetração do cone, o comprimento de penetração e o atrito lateral devem ser registrados. O pré-furo pode ser usado em camadas compactas, com presença de pedregulhos ou onde a penetração não é mais possível.

O pré-furo pode ser usado em camadas superficiais com pedregulho, às vezes, em combinação com o uso do revestimento, para sustentar as paredes da perfuração. Durante o ensaio de penetração, a ponteira cônica deve ser cravada no terreno a uma velocidade constante de penetração de (20 ± 5) mm/s. A velocidade deve ser verificada regularmente.

O uso de um redutor de atrito é permitido. A ponteira cônica e, se for o caso, a haste de cravação devem ter o mesmo diâmetro de no mínimo 400 mm, medidos a partir da base do cone antes da introdução do redutor de atrito, se aplicável. O intervalo máximo de comprimento para medição dos parâmetros deve ser de 200 mm para ensaios descontínuos e de 50 mm para ensaios de penetração contínua.

As cabines de segurança biológicas devem seguir a norma técnica

As cabines de segurança biológicas (CSB), classe II (tipos A1, A2 e B2), são sistemas de barreiras parciais que se baseiam na movimentação de ar e filtragem para oferecer proteção ao operador, produto e ambiente. Elas devem ser fabricadas conforme a norma técnica, para ter uma contenção primária eficaz para o trabalho com material infeccioso ou toxinas quando são adequadamente mantidos e usados em conjunto com boas práticas de laboratório microbiológico.

Além disso, segurança operacional e o funcionamento adequado da CSB dependem do local onde será instalada. A CSB deve ser operada quando instalada sobre uma estrutura capaz de suportar o seu peso; com dimensões adequadas da sala conforme orientações do fabricante; na temperatura ambiente entre 5 °C e 40 °C, ou conforme orientações do fabricante; e no local de instalação, deve-se tomar cuidado com a velocidade de face (inflow) pode ser perturbada por correntes de ar geradas por pessoas que caminham perto da CSB, através das janelas abertas, ventiladores, ar-condicionado, registros ou grelhas de fornecimento de ar e pelo movimento de abrir e fechar as portas.

Portanto, deve-se analisar previamente o local de instalação para garantir o funcionamento adequado da CSB. A qualidade da alimentação elétrica da CSB deve atender à legislação vigente e de acordo com as instruções do fabricante.

Após a realização dos ensaios em campo da CSB, deve ser fixada na parte frontal do equipamento uma etiqueta de requalificação contendo a identificação do equipamento, modelo e número de série; a data da requalificação; a data da próxima requalificação; o número do relatório de requalificação (documento de referência que mostra os ensaios realizados e os resultados obtidos); os dados da empresa responsável pela requalificação, razão social, endereço, e-mail e telefone; a identificação e assinatura do responsável pela execução dos ensaios; e o resultado de conformidade (aprovado ou reprovado). Opcionalmente ao uso de etiquetas, os dados acima podem ser informados eletronicamente em um sistema associado à própria CSB.

Após a realização dos ensaios em campo da CSB, deve ser entregue ao cliente um relatório de requalificação contendo o nome do fabricante e modelo do equipamento; classe e tipo de CSB; número de série ou outra identificação; localização; a norma utilizada para a realização dos ensaios, isto é, a NBR 17095:2023; os resultados de medições de todos os ensaios; o critério de aceitação para cada ensaio; o resultado de conformidade de cada ensaio (aprovado ou reprovado); a conclusão de conformidade da CSB (aprovado ou reprovado); a identificação e assinatura do responsável pela execução dos ensaios; a data de realização do ensaio; e as cópias dos certificados de calibração válidos e dentro do prazo de validade de todos os instrumentos utilizados nos ensaios.

Uma placa de identificação contendo os itens a seguir deve estar visível na parte frontal da CSB: o nome do fabricante; o modelo da CSB; o número de série da CSB; a classe e tipo (por exemplo, Classe II Tipo A1); a indicação de que a CSB possui plenums com pressão positiva, expostos ao ambiente e potencialmente contaminados (se aplicável). A frase plenums com pressão positiva deve constar na placa.

Incluir, ainda, os requisitos de tensão; os valores médios nominais da velocidade do fluxo de ar descendente (downflow), da vazão e da velocidade de face calculada (inflow); o desenho com as dimensões da grade para localização dos pontos de medição do ensaio de velocidade do fluxo de ar descendente (downflow); e as orientações para a realização do fluxo de ar de face (inflow) para o método de medição direta (balômetro). Opcionalmente, ao uso de placas de identificação, os dados acima podem ser informados eletronicamente em um sistema associado à própria CSB.

A NBR 17095 de 05/2023 – Cabines de segurança biológica classe II (CSB) — Projeto, características e ensaios de desempenho especifica os requisitos de desempenho das cabines de segurança biológicas (CSB), a relação e os procedimentos de ensaios, instrumento de medição, os critérios de aceitação e o conteúdo do relatório de requalificação. Esta norma contém os ensaios que estabelecem os métodos e os critérios de aceitação aplicada para determinar a requalificação de todas as CSB classe II. Apesar de poder ser usada como referência, esta norma não se aplica às CSB classe I e classe III.

Este procedimento de requalificação pretende confirmar que um equipamento devidamente instalado tenha sido avaliado e satisfaz a todos os critérios de aceitação contidos nesta norma. As cabines de segurança biológica classe II (tipos A1, A2 e B2) são sistemas de barreiras parciais que se baseiam na movimentação de ar e filtragem para oferecer proteção ao operador, produto e ambiente.

As cabines de segurança biológica (CSB) são projetadas para prover um ambiente controlado, para proteger o produto manipulado, o operador e o ambiente. Esse equipamento possui filtros denominados HEPA/ULPA, e esses são responsáveis por reter materiais particulados.

Em sua bancada de trabalho é possível encontrar um ambiente ultralimpo e quase totalmente livre de partículas em suspensão no ar. As cabines de segurança biológicas (CSB) são geralmente usadas como contenção primária no trabalho com agentes de risco biológico, minimizando a exposição do operador, do produto e do ambiente. Utilizar a CSB apropriadamente, requalificá-la em fábrica e novamente após a sua instalação em campo, pois durante a fase de transporte pode ocorrer alguma avaria no equipamento ou filtro. Além disso, a requalificação mínima semestral oferece segurança aos usuários, verificando se os requisitos do projeto estão sendo mantidos.

As CSB fabricadas antes da data de publicação desta norma também devem atender a todos os requisitos estabelecidos, mesmo que adequações construtivas e de projetos sejam necessárias. No Brasil não existe uma entidade que certifique ou aprove os técnicos em certificação para cabines de segurança biológica (CSB) sendo realizada pelo próprio fabricante. Portanto, considerar o termo requalificação ao invés de certificação.

As cabines de segurança biológica classe II (tipos A1, A2 e B2) são sistemas de barreiras parciais que se baseiam na movimentação de ar e filtragem para oferecer proteção ao operador, produto e ambiente. As CSB classe II tipo B1 não são contempladas por esta norma. Especificações contendo este modelo podem ser substituídas pelo tipo B2.

Para assegurar que todos os critérios operacionais de aceitação da CSB continuem válidos, requalificar o equipamento em campo no momento da sua instalação, independentemente se já foi ensaiado ou requalificado pelo fabricante da CSB na linha de montagem, e após o início da utilização do equipamento, no mínimo semestralmente. Além disso, realizar a requalificação sempre que o filtro HEPA/ULPA ou qualquer componente seja reparado, ajustado ou substituído e também se a CSB for movimentada.

Analisar a necessidade e implementar a requalificação em períodos menores que semestral em função do grau de risco da operação, elevada carga de uso, variação de velocidade do fluxo de ar próximo do limite superior/inferior, histórico de reprovação das requalificações anteriores, ou outros parâmetros pertinentes. Requalificações trimestrais ou quadrimestrais podem ser necessárias.

Antes de iniciar os ensaios, verificar se as condições ambientais do local da instalação estão adequadas. Para os ensaios realizados em campo, verificar que todos os materiais e equipamentos utilizados na área de trabalho da CSB durante a rotina de operação sejam removidos.

As entradas e saídas de ar da CSB não podem ser obstruídas. Os ensaios das CSB são executados por profissional habilitado para realizar as requalificações. A empresa para requalificação é responsável por contratar este profissional e capacitá-lo para seguir os requisitos desta norma.

Todo treinamento e evidências ficam disponíveis para todos os interessados. Registrar o profissional responsável pela requalificação e a empresa qualificadora em uma entidade de classe competente. Há uma relação de ensaios para esses produtos, conforme a tabela abaixo.

Considerar a CSB aprovada se todos os ensaios mínimos estiverem em conformidade com os parâmetros de aceitação especificados nesta norma. Acordar previamente entre as partes os ensaios opcionais ou adicionais.

Descontaminar a CSB antes da execução dos ensaios, sempre que relocada, quando houver a necessidade da troca de filtros HEPA/ULPA ou quando o profissional responsável pelo serviço técnico acesse as áreas contaminadas do equipamento. Utilizar o dióxido de cloro ou o peróxido de hidrogênio para essa descontaminação.

Esse procedimento é de responsabilidade do usuário e visa oferecer segurança aos profissionais envolvidos no manuseio da CSB e também ao ambiente. Por ser classificado como carcinogênico (causador de câncer), de acordo com a publicação da IARC (Agência Internacional de Pesquisa do Câncer), não utilizar o formol, formaldeído e paraformaldeído para esta finalidade.

O ensaio de velocidade e uniformidade do fluxo de ar descendente (downflow) tem a finalidade de determinar a velocidade e a uniformidade do fluxo de ar na área de trabalho. O instrumento de medição usado é o termoanemômetro com exatidão mínima de ± 5% do fundo de escala.

Quando as condições ambientais forem diferentes de altitude de até 300 m acima do nível do mar e/ou a temperatura diferente de 21 °C ± 2 °C deve-se verificar nas especificações do instrumento utilizado se são necessárias correções nos valores das medições. As correções devem ser calculadas conforme instruções do fabricante do instrumento.

Para as CSB que não possuam manômetro integrado, utilizar um manômetro diferencial de pressão com exatidão de ± 5 % do fundo de escala. Para o procedimento de ensaio, remover todos os aparelhos e objetos de processo da área de trabalho para replicar as condições de ensaio em fábrica. Este ensaio é realizado no plano horizontal localizado a 100 mm acima da borda inferior do visor frontal, o qual deve estar na posição de operação indicada pelo fabricante.

A inspeção e o ensaio de verificação dos cilindros de gases para serviços diversos

A inspeção da rosca do gargalo do cilindro deve ser feita com ela limpa e examinada para verificação de que, na sua área útil, os filetes não estejam rompidos, os flancos não estejam rasgados e as cristas não tenham trincas maiores que as permitidas e estejam de acordo com o perfil original a ser verificado com calibre-tampão. Quando for necessário e o projeto do gargalo permitir, a rosca pode ser reaberta, de forma a reconstituir o perfil original, ou seja, possibilitar o engajamento do número mínimo de filetes necessários à fixação da válvula e sua vedação.

Quando existir colarinho, devem ser observadas suas condições de fixação e a correção do acoplamento com o capacete. Os cilindros com capacidade hidráulica acima de 7 L devem possuir meios para fixação de proteção para válvula (por exemplo, capacete fixo ou móvel) que devem ser mantidos, e o cilindro somente deve ser manuseado, armazenado e transportado, com a proteção para a válvula devidamente instalada e em condições de manter a sua proteção.

No caso de serem identificados danos causados pela substituição eventual do colarinho, como perda de material por corte com chama, lixa ou esmeril, ou ainda deposição de material por operação de soldagem, o cilindro deve ser condenado. Cada cilindro deve ser submetido a ensaio hidrostático por um dos métodos relacionados a seguir, ou pela inspeção por ultrassom: camisa d’água, de acordo com a NBR 13243; expansão direta, de acordo com a NBR 10288; e resistência sob pressão, de acordo com a NBR 13429.

Este método de ensaio somente pode ser aplicado pelas empresas produtoras de gases industriais responsáveis pela inspeção e exclusivamente em cilindros de sua responsabilidade ou de propriedade de terceiros, desde que autorizado por eles. No cilindro cuja norma de fabricação permite a sobrepressão de 10% em relação à pressão de serviço estampada na calota e caracterizado com o símbolo +, durante o ensaio hidrostático, deve ser medida a expansão elástica (EE) e anotado o seu valor no relatório, ao mesmo tempo em que são anotados os valores observados na expansão total (ET) e na expansão permanente (EP).

A inspeção periódica deve ser documentada por um registro que deve permanecer em arquivo por um período não menor que o intervalo entre duas inspeções consecutivas. Esse registro pode ser mantido na forma eletrônica pelo mesmo intervalo.

O relatório de inspeção periódica só deve ser fornecido ao contratante dos serviços de inspeção periódica, não sendo obrigatória a sua apresentação ao usuário final do cilindro, uma vez que a data e a identificação do responsável pela inspeção periódica são gravadas na calota do cilindro. Quando for utilizado ensaio hidrostático, o registro deve ser feito em forma de relatório e deve ser totalmente preenchido e assinado por pessoa capacitada e responsável pela inspeção periódica. Na coluna motivo de condenação, deve sempre ser mencionada a razão da não conformidade com esta norma, ou o número do item não atendido.

A palavra aprovado ou condenado deve constar no registro de cada cilindro inspecionado. Quando for utilizada a inspeção por ultrassom, o registro deve ser feito em forma de relatório e deve ser totalmente preenchido e assinado por pessoa capacitada e responsável pela inspeção periódica. Na coluna motivo de condenação, deve sempre ser mencionada a razão da não conformidade com esta norma, ou o número do item não atendido. A palavra aprovado ou condenado deve constar no registro de cada cilindro inspecionado.

O interior do cilindro deve ser seco e o cilindro deve ser inspecionado imediatamente após o ensaio hidrostático e a secagem, de forma a ser possível verificar a existência ou não de contaminação por resíduos ou umidade. No caso de alguma contaminação ainda persistir, deve ser providenciada sua remoção através de método adequado.

Antes de recolocar a válvula no cilindro, deve-se identificar o tipo de rosca. O torque a ser aplicado deve considerar o tamanho e a forma das roscas, o material da válvula e o tipo de material de vedação usado (fita veda-rosca), conforme as recomendações do fabricante ou da ISO 13341. O material vedante, quando usado, deve ser compatível com a natureza do gás e não pode provocar sua contaminação.

Quando for permitido o uso de lubrificantes e material de vedação, somente devem ser utilizados aqueles aprovados para o gás de serviço, tomando-se cuidado especial com o serviço com oxigênio (ver a ISO 11114-2). A válvula deve ser mantida fechada quando o cilindro não estiver em operação. Todo cilindro aprovado na inspeção periódica deve ter marcado em sua calota o mês e o ano da inspeção, assim como o sinete da empresa responsável por ela.

Quando for utilizada a inspeção por ultrassom, deve-se marcar também as iniciais UT (ultrasonic test). Todas as marcações estampadas devem ter altura mínima de 6 mm, exceto no caso de comprovada falta de espaço. As inspeções periódicas devem estar de acordo com os intervalos constantes na tabela abaixo.

O intervalo máximo entre ensaios e inspeções periódicas para as misturas de gases não constantes na tabela acima deve ser o previsto para o gás com maior criticidade na mistura, ou seja, menor intervalo de tempo entre as inspeções periódicas. Exemplo: mistura de gases entre argônio e dióxido de carbono, o intervalo deve ser do dióxido de carbono (cinco anos, caso o cilindro não possua válvula RPV como indicado na tabela. Quando a norma de fabricação do cilindro prescrever intervalos de inspeção periódica inferiores aos apresentados na tabela, deve-se considerar apenas os intervalos prescritos na norma de fabricação do cilindro.

A NBR 12274 de 03/2023 – Inspeção em cilindros de aço, sem costura, para gases estabelece os requisitos mínimos para inspeção e ensaio de verificação sobre a integridade de cilindros de gases para serviços diversos. Esta norma estabelece os requisitos mínimos para o cilindro de aço, sem costura, para gases, ser considerado apto a voltar ao serviço, independentemente de sua norma de fabricação.

Aplica-se a cilindros de aço, sem costura, utilizados para transporte de gases comprimidos ou liquefeitos, com capacidade d’água nominal não inferior a 0,5 L, porém não superior a 450 L. Quando for praticável, entretanto, esta norma pode também ser aplicada a cilindros com capacidade d’água nominal inferior a 0,5 L. Não se aplica a cilindros para acetileno e para gás liquefeito de petróleo (GLP).

O principal objetivo da inspeção periódica e os ensaios de verificação é assegurar que, após esses processos, os cilindros (individuais ou em feixes) possam ser reintroduzidos em serviço por um novo período. Para os cilindros especificados nesta norma, os resultados da inspeção e dos ensaios são os que determinam se os cilindros podem ser recolocados em serviço.

Normalmente, as normas de fabricação não estabelecem a vida útil de cilindros de aço sem costura para gases (à exceção de cilindros para GNV que é de 20 anos no máximo, por exemplo). Caso seus critérios de utilização, os regulamentos governamentais ou leis não estabelecerem a vida útil determinada, e os cilindros em referência forem aprovados nestas inspeções periódicas descritas, eles podem retornar a serem utilizados a não ser por evidências de uso que contradigam esta posição.

A inspeção e os ensaios devem ser realizados somente por pessoal capacitado, de modo que fique assegurado, sob todos os aspectos, que os cilindros estão dentro dos limites permitidos para serem reutilizados com segurança. A verificação da capacitação de pessoal e da execução apropriada dos serviços deve ficar sob a supervisão técnica de um profissional legalmente habilitado, conforme regulamentação aplicável, que definirá a metodologia de treinamento de pessoal e execução dos ensaios.

Antes de cada enchimento, o cilindro deve ser submetido às seguintes verificações: se a última inspeção ainda for válida, de acordo com o intervalo indicado no Anexo A; a identificação, conforme 4.4; inspeção visual externa, conforme 4.5; e inspeção da válvula, conforme 4.6. Para o enchimento de cilindros de gás natural veicular (GNV), não é necessária a verificação prescrita na alínea d) de 4.2.1.

Para cilindro de dióxido de carbono (inclusive de aplicação marítima) que não esteja provido de válvula de pressão residual mínima, além das verificações prescritas, deve-se: abrir lentamente a válvula e verificar se o cilindro contém pressão residual. Caso não contenha, o cilindro deve ser submetido à inspeção interna, e o resultado dessa inspeção deve ser registrado no formulário do Anexo E. Caso o cilindro contenha pressão residual, virar o cilindro de cabeça para baixo, aguardar alguns segundos e abrir lentamente a válvula. Caso seja expelido algum líquido, o cilindro deve ser submetido à inspeção interna, e o resultado dessa inspeção deve ser registrado no formulário do Anexo E.

Para cilindro de aplicação marítima que não esteja provido de válvula de pressão residual mínima, além das verificações prescritas, deve-se abrir lentamente a válvula e verificar se o cilindro contém pressão residual. Caso não contenha, o cilindro deve ser submetido à inspeção interna, e o resultado dessa inspeção deve ser registrado no formulário do Anexo E.

O ensaio de som deve ser feito para verificação do estado da superfície interna das paredes do cilindro. O ensaio consiste em bater no corpo do cilindro com um martelo de 250 g, ou equivalente, escolhendo áreas próximas do centro, de modo a ouvir o som provocado. Caso esse som seja abafado em todas as pancadas, ou em algumas, pode-se ter uma indicação de que a superfície interna do cilindro está comprometida ou de que o cilindro contém líquido.

Neste caso, o cilindro deve ser retirado de circulação para uma inspeção interna. No caso de ser constatada alguma dúvida quanto ao produto contido no interior do cilindro ou quanto à obstrução da válvula, devem ser seguidos os procedimentos descritos na norma e no Anexo B antes da decisão sobre seu retorno ao serviço.

No caso de, após ser cumprida a sequência de verificações, ainda existirem dúvidas quanto à aprovação do cilindro, devem ser providenciados ensaios ou verificações adicionais. Assim, todo cilindro objeto desta norma deve ser submetido à inspeção periódica, conforme intervalos indicados no Anexo A. Quando não for possível atender ao prazo estipulado no Anexo A, por se encontrar em uso ou em estoque, o cilindro deve ser submetido à inspeção periódica na ocasião em que retornar para o seu enchimento.

Essa exceção não se aplica a cilindros contendo GNV. A inspeção periódica compreende também as verificações prescritas na norma e mais as seguintes: inspeção visual interna; avaliação do peso vazio (pesagem); inspeção das roscas do gargalo e do colarinho; ensaio hidrostático ou inspeção por ultrassom. Caso o cilindro seja parte de um conjunto maior (cestas ou feixes), este deve ser previamente removido.

No caso de, após ser cumprida a sequência de verificações prescritas, ainda existirem dúvidas quanto à aprovação do cilindro, devem ser providenciados ensaios ou verificações adicionais. Depois da aprovação do cilindro, as seguintes operações complementares devem ser realizadas: marcação; pintura e identificação. Deve ser preenchido um relatório de inspeção.

Antes de qualquer outro procedimento, o cilindro e seu conteúdo devem ser identificados. O cilindro deve ser condenado caso não estejam gravados em sua calota caracteres indubitavelmente originais mencionando no mínimo: o número de fabricação; o nome, logotipo do fabricante ou procedência; ano de fabricação; as pressões de serviço e/ou pressão de teste hidrostático (dependendo da norma de fabricação); a norma de fabricação; e o sinete da entidade inspetora de fabricação.

Algumas normas não prescrevem como obrigatória a marcação da pressão de serviço, conforme ISO 13769, mas sim a marcação da pressão de ensaio. No entanto, alguns fabricantes de cilindros, devido aos requisitos de segurança operacional, têm feito a estampagem da pressão de serviço.

Os cilindros fabricados no Japão ou na Europa, até o ano de 1980, que não apresentarem a marcação da norma de fabricação e/ou órgão inspetor (por não ser exigido naquela ocasião), mas que atenderem a todas as demais prescrições desta norma, podem ser aceitos para enchimento até 03/2028, desde que a empresa responsável pelo enchimento disponha de histórico sobre a requalificação desses cilindros.

Para esses cilindros, o intervalo de inspeção periódica deve ser de no máximo cinco anos para todos os gases, exceto aqueles, cujos intervalos são inferiores a cinco anos, conforme a Tabela A.1 disponível na norma. Essa exceção não se aplica a cilindros de gás natural veicular (GNV).

Outras marcações de identificação do cilindro, não necessariamente originais, podem ser verificadas, embora a inexistência delas não seja motivo de condenação do cilindro, como: capacidade (litro ou decímetro cúbico de água); identificação do gás. Na ocasião da inspeção, quando houver necessidade, pode-se estampar no cilindro o valor de sua capacidade hidráulica.

Devem ser removidos, utilizando-se um método adequado, a pintura e outras substâncias ou objetos que dificultem o reconhecimento das marcações de identificação. Na inspeção visual externa, o cilindro deve ser inspecionado para verificação de: danos causados por fogo; efeitos de arco elétrico ou bico de gás; complementos e/ou modificações não autorizados e reparos condenatórios; efeitos de corrosão, incluindo o fundo do cilindro; e marcações duvidosas.

Devem ser removidos da superfície externa do cilindro, utilizando-se um método adequado, aplicações de massa plástica, produtos corrosivos, óleos, alcatrão e outras substâncias e produtos. Quando a pintura do cilindro tiver uma espessura que possa dificultar a identificação de possíveis defeitos no cilindro, ela deve ser removida.

Na inspeção de defeitos de causas externas, deve ser verificada a existência de: cortes, dobras de laminação, trincas, mossas e calombos; corrosão, particularmente na base; outros defeitos, tais como marcações não autorizadas; e verticalidade/estabilidade. A descrição, a avaliação de defeitos e as condições para rejeição dos cilindros são apresentadas no Anexo C.

Para as regiões do cilindro onde permaneçam dúvidas quanto ao resultado da inspeção, devem ser executados ensaios especiais complementares, ou outros métodos de inspeção, tais como ultrassom, gamagrafia, líquido penetrante, partículas magnéticas, etc. O cilindro deve ser submetido ao ensaio de som para avaliação do estado de sua superfície interna.

Para a inspeção da válvula, verificar se existe algum dano (deformações) na conexão de saída da válvula. Despressurizar o cilindro e trocar a válvula, caso necessário. Verificar a conexão de saída quanto à existência de contaminação (óleo, graxa e outros). Caso a conexão esteja contaminada apenas na parte externa, efetuar uma limpeza eficiente.

Caso a contaminação esteja na parte interna da conexão de saída da válvula, despressurizar o cilindro, executar a limpeza interna do cilindro através de método adequado e trocar a válvula. Proceder à despressurização do cilindro. A válvula deve ser removida somente quando se tiver a certeza de que o cilindro está despressurizado. No caso de a válvula ter sido removida do cilindro, deve-se verificar também a rosca de entrada (pé da válvula).

No caso de a válvula apresentar funcionamento insatisfatório e/ou deformações no corpo, no volante, na haste ou outro componente, deve-se despressurizar o cilindro e providenciar sua troca. No caso de a válvula ser provida de dispositivo de segurança, deve-se verificar se não há vazamento e/ou deformações. Despressurizar o cilindro e trocar a válvula.

Para a inspeção visual interna, na despressurização do cilindro, o funcionamento da válvula deve ser verificado primordialmente, como forma de assegurar que o cilindro se encontra despressurizado. Mediante procedimento seguro, o cilindro deve ser despressurizado até a pressão atmosférica, com vazão controlada, em ambiente aberto ou conectado a uma linha e direcionado para um ambiente externo.

No caso de o cilindro estar equipado com válvula de pressão residual mínima, consultar o item B.1.6.1 da norma. Devem ser tomados cuidados especiais para despressurização de cilindros que contenham gases inflamáveis. No caso de o cilindro conter gases desconhecidos, gás tóxico e/ou corrosivo, conforme a NBR 11725, o cilindro somente deve ser despressurizado pela empresa fornecedora do gás.

Em caso de suspeita de obstrução da válvula, deve-se adotar o procedimento constante no Anexo B. Para a inspeção interna, o cilindro deve ser inspecionado internamente, usando-se um dispositivo que permita a iluminação necessária à identificação dos defeitos mencionados no Anexo C. Para esta operação, o cilindro deve estar limpo e seco. O uso de lâmpada comum deve ser evitado nas inspeções em cilindros com gases inflamáveis e oxidantes.

A Qualidade das trenas de fita de aço para medições lineares

As trenas são instrumentos importantes para realizar medições e teste. Bastante utilizada na construção civil e em serviços que envolvem elétrica, a trena podem ser muito versátil e apresentar modelos diferenciados que trazem praticidade e conforto. São bem simples de serem utilizadas e dispõe de mais que uma versão de modelo. Possuem um sistema de trava e é bastante ergonômica, sendo muito fácil e confortável utilizá-la para realizar as medições. Para quem realiza trabalhos envolvendo eletricidade, o ideal é utilizar as trenas de fibra de vidro, um material que não conduz eletricidade e traz muito mais segurança para o seu usuário, além da alta durabilidade, sendo resistente a intempéries.

Uma trena de fita de aço é um instrumento de medição que contém uma fita graduada ao longo de seu comprimento, com marcas transversais, que pode ser acoplada a uma caixa dotada de mecanismo para recolhimento automático ou manual da fita, conforme ilustrado nas figuras abaixo. A fita também pode ser acoplada a um suporte dotado de mecanismo para recolhimento manual, conforme a figura abaixo.

As fitas podem ser do tipo plana ou do tipo curva. As trenas de fita de aço são classificadas quanto à exatidão como classe I ou classe II. A resistência ao desgaste das fitas de aço deve atender aos requisitos especificados na ASTM D 968. A aderência da tinta, esmalte ou outro filme protetor deve atender aos requisitos da ASTM D 3359:2009, classificação 3B a 5B, subseção 14.

As marcas da fita devem ser nítidas, regulares e indeléveis. Quando houver marcas antes do início da faixa nominal da escala, este comprimento deve ser menor do que 500 mm. Quando houver segmento sem marcas fora da faixa nominal da escala, este deve ter comprimento maior do que 50 mm para as fitas do tipo curva e maior do que 100 mm para as fitas do tipo plana.

Para trena com faixa nominal menor ou igual a 5 m, o comprimento sem marcas na extremidade final da fita deve ser superior a 50 mm, a partir da caixa ou suporte. Para trena com faixa nominal acima de 5 m, esse comprimento deve ser superior a 100 mm.

As trenas de fita de aço com largura acima de 6 mm devem conter as inscrições a seguir, conforme a figura abaixo: nome do fabricante ou marca; comprimento nominal; classe de exatidão, inscrita em uma figura oval ou entre dois traços paralelos, unidos por dois semicírculos; temperatura de referência 20 °C; e a força de tração. Essas inscrições devem ser feitas a partir da extremidade inicial, preferencialmente dentro dos primeiros 500 mm da fita. Quando houver número de série, este pode ser inscrito no final da fita, logo após o final das marcas, ou no início da fita, no seu verso.

A NBR 10123 de 09/2012 – Instrumento de medição e controle — Trena de fita de aço — Requisitos estabelece as condições requeridas para as trenas de fita de aço utilizadas para medições lineares na indústria e para uso geral, onde não são exigidas medições de grande exatidão. É aplicável às trenas fabricadas em fita de aço e não se propõe a tratar dos problemas de segurança envolvidos. É de responsabilidade do usuário desta norma estabelecer práticas apropriadas de segurança e saúde, bem como determinar a aplicabilidade de limitações da regulamentação, antes do uso.

As trenas de fita de aço devem ser fabricadas conforme esta norma. Casos especiais devem ser acordados com o fabricante. A caixa ou suporte da fita deve ser fabricado em aço, plástico ou material sintético, podendo ser do tipo fechado (caixa) ou aberto (suporte). A fita deve atender ao ensaio de rigidez, bem como ao ensaio de flexibilidade.

A dureza da fita de aço-carbono deve estar na faixa de 360 HV até 560 HV e a da fita de aço inoxidável deve estar acima de 360 HV. A medição de dureza da fita deve ser conforme a NBR ISO 6507-1. A fita graduada deve sair da caixa, ou do suporte, em toda a extensão da faixa de medição, mais 50 mm no mínimo, a fim de facilitar a medição.

Para o ensaio de rigidez da fita de aço, a trena com retorno automático e com fita de aço tipo curva deve ser posicionada no limite da borda de uma superfície plana, ou de uma bancada de ensaio. A fita deve ser estendida, com a sua superfície da escala voltada para cima (superfície côncava), até o limite de dobra devido ao seu próprio peso, sendo o comprimento L denominado ponto de dobra

A fita de aço deve ser tratada superficialmente contra oxidação, através de pintura, esmaltação ou aplicação de outros produtos para essa finalidade. A camada de tratamento na superfície com escala deve ser maior que 0,03 mm. Se as marcações forem feitas por processo eletrolítico, a camada pode ser menor ou igual a 0,03 mm.

A marcação na fita pode ser em alto ou baixo-relevo. A unidade de medida de comprimento é o metro. As marcas devem ser uniformes ao longo do comprimento e perpendiculares ao eixo longitudinal da fita. O comprimento das marcas deve ser decrescente para as subdivisões: decímetro, centímetro e milímetro.

As marcas da fita devem ser nítidas, regulares e indeléveis. Quando houver marcas antes do início da faixa nominal da escala, este comprimento deve ser menor do que 500 mm. Quando houver segmento sem marcas fora da faixa nominal da escala, este deve ter comprimento maior do que 50 mm para as fitas do tipo curva e maior do que 100 mm para as fitas do tipo plana.

Para trena com faixa nominal menor ou igual a 5 m, o comprimento sem marcas na extremidade final da fita deve ser superior a 50 mm, a partir da caixa ou suporte. Para trena com faixa nominal acima de 5 m, esse comprimento deve ser superior a 100 mm.

A conformidade das cordas têxteis para operações de acesso por corda

Na verdade, as cordas estáticas não são projetadas para esticar sob carga, ao contrário das cordas dinâmicas que possuem um certo grau de elasticidade. Uma escalada guiada sempre deve ser feita com uma corda dinâmica, pois o uso de uma corda estática pode levar a lesões graves. As cordas estáticas têm muitas aplicações, incluindo o rapel, os salvamentos em incêndio e a espeleologia. As propriedades de baixo alongamento das cordas estáticas permitem uma descida controlada e livre de ressaltos. Por exemplo, as cordas de rapel normalmente têm cerca de 2% quando estão sob uma carga de peso corporal padrão.

Já as cordas utilizadas em acesso por corda, ascensão, descensão, deslocamento horizontal, resgate e espeleologia são empregadas de forma análoga, portanto devem ter as mesmas características. Elas são utilizadas em combinação com equipamentos de ascensão e descensão, no acesso por meio de corda para o posicionamento no ponto ou posto de trabalho; em operações de resgate, para movimentar pessoas; e para facilitar o deslocamento horizontal, ascendente ou descendente.

Estas cordas devem ter um coeficiente de alongamento baixo, durante sua utilização normal, e a capacidade de resistir às forças geradas em uma queda. Também devem ter capacidade de absorção da energia desenvolvida por esta força de choque, propriedade requerida que deve guardar um compromisso em relação ao alongamento aceitável durante o uso ou trabalho normal.

Assim, o interior, conhecido como kern, é protegido por uma bainha tecida ou o manto). A resistência da corda é atribuída ao núcleo, enquanto a bainha externa fornece proteção contra abrasão. As cordas kernmantle são particularmente úteis em escalada, espeleologia e na indústria naval, onde um alto grau de abrasão pode ser esperado. A construção de kernmantle pode ser usada em linhas dinâmicas e estáticas.

Elas são fabricadas em poliéster e poliamida (corda de alma e capa trançada de baixo coeficiente de alongamento). Entretanto, a menos que a poliamida ou poliéster sejam classificações específicas, as recomendações aplicam-se às cordas de capa e alma de baixo alongamento de qualquer material permitido em conformidade com a norma. As cordas feitas de qualquer material são sensíveis ao desgaste, uso e deterioração mecânica, e podem consequentemente tornar-se mais frágeis sobre a ação de determinados agentes, como produtos químicos, calor, luz, etc.

Por este motivo é essencial efetuar inspeções regulares para garantir que a corda continue sendo utilizada. É também enfático que qualquer que seja o agente que origine a deterioração, o efeito seja mais grave em cordas de menores diâmetros do que nas de diâmetros maiores. É conveniente ter em conta a consequência da relação entre a superfície da corda e o diâmetro da seção transversal.

Deve-se examinar a corda em seções de 300 mm e girar a corda para examinar toda a sua superfície antes de continuar com o próximo segmento. Os fios ou cordões podem ser destorcidos suavemente para permitir o exame entre as zonas internas entre elas. Deve-se definir o padrão de aceitação ou rejeição é muito mais difícil que descrever o método de controle. Podem existir limites bem definidos entre cordas seguras e cordas que não são, já que isto depende da qualidade da corda que será submetida a uma ação de uso.

Na prática a decisão entre utilizar uma corda ou descartá-la deve estar fundamentada na avaliação de seu estado geral. Muitas das condições que guiarão o examinador não podem ser exatamente descritas, mas podem apenas ser estabelecidas em termos gerais. Após o exame, permanecendo a dúvida quanto à segurança da corda, esta deve ser descartada, lembrando-se que os efeitos de desgaste pelo uso e pela deterioração mecânica são comparativamente maiores em cordas mais finas e que, portanto, requerem padrões mais rigorosos de aceitação.

Pode-se definir uma corda de alma e capa trançada de baixo coeficiente de alongamento como um produto têxtil, composto por uma alma ou núcleo, envolvida por uma capa (camisa ou bainha), projetada para ser utilizada por pessoas no acesso mediante corda, e todos os tipos de posicionamento e retenção em pontos de trabalho, assim como na ascensão, descensão, deslocamento horizontal, operações de resgate e espeleologia. As do tipo A possuem uma alma e capa trançada de baixo coeficiente de alongamento, projetada para uso por pessoas, incluindo todos os tipos de posicionamento e retenção, na posição de trabalho, assim como em técnicas de ascensão, descensão, deslocamento horizontal, operações de resgate e espeleologia.

As cordas do tipo B são as de alma e capa trançada de baixo coeficiente de alongamento, de comportamento inferior ao das cordas do tipo A, e que requer maior grau de atenção e cuidado durante seu uso. Nos ensaios desses produtos, o relatório deve conter as seguintes informações: descrição da amostra em ensaio; número da norma; eventuais desvios da norma; e uma tabela comparativa conforme abaixo.

As extremidades da corda de alma e capa trançada de baixo coeficiente de alongamento devem ter rótulo envoltório ou outra forma de marcação, de maneira permanente, legível e indelével, com as seguintes marcações: letra A para cordas tipo A e letra B para cordas tipo B, seguida da indicação do seu diâmetro, em milímetros, de acordo com as especificações, citando como exemplo: “A 11,0 mm; B 9,2 mm”; número e ano desta norma; e o nome do material de fabricação da corda conforme NBR 12744. A corda de alma e a capa trançada de baixo coeficiente de alongamento devem conter uma marcação interna, de material plástico indelével (de maneira que a marcação interna permaneça legível, apesar das sujeiras, umidades e uso) ou outra forma de marcação que se apresente igualmente indelével, repetida continuamente ao longo de seu comprimento, no mínimo uma vez a cada 1.000 mm.

A NBR 15986 de 10/2011 – Cordas de alma e capa de baixo coeficiente de alongamento para acesso por cordas — Requisitos e métodos de ensaio especifica os requisitos mínimos para fabricação de cordas têxteis de alma e capa trançada e de baixo coeficiente de alongamento, compostas, de 8,5 mm a 16 mm de diâmetro, utilizadas por pessoas em operações de acesso por corda, assim como em todo tipo de posicionamento e retenção no ponto de trabalho e igualmente em operações de resgate, bem como especifica os métodos de ensaio para verificação destes requisitos. Os trabalhos com equipamento de proteção individual (EPI) que utilizem cordas de fibra sintética são objeto da legislação trabalhista vigente e esta deve ser observada na aplicação desta norma.

Os materiais, utilizados na fabricação das cordas de alma e capa trançada de baixo coeficiente de alongamento, devem ser constituídos por fibras sintéticas virgens, multifilamentadas e contínuas. Os materiais utilizados para a construção da alma e da capa devem ter o ponto de fusão > 195 °C. O diâmetro (D) da corda deve ser determinado de acordo com a norma e deve estar compreendido entre o diâmetro mínimo de 8,5 mm e máximo de 16 mm.

A rigidez da corda de alma e capa trançada de baixo coeficiente de alongamento deve ter índice de flexibilidade (K) determinado mediante o ensaio do nó especificado na norma e ser inferior a 1,2. O deslizamento longitudinal Ss da capa em relação à alma deve ser determinado conforme a norma. O deslizamento da capa para as cordas tipo A não pode ultrapassar 20 mm + 10(D – 9 mm), se o diâmetro D da corda for menor ou igual a 12 mm.

O deslizamento da capa para as cordas tipo A não pode ultrapassar 20 mm + 5(D − 12 mm), se o diâmetro D da corda estiver compreendido entre 12,1 mm e 16 mm. O deslizamento da capa para as cordas tipo B não pode ultrapassar 15 mm. As medições devem ser conforme o valor V, devendo ser expressas em porcentagem de acordo com a norma. O alongamento (E) deve ser determinado conforme a norma e não pode ser maior que 5%.

A massa por unidade de comprimento (m), de 1.000 mm de corda de alma e capa trançada de baixo coeficiente de alongamento, deve ser determinada conforme a norma e corresponder à massa combinada da alma e da capa. A corda de alma e capa trançada de baixo coeficiente de alongamento, quando ensaiada conforme a NBR 9790, deve suportar uma força no mínimo de 22 kN para corda tipo A e de no mínimo 18 kN para corda tipo B.

Quando ensaiadas conforme a norma, as cordas de alma e a capa trançada de baixo coeficiente de alongamento, incluindo os terminais preparados, devem resistir a uma força de 15 kN a 15,5 kN para a corda tipo A e de 12 kN a 12,5 kN para corda tipo B, para cada caso, por um período de 3 min. O número e o comprimento dos corpos de prova de cordas a serem submetidas ao ensaio devem ser identificados em cada tipo de ensaio.

Os corpos de prova devem incluir todos os aspectos das cordas de alma e capa trançada de baixo coeficiente de alongamento comercializadas, exceto a cor, para a qual não existe nenhum requisito. Todos os corpos de prova de cordas devem ser condicionados, durante 24 h no mínimo, em uma atmosfera de umidade relativa inferior a 10%. Em seguida, os corpos de prova de cordas devem ser mantidos a uma temperatura de (20 ± 2) °C e a uma umidade de (65 ± 5) %, segundo a NBR ISO 139, durante 72 h, no mínimo. Os ensaios devem ser realizados a uma temperatura de (23 ± 5) °C.

O ensaio do diâmetro da corda D deve ser feito em um corpo de prova que deve ser uma corda nova, sem uso, de 3.000 mm de comprimento mínimo. Fixar uma das extremidades do corpo de prova a um ponto fixo que permita sua extensão no sentido vertical. Fixar em um ponto do corpo de prova, com no mínimo 1.300 mm de distância do ponto fixo, uma massa de (10 ± 0,1) kg, ou aplicar uma força equivalente, evitando impactos.

Continuar o procedimento durante (60 ± 15) s. Transcorrido este período, medir o diâmetro do corpo de prova nos dois sentidos perpendiculares, em três pontos diferentes distanciados entre si em 300 mm aproximadamente. O contato entre o instrumento de medida e o corpo de prova deve ser de (50 ± 1) mm de comprimento. Durante a medição a seção do corpo de prova da corda de alma e capa trançada de baixo coeficiente de alongamento não pode sofrer nenhuma deformação.

Os ensaios dinâmicos devem ser realizados por dois tipos em uma mesma amostra de ensaio (força de frenagem e ensaio de queda). A estrutura rígida de ancoragem deve ser construída de forma que a aplicação de uma força de 20 kN no ponto de ancoragem não provoque uma flecha superior a 1 mm. O ponto rígido de ancoragem deve ser um aro de (20 ± 1) mm de diâmetro interno e (15 ± 1) mm de diâmetro de seção transversal, ou um cilindro do mesmo diâmetro de seção transversal.

A altura do ponto rígido de ancoragem deve ser tal que nenhuma parte do componente ou sistema submetido a ensaio golpeie o solo durante o ensaio. A massa rígida de aço de (100 ± 1) kg ou (80 ± 1) kg, respectivamente para corda do tipo A e corda do tipo B, deve ser conectada de maneira rígida a um aro de levantamento para ser obtida uma conexão segura.

A massa rígida de aço deve ter um diâmetro nominal de 200 mm. O aro de levantamento deve estar situado no centro de uma de suas extremidades, permitindo uma posição deslocada a um mínimo de 25 mm da borda por causa das restrições na distância horizontal impostas por determinados equipamentos e procedimentos de ensaio.

O dispositivo de desacoplamento rápido deve ser compatível com os aros de levantamento das massas rígidas de aço descritas e deve permitir um desacoplamento da massa rígida de aço sem velocidade inicial. A massa pode ter sua queda dirigida, para evitar desvios, pêndulos ou oscilações. Neste caso, sua velocidade deve ser entre 9,7 m/s a 9,9 m/s, medida sobre uma distância de (100 ± 0,1) mm, a uma altura compreendida entre 4,95 m a 5,05 m, medida a partir da base da massa, que é o ponto de partida do início da queda.

As extremidades da corda de alma e capa trançada de baixo coeficiente de alongamento devem ter rótulo envoltório ou outra forma de marcação, de maneira permanente, legível e indelével, com as seguintes marcações: letra A para cordas tipo A e letra B para cordas tipo B, seguida da indicação do seu diâmetro, em milímetros, de acordo com as especificações. Exemplo: A 11,0 mm; B 9,2 mm; o número e ano desta norma; o nome do material de fabricação da corda conforme a NBR 12744.

A corda de alma e a capa trançada de baixo coeficiente de alongamento devem conter uma marcação interna, de material plástico indelével (de maneira que a marcação interna permaneça legível, apesar das sujeiras, umidades e uso) ou outra forma de marcação que se apresente igualmente indelével, repetida continuamente ao longo de seu comprimento, no mínimo uma vez a cada 1.000 mm, com as seguintes informações: o nome e marca comercial do fabricante, CNPJ ou, no caso de cordas importadas, informações conforme EN 1891; o número e ano desta norma e o tipo da corda (A ou B); o ano de fabricação ou outra sistemática de rastreabilidade que identifique a data de fabricação; o nome do material de fabricação da corda conforme a NBR 12744.

A execução da sondagem em solos e rochas para fins ambientais

A sondagem para investigação ambiental em áreas e terrenos que abrigam ou abrigaram atividades poluidoras é feita com a instalação de poços de monitoramento de água subterrânea para a investigação de passivos ambientais. Podem ser feitas com a sondagem a percussão, sondagem a percussão com torque, sondagem à trado e sondagem mecanizada. Ela pode ser realizada nas etapas de gerenciamento de áreas contaminadas, como por exemplo para os estudos de Investigação confirmatória e investigação detalhada. A investigação confirmatória tem como objetivo constatar ou não a presença de contaminantes na área investigada. Nesta etapa são realizadas coletas representativas de solo, água subterrânea e vapor através da execução de sondagens e instalação de poços de monitoramento.

Nos casos em que o método de perfuração escolhido permitir a coleta de amostras, é obrigatória a descrição das características do material. Para isso é necessária uma observação táctil-visual do solo amostrado durante a sondagem de campo. As características que devem ser observadas e descritas, quando possível, são: cor; textura; consistência; nódulos e concreções minerais; presença de carbonatos; presença de manganês; coesão; e os aspectos descritivos das estruturas da amostra.

Os dados obtidos e observados em campo com base nas características listadas devem ser registrados e, quando possível, devem ser fotografados. Estas informações devem ser compiladas e apresentadas em um relatório. A cor é uma característica de mais fácil visualização nos solos e, a partir dela, é possível fazer inferências como, por exemplo, quanto ao conteúdo de matéria orgânica (MO), pois os solos escuros contêm maior conteúdo de MO.

A caracterização da cor segue uma padronização mundial, que é o Sistema Munsell de Cores para Solos (Munsell Soil Color Charts). Para a observação da cor, é conveniente quebrar os agregados ou torrões para se determinar se a cor é a mesma, dentro ou fora da amostra.

Em casos em que os solos tenham estrutura granular muito pequena como, por exemplo, do tamanho do pó de café, deve se tomar uma porção de material suficiente para a comparação com os padrões existentes na carta de cores. Esta caracterização da cor deve ser feita obrigatoriamente em campo e é importante que haja uma boa iluminação. Alguns materiais podem estar mesclados com mais de uma cor e esse padrão é chamado de mosqueado ou variegado.

Quando a amostra tiver várias cores, mas não houver predominância perceptível de uma cor constituindo fundo, deve ser denominada coloração variegada. Se a coloração variegada for muito complexa, devem ser registrados os nomes das cores. A textura se refere  à proporção relativa das frações granulométricas, ou seja, das frações de areia, silte e argila que compõem a amostra de solo. Ela deve ser obrigatoriamente descrita no campo e é estimada pelas sensações táteis. A areia pode ser subdividida em areia grossa, média, fina e muito fina.

Por exemplo, um solo arenoso será áspero à medida que o teor de areia grossa presente for maior. Os grãos de areia são visíveis a olho nu. O silte é facilmente percebido em amostras que contêm alto teor e confere ao solo uma sedosidade ao tato, semelhante ao talco. A argila confere ao solo uma maior plasticidade (capacidade de moldar-se) e pegajosidade (capacidade de aderir-se), se comparada às frações de areia e silte.

Quando necessário, um maior refinamento na determinação da granulometria pode ser realizado em campo com o auxílio de peneiras e/ou em laboratórios. Recomenda-se que, ao se avaliar a textura, a amostra de solo seja homogeneizada, a fim de quebrar os agregados, impedindo uma má interpretação destes como sendo fração areia. É raro encontrar um solo composto por apenas uma fração granulométrica.

Assim, existem classes de textura que tentam definir as diferentes combinações da areia, silte e argila. Quando forem observadas frações acima de 2 mm de diâmetro, estas são denominadas frações grosseiras e devem ser classificadas em: cascalho: fração de 2 mm a 2 cm de diâmetro; calhaus (seixo): fração de 2 cm a 20 cm de diâmetro; e matacão: fração maior que 20 cm de diâmetro. O termo seixo é utilizado somente para as frações grosseiras que apresentam contornos arredondados (rolados).

A consistência e a caracterização da plasticidade devem seguir as orientações descritas na norma, na tabela dos estados de compacidade e de consistência) da NBR 6484:2001. Os nódulos e concreções minerais são corpos cimentados que podem ser removidos intactos da matriz do solo. A composição destes corpos varia de matérias semelhantes à massa de solo contígua até as substâncias puras de composição totalmente diferente da matriz do solo.

As concreções se diferenciam dos nódulos pela organização interna. As concreções têm simetria interna disposta em torno de um ponto, de um plano ou de uma linha, e os nódulos carecem de uma organização interna ordenada. A descrição, neste caso, deve contemplar a quantidade, tamanho, dureza, cor e natureza das concreções e nódulos, conforme descrito a seguir. Quantidade: muito pouco – menos de 5% do volume; pouco – 5% a 15% do volume; frequente – 15% a 40% do volume; muito frequentes – 40% a 80% do volume; dominante – mais que 80% do volume; tamanho: pequeno – menor que 1 cm de diâmetro – maior dimensão; grande – maior que 1 cm de diâmetro – maior dimensão; dureza: macio – pode ser quebrado entre os dedos; duro – não pode ser quebrado entre os dedos; forma: esférica, angular e irregular; cor: utilizar termos simples (preto, branco, vermelho, etc.).

Natureza: a natureza do material do qual o nódulo ou a concreção é principalmente formada, por exemplo: concreções ferruginosas (materiais com predomínio de compostos de ferro), ferro-magnesianas, carbonato de cálcio, etc. Exemplo de descrição: nódulo pouco pequeno (0,20 cm), macio, irregular, preto, ferroso, de estrutura amorfa. A presença de carbonatos devem ser observada em campo pela efervescência do material, por meio da adição de algumas gotas de HCl 10%.

A amostra deve ser partida e o HCl deve ser gotejado em uma superfície que não foi exposta à umidade. A efervescência pode ser: ligeira: efervescência fraca, bolhas visíveis; forte: efervescência visível, bolhas formam espuma na superfície da amostra; violenta: efervescência forte, forma rapidamente espuma e é possível visualizar os grãos de Ca na amostra.

A presença de manganês deve ser observada em campo pela efervescência da amostra de solo após a adição de algumas gotas de peróxido de hidrogênio (20 volumes). Esta característica pode ser:  ligeira: efervescência fraca, somente ouvida; forte: efervescência visível, sem ruptura dos agregados; violenta: efervescência forte, causando na maioria das vezes ruptura dos agregados.

A coesão se divide em dois graus, pois o não coeso é desnecessário, porque neste caso o solo será considerado normal. Moderadamente coeso: material de solo, quando seco, resiste à penetração do trado e fraca organização estrutural. Quando seco, apresenta consistência geralmente dura; quando úmido, varia de friável a firme.

Fortemente coeso: o material, quando seco, resiste fortemente à penetração do trado e não apresenta organização estrutural visível. Quando seco, apresenta consistência muito dura e às vezes extremamente dura e úmida varia de friável a firme. As propriedades físicas dos solos não são determinadas somente com base na identificação ou classificação de campo, mas também por ensaios de laboratório ou de campo.

Devendo ser realizadas, quando necessário, as amostras representativas de solo e/ou rochas provenientes das sondagens devem ser coletadas e armazenadas segundo os procedimentos definidos pela agência regulamentadora, com base em normas específicas sobre o assunto. As características estruturais da amostra devem ser descritas em campo, caso sejam observadas, tais como: estratificação, fraturamento, foliação, grau de intemperismo, entre outros.

Confirmada em 01/02, a NBR 15492 de 06/2007 – Sondagem de reconhecimento para fins de qualidade ambiental – Procedimento estabelece os requisitos exigíveis para a execução de sondagem de reconhecimento de solos e rochas para fins de qualidade ambiental. Apresenta os equipamentos e descreve métodos de perfuração para a caracterização ambiental de áreas (sondagens ambientais em solo e rocha, para a instalação de poços de monitoramento e para outros dispositivos de monitoramento da qualidade da água subterrânea), com as respectivas vantagens e desvantagens que estão associadas aos métodos apresentados. Entretanto, não contempla os métodos de amostragem de solo e de água subterrânea, métodos de construção, desenvolvimento ou instalação de poços. Estes tópicos são cobertos por normas específicas.

A escolha de um determinado equipamento para a perfuração (ver tabela abaixo) exige a consideração de características específicas de cada área, do objetivo do trabalho e as vantagens e desvantagens de cada método. Estas características devem incluir (embora não se limitem) os parâmetros hidrogeológicos e as condições ambientais existentes na área.

Antes da definição do método de perfuração a ser aplicado em um determinado local, um profissional habilitado deve estudar todos os fatores que afetam as condições superficiais e subsuperficiais da área em estudo. Os acessos e as condições para instalação dos equipamentos de perfuração também devem ser considerados. O alcance ao local e os métodos a serem empregados devem ser determinados pelos objetivos do estudo. O objetivo do estudo também definirá o tipo e a complexidade da amostragem a ser realizada.

A definição dos locais para a perfuração pode variar devido à disponibilidade de dados confiáveis sobre a área. Entretanto, o procedimento usual é o apresentado a seguir: levantamento histórico de informações e pesquisa bibliográfica. Deve-se coletar e revisar todas as informações e dados disponíveis, sobre as condições superficiais e de subsuperfície da área. É necessário pesquisar dados existentes referentes à área de estudo, que incluem, mas não se limitam a: mapas topográficos, fotos aéreas, imagens de satélites, informações sobre sondagens anteriores, dados geofísicos, mapas e artigos geológicos, dados oficiais de mapeamento de solo e rocha, artigos sobre recursos hídricos e dados de poços existentes na área de interesse, uso de ocupação de solo pretérito, atual e futuro; relatórios disponíveis sobre a superfície ou subsuperfície de áreas próximas ou adjacentes podem ser considerados e as informações pertinentes podem ser utilizadas no corrente projeto, se forem aplicáveis e confiáveis. Levantamentos geofísicos e dados da água subterrânea também podem ser utilizados para planejar a localização das perfurações. Em seguida, deve-se analisar a confiabilidade e abrangência destes.

É necessário o desenvolvimento de um modelo conceitual preliminar da área. Este pode ou não abranger o modelo hidrogeológico conceitual preliminar, a hipótese de um sistema ambiental e os processos biológicos, físicos e químicos que determinam o transporte de contaminantes das fontes através dos meios até os receptores do sistema, elaborado a partir dos dados obtidos no levantamento histórico de informações e em visita à área.

Com base nas informações dos passos descritos nessa norma, devem ser locadas as perfurações. A localização e a quantidade das perfurações devem ser feitas com base nos objetivos do projeto e de acordo com as normas e procedimentos vigentes. Antes de iniciar as perfurações, deve-se certificar de que não haja interferências subterrâneas (tubulações, cabeamento, galerias de água pluvial, redes de esgoto, etc.). Esta informação deve ser levantada previamente e checada em campo.

Durante as sondagens, devem ser definidas e descritas as principais litologias (solos e rochas), tanto horizontal quanto verticalmente. Este assunto é tratado com mais detalhe no Anexo A. Caso as perfurações sejam destinadas à instalação de poços de monitoramento, estes devem ser instalados com um adequado conhecimento do modelo conceitual hidrogeológico do local. Freqüentemente estes são utilizados como parte de uma investigação global da área, visando um propósito específico, como, por exemplo, a determinação da qualidade química da água, compreensão dos processos hidroquímicos, ou para predizer a eficácia da remediação de um aquífero. Nesses casos, pode ser necessária a obtenção de informações adicionais geotécnicas e hidrogeológicas da área em estudo.

Se for amostrada a água do poço de monitoramento durante a execução da perfuração, visando a determinação de sua qualidade, deve ser considerada a possibilidade de ocorrer avarias no equipamento e subsequente contaminação do aquíferos pelos fluidos de perfuração. Na instalação de poços de monitoramento destinados a amostragem de água, deve-se preferir métodos de sondagens que não utilizem fluidos de perfuração ou, se forem utilizados, os que impliquem pequena ou até ausência destes fluidos na parede do poço. A contaminação da parede do poço por fluidos de perfuração normalmente é resultado de uma má escolha destes fluidos ou sua má utilização.

Nestes casos, devem ser utilizados métodos de perfuração que permitem o avanço do revestimento, pois é muito efetivo para minimizar a invasão de fluidos nas paredes dos furos. Estes métodos que possibilitam o revestimento do furo incluem perfuração a percussão, a trado helicoidal oco, com circulação reversa, método rotativo, sônicos entre outros. Entretanto, se o objetivo destes métodos for alargar o furo, a contaminação pode mover-se ao longo do revestimento durante a perfuração.

Os métodos que não utilizam fluidos de perfuração são preferíveis, porque estes excluem a possibilidade de contaminação do aquífero. Tais métodos incluem o trado helicoidal oco, o trado manual, perfuração sônica e percussora. Os métodos que normalmente requerem o uso de fluidos incluem percussão com lavagem, rotativa com circulação reversa e rotativa com circulação de ar e fluido. Nos casos em que for utilizado fluido de perfuração, é obrigatório registrar a estimativa da quantidade da perda do fluido e da profundidade de ocorrência.

Dados da perda destes fluidos podem ser úteis no planejamento das técnicas de desenvolvimento destes poços para serem utilizados na conclusão do furo. Outro importante fator para ser considerado quando são avaliados estes dados é a colocação da seção filtrante.

É importante saber que a água sem aditivos não constitui um bom fluido de perfuração por duas razões: não possui capacidade de carrear o material cortado devido à sua baixa viscosidade; não possui capacidade de tixotropia para formar um anel de lama em torno do furo, travamento das ferramentas nas paredes do furo e a criação de chaminés drenantes devido à erosão interna do furo. Também, a água contendo apenas argilas naturais não deve ser utilizada como lama de perfuração. Esta mistura fluida, contendo apenas argilas naturais, produz apenas um fluido pesado que não terá capacidade (viscosidade) para carrear o material cortado furo acima e não fará um anel delgado de lama ao longo da perfuração para impedir seu colapso.

Se os métodos de perfuração não forem corretamente empregados, obtém-se como resultado amostras de baixa qualidade, furos danificados ou poços de monitoramento mal instalados, principalmente em material inconsolidado (solos). Caminhos preferenciais de infiltração podem ser formados perto das paredes do furo pela lavagem das partículas finas e a criação de “chaminés drenantes”, que são muito difíceis de serem seladas. Estes danos são mais severos quando se perfura material inconsolidado do que quando se perfura rocha. Embora relatos destas ocorrências sejam raros, eles ocorrem. E são provavelmente originados pelo baixo controle do fluido de perfuração ou má operação durante as perfurações.

Ainda podem ocorrer outros danos devido à rapidez da execução da perfuração, o uso incorreto das diferentes velocidades, pressão e outras variáveis de controle sob a responsabilidade do sondador. Qualquer método de perfuração utilizando meio circulante para controlar o corte e a remoção de material pode causar fraturamento hidráulico dos materiais perfurados, se for muito alta a velocidade de perfuração ou a pressão de circulação.

Quando se utiliza uma sonda rotativa com ar, a pressão do ar injetado deve ser registrada. A pressão do ar de retorno deve ser adequada para manter a remoção do material cortado, mas não excessiva a ponto de causar fraturamento hidráulico do material que está sendo perfurado. Tal prática pode resultar em dano na parede do furo e impedir a correta aplicação do selo entre o revestimento e o furo durante a instalação.

A utilização de revestimentos temporários durante a perfuração, visando separar aquíferos, pode resultar em contaminação cruzada, quando um aqüitarde ou uma camada confinada de material impermeável é perfurado. Para evitar ou minimizar a possibilidade desta contaminação, é recomendada a técnica descrita a seguir. Para que a perfuração atravesse o material impermeável, mas não entre em contato com ele, um revestimento deve ser instalado dentro do material impermeável e cimentado sob pressão. Após a cura do cimento, o material remanescente no revestimento deve ser removido.

Os métodos geofísicos, por exemplo, podem ser utilizados para avaliar o selamento entre o furo anelar e a parede do revestimento. Somente após ter-se produzido um selamento aceitável, a perfuração pode prosseguir pela camada confinada. As operações contínuas de sondagem/amostragem devem prosseguir até atingir a profundidade desejada. Se outra (s) camada (s) impermeável (is) for (em) perfurada(s) no mesmo furo, a técnica anteriormente descrita pode ser seguida, porém o próximo revestimento instalado deve ser imediatamente de diâmetro menor do que o utilizado anteriormente.

Alguns métodos podem ser usados para avaliar a integridade hidráulica do furo ou a subsequente instalação dos poços. São os seguintes: métodos indiretos: métodos geofísicos; introdução de traçadores nos furos combinados com teste de bombeamento; métodos diretos: testes de bombeamento de poços; testes de injeção de poços; e teste com obturadores infláveis em poços.

A seleção do método de perfuração deve ser realizada somente após serem levadas em consideração todas as vantagens e desvantagens de cada método em relação ao objetivo da coleta de dados. Em alguns casos, um método de sondagem cujo processo minimiza o potencial de contaminação subsuperficial pode limitar o tipo de dados que podem ser coletados como, por exemplo, dados de sondagem geofísica de um poço.

As investigações geofísicas também podem ser utilizadas, quando possível, para auxiliar na seleção do método de perfuração. Métodos geofísicos superficiais, tais como sísmica, eletrorresistividade e eletromagnético podem ser particularmente de grande valia na distinção de diferenças nas propriedades dos materiais próximos à subsuperfície. Métodos geofísicos, tais como resistividade, gama, nêutrons, registro de velocidade sônica, perfilagem caliper e perfilagem óptica, são utilizados para confirmar condições geológicas específicas de subsuperfície.

A perfilagem óptica permite um estudo visual das condições das paredes das sondagens existentes, assim como visualizar as condições do revestimento em sondagens revestidas. Registros de sondagens acústicas podem exibir o fraturamento na sondagem. A orientação das fraturas, assim como sua extensão e ocorrência, podem ser determinadas utilizando esse método.

As vantagens e desvantagens de vários métodos de perfuração apresentadas nesta norma podem variar dependendo das características específicas da área e das circunstâncias do projeto. Profundidade e diâmetro das perfurações são valores nominais para o método e podem variar em casos ou condições específicos.

A escolha do tipo de equipamento de perfuração a ser utilizado no projeto deve incluir considerações sobre a necessidade de amostragem e instalação de poços. O acabamento e a disposição dos filtros do poço são requisitos comuns na sua instalação, e a capacidade de completar cada um desses itens depende muito do tipo de equipamento utilizado. A finalização satisfatória dos procedimentos de abandono de sondagem, assim como a facilidade de descontaminação de cada equipamento de perfuração, também são fatores importantes a serem considerados.

Em todos os métodos de perfuração têm-se algumas desvantagens, como, por exemplo, as perfurações a trado tendem a colmatar as paredes do furo com sedimentos finos durante a rotação do equipamento. Métodos a percussão podem causar danos na sondagem, pela repetição cíclica dos movimentos oscilantes de subida e descida da ponta da sonda, que podem forçar sedimentos finos nas paredes do furo. Métodos de perfuração rotopneumática, também podem danificar o furo por meio da introdução de ar no material perfurado ou fraturando as paredes do furo, caso a pressão da perfuração não seja monitorada e exceda a pressão necessária para manter o furo livre dos materiais perfurados.

A escolha do método de perfuração pode variar dependendo dos objetivos da coleta de dados – a caracterização hidrogeológica ou a amostragem da qualidade da água subterrânea. Por exemplo, métodos de perfuração rotativa com fluido são bons métodos para caracterizar a litologia em subsuperfície, porque a maioria das ferramentas de sondagens elétricas e sônicas ou geofísicas exige que o furo não seja revestido, mas seja preenchido com fluido.

Os mesmos métodos de perfuração, contudo, são menos desejáveis para a instalação de poços de monitoramento, visando à verificação da qualidade da água, porque há a possibilidade de o fluido alterar a química da água subterrânea. Apesar disso, perfurações rotativas com fluido podem ser o método selecionado após a consideração das vantagens e desvantagens de outros métodos de perfuração.

A operação dos vasos de pressão para ocupação humana

Também denominados câmaras hiperbáricas, os vasos de pressão para ocupação humana (VPOH) ou simplesmente câmaras hiperbáricas são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. São projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Durante a fase de elaboração do projeto de instalação do serviço de medicina hiperbárica (SMH), o fabricante deve fornecer: o peso do equipamento em ordem de operação e para efeito de ensaio hidrostático no local, quando aplicável, para o dimensionamento das fundações do piso onde será instalado; as condições de acesso da câmara hiperbárica multipaciente ao ambiente onde será instalada, inclusive as necessárias para o descarregamento e o transporte ao seu local definitivo; o projeto sugerido de instalação (leiaute) da câmara hiperbárica multipaciente, incluindo a disposição recomendada para os equipamentos auxiliares; os documentos e projetos de instalação elétrica de todos os equipamentos, com as informações necessárias para o dimensionamento da (s) rede (s) elétrica (s) de alimentação; os documentos e projetos para as tubulações hidráulicas e pneumáticas de alimentação da câmara hiperbárica; e os projetos sugeridos de instalação dos sistemas de suprimento do oxigênio medicinal e do ar comprimido respirável e das respectivas redes de distribuição.

Na entrega da câmara hiperbárica multipaciente e dos equipamentos auxiliares, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido respirável e de oxigênio; as instruções para os procedimentos de limpeza e assepsia do equipamento e das unidades de respiração; as advertências sobre dos riscos de fogo ou explosão e a descrição dos sistemas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica multipaciente e das janelas de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica multipaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica multipaciente e de seus equipamentos auxiliares.

Na entrega da câmara hiperbárica monopaciente, o fabricante deve fornecer: um manual contendo a descrição técnica do equipamento, os ensaios iniciais e periódicos de funcionamento, a periodicidade de calibração dos instrumentos de medição, as instruções de uso de seus sistemas, como, por exemplo, a compressão, descompressão, ventilação, suprimento de ar comprimido e de oxigênio e dos procedimentos de emergência; as instruções sobre a correta utilização da pulseira de aterramento do paciente e os riscos da não utilização; as instruções para os procedimentos de limpeza e assepsia do equipamento e da unidade de respiração, quando aplicável; as advertências sobre dos riscos de fogo ou explosão e medidas de combate a incêndio; um dossiê (data book) contendo os documentos e a declaração de avaliação da conformidade emitidos pela entidade competente relativos à fabricação da câmara hiperbárica monopaciente e dos componentes de acrílico, com os métodos e códigos adotados na fabricação, comprovação do ensaio hidrostático ou equivalente, o certificado de garantia do equipamento e demais documentos pertinentes; o treinamento operacional, inclusive em condições de emergência e de combate a incêndio, à equipe de operadores do SMH, com declaração de avaliação da conformidade de conclusão e proficiência; o plano de manutenção preventiva da câmara hiperbárica monopaciente e uma lista de peças de reposição sugerida; uma lista dos procedimentos de inspeção periódica dos itens considerados essenciais pelo fabricante para o correto funcionamento da câmara hiperbárica monopaciente.

Para a câmara hiperbárica monopaciente equipada com um sistema de reaproveitamento do oxigênio medicinal por meio de um processo de absorção do dióxido de carbono, as instruções detalhadas sobre o uso deste sistema devem constar do manual de instruções, assim como no treinamento operacional. A NBR 15949 de 08/2022 – Vaso de pressão para ocupação humana (VPOH) para fins terapêuticos – Requisitos para fabricação, instalação e operação estabelece os requisitos de projeto, fabricação, instalação, manutenção, operação, sistema de suprimento de gases e de segurança para vasos de pressão para ocupação humana (VPOH) multipacientes e monopacientes, projetados para operar a pressões superiores à pressão atmosférica ambiente e empregados em procedimentos terapêuticos de oxigenoterapia hiperbárica e no tratamento de doenças descompressivas, em instalações médicas independentes ou agregadas aos serviços de saúde.

Esta norma não se aplica aos requisitos relativos à ergonomia para o projeto dos VPOH para fins terapêuticos. Os VPOH são equipamentos que viabilizam o tratamento de oxigenoterapia hiperbárica e de doenças descompressivas. Estes equipamentos são projetados para permitir a administração segura a pacientes de gases de tratamento que podem conter alto percentual de oxigênio medicinal a pressões acima da pressão atmosférica. São também equipados com sistemas que minimizam os riscos de incêndio em seu interior e a compressão ou a descompressão descontroladas.

Estes equipamentos permitem o tratamento de um ou mais pacientes em vários níveis de atendimento, inclusive aqueles sob cuidados intensivos, com todos os aparatos necessários, além de oferecer condições ambientais confortáveis e seguras aos pacientes, operadores e atendentes. Os níveis de oxigênio da atmosfera interna requerem monitoramento e controle para evitar hipóxia, toxicidade por oxigênio e riscos de incêndio. Os vasos de pressão destinados exclusivamente aos procedimentos terapêuticos de oxigenoterapia hiperbárica operam tipicamente a uma pressão operacional de até 180 kPa acima da pressão atmosférica.

Também destinados ao tratamento de doenças descompressivas, operam com pressões mais elevadas, que podem chegar a 700 kPa ou mais. Os tempos de tratamento dentro dos vasos de pressão estão tipicamente entre 1,5 h e 3 h para procedimentos terapêuticos de oxigenoterapia hiperbárica, enquanto o tratamento de doenças descompressivas pode durar 8,5 h ou mais.

Esta norma é destinada à utilização por pessoas envolvidas no projeto, fabricação, instalação, manutenção e operação de vasos de pressão para ocupação humana (VPOH). Convém que as pessoas envolvidas na montagem e na instalação dos sistemas de suprimento de gases medicinais e do próprio serviço de medicina hiperbárica também estejam cientes do conteúdo desta norma.

As câmaras hiperbáricas são classificadas segundo o número de ocupantes em seu interior. A multipaciente é um equipamento de maior porte, normalmente de forma cilíndrica, capaz de acomodar simultaneamente de 2 pacientes a 15 pacientes, além do pessoal operacional. O casco é tipicamente em aço-carbono, dotado de janelas ou vigias de acrílico transparente, bancos ou poltronas para acomodação dos ocupantes, unidades de respiração individual com sistema de exalação para o meio externo e pelo menos uma maca de tamanho padrão.

Dotado de iluminação externa ou interna, portas herméticas, sistema de comunicação com o exterior, sistema de climatização e sistemas de combate a incêndio. A monopaciente é um equipamento de menor porte, normalmente de forma cilíndrica, capaz de acomodar apenas um paciente, que permanece deitado em uma maca durante o tratamento.

A estrutura da base pode ser em aço carbono ou alumínio e o casco cilíndrico dotado de janelas ou na forma de um tubo de acrílico transparente. Pode ser equipado com uma unidade de respiração individual. As pressões indicadas nesta norma são expressas como manométricas (isto é, a pressão atmosférica é determinada como zero), salvo quando mencionado de outra forma.

A câmara hiperbárica multipaciente e monopaciente, seus sistemas acessórios e componentes em acrílico devem ser projetados, fabricados, inspecionados e ter sua conformidade avaliada conforme estabelecido no código ANSI/ASME PVHO-1 por fabricantes com sistema de qualidade reconhecido e pessoal qualificado na produção de vasos de pressão. Exemplo de sistema de qualidade reconhecido: pode ser a NBR ISO 9000.

As marcações na placa de identificação, a ser afixada na câmara hiperbárica multipaciente e na monopaciente, devem seguir o disposto no código ANSI/ASME PVHO-1 e constar o nome, o símbolo e a marca da entidade ou sociedade certificadora. A câmara hiperbárica multipaciente e monopaciente e seus sistemas e acessórios devem estar em conformidade com o estabelecido na série NBR IEC 60601 e as respectivas emendas e normas colaterais cabíveis, por seus fabricantes. A câmara hiperbárica multipaciente e monopaciente deve ser projetada para trabalhar a uma pressão de operação de pelo menos 180 kPa e atender às relações entre as pressões especificadas na tabela abaixo.

A câmara hiperbárica multipaciente e monopaciente deve ser equipada com pelo menos duas válvulas de alívio de pressão, ajustadas para serem acionadas quando a pressão interna chegar a 10% acima da pressão máxima de operação. A vazão de descarga de cada válvula de alívio de pressão deve ser equivalente à soma das vazões máximas de pressurização dos gases oxigênio medicinal e ar comprimido respirável.

A câmara hiperbárica multipaciente deve ser construída com pelo menos três compartimentos interligados entre si: a antecâmara, a câmara principal e um compartimento de passagem (medica lock), dotados de portas herméticas para acesso ao exterior e entre a antecâmara e a câmara principal. Cada compartimento, incluindo as janelas de acrílico transparente e penetradores, deve ser capaz de suportar a pressão de ensaio, conforme especificado na tabela acima.

As portas de acesso a pessoas da antecâmara e da câmara principal devem ter altura mínima de 1,40 m e largura mínima de 0,70 m e devem permitir a passagem de um paciente deitado em uma maca de dimensões-padrão e/ou de uma cadeira de rodas. A antecâmara deve ter pelo menos uma janela de acrílico transparente que permita a observação de seu interior, pelo lado de fora.

A câmara principal deve ter mais de uma janela de acrílico transparente para permitir a observação de todos os assentos instalados, pelo lado de fora. Os meios devem ser previstos para evitar que o nível de ruído dentro da câmara hiperbárica multipaciente ultrapasse 70 dB(A) durante o tratamento. Nos procedimentos de compressão e descompressão, o ruído máximo não pode ultrapassar 90 dB(A).

O microfone do dispositivo de medição de ruídos para ensaio é tipicamente colocado no centro da câmara principal, na altura da cabeça de uma pessoa sentada. Os procedimentos de compressão, descompressão e de ventilação da câmara hiperbárica multipaciente devem ser executados pelo operador externo.

Dentro da antecâmara e da câmara principal também devem ser instalados controles que permitam ao operador interno a compressão e a descompressão de cada compartimento, em emergências. Dentro da antecâmara e da câmara principal deve ser instalado um manômetro analógico do tipo Bourdon, para a indicação das respectivas pressões internas. Ambos os manômetros devem atender no mínimo à classe B, conforme especificado na NBR 14105-1.

Os manômetros são normalmente instalados em caixas-estanque, para não sofrerem interferência da pressão interna da câmara hiperbárica. Os meios devem ser previstos para evitar a obstrução das aberturas internas de exaustão da antecâmara e da câmara principal. Exemplo de obstrução das aberturas internas de exaustão: objetos soltos, tecidos, pés e mãos de pacientes.

A câmara hiperbárica multipaciente equipada com um sistema de controle automático ou semiautomático de compressão, descompressão e manutenção da pressão deve dispor de meios que permitam a retomada do controle manual pelo operador externo ou interno, em caso de falha no suprimento de energia elétrica ou do próprio sistema de controle ou em emergências. Exemplo de controle automático ou semiautomático: por meio pneumático e/ou eletro/eletrônico.

As luminárias externas destinadas à iluminação do interior da câmara hiperbárica multipaciente através das janelas de acrílico ou de penetradores devem se alimentadas por um circuito elétrico de baixa tensão, conforme especificado na NBR 5410. As luminárias internas destinadas à iluminação do interior da câmara hiperbárica multipaciente devem ser fabricadas em LED (light-emitting diode), alimentadas por cabos de fibra ótica e alimentadas por um circuito de baixa tensão.

A utilização de um sistema de iluminação externa ou interna na câmara hiperbárica é uma opção do fabricante. Convém que a tensão de alimentação do sistema de iluminação não seja superior a 24V. Um sistema de alimentação de emergência, independentemente do suprimento principal de energia elétrica, deve estar disponível para continuar a suprir o sistema de iluminação, para permitir o término do tratamento ou sua interrupção, em caso de incêndio ou falha no suprimento principal. Exemplo de sistema de alimentação de emergência: nobreak.

A câmara hiperbárica multipaciente deve dispor de um sistema intercomunicador na antecâmara e na câmara principal que permita a captação dos sons internos e a comunicação entre os operadores interno e externo. Esse sistema deve permanecer ativado durante todo o tratamento e ser alimentado por um circuito de baixa tensão, conforme especificado na NBR 5410.

Convém que a tensão de alimentação do sistema de comunicação não seja superior a 24V. Convém que a antecâmara e a câmara principal disponham de um sistema de monitoramento por câmeras de vídeo, controlado pelo operador externo, com capacidade de gravação de todo o tratamento.

O líquido gerador de espuma para fogo é obrigado a cumprir a norma técnica

O líquido gerador de espuma (LGE) é aquele que, quando diluído em água e aerado, gera espuma para extinção de incêndios classe A ou os que envolvem materiais combustíveis sólidos, como madeiras, tecidos, papéis, borrachas, plásticos termoestáveis e/ou fibras orgânicas, que queimam em superfície e profundidade, deixando resíduos. Esses produtos requerem ensaios periódicos ou os laboratoriais e ensaios de fogo, que devem ser realizados em condições e equipamentos adequados por laboratório competente, conforme a NBR ISO/IEC 17025.

O LGE classe A deve possuir um relatório contendo os resultados dos ensaios laboratoriais iniciais e dos ensaios de fogo. Os ensaios laboratoriais são apresentados na tabela abaixo. Quando o ensaio de fogo apresentar resultado satisfatório, os resultados dos ensaios laboratoriais devem ser considerados como valores de referência (VR).

Os resultados dos ensaios laboratoriais periódicos devem atender ao estabelecido na tabela abaixo. Caso ocorra reprovação em algum ensaio laboratorial periódico, é facultativa a realização do ensaio de fogo. Havendo aprovação no ensaio de fogo, o LGE classe A pode ser mantido em uso.

Como material, usa-se água destilada e a aparelhagem necessária é a seguinte: termômetro de no mínimo 10 °C a 40 °C, com resolução de no máximo 0,5 °C; balão volumétrico de 500 mL; balança com resolução de no máximo 0,1 g; peagômetro com resolução de no máximo 0,1; refratômetro com resolução de no máximo 0,000 2; viscosímetro rotativo (tipo Brookfield) com capacidade para medição de 1 mPa.s a 10 000 mPa.s; cronômetro com resolução de no máximo 0,2 s; dispositivo para ensaio de expansão e drenagem, constituído de: proveta graduada de 1.000 mL, com resolução de no máximo 10 mL e diâmetro externo aproximado de 65 mm, com uma marca indicando 25 mL; disco de alumínio, perfurado com 31 furos, com as seguintes dimensões: diâmetro: (55 ± 3) mm; espessura: (4 ± 0,3) mm; diâmetro dos furos: (5 ± 0,3) mm. O disco perfurado é fixado na extremidade de uma haste metálica com (565 ± 10) mm de comprimento. Incluir uma tampa ou membrana com orifício central, apoiada na proveta, por onde deve ser inserida a haste do disco perfurado.

É necessária uma amostra de 1 L de LGE classe A que deve estar a (25 ± 3) °C. Colocar o balão volumétrico limpo e seco na balança e tarar. Encher com água destilada, a (25 ± 3) °C, até a marca de 500 mL, e determinar a massa (m²). Esvaziar o balão volumétrico. Colocar LGE classe A até a marca de 500 mL do balão volumétrico tarado e determinar a massa (m1). Calcular a massa específica pela seguinte equação: ρ = (m1/m2) × 1000, onde ρ é o valor numérico da massa específica, expresso em quilogramas por metro cúbico

(kg/m³); m1 é o valor numérico da massa de LGE classe A, expresso em gramas (g); m2 é o valor numérico da massa de água, expresso em gramas (g). Para o cálculo da massa específica foi adotado o valor de 1 m³ = 1.000 kg de água destilada. A amostra de LGE classe A deve estar a (25 ± 3) °C. Seguir as recomendações especificadas pelo fabricante do peagômetro para a execução da medição e determinar o pH.

A amostra de LGE classe A deve estar a (25 ± 3) °C, exceto se o refratômetro utilizado possuir compensação automática de temperatura. Seguir as recomendações especificadas pelo fabricante do refratômetro para a execução da medição e determinar o índice de refração. A amostra de LGE classe A deve estar a (25 ± 3) °C. Seguir as recomendações especificadas pelo fabricante do viscosímetro para a execução da medição e determinar a viscosidade. Anotar a rotação e o número da haste utilizada.

Para a expansão e tempo de drenagem a 25%, são necessárias as seguintes condições: temperatura ambiente: (25 ± 3) °C; temperatura da solução de LGE classe A: (25 ± 3) °C. Preparar 100 mL de solução de LGE classe A, na dosagem de uso especificada pelo fabricante. Transferir a solução para a proveta. Inserir o disco perfurado na proveta. Iniciar a cronometragem e imediatamente puxar o disco perfurado até a borda da proveta, abaixando-o novamente por completo.

Repetir este ciclo por (60 ± 5) s, com uma frequência de (60 ± 5) ciclos por minuto. Após o último ciclo, remover o disco. Iniciar novamente a cronometragem, partindo do zero. Com uma espátula, retirar a espuma remanescente do disco perfurado e recolocá-la na proveta.

Não são admissíveis interpretações de qualquer natureza para justificar a não realização de certos ensaios, como, por exemplo, água salgada é mais rigorosa que água doce, portanto, não precisa realizar o ensaio na água doce, o que não é uma verdade absoluta. O usuário deve informar ao laboratório qual água está disponível no sistema de combate a incêndio (água doce ou salgada).

Não há necessidade de ensaiar o LGE classe A com solução preparada com água doce, se estiver disponível somente água salgada e vice-versa. O usuário deve manter em seu poder o histórico dos relatórios de ensaios, emitidos pelo laboratório competente. Este documento pode ser exigido pelo Corpo de Bombeiros, Prefeitura, companhia de seguro ou outros órgãos.

A NBR 16963 de 07/2022 – Líquido gerador de espuma para fogo classe A especifica os requisitos para o líquido gerador de espuma (LGE classe A) utilizado em combate e extinção de incêndios classe A. Não se aplica ao LGE classe A, destinado a formar uma barreira de proteção contra incêndio. A espuma do agente extintor é constituída por um aglomerado de bolhas produzidas por turbilhonamento da água com LGE classe A e ar atmosférico e o fogo classe A é aquele que envolve os materiais combustíveis sólidos, como madeiras, tecidos, papéis, borrachas, plásticos termoestáveis e/ou fibras orgânicas, que queimam em superfície e profundidade, deixando resíduos.

O LGE classe A deve ser sempre adequado para o uso com água doce. A adequação ao uso com água salgada é opcional, entretanto, se aplicável, o LGE classe A deve ser adequado para as águas doce e salgada. O LGE classe A pode ser fornecido nas dosagens de 0,1% a 6%. As dosagens mais usuais são 1%, 3% e 6%.

A dosagem para uso com água doce e água salgada deve ser igual. O projetista e o usuário devem verificar se há equipamentos compatíveis com a dosagem do LGE classe A especificada pelo fabricante. O Anexo A fornece informações gerais sobre o LGE classe A.

Quanto ao desempenho, para a extinção de fogo classe A, o fogo deve ser extinto em no máximo 300 s. Em 8 min, não pode haver reignição com chamas visíveis. O volume da solução de LGE classe A efetivamente utilizado no ensaio deve ser menor ou igual a 3,3 L.

A verificação destes requisitos deve ser feita por meio de ensaio de desempenho (ver Anexo B). Para o uso com água salgada (opcional), a verificação deste requisito deve ser feita por meio do ensaio de fogo (ver Anexo B). Quando, por interesse do usuário, for desejada a mistura de LGE classe A de diferentes origens dentro de um mesmo tanque de armazenamento, deve ser realizado o ensaio de miscibilidade conforme o Anexo C.

Este ensaio deve ser realizado antes da efetiva mistura dentro do tanque. Recomenda-se solicitar orientação ao fabricante antes da realização deste ensaio. No caso de pré-mistura, como, por exemplo, em tanques estacionários ou viaturas, o usuário deve realizar o ensaio de estabilidade da solução.

A vida útil da pré-mistura depende das propriedades da água a ser utilizada no preparo da solução. Este ensaio não é aplicável à solução obtida por meio de equipamento proporcionador, utilizada imediatamente após a sua formação. Não pode ser utilizada solução não estável em pré-mistura.

A solução considerada estável deve ser analisada por meio de ensaio de fogo, no máximo a cada 12 meses. A embalagem do LGE classe A deve possuir marcação ou rótulo, ou uma combinação dos dois, com no mínimo as seguintes informações: nome do fabricante e endereço; nome do produto e inscrição: LGE para fogo classe A; dosagem de uso para combate e extinção de incêndio; faixa de temperatura recomendada para armazenamento, em graus Celsius; a inscrição: uso indicado com águas doce e salgada ou uso não indicado com água salgada; número desta norma; número do lote e data de fabricação; instruções de emergência e primeiros socorros; a inscrição: ATENÇÃO: consultar a folha de dados do LGE classe A; a inscrição: A validade deste produto é condicionada à realização de ensaios periódicos a cada 12 meses, conforme a NBR 16963; volume, em litros, e peso bruto, em quilogramas.

O peso é uma força e é expresso em newtons (N). A massa é expressa em quilogramas. Entretanto, para fins comerciais, no contexto da embalagem e dos documentos fiscais, admite-se que seja utilizada a expressão peso bruto, expresso em quilogramas. As marcações devem ser indeléveis e legíveis.

A embalagem deve ser dimensionada pelo fabricante de forma a assegurar que as características essenciais do LGE classe A sejam preservadas, quando ele for armazenado e manuseado de acordo com as recomendações contidas na folha de dados. O fabricante deve disponibilizar a folha de dados do LGE classe A com no mínimo as seguintes informações: dosagem de uso para combate e extinção de incêndio; adequação ao uso com água salgada; as instruções de armazenamento, preservação, manuseio e utilização do LGE classe A; a faixa de temperatura recomendada para armazenamento (em graus Celsius); e a validade do LGE classe A, incluindo a inscrição “A validade deste produto é condicionada à realização de ensaios periódicos a cada 12 meses, conforme a NBR 16963; as instruções de emergência e primeiros socorros; os materiais recomendados para tanques de armazenamento, tubulações e equipamentos do sistema de aplicação.

Caso o armazenamento seja feito em tanque de material diferente dos recomendados, recomenda-se consultar o fabricante do LGE classe A. A ficha de informações de segurança de produtos químicos (FISPQ), conforme a NBR 14725-4, deve ser fornecida com o LGE classe A.

Os ensaios periódicos é responsabilidade do usuário que deve analisar, a cada 12 meses, o desempenho do LGE classe A, ao longo de sua vida útil projetada, por meio de ensaios periódicos. O LGE classe A armazenado em tanques, viaturas, carretas, contêineres ou embalagens com lacre original pode sofrer deterioração e alteração de suas propriedades, incluindo a sua capacidade de extinção.

Certos elementos aceleram este processo: temperatura, revestimentos, materiais de tanques, composição química, evaporação de solventes e contaminações diversas. Desta forma, há a necessidade de ensaios periódicos do LGE classe A, para avaliar o seu desempenho ao longo de sua vida útil projetada.

A vida útil projetada do LGE classe A é indeterminada. O LGE classe A, aprovado nos ensaios periódicos, pode ser mantido em uso mesmo que, por exemplo, ele tenha sido fabricado há dez anos ou mais.

A análise periódica aplica-se a todo LGE classe A disponível para os sistemas de combate a incêndio de uma empresa ou instituição, incluindo o estocado em almoxarifados. Para o LGE classe A recém-adquirido, o prazo para o primeiro ensaio laboratorial deve ser de 12 meses após a data de emissão da Nota Fiscal de compra.

Os ensaios periódicos do LGE classe A devem abranger os ensaios laboratoriais e os ensaios de fogo. Os ensaios laboratoriais devem ser realizados a cada 12 meses e o ensaio de fogo a cada 36 meses, ou antes, caso seja observada alguma divergência significativa nos ensaios laboratoriais.

Para os ensaios periódicos (responsabilidade do revendedor ou fabricante), em para o LGE classe A em estoque de revendedor ou fabricante, disponível para venda, o prazo para o primeiro ensaio laboratorial deve ser de até 36 meses após a data de fabricação. O ensaio de fogo deve ser realizado em até 60 meses após a data de fabricação.

O ensaio de correntes parasitas pulsadas em componentes metálicos ferromagnéticos

O pulsed eddy current (PEC) ou o ensaio de correntes parasitas pulsadas possui algumas características incluindo: o método não requer a remoção do isolamento do componente a ser ensaiado; pode ser executado enquanto o componente estiver em operação; e não é necessário o acoplamento para a realização do ensaio. Para o ajuste apropriado do instrumento como, por exemplo, o comprimento do pulso de excitação e frequência da taxa de repetição, a geometria do componente precisa ser conhecida.

Existe um número de fatores influenciadores da técnica que precisam ser controlados ou considerados durante a execução do ensaio. Um deles é a capa externa, pois a sua natureza pode ter influência na precisão e na sensibilidade da técnica. Devem ser consideradas as propriedades da capa externa e do isolamento, como condutividade elétrica, permeabilidade magnética e espessura.

Os materiais condutores e/ou magnéticos do revestimento influenciam o ensaio de PEC, reduzindo potencialmente a sensibilidade e a precisão da medição. O efeito depende principalmente da condutividade elétrica, permeabilidade magnética e espessura da capa metálica, mas também da espessura do isolamento, espessura da parede da tubulação, distância entre a capa metálica e a sonda PEC, além da vibração e uniformidade da capa.

Os fixadores de revestimento, cintas, fivelas, parafusos e outros itens metálicos usados para fixar a camisa podem afetar o sinal, se forem feitos de materiais ferromagnéticos. Muitas vezes, cintas, fivelas, fechos, etc. são feitos de aço inoxidável não ferromagnético e de baixa condutividade e, portanto, invisíveis para o ensaio de PEC.

Uma capa metálica não ferromagnética e condutora afeta o sinal das três maneiras: o pulso PEC induz correntes parasitas na capa, que são detectadas como um sinal parasita aditivo que pode dominar os primeiros milissegundos da curva de decaimento; o sinal da capa metálica pode causar saturação do sinal no início da curva de decaimento. Uma capa ferromagnética condutora, como uma capa de aço galvanizado, afeta o sinal da mesma maneira que a capa não ferromagnética, ou seja, induzindo um ruído no sinal e deformando a curva de decaimento.

O sinal perturbado pode ser particularmente forte com capas ferromagnéticas, aumentando o risco de saturação do sinal. Além disso, as capas ferromagnéticas afetam a medição PEC: a capa absorve e espalha tanto a excitação quanto os campos magnéticos secundários, efetivamente ampliando a região sensível da sonda (footprint) e diminuindo a intensidade do sinal detectado; a capa metálica pode vibrar em resposta ao pulso de excitação PEC, causando ruído adicional no sinal.

Diversas medidas têm sido utilizadas para melhorar as medidas sobre revestimentos de aço galvanizado, contudo, seu sucesso depende de detalhes da capa. Exemplos de tais medidas incluem o uso de ímãs permanentes ou eletroímãs para saturar a capa, empregando uma amplitude de pulso de excitação diferente, aumentando o lift-off e reduzindo a capa. O reforço com malha de arame, também chamado vulgarmente de aramado, pode ser usado para manter o isolamento fixo na tubulação.

Embora a maioria dos reforços de malha de arame não influencie o sinal de ensaio de PEC, o reforço de malha de arame feito com materiais ferromagnéticos pode ser atraído magneticamente para a sonda quando ela estiver aplicando o pulso de excitação e pode reverberar depois. Essa reverberação pode interferir no sinal de resposta do ensaio de PEC.

As medidas que podem aumentar esse problema incluem o uso de um pulso de excitação com tensão baixa, restringindo-se à malha de arame e aumentando o efeito lift-off (implicando em uma região sensível da sonda (footprint) maior). Na inspeção por concreto e por revestimento à prova de fogo, uma fonte de interferência é a presença de barras de reforço.

Embora a interferência possa ser resolvida movendo suavemente a sonda lateralmente em torno da posição original do problema, isso pode ter um impacto na área coberta pelo ensaio. Outra possibilidade é inspecionar com uma malha mais estreita (maior densidade de pontos) e distinguir o padrão de posicionamento da barra no C-scan.

As áreas de corrosão sob a barra podem, portanto, ser identificadas com algoritmos de detecção personalizados. O usuário é responsável por atribuir o ensaio por correntes parasitas pulsadas a profissionais qualificados de acordo com os requisitos das normas e códigos aplicáveis à situação.

A qualificação de pessoal deve estar de acordo com a NBR NM ISO 9712 ou outra norma internacionalmente reconhecida e apropriada ao nível requerido nos setores industriais relevantes. Somente pessoal treinado deve conduzir o ensaio, no uso do aparelho e que tenha demonstrado a capacidade de: adquirir corretamente os dados do ensaio, definir a malha de inspeção, executar a avaliação da viabilidade técnica, escolher uma localização de referência e analisar os dados da inspeção. As orientações do fabricante do aparelho para os requisitos de treinamento para diferentes aplicações devem ser seguidas e estar descritas no procedimento do ensaio.

O ensaio utiliza um instrumento de PEC, uma sonda e cabos de conexão. Essa combinação, junto com o acessório para portar a sonda, compõe o sistema de ensaio. Todas as partes essenciais do sistema devem ser especificadas em um procedimento escrito, acordado entre as partes quando da solicitação ou contratação do ensaio.

O aparelho de PEC deve ter a frequência de repetição e a duração de pulso do sinal de excitação devem ser ajustados e o tempo de subida do pulso deve ser significativamente menor que o tempo de decaimento do sinal; a resolução e a frequência de amostragem da parte do aparelho que faz a coleta de dados deve ser compatíveis com a precisão de ensaio requerida, e o número de pontos coletados deve ser suficiente para permitir a detecção da descontinuidade do objeto do ensaio; o sistema deve ter uma duração do tempo de detecção ajustável para assegurar que a forma de onda adquirida seja suficientemente grande para obter a informação necessária para a medição de espessura da parede.

O instrumento deve ser capaz de transmitir e receber sinais ao longo de um período de tempo suficiente para coletar a curva de decaimento da corrente parasita. Isto deve ser estabelecido na avaliação da viabilidade técnica. Também deve exibir a curva de decaimento em um gráfico com escala log-log e/ou log-lin e ter uma rotina para determinar as características da curva de decaimento, além de exibir as medições na forma de uma malha ou outra representação gráfica das medições sobre o componente.

A NBR 17046 de 05/2022 – Ensaios não destrutivos – Correntes parasitas – Ensaio de correntes parasitas pulsadas em componentes metálicos ferromagnéticos descreve a técnica de ensaio de correntes parasitas pulsadas para encontrar áreas com anomalias ocorridas em serviço (corrosão ou erosão) e avaliar a espessura de componentes metálicos ferromagnéticos, para detecção de regiões críticas com perda de espessura (internas ou externas), com ou sem a presença de revestimento, isolamento ou cobertura metálica protetora contra intempéries. Aplica-se ao ensaio de componentes em serviço feitos em aço-carbono e aço baixa liga, na faixa de temperatura de -100 °C a 500 °C (temperatura medida na superfície do metal), com espessura do componente de 3 mm a 100 mm e espessura do revestimento de 0 mm a 300 mm. Este documento se aplica também às tubulações com diâmetro não menor que 50 mm.

A técnica descrita neste documento é sensível à geometria do componente, e sua aplicação fora do escopo deste documento pode resultar em imprecisões. Não se aplica ao ensaio para detecção de descontinuidades do tipo trinca e perda localizada de metal por pites ou alvéolos. Não estabelece critérios de avaliação a serem especificados por acordo contratual entre as partes.

O princípio do ensaio de PEC é ilustrado na figura abaixo. O ensaio de PEC destina-se aos componentes em aço-carbono ou ferro fundido. É usualmente executado sobre um revestimento e é empregado para encontrar áreas com anomalias ocorridas em serviço (normalmente corrosão ou erosão), tanto internas como externas.

A principal vantagem do ensaio de PEC é sua capacidade de inspecionar os componentes de aço-carbono até uma distância significativa entre a sonda e o objeto ensaiado. Essa distância é chamada de lift-off (acoplamento eletromagnético).

A distância que pode ser alcançada no ensaio depende da configuração geométrica do objeto e do projeto da sonda, podendo alcançar vários centímetros. O ensaio de PEC pode fazer suas medições no material-base (objeto da inspeção) em muitos materiais, incluindo a maioria dos materiais empregados como isolantes térmicos, concreto, barras de reforço estrutural, betume, revestimentos protetores da corrosão, sujeira e incrustações marinhas.

Inserir pec2

A principal limitação do ensaio de PEC é que ele mede a espessura média da região sensível da sonda (footprint). Isso implica que o ensaio de PEC pode detectar perda generalizada de espessura, mas tem grandes limitações na detecção de perda localizada de espessura. O ensaio de PEC é considerado um método de definição de regiões críticas (screening). Uma vez que uma zona de interesse é identificada com PEC, o acompanhamento com um método de inspeção complementar é recomendado.

O sistema de ensaio de PEC consiste em uma sonda que possui um dispositivo para gerar um campo magnético (primário) e um dispositivo para detectar o campo secundário que emana do componente, resultante das correntes parasitas geradas pelo campo primário. O dispositivo empregado para detecção pode ser o mesmo usado para geração do campo magnético primário.

Em ensaios de PEC usuais, o campo primário é um campo magnético de corrente contínua (cc) que é ligada (condição transiente ou variável) para gerar correntes parasitas. O tempo após ligar, ou seja, o tempo em que o campo magnético contínuo está ligado, é chamado de pulso de excitação.

Por isso é que se diz que as PEC são geradas por um campo magnético pulsado. O pulso é caracterizado por sua duração (T), que permite a geração de correntes induzidas com uma intensidade muito alta. Devido à variação do campo magnético, correntes parasitas são geradas. Depois da variação do campo magnético, as correntes parasitas decairão.

O campo magnético secundário é registrado e exibido em um gráfico. Em um ensaio bem-sucedido, as características da forma da curva de decaimento são extraídas. Essas características correspondem à espessura da parede do componente. Similarmente às correntes parasitas senoidais, as PEC são influenciadas por qualquer variação local das propriedades do material.

O intervalo de tempo entre as duas medidas tem correlação com a espessura do material. O ensaio de PEC é geralmente realizado como uma medição relativa, em que o sistema é calibrado em um ponto de referência (espessura) do componente. O ensaio de PEC fornece uma estimativa do volume de material sob a região sensível da sonda (footprint).

As medições normais irão produzir um resultado mais ou menos proporcional à espessura média de parede na área em que as correntes parasitas são geradas. O sinal de transmissão da sonda apresenta um amplo espectro de frequências. O sinal recebido também possui um espectro de frequência (ou tempo), cuja análise fornece as informações vindas de diferentes profundidades ao longo da espessura do material.

A técnica de medição pode utilizar, por exemplo: o tempo característico do ponto de inflexão; o tempo requerido para um decaimento específico; a inclinação angular da curva de decaimento. O elemento sensor pode ser constituído por bobinas receptoras ou medidores de campo magnético (hall sensors). A intensidade do sinal pode ser representada graficamente em função do tempo, produzindo uma curva de decaimento (também conhecida como A-scan).

Se nenhum material condutor ou magnético estiver entre a sonda e o objeto inspecionado, o sinal tem dois regimes: um regime de propagação, exibido como um trecho reto em um gráfico log-log (escala logarítmica no eixo das abscissas e das ordenadas) e um trecho curvo em um gráfico log-linear (escala linear no eixo das abscissas e logarítmica nos eixos das ordenadas); um regime de propagação, exibido como um trecho curvo em um gráfico log-log e um trecho reto em um gráfico log-linear.

O momento em que o sinal muda de um regime para outro é chamado de ponto de inflexão e está relacionado ao quadrado da espessura da peça inspecionada. Existem vários algoritmos para determinar a espessura da parede a partir do sinal de ensaio. A velocidade na qual as correntes parasitas se propagam e decaem depende da condutividade elétrica e da permeabilidade magnética do objeto inspecionado.

Essas propriedades do material eletromagnético não são as mesmas para dois objetos diferentes, mesmo que de mesma especificação de material, podendo, por exemplo, ser influenciadas pelo tratamento térmico do material. Como resultado, uma calibração em bloco de referência não é válida para o ensaio de PEC. Em vez disso, o ensaio de PEC deve ser calibrado na própria amostra ensaiada.

Além disso, uma vez que as propriedades eletromagnéticas são geralmente desconhecidas, as medições de espessura do ensaio de PEC são medições relativas. Um ponto de referência na amostra de ensaio precisa ser selecionado e a espessura da parede em outros locais deve ser apresentada como uma porcentagem da espessura da parede no ponto de referência.

Somente se a espessura da parede em um ponto do objeto ensaiado for conhecida, por exemplo, empregando ensaio ultrassônico para medição, as medições PEC podem ser convertidas em milímetros. Os resultados do ensaio de PEC são geralmente relatados em uma matriz C-scan, na qual as medições pontuais no A-scan podem ser visualizadas quando um ponto da matriz é selecionado. O valor exibido no C-scan é geralmente a porcentagem da espessura da parede remanescente para aquele ponto.

A conformidade dos cabos de aço em equipamentos de içamento

O cabo de aço para elevar carga é importante para as grandes cargas e deve ser fabricado por fios e arames que são enrolados em um torno de núcleo central. Existem os mais diversos tipos de cabo de aço para elevar carga para as mais diversas aplicações.

A instalação do cabo de aço para elevar carga tem que ser feita para trazer maior conforto, comodidade, segurança e suporte que a carga a precisa. Sabendo que cargas são elevadas diariamente é necessário a aplicação do cabo de aço correto para elevar carga.

Assim, antes de adquirir o cabo de aço para elevar carga deve-se verificar o diâmetro do cabo; conferir se o seu comprimento é o ideal; analisar se a sua aplicação é a indicada para a elevação que vai realizar; e analisar o acabamento que é necessário, pois ele pode ser galvanizado, polido ou inox. Outras características são necessárias ser analisadas para que se tenha o cabo de aço para elevar carga ideal para a necessidade, porém independente disso tudo o cabo de aço para elevar carga precisa ter qualidade para que se suporte a carga exigida e o ritmo de utilização que é solicitado.

A NBR ISO 4309 de 03/2022 – Equipamentos de movimentação de carga – Cabos de aço – Cuidados e manutenção, inspeção e descarte estabelece princípios gerais para cuidados, manutenção, inspeção e descarte de cabos de aço em serviço em dispositivos de içamento, como equipamentos de movimentação de carga e guinchos. Além das instruções sobre armazenamento, manuseio, instalação e manutenção, este documento relaciona os critérios de descarte para os cabos usados que estão sujeitos ao enrolamento com muitas camadas, onde a experiência de campo como também ensaios demonstram que a deterioração é significativamente maior nas zonas de cruzamento no tambor do que outras seções do cabo no sistema.

Ela fornece também critérios de descarte aplicáveis cobrindo corrosão e redução do diâmetro, e apresenta um método para avaliar o efeito combinado de deterioração em qualquer posição do cabo. A NBR ISO 4309 é aplicável aos seguintes tipos de equipamento de movimentação de carga, a maioria dos quais são definidos na ISO 4306-1: pórticos de cabo; equipamentos de movimentação de carga em balanço (equipamento de movimentação de carga de coluna, equipamento de movimentação de carga móvel de parede e equipamento de movimentação de carga velocípede); equipamentos de movimentação de carga de convés; equipamentos estacionários de movimentação de carga estacionárias; equipamentos estacionários de movimentação de carga estacionárias com suporte rígido; equipamentos de movimentação de carga flutuante; equipamentos de movimentação de carga móvel; pontes rolantes; pórticos e semipórticos rolantes; equipamentos de movimentação de cargas com pórtico ou com semipórtico; equipamentos de movimentação de carga locomotiva; gruas; equipamentos de movimentação de carga oceânicos, por exemplo, equipamento de movimentação de cargas montado em uma estrutura fixa apoiada no leito marinho ou em uma unidade flutuante sustentada por forças de empuxo.

É aplicável a cabos de equipamentos de movimentação de carga, guinchos e talhas que utilizam gancho, garra, eletroímã e caçamba, assim como para escavação ou empilhamento, podendo ser operados manual, mecânica, elétrica ou hidraulicamente. Também é aplicável em talhas e moitões que utilizam cabos de aço. O uso exclusivo de roldanas sintéticas ou roldanas metálicas com revestimentos sintéticos não é recomendado para cabos enrolados em camada única no tambor, devido à inevitabilidade de rupturas de arame ocorrendo internamente em grande número antes que haja qualquer evidência visível de qualquer ruptura de arame ou sinais de desgaste substancial na parte externa do cabo, nenhum critério de descarte é dado para esta combinação.

Um cabo de aço em um equipamento de movimentação de carga é considerado como um componente descartável, exigindo substituição quando os resultados da inspeção indicam que sua condição atingiu o ponto em que o uso posterior pode ser inseguro. Por isso, deve-se seguir alguns princípios bem estabelecidos, como os detalhados neste documento, juntamente com quaisquer instruções específicas adicionais fornecidas pelo fabricante do equipamento de movimentação de carga ou guincho e/ou pelo fabricante do cabo, convém que este ponto nunca seja excedido.

Quando corretamente aplicados, os critérios de descarte de cabos neste documento visam reter uma margem de segurança adequada. Não os reconhecer pode ser extremamente prejudicial, perigoso e causar danos. Para auxiliar aqueles que são responsáveis pelo cuidado e manutenção, distintos daqueles que são responsáveis pela inspeção e descarte, os procedimentos são convenientemente separados.

Para a manutenção e cuidados, na ausência de quaisquer instruções fornecidas pelo fabricante do equipamento de movimentação de carga em seu manual de operação ou pelo fabricante ou fornecedor do cabo, os princípios gerais descritos a seguir devem ser seguidos. Para a substituição do cabo, a menos que um cabo alternativo tenha sido aprovado pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, apenas um cabo com o comprimento, o diâmetro, a construção, a torção e a resistência (ou seja, carga de ruptura mínima), conforme especificado pelo fabricante do equipamento deve ser instalado no equipamento. Um registro da substituição do cabo deve ser arquivado.

No caso de cabos resistentes à rotação de grande diâmetro, pode ser necessário aplicar meios adicionais para fixar as extremidades do cabo, por exemplo, através da utilização de braçadeiras ou amarrilhos de arames, em especial quando se preparam as amostras de ensaio. Se o comprimento de cabo requerido para uso for removido de uma bobina com cabo de comprimento maior, amarrilhos devem ser aplicados em ambos os lados do ponto de corte com o objetivo de impedir o destorcimento do cabo após o corte.

A figura abaixo é um exemplo de recomendação de aplicação de amarrilho em um cabo de aço de uma camada de pernas, antes do corte. Para cabos resistentes à rotação e cabos de pernas paralelas, múltiplos amarrilhos podem ser necessários. Um método alternativo para cabos de grande diâmetro e cabos resistentes à rotação é apresentado na figura 3 da norma. Os cabos que são apenas ligeiramente pré-formados são mais propensos ao destorcimento após o corte, se o amarrilho for inadequado ou insuficiente.

Deve-se observar que a amarração é às vezes referida como amarrilho. A menos que uma terminação de cabo alternativa tenha sido aprovada pelo fabricante do equipamento de movimentação de carga, fabricante do cabo ou outra pessoa qualificada, somente o mesmo tipo de terminal, conforme especificado pelo fabricante do equipamento no manual de operação, deve ser utilizado para prender um cabo a um tambor, moitão ou ponto de ancoragem na estrutura da máquina. É recomendável fazer um registro-base de inspeção eletromagnética (MRT) antes da instalação ou logo que possível após a instalação.

Para evitar acidentes, o cabo deve ser descarregado com cuidado. As bobinas ou rolos não podem sofrer quedas, nem os cabos podem ser atingidos por ganchos metálicos, garfos de empilhadeiras ou qualquer outro agente externo que possa deformar o cabo. Convém que os cabos sejam armazenados em local arejado, seco e não podem ficar em contato com o piso.

Não convém que os cabos sejam armazenados onde possam ser afetados por agentes químicos, vapor ou outros agentes corrosivos. Se o armazenamento ao ar livre não puder ser evitado, convém que os cabos sejam cobertos para que a umidade não provoque corrosão. Os cabos armazenados devem ser inspecionados periodicamente para detectar quaisquer sinais de deterioração, como corrosão e, se for considerado necessário pela pessoa qualificada, revestido com uma capa de preservação ou lubrificante adequado, compatível com o lubrificante utilizado pelo fabricante do cabo.

Em ambientes quentes, convém que a bobina seja periodicamente rotacionada em meia volta para prevenir a drenagem do lubrificante do cabo. Convém que antes da instalação do cabo, e de preferência no recebimento, o cabo e seu certificado sejam verificados para assegurar que este está de acordo com o especificado no pedido. A carga de ruptura mínima do cabo não pode ser menor do que a especificada pelo fabricante do equipamento de movimentação de carga.

O diâmetro do cabo novo deve ser medido com o cabo livre de tensões e este valor (dm) registrado. Quando um cabo de aço é armazenado por um período de tempo, durante o qual possa ter ocorrido corrosão, pode ser vantajoso realizar inspeção visual e inspeção eletromagnética. Verificar a condição de todos os canais das roldanas e do tambor para assegurar que eles são capazes de receber o diâmetro do cabo novo, que não contêm quaisquer irregularidades, como ondulações ou marcas de cabo, e tem espessura suficiente para suportar a carga com segurança.

Convém que o diâmetro dos canais da roldana esteja entre 5% e 10% maior que o diâmetro nominal do cabo. Para um desempenho ideal, convém que o diâmetro dos canais seja pelo menos 1% maior que o diâmetro real do novo cabo. Ao desenrolar e/ou instalar um cabo, toda a precaução deve ser tomada para evitar a torção ou destorção do cabo. Esta condição pode resultar na formação de laçadas, nós ou dobras, tornando-o impróprio para o uso.

Para evitar que algum destes se desenvolva, o cabo deve ser desenrolado em linha reta com um mínimo de folga permitido. O cabo acondicionado em bobina deve ser desenrolado utilizando uma mesa giratória, em linha reta. Entretanto, quando o comprimento da bobina é curto, a extremidade externa do cabo pode ficar livre e o restante do cabo desenrolado ao longo do solo.

Um cabo nunca pode ser desenrolado retirando as voltas com o rolo ou o flange da bobina posicionado sobre o piso ou pelo rolamento da bobina sobre o piso. Para os comprimentos de cabos fornecidos em bobinas, colocar a bobina de alimentação e sua base de apoio ou suporte, o mais longe possível do equipamento de movimentação de carga ou guincho, a fim de limitar os efeitos da variação do ângulo de enrolamento, evitando assim quaisquer efeitos de torção indesejáveis.

Deve-se proteger o cabo de potenciais fontes de contaminação manuseando-o em superfícies com revestimento adequado (por exemplo, esteira transportadora), em vez de permitir a movimentação direta no solo. Uma bobina girando pode ter uma grande inércia, que nesse caso deve ser controlada por um desenrolamento em uma velocidade baixa e uniforme.

Para bobinas menores isto é conseguido com um freio simples. Bobinas maiores têm inércias significativamente maiores e uma vez que comecem a girar pode ser necessário um dispositivo de frenagem maior. Tanto quanto possível, certificar-se de que o cabo sempre enrole na mesma direção durante a instalação, ou seja, remover o cabo da parte superior bobina de suprimento até a parte superior do tambor no equipamento de movimentação de carga ou guincho (conhecido como de cima para cima), ou desde a parte de baixo da bobina de suprimento até a parte de baixo do tambor no equipamento de movimentação de carga ou guincho (conhecido como de baixo para baixo).

Para a inspeção visual diária, pelo menos o trecho do cabo a ser utilizado para aquele dia específico deve ser observado com o objetivo de detectar sinais de deterioração ou dano mecânico. Isso deve incluir os pontos de fixação do cabo no equipamento de movimentação de carga. O cabo deve também ser verificado para assegurar que ele está corretamente enrolado no tambor e sobre a (s) roldana (s) e não foi deslocado de sua posição normal de trabalho.

Qualquer mudança perceptível na sua condição deve ser registrada e o cabo deve ser examinado por uma pessoa qualificada. Se, em qualquer instante, a condição de trabalho for alterada, tal quando o equipamento de movimentação de carga é deslocado para um novo local e reestabelecido, o cabo deve ser submetido a uma inspeção visual como descrito nesta subseção. O operador do equipamento de movimentação de carga pode ser designado para realizar verificações diárias na medida em que o operador seja suficientemente treinado e considerado competente para realizar essa ação.