A marcação digital dos produtos para a automação de processos industriais

A marcação digital de um produto pode ser lida eletronicamente, codificada em um meio de leitura óptico, um dispositivo do tipo transponder (transmitter-responder) de radiofrequência ou um firmware de produto. De forma diferente de uma marcação convencional, uma marcação digital não é diretamente lida por humanos, como os símbolos 2D, como o QR Code e Data Matrix, são exemplos de meios de marcação lidos opticamente. Os dispositivos de identificação por meio de transponders de radiofrequência (RFID – radio frequency identification) são exemplos de meios de marcação lidos eletronicamente.

Para citar um exemplo, nos casos de marcação digital de produtos Ex, devem ser adicionalmente atendidos os requisitos indicados na NBR IEC 60079-14, quando da utilização de transponders em áreas classificadas contendo atmosferas explosivas formadas por gases inflamáveis ou poeiras combustíveis. Os transponders passivos podem ser considerados equipamentos simples, de acordo com a NBR IEC 60079-14, sem a necessidade de certificação para atmosferas explosivas. As cargas eletrostáticas que possam ser acumuladas no transponder devem ser evitadas por medidas apropriadas de projeto, de acordo com a NBR IEC 60079-14.

Já a marcação digital em produtos modulares que, frequentemente, podem consistir em diversos componentes, que podem ser considerados separadamente. Isto significa que cada componente individual pode ter a sua própria marcação.

Nestes casos, somente um transponder, que contenha a marcação para o produto completo, pode ser afixado, como é tradicionalmente efetuado nos casos das marcações convencionais, no lado externo dos invólucros. Se um produto tivesse diversos transponders, uma única marcação não poderia ser assegurada. Se necessário, o transponder deve ser atualizado após os serviços de reparo, recuperação ou substituição de componentes.

O firmware é outra possibilidade de armazenamento de dados em uma marcação digital, no respectivo produto final, na forma de informações regulamentares, requeridas para serem acessíveis. Independentemente da tecnologia de exibição e de integração utilizada, os dados integrais devem ser armazenados permanentemente no firmware do produto.

Deve ser assegurado que as informações da marcação digital não possam ser alteradas pelo usuário e que a manipulação não seja possível (por meio de alterações indevidas). A marcação digital pode ser atualizada pelo fabricante, se necessário. Os dados somente podem ser lidos quando o produto estiver ligado, por exemplo, por meio de uma estrutura de menu interna e display integrado, ou por meio de uma interface de comunicação (por exemplo, interface WEB, interface de serviço, bluetooth ou I/O Link).

A NBR IEC 63365 de 05/2023 – Medição, controle e automação de processos industriais — Marcação digital é aplicável aos produtos utilizados na medição, controle e automação de processos industriais e estabelece o conceito e os requisitos para a marcação digital e apresenta soluções de leitura eletrônica (por exemplo, por meio de Códigos 2D, como os QR Codes, RFID ou firmware), alternativas às marcações convencionais, com textos simples sobre os produtos ou embalagens ou seus documentos. As informações das marcações digitais são contidas em meios lidos eletronicamente, afixados aos produtos, às embalagens dos produtos ou aos documentos que acompanham os produtos.

As informações das marcações digitais são disponíveis de forma offline, sem uma conexão com a internet. Após a leitura eletrônica, todas as informações das marcações digitais são mostradas na forma de texto, em uma tela ou display a ser lida por humanos. As marcações digitais também incluem um link de identificação, de acordo com a IEC 61406-1 (identification link), que proporciona informações adicionais dos produtos na forma online. Esta norma não especifica o conteúdo de marcações convencionais, que são sujeitas a regulamentos ou normas regionais ou nacionais.

O objetivo primário de uma marcação é identificar, de forma clara, os equipamentos, componentes, dispositivos e seus fabricantes. Requisitos legais de marcação ou símbolos de aprovação indicam a conformidade com os regulamentos para a colocação dos produtos no mercado, bem como para as suas utilizações de forma segura.

O projeto marcação digital foi iniciado em resposta às necessidades dos fabricantes de equipamentos com tipos de proteção “Ex” para instalação em atmosferas explosivas e pelos operadores ou proprietários de instalações de instrumentação, automação, telecomunicações, elétricas e mecânicas, em áreas classificadas. Um dos objetivos da marcação digital é assegurar que todas as informações necessárias possam ser marcadas nos equipamentos, particularmente considerando a grande quantidade de informações requeridas na área de equipamentos para atmosferas explosivas.

Os requisitos para a marcação de produtos “Ex” para os mercados globais têm se tornado tão extensivos que frequentemente não é mais possível incluir todas as informações requeridas sobre uma marcação convencional, especialmente para os produtos de menores dimensões, como, por exemplo, os sensores. Como exemplo, na Europa, diferentes Diretivas para os países da Comunidade Europeia e normas harmonizadas podem ser aplicáveis a um mesmo produto, como regulamentos sobre a segurança elétrica, proteção de equipamentos “Ex” para atmosferas explosivas, segurança para máquinas, segurança de equipamentos sobre pressão ou segurança de alimentos.

Se os produtos forem destinados à comercialização em diferentes países do mundo, marcações adicionais e símbolos de aprovação são requeridos, como, por exemplo, marcação internacional IECEx, marcação “Ex” para o mercado norte americano, marcação para o Reino Unido (UK CA), marcação EAC para a área econômica da Eurásia, marcação RCM para a Austrália ou marcação CCC para a China. Neste contexto, para a fabricação inteligente, é também requerido, no momento, que os produtos sejam identificados eletronicamente.

Os fabricantes dos equipamentos podem utilizar marcações com leitura por máquinas, no processo de produção, para controlar automaticamente o fluxo de material, utilizando, por exemplo, um código de barras. Os operadores ou proprietários podem facilmente identificar os produtos nas etapas de inspeções iniciais de recebimento.

Os engenheiros envolvidos com serviços de engenharia ou as autoridades responsáveis podem verificar, eletronicamente, todos os dados requeridos e as informações para uma adequada aplicação em particular e para utilização segura dos produtos. Um dos objetivos da marcação digital offline é a redução do espaço requerido pelas marcações convencionais.

Em longo prazo, é previsto que a marcação digital possa substituir os textos da marcação convencional, economizando um espaço significativo, especialmente em produtos de pequenas dimensões. Este documento descreve soluções para leituras eletrônicas, alternativas com as marcações convencionais, com texto e símbolos, na marcação de produtos, embalagens ou documentos.

Esta norma descreve as tecnologias de marcação que utilizam Códigos 2D (como o QR Code), transponders (como o RFID) ou o firmware dos produtos. No caso dos Códigos 2D ou transponders, os dados armazenados na marcação digital podem ser lidos por dispositivos comumente disponíveis no mercado, como, por exemplo, os smartphones.

Se os dados da marcação forem armazenados em um firmware do produto, a marcação pode ser mostrada, por exemplo, na tela ou no display do leitor ou escâner, ou os dados podem ser lidos remotamente, por meio de uma interface eletrônica. Além disto, a IEC 61406-1 (Identification link) apresenta os requisitos para uma identificação única de produtos, por meio de um link de identificação.

Aquela norma permite que os fabricantes apresentem todas as informações e dados, bem como os documentos relacionados a um produto, por meio de um endereço na internet, em um formato eletrônico. A documentação dos produtos, como informações técnicas, manuais de instalação, operação, manutenção, inspeção e recuperação, bem como os certificados de conformidade, pode ser obtida por meio de download da internet.

A IEC 61406-1 estabelece um código 2D ou RFID, o qual contém somente a identificação de um link, com caracteres limitados. Nesta norma a identificação do link é incluída como a primeira propriedade da marcação digital para o website do fabricante, seguida de propriedades detalhadas de marcação. Se uma conexão de internet for disponível para o website do fabricante, dados adicionais do produto e sua documentação podem ser acessados (gêmeo digital/digital twin).

Este documento é também destinado à elevação da aceitação das marcações digitais por parte dos organismos e entidades regulamentadoras. Um objetivo em médio e longo prazos é a substituição da marcação convencional por uma marcação digital, tanto quanto possível. Os organismos e entidades regulamentadoras requerem que a marcação seja aplicada aos produtos, componentes e dispositivos de forma permanente, clara e legível.

Estes requisitos podem ser atendidos também pelas marcações digitais que são permanentemente afixadas aos produtos e que permitem que os dados requeridos sejam acessados sem a necessidade de uma conexão com a internet são muito parecidas com a marcação convencional com textos simples. Para assegurar uma maior aceitação da marcação digital, a marcação apresenta a quantidade mínima de marcação em texto simples.

Durante o período de transição, ambas as informações, por meio de texto simples e de marcação digital, podem ser aplicadas de forma simultânea aos produtos. No momento, as marcações digitais estão sendo implementadas e aceitas nos mercados internacionais, de forma crescente e contínua.

A ISO/IEC 22603-1, publicada em 2022, especifica uma etiqueta digital que representa o produto marcação. No entanto aquela norma proporciona a marcação do produto por meio de um link para um servidor Web, que contém as informações relevantes, mas não contém a marcação digital diretamente no código digital. As informações, de acordo com o Anexo A, podem ser incluídas em um código digital para a marcação.

O código digital: pode armazenar todas as informações requeridas por regulamentos regionais ou nacionais e pode conter informações apresentadas pelos fabricantes. As marcas e os símbolos não estão aptos a serem convertidos em um código digital na marcação digital, mas podem ser incluídos no firmware.

Todas as informações proporcionadas no código digital, que não sejam requeridas especificamente em um texto simples por regulamentos regionais ou nacionais, podem ser removidas do texto da marcação digital a ser lido por humanos. Por questões de segurança cibernética, é recomendado que os leitores de marcações digitais no formato 2D solicitem uma autorização do usuário antes de ativar um link para uma URL (uniform resource locator).

Em geral, se o link não for ativado, o texto incluído na marcação digital é mostrado. As informações apresentadas no Anexo A podem ser convertidas para o formato digital. Os dados devem ser estruturados de acordo com as seguintes três categorias: informações básicas; especificações técnicas; certificados de conformidade.

A primeira informação de uma marcação digital deve ser um link de identificação, de acordo com a IEC 61406-1. Isto permite que os leitores e escâneres comuns interpretem a primeira linha como uma URL e, caso uma conexão com a internet esteja disponível, acessem um banco de dados do produto.

Um exemplo de uma marcação convencional é mostrado na parte superior da figura abaixo. Esta marcação representa um medidor de nível industrial que possui diversos certificados de conformidade internacionais, regionais e nacionais, como um equipamento certificado para instalação em atmosferas explosivas.

Devido à grande quantidade de informações, esta marcação convencional ocupa uma grande área, de 80 cm². Na parte de baixo da figura, é mostrada a correspondente marcação digital, com as informações básicas e os símbolos de conformidade também mostrados juntamente com os textos simples. A marcação completa é convertida em código digital.

A marcação digital, incluindo o QR Code, ocupa uma área de 42,5 cm², que é aproximadamente a metade da área de marcação convencional mostrada na parte de acima da Figura. A leitura do QR Code utilizando um smartphone, com um software comum de leitura, é também mostrada na figura. O texto completo da marcação digital, incluindo as informações básicas, é visível na tela do dispositivo de leitura e pode ser armazenado ou transferido como um arquivo de texto.

Pode ser útil tornar estes dados capazes de serem lidos por máquinas e alocar os dados em um banco de dados específico. Com o link de identificação na marcação digital, uma conexão via internet pode ser estabelecida com um banco de dados do produto, o qual pode conter uma descrição semântica dos dados da marcação, com identificadores internacionais de dados (por exemplo, IEC CDD – common data dictionary).

Os identificadores internacionais de dados permitem que os dados sejam trocados de forma simples entre as diferentes indústrias, países e idiomas (ver Anexo B). Os códigos de barras bidimensionais que podem ser opticamente lidos (Códigos 2D) podem ser utilizados para a marcação digital de produtos. Diversos Códigos 2D podem ser aplicados a um produto ao mesmo tempo. Os Códigos 2D podem ser: parte da marcação (rótulo, impressão ou gravação a laser no produto) ou — afixados no produto por uma placa separada.

Devem ser utilizados como Códigos 2D os QR Codes, de acordo com a ISO/IEC 18004, ou Data Matrix, de acordo com a ISO/IEC 16022. Os QR Code têm atualmente a forma de um quadrado. Uma versão retangular de QR Code está em desenvolvimento (Micro QR Model R). O formato Data Matrix é disponível na forma quadrada ou retangular (extended rectangular data matrix (DMRE), de acordo com a ISO/IEC 21471. Os Códigos 2D devem ser legíveis por leitores eletrônicos comercialmente disponíveis no mercado (por exemplo, smartphones). Os requisitos de qualidade dos Códigos 2D, por exemplo, tamanho do módulo, correção do erro, qualidade da impressão e durabilidade, são similares aos indicados na IEC 61406-1.

A resistência ao fogo de cabos de potência de até 0,6/1 kV

Os cabos resistentes ao fogo são desenvolvidos com o objetivo de aumentar a segurança e diminuir o risco de incêndios em fábricas e outros edifícios. Certos circuitos são necessários para continuar operando durante uma situação de emergência e a colocação de cabos com classificação de resistência ao fogo torna isso possível.

A tecnologia está permitindo o desenvolvimento de cabos resistentes ao fogo para alarme de incêndio e outros sistemas de emergência. Esses cabos à prova de fogo devem atender aos requisitos das normas técnicas e não podem desligar imediatamente quando um incêndio começa. Em vez disso, a energia continua a percorrer pelo circuito.

Essa energia é direcionada para bombas de incêndio, elevadores, equipamentos de controle de fumaça, sistemas de alarme de incêndio e outros sistemas de emergência necessários para manter as pessoas seguras durante uma emergência. A definição de um cabo resistente ao fogo é o que continuará a operar na presença de um incêndio. Isso é comumente conhecido como um cabo de integridade de circuito e tem classificação de incêndio de por duas horas.

O cabo com isolamento mineral fornece essa proteção adicional há décadas, sendo que que na sua construção do cabo se usa condutores de cobre, óxido de magnésio e uma bainha de cobre. O cabo MI vem em versões de um e multicondutor, sendo projetado para circuitos de energia de emergência para bombas de incêndio e geradores de emergência. O MI é trabalhoso e difícil de instalar e, portanto, raramente é usado em proteção contra incêndio de baixa tensão.

Para a aceitação e rejeição dos cabos de potência de até 0,6/1 kV, na inspeção visual podem ser rejeitadas, de forma individual, a critério do comprador, as unidades de expedição que não cumpram as condições estabelecidas na norma. Nos ensaios de rotina podem ser rejeitadas, de forma individual, as unidades de expedição que não cumpram os requisitos especificados.

Nos ensaios especiais, sobre as amostras obtidas conforme critério estabelecido, devem ser aplicados os ensaios especiais que são realizados em amostras de cabo completo, ou em componentes retirados destas, conforme critério de amostragem, com a finalidade de verificar se o cabo atende às especificações do projeto. Devem ser aplicados os critérios de aceitação e rejeição correspondentes à construção do cabo, conforme determinado nas normas .

Adicionalmente aos ensaios correspondentes à construção do cabo, conforme determinado nas normas referenciadas, deve ser realizado o ensaio de resistência ao fogo. O corpo de prova deve consistir em um comprimento adequado de cabo completo, de acordo com a NBR 10301. No caso de cabo unipolar não blindado, devem ser ensaiados simultaneamente dois corpos de prova torcidos entre si, com passo adequado, de modo a serem mantidos em contato.

A tensão entre veias deve ser igual ao valor da tensão de isolamento entre fases (V). Se o corpo de prova não superar o ensaio, dois outros corpos de prova devem ser ensaiados nas mesmas condições. Se ambos os resultados forem satisfatórios, o cabo deve ser considerado aprovado no ensaio.

O ensaio deve ser realizado conforme a NBR 10301, de acordo com a classe de resistência ao fogo especificada (CR2 ou CR3). Existem alguns dados para as encomendas dos cabos, conforme a figura abaixo.

Os cabos devem ser acondicionados de maneira que fiquem protegidos durante o manuseio, transporte e armazenagem. O acondicionamento deve ser em rolo ou carretel, que deve ter resistência adequada e ser isento de defeitos que possam danificar o produto. Para cada unidade de expedição, a incerteza máxima requerida na quantidade efetiva deve ser de ± 1 % em comprimento.

Os cabos devem ser fornecidos em lances normais de fabricação, sobre os quais é permitida uma tolerância de ± 3 % no comprimento. Adicionalmente, pode-se admitir que até 5% dos lances de um lote de expedição tenham um comprimento diferente do lance normal de fabricação, com um mínimo de 50 % do comprimento do referido lance.

Os carretéis devem possuir dimensões conforme a NBR 11137, sendo respeitados os limites de curvatura previstos na NBR 9511, e os rolos devem possuir dimensões conforme a NBR 7312. As extremidades dos cabos acondicionados em carretéis devem ser convenientemente seladas com capuzes de vedação ou com fita autoaglomerante, resistentes às intempéries, a fim de evitar a penetração de umidade durante manuseio, transporte e armazenagem.

No caso de cabos com construção não bloqueada longitudinalmente, é recomendado somente o uso de capuzes de vedação. Externamente, os carretéis devem ser marcados, nas duas faces laterais, diretamente sobre o disco e/ou por meio de etiquetas, com caracteres legíveis e indeléveis, com no mínimo as seguintes informações: nome e identificação do fabricante e país de origem; tensão de isolamento (Uo/U), expressa em quilovolts (kV); número de condutores e seção nominal, expressa em milímetros quadrados (mm²); material do condutor (cobre ou alumínio), da isolação (PVC/A, PVC/E, PE, XLPE, EPR, HEPR) e da cobertura; NBR 13418; número da norma correspondente à construção básica do cabo; comprimento de cada unidade de expedição, expresso em metros (m); massa bruta aproximada, expressa em quilogramas (kg); número da ordem de compra; identificação para fins de rastreabilidade; seta no sentido de rotação para desenrolar e o texto desenrole neste sentido. Quando o ano de fabricação for marcado com fita colocada no interior do cabo, esta indicação deve também constar como requisito de marcação no carretel.

A NBR 13418 de 05/2022 – Cabos resistentes ao fogo para instalações de segurança – Requisitos de desempenho especifica os requisitos de desempenho de resistência ao fogo para cabos de potência até 0,6/1 kV, controle e instrumentação, para instalações fixas de segurança, nas quais é requerida a manutenção da integridade das linhas elétricas em condições de incêndio, conforme a NBR 5410. Esta norma prevê duas classes de resistência ao fogo, a CR2 e a CR3. A classe CR2 é a classificação que engloba os cabos resistentes ao fogo, conforme a NBR 10301, submetidos a uma temperatura mínima de 750 °C, sem choque mecânico.

A classe CR3 é a classificação que engloba os cabos resistentes ao fogo, conforme a NBR 10301, submetidos a uma temperatura mínima de 830 °C, com choque mecânico durante a execução do ensaio.

Para os efeitos de utilização desta norma, os cabos se caracterizam pela tensão de isolamento em função da aplicação, conforme indicado a seguir: cabos de potência, com condutores de cobre, classe de tensão até 0,6 kV/1 kV: NBR 7286, NBR 7287, NBR 7288 e NBR 13248; cabos de controle, com condutores de cobre, classe de tensão até 1.000 V: NBR 7289, NBR 7290 e NBR 16442; e cabos de instrumentação com condutores de cobre, classe de tensão até 300 V: NBR 10300.

A temperatura no condutor, em regime permanente, não pode ultrapassar a 70 °C para os cabos isolados com composto termoplástico e 90 °C para os cabos isolados com composto termofixo. A temperatura no condutor, em regime de sobrecarga, não pode ultrapassar a 100 °C para os cabos isolados com composto termoplástico e 130 °C para os cabos isolados com composto termofixo. A operação neste regime não pode superar 100 h durante 12 meses consecutivos, nem 500 h durante a vida do cabo.

A temperatura no condutor, em regime de curto-circuito, não pode ultrapassar 160 °C para os cabos isolados com composto termoplástico e 250 °C para os cabos isolados com composto termofixo. A duração neste regime não pode ser superior a 5 s. O condutor deve ser de cobre, com ou sem revestimento metálico, ter têmpera mole e estar de acordo com a NBR NM 280.

Os condutores devem atender à classe 1, 2, 4 ou 5 de encordoamento. As demais características construtivas devem estar de acordo com uma das normas especificadas nessa norma. Sobre o condutor podem ser aplicadas, por extrusão ou por enfaixamento, uma ou mais camadas de material adequado à temperatura de operação do cabo, compatíveis com o material da isolação, a fim de conferir a propriedade de resistência ao fogo.

A cor padronizada para a cobertura é a vermelha. Outras cores podem ser adotadas mediante acordo prévio entre o comprador e o fabricante. A marcação da cobertura deve ser conforme a NBR 6251, contendo no mínimo as seguintes informações: a marca de origem (nome, marca ou logotipo do fabricante); o número de condutores, pares, ternas ou quadras, e seção nominal do (s) condutor (es), expressa em milímetros quadrados (mm²); a tensão de isolamento Uo/U expressa em quilovolts (kV) para os cabos de potência, ou tensão de isolamento expressa em Volts (V) para os cabos de controle e instrumentação; o material do condutor, da isolação e da cobertura, indicado pelas siglas estabelecidas nas normas especificadas nessa norma; o número desta norma (NBR 13418); a expressão Resistente ao Fogo CR2 ou Resistente ao Fogo CR3; o número da norma correspondente à construção básica do cabo; o ano de fabricação.

Os ensaios previstos nesta norma são classificados em: ensaios de recebimento (R e); ensaios de tipo (T); ensaios de controle; e ensaios durante e após a instalação. Antes de qualquer ensaio, deve ser realizada uma inspeção visual sobre todas as unidades de expedição, para verificação das condições estabelecidas nessa norma.

Os ensaios de recebimento constituem-se em: ensaios de rotina (R); e ensaios especiais (E). Devem ser realizados os ensaios de rotina (R) correspondentes à construção do cabo, conforme determinado nas normas referenciadas nessa norma. Estes ensaios são realizados nas unidades de expedição, conforme critério de amostragem, com a finalidade de demonstrar a integridade do cabo.

Devem ser realizados os ensaios especiais (E) correspondentes à construção do cabo, conforme determinado nas normas referenciadas nessa norma. Estes ensaios (E) são realizados em amostras de cabo completo, ou em componentes retirados destas, conforme critério de amostragem estabelecido, com a finalidade de verificar se o cabo atende às especificações do projeto.

Os ensaios de tipo (T) devem ser realizados e correspondem à construção do cabo, conforme determinado nas normas referenciadas nessa norma. Deve também ser realizado, como ensaio de tipo, o ensaio de resistência ao fogo, sendo recomendado realizar este ensaio nos seguintes cabos: cabos de potência com seções de 1,5 mm² e 25 mm², cabos de instrumentação com seção de 1,0 mm², com formação mínima de dois pares, e cabos de controle com seção de 1,5 mm², com formação mínima de seis condutores.

Os ensaios de tipo devem ser realizados, de modo geral, uma única vez, com a finalidade de demonstrar o comportamento satisfatório do projeto do cabo, para atender à aplicação prevista. Estes ensaios são, por isso mesmo, de natureza tal que não precisam ser repetidos, independentemente do material do condutor, a menos que haja modificação do projeto do cabo que possa alterar o seu desempenho.

Entende-se por modificação do projeto do cabo, para os objetivos desta norma, qualquer variação construtiva ou de tecnologia que possa influir diretamente no desempenho elétrico e mecânico e/ou em condições de queima do cabo, como, por exemplo, modificação nos seus materiais componentes. Todos os ensaios elétricos e não elétricos indicados nesta norma compreendem o conjunto de ensaios de controle disponíveis ao fabricante que, a seu critério e necessidade, os utiliza para determinada ordem ou lote de produção.

Os ensaios durante e após a instalação, correspondentes à construção do cabo conforme determinado nas normas referenciadas nessa norma, podem ser realizados. Estes ensaios são destinados a demonstrar a integridade do cabo e seus acessórios durante a instalação e após a sua conclusão.

A confiabilidade térmica dos coletores solares de aquecimento de fluidos

Um coletor solar térmico é um dispositivo projetado para absorver a radiação solar e transferir a energia térmica produzida para um fluido que passa pelo equipamento. A utilização do termo painel é desconsiderada, para evitar potenciais confusões com painéis fotovoltaicos. A perda de carga em um coletor é um parâmetro importante para os projetistas de sistemas de coletores solares.

Qualquer fluido pode ser usado para a medição, mas deve ser especificado junto com os resultados do ensaio. A temperatura de ensaio padrão do fluido deve ser (20 ± 2) °C. Outras temperaturas são possíveis, mas devem ser indicadas juntamente com os resultados do ensaio.

O fluido de transferência de calor deve fluir conforme especificado pelo fabricante. Atenção especial deve ser dada à seleção dos encaixes de tubulação apropriados nas portas de entrada e saída do coletor para evitar a indução de perda de carga adicional indesejada. O coletor deve ser protegido contra radiação durante todo o ensaio.

A perda de carga deve ser determinada para diferentes vazões, que abrangem a faixa que provavelmente será usada em operação real. Devem ser feitas pelo menos cinco medições com valores igualmente espaçados na faixa de vazão. Em cada ponto de operação, a pressão deve atingir condições de estado estacionário por pelo menos 5 min.

Para o ensaio em coletores de aquecimento de líquidos, eles devem ser acoplados a um loop de ensaio, embora seja necessária menos instrumentação do que para os ensaios de eficiência do coletor. Os seguintes dados devem ser medidos: temperatura do fluido na entrada do coletor; vazão de fluido; queda de pressão do fluido de transferência de calor entre as conexões de entrada e saída do coletor.

A perda de pressão do fluido de transferência de calor através do coletor deve ser medida com um dispositivo com uma incerteza-padrão de 5% do valor medido ou ± 10 Pa, o que for maior. Os acessórios usados para medir a pressão do fluido podem causar uma perda de carga. Uma verificação zero da queda de pressão deve ser feita removendo o coletor do circuito do fluido e repetindo os ensaios com os acessórios de medição de pressão diretamente conectados juntos.

A perda de carga causada pelo equipamento de ensaio deve ser usada para corrigir a perda de carga medida do coletor. O ensaio deve ser realizado a uma pressão constante correspondente à pressão operacional pretendida. A vazão do fluido deve ser mantida constante até ± 1% do valor nominal durante as medições de ensaio.

Pode-se destacar que, durante a avaliação dos dados do ensaio, deve ser desconsiderado um período de tempo de precondicionamento de pelo menos 4 vezes a constante de tempo do coletor (se for conhecida), ou não inferior a 15 min (se a constante de tempo não for conhecida), com a correta temperatura do fluido na entrada e com a velocidade correta do vento através do coletor (somente os coletores sensíveis ao vento e/ou infravermelho – WISC), para assegurar que o estado inicial dos coletores estabilize e não influencie o resultado do parâmetro de identificação.

Nota-se igualmente que os dados fora de padrão que não podem ser explicados não serão excluídos do conjunto de dados. Por razões de clareza, a maioria dos requisitos são apresentados sob a forma de diagramas ideais, mostrando importantes relações entre as diferentes condições de ensaio, incluindo a dinâmica de intervalos que serão dados confiáveis e de conseguir desacoplar os parâmetros do coletor.

Estes diagramas devem ser traçados para a avaliação da confiabilidade dos dados de ensaio com os parâmetros utilizados para identificação, e serão incluídos no relatório do ensaio. Dependendo do método de ensaio escolhido, os parâmetros na tabela abaixo devem ser medidos.

Geralmente, nos coletores sensíveis ao vento e/ou infravermelho (WISC) o absorvedor ou o fluido de transferência de calor está em contato próximo com o ambiente. Exemplos típicos são coletores poliméricos sem cobertura e coletores PVT. Além disso, a distribuição da irradiância sobre o plano do coletor deve ser medida utilizando uma grade de espaçamento máximo de 150 mm. A média espacial deduzida pela amostragem simples deve ser usada para a análise dos dados.

A irradiância térmica em um simulador solar é provavelmente maior do que aquela que normalmente ocorre ao ar livre. Deve, portanto, ser medida para assegurar que não exceda o limite indicado. A irradiância térmica média no plano do coletor deve ser determinada sempre que forem efetuadas alterações no simulador, o que pode afetar a irradiância térmica. A irradiância térmica média no plano do coletor deve ser relatada com os resultados do ensaio do coletor.

A temperatura do ar ambiente ϑa nos simuladores deve ser medida, utilizando a média de vários valores, se necessário. Os sensores devem ser blindados para minimizar a troca de radiação. A temperatura do ar na saída do simulador artificial de vento deve ser usada para os cálculos do desempenho do coletor.

A NBR 17003 de 10/2021 – Sistemas solares térmicos e seus componentes — Coletores solares — Requisitos gerais e métodos de ensaio especifica os requisitos e métodos de ensaio para avaliar a durabilidade, a confiabilidade, a segurança e o desempenho térmico de coletores solares de aquecimento de fluidos. Os métodos de ensaio são aplicáveis aos ensaios de laboratório e aos ensaios in situ. É aplicável a todos os tipos de coletores solares de aquecimento de fluidos na fase líquida, coletores solares híbridos que cogerem calor e energia elétrica, bem como aos coletores solares que utilizam fontes de energia externas para operação normal e/ou segurança.

Não abrange os aspectos de segurança elétrica ou outras propriedades específicas diretamente relacionadas à geração de energia elétrica. Não é aplicável àqueles dispositivos em que uma unidade de armazenamento térmico é parte integrante, de tal forma que o processo de coleta não pode ser separado do processo de armazenamento para fazer as medições de desempenho térmico do coletor.

O coletor solar térmico é um dispositivo projetado para absorver a radiação solar e transferir a energia térmica produzida para um fluido que passa pelo equipamento. A utilização do termo painel é desconsiderada, para evitar potenciais confusões com painéis fotovoltaicos. Deve-se estabelecer os procedimentos para ensaiar os coletores solares de aquecimento de fluido para o desempenho térmico, confiabilidade, durabilidade e segurança, sob condições determinadas e repetíveis. A norma contém métodos de ensaio de desempenho para a realização de ensaios ao ar livre, sob irradiação solar natural, vento natural ou simulado, e para a realização de ensaios em ambientes fechados sob irradiação solar e vento simulados.

Os ensaios ao ar livre podem ser realizados em regime permanente ou como medições durante todo o dia, sob condições climáticas variáveis. Os coletores ensaiados de acordo representam uma ampla gama de aplicações, por exemplo, coletores de placas planas e esmaltadas, coletores de tubos a vácuo para água e aquecimento de ambientes domésticos, coletores para aquecimento de piscinas ou para outros sistemas de baixa temperatura ou coletores de concentração de rastreamento para geração de energia térmica e aplicações de calor de processo.

Esta norma é aplicável aos coletores que usam líquidos como fluido de transferência de calor. Da mesma forma, os coletores que usam fontes de energia externas para operação normal e/ou fins de segurança (proteção contra superaquecimento, riscos ambientais, etc.), bem como dispositivos híbridos que geram energia térmica e energia elétrica, também são considerados.

Uma sequência dos ensaios completa para coletores solares térmicos, incluindo ensaio de durabilidade e medições de desempenho térmico, é proposta na tabela abaixo. Essa sequência de ensaios pode ser modificada, ou apenas ensaios isolados podem ser realizados, se necessário, e recomenda-se consultar a ISO 9806.

Para alguns ensaios, no entanto, um precondicionamento ou um ensaio de meia exposição é obrigatório. Para todas as sequências de ensaios ou ensaios isolados, a inspeção final (ver Seção 15) é recomendada como ensaio conclusivo para a identificação e descrição adequada da amostra, bem como para identificação de problemas ou deficiências.

Os aspectos particulares de coletores usando fontes externas de energia e medidas ativas ou passivas para operação normal e autoproteção devem ser descritos e relatados conforme o Anexo A. As especificações devem ser dadas para vazão, temperatura do fluido e duração do fluxo, se o fluxo de fluido tiver sido aplicado no ensaio.

Os coletores cogerando energia térmica e elétrica devem ser ensaiados como qualquer outro coletor térmico solar em relação à durabilidade e ao desempenho térmico. Todos os ensaios de desempenho térmico devem ser feitos sob condições máximas de geração de energia elétrica. Para todos os ensaios de durabilidade, o gerador de energia elétrica não pode ser conectado a carga alguma (circuito aberto), para evitar o resfriamento do coletor e simular piores condições de operação.

O gerador de energia elétrica deve ser descrito em detalhes no relatório de ensaio. O modo de operação elétrica deve ser relatado para todos os ensaios. Diferentes tipos de coletores são considerados sensíveis ao vento e/ou à radiação térmica.

Para estes coletores, geralmente o absorvedor ou o fluido de transferência de calor está em contato próximo com o ambiente. Exemplos típicos são coletores poliméricos sem cobertura e coletores PVT. Os coletores que, de acordo com as especificações do fabricante, podem ser operados em inclinações superiores a 75°, devem ser considerados coletores de fachadas.

Os ensaios de pressão interna para canais de fluidos destinam-se a avaliar a capacidade de um coletor de suportar a pressão máxima nos canais de fluidos, conforme especificado pelo fabricante. Para os canais de fluidos feitos de materiais não poliméricos, o aparelho consiste em uma fonte de pressão hidráulica ou pneumática, uma válvula de segurança, uma válvula de sangria de ar e um manômetro com incerteza-padrão melhor que 5%.

A válvula de sangria de ar deve ser usada para esvaziar os canais de fluidos do ar antes da pressurização. Os canais de fluidos devem ser preenchidos com fluido à temperatura ambiente e pressurizados até a pressão de ensaio. Após a pressão nos canais de fluidos do coletor ter sido elevada à pressão de ensaio, os canais de fluidos devem ser isolados da fonte de pressão por meio de uma válvula de isolamento.

Os canais de fluidos devem permanecer isolados da fonte de pressão durante o período de ensaio, e a pressão dentro dos canais de fluidos deve ser observada. Os canais de fluidos devem ser ensaiados à temperatura ambiente na faixa de 20 °C ± 15 °C, protegidos da luz. A pressão de ensaio deve permanecer estável dentro de ± 5 % de 1,5 vez a pressão máxima de operação do coletor especificada pelo fabricante antes de isolar o coletor da fonte de pressão. A pressão de ensaio deve ser mantida por pelo menos 15 min.

Os canais de fluidos feitos de materiais poliméricos devem ser ensaiados na temperatura de estagnação, porque a resistência à pressão dos canais de fluidos poliméricos pode ser afetada à medida que a sua temperatura é aumentada. O aparelho consiste em uma fonte de pressão hidráulica ou pneumática e em um meio para aquecer os canais de fluidos até a temperatura de ensaio requerida.

Os canais de fluidos devem ser mantidos à temperatura de ensaio por pelo menos 30 min antes do ensaio e pela duração total do ensaio. A pressão de ensaio deve ser mantida estável dentro de ± 5 %. Um dos seguintes métodos de ensaio deve ser escolhido: submergir os canais de fluidos em um banho de água com temperatura controlada e usar ar comprimido ou água com tinta como meio de ensaio; conectar a um circuito de líquido controlado por temperatura e pressão; aquecer o coletor em um simulador de irradiação solar ou sob irradiação solar natural, utilizando um fluido como meio de ensaio.

A temperatura de ensaio deve ser a temperatura máxima de operação especificada pelo fabricante ou a temperatura de estagnação, o que for maior. A pressão de ensaio deve ser 1,5 vez a pressão máxima de funcionamento do coletor especificada pelo fabricante. A pressão de ensaio deve ser mantida durante pelo menos 1 h.

Se visível, os canais de fluidos devem ser inspecionados quanto a vazamento, inchaço e distorção. Para canais de fluidos não poliméricos, presume-se o vazamento por uma perda de pressão Δp > 5% da pressão de ensaio ou 17 kPa, o que for maior e/ou se alguma gotícula de fluido com vazamento for observada. Para canais de fluidos poliméricos, presume-se o vazamento se alguma gotícula for observada.

A segurança e a intercambialidade das lâmpadas LED com dispositivo de controle

A NBR IEC 62560 de 10/2021 – Lâmpadas LED com dispositivo de controle incorporado para serviços de iluminação geral para tensão > 50 V — Especificações de segurança especifica os requisitos de segurança e intercambialidade, juntamente com os métodos de ensaio e condições necessárias para demonstrar a conformidade das lâmpadas LED, com meios integrados para um funcionamento pleno (lâmpadas LED com reator incorporado), previstas para uso doméstico e iluminação geral similar, tendo: potência nominal de até 60 W; tensão nominal > 50 V até 250 V; e bases de acordo com a Tabela 1. Os requisitos desta norma referem-se apenas aos ensaios de tipo.

As recomendações para o ensaio do produto ou ensaio de lote inteiro são idênticas às previstas no Anexo C da NBR IEC 62031. Sempre que nesta norma o termo lâmpada (s) for usado, é entendido como lâmpada (s) LED com dispositivo de controle incorporado, exceto onde é obviamente atribuído a outros tipos de lâmpadas. Esta norma inclui a segurança fotobiológica.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é o valor do momento de flexão e da massa transmitida?

Qual é o dedo-padrão de ensaio (de acordo com a IEC 60529)?

Qual é a resistência de isolação e rigidez dielétrica após exposição à umidade?

Qual deve ser o suporte para ensaio de torque em lâmpadas com bases rosqueáveis?

Já existem no mercado produtos à base de LED que substituem as lâmpadas existentes, quer sejam lâmpadas incandescentes ou lâmpadas fluorescentes com reator incorporado à base, ou substituto para lâmpadas halógenas com filamento de tungstênio abaixo de 50 V. Esta norma abrange a faixa de tensão de alimentação de > 50 V até 250 V. Uma norma de segurança para lâmpadas LED com tensões ≤ 50 V será proposta posteriormente no tempo adequado. Esse trabalho futuro também inclui consequentemente normas de desempenho para todos os tipos de lâmpadas LED, incluindo os requisitos fotométricos mínimos para ensaio de tipo.

Devido à urgente necessidade de estabelecer esta norma, esta será uma norma única neste momento. As lâmpadas devem ser projetadas e construídas de forma que, em uso normal, funcionem de forma confiável e não causem qualquer perigo para o usuário ou arredores. Em geral, a conformidade é verificada através da realização de todos os ensaios especificados.

As lâmpadas LED com dispositivo de controle incorporado são não reparáveis, seladas de fábrica. Elas não podem ser abertas para quaisquer ensaios. Em caso de dúvida, com base na inspeção da lâmpada e na análise do diagrama do circuito, e de acordo com o fabricante ou fornecedor responsável, ou os terminais de saída devem ser curto-circuitados, ou de acordo com o fabricante, as lâmpadas especialmente preparadas para que uma condição de falha possa ser simulada devem ser submetidas a ensaio (ver Seção 13).

Em geral, todos os ensaios são realizados em cada tipo de lâmpada ou, quando uma série de lâmpadas semelhantes é envolvida, todos os ensaios são realizados para cada potência da série ou em uma seleção representativa da série, conforme acordado com o fabricante. Quando uma lâmpada falha em segurança durante um dos ensaios, ela é substituída, desde que fogo, fumaça ou gás inflamável não seja produzido. Outros requisitos de segurança são dados na Seção 12.

As lâmpadas devem ser marcadas de forma clara e indelével com as seguintes informações obrigatórias: marca de origem (isto pode tomar a forma de uma marca, o nome do fabricante ou o nome do fornecedor responsável); tensão nominal ou faixa de tensão nominal (marcado com “V” ou “volts”); potência nominal (marcada com “W” ou “watts”); e frequência nominal (marcada em “Hz”).

Além disso, as seguintes informações devem ser fornecidas pelo fabricante na lâmpada ou no invólucro ou recipiente ou nas instruções de instalação da lâmpada: corrente nominal (marcado com “A” ou “ampère”). Para lâmpadas com peso significativamente maior do que o das lâmpadas que são substituídas, deve-se prestar atenção ao fato de que o peso adicional pode reduzir a estabilidade mecânica de certas luminárias e porta-lâmpadas, e podem ser prejudicados o contato e a retenção da lâmpada.

As condições especiais ou restrições que devem ser observadas para o funcionamento da lâmpada, por exemplo, operação em circuitos dimerizáveis. Quando as lâmpadas não são adequadas para graduação, o símbolo da figura abaixo pode ser utilizado. As lâmpadas com bulbos impróprios para contato com a água devem ser marcadas com o símbolo conforme a figura abaixo. A marcação deve ser fornecida na embalagem ou nas informações que a acompanham. A altura do símbolo gráfico deve ser no mínimo de 5 mm. O símbolo não é necessário se um aviso por escrito for fornecido, como “Utilização somente em locais secos”.

A conformidade é verificada como a seguir: a presença e legibilidade da marcação requerida por inspeção visual; a durabilidade da marcação é verificada pela tentativa de removê-la, esfregando levemente, por 15 s, com um pedaço de pano embebido em água e, após secagem, por mais 15 s, com um pedaço de pano umedecido com hexano. A marcação deve ser legível após o ensaio. A disponibilidade das informações requeridas por inspeção visual.

A intercambialidade deve ser assegurada pelo uso de bases, de acordo com a NBR IEC 60061-1 e calibres de acordo com a IEC 60061-3; ver Tabela 1. A conformidade é verificada pelo uso dos calibres pertinentes.

O valor do momento de flexão e massa transmitida, pela lâmpada no porta-lâmpada não pode exceder o valor informado nessa norma ou, onde não informado, o valor no sistema de informação na folha de especificação das bases na NBR IEC 60061-1. O momento de flexão deve ser determinado medindo o peso da lâmpada (por exemplo, por meio de uma balança) na ponta do bulbo da lâmpada pronta horizontalmente e multiplicando esta força pela distância entre a ponta da lâmpada e da linha do eixo fixo.

A linha do eixo fixo deve se situar na extremidade inferior da parte cilíndrica (por bases Edison e baioneta) ou no fim dos pinos de contato (por bases de pino), devendo ser apoiada por uma folha de metal fina na posição vertical ou um meio semelhante. As lâmpadas devem ser construídas de forma que, sem qualquer compartimento adicional sob a forma de uma luminária, nenhuma parte interna metálica, nenhuma parte externa metálica com isolação básica ou nenhuma parte metálica viva da base da luminária ou da própria lâmpada sejam acessíveis quando a lâmpada é instalada em um soquete de acordo com os dados da folha da IEC pertinente sobre soquetes.

A conformidade é verificada por meio do dedo-padrão de ensaio especificado nessa norma, se necessário, com uma força de 10 N. As lâmpadas com bases de rosca Edison devem ser projetadas de forma a cumprir com os requisitos para inacessibilidade de partes vivas para lâmpadas para serviços de iluminação em geral (GLS). A conformidade é verificada com o auxílio de um medidor de acordo com a edição atual da IEC 60061-3, folha 7006-51A, para bases E27, e folha 7006-55, para bases E14.

Os requisitos para lâmpadas com base E26 estão em estudo e as lâmpadas com bases B22, B15, GU10 ou GZ10 estão sujeitas às mesmas exigências que as lâmpadas incandescentes normais com esta base. Os requisitos para lâmpadas com bases GX53 estão em estudo.

As partes metálicas externas, com exceção de partes metálicas da base que conduzem corrente, não podem ser ou tornarem-se vivas. Para o ensaio, qualquer material condutor móvel deve ser colocado na posição mais desfavorável sem a utilização de uma ferramenta.

Quanto à segurança fotobiológica, a eficácia do risco ultravioleta da radiação luminosa de uma lâmpada LED não pode exceder a 2 mW/km. A conformidade é verificada pela medição da distribuição espectral de potência e o cálculo subsequente da eficácia do risco ultravioleta da radiação luminosa.

Não é esperado que as lâmpadas LED que não dependem da conversão de radiação UV excedam a eficácia máxima de risco ultravioleta permitida da radiação luminosa. Estas lâmpadas não requerem medição.

O risco da luz azul deve ser avaliado de acordo com a IEC TR 62778, que deve ser considerada como normativa ao ensaiar lâmpadas LED para esta norma. As lâmpadas LED devem ser classificadas como grupo de risco 0 ilimitado ou grupo de risco 1 ilimitado.

A IEC TR 62778, Seção C.2, fornece um método para classificar as lâmpadas em que não estejam disponíveis os dados espectrais completos. Não se espera que as lâmpadas LED atinjam um nível de radiação infravermelha no qual a marcação ou outras medidas de segurança sejam necessárias.

O desempenho eletroacústico dos sonômetros

A NBR IEC 61672-1 de 10/2021 – Eletroacústica — Sonômetros – Parte 1: Especificações fornece especificações para desempenho eletroacústico de três tipos de instrumentos de medição sonora: um sonômetro convencional que mede níveis sonoros com ponderação exponencial no tempo e ponderação em frequência; um sonômetro de nível equivalente que integra e obtém a média temporal do nível sonoro ponderado em frequência; e um sonômetro integrador que mede níveis de exposição sonora ponderados em frequência. Os sonômetros em conformidade com os requisitos desta norma têm uma resposta em frequência específica para o som incidente no microfone, a partir de uma direção principal em campo livre ou em um campo de incidência aleatória.

Os sonômetros especificados nesta norma são geralmente destinados a medir sons na faixa da audição humana. A ponderação em frequência AU, especificada na IEC 61012, pode ser aplicada para a medição de níveis sonoros audíveis ponderados em A, na presença de uma fonte que contenha componentes espectrais em frequências maiores que 20 kHz 1.

Duas categorias de desempenho, Classes 1 e 2, são especificadas nesta norma. Geralmente, as especificações para Classes 1 e 2 de sonômetros têm a mesma meta de projeto e diferem principalmente nos limites de aceitação e nas faixas operacionais de temperatura. Os limites de aceitação para especificações de Classe 2 são maiores ou iguais àqueles especificados para a Classe 1.

Esta norma é aplicável a uma variedade de projetos de sonômetros. Um sonômetro pode ser um instrumento portátil com um microfone acoplado e um indicador embutido. Um sonômetro pode ser constituído por um ou mais componentes separados em uma ou mais carcaças e pode ser capaz de mostrar uma variedade de níveis de sinais acústicos.

Os sonômetros podem incluir um processador de sinais digital ou analógico, combinados ou em separado, com múltiplos sinais de saída, analógicos e digitais. Os sonômetros podem incluir computadores, gravadores, impressoras e outros dispositivos que formam uma parte necessária do instrumento completo.

Eles podem ser projetados para uso com um operador presente ou para medição automática e contínua do nível sonoro sem a presença do operador. As especificações nesta norma para resposta às ondas sonoras se aplicam sem a presença do operador no campo sonoro.

Confira algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser as correções para uso durante os testes periódicos?

Quais são os limites de aceitação para desvio de resposta direcional a partir da meta de projeto?

Quais são as ponderações em frequência e limites de aceitação?

O que se deve fazer em relação ao ruído autogerado?

As condições ambientais de referência para especificação do desempenho eletroacústico de um sonômetro são: temperatura do ar 23 °C; pressão estática 101,325 kPa; umidade relativa 50%. Geralmente, um sonômetro é uma combinação de um microfone, um pré-amplificador, um processador de sinais e um dispositivo mostrador. As especificações de desempenho desta norma se aplicam a qualquer projeto de microfone e pré-amplificador que seja apropriado para um sonômetro.

O processador de sinais inclui as funções combinadas de um amplificador com uma resposta em frequência especificada e controlada, um dispositivo para obter o quadrado do sinal da pressão sonora variante no tempo e ponderada em frequência, e capaz de integrar ou obter a média no tempo. O processamento de sinais que é necessário para a conformidade com as especificações desta norma é uma parte integrante de um sonômetro.

Nesta norma, um dispositivo mostrador fornece uma leitura física e visível, ou armazenamento, de resultados de medição. Qualquer resultado de medição armazenado deve estar disponível para exibição por meio de um dispositivo especificado pelo fabricante, por exemplo, um computador com um programa associado.

Para especificar a emissão máxima permitida de, e imunidade aos efeitos de exposição a, campos de radiofrequência, os sonômetros são classificados em três grupos, como a seguir: sonômetros do Grupo X: instrumentos independentes que incluem aparatos para a medição do nível sonoro de acordo com esta norma e para os quais é especificada a energização interna por bateria para o modo de operação normal, não requerendo conexões externas a outros aparatos para medição do nível sonoro; sonômetros do Grupo Y: instrumentos independentes que incluem aparatos para a medição do nível sonoro de acordo com esta norma e para os quais é especificada a conexão a uma fonte pública de energia elétrica para o modo de operação normal, não requerendo conexões externas a outros aparatos para medir níveis sonoros; e os sonômetros do Grupo Z: instrumentos que incluem aparatos para a medição do nível sonoro de acordo com esta norma e que requerem dois ou mais itens de equipamento, que são partes constituintes essenciais do sonômetro, para serem conectados juntos por algum meio para modo de operação normal.

Os itens separados podem ser operados a partir de baterias internas ou a partir de um fornecedor público de energia elétrica. A configuração do sonômetro independente e o seu modo de operação normal devem ser declarados no Manual de Instruções. Se apropriado, a configuração completa do sonômetro inclui um protetor de vento e outros dispositivos que são instalados próximo ao microfone, como componentes integrantes para o modo de operação normal. A diferença entre a correção de um protetor de vento medida de acordo com a IEC 61672-2 e a correção do protetor de vento correspondente fornecida no Manual de Instruções não pode exceder os limites de aceitação aplicáveis dados na tabela abaixo.

Um sonômetro que é declarado no Manual de Instruções como sonômetro Classe 1 ou Classe 2 deve estar em conformidade com todas as especificações aplicáveis para Classe 1 ou Classe 2, respectivamente, que são fornecidas nesta norma. Um sonômetro Classe 2 pode prover algumas funções de Classe 1, mas, se qualquer função estiver em conformidade apenas com as especificações para Classe 2, o instrumento é um sonômetro Classe 2.

Um sonômetro pode ser especificado como um instrumento Classe 1 para uma configuração e como um instrumento Classe 2 para outra configuração (por exemplo, com um microfone ou um pré-amplificador diferente). O Manual de Instruções deve declarar os modelos de microfones com os quais o sonômetro completo está em conformidade com as especificações de desempenho para Classe 1 ou Classe 2, para ondas sonoras incidentes no microfone na direção de referência em campo livre, ou com incidência aleatória, como apropriado.

O Manual de Instruções deve descrever procedimentos apropriados para uso do sonômetro. Ele deve declarar como o microfone e o pré-amplificador devem ser montados, se aplicável, para que estejam em conformidade com as especificações para resposta direcional e ponderações em frequência. Pode ser requerido que um dispositivo extensor ou cabo esteja em conformidade com as especificações.

Neste caso, o sonômetro deve ser declarado no Manual de Instruções em conformidade com as especificações aplicáveis para resposta direcional e ponderação em frequência, somente quando os dispositivos especificados forem instalados. Um programa de computador pode ser uma parte integrante de um sonômetro. O Manual de Instruções deve descrever os meios pelos quais um usuário pode identificar a versão do programa que está instalado para operar as funções do sonômetro.

Um sonômetro deve ter a ponderação A em frequência. No mínimo, um sonômetro convencional deve prover um meio para indicar o nível sonoro ponderado em frequência pela curva A e ponderado no tempo em F. No mínimo, um sonômetro de nível equivalente deve prover um meio para indicar o nível sonoro médio no tempo ponderado em A. No mínimo um sonômetro integrador deve prover um ou todas as características de projeto para as quais as especificações de desempenho são dadas nesta norma.

Um sonômetro deve estar em conformidade com as especificações de desempenho aplicáveis para aquelas características de projeto que são fornecidas. Se o sonômetro apenas indicar o nível de exposição sonora, o nível sonoro médio no tempo deve ser determinado aplicando-se a Equação (6) para o tempo de obtenção da média. Os sonômetros em conformidade com os limites de aceitação da Classe 1 também devem possuir a ponderação C em frequência.

Os sonômetros que medem nível sonoro de pico ponderado em C também devem ser capazes de medir níveis sonoros médios no tempo ponderados em C. A ponderação em frequência Z é opcional. O Manual de Instruções deve descrever todas as ponderações em frequência que são fornecidas. Um sonômetro pode ter mais que um dispositivo mostrador. Uma conexão de saída analógica ou digital, por si só, não é um dispositivo mostrador.

Um sonômetro pode ter mais de uma faixa de nível com um controle apropriado de faixa de nível. O Manual de Instruções deve identificar a (s) faixa (s) de nível pelos limites inferior e superior do nível sonoro ponderado em A nominal em 1 kHz e fornecer instruções para a operação do controle de faixa de nível. O Manual de Instruções também deve fornecer as recomendações para selecionar a faixa de nível ideal para exibir os resultados de uma medição de nível sonoro ou nível de exposição sonora.

O nível de pressão sonora de referência, a faixa de nível de referência e a orientação de referência devem ser declarados no Manual de Instruções. Convém que o nível de pressão sonora de referência seja preferencialmente de 94 dB. O Manual de Instruções deve declarar a direção de referência para cada modelo de microfone que se deseja usar com o sonômetro. A posição do ponto de referência do microfone também deve ser declarada.

Um nível de pressão sonora de 94 dB corresponde aproximadamente ao nível de pressão sonora médio quadrático (no tempo) de 1 Pa2 ou a uma pressão sonora raiz média quadrática de 1 Pa. Uma função de retenção deve ser fornecida, para medições de nível sonoro máximo ponderado no tempo e nível sonoro de pico, se o sonômetro for capaz de medir estas grandezas. O Manual de Instruções deve descrever a operação do dispositivo de retenção e os meios para remover a indicação que estiver retida.

Os sinais elétricos são utilizados para avaliar a conformidade a várias especificações desta norma. Os sinais elétricos são equivalentes aos sinais de saída do microfone. Como apropriado para cada modelo de microfone especificado, a meta de projeto e os limites de aceitação aplicáveis devem ser declarados no Manual de Instruções tanto para as características elétricas do dispositivo quanto para os meios utilizados para inserir sinais na entrada elétrica do pré-amplificador.

As características elétricas incluem os componentes resistivos e reativos da impedância elétrica na saída do dispositivo. A meta de projeto para a impedância deve ser especificada para a frequência de 1 kHz. O microfone deve ser removível para permitir a inserção de sinais elétricos de testes na entrada do pré-amplificador.

O Manual de Instruções deve declarar o mais alto nível de pressão sonora no microfone e a maior tensão pico a pico que pode ser aplicada na entrada elétrica do pré-amplificador sem causar danos ao sonômetro. As especificações de desempenho desta norma se aplicam, como apropriado, a qualquer ponderação no tempo ou em frequência operados em paralelo e para cada canal independente de um sonômetro multicanal.

Um sonômetro multicanal pode ter duas ou mais entradas para microfone. O Manual de Instruções deve descrever as características e a operação de cada canal independente. As especificações para a resposta eletroacústica de um sonômetro se aplicam após um intervalo de tempo inicial, quando o equipamento for ligado.

O intervalo de tempo inicial, declarado no Manual de Instruções, não pode exceder 2 min. Deve ser permitido que o sonômetro atinja o equilíbrio com as condições ambientais predominantes antes que seja ligado o fornecimento de energia. Nas subseções subsequentes, os limites de aceitação são fornecidos para valores permitidos dos desvios medidos a partir das metas de projeto.

O Anexo A descreve a relação entre o intervalo de tolerância, o intervalo de aceitação correspondente e a incerteza de medição máxima permitida. A conformidade com uma especificação de desempenho é demonstrada quando os seguintes critérios forem satisfeitos: desvios medidos a partir das metas de projeto não excederem os limites de aceitação aplicáveis e a incerteza de medição correspondente não exceder a incerteza de medição máxima permitida correspondente fornecida no Anexo B para uma probabilidade de abrangência de 95%.

O Anexo C fornece exemplos de avaliação da conformidade com as especificações desta norma. Pelo menos um modelo de calibrador de nível sonoro deve ser declarado no Manual de Instruções para verificar ou ajustar a sensibilidade global do sonômetro, de modo a otimizar o desempenho eletroacústico sobre a faixa de frequência completa.

Para os sonômetros de Classe 1, o calibrador de nível sonoro deve estar conforme as especificações de Classe 1 da NBR IEC 60942. Para os sonômetros de Classe 2, o calibrador de nível sonoro deve estar conforme as especificações para Classe 1 ou 2 da NBR IEC 60942. Os calibradores de nível sonoro padrão laboratorial não são apropriados para aplicações de campo gerais com um sonômetro, pois as suas características de desempenho são especificadas na NBR IEC 60942 apenas para uma faixa limitada de condições ambientais.

Para o nível de pressão sonora de referência na faixa de nível de referência e para a frequência de verificação da calibração na faixa de 160 Hz a 1 250 Hz, um procedimento e dados devem ser fornecidos no Manual de Instruções, para que um ajuste aplicado ao nível sonoro indicado em resposta à utilização do calibrador de nível sonoro resulte na indicação requerida na frequência de verificação da calibração. Os dados de ajuste devem ser determinados de acordo com a IEC 62585 e devem ser aplicados para condições ambientais ao menos dentro das faixas de 80 kPa a 105 kPa para pressão estática, 20 °C a 26 °C para temperatura do ar e 25 % a 70 % para umidade relativa.

Os dados de ajuste devem ser aplicados aos microfones de todos os modelos declarados no Manual de Instruções para uso com o sonômetro e a qualquer dispositivo associado fornecido pelo fabricante do sonômetro para montar o microfone com o instrumento. As variações nos valores dos dados de ajuste dentro destas faixas de condições ambientais devem ser incluídas na incerteza associada para os dados de ajuste. A diferença entre os dados de ajuste medidos de acordo com a IEC 61672-2 e os dados de ajuste do Manual de Instruções não pode exceder ± 0,3 dB.

Os caminhos e os espaços para o cabeamento estruturado

A NBR 16415 de 10/2021 – Caminhos e espaços para cabeamento estruturado especifica a estrutura e os requisitos para os caminhos e espaços, dentro ou entre edifícios, para troca de informações e cabeamento estruturado, de acordo com a NBR 14565. Também influencia a alocação de espaço no interior do edifício e abrange os edifícios monousuários e multiusuários. Não abrange os aspectos de segurança do projeto do edifício, medidas de contenção de incêndio ou sistemas de telecomunicações que requeiram quaisquer tipos especiais de medidas de segurança. Os requisitos de segurança elétrica, de incêndio e de compatibilidade eletromagnética estão fora do escopo dessa norma.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como devem ser projetadas as caixas de passagem e de emenda?

Como devem ser os espaços que contêm distribuidores?

Onde devem ser posicionados os pontos de terminação?

Como deve ser feita a seleção de estruturas de caminhos?

Para conformidade com esta norma, os requisitos descritos nessa norma e nos seus Anexos A a D devem ser atendidos. Toda infraestrutura metálica, os componentes e os suportes devem ser aterrados e equipotencializados. As especificações de segurança pessoal e do trabalho estão fora do escopo desta norma.

O projetista deve seguir as normas de segurança aplicáveis ao local das instalações. A figura abaixo mostra as relações entre os elementos dos caminhos e os espaços para cabeamento estruturado dentro de um edifício monousuário.

Existem alguns critérios que se aplicam a todos os espaços de telecomunicações. Eles não podem estar localizados em saídas de emergência e áreas sujeitas à inundação e infiltração de água. Os subsolos de edifícios devem ser evitados. Os sistemas de drenagem no piso são recomendados se houver risco de ingresso de água no espaço.

Os espaços devem estar livres de encanamentos de água ou dreno que não sejam requeridos para suportar os equipamentos ali instalados. Um encanamento de dreno deve ser considerado dentro das salas de telecomunicações em caso de risco de entrada de água nestes espaços e devem ser vedados para prevenir o ingresso de contaminantes, pragas, propagação de chamas, gases tóxicos, etc. O piso, as paredes e o teto devem ser construídos de modo a reduzir a quantidade de pó e outros contaminantes no interior do espaço e devem ser selecionados materiais de piso com propriedades antiestáticas.

Deve-se levar em consideração a demanda inicial e a expansão futura e evitar áreas que possam limitar a expansão, como poços de elevadores, caixas de escadas e paredes fixas. Os limites de carga de piso não podem ser excedidos durante a construção e operação e os acabamentos devem ser de cor clara para melhorar a iluminação do espaço. Na construção, devem oferecer níveis adequados de segurança e acesso restrito para o cabeamento estruturado, e a sinalização deve ser feita de acordo com a política de segurança da organização.

As classificações de risco de áreas que contêm equipamentos ativos ópticos, bem como cabeamento óptico, devem ser tratadas de acordo com a IEC 60825-2 para a determinação de práticas adequadas de instalação e identificação e a implementação adequada dos requisitos desta norma deve considerar que as instalações elétricas, a equipotencialização e as medidas de proteção contra sobretensões sejam observadas. O conceito mecânico, ingresso, climático/químico, eletromagnético (MICE) deve ser aplicado ao ambiente industrial conforme a NBR 16521, devendo ser usado para descrever o ambiente no qual o cabeamento ou partes do cabeamento forem instalados.

A infraestrutura para o cabeamento deve ser selecionada para oferecer proteção ambiental suficiente para que o cabeamento atenda aos requisitos de desempenho de transmissão. O acesso aos caminhos entre edifícios é feito nos espaços de telecomunicações e estruturas, como caixas de passagem e inspeção, poços de visita, etc.

Todas as aberturas para acesso aos espaços e estruturas devem manter as características ambientais. A entrada de cabo nos espaços e infraestruturas deve prover suporte para prevenir sua dobra excessiva e oferecer alívio de tensão conforme especificação ou instruções dos fabricantes.

O material usado na construção de espaços e estruturas deve ser especificado para resistir à deterioração causada por irradiação solar. Os poços de visita devem ser projetados para garantir a manutenção do raio mínimo de curvatura dos cabos a serem instalados. Quando vários tipos de cabos ou várias especificações de raio mínimo de curvatura estiverem envolvidos, o maior raio deve ser considerado no projeto.

Essas estruturas devem ser grandes o suficiente para conter gabinetes, bastidores e acessórios de suporte, se necessário. O roteamento de cabos pelos poços de visita deve permitir que a instalação esteja em conformidade com os seguintes requisitos: os cabos devem ser instalados em primeiro lugar nos níveis mais altos; os cabos não podem ser entrelaçados; devem ser utilizados suportes para evitar que os cabos fiquem depositados na base do poço; não pode ser mantido excesso de cabos no poço, além da reserva técnica; deve ser mantida uma área interna para permitir serviços de manutenção; as tampas e os acessos aos poços de visita devem ser vedados para evitar a infiltração de contaminantes e pragas.

Quando os espaços e estruturas forem projetados para conter equipamentos ativos, a temperatura e umidade devem ser mantidas para permitir a operação contínua dos ativos e a alimentação elétrica para a carga suportada deve estar disponível. Os espaços que contêm distribuidores devem ter portas de acesso com no mínimo 1,0 m de largura e 2,10 m de altura.

A altura livre mínima do piso elevado em salas nas quais os segmentos de cabos são encaminhados a gabinetes ou racks por caminhos sob o piso deve ser de 0,3 m. A intensidade de luz nas salas que contêm distribuidores deve ser de 500 lux no plano horizontal e 200 lux no vertical, medida a 1,0 m do piso acabado, nas partes frontal e posterior dos gabinetes e racks. Considerar iluminação auxiliar para os serviços de terminação de cabos.

As salas que contêm equipamentos ativos devem: oferecer controle de temperatura e umidade relativa do ar para a carga térmica instalada; oferecer alimentação elétrica adequada para a carga instalada; ter os interruptores de luz acessíveis com acionamento manual próximos à entrada da sala. Para detalhes, consultar o projeto elétrico do espaço.

A sala de entrada é o local que recebe os cabos de backbone de campus, de edifício e das operadoras. Deve-se levar em consideração que esse espaço necessita de alimentação elétrica em conformidade com a NBR 5410. A infraestrutura de entrada é de responsabilidade do proprietário do edifício.

A decisão quanto ao projeto desse espaço deve levar em consideração os critérios de segurança, quantidade de cabos, tipo de protetores, tamanho do edifício e localização física dentro do edifício. Um espaço para serviços por antena deve ser projetado e deve estar localizado próximo ao pátio de antenas.

Se dispositivos de interface de rede e equipamentos de telecomunicações forem requeridos na sala de entrada, deve haver um espaço adicional, que pode combinar as características de uma sala de entrada e de uma sala de equipamentos. A sala de entrada deve abrigar apenas instalações diretamente relacionadas ao sistema de cabeamento estruturado e aos seus sistemas de suporte.

A entrada da antena é um espaço destinado aos equipamentos e conexões para os sistemas de antenas, devendo estar localizado em posição mais próxima possível das antenas e suas estruturas verticais. Este espaço é mostrado na figura acima e deve ser dimensionado conforme especificado na Tabela A.1, disponível na norma. O espaço pode ser aberto e, se fechado, recomenda-se que o pé-direito atenda às especificações e instruções de projeto.

Deve haver conexão física com os shafts ou prumadas do edifício. Deve-se levar em consideração que este espaço necessita de alimentação elétrica em conformidade com a NBR 5410. As salas de equipamentos normalmente contêm uma grande parte dos equipamentos de telecomunicações, terminações de cabos e distribuidores. Elas podem ser consideradas salas para atendimento de todo o edifício ou campus.

Uma sala de equipamentos deve ser climatizada e pode exercer as funções de qualquer espaço de telecomunicações. Deve-se levar em consideração que este espaço necessita de alimentação elétrica em conformidade com a NBR 5410. Recomenda-se que a sala de equipamentos seja implementada em localidades não sujeitas à interferência eletromagnética.

Uma atenção especial deve ser dada aos transformadores elétricos, poços de distribuição de energia elétrica, motores, geradores, reatores de lâmpadas, equipamentos de radiologia, transmissores de rádio, bem como outras fontes potenciais de interferência. Uma sala de equipamentos deve: ser dimensionada para atender aos requisitos dos equipamentos de telecomunicações, redes, terminações dos cabos e distribuidores; ter no mínimo 0,07 m² para cada 10 m² de espaço de área de trabalho, quando equipamentos de uso específico não forem conhecidos; levar em consideração os distribuidores horizontais e de backbone, conexões aos equipamentos, áreas para manutenção, espaços livres e circulação de pessoas.

Em edifícios de uso especial, como, por exemplo, hospitais, hotéis, universidades etc., o tamanho da sala de equipamentos deve ser dimensionado com base no número conhecido de áreas de trabalho em relação à área útil do pavimento. Essa sala deve ser dedicada à função de telecomunicações e redes, bem como abrigar apenas os equipamentos diretamente relacionados ao sistema de cabeamento estruturado e telecomunicações; ter o acesso restrito ao pessoal autorizado e, quando possível, ficar em um edifício de múltiplos pavimentos, recomendando-se que a sala de equipamentos seja localizada no pavimento intermediário para possibilitar um fácil acesso do cabeamento às salas de telecomunicações localizadas nos outros pavimentos.

Além disso, deve estar localizada em uma área acessível aos elevadores de carga para entrega de equipamentos de grande porte. O acesso para a entrada de equipamentos de grande porte na sala de equipamentos deve ser previsto na fase de projeto. A sala de telecomunicações deve estar preparada para a instalação de equipamentos de telecomunicações, terminações de cabos e distribuidores.

Recomenda-se que a sala de telecomunicações esteja localizada o mais próximo possível do centro da área atendida e dos caminhos do edifício, como shaft ou prumada. Os caminhos horizontais devem terminar na sala de telecomunicações, localizada no mesmo pavimento da área atendida ou em pavimentos adjacentes. Considera-se pavimento adjacente aquele imediatamente acima ou abaixo do pavimento onde se encontra uma sala de telecomunicações.

A sala de telecomunicações deve ser dedicada à função de telecomunicações e respectivas instalações e não pode ser compartilhada com outros sistemas do edifício. Devem ser disponibilizadas tomadas elétricas dedicadas em circuitos separados para conectar equipamentos ativos, em quantidade e localização adequadas às necessidades do projeto elétrico.

As tomadas elétricas de uso geral devem ser consideradas em circuitos separados dos dedicados aos equipamentos de telecomunicações. Para a distribuição elétrica, ver a NBR 5410. O projeto da sala de telecomunicações deve considerar um sistema de ventilação ou de climatização.

Para áreas de edifício onde é difícil adicionar tomadas de telecomunicações após a instalação inicial, considerar no mínimo duas localidades separadas para tomadas de telecomunicações na etapa de projeto, para cada área de trabalho. As tomadas devem ser localizadas de forma a oferecer a máxima flexibilidade para mudança dentro da área de trabalho, por exemplo, em paredes opostas em um espaço privado do escritório.

As localidades para as tomadas de telecomunicações podem ser adequadas ao leiaute do mobiliário do escritório. No mínimo uma tomada de alimentação elétrica deve ser instalada próxima a cada tomada de telecomunicações, conforme especificado no projeto elétrico. Os caminhos independentes e diretos devem ser providos em áreas com altas demandas de equipamentos de telecomunicações, como centros de controle, sala de servidores etc., para atendimento de salas de telecomunicações e salas de equipamentos.

IEC 60884-3-1: os requisitos para tomadas que incorporam fonte de alimentação USB

A IEC 60884-3-1:2021 – Plugs and socket-outlets for household and similar purposes – Part 3-1: Particular requirements for socket-outlets incorporating USB power supplyaplica-se a tomadas fixas ou portáteis apenas para ca, com ou sem contato de aterramento, com uma tensão nominal superior a 50 V, mas não superior a 440 V e uma corrente nominal não superior a 32 A, destinadas a usos domésticos e similares, internos ou externos, incorporando fonte de alimentação USB. Esse documento define os requisitos de segurança e EMC para tomadas que incorporam fonte de alimentação USB. As especificações, o desempenho e os requisitos dimensionais das tecnologias USB não são cobertos por este documento. Eles são definidos na (s) parte (s) relevante (s) da IEC 62680.

Conteúdo da norma

PREFÁCIO …………………….. 4

1 Escopo ………………………. 6

2 Referências normativas ……………… 6

3 Termos e definições ………….. 7

4 Requisitos gerais ……………….. 8

5 Observações gerais sobre os testes……………… 8

6 Avaliações …………………… 10

7 Classificação …………………… 11

8 Marcação …………………… 11

9 Verificação das dimensões …………………. 12

10 Proteção contra choque elétrico ………….. 12

11 Provisão para aterramento ……….. 13

12 Terminais e terminações …………………… 13

13 Construção de tomadas fixas …………….. 14

14 Construção de plugues e tomadas portáteis……….. 14

15 Tomadas intertravadas ……………. 15

16 Resistência ao envelhecimento, proteção fornecida por gabinetes e resistência à umidade…………………. 15

17 Resistência de isolamento e força elétrica………. 15

18 Operação de contatos de aterramento ………. 16

19 Aumento de temperatura ………….. 16

20 Capacidade de interrupção ……………… 18

21 Operação normal ………………… 18

22 Força necessária para retirar o plugue……….. 19

23 Cabos flexíveis e sua conexão ……………. 19

24 Resistência mecânica …………… 19

25 Resistência ao calor ……………… 20

26 Parafusos, peças portadoras de corrente e conexões….21

27 Distâncias de fuga, folgas e distâncias por meio de composto de vedação ……………….. 21

28 Resistência do material isolante ao calor anormal, ao fogo e ao rastreamento ……………… 21

29 Resistência à ferrugem……………. 21

30 Testes adicionais em pinos fornecidos com luvas isolantes…… 21

31 Requisitos EMC …………. 21

32 Requisitos de campos eletromagnéticos (electromagnetic fields – EMF) ……… 26

101 Condições anormais …………….. 26

102 Requisitos particulares para o circuito de alimentação USB…………………… 28

Anexos………………………. 31

Anexo AA (informativo) Testes de rotina relacionados à segurança para controle de teste de força elétrica – Teste de força elétrica da fonte de alimentação USB………. 32

Bibliografia ……………………. 34

Determinando o teor de bifenilas policloradas (PCB) em líquidos isolantes

A NBR 13882 de 09/2021 – Líquidos isolantes elétricos – Determinação do teor de bifenilas policloradas (PCB) especifica um método para determinação do teor de bifenilas policloradas (PCB) em líquidos isolantes não halogenados, por cromatografia gasosa com coluna capilar de alta resolução, usando detector de captura de elétrons. Não é aplicável aos fluidos de silicone. As PCB são compostos químicos gerados quando os átomos de hidrogênio da bifenila são parcialmente ou completamente substituídos por átomos de cloro, desde a substituição de apenas um hidrogênio até a substituição total dos 10 átomos. Já os líquidos isolantes elétricos são os aplicados em equipamentos elétricos como fluidos isolantes entre as partes metálicas, podendo ser sintéticos ou naturais.

Confira algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como determinar a linearidade?

Como executar a verificação da resolução?

Como fazer a preparação da amostra de óleo para análise (clean-up da amostra)?

Como realizar a determinação do tempo de retenção relativo experimental (ERRT)?

As bifenilas policloradas (PCB) são uma família de hidrocarbonetos aromáticos clorados sintéticos, com boas propriedades térmicas e elétricas. Essas propriedades, combinadas com a excelente estabilidade química, tornaram as bifenilas úteis em numerosas aplicações comerciais.

Entretanto, sua estabilidade química e resistência à biodegradação deram origem à preocupação relacionada à poluição ambiental, higiene e segurança do trabalho. Com a preocupação crescente sobre o impacto ambiental das PCB no Brasil, foi publicada, em 1981, a Portaria Interministerial 019, que proíbe a comercialização e uso de PCB em todo o território nacional.

Em 2005, o país ratificou a Convenção de Estocolmo, com o compromisso da retirada total de uso de PCB até o ano de 2025. O teor de PCB do óleo em equipamentos novos pode ser medido para confirmar se o óleo está isento de PCB. Daí em diante, sempre que houver um risco de contaminação potencial (tratamento de óleo, reparos em transformador, etc.), o óleo pode ser analisado conforme descrito nesta norma.

As amostras de óleo mineral isolante ou óleo vegetal isolante nas quais serão realizados os ensaios de PCB devem ser coletadas conforme a NBR 8840. O princípio do método envolve os congêneres de PCB são determinados por cromatografia gasosa de alta resolução, objetivando a melhor separação dos congêneres da mistura.

Um procedimento de preparação das amostras (clean-up) é utilizado para remover a maioria das impurezas que interferem na determinação analítica. Os compostos de referência são utilizados para permitir o cálculo do tempo de retenção relativo experimental (ERRT), que será comparado com a tabela teórica dos tempos de eluição de cada pico, para identificar o congênere individual ou mistura de congêneres. Um padrão interno é adicionado para a quantificação.

Os fatores de resposta relativos (RRF) são corrigidos pelo fator de resposta relativo experimental (ERRF) obtido pelos compostos de referência, utilizado para quantificar congêneres individuais ou em grupos, e os valores das concentrações obtidas individualmente de cada congênere são somados e fornecem o conteúdo total de PCB. Os controles de qualidade são introduzidos junto com as amostras para garantir a correta quantificação.

Os solventes, os reagentes, as vidrarias e os materiais podem contaminar ou interferir na preparação da amostra. A avaliação desses materiais deve ser feita por uma análise de uma amostra em branco do método, para demonstrar que estes estão livres de contaminantes e interferentes.

O analista deve tomar cuidado para a possibilidade de contaminação cruzada entre as amostras. Na técnica de cromatografia gasosa pode haver identificação incorreta de picos no cromatograma. Para minimizar esse efeito, recomenda-se que o analista possua treinamento ou experiência suficiente em cromatografia gasosa.

Um possível interferente na análise de PCB está relacionado à oxidação do óleo isolante. Quanto mais oxidado estiver o óleo, maior a probabilidade de interferência analítica. A matriz da amostra pode conter componentes que interferem no desempenho da medição, que podem aumentar ou reduzir a magnitude do sinal, sendo que este comportamento pode depender da concentração deles.

A sensibilidade do detector de captura de elétrons (ECD) pode ser reduzida pela presença de óleo mineral. Deve ser considerada e inserida no processo uma limpeza adicional na amostra antes da finalização do preparo.

Quanto à aparelhagem, reagentes e materiais, como os padrões e reagentes, incluir a água deionizada isenta de compostos orgânicos, para lavagem de vidrarias, gás hélio, pureza mínima de 99,999%, gás nitrogênio, pureza mínima de 99,999%, hexaclorobenzeno, concentração de 0,001 μg/mL, n-hexano, grau resíduo ou equivalente, líquido mineral isolante isento de PCB, solução padrão de Aroclor 1242, 1254 e 1260, em óleo mineral isolante a 50 mg/L, solução congênere 30 (C30) a 100 mg/L em hexano e/ou isooctano, solução congênere 209 (C209) DCB a 100 mg/L em hexano e/ou iso-octano, solução padrão de calibração mix dos congêneres a 10 mg/L cada, contendo os seguintes congêneres: 18, 28, 31, 44, 52, 101, 118, 138, 149, 153, 170, 180, 194 e 209 em hexano e/ou isooctano, sulfato de sódio anidro e ácido sulfúrico concentrado P.A.

Todos os reagentes e materiais indicados abaixo, incluindo os utilizados na preparação das amostras, devem ser isentos de interferentes ou compostos sensíveis ao detector: balão volumétrico de 5 mL,10 mL, 20 mL, 25 mL, 50 mL e 100 mL, cartucho de Florisil (SPE) com tamanho adequado (é recomendado 1 g/6 mL), pipeta volumétrica e micropipeta, para volumes variados, ponteira descartável com volumes variados, frasco tipo vial de vidro, com tampa e volumes variados, microsseringa com volumes variados, funil de separação, copo de béquer de volumes variados.

Incluir como aparelhagem um cromatógrafo gasoso (GC) com detector de captura de elétrons (ECD) e sistema de dados, um amostrador automático (opcional), uma bomba de vácuo, um sistema de extração manifold, para SPE (extração em fase sólida) (opcional), uma balança analítica, uma coluna capilar adequada ao método, de tal forma que promova a separação cromatográfica adequada dos picos. A coluna capilar deve ser de sílica fundida revestida com fase estacionária de 5 % fenil-metil silicone ou similar de baixo sangramento, comprimento de 30 m a 60 m, diâmetro interno de 0,1 mm a 0,35 mm e espessura do filme de 0,1 μm a 0,25 μm.

O laboratório deve manter um programa de garantia da qualidade dos ensaios realizados e meios para o armazenamento de todos os dados gerados, a fim de assegurar controles analíticos com critérios de aceitação estabelecidos. Os controles de qualidade sugeridos para este método incluem amostra em branco, padrões de verificação, repetibilidade (precisão) e exatidão.

Para a amostra em branco de óleo isento de PCB, recomenda-se a análise para cada nova utilização de branco, a fim de demonstrar estar livre de contaminação. A amostra em branco deve passar por todas as etapas da preparação. Para a amostra em branco de solvente, recomenda-se que seja analisada antes do início do ciclo de análise e, aproximadamente, a cada 20 amostras ou para cada novo lote de reagente, a fim de demonstrar que os equipamentos e reagentes utilizados estão livres de contaminação.

Para um padrão de verificação, recomenda-se que seja analisado antes do início do ciclo de análise e, aproximadamente, a cada 20 amostras com material de referência certificado de fonte e concentrações diferentes das utilizadas na calibração. Para a repetibilidade, recomenda-se que seja avaliada no momento da verificação de desempenho do sistema e do método.

Uma amostra que já tenha sido analisada deve ser preparada de forma independente, com periodicidade estabelecida pelo laboratório. Para a exatidão, recomenda-se que seja avaliada por meio da tendência, demonstrando o grau de proximidade dos resultados obtidos pelo método. Podem ser utilizados materiais de referência e participação em comparações interlaboratoriais.

Os métodos são baseados nas boas práticas de laboratório (BPL) e nas recomendações da NBR ISO/IEC 17025. O critério de aceitação para cada controle de qualidade deve ter padrão de verificação, repetibilidade e exatidão definidos pelo laboratório, não sendo maior do que ± 10% de seu valor teórico.

Quando o resultado obtido estiver fora deste critério, o analista deve investigar o motivo e corrigi-lo, a fim de assegurar a confiabilidade dos resultados obtidos. Recomenda-se que o analista avalie a área do pico do padrão interno, bem como o tempo de retenção. Um critério para a avaliação destes itens deve ser estabelecido no programa de garantia da qualidade.

Cada laboratório deve estabelecer um programa de controle do desempenho de seus equipamentos para a rotina de análise e em momentos específicos, como após manutenção ou substituição de componentes críticos, como detector ou coluna cromatográfica. O laboratório deve estabelecer condições para o equipamento que promovam uma melhor resolução e maior sensibilidade na separação e quantificação dos picos.

As informações contidas no Anexo D podem ser utilizadas como orientação. Fica a critério do laboratório a escolha das melhores condições de operação do cromatógrafo. O detector de captura de elétrons (ECD) deve ter sensibilidade suficiente para fornecer uma relação sinal/ruído adequada.

A verificação é realizada pela injeção de uma solução de 1 pg de hexaclorobenzeno em n-hexano, de tal forma que a relação sinal/ruído seja de pelo menos 20. Recomenda-se a utilização de um volume de injeção de no mínimo 1 μL. Outros volumes de injeção podem ser utilizados, desde que fique demonstrada uma sensibilidade adequada para os compostos de interesse. As condições de operação do equipamento devem ser as mesmas utilizadas tanto para os padrões da curva de calibração quanto para as amostras analisadas.

IEC 60598-1: os requisitos normativos das luminárias

A IEC 60598-1:2020 – Luminaires – Part 1: General requirements and tests especifica os requisitos gerais para as luminárias, incorporando fontes de luz elétrica para operação com tensões de alimentação de até 1.000 V. Os requisitos e os ensaios relacionados deste documento abrangem: a classificação, a marcação, a construção mecânica, a construção elétrica e a segurança fotobiológica.

Essa nona edição cancela e substitui a oitava edição publicada em 2014 e a Alteração 1: 2017. Ela constitui uma revisão técnica e inclui as seguintes alterações técnicas significativas em relação à edição anterior: a revisão da Cláusula 4.30, Fixação da cobertura de partes vivas de fonte de luz não substituível pelo usuário; subcláusula 4.24.2, Perigo de luz azul: remoção do Grupo de risco 0; subseção 5.2.16: requisitos adicionais para entradas de aparelhos de alimentação CA relacionados à IEC 61984; inclusão da Subcláusula 3.3.25, Proteção UV do cabo; inclusão da Cláusula 4.34, Inclusão de requisitos de segurança EMF (IEC 62493); revisão dos requisitos de aterramento funcional e aterramento de proteção; inclusão da Cláusula 4.35, Proteção contra peças de rotação rápida; revisão da Cláusula 3.2, Marcação da tensão nominal; revisão da Subcláusula 5.2.10, Ancoragem do cabo; revisão do Anexo G para configuração de teste de corrente de toque e corrente do condutor de proteção; adição de requisitos para função de saída de luz constante e saída de corrente programável; revisão da Subcláusula 8.2.3 c), limites de tensão de toque para tensão CC interrompida; introdução do PELV; introdução de conexão de alimentação Ethernet para luminárias (PoE); Seção 9, Introdução do IPX9; adição da Subcláusula 3.3.26 para luminárias de parede; revisão do Anexo D introduzindo ensaios térmicos alternativos para luminárias com marcação superior a 25 ° C; revisão da Tabela 10.3 e Subseção 3.3.19 para limites de corrente do condutor de proteção; luminárias montadas em trilhos: referência cruzada ao Anexo A da IEC 60570: 2003 / AMD2: 2019; revisão da Subcláusula 10.2.2, teste de força elétrica DC alternativo; revisão do Anexo D para luminárias embutidas; subcláusula 4.12.5: revisão da Tabela 4.2 para teste de torque em glândulas metálicas; revisão da utilização de condensadores de ponte em luminárias; e revisão da conexão elétrica para plugues classe III.

Cada seção dessa Parte 1 deve ser lida em conjunto com a Seção 0 e com outras seções relevantes às quais é feita referência. Cada parte da IEC 60598-2 detalha os requisitos para um determinado tipo de luminária ou grupo de luminárias em tensões de alimentação não superiores a 1.000 V. Essas partes são publicadas separadamente para facilitar a revisão e as seções adicionais serão acrescentadas conforme e quando necessário.

A apresentação de dados fotométricos para luminárias está sendo considerada pela Comissão Internacional de Iluminação (CIE) e não está, portanto, incluída nesta Parte 1. Os requisitos estão incluídos nesta Parte 1 para luminárias que incorporam ignitores com valores de pico nominais do pulso de tensão não excedendo os da Tabela 11.2.

Os requisitos aplicam-se a luminárias com ignitores integrados em balastros e a luminárias com ignitores separados de reatores. Para luminárias com ignitores integrados às lâmpadas, os requisitos estão sendo considerados. Os requisitos para semiluminárias estão incluídos nesta Parte 1.

Em geral, essa Parte 1 cobre os requisitos de segurança para luminárias. O objetivo dessa Parte 1 é fornecer um conjunto de requisitos e testes que são considerados geralmente aplicáveis à maioria dos tipos de luminárias e que podem ser chamados conforme exigido pelas especificações detalhadas da IEC 60598-2.

Essa Parte 1 não é, portanto, considerada como uma especificação em si mesma para qualquer tipo de luminária e suas disposições se aplicam apenas a determinados tipos de luminárias na medida determinada pela parte apropriada da IEC 60598-2. As partes da IEC 60598-2, ao fazer referência a qualquer uma das seções da Parte 1, especificam até que ponto essa seção é aplicável e a ordem em que os testes são realizados. Também incluem requisitos adicionais conforme necessário.

A ordem em que as seções da Parte 1 são numeradas não tem nenhum significado particular, pois a ordem em que suas disposições se aplicam é determinada para cada tipo de luminária ou grupo de luminárias pela parte apropriada da IEC 60598-2. Todas as partes da IEC 60598-2 são independentes e, portanto, não contêm referências a outras partes da IEC 60598-2.

Onde os requisitos de qualquer uma das seções da Parte 1 são referidos nas partes da IEC 60598-2 pela frase “Os requisitos da seção … da IEC 60598-1 se aplicam”, esta frase é interpretada como significando que todos os requisitos dessa seção da Parte 1 se aplicam, exceto aqueles que são claramente inaplicáveis ao tipo específico de luminária abrangido por aquela parte da IEC 60598-2.

Para luminárias à prova de explosão, conforme coberto pela IEC 60079, os requisitos da IEC 60598 (selecionando as partes apropriadas 2) são aplicados além dos requisitos da IEC 60079. Em caso de conflito entre a IEC 60598 e a IEC 60079, os requisitos da IEC 60079 têm prioridade.

As melhorias na segurança devem levar em conta o estado da arte da tecnologia que são incorporadas às normas com revisões e emendas em uma base contínua. Na normalização regional, os organismos podem incluir declarações em suas normas derivadas para cobrir produtos que cumpriram com o documento anterior conforme mostrado pelo fabricante ou organismo de padronização. As declarações podem exigir que, para tais produtos, a norma anterior possa continuar a ser aplicada à produção até uma data definida após a qual a nova norma deverá ser aplicada.

A conformidade dos fios de aço revestidos de cobre, nus, para fins elétricos

A NBR 8120 de 09/2021 – Fios de aço revestidos de cobre, nus, para fins elétricos – Especificação especifica os requisitos para fios de aço revestidos de cobre, nus, para fins elétricos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser tolerâncias no diâmetro nominal?

Quais são as propriedades mecânicas dos fios de aço de alta resistência revestidos de cobre – HS?

Qual deve ser a resistividade elétrica?

Qual deve ser o plano de amostragem dupla normal (NQA = 2,5 %, NI = II)?

O fio de aço revestido de cobre consiste em um núcleo de aço com uma camada uniforme e contínua de cobre perfeitamente ligada ao núcleo. O fio de aço revestido de cobre acabado deve atender às propriedades e características determinadas nessa norma.

O aço utilizado deve ser adequado à resistência à tração indicada nessa norma e o cobre deve atender à ASTM B152/B152M-09. Como acabamento, o fio de aço revestido de cobre deve apresentar camada de cobre contínua com espessura uniforme, superfície lisa, sem riscos, fissuras, escamas, rebarbas e imperfeições que comprometam o desempenho do produto.

Durante a fabricação são permitidas emendas nos fios de aço revestido de cobre, efetuadas por solda elétrica, com recobrimento de prata, desde que anteriores ao penúltimo passe de trefila. O limite de resistência à tração do fio acabado, contendo a seção soldada, deve ser no mínimo 80% do valor especificado.

Não são permitidas emendas no fio de aço revestido de cobre tipos LC, HS e EHS acabado. Os fios de aço revestidos de cobre devem ser designados por seu diâmetro nominal, expresso em milímetros, com duas casas decimais, e pela sua condutividade em % IACS. Para fins de cálculo, a massa específica do fio de aço revestido de cobre a 20°C deve ser conforme indicado na tabela abaixo.

Para a inspeção podem ser adotados os seguintes procedimentos: acompanhamento dos ensaios realizados pelo fabricante durante todo o processo de fabricação do fio; a inspeção final nas instalações do fabricante; a inspeção de recebimento no almoxarifado do comprador. Os ensaios e verificações de recebimentos solicitados por esta norma são: a inspeção visual; a verificação do diâmetro do fio; o ensaio de resistência à tração e alongamento à ruptura; o ensaio de enrolamento (ductibilidade); o ensaio de torção; a verificação da espessura da camada de cobre; e o ensaio de resistividade elétrica.

Para os ensaios e as verificações previstas nessa norma, o número requerido de unidades de expedição que constitui a amostra deve estar conforme essa norma, a menos que outro critério, baseado na NBR 5426, seja estabelecido entre as partes interessadas por ocasião da consulta para aquisição do fio. Das amostras, devem ser retirados corpos de prova com comprimento suficiente de fio, desprezando-se o primeiro metro da extremidade.

Se um corpo de prova extraído de uma amostra não satisfizer o valor especificado em qualquer ensaio, deve ser efetuado o mesmo ensaio em dois outros corpos de prova adicionais da mesma amostra. Se os resultados obtidos nos ensaios de ambos os corpos de prova adicionais forem satisfatórios, considera-se aquela amostra aceita.

A aceitação ou rejeição do lote deve estar de acordo com o seguinte critério, conforme a tabela acima, em relação ao número de amostras que não satisfizer aos requisitos especificados: menor ou igual a Ac1: o lote deve ser aceito; igual ou maior que Re1: o lote pode ser rejeitado; maior que Ac1 e menor que Re1: permite a formação da segunda amostragem; menor ou igual a Ac2: o lote deve ser aceito; igual ou maior que Re2: o lote pode ser rejeitado. Qualquer unidade que tiver sua amostra representativa rejeitada deve ser excluída do lote.

O fabricante pode compor um novo lote, submetendo-o a uma nova inspeção, depois de ter eliminado as unidades de expedição defeituosas. Para o ensaio de verificação do diâmetro, ele deve ser medido conforme a NBR 15443 e deve atender ao disposto nessa norma. Para o ensaio de resistência à tração e alongamento à ruptura e das características mecânicas dos fios de aço revestidos de cobre, deve ser realizado conforme a NBR 6810 e deve atender ao definido nessa norma. Para o ensaio de enrolamento (ductibilidade), o fio de aço revestido de cobre deve ser enrolado no mínimo oito voltas ao redor de um mandril cilíndrico de diâmetro igual a duas vezes o diâmetro do fio de aço revestido de cobre submetido ao ensaio, com tolerância de ± 5 %. A velocidade do enrolamento não pode ser superior a 15 voltas/minuto. O fio é considerado aprovado se não apresentar fratura ou trinca.

No ensaio de torção, o fio deve suportar, sem fratura, o mínimo de 20 voltas em torno de si mesmo em um comprimento equivalente a 100 vezes o seu diâmetro nominal. O ensaio deve ser executado da seguinte forma: prender o fio pelas suas extremidades a duas morsas, sendo uma das quais livre para deslizar longitudinalmente durante o ensaio; aplicar uma tração de 70 N aproximadamente na amostra durante a operação; torcer a amostra pela rotação de uma das morsas à velocidade de aproximadamente 15 voltas/minuto, no mesmo sentido até a ruptura ocorrer.

O número de voltas deve ser indicado por um dispositivo adequado. O fio é considerado aprovado se, após a ocorrência da ruptura, não mostrar separação entre o cobre e o aço. A espessura da camada de cobre deve ser verificada por meio de medição direta ou com aparelho elétrico adequado, operando sob o princípio da medição de permeabilidade magnética.

Os fios devem ser acondicionados de maneira a ficarem protegidos durante o manuseio, transporte, armazenagem e utilização, conforme a NBR 7310. O acondicionamento pode ser em rolo, carretel ou outra forma acordada. O acondicionamento em carretéis deve ser limitado à massa bruta de 1.000 kg, e o acondicionamento em rolos limitado a 40 kg para movimentação manual.

Em rolos cuja movimentação deva ser efetuada por meio mecânico, é permitida massa superior a 40 kg. Os fios devem ser fornecidos em unidades de expedição com comprimento equivalente à quantidade nominal. Quando não especificado diferentemente pelo comprador, cada unidade de expedição deve conter um comprimento contínuo de fio.

Para cada unidade de expedição, a incerteza máxima permitida na quantidade efetiva é de ± 1% em comprimento. O fabricante deve garantir, durante o processo de fabricação, que os materiais acondicionados em rolos apresentem uma média de quantidade no mínimo igual ao efetivo declarado. Admite-se, quando não especificado diferentemente pelo comprador, que a quantidade efetiva em cada unidade de expedição seja diferente do comprimento nominal em no máximo ± 5% em comprimento.

Para efeitos comerciais, o fabricante deve declarar a quantidade efetiva. Os carretéis de madeira devem atender aos requisitos da NBR 11137 e os rolos devem atender aos requisitos da NBR 7312. Para outras formas de acondicionamento, os requisitos devem ser acordados entre as partes interessadas. O Anexo A fornece as informações necessárias para encomenda dos fios.