Os conjuntos de manobra para instalações públicas


Conheça os requisitos específicos aplicáveis aos conjuntos, como a seguir: conjuntos onde a tensão nominal não excede 1.000 v em corrente alternada ou 1.500 v em corrente contínua; conjuntos destinados a serem utilizados com os equipamentos projetados para a geração, transmissão, distribuição e conversão da energia elétrica e comando de equipamentos que consomem energia elétrica; conjuntos acionados por pessoas comuns (por exemplo, equipamentos elétricos plugáveis e não plugáveis); conjuntos destinados a serem instalados e utilizados em marinas, acampamentos, locais de eventos e outros espaços públicos externos similares; conjuntos destinados às estações de recarga para veículos elétricos; conjuntos destinados às estações de recarga para veículo elétrico (AEVCS) de Modo 3 e de Modo 4.

A NBR IEC 61439-7 de 06/2020 – Conjuntos de manobra e comando de baixa tensão – Parte 7: Conjuntos para instalações públicas específicas, como marinas, acampamentos, locais de eventos e estações de recarga para veículos elétricos define os requisitos específicos aplicáveis aos conjuntos, como a seguir: conjuntos onde a tensão nominal não excede 1.000 v em corrente alternada ou 1.500 v em corrente contínua; conjuntos destinados a serem utilizados com os equipamentos projetados para a geração, transmissão, distribuição e conversão da energia elétrica e comando de equipamentos que consomem energia elétrica; conjuntos acionados por pessoas comuns (por exemplo, equipamentos elétricos plugáveis e não plugáveis); conjuntos destinados a serem instalados e utilizados em marinas, acampamentos, locais de eventos e outros espaços públicos externos similares; conjuntos destinados às estações de recarga para veículos elétricos; conjuntos destinados às estações de recarga para veículo elétrico (AEVCS) de Modo 3 e de Modo 4. Eles são projetados para integrar a funcionalidade e os requisitos adicionais dos sistemas de recarga condutiva para veículo elétrico de acordo com a NBR IEC 61851-1.

Para a seleção correta dos dispositivos de manobra e componentes, aplicam-se as seguintes normas: IEC 60364-7-709 (AMHS) ou IEC 60364-7-708 (ACCS) ou IEC 60364-7-740 (AMPS) ou IEC 60364-7-722 (AEVCS). Este documento é aplicável a todos os conjuntos que sejam projetados, fabricados e verificados individualmente ou que constituam um modelo de tipo e sejam fabricados em quantidade. A fabricação e/ou montagem podem ser realizadas por um terceiro que não seja o fabricante original (ver 3.10.1 da NBR IEC 61439-1).

Este documento não é aplicável aos dispositivos individuais e componentes independentes, como disjuntores, fusíveis-interruptores e equipamentos eletrônicos, que estão conforme suas normas de produto pertinentes. Quando o equipamento elétrico estiver diretamente conectado à fonte de alimentação pública de baixa tensão e equipado com um medidor de energia do distribuidor local, fornecedor da alimentação de baixa tensão, os requisitos particulares adicionais com base nas regulamentações nacionais podem ser aplicados, se existirem. Não é aplicável às caixas e invólucros para equipamentos elétricos para instalações elétricas fixas para uso doméstico e similar, conforme definido na NBR IEC 60670-24.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os símbolos e abreviaturas usados nessa norma?

Como deve ser feita a verificação de resistência à carga estática?

Como executar a verificação da resistência mecânica das portas?

Qual é o esquema de ensaio de verificação da resistência à carga de impacto?

Como fazer a verificação da resistência a impactos mecânicos causados por objetos pontiagudos?

Na ausência de informações sobre as correntes de carga reais, a carga presumida dos circuitos de saída do conjunto ou do grupo dos circuitos de saída pode ser utilizada sobre os valores da Tabela 701 disponível na norma não é aplicável aos conjuntos de manobra e comando de baixa tensão para estações de recarga para veículos elétricos (AEVCS). Para eles, o fator de diversidade do circuito de saída alimentando diretamente o ponto de conexão deve ser igual a 1. O fator de diversidade nominal do circuito de distribuição alimentando vários pontos de conexão pode ser reduzido, se um controle de carga for disponível.

O montador do conjunto deve fornecer cada conjunto com uma ou mais etiquetas, marcadas de maneira durável e dispostas em um local que permita que sejam visíveis e legíveis quando o CONJUNTO estiver instalado. A conformidade é verificada de acordo com o ensaio de 10.2.7 da NBR IEC 61439-1 e por inspeção. As seguintes informações sobre o CONJUNTO devem ser fornecidas na (s) etiqueta (s): nome do montador do CONJUNTO ou sua marca comercial (ver 3.10.2 da NBR IEC 61439-1); designação do tipo ou um número de identificação, ou outros meios de identificação, para obter as informações apropriadas do montador do CONJUNTO; meios de identificação da data de fabricação; NBR IEC 61439-7; frequência em corrente alternada (ver 5.5 da NBR IEC 61439-1); tensão nominal (Un) (do CONJUNTO) (ver 5.2.1 da NBR IEC 61439-1); corrente nominal do CONJUNTO (InA) (ver 5.3.1 da NBR IEC 61439-1) para os CONJUNTOS móveis; grau de proteção; peso, para os CONJUNTOS transportáveis e os CONJUNTOS móveis (ver 3.5.702 e 3.5.703), se exceder 30 kg.

As seguintes informações adicionais devem, quando aplicável, ser fornecidas na documentação técnica do montador do CONJUNTO, entregue com o CONJUNTO: tensão nominal de utilização (Ue) (de um circuito) (ver 5.2.2 da NBR IEC 61439-1); tensão nominal de impulso suportável (Uimp) (ver 5.2.4 da NBR IEC 61439-1); tensão nominal de isolamento (Ui) (ver 5.2.3 da ABNT NBR IEC 61439-1); corrente nominal de cada circuito (Inc) (ver 5.3.2 da NBR IEC 61439-1); frequência nominal (fn) (ver 5.5 da NBR IEC 61439-1); fator (es) de diversidade nominal (RDF) (ver 5.4); todas as informações necessárias relativas a outras classificações e características (ver 5.6); dimensões gerais (incluindo saliências, por exemplo, manoplas, painéis, portas); AMHS (ver 3.1.701), ACCS (ver 3.1.702), AMPS (ver 3.1.703), AEVCS (ver 3.1.704) ou termos equivalentes; para os CONJUNTOS móveis de acordo com 3.5.704, a posição de instalação durante o funcionamento, se necessário.

A resistência mecânica mínima dos CONJUNTOS instalados no solo e no piso para locais com acesso não restrito é a resistência elevada (5.702.3). A resistência mecânica mínima para os CONJUNTOS instalados na parede para locais com acesso não restrito é a resistência elevada (5.702.3). No caso dos CONJUNTOS instalados na parede, para locais com acesso não restrito destinados a serem instalados a uma altura em que a borda inferior dos CONJUNTOS esteja a uma distância superior ou igual a 0,9 m do solo ou do piso, a resistência mecânica pode ser reduzida para a resistência média (5.702.2).

Após a instalação de acordo com as instruções do montador, o grau de proteção de um CONJUNTO para uso abrigado deve ser pelo menos IP41 e IP44 para um CONJUNTO ao tempo, de acordo com a NBR IEC 60529. O grau de proteção deve também ser assegurado quando os cabos de alimentação forem conectados ao CONJUNTO. No caso de condições específicas e mais severas, um grau de proteção IP superior pode ser requerido de acordo com os requisitos de instalação.

O CONJUNTO deve compreender as medidas de proteção e ser adequado às instalações projetadas para estar de acordo com a IEC 60364-4-41 e com as normas de instalação aplicáveis. A IEC 60364-7-709 (AMHS), a IEC 60364-7-708 (ACCS), a IEC 60364-7-740 (AMPS) e a IEC 60364-7-722 (AEVCS) são as normas de instalação aplicáveis. O CONJUNTO instalado em um mesmo invólucro com água e outros fluidos deve ser projetado de acordo com os requisitos deste documento para instalação ao tempo.

O compartimento que contém o sistema de alimentação de fluido deve ser separado de maneira a evitar a penetração inadequada de fluido. A conformidade é verificada por inspeção. No caso em que o sistema de alimentação de fluido possa levar a um risco de explosão, podem ser necessários requisitos adicionais. As medidas relativas à utilização de outros fluidos podem estar sujeitas a um acordo entre o fabricante e os usuários.

Outros serviços (por exemplo, telecomunicações, internet) podem ser instalados no mesmo invólucro, desde que não sejam criadas interferências inaceitáveis. Nos AEVCS destinados a serem alimentados por corrente alternada, o dispositivo de manobra individual deve suportar uma corrente de partida que represente um carregador típico de um veículo elétrico. O requisito para a corrente de partida de um veículo elétrico é baseado na ISO 17409.

O dispositivo de manobra individual deve ser verificado pelos ensaios do Anexo CC, se ele ainda não tiver sido ensaiado em relação a este requisito. Os requisitos aplicáveis ao AEVCS destinado a ser alimentado em corrente contínua são descritos na NBR IEC 61851-23. Os ensaios devem ser realizados a uma temperatura ambiente entre +10 °C e +40 °C. Com exceção do ensaio de 10.2.701.5, uma nova amostra do CONJUNTO pode ser utilizada para cada um dos ensaios independentes.

Se a mesma amostra do CONJUNTO for utilizada para mais ensaios de 10.2.701, a conformidade para o segundo numeral do grau de proteção (código IP) somente necessita ser verificada no final dos ensaios realizados nesta amostra. Quando a base e os meios de fixação não são fornecidos pelo fabricante original do CONJUNTO, o fabricante original deve fornecer todas as instruções úteis para a instalação deste CONJUNTO da maneira mais segura (ver 6.2.2 da NBR IEC 61439-1). Todos os ensaios devem ser realizados com o CONJUNTO instalado e fixado como em utilização normal, de acordo com as instruções do fabricante original.

Com exceção do ensaio de 10.2.701.4, a (s) porta (s) do CONJUNTO, se aplicável, deve (m) ser travada(s) no início do ensaio e assim permanecer durante todo o ensaio. Com exceção dos ensaios de 10.2.701.2, estes ensaios não são aplicáveis aos CONJUNTOS do tipo de sobrepor na parede (ver 3.3.9 da ABNT NBR IEC 61439-1) e aos CONJUNTOS de embutir na parede (ver 3.3.10 da NBR IEC 61439-1). Os ensaios a seguir devem ser realizados de acordo com a Tabela 702 disponível na norma.

Os ensaios de impacto mecânico devem ser realizados de acordo com a ABNT NBR IEC 62262. As bases definidas em 3.5.707 não podem ser submetidas a qualquer ensaio mecânico deste documento. Os golpes não podem ser aplicados nos componentes instalados sobre ou na superfície do invólucro, por exemplo, em tomadas de corrente, botões de pressão e visores. Após o ensaio, as amostras não podem apresentar danos que levem ao não atendimento deste documento.

Convém que sejam desconsiderados os danos superficiais, pequenos entalhes e pequenas descamações que não afetem adversamente a proteção contra os choques elétricos ou contra a penetração prejudicial de água. As rachaduras no material, não visíveis com uma visão normal ou corrigida sem ampliação, as rachaduras superficiais oriundas de moldagens reforçadas com fibra e os pequenos recuos são desconsiderados. Após o ensaio, a inspeção deve verificar se o código IP especificado e as propriedades dielétricas foram mantidos, se as tampas removíveis ainda podem ser retiradas e reinstaladas, e se as portas ainda podem ser abertas e fechadas.

Os ensaios em poliestireno expandido (EPS)

Conheça os métodos de ensaio para determinação das propriedades do poliestireno expandido (EPS) utilizado para qualquer fim. O EPS é um plástico celular rígido, resultado da polimerização do estireno em água. O produto final são pérolas de até 3 milímetros de diâmetro, que se destinam à expansão.

A NBR 16866 de 06/2020 – Poliestireno expandido (EPS) — Determinação das propriedades — Métodos de ensaio estabelece os métodos de ensaio para determinação das propriedades do poliestireno expandido (EPS) utilizado para qualquer fim. O EPS é um plástico celular rígido, resultado da polimerização do estireno em água. O produto final são pérolas de até 3 milímetros de diâmetro, que se destinam à expansão. No processo de transformação, essas pérolas aumentam em até 50 vezes o seu tamanho original, por meio de vapor, fundindo-se e moldando-se em formas diversas.

Expandidas, as pérolas apresentam em seu volume até 98% de ar e apenas 2% de poliestireno. Em 1m³ de EPS expandido, por exemplo, existem de 3 a 6 bilhões de células fechadas e cheias de ar. O processo produtivo do EPS não utiliza o gás CFC ou qualquer um de seus substitutos. Como resultado os produtos finais de EPS são inertes, não contaminam o solo, água e ar. São 100% reaproveitáveis e recicláveis e podem, inclusive, voltar à condição de matéria-prima.

Pode ser reciclado infinitas vezes que não perde as propriedades mecânicas (não degrada).

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a aparelhagem e como se faz a preparação dos corpos de prova para a determinação da resistência à compressão?

Qual é o esquema do ensaio de flexão?

Qual deve ser a aparelhagem para a determinação do índice de oxigênio?

Qual é o procedimento para execução do ensaio de determinação do índice de oxigênio?

Também conhecido como isopor, o EPS consiste em até 98% de ar e apenas 2% de poliestireno. Em 1m³ de EPS expandido, por exemplo, existem de 3 a 6 bilhões de células fechadas e cheias de ar. É produzido em duas versões: Classe P, não retardante à chama, e Classe F, retardante à chama. Também 3 grupos de massa específica aparente: I – de 13 a 16 kg/m3, II – de 16 a 20 kg/m³, III – de 20 a 25 kg/m³. Outro aspecto da classificação do EPS diz respeito à resistência à deformação.

O valor que se segue ao nome EPS indica a pressão necessária para uma compressão com deformação de 10%, em KPa. Por exemplo, para o EPS 30 são necessários 30 KPa para uma deformação de 10%. Esse material ganhou nos últimos 35 anos uma posição estável na construção de edifícios, não apenas por suas características isolantes, mas também por sua leveza, resistência, facilidade de trabalhar e baixo custo.

Existe um método de ensaio para a determinação da densidade aparente de blocos ou produtos moldados de EPS calculada pela relação entre a massa e o volume de cinco corpos de prova de uma amostra. Para a realização do ensaio, utilizar a seguinte aparelhagem: balança com resolução mínima de 0,1g; paquímetro ou régua com resolução de 0,1 mm. Para fazer a preparação dos corpos de prova, devem ser retirados cinco corpos de prova de regiões diferentes da amostra e com dimensões de 200 mm x 200 mm x 200 mm.

Os corpos de prova não podem conter faces da superfície original do bloco. Os corpos de prova devem ser condicionados por 24 h em ambiente a (23 ± 2) °C antes da realização do ensaio. O ensaio deve ser realizado em ambiente com temperatura de (23 ± 2) °C e umidade relativa do ar de (50 ± 10) %. Após o condicionamento descrito, determinar a massa M dos corpos de prova. Utilizando o paquímetro, medir três vezes a largura, o comprimento e a altura dos corpos de prova.

Cada medição deve ser realizada em posições distintas, tomando o cuidado para não comprimir as faces durante o procedimento. Calcular a densidade dos corpos de prova, expressa em quilogramas por metro cúbico (kg/m³), pela relação entre a massa e o volume, por meio da seguinte expressão: D=M/Vx10-6, onde D é a densidade, expressa por quilogramas por metro cúbico (kg/m³); M é a massa do corpo de prova, expressa em gramas (g); V é o volume do corpo de prova, expresso em milímetros cúbicos (mm³). Calcular a média aritmética dos resultados obtidos pelas determinações realizadas.

Expressar os resultados do ensaio para determinação da densidade em quilogramas por metro cúbico (kg/m³) com base na média aritmética da densidade encontrada para os cinco corpos de prova com uma casa decimal. O relatório de ensaio deve conter no mínimo as seguintes informações: identificação da amostra ensaiada; referência a esta norma; condições ambientais durante acondicionamento dos corpos de prova e durante o ensaio; dimensões e quantidades dos corpos de prova; resultados individuais e média aritmética da densidade, com aproximação de 0,1 kg/m³; data de realização do ensaio; possíveis desvios em relação a esta norma,

O método de ensaio para determinação da quantidade de água absorvida pelo EPS é feito após imersão total em água calculada pelo aumento da porcentagem em volume d’água dos corpos de prova imersos em água à temperatura controlada por 24 h. Para a realização do ensaio, utilizar a aparelhagem a seguir: balança analítica com resolução mínima de 0,001 g; paquímetro com resolução de 0,01 mm; estufa com circulação de ar, capaz de manter a temperatura constante em (50 ± 3) °C; dessecador; água deionizada; recipiente com profundidade mínima de 150 mm; dispositivo que evite a flutuação e exposição dos corpos de prova ao ar, de modo a impactar pouco sobre a superfície dos corpos de prova, por exemplo, rede.

Os corpos de prova devem ser cubos de 100 mm de lado sem falhas ou imperfeições visíveis. Os corpos de prova devem ser retirados da parte interna do bloco de EPS, sem conter nenhuma face externa original. Devem ser ensaiados cinco corpos de prova por amostra, retirados de diferentes regiões do bloco.

Como procedimento para execução do ensaio, deve-se usar o paquímetro, determinar as três dimensões de cada corpo de prova. Realizar três medições para cada lado e calcular a média aritmética. Multiplicar os valores obtidos para obter o volume de cada corpo de prova. Para realizar a medição corretamente, o paquímetro deve apenas encostar sobre a superfície do corpo de prova, sem comprimi-la.

Manter os corpos de prova na estufa por 24 +10 h a uma temperatura de (50 ± 3) °C. Retirar os corpos de prova da estufa e mantê-los no dessecador a uma temperatura de (23 ± 3) °C até atingirem a temperatura ambiente. Determinar a massa seca (mi) de cada corpo de prova. B.4.5 Imergir os corpos de prova em um recipiente com água deionizada por 24 +10 h a (23 ± 3) °C. Os corpos de prova devem ser presos com uma rede ou um dispositivo semelhante, de modo que exista uma camada de água de pelo menos 25 mm acima dos corpos de prova e que eles não encostem no fundo do recipiente, conforme figura abaixo.

Retirar os corpos de prova da água e remover o excesso de água com um pano úmido. Determinar a massa saturada (mf) de cada corpo de prova. Para obter os valores de absorção de água em porcentagem de volume d’água, utilizar a seguinte equação: av=mf-m1/V x r  x 100, onde av é a absorção de água de cada corpo de prova, expressa em porcentagem (%); mf é a massa saturada de cada corpo de prova, expressa em gramas (g); mi é a massa seca de cada corpo de prova, expressa em gramas (g); V é o volume do corpo de prova, expressa em centímetros cúbicos (cm³); r é a densidade da água, expressa em gramas por centímetro cúbico (g/cm³). Considerar r = 1 g/cm³.

Calcular a média aritmética dos resultados obtidos das determinações realizadas nos cinco corpos de prova. Expressar os resultados do ensaio de determinação de absorção de água por volume em porcentagem com base na média aritmética dos resultados encontrados para os cinco corpos de prova com uma casa decimal. O relatório de ensaio deve conter no mínimo as seguintes informações: identificação da amostra ensaiada; referência a esta norma; dimensões e quantidades dos corpos de prova; condições ambientais durante acondicionamento dos corpos de prova e durante a realização do ensaio; resultados individuais e média aritmética da absorção de água em porcentagem de volume d’água, com aproximação de 0,1%; data de realização do ensaio; possíveis desvios em relação a esta norma.

A substanciação de alegações sensoriais

Entenda as diretrizes para delineamento e implementação de testes que substanciem alegações sensoriais pertinentes somente no âmbito de atributos sensoriais ou perceptuais, ou ambos, de um produto. Aplica-se a alegações de atributos, de performance e hedônicas, comparativas ou não comparativas, e inclui princípios amplos que abrangem: a seleção e o recrutamento de uma amostra representativa de consumidores, seleção e preparo de produtos, elaboração de formulários, execução dos testes, e análise estatística dos dados.

A NBR 16871 de 06/2020 – Análise sensorial — Diretrizes de substanciação de alegações sensoriais fornece diretrizes para delineamento e implementação de testes que substanciem alegações sensoriais pertinentes somente no âmbito de atributos sensoriais ou perceptuais, ou ambos, de um produto. Aplica-se a alegações de atributos, de performance e hedônicas, comparativas ou não comparativas, e inclui princípios amplos que abrangem: a seleção e o recrutamento de uma amostra representativa de consumidores, seleção e preparo de produtos, elaboração de formulários, execução dos testes, e análise estatística dos dados.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como realizar o manuseio de produtos quando ambos os produtos estão no mercado?

Como executar os estudos com consumidores?

O que permite os testes de uso doméstico (HUT)?

Como executar as entrevistas individuais?

Esta norma foi originalmente desenvolvida para ser utilizada nos Estados Unidos e foi adaptada ao contexto das campanhas de publicidade, informações nos rótulos e embalagens com a finalidade de substanciação de alegações do Brasil. Protocolos ou normas para testes relacionados com a substanciação de alegações não podem ser considerados sem um contexto de referência em que esse protocolo ou norma se encaixe dentro do âmbito legal que envolve o tema. Os testes são conduzidos por três razões básicas: comparação de produtos: determina como um produto é comparado com outro, usualmente um concorrente ou uma versão anterior do mesmo produto; substanciação de alegações: permite que os profissionais de marketing usem alegações por meio de propaganda, embalagem, ou ambos, na apresentação do produto ao consumidor; teste de performance/desempenho: verifica e estabelece a performance/desempenho do produto avaliado dentro do escopo do seu objetivo de uso.

O risco associado a cada alegação é avaliado ao se considerar a substanciação dessa alegação. Alegações relevantes, agressivas, de combate, possivelmente serão analisadas pelas empresas da concorrência, e é importante que os dados comprobatórios estejam de acordo com esta norma e com a legislação vigente. Existem regulamentos, por exemplo, do CONAR (Conselho Nacional de Autorregulamentação Publicitária). Nenhum delineamento/protocolo de teste ou teste-padrão evita questionamentos. Os critérios utilizados por cada um dos possíveis fóruns não são idênticos e estão em constante evolução.

A introdução de novas tecnologias em conjunto com as mudanças nas demandas dos consumidores, processos e protocolos de teste que eram suficientes há cinco ou dez anos podem não ser adequados para os critérios e decisões atuais. Esta norma demonstra o que um grupo de profissionais com conhecimento na área de testes considera apropriado do ponto de vista técnico e científico e representa um método efetivo para determinar a viabilidade de uma alegação sensorial para ambas as partes em caso de litígio. A palavra-chave é apropriado.

Se algum aspecto particular de um teste ou método não for apropriado para uma aplicação específica, recomenda-se que não seja utilizado. Como qualquer desvio convida a uma análise minuciosa, recomenda-se tomar cuidado ao definir claramente as razões e dados de sustentação de um desvio em relação ao padrão. Uma vez que desvios são inevitáveis, outras técnicas podem ter aplicação em circunstâncias atípicas.

Sempre que um protocolo de teste for concluído, pode ser criticado pelos pontos fracos na substanciação mesmo que a pesquisa tenha sido objetivamente planejada, conduzida e analisada, utilizando procedimentos que forneçam resultados precisos e confiáveis. Caso pontos fracos sejam encontrados, recomenda-se que ações corretivas sejam tomadas, dado que a concorrência pode apontar qualquer ponto fraco ou discrepância e contestar o estudo. Embora a comunidade técnico-científica identifique a adequação de um método de pesquisa usado para sustentar uma alegação sensorial, a comunidade jurídica avalia a substanciação para alegações sob o ponto de vista legal usando razoabilidade como critério.

Com a importância de ter uma base razoável legal para uma alegação, a questão permanece, O que é razoável? Não há uma resposta específica a essa questão legal, pois dependerá do tipo de alegação, aplicação e uso do produto, regulamentos aplicáveis em que o produto seja vendido e outros fatores. Essas considerações, pressões do mercado (como prazos) e orçamentos para os testes podem influenciar e impactar os protocolos para sustentar uma alegação específica.

Uma etapa fundamental na substanciação de alegações de publicidade e rotulagem é a criação de uma afirmação explícita da alegação antes da realização do teste. A afirmação é então encaminhada para todas as partes envolvidas no processo de substanciação. As partes podem incluir marketing, pesquisa de mercado, área jurídica, testes com consumidores, avaliação sensorial, fornecedores da pesquisa etc. A afirmação é essencial, pois pode estimular a colaboração em termos de recursos corporativos, confirmar a seleção dos métodos com os testes apropriados e tem o potencial de maximizar a chance de tomar decisões confiáveis sobre a alegação proposta, enquanto aguardam-se os resultados da pesquisa de substanciação.

A colaboração prévia à pesquisa de substanciação, entre todas as partes envolvidas, é crítica para alcançar os melhores resultados. Recomenda-se que todas as partes envolvidas se reúnam e entrem em acordo (talvez várias vezes) previamente à implementação da pesquisa de substanciação. A familiaridade com a classificação geral da alegação veiculada na mídia é importante para desenvolver afirmações claras de alegações no primeiro estágio e para desenvolver um planejamento racional dos testes.

Esta familiaridade também facilita o processo de seleção dos métodos de testes adequados, dentre os vários tipos de métodos disponíveis para o profissional das ciências sensorial e do consumidor. Cada teste responde a questões específicas e pode sustentar um tipo de alegação, porém não sustenta a outra. Entretanto as ciências sensorial e do consumidor são recursos importantes para fornecer a informação e a experiência em substanciação de alegações e definem a maior parte da metodologia de testes.

Existem múltiplas formas para sustentar as alegações dependendo das características das alegações. Duas abordagens de avaliações são: baseada em consumidores e baseada em painel treinado. As alegações veiculadas na mídia podem ser divididas em duas classificações fundamentais: comparativas e não comparativas. A distinção entre elas é se a comparação é relativa a um produto existente (do anunciante ou do concorrente) ou ao próprio produto.

O objetivo desta alegação é transmitir algo específico sobre o produto, geralmente um benefício ou um diferencial do produto e não busca proporcionar alegações comparativas aos outros produtos. Por exemplo, a afirmação fornece sabor de longa duração ou perfuma intensamente por um mês se refere ao produto, mas não à percepção comparativa relativa a um produto existente. Este tipo de alegação é comum para novos produtos, mas também é utilizada para chamar a atenção sobre um benefício específico do produto. São planejadas para comparar similaridades e diferenças entre dois ou mais produtos. A base de comparação pode ser dentro da mesma marca, entre duas marcas ou entre uma marca e outros produtos da categoria.

As alegações comparativas geralmente ocorrem em uma das duas formas: paridade ou superioridade que por sua vez são subclassificadas em duas áreas centrais de aplicação: hedônica e atributo/percepção. As alegações comparativas hedônicas abrangem a medição do grau de gostar/desgostar e da preferência tanto a aceitação global quanto a aceitação relativa a um ou mais atributos específicos. As alegações comparativas de atributo/percepção se aplicam para a medição da intensidade de um ou mais atributos específicos do produto.

As alegações comparativas de paridade são as que classificam níveis equivalentes de desempenho ou de aceitação ao comparar um produto em particular com outro. Em geral, alegações de paridade são realizadas em relação ao líder de mercado/categoria. As alegações de paridade são subclassificadas em: alegações de igualdade e de insuperabilidade. As alegações comparativas de superioridade afirmam um nível mais alto de desempenho ou de aceitação relativa a outra marca.

As alegações de superioridade podem ser em oposição às marcas da concorrência (por exemplo: limpa melhor do que a marca Z) ou em oposição à formulação anterior da marca (por exemplo: agora com maior poder de limpeza do que antes). EXEMPLO 1. Hedônica: “Nosso produto tem o sabor melhor do que o da marca X”; “Nosso produto tem o sabor melhor que qualquer outro”; “Nosso produto é o preferido em relação a qualquer outra marca” . EXEMPLO 2. Atributo/Percepção: “Nosso bolo é mais úmido do que qualquer outro”; “Reduz mais os odores do que a marca X”; “Dura mais do que qualquer outro produto”; “Mais espesso do que a marca X”; “Limpa mais rápido do que qualquer outro produto”.

Em alegações de superioridade, combinações de alegações de hedônicas com alegações de atributo/percepção podem ser encontradas quando alegações de superioridade são estabelecidas com base na aceitação global e para atributos específicos (por exemplo: “Nossas meias são preferidas em relação à marca X por análise de aceitação global e elas oferecem mais suporte e conforto”.) Pela perspectiva estatística, pode ser mais fácil sustentar uma alegação de superioridade do que uma de paridade, assumindo-se que a superioridade realmente exista.

Este fato sobre o teste de hipótese será discutido posteriormente na seção relativa aos métodos estatísticos (ver Seção 15). As alegações de produtos na mídia impressa ou rádio, TV ou Internet requerem dados validados que sustentem a alegação pretendida. Como acontece na maioria dos testes sensoriais, é preciso inicialmente identificar os objetivos do projeto e do teste para o estudo. É recomendado que a afirmação da alegação indique se a alegação está baseada em métodos sensoriais de laboratório ou estudos com consumidores ou alguns testes químicos ou instrumentais.

As alegações sensoriais para preferência ou aceitação (“preferida em relação à marca líder” ou “melhor do que a concorrência”) requerem testes de consumidores com questões de preferência ou aceitação para sustentar a alegação. As alegações sobre atributos ou desempenho dos produtos podem ser baseadas em dados com consumidores, solicitados a responder sobre os atributos específicos, ou podem ser baseadas em testes sensoriais de laboratório planejados para medir o (s) atributo (s) específico (s). Em alguns casos, ambos os tipos de testes (consumidores e laboratório) podem ser utilizados juntos para sustentar a mesma alegação.

A equipe de criação das alegações precisa determinar o tipo e o conteúdo de alegação, a população-alvo e os aspectos do produto que são o foco da alegação. Só então o teste para sustentar a alegação vai gerar dados com o foco correto e a força para sustentar a alegação. As alegações se referem ao desempenho ou à aceitação do produto pelos responsáveis pela compra ou consumidores. É indicado que as alegações hedônicas sempre se apliquem aos consumidores ou potenciais consumidores do produto.

A amostragem de qualquer parte da população que não seja aquela para a qual a alegação se destina, como os responsáveis pela compra, pode requerer uma alegação específica para limitar sua aplicação generalizada. É indicado que o protocolo de teste defina claramente se uma alegação está sendo expressa para os responsáveis pela compra ou para o consumidor final do produto, ou para ambos, quando houver distinção entre eles. Os cenários clássicos incluiriam adultos com crianças e donos de animais de estimação.

EXEMPLO “Mães exigentes escolhem Jif1” é uma alegação específica para o responsável pela compra e não para o consumidor. É evidente que a alegação em si tem um papel de definir o público-alvo. Para identificar os consumidores-alvo, recomenda-se o recrutamento com base no consumo recente da categoria. Se o consumo recente da categoria não é aplicável (tal como em produtos sazonais ou produtos com longos ciclos de recompra), é aceitável identificar consumidores-alvo com base na intenção positiva de consumo futuro da categoria.

É indicado que a categoria seja definida de modo que valide a seleção de produtos concorrentes (por exemplo, “cereal matinal de trigo” em vez de “cereal pronto para consumo”). Quanto aos respondentes é indicado que não sejam restritos exclusivamente à categoria de consumo (tal como consumidor apenas de cereal matinal de trigo), mas que possam também usar produtos alternativos em categorias relacionadas como cereal matinal de milho ou cereal matinal de trigo integral.

É indicado também que os respondentes não se restrinjam a consumidores muito frequentes, que são um subgrupo dos consumidores e que requereriam uma alegação específica. Para alegações de uma categoria, os respondentes podem ser recrutados por critérios de consumo da marca, mas é indicado cuidado durante esta análise para assegurar que os respondentes não sejam capazes de adivinhar quais marcas fazem parte dos testes.

A análise pode mencionar uma grande lista de marcas com a (s) marca (s) de interesse incluídas no questionário. Dados sobre consumo da marca e frequência de consumo também podem ser coletados para ajudar na validação do público-alvo. Consumidores do produto podem ser definidos pelas suas respostas a diversas questões, incluindo: “Qual marca deste tipo de produto você usa com mais frequência?” “Quais marcas você usou no último (período de tempo apropriado para a categoria)?” Se a frequência de consumo é uma questão importante, neste caso o respondente pode também ser solicitado a informar a frequência de consumo do produto ou quantas vezes ele comprou o produto em um período de tempo específico.

É indicado que o tipo de alegação seja considerado na determinação do tamanho da amostra. Por exemplo, alegações de paridade podem requerer mais respondentes que alegações de superioridade (ver 7.2) e algumas alegações objetivas, (por exemplo, “este produto tem mais…”) podem ser substanciadas usando análise descritiva com uma equipe treinada (ver Seção 11). É indicado que os dados demográficos da amostra do teste sejam equivalentes aos do público-alvo (ou seja, sobre quem a alegação está sendo criada).

Os dados demográficos podem incluir idade, gênero e geografia. Os respondentes também podem ser recrutados pelos seus perfis de uso do produto e é indicado que a densidade da amostragem reflita a distribuição geográfica deste grupo. A utilização de cotas auxilia na obtenção de equivalências entre a população do teste e o público-alvo desejado. É indicado que os dados de idade e gênero sejam equivalentes ao público-alvo e reflitam a distribuição de idade dos consumidores para cada gênero. A informação demográfica deve ser coletada para demonstrar a validade da amostra.

Os critérios de recrutamento da população teste devem ser declarados no protocolo do teste e é indicado que sejam tão objetivos quanto possível. Registros devem ser mantidos indicando porque os respondentes potenciais foram rejeitados do estudo. É indicado que os critérios de recrutamento não sejam revelados a respondentes potenciais, e é indicado que sejam incluídas questões de recrutamento de segurança padrão (por exemplo, se membros da família trabalham em propaganda ou marketing ou outras áreas relacionadas, incluindo a do produto testado).

É indicado que uma amostra com característica demográfica predeterminada como um único gênero seja aplicada quando for consistente com a alegação usada e com o consumo normal do produto. Por exemplo, mulheres jovens e idosos podem usar produtos específicos. Os nomes de potenciais respondentes de testes podem estar disponíveis em outras empresas que vendem informações de marketing.

Em muitos casos, uma empresa pode manter a sua própria base de dados acerca de consumidores do produto. Na maioria dos casos, estas bases de dados são mantidas com técnica de pesquisa adequada; no entanto, o uso de bases de dados pode não se aproximar de uma amostra probabilística, e, portanto, em certos exemplos, não seriam aceitáveis para a substanciação de alegações. Se os respondentes potenciais forem selecionados em uma base de dados existente, é indicado cuidado para assegurar que a base de dados é acurada. Muitas vezes, as bases de dados incluem respondentes potenciais que alegam consumir o (s) produto (s) testado (s) para ter retorno de uma avaliação paga, ou elas podem não refletir os hábitos de compra mais recentes dos consumidores.

É recomendado que os respondentes sejam avaliados especificamente para este teste para assegurar que eles representam o consumidor desejado e que não tenham participado de testes de consumidores nos últimos três meses ou testes desta categoria nos últimos seis meses. delineamento geográfico necessário para substanciar uma alegação é função da natureza da alegação. As alegações de percepção com base no desempenho de um produto na função a que se destina provavelmente não dependem de uma localização geográfica específica, por exemplo, a percepção da brancura de tecidos lavados, alívio da dor, entre outras.

No entanto, quando um teste hedônico é conduzido com um produto usado no lar em condições altamente variáveis, por exemplo, testar detergentes no lar, fatores como dureza da água, umidade, temperatura ambiente média, e outros, podem afetar o desempenho do produto e a preferência por este. Se houver evidência de que estes fatores realmente afetam o desempenho do produto, é indicado que eles sejam considerados quando da seleção dos mercados que são testados. As alegações de preferência apresentam potencial dependência por fatores geográficos e demográficos.

A preferência pode variar por região ou por fatores socioeconômicos, como áreas urbanas centrais versus bairros versus zona rural. A evidência a favor ou contra estas dependências poderia vir dos padrões de venda ou consumo do produto, ou ambos. Quando se assume a região geográfica como um fator relevante para a alegação, é indicado que a localização geográfica dos respondentes seja consistente com o escopo da alegação. É indicado que uma alegação de abrangência nacional tenha como base uma amostra representando as maiores regiões geográficas.

É indicado que sejam incluídos pelo menos dois mercados para cada uma das maiores regiões. É indicado que alegações regionais representem pelos menos quatro mercados que estejam geograficamente distribuídos pela região. Em geral, métodos de amostragem aleatória (por quota) simples ou estratificada podem ser empregados. Cabe ao sujeito da alegação assegurar que a amostra aleatória não possua vieses ou não seja significativamente diferente de uma amostra probabilística; ou seja, é indicado assegurar a todos os membros do público-alvo ou de um estrato da população de que tenham a mesma probabilidade de serem selecionados para o teste.

Previna-se contra vieses em termos de grupos sociais e econômicos tendo mais de um local de teste em uma cidade ou área metropolitana. Minimize vieses de amostragem conduzindo entrevistas durante vários dias da semana e horários do dia e variando a localização onde respondentes potenciais são recrutados. Seja cuidadoso ao selecionar mercados e assegure que o teste represente adequadamente as pessoas que residem na região geográfica na qual a alegação é baseada. Em categorias com fortes diferenças geográficas na participação de mercado, é indicado que a participação de mercado total seja aproximada representando as participações de mercado alta, baixa e média no estudo.

Tamanhos de amostras regionais podem variar, refletindo suas contribuições em termos de número, mas não em termos de consumo acima da média. É desejável uma mistura de mercados de grandes e pequenas cidades e áreas metropolitanas, assim como de zonas rurais. Os critérios para a seleção dos mercados podem ser vistos como um fator em um delineamento experimental. Depois de determinar os fatores necessários, é recomendado que uma lista de mercados potenciais seja desenvolvida para cada nível de cada fator.

Por exemplo, uma lista de participações de mercado alta, média e baixa pode ser desenvolvida para cada região censitária. Um mercado pode ser aleatoriamente selecionado de cada célula, representando cada região em cada nível de desenvolvimento da marca. A seleção aleatória de mercados e localizações de teste dentro dos mercados é também benéfica assegurando que a amostra do teste é uma aproximação válida da amostra probabilística.

Uma vez que o público-alvo esteja definido e adequadamente representado pela amostragem, os resultados da amostra total (não suas subdivisões ou subgrupos) são o fator crítico na criação de uma alegação. O resultado de algum subgrupo pode não corresponder aos resultados porque os tamanhos das amostras em subgrupos são menores e, portanto, não tão confiáveis estatisticamente.

Além disso, como há o risco de falsos positivos e falsos negativos ao testar qualquer hipótese, a análise de múltiplos subgrupos aumentará a taxa de erro global. Portanto, dada uma amostragem apropriada do público-alvo, o exame de subgrupos não é uma prática analítica segura para a substanciação de alegações (ver Seção 13). Para produtos a serem ingeridos (alimentos ou bebidas), é indicado que não seja permitido aos voluntários participar caso eles tenham qualquer alergia alimentar, independentemente de o alergênico estar presente ou não nas amostras.

É recomendado que uma lista dos ingredientes seja disponibilizada para a agência de teste ou a qualquer respondente que solicite uma cópia. Se um teste estiver sendo conduzido para sustentar uma alegação que não é específica de uma marca (por exemplo, versus “outras marcas líderes”), então é recomendado que as marcas concorrentes sejam as duas com as maiores participações de mercado no país. Quando o mercado é altamente dividido, como por exemplo, as duas marcas líderes nacionais controlam menos de 50% do mercado, mais concorrentes devem ser incluídos no teste.

As três marcas líderes nacionais, ou qualquer marca que esteja entre as duas líderes das principais regiões geográficas do país, devem ser testadas. A menos que o produto seja testado comparando-se com marcas que representam pelo menos 85% do mercado nacional, é recomendado que as alegações sejam comparativas a marcas específicas em vez de alegações superlativas genéricas, 85 % do mercado são definidos como todos os produtos dentro da dita categoria, incluindo a marca que expressa a alegação.

É recomendado que as marcas concorrentes sejam do mesmo segmento de mercado da marca para a qual a alegação estiver sendo criada. Se uma marca atende diferentes segmentos de mercado, então é recomendado que sejam usados os produtos mais similares em um contexto comparativo razoável. Quando produtos concorrentes são vendidos em mais de uma forma, os produtos a serem testados devem ser da mesma forma ou estar na forma mais relevante para a alegação.

Se uma mistura para bebida em pó estiver sendo comparada com o produto de um concorrente que também é comercializado como uma mistura para bebida em pó e como um líquido reconstituído, ambas as marcas teriam que ser testadas nas suas formas reconstituídas a partir do pó comercializado. As instruções específicas de preparação fornecidas por cada produto devem ser cumpridas. Se houver um teste cruzado de diferentes formas, uma alegação envolvendo as diferentes formas pode ser desejável.

As formas testadas devem ser explicitamente declaradas como parte da alegação, por exemplo, “o instantâneo é tão saboroso quanto o pronto para consumo.” Para testes com consumidores em localização central, é recomendado que produtos comerciais usados para testar alegações contra a concorrência sejam comprados no final da cadeia de distribuição, para assegurar que sejam representativos daqueles que seriam comprados pelo consumidor. Alguns produtos são feitos em diferentes ou múltiplos locais de produção. Nestes casos, é recomendado que o produto seja comprado em um centro de distribuição que atenda às áreas de teste específicas.

Para outros métodos de teste nos quais o produto testado é fabricado em um local, as amostras podem ser compradas em qualquer loja com grande volume de vendas. É recomendo que os produtos sejam adquiridos no mesmo momento na (s) mesma (s) loja (s) em cada local de teste.

É recomendado que os produtos reflitam a opção disponível aos consumidores locais. É recomendada atenção à inclusão de uma variedade de locais de produção e datas que são tipicamente encontrados no varejo. Em alguns casos em que produtos concorrentes não são vendidos nas mesmas lojas (por exemplo, restaurantes de fast food e produtos de marca própria), é indicado que os produtos do teste sejam adquiridos tão recentemente quanto possível dos locais que reflitam as opções disponíveis aos consumidores locais.

É importante que a identidade geográfica das amostras corresponda à dos respondentes do teste local. Desta forma, se produtos nacionais fabricados em mais de um local foram formulados de maneira diferente para atender diferenças regionais em preferências sensoriais, produtos apropriados serão testados comparativamente aos concorrentes regionais relevantes. É essencial que toda a informação relativa ao produto adquirido seja documentada.

A atenuação passiva de ruído de protetores auditivos

Saiba quais os dois métodos para medir, analisar e relatar a capacidade de atenuação passiva de ruído de protetores auditivos, com colocação pelo ouvinte treinado (Método A) e com colocação pelo ouvinte inexperiente (Método B). 

A NBR 16076 de 05/2020 – Equipamento de proteção individual – Protetores auditivos – Medição de atenuação de ruído com métodos de orelha real especifica dois métodos para medir, analisar e relatar a capacidade de atenuação passiva de ruído de protetores auditivos, com colocação pelo ouvinte treinado (Método A) e com colocação pelo ouvinte inexperiente (Método B). Os métodos consistem em ensaios psicofísicos realizados em grupos de seres humanos para determinar a atenuação de ruído na orelha real no limiar de audição. Os Métodos A e B são correspondentes em todos os aspectos eletroacústicos e psicofísicos, diferindo na escolha do ouvinte, treinamento, procedimento de colocação do protetor auditivo e envolvimento do experimentador.

A seleção do método de ensaio, ouvinte treinado ou colocação pelo ouvinte inexperiente, baseia-se na aplicação pretendida. Esta norma se aplica aos protetores auditivos passivos não dependentes do nível de ruído. Os protetores auditivos ativos ou dependentes de nível de ruído podem ser ensaiados apenas quando os componentes eletrônicos estão desligados. Os dispositivos podem ser utilizados em combinação um com o outro, como protetores auditivos de inserção utilizados em conjunto com protetores auditivos tipo concha ou capacetes com proteção auditiva.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como devem ser realizadas as medições do tamanho do canal auditivo e das dimensões da cabeça?

Qual deve ser o número de ouvintes nos ensaios em protetores auditivos?

Qual deve ser o número de medições de limiar aberto e fechado?

Como deve ser feito o treinamento em colocação de protetores auditivos?

Esta norma descreve os métodos de ensaio de atenuação na orelha real no limiar de audição (REAT) para a medição da atenuação de ruído dos protetores auditivos. Os dados REAT geralmente são reconhecidos por produzir a melhor medida da atenuação de ruído fornecida pelos protetores auditivos passivos e incluem os efeitos da transmissão de ruído por outros caminhos, como os transmitidos por condução ósseas e tecidos.

Os valores de atenuação no limiar auditivo, pelo método de orelha real nas baixas frequências (abaixo de 500 Hz) obtidas por esta norma podem ser falsamente elevados em alguns decibéis, com o erro aumentando à medida que a frequência diminui. Esse resultado acontece devido ao mascaramento dos limiares auditivos ocluídos causados pelo ruído fisiológico durante o ensaio. Os erros são maiores para os protetores auditivos tipo capa de canal, protetores auditivos tipo concha de menor volume e para protetores auditivos do tipo inserção inseridos superficialmente. Os erros são menores para protetores auditivos tipo concha de grandes volumes e protetores auditivos do tipo inserção mais profundamente inseridos.

Os principais fatores que influenciam os valores de atenuação medidos são a seleção, o treinamento e a colocação do protetor auditivo pelo ouvinte durante o ensaio. Por esse motivo, essa norma inclui dois métodos distintos com diferentes abordagens para lidar com esses fatores. O Método A, anteriormente chamado de “colocação supervisionada pelo experimentador” e agora designado como “ouvinte treinado”, descreve algo próximo de um cenário de colocação ideal que pode ser obtida por usuário motivado e proficiente. Esse método permite o treinamento completo e a intervenção do experimentador antes das medições de atenuação.

Entretanto, durante a medição de atenuação, o próprio ouvinte faz a colocação do protetor auditivo por ele próprio, sem assistência do experimentador. O raciocínio é que por permitir o treinamento do ouvinte individualizado e intensivo, imediatamente antes do ouvinte colocar o protetor auditivo, obtém-se valores aproximados da melhor atenuação que pode ser obtida na prática. O motivo de impedir que o experimentador auxilie na colocação do protetor auditivo foi a constatação de que há uma variação nas formas de interpretar a norma e colocar os protetores auditivos, o que pode aumentar a variabilidade de ensaios interlaboratorial.

Até certo ponto, isolar os experimentadores durante a medição de atenuação reduz este problema. Além disso, em uso real, sendo treinado ou não, os trabalhadores e outros usuários realizam a colocação de protetores auditivos sem a assistência de outra pessoa. O Método B, anteriormente denominado “colocação pelo ouvinte” e agora designado como “ colocação pelo ouvinte inexperiente” para claramente indicar a característica-chave do procedimento, pretende aproximar resultados “alcançáveis” para grupos de trabalhadores participantes de programas de conservação auditiva.

Tudo isso porque no procedimento de colocação pelo ouvinte inexperiente a interação do experimentador é limitada e depende muito da habilidade dos ouvintes em ler e interpretar as instruções de colocação, que, por sua vez, são substancialmente afetadas pelas experiências anteriores de uso ou por quaisquer treinamentos recebidos. Por causa disso, é importante selecionar ouvintes com alguma prática e treinamento anterior no uso de protetores auditivos. Caso contrário, o desempenho nos ensaios provavelmente será influenciado por seus preconceitos e nível de habilidade adquirido.

O Método B foi desenvolvido avaliando vários protocolos de ensaio por meio de um estudo-piloto e um estudo de comparação interlaboratorial inicial. Posteriormente, um estudo interlaboratorial adicional foi realizado avaliando seis protetores auditivos em seis laboratórios diferentes, e os resultados levaram aos refinamentos dos métodos apresentados nesta norma. Independentemente do método de ensaio selecionado, ouvintes treinados, ou colocação pelo ouvinte inexperiente, os valores de atenuação serão aplicáveis apenas na medida em que os protetores auditivos que, na prática, são utilizados da mesma maneira que durante o ensaio laboratorial; os protetores auditivos são mantidos, conservados e acondicionados adequadamente; e as características anatômicas da população de usuários reais possuem uma boa correspondência com os ouvintes dos ensaios laboratoriais.

Os usuários de protetores auditivos altamente interessados e/ou motivados podem obter valores de atenuação em campo significativamente superiores aos obtidos pelo Método B, e até mesmo superando os resultados obtidos pelo Método A. Entretanto, para a maioria das populações de usuários ocupacionais, a estimativa obtida pelo Método B proporciona um melhor indicador de avaliação de dados médio de um grupo do que pelo Método A. A validade das estimativas foi aferida ao comparar os valores medidos em laboratório, que utilizaram procedimentos semelhantes ao protocolo de ensaio de colocação pelo ouvinte inexperiente apresentado nesta Norma, com valores obtidos em grupos de usuários derivados de mais de 20 estudos disponíveis.

O Método A produz valores de atenuação média mais elevados e valores de desvio-padrão mais baixos do que o ensaio pelo Método B, com o efeito de serem substancialmente maiores para os protetores auditivos do tipo inserção do que para os do tipo concha devido à maior dificuldade de colocação. Consultar o Anexo A para obter informações sobre como estimar a incerteza desses métodos. Os sinais de ensaio devem ser de ruído rosa ou ruído branco, filtrados em bandas de terço de oitava.

As frequências centrais devem incluir no mínimo 125 Hz, 250 Hz, 500 Hz, 1.000 Hz, 2.000 Hz, 4.000 Hz e 8.000 Hz. Os requisitos do local de ensaio estabelecidos em 4.2.1 a 4.2.4 devem ser atendidos. O nível de pressão sonora medido usando um microfone omnidirecional em seis posições relativas ao ponto de referência, sem o ouvinte e sua cadeira, ± 15 cm nos eixos frontal-traseiro, acima-baixo e esquerdo-direito, deve permanecer dentro de uma faixa de ± 2,5 dB para cada sinal de ensaio no ponto de referência.

A diferença entre os níveis de pressão sonora nas posições esquerda e direita não pode exceder 3 dB. A orientação do microfone deve permanecer a mesma em cada posição de medida. A cadeira do ouvinte deve estar fora, no momento da medição. A direcionalidade do campo sonoro deve ser avaliada no ponto de referência para cada banda de ensaio, com frequências centrais maiores ou iguais a 500 Hz, sem o ouvinte e sua cadeira.

As medições devem ser realizadas com um microfone direcional que exiba, na sua resposta polar de campo livre, em bandas de ensaio de um terço de oitava, as características descritas a seguir. No caso de microfone bidirecional (figure-eight microfone), a medição da incidência de som frontal deve ser pelo menos 10 dB a mais que a incidência de som lateral (90°). No caso de microfone cardioidal a medição da incidência de som frontal deve ser pelo menos 10 dB a mais que a incidência de som por trás (180°).

O campo sonoro pode ser considerado próximo de um campo de incidência aleatória quando o microfone for girado em torno do centro do ponto de referência em 360° em cada um dos três planos perpendiculares definidos pelos eixos frontal-traseiro, acima-baixo e esquerdo-direito, que devem coincidir com o ponto de referência, e o nível de pressão sonora observado em cada banda de frequência e em cada plano permanece dentro de uma variação permitida (tabela abaixo) quando a medição é avaliada separadamente para cada plano. Os níveis de pressão sonora também podem ser obtidos por medições com o microfone em posição fixa, com incrementos de 15° dentro da rotação de 360° em cada plano.

O ruído de fundo deve ser medido com um sistema de instrumentação que atenda aos requisitos da ANSI/ASA S1.4/Parte 1/IEC 61672-1 classe 1 e os filtros devem atender aos requisitos da ANSI/ ASA S1.11/Parte 1/IEC. 61260-1 tipo 1. O ruído de fundo, no ponto de referência, sem o ouvinte, com todos os equipamentos de geração de sinal ligados não pode exceder os níveis de banda de oitava listados na tabela abaixo. Para sistemas com atenuadores analógicos, deve se ajustar o ganho para 20 dB acima dos níveis necessários para induzir a média do limiar aberto de audição do grupo de ouvintes em todas as frequências de ensaio, mas sem o sinal de ensaio presente.

Para sistemas com atenuadores digitais deve estabelecer o ganho para o valor mínimo possível para que o sinal de ensaio seja ativado. O ruído de fundo deve ser medido no mínimo mensalmente durante os horários que ocorrem os ensaios, ou mais vezes caso o local de ensaio não assegure as condições exigidas. Todo sistema de ventilação e iluminação e qualquer outro equipamento que produza ruído próximo ao local do ensaio deve estar ligado na sua condição de operação normal durante os ensaios.

Os níveis máximos de ruído admissíveis na tabela abaixo são baseados em um ouvinte com limiares de audição acima de 0 dB. Se o laboratório desejar utilizar ouvintes com melhor audição (limiar de audição abaixo de 0 dB), os níveis de ruído de fundo devem ser reduzidos proporcionalmente, isto é, se os níveis do limiar de audição forem -10 dB em uma ou mais frequências, os níveis de ruído de fundo também devem ser reduzidos em 10 dB nessas frequências. Caso qualquer ruído inesperado seja ouvido na sala de ensaio durante o ensaio, o ouvinte deve sinalizar ao experimentador para interromper o ensaio. Uma vez que o ruído tenha cessado, o ensaio pode continuar a partir da última frequência de ensaio antes do distúrbio notado.

Os equipamentos de ensaio devem incluir um gerador de ruído, um conjunto de filtros de banda de um terço de oitava, circuitos de controle (botão liga e desliga e atenuadores calibrados), amplificador (es) de potência, caixa (s) acústica (s), e um dispositivo de posicionamento da cabeça. Também é aceitável utilizar um computador para gerar, filtrar e controlar o ruído. Os sinais de ensaio, medidos eletricamente nos terminais da (s) caixa (s) acústica (s), devem consistir em um ruído branco ou rosa em bandas de 1/3 de oitava, cujo espectro tem a curva equivalente a um filtro que atenda às especificações da ANSI/ASA S1.11/Part 1/IEC 61260-1, Classe 1.

O modo de operação para mudança de uma banda para outra deve ser uma função degrau discreta; o modo de troca gradual continuamente ajustável não é aceitável. O equipamento de ensaio deve ser capaz de gerar níveis de pressão sonora no ponto de referência, em qualquer banda de ensaio, que variam de no mínimo 10 dB acima do limiar fechado de audição do ouvinte até 10 dB abaixo do limiar aberto de audição.

Para a maioria dos protetores auditivos, isto é equivalente a um intervalo de 60 dB que se inicia em 10 dB abaixo do limiar de audição aberto. O nível de 10 dB abaixo do limiar de audição aberto pode ser calculado baseado na calibração elétrica. Quando o equipamento de ensaio gera sinais em bandas de um terço de oitava no ponto de referência, a níveis de pressão sonora conformes com os níveis máximos especificados em 4.3.2, os níveis de pressão sonora em bandas de um terço de oitava devem ser de pelo menos 40 dB abaixo do nível máximo a partir de uma oitava abaixo da frequência de ensaio até 31,5 Hz, e a partir de uma oitava acima da frequência de ensaio até 16 kHz.

Durante o ensaio, os sons devem ser reproduzidos sem nenhuma interferência de ruído audível. Os atenuadores devem ter uma faixa de ajuste de no mínimo 90 dB para cada sinal de ensaio, com um passo ≤ 3 dB. A diferença na configuração de saída entre dois atenuadores, o sinal de ensaio medido em uma única banda de um terço de oitava (Ver 4.1), não pode ser maior que a diferença indicada em mais de 2 dB na faixa total do atenuador e não mais de 1 dB em qualquer faixa intervalada de 80 dB.

As correções para o desvio da linearidade devem ser aplicadas aos dados quando este requisito não for atendido. Sempre que possível, este ensaio deve ser realizado acusticamente com um sinal reproduzido em todos os canais simultaneamente, para que a linearidade possa ser medida em condições próximas das do ensaio real e de modo a incluir todas as partes do sistema de medição potencialmente não lineares. Quando a relação entre o nível de pressão sonora medido acusticamente e o ruído de fundo for inferior a 20 dB, que pode ocorrer para os sinais de ensaio de nível mais baixo, a linearidade da tensão do sinal deve ser medida nos terminais da (s) caixa (s) acústica (s) usando sinais de ensaios de tons puros ou de banda de um terço de oitava.

Para assegurar que a resposta de frequência do sistema permaneça constante em sua faixa dinâmica, as bandas-padrão de ensaio em um terço de oitava (Ver 4.1) ou um sinal de ruído rosa de 80 Hz a 10 kHz devem ser usados como estímulo de ensaio para avaliar a faixa utilizável do sistema a partir dos níveis máximos que o sistema pode reproduzir até o nível de ruído de fundo com decrementos de 10 dB. A família de curvas de resposta de frequência geradas não pode demonstrar desvios de linearidade superiores a 2 dB para qualquer uma das frequências de ensaio de banda de um terço de oitava.

Sinais de ensaio devem ser pulsados entre 2 vezes e 2,5 vezes por segundo, com uma taxa de 50% do ciclo e sem ruídos audíveis ou outros transientes. Quando se excita o sistema com tons puros nas frequências centrais de ensaio, a duração do estado em que o sinal é considerado ligado (tempo que o sinal permanece dentro de 1 dB do seu nível máximo) deve ser maior que 150 ms, e a saída durante o estado em que o sinal é considerado desligado deve ser de no mínimo 20 dB inferior do nível máximo, medido eletricamente nos terminais da(s) caixa(s) acústica(s).

O ruído de ajuste deve ser um ruído aleatório em banda larga cujo nível de pressão sonora no ponto de referência é de aproximadamente 70 dB (valor de referência 20 μPa), ponderado na escala A. Um maior nível de ruído de ajuste pode ser utilizado para protetores auditivos ou sistemas que possuam alta atenuação.

O ensaio de ultrassom de juntas soldadas metálicas

A técnica de tempo de percurso da onda difratada (ToFD) para o ensaio de ultrassom de juntas soldadas em materiais metálicos com espessura maior ou igual a 6 mm destina-se principalmente ao uso em juntas soldadas de penetração total de geometria simples em chapas, tubos e vasos, onde tanto a solda quanto o metal de base são de aço de baixa liga.

A NBR 16196 de 05/2020 – Ensaios não destrutivos — Ultrassom — Uso da técnica de tempo de percurso da onda difratada (ToFD) para ensaio em soldas especifica a aplicação da técnica de tempo de percurso da onda difratada (ToFD) para o ensaio de ultrassom de juntas soldadas em materiais metálicos com espessura maior ou igual a 6 mm. Destina-se principalmente ao uso em juntas soldadas de penetração total de geometria simples em chapas, tubos e vasos, onde tanto a solda quanto o metal de base são de aço de baixa liga. Quando especificado e apropriado, o ToFD também pode ser usado em outros tipos de materiais que apresentem baixa atenuação ultrassônica.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as configurações dos cabeçotes recomendadas para juntas de topo em função da espessura de parede?

Como fazer a preparação das áreas de varredura?

Como executar a conversão tempo versus espessura?

Como deve ser feito o ensaio na solda?

Esta norma foi elaborada com base na EN 14751 e fornece diretrizes sobre as capacidades especificas e limitações de ToFD para detecção, localização, dimensionamento e caracterização de descontinuidades em juntas soldadas por fusão. A tecnica ToFD é de geração de imagens ultrassônicas, a qual demonstra capacidade de detecção, localização e dimensionamento. Também é possível a caracterização de descontinuidades em uma certa extensão no metal de solda, assim como no metal de base adjacente.

O ToFD pode ser usado como técnica única ou combinado com outros métodos ou técnicas de END, tanto para inspeção de fabricação quanto para inspeção em serviço. Esta técnica, que é baseada na difração, bem como na reflexão, quando comparada as técnicas baseadas somente na reflexão, e menos sensível para a orientação da descontinuidade. Descontinuidades orientadas perpendicularmente a superfície, e nos ângulos intermediários de incidência, são detectáveis bem como descontinuidades na face da solda.

Quando especificado nesta norma, os parâmetros ultrassônicos estão referenciados ao aço que possui uma velocidade sônica de 5.920 m/s ± 50 m/s para ondas longitudinais, e 3.255 m/s ± 30 m/s para ondas transversais. Isto deve ser considerado quando se inspecionam materiais com velocidades diferentes. Em determinadas circunstâncias, como espessura, configuração da junta soldada, objetivo do ensaio, etc., é requerido mais que um único arranjo (montagem) ToFD. A imagem típica de ToFD tem em um eixo a componente tempo ou caminho percorrido pelo ultrassom e, no outro eixo, a distância percorrida pelos cabeçotes.

Devido a geometria V dos percursos ultrassônicos, a localização de uma eventual descontinuidade na direção da espessura não é linear. O ensaio ToFD deve ser realizado de forma correta e coerente, de modo que as imagens geradas sejam validas e possam ser avaliadas corretamente. Por exemplo, perdas de acoplamento e erros de aquisição de dados tem que ser evitados.

A interpretação das imagens ToFD requer inspetores com habilidade e experiencia. Algumas imagens de ToFD típicas de descontinuidades em juntas soldadas são apresentadas no Anexo B. Existe uma redução na capacidade de detecção de descontinuidades próximas ou conectadas com a superfície de varredura ou com a superfície oposta. Isto tem que ser considerado, especialmente para aços suscetíveis as trincas ou na inspeção em serviço.

Em casos onde é requerida total cobertura destas zonas, medidas adicionais devem ser tomadas. Por exemplo, ToFD pode ser acompanhado por outros métodos ou técnicas de END, como o ensaio de ultrassom pulso-eco. Sinais difratados de descontinuidades em soldas tem pequenas amplitudes comparáveis ao espalhamento causado pelos grãos grosseiros de alguns materiais, que podem dificultar a detecção e avaliação das descontinuidades.

A pessoa que executa o ensaio de ultrassom deve atender aos requisitos da NBR NM ISO 9712. Adicionalmente, os profissionais envolvidos com ToFD devem ter treinamento especifico no sistema de ultrassom ToFD utilizado, com certificação emitida pelo profissional nível 3 de ultrassom capacitado na tecnica. O ensaio ToFD deve ser realizado de acordo com um procedimento escrito, que deve conter no mínimo os requisitos listados na tabela abaixo.

Todos os procedimentos de ensaio devem ser qualificados por profissional nível 3, de acordo com a norma especifica do produto, e as evidências da qualificação devem estar disponíveis para apreciação da contratante. A norma específica do produto pode ser uma norma de projeto, construção, fabricação, montagem e inspeção em serviço, que estabelece os requisitos técnicos referentes ao material, montagem e inspeção nos projetos de fabricação e construção de produtos ou equipamentos.

Quando não especificado na norma especifica do produto, a qualificação do procedimento deve ser efetuada em corpos de prova representativos do ensaio a ser efetuado. As características e a quantidade dos corpos de prova devem ser aprovadas pela contratante. Sempre que qualquer variável da tabela acima for alterada, deve ser emitida uma revisão do procedimento. Se a variável for essencial, o procedimento deve ser requalificado e revalidado.

Recomenda-se que o instrumento de ultrassom usado para a técnica ToFD seja calibrado de acordo com a NBR 15922, e os cabeçotes de ultrassom conforme NBR 16138, e realizados por laboratórios que atendem aos requisitos apresentados na NBR ISO/IEC 17025. Qualquer reparo ou manutenção no sistema de medição implica a necessidade de nova calibração, independentemente da periodicidade estabelecida. O item do sistema de medição que deve ser periodicamente calibrado e o bloco padrão deve ser realizado por laboratórios que atendem aos requisitos apresentados na NBR ISO/IEC 17025.

A periodicidade de calibração do bloco padrão depende da frequência e condições de utilização. Recomenda-se que a periodicidade de calibração atenda ao especificado na NBR ISO 10012. Qualquer avaria observada no bloco padrão implica na necessidade de nova calibração, independente da periodicidade estabelecida. O instrumento deve ser capaz de selecionar uma parte adequada da base de tempo dentro do qual os A-scan são digitalizados. Para selecionar esta parte adequada, deve-se ter uma janela com posição e comprimento ajustáveis.

O início da janela deve ser ajustável entre 0 μs e 200 μs do pulso transmissor e o comprimento da janela deve ser ajustável entre 5 μs e 100 μs. Desta forma, os sinais apropriados (onda lateral ou creeping, sinal do eco de fundo, um ou mais sinais de conversão de modo) podem ser selecionados para serem digitalizados e exibidos. Os sinais não retificados devem ser digitalizados com uma taxa de amostragem de pelo menos quatro vezes a frequência nominal do cabeçote.

A largura de banda do receptor deve no mínimo ter intervalo entre 0,5 e 2 vezes a frequência nominal do cabeçote a – 6 dB, a menos que certas classes de produtos e materiais específicos exijam maior largura de banda. Filtros de banda apropriados podem ser usados. O pulso de transmissão pode ser unipolar ou bipolar. O tempo de subida não pode exceder 0,25 vez o período correspondente a frequência nominal do cabeçote.

Para aplicações gerais, as combinações de instrumentos de medição de ultrassom e mecanismos de varredura (escaneres) devem ser capazes de digitalizar sinais com uma taxa de pelo menos um A‑scan por 0,5 mm de comprimento escaneado. Para atingir este objetivo, a aquisição de dados e o movimento do mecanismo de varredura (escaner) devem estar sincronizados. Os A-scans digitalizados devem ser exibidos relacionando a amplitude aos níveis de cinza, plotados sequencialmente para formar uma imagem B-scan. O número de escalas deve ser de pelo menos 256 tons de cinza.

O instrumento de medição deve ser capaz de armazenar todas as imagens A-Scan na sua forma original, isto e, sem filtros de qualquer natureza, em uma mídia de armazenamento. Para fins de relatório, o respectivo software deve ser capaz de gerar cópias em papel das imagens A‑scan e B-scan. O instrumento de medição deve ser capaz de realizar uma média de sinal (averaging).

Para atingir as configurações de ganho relativamente alto, necessárias para sinais típicos de ToFD, pode ser usado pré-amplificador, que deve ter uma resposta plana sobre a faixa de frequências de interesse. Este pré-amplificador deve ser posicionado tão próximo quanto possível do cabeçote receptor. Os cabeçotes ultrassônicos utilizados na tecnica de ToFD devem atender pelo menos aos seguintes requisitos: número de cabeçotes: 2 (transmissor e receptor); modo de onda: ondas longitudinais.

O uso de cabeçotes de ondas transversais pode ser empregado em situações especificas de forma a completar as longitudinais. Ambos os cabeçotes devem ter a mesma frequência nominal. A frequência central deve estar dentro de uma tolerância de ± 10% da frequência nominal e o comprimento de pulso tanto da onda lateral quanto do eco de fundo não pode exceder dois ciclos, medidos a 10 % do pico da amplitude (queda de 20 dB).

A distância entre a superfície de ensaio e a superfície de contato do cabeçote não pode exceder 0,5 mm. Para superfícies cilíndricas e esféricas, este requisito e atendido com a seguinte equação: D ≥ 15 a, onde D é o diâmetro do componente, expresso em milímetros (mm); a é a dimensão da sapata do cabeçote na direção do ensaio, expressa em milímetros (mm). Se o requisito especificado não for atendido, uma sapata deve ser adaptada a superfície de contato do cabeçote e a sensibilidade e a escala devem ser ajustadas adequadamente.

Os mecanismos de varredura devem ser usados para manter uma distância constante e alinhamento entre os pontos de saída dos cabeçotes. Uma função adicional dos mecanismos de varredura e fornecer aos instrumentos de ultrassom informações de posição dos cabeçotes, sendo capaz de gerar a posição relacionada as imagens. Informações sobre a posição dos cabeçotes podem ser fornecidas por meio de, por exemplo, codificadores incrementais magnéticos ou óticos ou potenciômetros.

Os mecanismos de varredura no ToFD podem ser motorizados ou acionados manualmente. Eles devem ser guiados de maneira adequada, como cinta de aço, cinto, sistemas de rastreamento automático, rodas guiadas etc. A exatidão na orientação em relação ao centro de uma linha de referência, por exemplo, a linha de centro da solda, deve ser mantida dentro de um erro máximo admissível de ± 10% da separação entre os pontos de saída dos cabeçotes.

As inspeções devem ser realizadas de acordo com o procedimento qualificado, que deve conter o plano de varredura a ser utilizado, conforme as especificações técnicas aplicáveis. Para inspeções de fabricação, o volume de ensaio e definido como a zona que inclui solda e metal de base por pelo menos 10 mm de cada lado da solda, ou a largura da zona afetada pelo calor, o que for maior. Em todos os casos, o ensaio deve cobrir o volume total da região de interesse.

Para inspeção em operação, o volume de ensaio pode ser direcionado para áreas de interesse especifico. Os cabeçotes devem ser ajustados para garantir uma cobertura adequada e condições ideais para iniciar e detectar os sinais difratados na área de interesse. Para soldas de topo de geometria simples, onde a largura da solda e estreita na superfície oposta à da varredura, o ensaio deve ser realizado com uma ou mais configurações, dependendo da espessura da parede.

Deve-se tomar cuidado para escolher as combinações de parâmetros adequadas. EXEMPLO Na faixa de espessura de 15 mm a 35 mm com frequência de 10 MHz, um feixe com angulo de 70° e um cristal de tamanho de 3 mm pode ser apropriado para uma espessura de 16 mm, mas não para 32 mm.

Os ensaios em solos

Há vários ensaios em solos e um deles é a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas.

A NBR 16843 de 05/2020 – Solo — Determinação do índice de vazios mínimo de solos não coesivos especifica o método de determinação do índice de vazios mínimo (mín.) de solos granulares, não coesivos, contendo no máximo 12 % (em massa) de material que passa na peneira de 0,075 mm. Esta norma também especifica o método para o cálculo de compacidade relativa correspondente a um determinado índice de vazio mínimo do material ensaiado.

A NBR 16853 de 05/2020 – Solo — Ensaio de adensamento unidimensional especifica o método de ensaio para determinação das propriedades de adensamento do solo, caracterizadas pela velocidade e magnitude das deformações, quando o solo é lateralmente confinado e axialmente carregado e drenado. A NBR 16867 de 05/2020 – Solo – Determinação da massa específica aparente de amostras indeformadas — Método da balança hidrostática especifica um método para determinação da massa específica aparente de amostras indeformadas de solo, com emprego da balança hidrostática. Esta norma é aplicável somente a materiais que possam ser adequadamente talhados.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o método do enchimento com água para a determinação do índice de vazios?

Como deve ser a mesa vibratória para realizar peneiramento para a determinação do índice de vazios?

Como deve ser os corpos de prova para determinação das propriedades de adensamento do solo?

Como deve ser feito a montagem do corpo de prova na célula de adensamento?

Como fazer a determinação da massa específica aparente da parafina?

Para a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas. Nesta norma, o índice de vazios mínimo absoluto não é necessariamente obtido.

Para os solos não coesivos, os índices de vazios máximo e mínimo constituem-se nos parâmetros básicos para avaliação do estado de compacidade. Para tanto, a compacidade relativa, como especificada em 7.4, fornece uma indicação do estado de compacidade de uma determinada massa de solo, seja uma ocorrência natural, seja construída pelo homem. No entanto, as propriedades de engenharia, como a resistência ao cisalhamento, compressibilidade e permeabilidade de um dado material, compactado por métodos distintos, para um mesmo estado de compacidade, podem variar consideravelmente.

Por outro lado, solos distintos, no mesmo estado de compacidade, podem apresentar diferenças ainda mais acentuadas dessas propriedades, dependendo da granulometria, formato dos grãos, etc. Por esse motivo, discernimento considerável deve ser usado ao se relacionarem as propriedades de engenharia dos solos com o estado de compacidade. A amplitude dupla de vibração vertical tem efeito significativo no índice de vazios obtido. Para uma mesa vibratória e molde específicos, o menor índice de vazios de um dado material pode ser obtido para uma amplitude dupla diferente das especificadas nesta norma, ou seja, o índice de vazios pode inicialmente diminuir com o aumento da amplitude dupla de vibração, atingir um mínimo e então aumentar com o incremento da amplitude dupla.

Portanto, a relação entre o menor índice de vazios e a amplitude dupla de vibração ótima pode variar com o tipo de solo. A aparelhagem necessária para a execução do ensaio é a seguinte: estufa capaz de manter a temperatura entre 105 °C e 110 °C; peneiras de 75 mm, 38 mm, 19 mm, 9,5 mm, 4,8 mm e 0,075 mm, de acordo com as NBR NM ISO 2395 e NBR NM ISO 3310-1; balanças que permitam pesar nominalmente 40 kg, 10 kg e 1,5 kg, com precisões de 5 g, 1g e 0,1 g, respectivamente; outros equipamentos, como bandeja metálica, conchas metálicas, pá, escova de cerdas macias, cronômetro com indicação de minutos e segundos, e paquímetro que possibilite leituras de no mínimo 30 mm, com precisão de 0,2 mm.

O conjunto para a realização do ensaio pelo método A deve conter o seguinte: moldes cilíndricos metálicos padrões, com volumes nominais de 2.830 cm³ e 14.200 cm³; tubo-guia com dispositivo de fixação ao molde, para cada tamanho de molde. Para facilitar a centralização do tubo-guia acima do molde, ele deve ser dotado de três dispositivos de fixação. Incluir um disco-base da sobrecarga, para cada tamanho de molde, perfurado e dotado de três pinos para centralização da sobrecarga; sobrecarga de seção circular dotada de alça para cada tamanho de molde.

A massa total do disco-base e sobrecarga deve ser suficiente para a aplicação de uma pressão de (13,8 ± 0,1) kPa. Incorporar uma alça dotada de rosca para colocação e retirada do disco-base; suporte encaixável no guia do molde, ao qual fica acoplado um deflectômetro, para medir a diferença de elevação entre o topo do molde e o disco-base da sobrecarga, após a densificação. O deflectômetro deve possibilitar medições de no mínimo 50 mm, com resoluções de 0,02 mm, devendo ser instalado de modo que a sua haste fique paralela ao eixo barra de calibração metálica (opcional), com largura de aproximadamente 7 cm, altura de 0,5 cm e comprimento adequado.

Incluir uma mesa vibratória eletromagnética de aço, com vibração vertical acionada por um vibrador eletromagnético do tipo impacto sólido, com massa maior que 45 kg. A mesa deve ser instalada em ambiente acusticamente isolado do restante do laboratório, sobre um piso ou laje de concreto, com massa de 500 kg, de modo que vibrações excessivas não sejam transmitidas a outras áreas onde estejam sendo realizados outros ensaios. O tampo da mesa deve ter dimensões adequadas, que confiram rigidez suficiente, de forma que o conjunto molde + tubo-guia + sobrecarga fique firmemente fixado e rigidamente apoiado durante o ensaio, devendo por este motivo ser dotado de dispositivo de fixação ao conjunto mencionado.

O conjunto para a realização do ensaio pelo método B deve conter o seguinte: cilindro de Proctor, com volume nominal de 1.000 cm³, de acordo com a NBR 7182, soldado à base, de modo que o conjunto resulte estanque. A base do molde deve ser mais espessa que a normalmente utilizada no ensaio de compactação, além de ser dotada de dispositivo de fixação à mesa vibratória. Deve-se dispor de um tubo-guia, constituído por outro cilindro de Proctor solidário ao colarinho; disco-base da sobrecarga, perfurado e dotado de dispositivo para centralização da sobrecarga; sobrecarga de seção circular dotada de alça. A massa total do disco-base e da sobrecarga deve ser suficiente para aplicação de uma pressão de (13,8 ± 0,1) kPa.

Deve-se incluir uma mesa vibratória, do tipo utilizado para realizar o peneiramento de amostras na análise granulométrica. Este método de ensaio para determinação das propriedades de adensamento do solo requer que um elemento de solo, mantido lateralmente confinado, seja axialmente carregado em incrementos, com pressão mantida constante em cada incremento, até que todo o excesso de pressão na água dos poros tenha sido dissipado. Durante o processo de compressão, medidas de variação de altura da amostra são feitas, e estes dados são usados no cálculo do parâmetro que descreve a relação entre a pressão efetiva e o índice de vazios, bem como a evolução das deformações em função do tempo.

Os dados de ensaio de adensamento podem ser utilizados na estimativa, tanto da magnitude dos recalques totais e diferenciais de uma estrutura ou de um aterro, como da velocidade desses recalques. Como aparelhagem, usar um sistema de aplicação de carga (prensa de adensamento), que permite a aplicação e manutenção das cargas verticais especificadas, ao longo do período necessário de tempo, e com uma precisão de 0,5% da carga aplicada. Quando da aplicação de um incremento de carga, a transferência para o corpo de prova deve ocorrer em um intervalo de tempo não superior a 2 s e sem impacto significativo.

Usar uma célula de adensamento apropriada para conter o corpo de prova e que proporcione meios para aplicação de cargas verticais, medida da variação da altura do corpo de prova e sua eventual submersão. Esta célula consiste em uma base rígida, um anel para manter o corpo de prova, pedras porosas e um cabeçote rígido de carregamento. O anel pode ser do tipo fixo (indeslocável em relação à base rígida) ou flutuante (deslocável em relação à base, sendo suportado pelo atrito lateral desenvolvido entre o corpo de prova e o anel), conforme os esquemas indicados na figura abaixo.

Incluir um anel de adensamento, conforme a seguir: o diâmetro interno do anel deve ser no mínimo de 50 mm (preferencialmente 100 mm) e, no caso de amostras extrudadas e talhadas, no mínimo 5 mm (preferencialmente 10 mm) menor do que o diâmetro interno do tubo de amostragem; a altura do anel deve ser no mínimo de 13 mm e não inferior a dez vezes o máximo diâmetro de partícula do corpo de prova; a relação entre o diâmetro interno e a altura do anel deve ser no mínimo de 2,5 (preferencialmente 3,0); a rigidez do anel deve ser tal que, sob a condição de pressão hidrostática igual à máxima pressão axial a ser aplicada ao corpo de prova, a variação do diâmetro do anel não exceda 0,03%; o anel de adensamento deve ser feito de material não corrosível (preferencialmente aço inoxidável), e sua superfície interna deve ser altamente polida ou recoberta com material de baixo atrito, por exemplo, politetrafluoroetileno (PTFE).

Recomenda-se, antes do ensaio, untar a superfície interna do anel com graxa de silicone. O anel fixo permite a execução de ensaios de permeabilidade, junto com o ensaio de adensamento. Quando o solo a ser ensaiado se constituir de material muito mole, não se utiliza anel flutuante. Usar pedras porosas, conforme a seguir. As pedras porosas devem ser confeccionadas com material quimicamente inerte em relação ao solo e à água dos poros. Devem ser constituídas de poros com dimensões suficientemente pequenas, de forma a se evitar a intrusão de partículas de solo.

Se necessário, papel-filtro resistente pode ser utilizado entre o corpo de prova e a pedra porosa para impedir a infiltração de solo e facilitar a limpeza posterior da pedra. O conjunto pedra porosa e papel-filtro deve apresentar permeabilidade suficientemente alta, de modo a não retardar a drenagem do corpo de prova. As pedras porosas devem ser uniformes e estar sempre limpas e livres de trincas.

A adequabilidade de pedra porosa sob o ponto de vista de permeabilidade e limpeza pode ser comprovada por meio de ensaios expeditos, submetendo-a a uma carga hidráulica da ordem de 10 cm e observando-se o gotejamento em sua face inferior. o diâmetro da pedra porosa do topo deve ser 0,2 mm a 0,5 mm menor que o diâmetro interno do anel. Se for utilizado anel flutuante, a pedra de base deve apresentar o mesmo diâmetro da pedra do topo. Recomenda-se a utilização de pedras biseladas, com a face de maior diâmetro em contato com o solo. As pedras porosas devem ser espessas o suficiente para se evitar a sua quebra, sendo de topo, na sua face superior, protegida por um disco metálico (cabeçote) rígido, resistente à corrosão e com diâmetro igual ao da pedra.

Já a aparelhagem necessária para o ensaio para determinação da massa específica aparente de amostras indeformadas de solo é a seguinte: estufa capaz de manter a temperatura de 60 °C a 65 °C e de 105 °C a 110 °C; balança que permita pesar nominalmente 1,5 kg, com precisão de 0,1 g e sensibilidade compatível; moldura que possa ser acoplada ao prato da balança, sendo que balanças que disponham de dispositivo adequado para realização deste ensaio prescindem de tal moldura. Incluir um recipiente contendo água, de dimensões adequadas, para imersão do corpo de prova; fogareiro ou aquecedor para derreter a parafina; linha comum, ou preferencialmente de náilon, e utensílios como panela, faca, espátula, pincel, etc.; parafina isenta de impurezas e com massa específica aparente, no estado sólido, conhecida e verificada a cada mudança de lote.

A limpeza dos implantes para cirurgia

Entenda os requisitos e as orientações para o estado de limpeza de implantes para cirurgia e métodos de ensaio para a validação do processo de limpeza, que são baseados em um processo de gestão de risco. Aplica-se aos processos de limpeza conduzidos em múltiplas etapas de limpeza, ao longo do processo de fabricação, ou em uma única etapa, antes de ser protegido contra contaminações.

A NBR 16862 de 05/2020 – Implantes para cirurgia — Requisitos e orientações gerais para o estado de limpeza e para validação do processo de limpeza estabelece requisitos e apresenta orientações para o estado de limpeza de implantes para cirurgia e métodos de ensaio para a validação do processo de limpeza, que são baseados em um processo de gestão de risco. Aplica-se aos processos de limpeza conduzidos em múltiplas etapas de limpeza, ao longo do processo de fabricação, ou em uma única etapa, antes de ser protegido contra contaminações. Este documento é aplicável à limpeza em processo e limpeza final. Não especifica os requisitos para processos de embalagem ou esterilização, que são cobertos por outras normas. Este documento não é aplicável aos implantes com componentes líquidos e gasosos e aos processos de limpeza conduzidos pelo usuário ou sob responsabilidade do usuário.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser executado o projeto do processo de limpeza?

Como deve ser a validação do processo de limpeza?

Como deve ser feita a amostragem do processo?

Como deve ser feita a limpeza contra a endotoxina bacteriana?

A biocompatibilidade de um implante está relacionada não apenas aos materiais que o constituem, mas também aos contaminantes presentes na sua superfície. Assim, o estado de limpeza dos implantes é uma característica essencial tanto para a garantia da biocompatibilidade, como para assegurar uma carga microbiológica apropriada requerida pelo processo de esterilização.

O estado de limpeza de um implante pode ser assegurado tanto pela fabricação de produtos em ambientes limpos associados a processos limpos (processamento limpo), como por um efetivo processo de limpeza, destinado tanto a eliminar resíduos oriundos dos materiais de fabricação e do manuseio quanto a controlar o nível de contaminação biológica, de modo a atender aos requisitos estabelecidos para a embalagem dos produtos. O processo de limpeza pode ser conduzido em múltiplas etapas de limpeza durante o processo de fabricação, incluindo uma etapa final antes da embalagem (processamento com limpezas em processo); ou, exclusivamente, por uma única etapa de limpeza, antes da embalagem (processamento com limpeza ao final).

Como o estado de limpeza é um fator-chave para a garantia da biocompatibilidade, é essencial que o projeto do processo de limpeza assegure a remoção de contaminações provenientes das diversas etapas de fabricação, assegurando também que os métodos de limpeza empregados não interajam, não prejudiquem a biocompatibilidade dos materiais e não afetem o desempenho do implante, e que os agentes de limpeza utilizados sejam eficientemente removidos, de modo a não contaminarem o implante. Consequentemente, é necessário que o processo de limpeza seja estabelecido e validado antes da avaliação biológica do implante.

Independentemente do processo de limpeza empregado, dificilmente toda a contaminação superficial do implante é removida. Resíduos de contaminantes exógenos e endógenos ao processo de limpeza são admissíveis, desde que em níveis seguros e não tóxicos. O objetivo da validação de limpeza é verificar a eficácia do processo de limpeza no que tange à capacidade de remover contaminantes químicos, físicos e físico-químicos, e de reduzir os contaminantes microbianos a níveis tão baixos quanto possível.

A avaliação e validação de métodos de limpeza são tarefas que requerem um conhecimento exaustivo do processo de fabricação do implante, a fim de identificar tanto potenciais contaminantes, quanto possíveis interações entre o processo de limpeza, os materiais do implante e a ambiência do acondicionamento do implante (especialmente para os implantes comercializados na condição estéril, a atmosfera entre a etapa de limpeza final e a etapa de embalagem pode ter influência sobre a limpeza do implante). Independentemente da forma de fornecimento (estéril ou para ser esterilizado pelo usuário), o implante limpo é um pré-requisito para a validação dos processos de esterilização aplicáveis.

Esta validação exige que a contaminação microbiológica inicial esteja sob controle. Além disto, é importante que a contaminação microbiológica inicial seja a mais baixa possível para reduzir esforços na fase de esterilização. Como consequência, é essencial que a limpeza que precede a embalagem do implante (limpeza final) assegure o controle da contaminação microbiológica antes da esterilização. Este documento pode envolver o uso de materiais, operações e equipamentos de risco, porém não trata de questões, caso existam, relacionadas à segurança associadas ao seu uso.

É responsabilidade do usuário estabelecer práticas de saúde e de segurança adequadas e determinar a aplicabilidade de exigências a regulamentos antes do uso. A avaliação do estado de limpeza e a validação do processo de limpeza de implantes ortopédicos de acordo com este Documento atendem aos requisitos da ISO 19227:2018. Em um projeto de limpeza, o processo de limpeza abrange o conjunto de tecnologias requerido para assegurar que as especificações de limpeza estabelecidas para um implante sejam atingidas.

O processo de limpeza abrange o conjunto de atividades do processo de fabricação de um implante que, necessariamente, se encerra imediatamente antes do processo de embalagem. A limpeza pode ser conduzida em etapa única ou em múltiplas etapas. Quando conduzida em etapa única, caracteriza-se como um processo de manufatura com a limpeza do implante conduzida exclusivamente ao final do processo fabril. Quando conduzida em múltiplas etapas, as etapas de limpeza estão associadas a uma ou mais etapas do processo de fabricação (limpeza em processo), necessariamente, seguidas por uma etapa final (limpeza final), conduzida após todas as etapas de fabricação prévias ao processo de embalagem do implante.

EXEMPLO No processo de fabricação com limpezas em processo, se um implante for fabricado de acordo com as seguintes etapas de fabricação: usinagem, “limpeza 1”, controle dimensional, polimento, “limpeza 2”, marcação a laser, inspeção, “limpeza 3”, embalagem em sala limpa e esterilização, então as etapas de fabricação “limpeza 1” e “limpeza 2” são caracterizadas como limpezas em processo (ver 3.10), e a etapa de fabricação “limpeza 3” é caracterizada como a etapa da limpeza final. No caso de inexistirem as etapas de fabricação “limpeza 1” e “limpeza 2”, a etapa de fabricação identificada como “limpeza 3”, constitui a etapa única de limpeza do processo de fabricação.

O conceito de família de limpeza de implante está associado exclusivamente ao processo de limpeza e à capacidade de os elementos da família serem limpos. Assim, a caracterização de uma família de limpeza não depende do tipo de implante, nem da natureza ou da quantidade de contaminantes dos implantes antes de serem submetidos ao processo de limpeza. Implantes de diferentes tipos ou de diferentes famílias de implantes podem estar incluídos em uma mesma família de limpeza, desde que possam ser representados pelo espécime de pior caso. A capacidade de um implante ser limpo, também denominada capacidade de limpeza do implante (implant cleanability), não está relacionada à capacidade de um processo efetuar a limpeza, mas intrinsecamente às características do implante e de seus contaminantes.

Neste contexto, a capacidade de limpeza depende de muitos fatores. Associados a cada contaminante, estes fatores incluem a natureza química e quantidade presente. Associados ao implante, estes fatores incluem o material, aspectos geométricos do projeto (por exemplo, a montagem de superfícies e as presenças de furos cegos e/ou furos longos de pequenos diâmetros dificultam e prejudicam a capacidade de limpeza), tipo, características e morfologia das superfícies, porosidades etc.

As atividades descritas neste documento devem ser conduzidas dentro de um sistema de gestão da qualidade formal. Um sistema de gestão da qualidade possível e amplamente empregado para produtos para a saúde está estabelecido na NBR ISO 13485. O gerenciamento de risco (risk management) é um processo iterativo que deve ser conduzido durante o projeto e a validação do processo de limpeza e com o uso contínuo do processo de limpeza.

A avaliação de risco no projeto do processo de limpeza e a gestão de risco do processo de limpeza devem ser realizadas de acordo com a NBR ISO 14971. Como parte do gerenciamento de riscos, o processo de limpeza deve ser avaliado quanto às medidas necessárias para atingir um nível pretendido de estado de limpeza (por exemplo, produção em um ambiente controlado ou diferentes métodos de limpeza) e quanto à sua integração na sequência de etapas de fabricação.

Um processo de limpeza é incluído no processo de fabricação de um implante, se os perigos (harzards) relacionados a possíveis contaminantes, por exemplo, provenientes dos passos anteriores de fabricação, forem identificados. Consequentemente, o projeto e a validação de um processo de limpeza devem ser conduzidos dentro de um sistema de gerenciamento de risco. Os perigos relacionados à limpeza devem ser levados em consideração durante o projeto do processo de limpeza e ao estabelecer os requisitos de projeto para as limpezas em processo críticas e para a limpeza final.

O Anexo A identifica alguns aspectos do processo de limpeza que podem ser considerados fontes de dano (harm). A avaliação de risco dos perigos relacionados à limpeza deve ser realizada após o processo de limpeza ser projetado e deve levar em conta as características do implante, as etapas de fabricação antes da limpeza, as características do processo de limpeza e o ambiente implementado após a limpeza final.

Os requisitos do estado de limpeza devem ser estabelecidos (ver Seção 5) levando em conta os contaminantes que se pretende que sejam removidos por qualquer etapa de limpeza, em processo ou final, bem como os contaminantes adicionais introduzidos pelo processo de limpeza em si. Pelo menos as seguintes questões devem ser abordadas durante uma avaliação de risco: Quais são os potenciais contaminantes em contato com os implantes durante as etapas de fabricação que precedem cada limpeza em processo crítica ou a limpeza final? Quais são os riscos associados a estes contaminantes? Quais são as interações potenciais entre os contaminantes e o material do implante? Há limpeza em processo crítica prévia ou outras operações para remover estes contaminantes potenciais da superfície? Quais são os possíveis contaminantes trazidos pelas etapas de limpeza?

Reconhece-se que não há um conjunto de perguntas que abranja todos os implantes. Esta lista não é exaustiva, e questões adicionais podem precisar ser abordadas durante a avaliação de risco. Com base nos resultados da avaliação de risco, pelo menos as seguintes questões adicionais devem ser abordadas alguns aspectos. Os métodos de ensaio selecionados para a validação do processo de limpeza são capazes de avaliar o nível dos possíveis contaminantes a serem limitados nos implantes, levando em consideração o limite de detecção, o limite de quantificação e a exatidão do método?

Quais são os critérios de aceitação para cada família de limpeza? Após a validação, quais requisitos de controle de processo são necessários para manter a limpeza durante a fabricação? Quais as mudanças no processo requerem a revalidação de eficácia da limpeza do produto? Antes de avaliar os desempenhos de um processo de limpeza em processo crítica ou de um processo de limpeza final, possíveis contaminantes devem ser identificados, métodos de ensaio apropriados devem ser determinados e critérios de aceitação devem ser estabelecidos como parte de um processo de gerenciamento de risco.

Com base nos critérios de aceitação para o estado de limpeza (ver a Seção 6), a validação de limpeza pode ser realizada. A figura abaixo ilustra a relação entre projeto de limpeza, validação e gerenciamento de risco. As condições da superfície do implante estabelecidas pelo processo de limpeza devem ser mantidas até o implante estar embalado e, assim, definitivamente protegido contra contaminações, de modo que o estado de limpeza exigido para o implante esteja assegurado no produto liberado para uso clínico.

Dessa forma, a análise de risco do estado final de limpeza do implante deve considerar o processo de limpeza, bem como todas as demais etapas de trabalho subsequentes que possam afetar essa condição. É importante que seja observada a interdependência do gerenciamento de risco do projeto de limpeza e da validação do processo de limpeza com a avaliação biológica do implante e com a validação da esterilização do implante. Como a contaminação microbiológica e a avaliação biológica podem ser influenciadas pela embalagem do implante, é necessário considerar, também, a validação da embalagem no processo de validação do projeto de limpeza.

Os ensaios em tubulações de PVC-O (cloreto de polivinila não plastificado orientado)

Conheça os requisitos dos sistemas de tubulações de PVC-O (cloreto de polivinila não plastificado orientado) com ponta e bolsa de junta elástica integrada, indicados para uso enterrado, para adutoras ou redes de distribuição, sistemas pressurizados de esgotos e demais sistemas de transporte de água.

A NBR 15750 de 04/2020 – Tubulações de PVC-O (cloreto de polivinila não plastificado orientado) para sistemas de transporte de água ou esgoto sob pressão — Requisitos e métodos de ensaios especifica os requisitos de sistemas de tubulações de PVC-O (cloreto de polivinila não plastificado orientado) com ponta e bolsa de junta elástica integrada, indicados para uso enterrado, para adutoras ou redes de distribuição, sistemas pressurizados de esgotos e demais sistemas de transporte de água. As conexões a serem empregadas com tubos de PVC-O são de ferro fundido dúctil, fabricadas de acordo com a NBR 7675. O sistema de tubulação (tubos, conexões e juntas), de acordo com esta norma, é indicado para o transporte de água bruta, potável ou servida sob pressão e sob temperaturas que não excedam a 45 °C, especialmente naquelas aplicações onde o desempenho frente às cargas de impacto ou oscilações de pressão é necessário, para uma pressão hidrostática interna de até 2,5 MPa. Em sistemas enterrados de esgotamento pressurizado, recomenda-se a utilização de um dispositivo que minimize a ocorrência de oscilações da pressurização, o que não elimina a ocorrência de transientes hidráulicos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os símbolos e abreviaturas usados nessa norma?

Como deve ser baseada a tensão de projeto?

Como realizar a determinação da pressão de serviço permissível (PFA) para temperaturas até 45°C?

Qual deve ser o aspecto visual dos tubos?

A orientação molecular de termoplásticos resulta em melhoria das propriedades físicas e mecânicas. A orientação é levada a efeito em temperaturas bem acima da temperatura de transição vítrea. A orientação do material do tubo de PVC rígido (não plastificado, PVC-U) pode ser induzida por diferentes processos.

Um dos processos é denominado fora de linha ou em batch, onde um tubo espesso (pré-forma) é extrudado e condicionado em um molde tubular à temperatura desejada e, por meio de dispositivo mecânico, a pré-forma é expandida, orientando as moléculas na direção axial e circunferencial. Uma segunda opção de processo é denominada em linha, onde um tubo espesso (pré-forma), diretamente após o processo de extrusão, é condicionado em linha à temperatura de orientação molecular e, no qual, por meio de dispositivo mecânico, a pré-forma é expandida, orientando as moléculas na direção axial e circunferencial.

Dependendo do grau de orientação induzido no processo de produção, obtêm-se valores de MRS diferenciados. Após quaisquer dos processos de orientação, o tubo é resfriado rapidamente à temperatura ambiente, de forma a estabilizar a estrutura molecular orientada. A orientação molecular cria uma estrutura lamelar no material da parede do tubo. Esta estrutura proporciona resistência à fratura frágil oriunda de pequenas fendas ou arranhões na superfície da parede do tubo.

O PVC-O pode ser considerado altamente resistente ao entalhe. Devido à morfologia da orientação do material do tubo, não há risco da propagação rápida de eventual fissura. Também são resultados do processo de orientação molecular a melhoria da resistência à tensão circunferencial e da resistência ao impacto.

A estrutura deste tubo orientado é estável até a temperatura de transição vítrea (em torno de 75 °C). Acima dessa temperatura, o material tem uma fase com mobilidade molecular, com característica viscoelástica (borrachosa), e seu acondicionamento nessas condições propicia ao tubo retornar aproximadamente às suas dimensões originais de extrusão. O tubo deve ser fabricado com resina e composto de PVC conforme indicado em seguida. O valor K da resina de PVC empregada na fabricação dos tubos deve ser de no mínimo 65, devendo ser medido de acordo com a NBR 13610. O composto de PVC, empregado na fabricação dos tubos de PVC-O, deve ser fabricado na cor branca, permitindo-se nuances devidas às diferenças naturais de cor das matérias-primas.

O composto de PVC deve estar aditivado somente com produtos necessários para a sua transformação e para a utilização dos tubos de acordo com esta norma. Não é permitido o uso de composto reprocessado ou reciclado na fabricação do tubo. Não é permitida a utilização de compostos de chumbo como estabilizantes térmicos na fabricação de tubos de PVC.

O pigmento deve estar total e adequadamente disperso no composto a ser empregado na fabricação dos tubos. O pigmento e o sistema de aditivação devem minimizar as alterações de cor e das propriedades dos tubos, durante a sua exposição às intempéries, no manuseio e na estocagem em obra. O composto utilizado na fabricação dos tubos deve estar de acordo com os requisitos especificados na norma.

Estes requisitos devem ser reavaliados sempre que houver uma alteração do produto (projeto, matérias-primas e/ou escopo de aplicação). A substituição de um fornecedor de matéria-prima ou do tipo de estabilizante térmico não constitui uma alteração do produto, desde que atenda aos requisitos indicados na tabela abaixo. Para definir a condição de reavaliação destes requisitos, são estabelecidas na tabela abaixo as tolerâncias quanto ao valor K da resina, aos teores de estabilizante térmico e ao teor de cinzas do composto. Os valores “X” devem ser definidos pelo fabricante em seu controle de qualidade. Se qualquer um destes níveis exceder a tolerância, os requisitos estabelecidos devem ser reavaliados.

Eventual teor de chumbo encontrado nos tubos de PVC-O não pode ser superior a 0,1%. O ensaio deve ser realizado por espectrometria de fluorescência de raios X, conforme EN 62321, ou por outra metodologia validada. O composto de PVC-U empregado na fabricação dos tubos de PVC-O deve preservar o padrão de potabilidade da água no interior da tubulação, sem transmitir sabor e odor, e não pode provocar turvamento ou coloração à água. O composto, bem como as concentrações máximas dos seus aditivos, deve estar em conformidade com a legislação em vigor, de maneira a não transmitir para a água potável, qualquer elemento que possa alterar suas características, tornando-a imprópria para consumo humano.

Os tubos de PVC-O devem ter sua inocuidade avaliada conforme a NBR 8219 e os limites aplicados a todas as extrações devem estar em conformidade com a legislação vigente. Caso ocorra uma alteração de natureza química de um dos componentes do composto, deve ser realizado um novo ensaio de efeito sobre a água. Este ensaio não tem como objetivo avaliar a potabilidade da água para consumo humano, sendo utilizado para atender a regulamentações específicas.

O composto empregado na fabricação dos tubos de PVC-O deve ter ponto de amolecimento Vicat maior ou igual a 80 °C. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 82. O composto empregado na fabricação dos tubos de PVC-O deve ter densidade na faixa de 1,35 g/cm³ a 1,50 g/cm³, medida à temperatura de 20+3-2 °C. O valor especificado pelo fabricante do composto, em relação ao resultado do ensaio, pode ter variação máxima de 0,05 g/cm³.

O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 83. O teor cinzas dos tubos de PVC-O não pode ser superior a 5%. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 84, Método A, à temperatura de (1050 ± 50) °C. O tubo de PVC-O deve apresentar MRS (minimum required strength) de 45 MPa ou 50 Mpa (correspondentes às classes 450 e 500, respectivamente), conforme procedimentos do Anexo A.

O tubo de PVC-O deve ser classificado de acordo com o estabelecido na ISO 12162, ou seja, sua tensão circunferencial a 50 anos à temperatura de 20 °C (MRS – Minimum Required Strength) deve ser definida pelo “Método de Extrapolação Padrão ISO 9080”, por meio da determinação da sua tensão hidrostática de longa duração, com base em 97,5 % LPL (lower prediction limit). O fabricante do tubo deve apresentar o certificado que comprove a realização deste ensaio, no qual devem constar a curva de regressão e demais características do tubo de PVC-O, conforme tabela acima, e apresentar os graus de orientação axial e circunferencial de amostras representativas do lote empregado para obtenção da curva de regressão.

A resistência à pressão hidrostática interna deve ser verificada por meio da realização de ensaios de curta e média duração, utilizando-se a tensão induzida obtida a partir da análise dos dados da curva de regressão, conforme ISO 9080. As tensões mínimas devem ser tomadas para períodos de tempo de 10 h e de 1.000 h, à temperatura de 20 °C, com base em 97,5 % LPL. O nível de tensão mínimo para o período de tempo de 1 000 h à temperatura de 60°C deve ser tomado a partir da curva de regressão obtida a 60 °C, conforme a ISO 9080, respeitando-se 97,5 % LPL. Na falta deste dado, um valor de 0,625 do MRS deve ser adotado como nível de tensão mínimo.

Os valores das variações axial e circunferencial, obtidos no ensaio de determinação do grau de orientação, valor K da resina de PVC e tipo de estabilizante térmico utilizado, devem ser considerados referência para o composto de PVC quando da avaliação do MRS. O coeficiente de segurança dos tubos de PVC-O deve ser maior ou igual a 1,6. A unidade de compra dos tubos é o metro ou a barra.

Quando a unidade for o metro, a quantidade de barras a serem solicitadas deve resultar em números inteiros, arredondados para cima, tomando-se por base o comprimento de montagem do tubo. O documento de compra deve apresentar no mínimo as seguintes informações: diâmetro nominal (DN), pressão nominal (PN) e quantidade total em metros ou barras. O armazenamento, manuseio, transporte e instalação dos tubos de PVC-O devem ser efetuados de acordo com a NBR 9822. As propriedades a seguir devem ser verificadas pelo fabricante, durante o processo de fabricação dos tubos.

As medições de ruído em edificações

Conheça os métodos simplificados para medir em campo: o isolamento a ruído aéreo entre ambientes; o isolamento a ruído de impacto entre pavimentos; o isolamento a ruído aéreo de fachadas; e os níveis de pressão sonora em ambientes produzidos por equipamentos prediais, além dos métodos para medir o nível de pressão sonora de equipamentos prediais de edificações instalados em estruturas de edifícios.

A NBR ISO 10052 de 04/2020 – Acústica — Medições em campo de isolamento a ruído aéreo e de impacto e de sons de equipamentos prediais – Método simplificado especifica métodos simplificados para medir em campo: o isolamento a ruído aéreo entre ambientes; o isolamento a ruído de impacto entre pavimentos; o isolamento a ruído aéreo de fachadas; e os níveis de pressão sonora em ambientes produzidos por equipamentos prediais. Os métodos descritos neste documento são aplicáveis para medições em ambientes residenciais ou em ambientes de tamanho compatível com dimensões de no máximo 150 m³. Para isolamento a ruído aéreo, isolamento a ruído de impacto e isolamento a ruído de fachadas, os métodos fornecem valores que são dependentes da frequência (banda de oitava). Eles podem ser convertidos em um número único, caracterizando os desempenhos acústicos pela aplicação das EN ISO 717-1 e EN ISO 717-2.

Para o som de equipamentos prediais, os resultados de nível de pressão sonora são fornecidos diretamente com ponderação A ou C. Este documento descreve os métodos simplificados de ensaio que podem ser usados para o levantamento das características acústicas do isolamento a ruído aéreo, do isolamento a ruído de impacto e dos níveis de pressão sonora produzidos por equipamentos prediais. Os métodos podem ser utilizados para ensaios de inspeção das propriedades acústicas das edificações. Os métodos não são destinados a serem aplicados para medir propriedades acústicas de elementos construtivos.

A abordagem deste método é simplificar a medição dos níveis de pressão sonora em ambientes usando um sonômetro portátil para a realização da varredura manual com o microfone no espaço do ambiente. A correção do tempo de reverberação pode ser estimada pelo uso de valores tabelados ou ser baseada em medições. As medições de isolamento a ruído aéreo e de impacto são realizadas em bandas de oitava. Para medir o som dos equipamentos de serviço domésticos, os níveis de pressão sonora são registrados na ponderação A ou C.

As medições são realizadas com as condições e ciclos de operação especificados. As condições e os ciclos de operação indicados no Anexo B são utilizados apenas se não forem contrários aos requisitos e regulamentos nacionais. A incerteza de medição dos resultados obtidos usando o método simplificado é, a priori, maior do que a incerteza de medição inerente aos métodos de ensaio correspondentes no nível de engenharia. Os métodos de engenharia para medições em campo de isolamento a ruído aéreo e de impacto são tratados nas EN ISO 140-4 e EN ISO 140-7. Os métodos de engenharia para medições de campo de isolamento a ruído aéreo de fachadas e de elementos de fachadas são tratados na EN ISO 140-5. Um método de engenharia para medição de sons de equipamentos prediais é descrito na EN ISO 16032.

A NBR ISO 16032 de 04/2020 – Acústica — Medição de nível de pressão sonora de equipamentos prediais de edificações – Método de engenharia especifica métodos para medir o nível de pressão sonora de equipamentos prediais de edificações instalados em estruturas de edifícios. Este documento abrange especificamente medições de instalações hidrossanitárias, ventilação mecânica, equipamentos prediais de aquecimento e resfriamento, elevadores, dutos de lixeira, caldeiras, sopradores, bombas e outros equipamentos prediais auxiliares e portas de estacionamento motorizadas, mas também pode ser aplicado a outros equipamentos conectados ou instalados em edifícios. Os métodos são adequados para ambientes com volumes de aproximadamente 300 m³ ou menores, isto é, em residências, hotéis, escolas, escritórios e hospitais.

A norma não é, em geral, destinada a medições em grandes auditórios e salas de concerto. No entanto, as condições de operação e os ciclos de operação do Anexo B podem ser utilizados nestes casos. O nível de pressão sonora de equipamentos prediais é determinado como o nível máximo de pressão sonora ponderada em A e opcionalmente em C ocorrendo durante um ciclo de operação específico do equipamento predial em ensaio, ou como o nível de pressão sonora contínuo equivalente determinado com um tempo de integração específico.

Os valores ponderados em A e em C são calculados a partir de medições em bandas de oitava. Este documento especifica o método de engenharia para a medição de nível de pressão sonora de equipamentos prediais de edificações. Para uso deste documento, as medições são realizadas sob condições de operação e ciclos de operação especificados. Estas condições são fornecidas no Anexo B. As condições de operação e os ciclos de operação indicados no Anexo B são utilizados apenas se não forem contrários aos requisitos e regulamentos nacionais.

Acesse algumas perguntas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a geometria do método da fonte sonora?

Quais são os dados do índice de reverberação?

Como fazer a seleção da posição do canto para o microfone?

Como realizar a correção para o som residual?

Os descritores de grandezas unitárias para ruídos de equipamentos prediais podem ser determinados de acordo com a tabela abaixo deste documento. Ao relatar os resultados da medição, a notação na tabela abaixo deve ser usada. Os diferentes descritores podem ser combinados de acordo, por exemplo, com os requisitos da regulamentação nacional da construção civil. Descritores de grandezas unitárias de isolamento a ruído aéreo e de impacto podem ser obtidos de acordo com a EN ISO 717-1.

A medição de equipamentos prediais deve atender aos requisitos da Seção 6. A fonte sonora para medir o isolamento sonoro entre ambientes deve ser tão omnidirecional quanto possível. Na medição da fachada, o ângulo de abertura da fonte sonora deve cobrir toda a fachada. A direcionalidade da fonte sonora e a distância até à fachada devem ser tais que as variações entre os níveis de pressão sonoros medidos em frente da fachada, para cada banda de frequência de interesse, sejam inferiores a 5 dB. A máquina de impacto deve cumprir os requisitos indicados no Anexo A da EN ISO 140-7:1998.

A exatidão do equipamento de medição do nível de pressão sonora deve cumprir os requisitos das classes de exatidão 0 ou 1 definidas na EN 60651 e EN 60804. O sistema de medição completo, incluindo o microfone, deve ser ajustado antes de cada medição para permitir valores absolutos dos níveis de pressão sonora a serem obtidos.

Para todas as medições, microfones de campo difuso são requeridos. Para sonômetros com microfones de campo livre, devem ser aplicadas correções para campo sonoro difuso.

Os filtros devem cumprir os requisitos definidos na EN 61260. Para os ensaios de avaliação padrão (ensaio de tipo) e de verificação regular, os procedimentos recomendados para sonômetros são fornecidos em OIML R58 e R88, e para os requisitos da máquina de impacto são fornecidos no Anexo A da EN ISO 140-7:1998.

As medições do isolamento a ruído aéreo e do isolamento a ruído de impacto são feitas em bandas de oitava. As medições dos níveis de pressão sonora do equipamento predial são feitas em níveis de pressão sonora ponderada em A ou C. As medições devem ser realizadas com portas e janelas fechadas e persianas normalmente abertas. Os ciclos e as condições de operação para medição do ruído dos equipamentos prediais são fornecidos no Anexo B. Eles devem ser usados somente se não forem contrários aos requisitos e regulamentos nacionais.

Se a diferença entre o nível do sinal e o nível de som residual for inferior a 6 dB, o nível do sinal medido deve ser registrado no relatório. Uma nota deve ser adicionada para dizer que o nível da sala de recepção medido foi afetado pelo som residual e a diferença de nível correspondente foi subestimada ou que o nível de medição (equipamento predial) foi superestimado por uma quantidade desconhecida. Nenhuma correção para som residual deve ser aplicada.

Para medições do isolamento a ruído aéreo entre ambientes e isolamento a ruído aéreo de fachadas utilizando o método da fonte sonora, convém que a potência sonora da fonte seja ajustada de modo a que o nível de pressão sonora na sala de recepção (em cada banda de frequência) seja de pelo menos 6 dB maior que o nível de pressão sonora residual. Isto deve ser verificado ligando e desligando a fonte antes de iniciar a medição.

Ao medir o isolamento a ruído aéreo de fachadas pelo método de ruído de tráfego, o nível de pressão sonora residual na sala de recepção pode não ser facilmente avaliado. Por isto, convém que sejam tomadas medidas para garantir que o nível de pressão sonora na sala de recepção, devido às fontes dentro da edificação, seja o mais baixo possível. Sons residuais excessivos de fontes internas levarão a um valor subestimado de isolamento da fachada. Um comentário deve ser feito no relatório, caso se perceba que isso ocorreu.

O som gerado na sala de emissão deve ser estável e ter um espectro contínuo sobre a faixa de frequências que é medido. Filtros com largura de banda de uma oitava podem ser usados. Ao utilizar ruído de banda larga, o espectro da fonte sonora pode ser configurado para garantir uma relação sinal-ruído adequada em altas frequências na sala de recepção.

Se o invólucro da caixa de som contiver mais do que um alto-falante funcionando simultaneamente, os alto-falantes devem ser acionados em fase. Múltiplas caixas de som podem ser usadas simultaneamente, desde que sejam do mesmo tipo e sejam acionadas no mesmo nível por sinais similares, mas não correlacionados. Colocar a fonte sonora em um canto do ambiente oposto ao elemento de separação.

A distância das paredes deve ser de pelo menos 0,5 m. Se a fonte sonora for um sistema de alto-falante único, convém que ela seja colocada de frente para o canto. Ao ensaiar ambientes na direção vertical, usar o ambiente inferior como sala de emissão. Ao ensaiar ambientes de tamanhos desiguais na direção horizontal, usar o ambiente maior como sala de emissão, a menos que previamente acordado, convém que o ensaio seja na outra direção.

O ruído de impacto deve ser gerado pela máquina de impacto padrão (ver EN ISO 140-7). A máquina de impacto deve ser colocada, no ambiente de fonte, na diagonal, perto do centro do piso. Esta posição única é suficiente, se o piso for isotrópico. No caso de construções de piso anisotrópico (com nervuras, vigas, etc.), adicionar duas posições para que as três posições sejam distribuídas aleatoriamente sobre a área do piso. A linha de conexão dos martelos deve ser orientada a 45° na direção das vigas ou nervuras. Nestes casos, a distância entre a máquina de impacto e a borda do pavimento deve ser de pelo menos 0,5 m.

A medição do nível máximo de pressão sonora de acordo com este documento requer o uso de um analisador de frequência de bandas de oitava em tempo real. O analisador deve estar apto a ler os valores de todos os níveis de pressão sonora de bandas de oitava no momento em que ocorrer o nível máximo de pressão sonora ponderada em A ou em C (durante um ciclo de operação especificado do equipamento predial em ensaio). É importante garantir que o equipamento usado de acordo com este documento atenda ao requisito indicado anteriormente.

Os analisadores usualmente utilizados para medições em acústica de edificações incluem esse recurso. O sistema de medição, incluindo o microfone e o cabo, deve atender aos requisitos de um instrumento de classe 1 especificado na EN 61672-1. Para medições em bandas de oitava, os filtros devem atender aos requisitos dos filtros de classe 1 especificados na EN 61260. No início e no final das medições, verificar a sensibilidade da instrumentação com calibradores sonoros de classe 1, de acordo com a EN 60942.

O nível de pressão sonora do equipamento predial é medido em bandas de oitava no intervalo de frequências de 31,5 Hz/63 Hz a 8.000 Hz, no espectro linear (não ponderado), correspondente ao nível máximo de pressão sonora ponderada em A ou em C, em um ciclo operacional especificado do equipamento predial em ensaio. Para medir o nível de pressão sonora do equipamento predial, deve ser feita uma gravação paralela, dependente do tempo, do nível de pressão sonora ponderada em A ou em C e dos níveis de pressão sonora em bandas de oitava (gravação multiespectral).

Para a avaliação do nível de pressão sonora do equipamento, utilizar o espectro em banda de oitava no momento em que ocorrer o nível máximo de pressão sonora ponderada em A ou em C. A ponderação temporal “S” ou “F” deve ser utilizada. Alternativamente ou adicionalmente, o nível de pressão sonora contínuo equivalente pode ser determinado com um tempo de integração especificado.

Os resultados das bandas de oitava são corrigidos pelo som residual e – se necessário – padronizados para um tempo de reverberação de 0,5 s ou normalizados para uma área de absorção sonora equivalente a 10 m². Finalmente, os níveis de pressão sonora ponderada em A e em C são calculados a partir dos resultados das bandas de oitava corrigidos. Os valores ponderados em A e em C devem ser sempre calculados a partir dos resultados das bandas de oitava, também em situações em que a padronização ou normalização não for realizada.

As grandezas de valor único que podem ser determinadas de acordo com este documento são dadas na tabela abaixo (calculada a partir dos valores de bandas de oitava definidos em 3.6.1 a 3.6.9). A notação na tabela deve ser usada ao relatar os resultados da medição. As diferentes quantidades podem ser combinadas de acordo com os requisitos dos regulamentos nacionais de código de construção.

As diferentes grandezas de valor único indicadas na tabela acima não são comparáveis. Somente os resultados de medição obtidos com o mesmo método devem ser comparados. Quando os resultados das medições forem comparados com os requisitos legais, deve-se assegurar que ambos se referem à mesma quantidade. Se o som contiver componentes tonais claramente audíveis, isto deve ser indicado no relatório. Janelas e portas devem ser fechadas durante as medições. Convém que a pessoa que realiza o ensaio fique fora do ambiente.

Os ensaios de ultrassom em soldas

Os objetivos desses ensaios podem ser diferentes, por exemplo para a avaliação do nível de qualidade (fabricação); para a detecção de indicações específicas induzidas em serviço. Os critérios de aceitação não estão incluídos nesta norma, mas podem ser aplicados em conformidade com o escopo do ensaio, conforme os itens a serem determinados pela especificação.

A NBR ISO 22825 de 04/2020 – Ensaios não destrutivos de soldas — Ensaio por ultrassom — Ensaios de soldas em aços austeníticos e ligas à base de níquel especifica a abordagem a ser seguida no desenvolvimento de procedimentos de ultrassom dos seguintes tipos de soldas: soldas em aços inoxidáveis; soldas em ligas à base de níquel; soldas em aços dúplex; soldas dissimilares; soldas austeníticas. Os objetivos do ensaio podem ser diferentes, por exemplo para a avaliação do nível de qualidade (fabricação); para a detecção de indicações específicas induzidas em serviço. Os critérios de aceitação não estão incluídos nesta norma, mas podem ser aplicados em conformidade com o escopo do ensaio, conforme os itens a serem determinados pela especificação. Os requisitos desta norma são aplicáveis aos ensaios manual e mecanizado.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as etapas necessárias em um procedimento escrito de ensaio por ultrassom?

Quais são as implicações práticas do uso de ondas longitudinais refratadas?

O que deve garantir a varredura?

O que deve incluir os resultados do ensaio?

As soldas em componentes de aço austenítico e soldas dissimilares são consideradas difíceis de inspecionar por ultrassom. Os principais problemas estão associados à estrutura não favorável e ao tamanho de grão, bem como à heterogeneidade nas propriedades dos materiais e anisotropia mecânica e acústica, propriedades que contrastam com o comportamento relativamente homogêneo e isotrópico em soldas de aço-carbono e de baixa liga.

Metal de solda austenítico e outros materiais anisotrópicos e de granulação grossa podem afetar significativamente a propagação do ultrassom. Além disso, podem ocorrer distorção do feixe, reflexões inesperadas e conversões de modo na linha de fusão e/ou nos grãos colunares. Por isto, pode ser difícil e por vezes impossível que ondas ultrassônicas penetrem no metal de solda.

O ensaio de ultrassom destes metais pode requerer técnicas que diferem das técnicas convencionais. Estas técnicas especiais incluem a utilização de cabeçotes de duplo cristal concebidos para ondas longitudinais refratadas ou ondas creeping. Além disso, é necessário confeccionar blocos de referência representativos com soldas, a fim de desenvolver o procedimento de ensaio, ajustar o nível de sensibilidade e demonstrar a efetividade do procedimento escrito.

Os materiais, a preparação para solda e o procedimento de soldagem, bem como a geometria e a condição da superfície dos blocos de referência devem ser os mesmos dos componentes a serem ensaiados. Antes do ensaio, algumas informações sobre os seguintes itens são requeridas: tipo e grau do material; objetivo e extensão dos ensaios, incluindo ensaios para indicações transversais, se requeridos; níveis de ensaio (ver Seção 10); fase de fabricação ou operação em que o ensaio deve ser realizado; requisitos para o acesso, condição superficial (ver 11.2) e temperatura; se o ensaio no metal-base deve ser realizado antes e/ou após a soldagem (ver 11.3); blocos de referência (ver Seções 6 e 7); qualificações de pessoal (ver Seção 5); requisitos de relatórios (ver Seção 12); critérios de aceitação e/ou nível de registro.

Antes de realizar qualquer ensaio em uma junta soldada, o inspetor deve ter acesso a todas as informações dos Itens a serem determinados pela especificação, juntamente com as seguintes informações adicionais: procedimento escrito do ensaio (ver Seção 9); tipo (s) de material-base e forma do produto (ou seja, fundido, forjado, laminado); preparação da junta e dimensões; processo de soldagem ou informações relevantes sobre o processo de soldagem; momento da inspeção em relação a qualquer tratamento térmico pós-soldagem; resultado de todos os ensaios do metal-base realizados antes e/ou após a soldagem; pontos de referência e detalhes do sistema de coordenadas da peça a ser ensaiada.

O ensaio de desempenho de pessoal deve estar de acordo com esta norma e deve ser qualificado para um nível apropriado de acordo com a NBR NM ISO 9712 ou equivalente no setor industrial relevante. Adicionalmente ao conhecimento geral de ensaios por ultrassom em soldas, os inspetores devem estar familiarizados e possuir experiência prática em relação aos problemas de inspeção especificamente associados ao tipo de material e às juntas soldadas a serem ensaiadas. Convém que os treinamentos específicos e o exame de pessoal sejam realizados em peças representativas (dúplex, austeníticos, aço inoxidável) que contenham soldas e utilizando cabeçotes de duplo elemento de onda longitudinal.

Convém que estes treinamentos e os resultados dos exames sejam documentados. Se este não for o caso, convém que o treinamento específico e o exame sejam executados com o procedimento de ensaio de ultrassom finalizado e o instrumento de ultrassom selecionado para inspecionar corpos de prova representativos, contendo refletores naturais ou artificiais semelhantes aos esperados. Convém que estes treinamentos e os resultados dos exames sejam documentados.

O equipamento utilizado para o ensaio deve atender aos requisitos das EN 12668-1 e EN 12668-2. A verificação do equipamento combinado deve ser feita de acordo com a EN 12668-3, com exceção dos cabeçotes de duplo elemento de feixe angular com ondas longitudinais, que podem ser verificados em outros blocos de referência apropriados em comparação aos blocos mencionados na EN 12668-3. As curvas focais devem estar disponíveis para os cabeçotes de duplo elemento a serem utilizadas e determinadas em um material representativo do material a ser ensaiado.

O equipamento phased array pode ser usado desde que a combinação de cabeçotes, sapatas e leis focais seja capaz de produzir feixes sônicos, permitindo a aplicação das técnicas estabelecidas em A.1 a A.6; o equipamento phased array esteja conforme os requisitos das ISO 18563-1 e ISO 18563-2; a verificação do equipamento combinado seja feita de acordo com a ISO 18563-3, com exceção dos cabeçotes angulares de onda longitudinal de duplo elemento, os quais podem ser verificados em blocos de referência adequados, diferentes dos blocos mencionados na ISO 18563-3.

As curvas focais devem estar disponíveis para os cabeçotes phased array utilizados e determinadas em um material representativo do material a ser ensaiado. O ajuste de escala deve ser realizado em bloco de calibração adequado, por exemplo, como mostrado no Anexo B, que é desenvolvido para ser semelhante ao bloco N°2, de acordo com a ISO 7693. A dimensão de pelo menos um dos raios do bloco utilizado deve ser próximo à distância focal dos cabeçotes.

O ponto de saída do feixe sônico de cada cabeçote deve ser marcado no lado do cabeçote, depois de ter sido otimizada a amplitude do eco no raio mais próximo à sua distância focal. Uma vez que esta otimização do eco pode ser difícil para cabeçotes de ângulos elevados e cabeçotes de ondas creeping, o componente de onda pode ser usado para otimização. Neste caso, a metodologia de calibração deve estar incluída no procedimento de ensaio.

A otimização dos ecos deve ser feita separadamente sobre dois raios, e por repetição até que os sinais provenientes do menor e do maior raios estejam em suas posições corretas. Alternativamente, a base de tempo pode ser ajustada com ajuda de um cabeçote normal monoelemento na largura do bloco de calibração e com subsequente ajuste do ponto zero com o cabeçote angular colocado no bloco de calibração, no raio mais próximo de distância focal do cabeçote.

Para o posicionamento geométrico correto das indicações, a influência de diferentes velocidades do som entre o metal-base e o metal de solda pode ser levada em consideração, utilizando os refletores conforme descrito no uso de furos laterais e uso de outros refletores de referência. O ajuste da escala deve ser realizado antes de cada ensaio. Verificações para confirmar estes ajustes devem ser realizadas pelo menos a cada 4 h e após a conclusão do ensaio.

Também devem ser verificados os ajustes sempre que um parâmetro do sistema for alterado ou sempre que mudanças nos ajustes forem duvidosas. Se forem encontrados desvios durante estas verificações, as ações corretivas devem ser realizadas conforme especificado na tabela abaixo.

O ajuste da sensibilidade deve ser realizado em um bloco de referência com solda. O Anexo C apresenta exemplos de blocos de referência. A espessura do bloco de referência deve ser similar à espessura do componente a ser inspecionado, com erro máximo admissível de 10% ou 3 mm, o que for maior. Os refletores de referência devem ser furos laterais no centro da solda e/ou na linha de fusão.

Alternativamente, furo de fundo plano na linha de fusão pode ser utilizado, tendo o fundo plano alinhado à linha de fusão (bisel). Entalhes de superfície devem ser utilizados como referência para defeitos próximos à superfície. A cobertura da zona relacionada à espessura da parede deve ser estabelecida com base nas curvas focais, quando cabeçotes de duplo elemento forem usadas. A sobreposição da zona deve ser documentada no procedimento.

O ajuste da sensibilidade deve ser realizado antes de cada ensaio, de acordo com esta norma. A distância, g, entre a superfície de ensaio e a parte inferior da sapata do cabeçote não pode ser superior a 0,5 mm. Se forem utilizados refletores na linha de fusão, os ajustes da sensibilidade devem ser realizados: estabelecendo a altura do eco com o feixe sônico passando apenas pelo metal-base; estabelecendo a altura do eco com o feixe sônico passando pelo metal de solda.

Se forem utilizados refletores na linha central da solda, o ajuste da sensibilidade pode ser realizado apenas de um lado, com exceção de juntas dissimilares (em que as propriedades acústicas do metal base são diferentes de um lado em relação ao outro). Furos laterais têm um diâmetro típico de 3 mm.

Onde descontinuidades específicas devem ser detectadas e/ou em uma zona limitada específica da solda, outros tipos e dimensões de refletores de referência podem ser usados. Nesse caso, devem ser estabelecidas as condições específicas de ajuste da sensibilidade. Em ensaios de soldas de tubos, os furos de fundo plano e os entalhes são normalmente usados como refletores de referência.

A posição do furo de fundo plano deve ser determinada a partir de uma macrosseção da solda austenítica, posicionados adequadamente no bloco de referência e usinados de modo a localizar o fundo plano na linha de fusão. Furos de fundo plano têm um diâmetro típico entre 2 mm e 5 mm. Em todas as situações, deve ser verificado se todos os refletores de referência na solda (incluindo aqueles detectados por meio do metal de solda) são detectados pelo menos com a mínima relação sinal-ruído especificada.

Dependendo dos resultados obtidos, uma das seguintes situações pode acontecer. A estrutura da solda e a zona afetada pelo calor, e o metal-base são de granulação relativamente fina. Isto pode indicar que técnicas de ultrassom como ondas transversais podem ser utilizadas. Se a relação sinal-ruído for de pelo menos 12 dB, então a ISO 17640 ou, para phased array, a ISO 13588 podem ser aplicadas.

A estrutura do metal-base é de granulação fina, mas a estrutura do metal de solda é grossa. Isto significa que o metal base permite penetração irrestrita de ondas transversais e longitudinais, mas as ondas transversais dificilmente penetram a solda. Neste caso, ondas longitudinais devem ser usadas pelo menos para detectar refletores internos ou por meio do metal de solda.

As ondas transversais podem ser usadas para detectar defeitos na linha de fusão que não requerem penetração por meio do metal de solda. Para detectar descontinuidades internas ou por meio do metal de solda, ondas de modo convertido que permitem incidência indireta dos refletores podem ser usadas, por exemplo, técnicas (TL) de ondas transversais-longitudinais e técnicas (LLT) de ondas longitudinais-longitudinais (ver Anexo A). Para phased array, o nível D de ensaio da ISO 13588 pode ser utilizado, se os demais requisitos deste documento forem atendidos.

A estrutura do metal-base e a da solda são grossas. Isto pode indicar a necessidade de utilização de ondas longitudinais para a penetração tanto do metal base quanto da solda e, neste caso, devem ser usadas somente técnicas de incidência direta com ondas longitudinais. Este pode ser o caso de alguns componentes de aço dúplex (ver Anexo A). Para phased array, o nível D de ensaio da ISO 13588 pode ser utilizado, se os demais requisitos deste documento forem atendidos.

A estrutura da solda e/ou do metal-base não permite ensaio por ultrassom com relação sinal-ruído adequada. Neste caso, outros métodos de ensaios não destrutivos devem ser considerados. Após selecionar a (s) técnica (s) básica (s) para as diferentes partes (zonas) da solda, as técnicas devem ser selecionadas e otimizadas para cada zona. Para cabeçotes de duplo elemento com ondas longitudinais refratadas, isto indica que a frequência ideal, o ângulo do feixe, a distância focal e o tamanho do elemento devem ser selecionados para cada zona separadamente (ver Anexo A).

Dependendo da aplicação e das normas aplicáveis, as técnicas devem ser selecionadas de forma que todos os potenciais defeitos específicos do tipo de solda e procedimento sejam detectados. Para a detecção de trincas a frio, perpendicular à superfície, a técnica tandem deve ser usada adicionalmente às técnicas de incidência direta e indireta. A propagação do feixe (e, portanto, a extensão da curva focal) deve ser otimizada pela seleção de um cabeçote com tamanho do elemento adequado para garantir a cobertura suficiente de toda a espessura. Para verificar a detecção de defeitos localizados na área-limite entre as zonas, a queda de amplitude entre as curvas focais dos cabeçotes utilizados (Anexo A) não pode exceder 3 dB.