IEC 61400-27-2: a validação de modelos de simulação elétrica em energia eólica

Essa norma, editada pela International Electrotechnical Commission (IEC) em 2020, especifica os procedimentos para validação de modelos de simulação elétrica para turbinas eólicas e usinas eólicas, destinados a serem usados em análises de sistema de energia e estabilidade de rede. Os procedimentos de validação são baseados nos ensaios especificados na IEC 61400-21 (todas as partes).

A IEC 61400-27-2:2020 – Wind energy generation systems – Part 27-2: Electrical simulation models – Model validation especifica os procedimentos para validação de modelos de simulação elétrica para turbinas eólicas e usinas eólicas, destinados a serem usados em análises de sistema de energia e estabilidade de rede. Os procedimentos de validação são baseados nos ensaios especificados na IEC 61400-21 (todas as partes). Os procedimentos de validação são aplicáveis aos modelos genéricos especificados na IEC 61400-27-1 e a outros modelos de usinas eólicas de frequência fundamental e modelos de turbinas eólicas.

Os procedimentos de validação para modelos de turbinas eólicas focam no controle de falhas por meio de capacidade e desempenho de controle. A capacidade de ultrapassar falhas inclui resposta a quedas de tensão balanceadas e não balanceadas, bem como a aumentos de tensão. O desempenho inclui o controle de potência ativa, controle de frequência, controle de inércia sintética e controle de potência reativa.

Os procedimentos de validação para modelos de turbinas eólicas referem-se aos ensaios especificados na IEC 61400-21-1. Os procedimentos de validação para modelos de turbinas eólicas referem-se aos terminais das turbinas eólicas. Os procedimentos de validação para modelos de usinas eólicas não são especificados em detalhes porque a IEC 61400-21-2, que tem o escopo para especificar testes de usinas eólicas, está em um estágio inicial.

Os procedimentos de validação para modelos de usinas eólicas referem-se ao ponto de conexão da usina eólica. Os procedimentos de validação especificados na IEC 61400-27-2 são baseados em comparações entre medições e simulações, mas são independentes da escolha da ferramenta de simulação de software.

A IEC 61400-27-2 especifica os procedimentos de validação de modelo para modelos de simulação elétrica de turbinas eólicas e usinas eólicas. A crescente penetração da energia eólica nos sistemas de potência implica que os operadores do sistema de transmissão (transmission system operators – TSO) e os operadores do sistema de distribuição (distribution system operators – DSO) precisam usar modelos dinâmicos de geração de energia eólica para estudos de estabilidade do sistema de potência. O objetivo desta norma é especificar procedimentos de validação para modelos dinâmicos, que podem ser aplicados em estudos de estabilidade de sistemas de potência. A Força-Tarefa Conjunta IEEE/CIGRE sobre termos e definições de estabilidade classificou a estabilidade do sistema de energia em categorias de acordo com a Figura 1.

Referindo-se a essas categorias, os modelos a serem validados foram desenvolvidos para representar a geração de energia eólica em estudos de fenômenos de estabilidade de curto prazo de grande perturbação, isto é, estabilidade de tensão de curto prazo, estabilidade de frequência de curto prazo e estudos de estabilidade transitória de curto prazo referentes às definições de Força-Tarefa Conjunta IEEE/CIGRE sobre termos e definições de estabilidade na Figura 1.

Assim, os modelos são aplicáveis para simulações dinâmicas de eventos do sistema de potência, como curtos-circuitos (passagem de baixa tensão), perda de geração ou cargas e separação do sistema de uma área síncrona em áreas mais síncronas. O procedimento de validação especificado neste documento avalia a precisão da resposta de frequência fundamental de modelos de usinas eólicas e modelos de turbinas eólicas. Isso inclui a validação dos modelos genéricos de sequência positiva especificados na IEC 61400-27-1 e validação da sequência positiva, bem como a resposta de sequência negativa de modelos mais detalhados desenvolvidos pelos fabricantes de turbinas eólicas.

O procedimento de validação tem as seguintes limitações:

– O procedimento de validação não especifica nenhum requisito para a precisão do modelo. Ele apenas especifica medidas para quantificar a precisão do modelo.

– O procedimento de validação não especifica procedimentos de teste e medição, pois se destina a ser baseado em testes especificados em IEC 61400-21-1 e IEC 61400-21-24.

– O procedimento de validação não se destina a justificar a conformidade com qualquer requisito do código da rede, requisitos de qualidade de energia ou legislação nacional.

– O procedimento de validação não inclui a validação das capacidades de estado estacionário, por exemplo de potência reativa, mas centra-se na validação do desempenho dinâmico dos modelos.

– O procedimento de validação não cobre a análise de estabilidade de longo prazo.

– O procedimento de validação não cobre fenômenos de interação subsíncrona.

– O procedimento de validação não cobre a investigação das flutuações originadas da variabilidade da velocidade do vento no tempo e no espaço.

– O procedimento de validação não cobre fenômenos como harmônicos, cintilação ou quaisquer outras emissões EMC incluídas na série IEC 61000.

– O procedimento de validação não cobre cálculos de valor próprio para análises de estabilidade de pequenos sinais.

– Este procedimento de validação não aborda as especificações dos cálculos de curto-circuito.

– O procedimento de validação é limitado pelas especificações funcionais na Cláusula 5.

As seguintes partes interessadas são usuários potenciais dos procedimentos de validação especificados neste documento: TSO e DSO precisam de procedimentos para validar a precisão dos modelos que eles usam em estudos de estabilidade de sistemas de potência; os proprietários de usinas eólicas são normalmente responsáveis por fornecer a validação de seus modelos de usinas eólicas ao TSO e/ou DSO antes do comissionamento da usina; os fabricantes de turbinas eólicas normalmente fornecerão validação dos modelos de turbinas eólicas ao proprietário; os desenvolvedores de software moderno para ferramentas de simulação de sistemas de energia podem usar o padrão para implementar procedimentos de validação como parte da biblioteca de software; os organismos de certificação em caso de validação independente do modelo; e as comunidades de educação e pesquisa, que também podem se beneficiar de procedimentos de validação de modelo padrão.

O desempenho de motores de indução de baixa tensão

Conheça os parâmetros de desempenho para motores de indução de baixa tensão (≤ 1.000 V) alimentados por conversores de frequência PWM tipo fonte de tensão e as características de projeto para motores especificamente projetados para aplicações com conversor de frequência.

A NBR 16881 de 09/2020 – Motores de indução alimentados por conversores de frequência — Parâmetros de desempenho e critérios de aplicação fornece parâmetros de desempenho para motores de indução de baixa tensão (≤ 1.000 V) alimentados por conversores de frequência PWM tipo fonte de tensão e as características de projeto para motores especificamente projetados para aplicações com conversor de frequência. Também são especificados parâmetros de interface e interação entre o motor e o conversor de frequência, incluindo boas práticas de instalação como parte do sistema de acionamento.

Esta norma é aplicável tanto a motores especificamente projetados para uso com o conversor de frequência quanto a motores projetados para partida direta (alimentação senoidal) alimentados por conversor de frequência. Para motores que operam em atmosferas explosivas, devem ser observados os requisitos especificados na NBR IEC 60079-0. Quando o fabricante do conversor de frequência fornecer recomendações específicas para a instalação do sistema de acionamento, estas prevalecem sobre as recomendações desta norma.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as considerações para o projeto do motor?

Quais são os parâmetros do circuito equivalente do motor para ajuste do conversor de frequência?

Quais as características do conversor de frequência para reduzir as perdas no motor?

Qual é a influência da temperatura na expectativa de vida?

O desempenho e os dados de operação de motores de indução alimentados por conversores de frequência são influenciados por todo o sistema de acionamento, incluindo a fonte de alimentação, o conversor de frequência, os cabos elétricos, o motor, a carga acionada e o equipamento de controle. Existem inúmeras variações para cada um destes componentes. Assim, quaisquer valores mencionados nesta norma são meramente indicativos.

Em face das complexas interações técnicas existentes entre os componentes do sistema de acionamento e das possíveis variações das condições de operação, está além do escopo desta norma especificar valores ou limites numéricos para todas as grandezas relevantes para o projeto do sistema de acionamento. Cada vez mais é comum que o sistema de acionamento seja constituído por equipamentos e componentes produzidos por diferentes fabricantes.

O objetivo desta norma é explicar, tanto quanto possível, a influência destes componentes no projeto do motor e nas suas características de desempenho. Esta norma, a princípio, não enfoca questões relacionadas à segurança. No entanto, algumas recomendações contidas no documento podem ter implicações no aspecto da segurança. Embora as etapas de especificação das características do motor e do conversor de frequência sejam semelhantes para qualquer aplicação, a escolha dos equipamentos mais apropriados a cada caso é muito influenciada pelo tipo de aplicação.

A seguir são descritas as etapas de seleção dos equipamentos constituintes do PDS. Por conveniência, os efeitos dos diferentes tipos de carga acionada existentes são discutidos no Anexo A. A informação completa de uma aplicação considera a carga acionada, o motor elétrico, o conversor de frequência e a rede elétrica. O conhecimento de todas essas informações é fundamental para que o desempenho requerido de todo o sistema seja alcançado.

Os dados requeridos incluem: a faixa de operação; a potência ou o conjugado requerido em toda a faixa de operação; as taxas de aceleração e desaceleração do processo que está sendo controlado; os requisitos de partida incluindo o número (frequência) de partidas e a descrição da carga (a inércia vista do eixo do motor e o conjugado da carga durante a partida); ciclo de trabalho da aplicação; a descrição das funcionalidades adicionais que não podem ser satisfeitas somente com o motor elétrico e conversor de frequência (por exemplo: monitoramento da temperatura do motor elétrico, dispositivos para permitir a partida direta (bypass), se necessário, circuitos especiais de sequenciamento ou sinais de referência de velocidade para controlar o PDS, etc.); a descrição da fonte de alimentação elétrica disponível e do tipo de ligação.

As figuras abaixo resumem as características típicas do comportamento de um motor alimentado por conversor de frequência. Elas não mostram possíveis faixas evitadas. A figura abaixo mostra a curva de conjugado versus rotação de um motor alimentado por conversor de frequência. O conjugado máximo permitido é limitado pela característica do motor e pela corrente do conversor de frequência. Acima da frequência de enfraquecimento de campo f0 e da rotação n0, o motor pode operar com potência constante com um valor proporcional de 1/n. Se o valor de conjugado máximo (que é proporcional à 1/n2) atingir o valor de conjugado nominal, a potência tem de ser reduzida proporcionalmente a 1/n resultando em um conjugado proporcional a 1/n2 (faixa estendida).

A rotação máxima utilizável (nmáx.) é limitada não apenas pela redução de conjugado devido ao enfraquecimento do campo em rotações superiores a n0, mas também pela rigidez e estabilidade mecânica do rotor, pela capacidade de rotação dos mancais e por outros parâmetros mecânicos. Em baixas frequências, o conjugado disponível pode ser reduzido em motores autoventilados a fim de se evitar sobreaquecimento. Em algumas aplicações, é possível aplicar um incremento de conjugado na partida.

A figura abaixo mostra a capacidade de corrente de saída (I) do conversor de frequência.

Conforme indicado na figura acima, o tipo de resfriamento influencia a capacidade máxima de conjugado versus rotação do PDS. Motores elétricos com potência na faixa de megawatts muitas vezes têm um sistema de resfriamento composto por um circuito de resfriamento primário (geralmente tendo ar como refrigerante primário) e um circuito de resfriamento secundário (tendo ar ou água como refrigerante secundário). As perdas são transferidas do circuito primário para o secundário por meio de um trocador de calor.

Quando os fluidos refrigerantes primário e secundário são movidos por um dispositivo separado, tornando o seu fluxo independente da rotação do motor (por exemplo, IC656 conforme a NBR IEC 60034-6), a curva da figura acima para ventilação separada é aplicável. Quando o fluido refrigerante secundário é movido por um dispositivo separado e o fluido refrigerante primário é movido por um dispositivo acionado pelo eixo (por exemplo, IC81W ou IC616), a curva da figura para autorresfriamento é aplicável.

Quando os fluidos refrigerantes primário e secundário são movidos por um dispositivo acionado pelo próprio eixo do motor elétrico, o conjugado de saída não deve exceder a curva T/TN = n2/n02 e recomenda-se que a mínima rotação de operação seja ≥ 70 % da rotação nominal. Para aplicações que excedam esta faixa, o fabricante do motor deve ser consultado.

A faixa de operação de um motor alimentado por conversor de frequência pode incluir rotações que podem excitar ressonâncias em partes do estator, no eixo, no sistema de acoplamento do motor com a carga acionada, ou na própria carga acionada. Dependendo do conversor de frequência, pode ser possível evitar as frequências ressonantes. No entanto, mesmo que as frequências ressonantes sejam evitadas, a carga é acelerada através dela, caso o motor seja operado em qualquer rotação acima da rotação de ressonância.

Diminuir o tempo de aceleração pode ajudar a minimizar o intervalo de tempo em que se opera na rotação de ressonância. A faixa de operação deve ser acordada com o fabricante do motor e da máquina acionada. Como motores aplicados com conversor de frequência costumam trabalhar em uma faixa de operação e não apenas em um ponto de operação fixo, normalmente não se aplica o conceito de condição nominal de operação para esses motores.

O ponto-base de operação do motor alimentado por conversor de frequência geralmente é considerado o ponto em que o motor entrega o máximo conjugado e a máxima potência. Neste ponto, o motor opera com rotação-base, tensão-base, corrente-base, conjugado-base e potência-base, correspondendo ao ponto da figura acima em que n = n0. A máxima rotação de operação pode ser maior do que a rotação-base e, dependendo das características de tensão e frequência, a máxima tensão de operação pode exceder a tensão-base.

Para um motor elétrico operado por conversor de frequência, o fabricante deve informar os limites de rotação para operação segura nos dados de placa. Para motores de indução de gaiola de baixa tensão com partida direta, o limite de rotação para operação segura deve ser definido de acordo com a NBR 17094-1. Os critérios de sobrevelocidade para motores são especificados na NBR 17094-1, mas os ensaios de sobrevelocidade não são normalmente considerados necessários.

Os ensaios especiais, porém, podem ser realizados mediante acordo, para que se verifique a integridade do projeto do rotor em relação às forças centrífugas. Para motores alimentados por conversor de frequência, uma aceleração até uma rotação maior de que a máxima rotação de operação determinada pelo controle do conversor de frequência é improvável. Especialmente para motores grandes, geralmente é benéfico projetar o motor para uma rotação limite de 1,05 vez a rotação máxima de operação. Ensaios também podem ser realizados a 1,05 vez a rotação máxima de operação.

Deve-se considerar que, para operação em alta rotação, um balanceamento fino do rotor pode ser necessário. No caso de operação nesta condição por longos períodos, a vida dos rolamentos pode ser reduzida, requerendo redução do intervalo de relubrificação. As aplicações com regimes cíclicos são aquelas nas quais existem variações periódicas ou intermitentes de rotação e/ou carga (ver NBR 17094-1).

Vários aspectos deste tipo de aplicação afetam o motor e o conversor de frequência, como a dissipação térmica do motor é variável, dependendo da rotação e do método de resfriamento; operação acima de conjugado nominal do motor pode ser requerida para acelerar, desacelerar e atender picos de carga. Operação acima da corrente nominal aumenta o aquecimento do motor. Isso pode requerer uma classe de isolação mais elevada, um motor sobredimensionado ou a avaliação do regime de serviço para determinar se o motor possui reserva térmica suficiente para a aplicação (ver regime de serviço S10 da NBR 17094-1).

A frenagem por injeção de corrente contínua dinâmica ou regenerativa pode ser requerida para reduzir a rotação do motor. Independentemente de o motor estar fornecendo conjugado para acionar a carga, estar gerando potência reversa para o conversor de frequência devido a estar sendo acionado pela carga, ou estar fornecendo conjugado de frenagem durante a desaceleração pela aplicação de corrente contínua nos enrolamentos, o aquecimento do motor ocorre de forma aproximadamente proporcional ao quadrado da corrente enquanto aplicada. Este aquecimento deve ser incluído na análise do regime de serviço.

Além disso, os conjugados transitórios impostos no eixo pela frenagem devem ser controlados de forma que não cause danos. A IEC 61800-6 fornece informações sobre regime de carga e determinação de corrente para todo o PDS. As cargas de alto impacto são um caso especial de regime e são encontradas em certas aplicações com conjugado intermitente (por exemplo, regime de serviço S6 da NBR 17094-1).

Nestas aplicações, a carga é aplicada ou removida do motor muito rapidamente. É também possível para este conjugado de carga ser positivo (contrário à direção de rotação do motor) ou negativo (na mesma direção de rotação do motor). A carga de impacto provoca um rápido aumento ou redução na demanda de corrente do conversor de frequência. Se o conjugado for negativo, o motor pode gerar corrente de volta para o conversor de frequência. Estas correntes transitórias estressam os enrolamentos do estator e sua amplitude depende das características da carga e do dimensionamento do conversor de frequência e do motor.

IEC TR 63164-2: a confiabilidade de dispositivos e sistemas de automação industrial

Esse relatório técnico (Technical Report – TR), editado em 2020 pela International Electrotechnical Commission (IEC), fornece a orientação sobre o cálculo de dados de confiabilidade de sistemas de automação que podem ser simplificados como estrutura em série, paralela ou mista com base em dados de confiabilidade de dispositivos únicos e / ou subsistemas, e na forma de apresentar os dados.

A IEC TR 63164-2: 2020 – Reliability of industrial automation devices and systems – Part 2: System reliability fornece a orientação sobre o cálculo de dados de confiabilidade de sistemas de automação que podem ser simplificados como estrutura em série, paralela ou mista com base em dados de confiabilidade de dispositivos únicos e / ou subsistemas, e na forma de apresentar os dados. Esse procedimento é direcionado apenas à confiabilidade dos sistemas de automação, mas não aos sistemas que incorporam sistemas de automação, por exemplo, planta de processo.

A confiabilidade está incluída na segurança do equipamento e este documento se concentra principalmente nas falhas de hardware aleatórias que afetam a confiabilidade. Confiabilidade é usada como um termo coletivo para as características de qualidade relacionadas ao tempo de um item e inclui, adicionalmente, disponibilidade, recuperabilidade, capacidade de manutenção, desempenho de suporte de manutenção e, em alguns casos, outras características como durabilidade, proteção e segurança, que não são no âmbito deste relatório técnico.

Conteúdo da norma

PREFÁCIO………………….. 3

INTRODUÇÃO……………… 5

1 Escopo …………………… 6

2 Referências normativas…… 6

3 Termos, definições e termos abreviados ……6

3.1 Termos e definições……………………. 6

3.2 Termos abreviados…………………….. 9

4 Confiabilidade do sistema………… 9

5 Cálculo da confiabilidade do sistema…………………… 9

5.1 Geral…………….. 9

5.2 Forma para apresentar dados de confiabilidade……….. 10

5.3 Estruturas e cálculos…………………………… 10

5.3.1 Fórmulas básicas…………………………. 10

5.3.2 Estruturas em série……………………… 11

5.3.3 Estruturas paralelas…………………….. 12

5.3.4 Estruturas mistas………………………….. 13

5.3.5 Resumo…………………………….. ……. 14

Anexo A (informativo) Exemplos de sistemas de automação típicos…………………….15

A.1 Geral……………. …………….. 15

A.2 Exemplo para estrutura em série do sistema de automação de processo…………………… 15

A.3 Exemplo para estrutura mista de subsistema de automação de processo…………………… 16

Anexo B (informativo) Métodos para melhorar a confiabilidade do sistema……………….. … 18

B.1 Geral …………. …………….. 18

B.2 Métodos para reduzir a falha sistemática…………………. 18

B.2.1 Geral…………………………. ……… 18

B.2.2 Medidas para evitar falha sistemática…………… 18

B.2.3 Medidas para controlar a falha sistemática………. 18

B.3 Método de redução de falha aleatória de hardware……. 19

B.3.1 Projeto tolerante a falhas………………………………. 19

B.3.2 Projeto de prevenção de erros…………………….. 19

B.3.3 Projeto de desclassificação do sistema…………………. 19

Bibliografia…………….. ………………….. 21

Figura 1 – Diagrama de blocos de confiabilidade em série…………………………. 11

Figura 2 – Diagrama de blocos de confiabilidade paralela……………………… 12

Figura 3 – Diagrama de blocos de confiabilidade em série paralela geral (redundância)…………………. 13

Figura 4 – Reduzir a estrutura mista………………….. 13

Figura A.1 – Um sistema de automação de processo típico (fundição de alumínio) ……………….. 15

Figura A.2 – Diagrama de blocos para sistema de automação de fundição de alumínio……………………… 16

Figura A.3 – Processo de sedimentação e lavagem para sistema de automação da fundição de alumínio ………. 16

Figura A.4 – Diagrama de blocos para o processo de assentamento e lavagem………………………. ………. 17

No contexto da manufatura inteligente, novos modos de produção, como customização em massa com base em fábricas interconectadas, requerem interconexão em tempo real, comutação frequente e integração em diferentes níveis. Portanto, a confiabilidade é um requisito importante para os sistemas de automação nas fábricas. Dados de confiabilidade de sistemas de automação são a base para o planejamento de manutenção, por exemplo manutenção de estoque de peças de reposição de uma linha de produção.

Um sistema de automação geralmente consiste em vários dispositivos ou máquinas diferentes que são usados em série, em paralelo ou mistos. Este relatório técnico fornece orientação para o integrador de sistema sobre como avaliar a confiabilidade de tais sistemas inteiros. Este relatório é a segunda parte da série. Esta parte se concentra no cálculo das taxas de falha ou valores de confiabilidade para sistemas com base em taxas de falha ou valores de confiabilidade de dispositivos individuais, dependendo da estrutura do sistema.

Isso é necessário para que os integradores de sistema ou projetistas possam calcular a confiabilidade de um sistema inteiro a partir dos valores de confiabilidade de dispositivos individuais (consulte IEC TS 63164-1). As partes da série IEC 63164 são: Parte 1: Garantia de dados de confiabilidade de dispositivos de automação e especificação de sua fonte; Parte 2: Confiabilidade do sistema. As partes futuras poderão incluir os seguintes assuntos: coleta de dados de confiabilidade para dispositivos de automação em campo; e um guia do usuário.

As especificações para a fabricação dos cabos ópticos internos

Deve-se entender os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

A NBR 14771 de 07/2020 – Cabo óptico interno — Especificação especifica os requisitos para a fabricação dos cabos ópticos internos. Estes cabos são indicados exclusivamente para instalações internas, interligando cabos ópticos externos às instalações internas comerciais, industriais e residenciais.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o código de cores das unidades básicas, dos elementos ópticos e dos cordões ópticos?

Quais são as cores das fibras ópticas?

Como deve ser executado o revestimento externo?

Quais devem ser os requisitos ópticos desses cabos?

O cabo óptico interno é um conjunto constituído por unidades básicas de cordões ópticos, elementos ópticos ou fibras ópticas, elemento de tração dielétrico, eventuais enchimentos e núcleo seco, protegidos por uma capa externa de material termoplástico retardante à chama. prontos satisfaçam os requisitos especificados nesta norma. Os cabos ópticos internos são designados pelo seguinte código: CFOI – X – Y – Z – W, onde CFOI é o cabo óptico interno; X é o tipo de fibra óptica, conforme a tabela abaixo; Y é a formação do núcleo, conforme a tabela abaixo; Z é o número de fibras ópticas, conforme a tabela abaixo; W é o grau de proteção do cabo quanto ao comportamento frente à chama, conforme a tabela abaixo e ao comportamento frente à chama.

Os materiais constituintes dos cabos ópticos internos devem ser dielétricos. Os materiais utilizados na fabricação do cabo devem ser compatíveis entre si. Os materiais utilizados na fabricação dos cabos com função estrutural devem ter suas características contínuas ao longo de todo o comprimento do cabo.

As fibras ópticas tipo multimodo índice gradual, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13487. As fibras ópticas tipo monomodo com dispersão normal, utilizadas na fabricação dos cabos, devem estar conforme a NBR 13488. As fibras ópticas tipo monomodo com dispersão deslocada e não nula, utilizadas na fabricação dos cabos, devem estar conforme a NBR 14604.

As fibras ópticas tipo monomodo com baixa sensibilidade à curvatura, utilizadas na fabricação dos cabos, devem estar conforme a NBR 16028. Não são permitidas emendas nas fibras ópticas durante o processo de fabricação do cabo. O núcleo deve ser constituído por unidades básicas de fibras ópticas, cordões ópticos ou elementos ópticos. Os cabos ópticos internos devem ser fabricados com unidades básicas de 2, 4, 6, 8, 12, 16, 24, 36 ou 48 fibras ópticas. O núcleo deve ser constituído por unidades básicas.

As unidades básicas devem ser dispostas em elementos de proteção adequados, de modo a atender aos requisitos especificados nesta norma. Os elementos de proteção podem ser constituídos por tubos de material polimérico encordoados em uma ou mais coroas ou de forma longitudinal. Os elementos de proteção encordoados devem ser reunidos com passo e sentido escolhidos pelo fabricante, de modo a satisfazer as características previstas nesta norma.

No caso de cabos ópticos constituídos por elementos de proteção encordoados dispostos em mais de uma coroa, opcionalmente estas coroas podem ser separadas por fitas, a fim de facilitar a sua identificação. É recomendado que os cabos ópticos compostos por elementos de proteção de até 12 fibras ópticas sejam constituídos por unidades básicas, onde cada unidade pode conter duas ou seis fibras ópticas. Para os cabos ópticos de 18 a 36 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha seis ou 12 fibras ópticas.

Para os cabos ópticos de 48 a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 12 ou 24 fibras ópticas. Para os cabos ópticos superiores a 288 fibras ópticas, constituídos por unidades básicas, é recomendado que cada unidade contenha 24, 36 ou 48 fibras ópticas. Para o núcleo constituído por fibras ópticas dispostas em tubo único (central loose tube), a construção deve conter um único tubo central de material polimérico contendo uma ou mais unidades básicas.

Os cabos ópticos de até 48 fibras ópticas devem ser constituídos por fibras ópticas reunidas. Os cabos ópticos acima de 48 até 72 fibras ópticas devem ser constituídos por unidades básicas. Para o núcleo constituído por unidades básicas de cordões ópticos monofibra, o cordão óptico deve ser conforme a NBR 14106. A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada das unidades básicas, dos elementos ópticos e dos cordões ópticos.

Os cabos de até 12 fibras ópticas devem ser constituídos por cordões ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis cordões ópticos. Para cabos ópticos de 48 a 72 fibras, é recomendado que cada unidade básica contenha 12 cordões ópticos. O cordão óptico deve ser conforme a NBR 14106.

A unidade básica de cordões ópticos deve ser constituída por até 12 cordões agrupados e deve ser identificada conforme essa norma e os cabos de até 12 fibras ópticas devem ser constituídos por um ou mais cordões ópticos. Para cabos de 18 a 288 fibras ópticas, é recomendado que cada unidade básica contenha seis ou 12 cordões ópticos.

Para o núcleo constituído por unidades básicas de elementos ópticos, a unidade básica de elementos ópticos deve ser constituída por até 12 elementos agrupados e deve ser identificada conforme essa norma. Os cabos de até 12 fibras ópticas devem ser constituídos por elementos ópticos reunidos. Para cabos de 18 a 36 fibras ópticas, é recomendado que cada unidade básica contenha seis elementos ópticos.

Para cabos ópticos de 48 a 144 fibras, é recomendado que cada unidade básica contenha 12 elementos ópticos. Podem ser colocados enchimentos de material polimérico compatível com os demais materiais do cabo, a fim de formar o núcleo cilíndrico. No núcleo do cabo pode haver uma identificação legível e indelével, contendo impressos o nome do fabricante e o ano de fabricação, em intervalos não superiores a 50 cm, ao longo do eixo do cabo.

Sobre o revestimento externo devem ser gravados o nome do fabricante, a designação do cabo, o número do lote e o ano de fabricação, de forma legível e indelével, em intervalos de 1 m ao longo do eixo do cabo. A pedido do comprador, podem ser impressas informações adicionais. A marcação métrica sequencial deve ser feita em intervalos de 1 m ao longo do revestimento externo do cabo óptico interno. A marcação deve ser feita com algarismos de altura, forma, espaçamento e método de gravação ou impressão tais que se obtenha legibilidade perfeita e permanente. Não são permitidas marcações ilegíveis adjacentes.

Na medida da marcação do comprimento ao longo do eixo do cabo, é tolerada uma variação para menos de até 0,5%, não havendo restrição de tolerância para mais. A marcação inicial deve ser feita em contraste com a cor da capa do cabo, sendo preferencialmente azul ou preta para cabos de cores claras, e branca para cabos de cores escuras ou em relevo. Se a marcação não satisfizer os requisitos anteriores, é permitida a remarcação na cor amarela.

A remarcação deve ser feita de forma a não se sobrepor à marcação inicial defeituosa. Cada lance de cabo deve ser fornecido acondicionado em um carretel de madeira com diâmetro mínimo do tambor de 22 vezes o diâmetro externo do cabo. A largura total do carretel não pode exceder 1,5 m e a altura total não pode ser superior a 2,1 m.

Os carretéis devem conter um número de voltas tal que entre a camada superior e as bordas dos discos laterais exista um espaço livre mínimo de 6 cm. Os carretéis utilizados devem estar conforme a NBR 11137. As extremidades do cabo devem ser solidamente presas à estrutura do carretel, de modo a não permitir que o cabo se solte ou se desenrole durante o transporte.

A extremidade interna do cabo na bobina deve estar protegida para evitar danos durante o transporte, ser acessível para ensaios, possuir um comprimento livre de no mínimo 2 m e ser acomodada com diâmetro de no mínimo 22 vezes o diâmetro externo do cabo. Após efetuados todos os ensaios requeridos para o cabo, as extremidades do lance devem ser fechadas, a fim de prevenir a entrada de umidade. Cada lance do cabo óptico interno deve ter um comprimento nominal de 1.000 m, podendo, a pedido do comprador, ser fornecido em comprimento específico. A tolerância de cada lance deve ser de + 3%, não sendo admitidos comprimentos inferiores ao especificado.

Devem ser identificadas em cada bobina, com caracteres perfeitamente legíveis e indeléveis, as seguintes informações: nome do comprador; nome do fabricante; número da bobina; designação do cabo; comprimento real do cabo na bobina, expresso em metros (m); massa bruta e massa líquida, expressas em quilogramas (kg); uma seta ou marcação apropriada para indicar o sentido em que o cabo deve ser desenrolado; identificação de remarcação, quando aplicável. O transporte, armazenamento e utilização das bobinas dos cabos ópticos internos devem ser feitos conforme a NBR 7310.

O planejamento do cabeamento estruturado

Saiba quais são os requisitos para o planejamento do cabeamento e infraestruturas de cabeamento (incluindo o cabeamento, caminhos, espaços, aterramento e equipotencialização) em suporte às normas de cabeamento estruturado e outros documentos.

A NBR 16869-1 de 07/2020 – Cabeamento estruturado – Parte 1: Requisitos para planejamento especifica os requisitos para o planejamento do cabeamento e infraestruturas de cabeamento (incluindo o cabeamento, caminhos, espaços, aterramento e equipotencialização) em suporte às normas de cabeamento estruturado e outros documentos. Os seguintes aspectos são abordados: as práticas de instalação; o planejamento da instalação; a documentação; a administração; os ensaios; e a inspeção. Os requisitos de segurança elétrica, incêndio e compatibilidade eletromagnética (EMC) estão fora do escopo desta norma. Esta parte é aplicável ao planejamento de projeto e instalação de sistemas de cabeamento estruturado.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as abreviaturas usadas nessa norma?

Como deve ser executado o ensaio de enlace permanente?

Como deve ser feita a medição dos parâmetros de alien crosstalk?

Quais são os requisitos do plano de qualidade?

Uma especificação de instalação deve ser feita pelo contratante e deve ser entregue ao instalador previamente, compreendendo: as especificações técnicas (ver 5.3); o escopo do trabalho (ver 5.5); um plano de qualidade (ver 6.1). Diferentes tipos de infraestruturas podem compartilhar os mesmos espaços destinados ao cabeamento e causar interferências mecânicas. Portanto, o instalador deve ter acesso ao detalhamento de: outros serviços do edifício como distribuição elétrica e aterramento; sistemas de gestão do edifício, incluindo segurança, controle de acesso, etc.; sistemas para detecção de fogo e fumaça e controles associados a eles; aquecimento, ventilação e ar-condicionado (HVAC); maquinário industrial, ilhas de automação, etc. e cuidados relacionados a eles; sistemas de água, esgoto, combate a incêndio, ar comprimido, óleo lubrificante, fluido hidráulico, material seco e saídas de troca de calor; especificações de ambientes e equipamentos hospitalares.

A especificação da instalação deve assegurar que o instalador tenha acesso às legislações, regulamentações, padrões e políticas internas referentes a: edificação; ambiente; segurança do trabalho; segurança patrimonial; autorização do contratante; credenciamento (certificações e qualificações) profissional. É de responsabilidade do instalador demonstrar o cumprimento do acima estabelecido. A especificação da instalação deve detalhar os contatos no local de instalação responsáveis por: requisitos operacionais; restrições, permissões e acessos aplicáveis; conhecimento de áreas perigosas; requisitos técnicos; documentação do cabeamento existente; compatibilidade com os componentes de cabeamento existente; materiais e equipamentos a serem disponibilizados para o instalador de cabeamento pelo contratante; armazenamento dos materiais; remoção, descarte e reciclagem do excesso e entulho; saúde ocupacional e segurança do trabalho; instalação de cabeamento por terceiros; contratante principal e/ou subcontratantes; transferência de responsabilidade e/ou propriedade.

Convém que a especificação de instalação assegure a execução adequada do projeto, de modo garantir a expansão no cabeamento para acomodar usuários, aplicações e serviços adicionais no que diz respeito a: caminhos e sistemas de distribuição de cabos; gabinetes e racks; pontos de terminação; demanda de energia elétrica. As especificações técnicas devem conter os requisitos de desempenho e detalhes do cabeamento e componentes associados, a base da avaliação de desempenho do cabeamento e as práticas de instalação utilizadas.

As especificações técnicas devem abranger tanto as novas instalações quanto as ampliações das instalações existentes. Devem detalhar a localidade e os requisitos de qualquer interface de rede externa (ver NBR 16415). As especificações técnicas devem estabelecer: o nível de administração a ser aplicado à infraestrutura de cabeamento (ver Seção 8); o escopo da documentação a ser fornecida pelo instalador, incluindo quaisquer requisitos necessários para relacionar registros entre si e de outros serviços do edifício; o formato (impresso, eletrônico, etc.) da documentação (ver Seção 8); identificadores a serem adotados pelo instalador (ver Seção 8); a especificação dos elementos de identificação ou etiquetas; os requisitos para ensaios de aceitação (ver Seção 9); os requisitos para inspeção (ver Seção 10); o padrão de tratamento dos canais e enlaces que não atendam aos requisitos de inspeção e ensaios de aceitação; o formato do resultado dos ensaios e documentação da inspeção (ver Seções 9 e 10), que contêm os resultados de passa/falha, e as ações tomadas para reparar ou corrigir falhas de instalação.

A especificação técnica deve: identificar e classificar quaisquer potenciais perigos dentro dos caminhos e espaços e pontos determinação. A classificação de perigo de áreas contendo (ou com a intenção de conter) equipamento e cabeamento de fibra óptica é descrita na IEC 60825-2 e é usada para orientar as práticas adequadas de instalação e identificação. Também deve-se detalhar os limites das áreas contendo perigo ou áreas potencialmente perigosas; incluir todas as normas regulamentadoras aplicáveis ao local da instalação.

As especificações técnicas devem detalhar as medidas necessárias para prevenir o acesso não autorizado aos caminhos, espaços, gabinetes e racks. As especificações técnicas devem detalhar as condições ambientais previstas de instalação e operação. A classificação MICE descrita na NBR 16521 deve ser usada onde as condições ambientais e a instalação prevista estejam dentro dos limites definidos por M3I3C3E3. Adicionalmente, as seguintes condições ambientais devem ser observadas: ataque biológico (bolor ou outros fungos); dano físico (acidental ou intencional), incluindo dano causado por animais; presença ou potencial presença de perigos, como contaminações por líquidos, gases ou materiais explosivos; fluxo de ar (causado por sistemas de aquecimento e ventilação); efeitos meteorológicos (vento, chuva e inundação); impactos naturais (raios, terremotos etc.). Ver IEC 60721 para classificações ambientais.

Convém que as especificações técnicas prevejam uma análise de riscos, incluindo condições ambientais anômalas (mudanças de temperatura, inundações, etc.), que podem afetar a determinação dos requisitos dos componentes ou o método de mitigação possível. A especificação da instalação deve: conter uma lista de itens tratados no plano de qualidade aplicável à instalação definido pelo contratante; identificar as responsabilidades por quaisquer tarefas adicionais necessárias para permitir o cumprimento do plano de qualidade (ver Seção 6).

Um plano de qualidade que aborda os requisitos de instalação deve ser produzido pelo instalador de acordo com os requisitos desta norma. O plano de qualidade deve ser acordado com o contratante antes do início da instalação. O plano de qualidade deve claramente apresentar as medidas e procedimentos a serem adotados para demonstrar conformidade com: os requisitos desta norma; os requisitos do projeto de cabeamento; a especificação da instalação.

O plano de qualidade deve detalhar os procedimentos: para a transferência de responsabilidades entre o instalador e o contratante; para a aceitação dos componentes de cabeamento (incluindo a verificação das especificações físicas, mecânicas, ópticas ou elétricas, baseadas nas especificações dos fabricantes ou fornecedores e normas aplicáveis). Os componentes do cabeamento a serem instalados podem ser fornecidos pelo instalador, desde que em comum acordo com o contratante.

Devem ser detalhados os procedimentos a serem adotados para verificar a compatibilidade entre os componentes do cabeamento a serem usados durante a instalação; a serem adotados para verificar a compatibilidade com algum cabeamento existente; para abordar o impacto de potenciais incompatibilidades; para garantir a seleção de patch cords adequados para uso nos canais de cabeamento.

Onde, em qualquer ponto durante o processo de instalação, a inspeção ou ensaio do cabeamento ou seus componentes for especificado na especificação da instalação ou por outras normas, o plano de qualidade deve detalhar: o equipamento de inspeção e ensaio; o estado de calibração do equipamento de inspeção e ensaio; os planos de amostragem (ver 6.2); os procedimentos de ensaios (ver 9.5.1); o tratamento dos resultados que não estejam em conformidade com as especificações de ensaio ou que apresentem valores marginais, ou seja, dentro do limite de precisão especificado do equipamento de medição (ver 6.3 e 6.4).

A tabela abaixo mostra dois grupos de ensaios para cabeamento balanceado (verificação básica e parâmetros de transmissão), usando os parâmetros que estabelecem as classes de enlaces e canais em relação ao cabeamento projetado. Esta subseção especifica os requisitos e recomendações para ensaios desses grupos de parâmetros. Os procedimentos de ensaio e equipamentos para enlaces e canais do cabeamento balanceado estão especificados na Seção 9. Os requisitos são estabelecidos para outros parâmetros de transmissão que não são considerados atingidos pelo projeto.

Recomenda-se que o modelo de ensaio de enlace permanente seja especificado como requisito de projeto, pois este traz margem adequada para suportar a variedade de patch cords utilizados para conformar canais. Independentemente dos requisitos da especificação da instalação, os parâmetros de verificação básica da tabela acima devem ser medidos para toda a instalação. Os parâmetros de transmissão da tabela acima, com exceção dos parâmetros de alien crosstalk, devem ser medidos para todos os enlaces permanentes da instalação de cabeamento balanceado de classes D, E, F ou FA. Caso a especificação da instalação exija a medição dos parâmetros de alien crosstalk para essas classes de desempenho, o instalador deve incluir esses parâmetros nos ensaios.

A gestão da qualidade para a fabricação de equipamentos e componentes “Ex”

Conheça as informações e os requisitos específicos para o estabelecimento e manutenção de um sistema de gestão da qualidade para a fabricação de equipamentos e componentes “Ex”, de acordo com a sua certificação. Embora este documento não dispense a utilização de outros sistemas de gestão da qualidade que sejam compatíveis com os objetivos da NBR ISO 9001:2015 e que proporcionem resultados equivalentes.

A NBR ISO/IEC 80079-34 de 07/2020 – Atmosferas explosivas – Parte 34: Aplicação de sistemas de gestão da qualidade para a fabricação de produtos “Ex” especifica as informações e os requisitos específicos para o estabelecimento e manutenção de um sistema de gestão da qualidade para a fabricação de equipamentos e componentes “Ex”, de acordo com a sua certificação. Embora este documento não dispense a utilização de outros sistemas de gestão da qualidade que sejam compatíveis com os objetivos da NBR ISO 9001:2015 e que proporcionem resultados equivalentes, os requisitos mínimos são apresentados neste documento.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feito o controle de processos, produtos e serviços providos externamente?

Qual deve ser o tipo e extensão do controle?

O que deve ser feito em relação à informação para provedores externos?

Qual deve ser o procedimento para a identificação e rastreabilidade?

Esse documento especifica os requisitos para um sistema de gestão da qualidade que possa ser utilizado por uma organização para a fabricação de equipamentos, componentes e sistemas “Ex”. Pode ser utilizado também por terceiras partes, incluindo organismos de certificação, para avaliar a capacidade de uma organização de atender aos requisitos do sistema de avaliação da conformidade ou requisitos legais. A aplicação desta norma é destinada a abranger tanto equipamentos elétricos como não elétricos, sistemas de proteção, dispositivos de segurança, componentes “Ex” e suas combinações.

O conteúdo detalhado (por exemplo, anexos) é normalmente focado em documentos existentes. Os requisitos da qualidade de fabricantes representam parte integrante da maioria de sistemas de certificação e, como tal, este documento foi elaborado considerando os requisitos do sistema de certificação IECEx para equipamentos. Este documento é destinado a ser utilizado como suporte aos requisitos do sistema de certificação para atmosferas explosivas da Diretiva ATEX, para o sistema de gestão da qualidade dos fabricantes, e pode ser aplicado em sistemas nacionais ou regionais de certificação que sejam relacionados à fabricação de equipamentos, componentes e sistemas com tipos de proteção “Ex”. No Anexo D é apresentada uma matriz de correlação em relação aos requisitos da NBR ISO/IEC 80079-34:2014 e desta NBR ISO/IEC 80079-34:2020.

No item entendendo a organização e o seu contexto, a NBR ISO 9001:2015, 4.1, se aplica, com a seguinte adição: em relação a este documento, o contexto da organização deve assegurar que o produto “Ex” esteja de acordo com o seu certificado Ex e com a documentação técnica. No item sistema de gestão da qualidade e seus processos, a NBR ISO 9001:2015, 4.4, se aplica com a seguinte adição: o sistema de gestão da qualidade deve assegurar que o produto “Ex” esteja de acordo com o tipo descrito no certificado e na documentação técnica.

No item papéis, responsabilidades e autoridades organizacionais, a NBR ISO 9001:2015, 5.3, se aplica com a seguinte adição: pessoal “Ex” autorizado deve ser apontado com autoridade e responsabilidades estabelecidas e documentadas para assegurar que os seguintes requisitos sejam atendidos: a coordenação efetiva das atividades relacionadas aos produtos “Ex”; o contato com o emissor do certificado “Ex” (quando não emitido pelo fabricante) em relação a qualquer proposta de alteração do projeto especificado no certificado “Ex” e na documentação técnica; o contato com o organismo de certificação responsável pela verificação do sistema de gestão da qualidade em relação à atualização pretendida do sistema de gestão da qualidade. Não é prático para o fabricante informar ao organismo responsável a verificação do sistema de gestão da qualidade toda vez que o sistema for atualizado. É apenas prático informar sobre atualizações significativas do sistema de gestão da qualidade, relevantes para o tipo de proteção.

De forma similar, não é prático especificar, em termos gerais, quais os tipos de atualização que são ou não são significativos. Portanto, é recomendado que o fabricante informe ao organismo responsável a verificação do sistema de gestão da qualidade sobre qualquer atualização do sistema de gestão da qualidade que tenha consequências sobre a conformidade dos produtos. A mudança do pessoal “Ex” autorizado é considerada uma alteração significativa.

Acrescentar que a autorização para a aprovação inicial e as alterações de desenhos relacionados, se apropriado; a autorização de concessões (ver 8.7 f); a exatidão das informações relevantes em relação ao produto “Ex”, fornecidas pelo cliente para qualquer literatura comercial, e instruções de instalação (as quais devem incluir as condições específicas aplicáveis de utilização e quaisquer relações de limitações). Os números de certificados com um sufixo “X” contêm condições específicas de utilização.

Os números de componentes certificados (com um sufixo “U”) podem conter relações de limitações. Agregar que a coordenação efetiva dos processos de fabricação em relação aos produtos “Ex”, incluindo produtos fornecidos externamente, serviços e processos detalhados em 8.4; no caso de um fabricante com múltiplas instalações de fabricação, uma pessoa “Ex” autorizada com responsabilidades pertinentes deve ser indicada para cada instalação. Os registros evidenciando isto devem estar disponíveis e ser mantidos como informação documentada.

No item recursos de monitoramento e medição, a NBR ISO 9001:2015, 7.1.5, se aplica com a seguinte adição: quando o monitoramento ou a medição é utilizado para verificar a conformidade de produtos “Ex”, o equipamento de medição deve ser calibrado e um certificado válido dessa calibração deve existir. A verificação de equipamento de medição contra equipamento calibrado é permitida, contanto que seja corretamente documentada.

O certificado de calibração deve atender a um dos seguintes requisitos descritos. Quando um certificado de calibração ostentar o logotipo de acreditação de um laboratório de calibração acreditado (que demonstre que suas operações estão de acordo com as normas reconhecidas internacionalmente e estão cobertas por um acordo internacional multilateral), o laboratório de calibração não está sujeito a uma avaliação adicional.

Quando o certificado de calibração não ostentar o logotipo de acreditação de uma autoridade de acreditação nacional, cada certificado de calibração deve incluir no mínimo as seguintes informações: uma identificação não ambígua do item calibrado; evidência de que as medições são rastreáveis a padrões de medição nacionais ou internacionais; o método de calibração; uma declaração de conformidade com qualquer especificação aplicável; os resultados da calibração; a incerteza da medição, quando aplicável; as condições ambientais, quando necessário; a data de calibração; a assinatura da pessoa, sob cuja autoridade o certificado foi emitido; o nome e o endereço da organização emissora e a data de emissão do certificado; e uma identificação única do certificado de calibração.

Quando o certificado de calibração não contiver o logotipo de acreditação de uma autoridade de acreditação nacional ou não contiver as informações relacionadas na NBR ISO 9001:2015, 7.1.5 b), o fabricante deve demonstrar uma relação válida a padrões de medição nacionais ou internacionais, ou de acordo com outros meios (por exemplo, um documento de avaliação do laboratório).

Para o controle de informação documentada, a NBR ISO 9001:2015, 7.5.3, se aplica com a seguinte adição: a documentação técnica e a documentação do fabricante devem ser controladas; os procedimentos documentados devem assegurar que as informações contidas na documentação do fabricante sejam compatíveis com a documentação técnica. O fabricante não pode, inicialmente, aprovar ou, subsequentemente, alterar os desenhos relacionados, a menos que estejam em conformidade com os documentos da certificação.

Além disso, o sistema de gestão da qualidade deve assegurar que nenhum fator (tipo, característica, posição etc.) especificado no certificado do produto “Ex” e na documentação técnica (por exemplo, desenhos de certificação) seja modificado, a menos que permitido pelo emissor do certificado. Deve haver um sistema documentado que referencie todos os desenhos relacionados aos documentos pertinentes da certificação e quando existirem desenhos de certificação associados a mais de um certificado de produto “Ex, deve haver um sistema documentado para assegurar ações simultâneas e suplementares em caso de alterações nesses documentos; Alguns fabricantes utilizam os mesmos componentes com desenhos de mesmo número em mais de um produto que possuem mais de uma pessoa responsável para os produtos acabados.

Um sistema de gestão da qualidade compatível assegura que a mudança do componente para um produto não seja implementada sem a aprovação das pessoas responsáveis para todos os produtos acabados que utilizam aquele componente. Quando o fabricante também possui desenhos para equipamentos não destinados à utilização em atmosferas explosivas, deve possuir um sistema para identificar claramente tanto os desenhos relacionados quanto os de certificação; Os exemplos a seguir indicam alguns métodos de identificação: a utilização de marcações visuais; a utilização de uma única série de números de desenhos, por exemplo, todos os desenhos de produtos certificados possuem um prefixo “Ex” no número do desenho; pode também ser aceitável a utilização de um banco de dados computadorizado contendo a correlação de “listas de materiais” que identifique todos os documentos dos componentes “Ex” críticos e que controle alterações não autorizadas.

O fabricante deve documentar o organismo responsável pela verificação do sistema de gestão da qualidade de cada certificado de conformidade “Ex”. Em alguns esquemas de certificação, o organismo responsável pela verificação do sistema de gestão da qualidade associado a cada certificado “Ex” pode ser diferente do organismo que emitiu o certificado de conformidade “Ex” e, portanto, necessita ser claramente identificado.

Quando os documentos técnicos ou do fabricante são fornecidos a terceiros, esses documentos devem ser fornecidos de forma a não causar uma interpretação errônea. O fabricante deve possuir um sistema documentado para verificar anualmente a validade de todos os documentos relativos aos certificados de conformidade “Ex”, normas, regulamentos e outros documentos de origem externa. O fabricante deve manter os registros da qualidade adequados para demonstrar a conformidade dos produtos “Ex”. É requerido uma retenção de no mínimo dez anos após a colocação do produto “Ex” (lote) no mercado.

A lista dos registros da qualidade que requerem controle e retenção, onde aplicável, no mínimo deve ser: aqueles exigidos por requisitos regulatórios; a informação documentada sobre a qualidade; as responsabilidades e autoridades para a designação e comunicação com a organização de funções relevantes aos produtos “Ex”; os pedidos de clientes; a análise crítica do contrato; os registros de treinamento; as alterações e o desenvolvimento do projeto; os dados de inspeção e ensaio (por lote); os dados da calibração; a rastreabilidade da fabricação; a avaliação dos provedores externos; os dados de expedição (cliente, data de saída e quantidade, incluindo números de série quando disponíveis); e outras informações documentadas, se necessárias.

Os requisitos para os equipamentos elétricos de máquinas

Conheça os requisitos dos equipamentos e sistemas elétricos, eletrônicos e eletrônicos programáveis para máquinas não transportáveis à mão durante o trabalho, incluindo um grupo de máquinas que trabalham em conjunto de forma coordenada.

A NBR IEC 60204-1 de 07/2020 – Segurança de máquinas — Equipamentos elétricos de máquinas – Parte 1: Requisitos gerais se aplica aos equipamentos e sistemas elétricos, eletrônicos e eletrônicos programáveis para máquinas não transportáveis à mão durante o trabalho, incluindo um grupo de máquinas que trabalham em conjunto de forma coordenada. É uma norma de aplicação e não se destina a limitar ou inibir o avanço tecnológico. Nesta parte, o termo elétrico inclui assuntos elétricos, eletrônicos e eletrônicos programáveis (ou seja, equipamentos elétricos, significa equipamentos elétricos, eletrônicos e eletrônicos programáveis). No seu contexto, o termo pessoa refere-se a qualquer indivíduo e inclui as pessoas que são designadas e instruídas pelo usuário ou seu (s) representante (s) no uso e cuidado da máquina em questão.

Os equipamentos abrangidos por esta parte começam no ponto de conexão da alimentação ao equipamento elétrico da máquina. Os requisitos para a instalação de alimentação elétrica são fornecidos na série IEC 60364. Esta parte se aplica aos equipamentos elétricos ou partes dos equipamentos elétricos que operam com tensões nominais de alimentação não superiores a 1.000 V para corrente alternada (ca) e não superiores a 1.500 V para corrente contínua (cc), e com frequências nominais de alimentação não superiores a 200 Hz. Informações sobre equipamentos elétricos ou partes dos equipamentos elétricos que operam com tensões nominais de alimentação mais elevadas podem ser encontradas na IEC 60204-11.

Esta parte não abrange todos os requisitos (por exemplo, proteção, travamento ou controle) que são necessários ou requeridos por outras normas ou regulamentos, a fim de proteger as pessoas dos perigos, exceto perigos elétricos. Cada tipo de máquina tem requisitos únicos a serem acomodados para fornecer segurança adequada. Inclui especificamente, porém não é limitada a equipamentos elétricos de máquinas para montagem de peças ou de componentes ligados entre si, em que pelo menos um deles se move, com os atuadores apropriados da máquina, circuitos de comando e potência agrupados de forma a atender a uma aplicação específica, em particular para o processamento, tratamento, movimento ou empacotamento de um material.

O Anexo C lista exemplos de máquinas cujos equipamentos elétricos podem ser abrangidos por esta parte que não especifica requisitos adicionais e especiais que podem ser aplicados aos equipamentos elétricos de máquinas que, por exemplo: se destinam ao uso ao ar livre (ou seja, fora das edificações ou outras estruturas de proteção); utilizam, processam ou produzem material potencialmente explosivo (por exemplo, tinta ou serragem); se destinam ao uso em atmosferas potencialmente explosivas e/ou inflamáveis; têm riscos especiais ao produzir ou utilizar determinados materiais; se destinam ao uso em minas; são máquinas, unidades e sistemas de costura (que são abrangidas pela IEC 60204-31); são máquinas de içamento (que são abrangidas pela IEC 60204-32); são equipamentos de fabricação de semicondutores (que são abrangidos pela IEC 60204-33). Os circuitos de energia onde a energia elétrica é utilizada diretamente como uma ferramenta de trabalho são excluídos desta parte.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são as abreviaturas usadas nessa norma?

Qual (is) o (s) meio (s) de operação do dispositivo de seccionamento da alimentação?

Quais são os dispositivos para remoção de energia para prevenção contra partida inesperada?

Quais são os dispositivos para isolamento do equipamento elétrico?

Essa norma provê os requisitos e as recomendações relativos ao equipamento elétrico de máquinas, de modo a promover a segurança de pessoas e da propriedade; a consistência da resposta do controle; a facilidade de operação e manutenção. Mais orientações sobre o uso desta parte são fornecidas no Anexo F. A figura abaixo foi fornecida como um auxílio para a compreensão da inter-relação dos vários elementos de uma máquina e seus equipamentos associados. É um diagrama de blocos de uma máquina típica e equipamentos associados que mostram os vários elementos dos equipamentos elétricos tratados nesta parte. Os números entre parênteses () referem-se às Seções e Subseções nesta parte.

É entendido na figura abaixo que todos os elementos obtidos em conjunto, incluindo os dispositivos de segurança, ferramental/dispositivo, software e documentação, constituem a máquina e que uma ou mais máquinas que trabalham em conjunto, geralmente com pelo menos um nível de controle de supervisão, constituem uma célula ou sistema de manufatura. Esta norma especifica os requisitos para o equipamento elétrico de máquinas. Os riscos associados aos perigos pertinentes ao equipamento elétrico devem ser avaliados como parte dos requisitos gerais para apreciação de riscos da máquina. Isto vai identificar a necessidade para redução dos riscos; e determinar as reduções adequadas dos riscos; e determinar as medidas de proteções necessárias para as pessoas que podem estar expostas a esses perigos, mantendo ainda um desempenho apropriado da máquina e seus equipamentos.

As situações perigosas podem resultar das, mas não estão limitadas às, seguintes causas: falhas ou defeitos no equipamento elétrico, resultando na possibilidade de choque elétrico, arco elétrico ou incêndio; falhas ou defeitos nos circuitos de controle (ou componentes e dispositivos associados a esses circuitos), resultando no mau funcionamento da máquina; perturbações ou interrupções nas fontes de alimentação, bem como falhas ou defeitos nos circuitos de energia, resultando no mau funcionamento da máquina; perda da continuidade dos circuitos que pode resultar em uma falha de uma função de segurança, por exemplo, aquela que depende de contatos deslizantes ou giratórios; as perturbações elétricas, por exemplo, eletromagnéticas, eletrostáticas externas ao equipamento elétrico ou geradas internamente, resultando no mau funcionamento da máquina; liberação de energia armazenada (elétrica ou mecânica), resultando em, por exemplo, choque elétrico, movimento inesperado que pode provocar lesões; ruído acústico e vibração mecânica em níveis que provoquem problemas de saúde às pessoas; temperaturas da superfície que podem provocar lesões. As medidas de segurança são uma combinação das medidas incorporadas na fase de projeto e das medidas requeridas a serem implementadas pelo usuário.

O processo de projeto e desenvolvimento deve identificar os perigos e os riscos dele decorrentes. Quando os perigos não puderem ser removidos e/ou os riscos não puderem ser suficientemente reduzidos por medidas de segurança inerentes ao projeto, medidas de proteção (por exemplo, dispositivos de proteção) devem ser fornecidas para reduzir o risco. Medidas adicionais (por exemplo, meios informativos) devem ser fornecidas quando uma redução de risco adicional for necessária.

Além disso, os procedimentos de trabalho que reduzam o risco podem ser necessários. É recomendado que, quando o usuário for conhecedor do tipo de máquina ou da aplicação, o Anexo B seja utilizado para facilitar a troca de informações entre o usuário e o (s) fornecedor (es) sobre as condições básicas e especificações adicionais do usuário relativas ao equipamento elétrico. Essas especificações adicionais podem fornecer características adicionais que dependem do tipo de máquina (ou grupo de máquinas) e da aplicação; facilitar a manutenção e o reparo; e melhorar a confiabilidade e a facilidade de operação.

Os componentes e dispositivos elétricos devem ser adequados para o seu uso pretendido; e estar em conformidade com as normas IEC aplicáveis, caso existam; e ser aplicados de acordo com as instruções do fornecedor. O equipamento elétrico deve ser adequado para as condições ambientais físicas e operacionais de seu uso devido. Os requisitos a seguir abrangem as condições ambientais e operacionais físicas da maioria das máquinas abrangidas por esta parte. Quando as condições especiais forem aplicadas ou os limites especificados forem excedidos, uma troca de informações entre o usuário e o fornecedor pode ser necessária.

O equipamento elétrico não pode gerar perturbações eletromagnéticas acima dos níveis que são apropriados para o seu devido ambiente operacional. Além disso, o equipamento elétrico deve ter um nível de imunidade suficiente às perturbações eletromagnéticas, de modo que ele possa funcionar no seu devido ambiente. Os ensaios de imunidade e/ou emissões são requeridos no equipamento elétrico, a menos que as seguintes condições sejam atendidas: os dispositivos e componentes incorporados estejam em conformidade com os requisitos de EMC para o ambiente de EMC pretendido especificado na norma aplicável do produto (ou outras normas, quando não existir a norma do produto); a instalação e a fiação elétrica sejam consistentes com as instruções fornecidas pelo fornecedor dos dispositivos e componentes em relação às influências mútuas (cabeamento, blindagem, aterramento, etc.) ou com o Anexo H informativo, se essas instruções não estiverem disponíveis no fornecedor.

As normas genéricas de EMC da IEC 61000-6-1 ou IEC 61000-6-2 e IEC 61000-6-3 ou IEC 61000-6-4 fornecem limites gerais de emissões e imunidade de EMC. O equipamento elétrico deve ser capaz de operar corretamente à temperatura ambiente pretendida do ar. O requisito mínimo para todo o equipamento elétrico operar corretamente em temperaturas ambiente do ar, fora dos invólucros (gabinete ou caixa), é entre + 5 °C e + 40 °C.

O equipamento elétrico deve ser capaz de operar corretamente quando a umidade relativa não exceder 50 % a uma temperatura máxima de + 40 °C. Umidades relativas mais elevadas são permitidas em temperaturas mais baixas (por exemplo, 90 % a 20 °C). Os efeitos nocivos da condensação ocasional devem ser evitados no projeto do equipamento ou, quando necessário, por medidas adicionais (por exemplo, aquecedores embutidos, condicionadores de ar, furos de drenagem).

O equipamento elétrico deve ser capaz de operar corretamente em altitudes de até 1.000 m acima do nível médio do mar. Para o equipamento a ser utilizado em altitudes mais elevadas, é necessário levar em consideração a redução: da rigidez dielétrica; e da capacidade de chaveamento dos dispositivos; e do efeito de resfriamento do ar. É recomendado que o fabricante seja consultado sobre os fatores de correção a serem utilizados quando esses fatores não forem fornecidos nos dados do produto.

O equipamento elétrico deve ser adequadamente protegido contra a penetração de sólidos e líquidos. O equipamento elétrico deve ser adequadamente protegido contra contaminantes (por exemplo, poeira, ácido, gases corrosivos, sais) que possam estar presentes no ambiente físico em que o equipamento elétrico vai ser instalado. Quando o equipamento for submetido à radiação (por exemplo, micro-ondas, raio ultravioleta, raio laser, raio X), medidas adicionais devem ser tomadas para evitar o mau funcionamento do equipamento e a deterioração acelerada da isolação.

Os efeitos indesejáveis de vibração, choque e impacto (incluindo os gerados pela máquina, pelo equipamento associado e pelo ambiente físico) devem ser evitados pela seleção do equipamento adequado, instalando-o distante da máquina, ou pelo fornecimento de suportes antivibração. O equipamento elétrico deve ser projetado para resistir, ou precauções adequadas devem ser tomadas para proteger contra os efeitos do transporte e das temperaturas de armazenamento dentro da faixa de –25 °C a +55 °C e por curtos períodos não superiores a 24 h em até +70 °C. Meios adequados devem ser fornecidos para evitar danos de umidade, vibração e choque.

Os equipamentos elétricos, incluindo cabos isolados de PVC, são suscetíveis a danos em baixas temperaturas. O equipamento elétrico pesado e volumoso que tenha que ser removido da máquina para transporte ou que seja independente da máquina deve ser fornecido com meios adequados para o manuseio, incluindo, quando necessário, meios para manuseio por gruas ou equipamento similar. É recomendado que, quando possível, o equipamento elétrico de uma máquina seja conectado a uma única alimentação de entrada.

Quando outra alimentação for necessária para certas partes do equipamento (por exemplo, equipamentos eletrônicos que operam em uma tensão diferente), convém que essa alimentação seja derivada, na medida do possível, dos dispositivos (por exemplo, transformadores, conversores) que fazem parte do equipamento elétrico da máquina. Para máquinas de grande porte complexas, pode haver a necessidade de mais de uma alimentação de entrada, dependendo das disposições de alimentação no local. A menos que um plugue seja fornecido com a máquina para a conexão à alimentação, é recomendado que os condutores de alimentação terminem no dispositivo de seccionamento da alimentação.

Quando um condutor neutro for utilizado, ele deve ser claramente indicado na documentação técnica da máquina, como no diagrama de instalação e no diagrama do circuito, e um terminal isolado separado, marcado com a letra N, de acordo com 16.1, deve ser fornecido para o condutor neutro. O terminal neutro pode ser fornecido como parte do dispositivo de seccionamento da alimentação. Não pode haver conexão alguma entre o condutor neutro e o circuito de proteção dentro do equipamento elétrico.

Exceção: uma conexão pode ser efetuada entre o terminal neutro e o terminal PE no ponto da conexão do equipamento elétrico a um sistema de alimentação TN-C. Para máquinas fornecidas de fontes paralelas, os requisitos da IEC 60364-1 para sistemas de fonte múltipla se aplicam. Os terminais para a conexão da alimentação de entrada devem ser claramente identificados de acordo com a IEC 60445.

O terminal para o condutor de proteção externo deve ser identificado como um terminal para conexão do condutor de proteção externo, ou seja, para cada alimentação de entrada, um terminal deve ser fornecido no mesmo compartimento associado aos terminais do condutor de linha para conexão da máquina ao condutor de proteção externa. O terminal deve ser de uma dimensão que permita a conexão de um condutor de proteção externa de cobre, com uma área de seção transversal determinada em relação à seção dos condutores de linha associados, de acordo com a tabela abaixo.

Quando um condutor de proteção externa de um material diferente do cobre for utilizado, a dimensão e o tipo do terminal devem ser selecionados adequadamente. Em cada ponto de alimentação de entrada, o terminal para conexão do condutor de proteção externa deve ser marcado ou identificado com as letras PE (ver IEC 60445). Um dispositivo de seccionamento da alimentação deve ser fornecido: para cada alimentação de entrada da(s) máquina(s). A alimentação de entrada pode ser conectada diretamente ao dispositivo de seccionamento da alimentação da máquina ou ao dispositivo de seccionamento da alimentação de um sistema alimentador da máquina.

Os sistemas alimentadores de máquinas podem incluir fios condutores, barras condutoras, conjuntos de anéis coletores, sistemas de cabos flexíveis (carretéis, polias) ou sistemas de alimentação elétrica por indução. Para cada alimentação elétrica embarcada, o dispositivo de seccionamento da alimentação deve seccionar (isolar) o equipamento elétrico da máquina da alimentação elétrica quando requerido (por exemplo, para intervenções na máquina, incluindo o equipamento elétrico).

Quando dois ou mais dispositivos de seccionamento da alimentação forem fornecidos, intertravamentos de proteção para a sua operação correta também devem ser fornecidos, a fim de evitar situações perigosas, incluindo danos à máquina ou ao trabalho em andamento. O dispositivo de seccionamento da alimentação deve ser de um dos seguintes tipos: interruptor-seccionador, com ou sem fusíveis, de acordo com a NBR IEC 60947-3, categoria de uso AC-23B ou DC-23B; dispositivo de manobra para controle e proteção adequado para isolamento, de acordo com a IEC 60947-6-2; um disjuntor adequado para isolamento de acordo com a NBR IEC 60947-2; qualquer outro dispositivo de manobra de acordo com uma norma IEC de produto para esse dispositivo e que atenda aos requisitos de isolamento e à categoria de uso apropriada e/ou aos requisitos de durabilidade especificados definidos na norma de produto; uma combinação de plugue/tomada para uma alimentação por cabo flexível.

Os equipamentos de manobra e comando em corrente alternada

Salvo especificação em contrário, é previsto que os equipamentos de manobra e comando de alta tensão, incluindo os dispositivos de manobra e equipamentos auxiliares que formam parte integrante, sejam utilizados de acordo com as suas características nominais e nas condições normais de serviço descritas nessa norma.

A NBR IEC 62271-1 de 06/2020 – Manobra e comando de alta tensão – Parte 1: Especificações comuns para equipamentos de manobra e comando em corrente alternada é aplicável aos equipamentos de manobra e comando em corrente alternada, previstos para instalação abrigada e/ou ao tempo e para funcionar nas frequências de serviço até e incluindo 60 Hz e tensões nominais superiores de 1.000 V. É aplicável a todos os equipamentos de manobra e comando de alta tensão, salvo especificação contrária nas normas IEC particulares para os tipos específicos de equipamentos de manobra e comando. Para a utilização deste documento, alta tensão é definida como a tensão nominal superior a 1.000 V. Entretanto, o termo média tensão é normalmente utilizado para sistemas de distribuição com tensões superiores a 1 kV e geralmente é aplicada às tensões inferiores ou iguais a 52 kV.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a faixa I para tensões nominais inferiores ou iguais a 245 kV?

Quais são os níveis de isolamento nominais para as tensões nominais da faixa I, série I?

Quais são os níveis de isolamento nominal para tensões nominais da faixa II?

Quais os fatores de pico para corrente admissível nominal?

Salvo especificação em contrário, é previsto que os equipamentos de manobra e comando de alta tensão, incluindo os dispositivos de manobra e equipamentos auxiliares que formam parte integrante, sejam utilizados de acordo com as suas características nominais e nas condições normais de serviço descritas abaixo. O funcionamento nas condições normais de serviço é considerado coberto pelos ensaios de tipo de acordo com esta norma e com a norma de produto correspondente.

As condições normais de serviço para os equipamentos de manobra e comando para uso abrigado são: a temperatura ambiente não excede 40 °C e o seu valor médio, medido em um período de 24 h, não excede 35 °C e a temperatura ambiente não decresce abaixo de – 5 °C; a influência da radiação solar não existe; a altitude não excede 1.000 m; o ar ambiente não é poluído significativamente por poeira, fumaça, gás corrosivo e/ou gás inflamável, vapores ou sal, e seria considerado como tendo uma classe de severidade de poluição local (SPS) muito leve, de acordo com a IEC TS 60815-1:2014; as condições de umidade são as seguintes: o valor médio da umidade relativa, medida em um período de 24 h, não excede 95%; o valor médio da pressão de vapor d’água, medida em um período de 24 h, não excede 2,2 kPa; o valor médio da umidade relativa, medida em um período de um mês, não excede 90%; o valor médio da pressão de vapor d’água, medida em um período de um mês, não excede 1,8 kPa.

Pode ocorrer condensação onde houver mudanças bruscas de temperatura durante períodos de alta umidade. Uma umidade elevada pode ser causada pelas águas de chuva ao nível do solo ou para aplicações subterrâneas, a partir de bandejas de cabos de entrada que estão conectados ao equipamento de manobra. Além disso, devem ser levadas em consideração as vibrações devido a causas externas ao equipamento de manobra e comando ou tremores de terra não excedem o impacto das vibrações causadas pela manobra do próprio equipamento.

As condições normais de serviço para os equipamentos de manobra e comando para uso ao tempo são: a temperatura ambiente não excede 40°C e o seu valor médio, medido em um período de 24 h, não excede 35°C; a temperatura ambiente não é inferior a – 25 °C. As variações rápidas da temperatura podem ocorrer, por exemplo, em um dia ensolarado seguido por uma chuva repentina. Não se esquecer que a radiação solar não exceda o nível de 1.000 W/m²; a altitude não exceda a 1.000 m; o ar ambiente pode estar poluído por poeira, fumaça, gás corrosivo, vapores ou sal; a poluição não excede a classe de severidade de poluição local (SPS) média, como definido pela IEC TS 60815-1:2014; a camada de gelo não exceda a 20 mm; a velocidade do vento não excede 34 m/s. As características do vento são definidas na IEC 60721-2-2.

Lembrar que os valores médios de umidade indicados podem ser excedidos. Pode ocorrer condensação ou precipitação. As características de precipitação são definidas na IEC 60721-2-2. As condições de umidade sempre resultam de uma combinação da umidade relativa com outros parâmetros ambientais, principalmente temperatura e variações rápidas da temperatura. As vibrações devido a causas externas do equipamento de manobra e comando ou tremores de terra não devem exceder o impacto das vibrações causadas pela manobra do próprio equipamento.

Quando se espera que o equipamento de manobra e comando de alta tensão seja utilizado em condições diferentes das condições normais de serviço dadas em 4.1, convém que os requisitos do usuário se refiram às condições normalizadas, caso não sejam previstas pelas normas do produto. As ações apropriadas são tomadas para assegurar o funcionamento apropriado nas condições de outros componentes, como relés. Informações detalhadas relativas à classificação das condições ambientais são indicadas nas IEC 60721-3-3 (abrigado) e IEC 60721-3-4 (ao tempo).

Para instalações a uma altitude superior a 1.000 m, o nível suportável de isolamento requerido para a isolação externa no local de utilização deve ser determinado conforme a IEC 60071-2:1996, Seção 4. Convém que o nível de isolamento nominal do equipamento de manobra e comando seja igual ou superior a esse valor; referência é feita à IEC TR 62271 306. Para a isolação interna, as características dielétricas são idênticas, qualquer que seja a altitude, e não é necessária precaução especial alguma.

Para isolações interna e externa, consultar a IEC 60071-2:1996. Para equipamentos auxiliares e de comando de baixa tensão, não é necessária precaução especial alguma a ser tomada, se a altitude for inferior a 2.000 m. Para altitudes superiores, consultar a IEC 60664-1. Para aplicações ao tempo, convém que o ar ambiente, que pode estar poluído por poeira, fumaça, gás corrosivo, vapores ou sal a um nível superior à classe de severidade da poluição local (SPS) “média” conforme definido pela IEC TS 60815-1:2014, seja classificado como “pesado” ou “muito pesado” conforme definido pela IEC TS 60815-1:2014.

Para aplicações abrigadas, convém que o ar ambiente, que pode estar poluído por poeira, fumaça, gás corrosivo, vapores ou sal, a um nível superior à classe de severidade da poluição local (SPS) “muito leve”, conforme definido pela IEC TS 60815-1:2014, seja classificado como “leve”, “médio”, “pesado” ou “muito pesado”, conforme definido pela IEC TS 60815-1:2014. Mais informações sobre exposição à poluição podem ser encontradas no Anexo K (informativo). Para aplicações abrigadas de tensão inferior ou igual a 52 kV, a especificação IEC TS 62271 304 pode ser utilizada, principalmente se houver preocupações em relação à poluição da isolação do equipamento de manobra.

Para instalação em local onde a temperatura ambiente pode estar fora da faixa das condições normais de serviço descritas, convém que as faixas preferenciais de temperaturas mínima e máxima a especificar sejam: – 50 °C a 40 °C para climas extremamente frios; – 40 °C a 40 °C para climas muito frios; – 30 °C a 40 °C para climas frios; – 25 °C a 40 °C para climas frios (instalações abrigadas); – 15 °C a 40 °C para climas moderados (instalações abrigadas); – 5 °C a 55 °C para climas muito quentes. Em instalações abrigadas, em um clima tropical, o valor médio de umidade relativa, medido em um período de 24 h, pode ser de até 98%. Em certas regiões onde os ventos quentes e úmidos são frequentes, variações bruscas de temperatura e/ou de pressão atmosférica podem ocorrer.

O equipamento de manobra e comando normalizado é projetado para montagem em estruturas praticamente niveladas, livre de vibrações, de impactos ou de inclinações excessivas. Se nenhuma destas condições normalizadas existir, convém que o usuário especifique os requisitos particulares. Para instalações sujeitas a abalos sísmicos, o usuário deve especificar o nível de severidade de acordo com a publicação ou especificação aplicável (por exemplo, IEC TR 62271-300, IEC 62271-207 e IEC TS 62271-210. Em caso de risco de abalo sísmico, convém que o usuário especifique os requisitos operacionais e o nível de dano admissível.

Instalações sujeitas a outras formas não comuns de vibração devem ser identificadas, como aquelas nas proximidades imediatas de uma explosão de mina ou aquelas de aplicações móveis. Outras aplicações pertinentes para avaliações sísmicas são as IEEE Standard 693 e IEEE Standard C37.81. Se for previsto que a velocidade do vento exceda a velocidade de 34 m/s nas condições normais de serviço, convém que o usuário especifique os requisitos para uma aplicação particular.

Quando as condições ambientais especiais prevalecerem no local onde o equipamento de manobra e comando estiver instalado, convém que o usuário as especifique com referência às IEC 60721-1, IEC 60721-2 (todas as partes) e IEC 60721-3 (todas as partes). As características nominais comuns dos equipamentos de manobra e comando atribuídas pelo fabricante, incluindo seus dispositivos de manobra e equipamentos auxiliares, devem ser selecionadas a partir das seguintes (se aplicável): tensão nominal (Ur); nível de isolamento nominal (Up, Ud e Us, se aplicável); frequência nominal (fr); corrente permanente nominal (Ir); corrente nominal de curta duração admissível (Ik); valor de pico da corrente admissível nominal (Ip); duração nominal do curto-circuito (tk); tensão nominal de alimentação dos circuitos auxiliares e de comando (Ua); frequência nominal de alimentação dos circuitos auxiliares e de comando; pressão de alimentação nominal de gás comprimido para sistemas de pressão controlada.

Outras características nominais podem ser necessárias e serão especificadas nas normas IEC de produto aplicáveis. As características nominais definem as especificações comuns de equipamentos de manobra e comando que são necessárias para seleção e utilização adequadas em uma determinada rede. Outras características importantes do equipamento de manobra e comando são definidas na Seção 3, como, por exemplo, a pressão funcional mínima de isolação. Algumas das quais estão indicadas na placa de identificação, sem serem, entretanto, características nominais.

Ainda que outras características se refiram à instalação, funcionamento e manutenção; elas não são consideradas características nominais, uma vez que estão relacionadas à tecnologia utilizada para o equipamento de manobra e comando. Os exemplos incluem o nível normal de preenchimento ou pressão (densidade) de preenchimento/alarme dos fluidos e estanqueidade para sistemas a líquidos, a gás e a vácuo.

O desempenho dos eletrodutos plásticos para instalações elétricas

Conheça os requisitos de desempenho para eletrodutos plásticos rígidos (até DN 110) ou flexíveis (até DN 40) e conexões (complementos dos eletrodutos) a serem estocados, transportados, instalados e aplicados permanentemente à temperatura entre – 5 °C e 60 °C. 

A NBR 15465 de 06/2020 – Sistemas de eletrodutos plásticos para instalações elétricas de baixa tensão — Requisitos de desempenho especifica os requisitos de desempenho para eletrodutos plásticos rígidos (até DN 110) ou flexíveis (até DN 40) e conexões (complementos dos eletrodutos) a serem estocados, transportados, instalados e aplicados permanentemente à temperatura entre – 5 °C e 60 °C. Os eletrodutos e as conexões contemplados por esta norma têm seção circular, e podem estar embutidos, enterrados ou aparentes. Estes eletrodutos e conexões são empregados em instalações elétricas de edificações alimentadas sob uma tensão nominal igual ou inferior a 1.000 V em corrente alternada, com frequências inferiores a 400 Hz, ou a 1.500 V em corrente contínua. Esta norma também é aplicável aos eletrodutos utilizados em linhas de sinal (telefonia, TV a cabo, etc.). Não é aplicável aos dutos corrugados de polietileno (PE) para infraestrutura.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as dimensões dos eletrodutos?

Qual deve ser a codificação de cores dos eletrodutos e suas conexões?

Quem deve realizar a inspeção de recebimento dos eletrodutos?

Qual deve ser a aparelhagem da verificação dimensional?

O eletroduto é um elemento de linha elétrica fechada, de seção circular ou não, destinado a conter condutores elétricos providos de isolação, permitindo tanto a enfiação como a retirada destes. Os eletrodutos são suficientemente fechados em toda a sua extensão, de modo que os condutores só possam ser instalados e/ou retirados por puxamento e não por inserção lateral. Já um sistema de eletrodutos sistema de elementos de linha elétrica fechada que consiste em eletrodutos e conexões para proteção e condução de condutores elétricos providos de isolação em instalações elétricas ou de linhas de sinal, permitindo que sejam removidos e/ou substituídos, mas não inseridos lateralmente. Os eletrodutos e as conexões são classificados quanto à resistência mecânica, conforme a tabela abaixo.

As aplicações dos eletrodutos e conexões das diversas classes de resistência mecânica e propagação de chama são limitadas ao disposto na tabela abaixo.

Os diâmetros externo e interno dos eletrodutos devem ser verificados de acordo com o Anexo A. 5.2.3 As roscas dos eletrodutos e conexões devem atender à NBR NM ISO 7-1. As profundidades mínimas das bolsas das conexões e dos eletrodutos devem ser de no mínimo 50% do diâmetro externo médio dos eletrodutos. As verificações devem ser realizadas de acordo com o Anexo A.

Qualquer que seja o tipo de acoplamento dos tubos com as conexões, a área interna para a passagem dos cabos não pode ser diminuída na junção das peças. As demais características dimensionais dos eletrodutos devem constar em normas específicas para cada tipo de produto. Para o aspecto visual, os eletrodutos e suas conexões devem apresentar as superfícies interna e externa isentas de irregularidades, saliências e reentrâncias, e não podem ter bolhas, rachaduras, vazios ou outros defeitos visuais que indiquem descontinuidade do material ou do processo de extrusão.

A inspeção das marcações é definida conforme a Seção 9. Os eletrodutos e suas conexões devem ter cor uniforme, sendo permitidas, entretanto, variações de nuance, devido às diferenças naturais de cor da matéria prima. Os eletrodutos e conexões a serem ensaiados devem ser condicionados por pelo menos 2 h à temperatura de (23 ± 3) °C e umidade relativa entre 40% e 60%. Todos os ensaios devem ser realizados imediatamente após o condicionamento.

Quando não especificado, a amostra deve ser considerada reprovada em relação a um determinado ensaio, se mais de um corpo de prova desta amostra apresentar falha. Se apenas um corpo de prova falhar, o ensaio deve ser repetido, sendo que, para a amostra ser considerada aprovada, nenhum corpo de prova deve apresentar falha. Os eletrodutos flexíveis, quando submetidos ao ensaio de verificação da resistência à curvatura constante no Anexo B, devem permitir a passagem do gabarito pelo corpo de prova pela ação de seu próprio peso, sem qualquer velocidade inicial, e não podem apresentar fissuras visíveis a olho nu. Este ensaio não é aplicável aos eletrodutos rígidos.

Para o ensaio à resistência à compressão, quando submetidos ao ensaio de verificação da resistência à compressão diametral constante no Anexo C, os eletrodutos não podem apresentar diferença entre o diâmetro inicial e o diâmetro sob carga superior a 25 % do diâmetro inicial. Após (60 ± 2) s da remoção da carga, esta diferença não pode ser superior a 10% do diâmetro externo medido antes do ensaio. Após o ensaio, os corpos de prova não podem apresentar quebras ou fissuras visíveis a olho nu.

Quando submetidos ao ensaio de verificação da resistência ao impacto constante no Anexo D, os eletrodutos não podem apresentar quebras, rachaduras ou trincas que permitam a passagem de luz entre os seus meios interior e exterior, em pelo menos nove dos 12 corpos de prova ensaiados. Este ensaio é aplicável apenas aos eletrodutos rígidos aparentes (cor cinza).

Quando submetidos ao ensaio de verificação da resistência ao calor constante no Anexo E, os eletrodutos devem permitir a passagem do gabarito pelo corpo de prova pela ação de seu próprio peso, sem qualquer velocidade inicial. Quando submetidos ao ensaio de verificação da resistência à chama constante no Anexo F, os corpos de prova não podem inflamar para a amostra ser considerada aprovada.

Se os corpos de prova queimarem ou forem consumidos sem queimar, a amostra é aprovada se os três corpos de prova atenderem a todos os requisitos a seguir: não pode haver combustão por mais de 30 s após a remoção da chama; após ter cessado a combustão e após o corpo de prova ter sido limpo com um pedaço de tecido embebido em água, a amostra não pode apresentar evidência de queima ou carbonização a menos de 50 mm de qualquer parte da pinça; e não pode ocorrer combustão do lenço de papel.

Quando os eletrodutos forem submetidos ao ensaio de verificação da rigidez dielétrica constante no Anexo G, não pode ocorrer passagem de corrente elétrica acima de 100 mA. Quando os eletrodutos forem submetidos ao ensaio de verificação da resistência do isolamento elétrico constante no Anexo G, a resistência de isolação não pode ser inferior a 100 MΩ. Quando submetidas ao ensaio de verificação da resistência ao impacto constante no Anexo D, as conexões aparentes não podem apresentar quebras, rachaduras ou trincas que permitam a passagem de luz entre os seus meios interior e exterior em pelo menos nove dos 12 corpos de prova ensaiados.

Os eletrodutos flexíveis devem ser fornecidos em bobinas de no máximo 100 m. Os eletrodutos rígidos devem ser fornecidos em barras de 3 m ou 6 m. Os comprimentos diferentes dos estabelecidos podem ser fornecidos mediante acordo entre o comprador e o fornecedor. Os eletrodutos devem trazer marcados ao longo de sua extensão, de forma legível e indelével, no mínimo o seguinte: nome ou marca de identificação do fabricante; diâmetro nominal; o termo: eletroduto; para eletrodutos flexíveis, a classe de resistência mecânica e os termos leve, médio ou pesado, conforme a classificação; para eletrodutos leves, a expressão: não embutir em laje ou enterrar; para eletrodutos propagantes de chama, a expressão: não usar aparente ou embutido em alvenaria; para eletrodutos azuis, a expressão: utilizar exclusivamente em linhas de sinal; código de rastreabilidade do lote; número desta norma; para eletrodutos rígidos, o tipo de junção (exceto para uso aparente).

O espaçamento máximo entre as marcações não pode ser superior a 1 m. As conexões devem trazer, de forma indelével, no mínimo o seguinte: nome ou marca de identificação do fabricante; diâmetro nominal; número desta norma. Nas embalagens das conexões devem constar, de forma legível, no mínimo as seguintes informações: nome ou marca de identificação do fabricante; diâmetro nominal; número desta norma; código de rastreabilidade do lote; quantidade de peças; para conexões propagantes de chama, a expressão: não usar aparente ou embutida em alvenaria.

IEEE 1248: o comissionamento de sistemas elétricos em usinas hidrelétricas

Essa norma é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

A IEEE 1248:2020 – Guide for the Commissioning of Electrical Systems in Hydroelectric Power Plants é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

Em resumo, o guia descreve os ensaios realizados e fornece os processos a serem seguidos durante o comissionamento de sistemas elétricos e de controle em usinas hidrelétricas. São fornecidas orientações sobre métodos a serem utilizados, organização e execução dos ensaios.

Embora o guia não forneça os procedimentos prescritivos específicos para instalações e equipamentos, os ensaios são descritos juntamente com os padrões de referência para obter mais informações. O comissionamento de equipamentos elétricos pode ser para uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização de equipamentos elétricos existentes.

Conteúdo da norma

1. Visão geral………………………. 10

1.1 Escopo………………………….. 10

1.2 Objetivo………………………. 10

1.3 Organização…………………… 10

2 Referências normativas………. 11

3 Definições, acrônimos e abreviações……………… …. 11

3.1 Definições………………………………………… 11

3.2 Acrônimos e abreviações……….. …………. 12

4. Planejamento, funções e responsabilidades do comissionamento…………………… 13

4.1 Planejamento…………………… 13

4.2 Proprietário……………………. 14

4.3 Empreiteiro……………………… 14

4.4 Engenheiro………………………. 15

4.5 Fabricante/fornecedor……………. 16

5. Fases do programa de comissionamento ……………. 16

5.1 Fase de ensaio de construção… …………………. 17

5.2 Fase de ensaio pré-operacional ………………. 18

5.3 Fase de ensaio operacional…………………. 18

5.4 Ensaio de desempenho.. …………………….. 19

6. Implementação do comissionamento….. …………… 19

6.1 Geral…………. ……………………………………. 19

6.2 Fase de conclusão da construção………. ………. 19

6.3 Fase de ensaio pré-operacional……….. ………….. 20

6.4 Fase de ensaio operacional e inicialização da unidade……………………. 21

6.5 Ensaio de desempenho……………………. 21

7. Aplicação deste guia……………………… 21

7.1 Geral…………………………………. 21

7.2 Usando este guia para desenvolver um programa de ensaio…………………….. 22

7.3 Coordenar ensaios de comissionamento de sistemas e unidades………………… 26

8. Equipamentos na planta……………………… 27

8.1 Lista de equipamentos e matrizes de ensaio….. …… 27

9. Descrições dos ensaios……………………… 64

9.1 Geral …………………………………….. 64

9.2 Ensaios de construção…………………….. 66

9.3 Ensaios pré-operacionais……………….. 101

9.4 Ensaios operacionais…………………….. 123

9.5 Ensaios de desempenho……………….. 137

10. Documentação………………………… 143

10.1 Manutenção de registros……………… 143

10.2 Documentação de engenharia ……….. 143

10.3 Documentação de fábrica… ……………… 143

10.4 Documentação no local…. ………………… 144

Anexo A (informativo) Bibliografia……… ……….. 145

A.1 Turbinas, geradores e motores……. ………. 145

A.2 Transformadores……………………………. 146

A.3 Reguladores………………………………. 147

A.4 Cabos e pista…… ……………………….. 147

A.5 Proteção e retransmissão……………….. 148

A.6 Excitação……………………………. 148

A.7 Isolamento…………………………… 148

A.8 Baterias, UPS e sistemas de energia em espera……… 149

A.9 Disjuntores, painéis, painéis e centros de controle de motores……………… 149

A.10 Controle e SCADA………………….. 150

A.11 Aterramento…………………………. 150

A.12 Definições, códigos, referências e tabelas………………. 151

A.13 Manutenção……….. …………………………….. 151

A.14 Proteção contra incêndio…………………… 151

A.15 Diversos………………………….. 152

Este guia foi desenvolvido para auxiliar os engenheiros envolvidos no comissionamento de equipamentos elétricos em relação ao seguinte: ensaios específicos de equipamentos elétricos; programa de ensaio para colocar o equipamento em operação; o comissionamento de equipamentos elétricos pode ser para o seguinte: uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização do equipamento existente.

O guia descreve o desenvolvimento de uma organização de inicialização, seguida de uma descrição do fases de comissionamento de uma usina hidrelétrica. As informações principais estão contidas no formato de matriz para cada tipo principal de equipamento elétrico, que identifica os vários ensaios associados ao equipamento. As informações são fornecidas para cada ensaio específico, incluindo o seguinte: uma breve descrição; documentos comprovativos; equipamento necessário; duração ou tempo necessário.

Com base nas informações acima, são fornecidas orientações para o planejamento, desenvolvimento e documentação de um programa de comissionamento. Este guia aborda a energia hidrelétrica convencional. Partes do guia são relevantes para instalações de armazenamento bombeado, mas os recursos exclusivos das instalações de armazenamento bombeado não são abordados especificamente.

O guia também contém uma bibliografia de normas do setor, práticas recomendadas e guias que podem ser usado como recursos pelo engenheiro envolvido no comissionamento de equipamentos elétricos. A listagem destina-se a auxiliar na preparação para o início de uma usina hidrelétrica ou para um ensaio específico. Uma revisão de documentos é incentivada.

Todos os ensaios devem ser feitos de acordo com as especificações do equipamento e contratos com referência e em conjunto com as normas pertinentes da indústria. A revisão mais recente das normas e os guias listados no Anexo A devem ser usados. Uma lista de documentos comprovativos, que inclui itens bibliográficos e documentos gerais, é fornecido para cada ensaio na Cláusula 9 deste guia.