IEEE 1248: o comissionamento de sistemas elétricos em usinas hidrelétricas

Essa norma é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

A IEEE 1248:2020 – Guide for the Commissioning of Electrical Systems in Hydroelectric Power Plants é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

Em resumo, o guia descreve os ensaios realizados e fornece os processos a serem seguidos durante o comissionamento de sistemas elétricos e de controle em usinas hidrelétricas. São fornecidas orientações sobre métodos a serem utilizados, organização e execução dos ensaios.

Embora o guia não forneça os procedimentos prescritivos específicos para instalações e equipamentos, os ensaios são descritos juntamente com os padrões de referência para obter mais informações. O comissionamento de equipamentos elétricos pode ser para uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização de equipamentos elétricos existentes.

Conteúdo da norma

1. Visão geral………………………. 10

1.1 Escopo………………………….. 10

1.2 Objetivo………………………. 10

1.3 Organização…………………… 10

2 Referências normativas………. 11

3 Definições, acrônimos e abreviações……………… …. 11

3.1 Definições………………………………………… 11

3.2 Acrônimos e abreviações……….. …………. 12

4. Planejamento, funções e responsabilidades do comissionamento…………………… 13

4.1 Planejamento…………………… 13

4.2 Proprietário……………………. 14

4.3 Empreiteiro……………………… 14

4.4 Engenheiro………………………. 15

4.5 Fabricante/fornecedor……………. 16

5. Fases do programa de comissionamento ……………. 16

5.1 Fase de ensaio de construção… …………………. 17

5.2 Fase de ensaio pré-operacional ………………. 18

5.3 Fase de ensaio operacional…………………. 18

5.4 Ensaio de desempenho.. …………………….. 19

6. Implementação do comissionamento….. …………… 19

6.1 Geral…………. ……………………………………. 19

6.2 Fase de conclusão da construção………. ………. 19

6.3 Fase de ensaio pré-operacional……….. ………….. 20

6.4 Fase de ensaio operacional e inicialização da unidade……………………. 21

6.5 Ensaio de desempenho……………………. 21

7. Aplicação deste guia……………………… 21

7.1 Geral…………………………………. 21

7.2 Usando este guia para desenvolver um programa de ensaio…………………….. 22

7.3 Coordenar ensaios de comissionamento de sistemas e unidades………………… 26

8. Equipamentos na planta……………………… 27

8.1 Lista de equipamentos e matrizes de ensaio….. …… 27

9. Descrições dos ensaios……………………… 64

9.1 Geral …………………………………….. 64

9.2 Ensaios de construção…………………….. 66

9.3 Ensaios pré-operacionais……………….. 101

9.4 Ensaios operacionais…………………….. 123

9.5 Ensaios de desempenho……………….. 137

10. Documentação………………………… 143

10.1 Manutenção de registros……………… 143

10.2 Documentação de engenharia ……….. 143

10.3 Documentação de fábrica… ……………… 143

10.4 Documentação no local…. ………………… 144

Anexo A (informativo) Bibliografia……… ……….. 145

A.1 Turbinas, geradores e motores……. ………. 145

A.2 Transformadores……………………………. 146

A.3 Reguladores………………………………. 147

A.4 Cabos e pista…… ……………………….. 147

A.5 Proteção e retransmissão……………….. 148

A.6 Excitação……………………………. 148

A.7 Isolamento…………………………… 148

A.8 Baterias, UPS e sistemas de energia em espera……… 149

A.9 Disjuntores, painéis, painéis e centros de controle de motores……………… 149

A.10 Controle e SCADA………………….. 150

A.11 Aterramento…………………………. 150

A.12 Definições, códigos, referências e tabelas………………. 151

A.13 Manutenção……….. …………………………….. 151

A.14 Proteção contra incêndio…………………… 151

A.15 Diversos………………………….. 152

Este guia foi desenvolvido para auxiliar os engenheiros envolvidos no comissionamento de equipamentos elétricos em relação ao seguinte: ensaios específicos de equipamentos elétricos; programa de ensaio para colocar o equipamento em operação; o comissionamento de equipamentos elétricos pode ser para o seguinte: uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização do equipamento existente.

O guia descreve o desenvolvimento de uma organização de inicialização, seguida de uma descrição do fases de comissionamento de uma usina hidrelétrica. As informações principais estão contidas no formato de matriz para cada tipo principal de equipamento elétrico, que identifica os vários ensaios associados ao equipamento. As informações são fornecidas para cada ensaio específico, incluindo o seguinte: uma breve descrição; documentos comprovativos; equipamento necessário; duração ou tempo necessário.

Com base nas informações acima, são fornecidas orientações para o planejamento, desenvolvimento e documentação de um programa de comissionamento. Este guia aborda a energia hidrelétrica convencional. Partes do guia são relevantes para instalações de armazenamento bombeado, mas os recursos exclusivos das instalações de armazenamento bombeado não são abordados especificamente.

O guia também contém uma bibliografia de normas do setor, práticas recomendadas e guias que podem ser usado como recursos pelo engenheiro envolvido no comissionamento de equipamentos elétricos. A listagem destina-se a auxiliar na preparação para o início de uma usina hidrelétrica ou para um ensaio específico. Uma revisão de documentos é incentivada.

Todos os ensaios devem ser feitos de acordo com as especificações do equipamento e contratos com referência e em conjunto com as normas pertinentes da indústria. A revisão mais recente das normas e os guias listados no Anexo A devem ser usados. Uma lista de documentos comprovativos, que inclui itens bibliográficos e documentos gerais, é fornecido para cada ensaio na Cláusula 9 deste guia.

BS EN IEC 62984-2: as baterias secundárias para alta temperatura

Essa norma europeia, editada em 2020 pelo BSI, especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes).

A BS EN IEC 62984-2:2020 – High-temperature secondary batteries. Safety requirements and tests especifica os requisitos de segurança e os procedimentos de ensaio para as baterias para altas temperaturas para uso móvel e/ou estacionário e cuja tensão nominal não exceda 1.500 V. Este documento não inclui as baterias de aeronaves cobertas pela IEC 60952 (todas as partes) e baterias para propulsão de veículos elétricos rodoviários, cobertas pela IEC 61982 (todas as partes). As baterias de alta temperatura são sistemas eletroquímicos cuja temperatura operacional interna mínima das células está acima de 100 °C.

CONTEÚDO DA NORMA

PREFÁCIO…………………… 4

1 Escopo……………………… 6

2 Referências normativas………… ….. 6

3 Termos, definições, símbolos e termos abreviados………… 7

3.1 Construção da bateria……………………………………. 7

3.2 Funcionalidade da bateria………………………….. 10

3.3 Símbolos e termos abreviados…………………….. 12

4 Condições ambientais (de serviço)…………………………… 13

4.1 Geral………………………. …………… 13

4.2 Condições normais de serviço para instalações estacionárias……………………. .13

4.2.1 Geral………………… ……… 13

4.2.2 Condições ambientais normais adicionais para instalações internas ……………. 14

4.2.3 Condições ambientais normais adicionais para instalações externas ………….. 14

4.3 Condições especiais de serviço para instalações estacionárias……………………….. .14

4.3.1 Geral…………………. ……… 14

4.3.2 Condições especiais de serviço adicionais para instalações internas………………….. 14

4.3.3 Condições especiais de serviço adicionais para instalações externas………………… 14

4.4 Condições normais de serviço para instalações móveis (exceto propulsão) ………………. 14

4.5 Condições especiais de serviço para instalações móveis (exceto propulsão) ……………… 14

5 Projeto e requisitos……………………… 15

5.1 Arquitetura da bateria……………………. 15

5.1.1 Módulo…………. ………. 15

5.1.2 Bateria………………. ……….. 15

5.1.3 Montagem das baterias………………. 16

5.1.4 Subsistema de gerenciamento térmico……….. 17

5.2 Requisitos mecânicos……………………………. 17

5.2.1 Geral…………………………… ……… 17

5.2.2 Carcaça da bateria………………….. 17

5.2.3 Vibração………………………… …….. 18

5.2.4 Impacto mecânico……………………… 18

5.3 Requisitos ambientais………………………. 18

5.4 Requisitos de Electromagnetic compatibility (EMC)…………….. 18

6 Ensaios……… ……………………… 19

6.1 Geral……………… …………… 19

6.1.1 Classificação dos ensaios………………….. 19

6.1.2 Seleção de objetos de ensaio…………………….. 19

6.1.3 Condições iniciais do DUT antes dos ensaios………………… 20

6.1.4 Equipamento de medição……………. 20

6.2 Lista de ensaios…………….. ……….. 20

6.3 Ensaios de tipo…………….. ………… 21

6.3.1 Ensaios mecânicos………………. 21

6.3.2 Ensaios ambientais…………………………. 23

6.3.3 Ensaios EMC…………………….. ……. 24

6.4 Ensaios de rotina……………… …….. 33

6.5 Ensaios especiais………………. …….. 33

7 Marcações………….. …………………. 33

7.1 Geral……………………………. …………… 33

7.2 Marcação da placa de dados……………………. 33

8 Regras para transporte, instalação e manutenção ……… 33

8.1 Transporte…………………….. …. 33

8.2 Instalação………………. ………. 33

8.3 Manutenção………………… ……. 33

9 Documentação……………………. ………… 33

9.1 Manual de instruções……………………. 33

9.2 Relatório de ensaio……. ……….. 34

Bibliografia……………… ………………….. 35

Figura 1 – Componentes de uma bateria………………….. 16

Figura 2 – Componentes de um conjunto de baterias……….. 16

Figura 3 – Subsistema de gerenciamento térmico……………………. 17

Tabela 1 – Lista de símbolos e termos abreviados………………….. 13

Tabela 2 – Ambientes eletromagnéticos……………. 19

Tabela 3 – Ensaios de tipo…………………….. ………….. 21

Tabela 4 – Ensaio de calor úmido – Estado estacionário…………………………. 23

Tabela 5 – Nível de gravidade dos ensaios EMC………………………… 25

Tabela 6 – Descrição dos critérios de avaliação para ensaios de imunidade…….. …….. 26

Tabela 7 – Parâmetros de ensaio EFT/Burst……………….. 28

Tabela 8 – Níveis de ensaio de surto…………………. ….. 29

Segundo a International Electrotechnical Commission (IEC), as baterias são dispositivos indispensáveis na vida cotidiana: muitos itens que são usados diariamente, desde os telefones celulares até os laptops, dependem da energia da bateria para funcionar. No entanto, apesar de uso mundial, a tecnologia das baterias está subitamente dominando os holofotes porque é usada para alimentar todos os tipos de diferentes veículos elétricos (VE), de carros elétricos a scooters eletrônicas, que estão regularmente nos mercados. Para os ambientalistas, no entanto, a tecnologia da bateria é mais interessante como forma de armazenar eletricidade, à medida que a geração e o uso de energia renovável – que é intermitente – aumentam.

As baterias de íon lítio podem ser recicladas, mas esse processo permanece caro e, por enquanto, as taxas de recuperação de material raramente chegam a 20%. As matérias-primas usadas nas baterias de íon lítio são geralmente níquel, cobalto, manganês e lítio, que são caros de se obter. Algumas dessas matérias primas são escassas e, mesmo que as pesquisas estejam progredindo rapidamente, alguns laboratórios conseguiram atingir 80% dos níveis de recuperação.

Os cientistas também estão analisando as baterias recarregáveis de ar lítio como uma alternativa ao íon lítio. As baterias de íon de lítio usadas em uma aplicação podem ser avaliadas quanto à capacidade de serem usadas em outras aplicações menos exigentes. Uma segunda vida útil possível para as baterias é um componente para estações de carregamento flexíveis.

São estações de carregamento rápido que podem ser operadas de forma autônoma durante eventos de grande escala, como festivais ou eventos esportivos. As baterias de veículos elétricos podem ser reutilizadas em tudo, desde energia de backup para data centers até sistemas de armazenamento de energia. Na Europa, vários fabricantes de veículos, empresas pioneiras no mercado de carros elétricos, instalaram baterias usadas principalmente em diferentes tipos de sistemas de armazenamento de energia, variando de pequenos dispositivos residenciais a soluções maiores em escala de grade em contêiner.

A conformidade dos isoladores não compostos tipo suporte para uso interno

As características elétricas e mecânicas dos isoladores não compostos tipo suporte para uso interno, em instalações elétricas ou equipamentos operando, em corrente alternada, com tensões de corrente alternada acima de 1.000 V até 245 kV, como definido na NBR 6939, e frequência abaixo de 100 Hz. 

A NBR 15650 de 04/2020 – Isoladores não compostos tipo suporte para uso interno, para tensões nominais acima de 1.000 V até 245 kV — Características elétricas e mecânicas — Ensaios e critérios de aceitação aplica-se aos isoladores não compostos tipo suporte para uso interno, em instalações elétricas ou equipamentos operando, em corrente alternada, com tensões de corrente alternada acima de 1.000 V até 245 kV, como definido na NBR 6939, e frequência abaixo de 100 Hz. Esta norma não se aplica aos isoladores compostos. O seu objetivo é definir os termos usados; especificar as características elétricas e mecânicas de isoladores não compostos tipo suporte e prescrever as condições sob as quais os valores específicos destas características são verificados; especificar os métodos de ensaio; estabelecer os critérios de aceitação.

Esta norma não estabelece os valores em uméricos das características dos isoladores nem trata da maneira como se escolhe o isolador para uma condição específica de utilização. A NBR 14221 especifica os valores em uméricos para as características elétricas e mecânicas, bem como indica as dimensões necessárias para a intercambiabilidade dos isoladores suporte.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os ensaios relacionados à seleção do material e ao processo de fabricação?

Qual deve ser o arranjo de montagem padronizado para ensaios elétricos?

Como deve ser executado o ensaio de tensão suportável utilizando o método de determinação da tensão com 50% de probabilidade de descarga?

Como deve ser feito o ensaio de descargas parciais?

O isolador não composto tipo suporte caracteriza-se pelos seguintes valores, quando aplicáveis: tensão suportável nominal em frequência industrial, a seco; tensão suportável nominal de impulso atmosférico, a seco; tensão de perfuração elétrica nominal (para isoladores não composto tipo suporte classe B); dimensões nominais significativas; carga de resistência mecânica nominal; máxima diferença entre as deflexões, verificada com a aplicação das cargas de 20% e de 50% da carga de resistência mecânica nominal. Se necessário, convém que um desenho do projeto do isolador não composto tipo suporte seja apresentado.

A tensão de operação não é considerada característica de um isolador. Os valores das tensões suportáveis de isoladores não composto tipo suporte em condições de serviço podem diferir dos valores obtidos nas condições de ensaio padronizadas. A marcação em cada isolador não composto tipo suporte deve conter, de forma legível e indelével, o seguinte: nome ou marca registrada do fabricante; mês e ano de fabricação; código de referência do fabricante.

Opcionalmente, lote e/ou número de série podem ser adicionados na marcação dos isoladores. O fabricante deve manter registros de todos os isoladores produzidos de acordo com esta norma, por um período mínimo de cinco anos. Estes registros devem conter as seguintes informações: tipo do número de referência; data de fabricação ou número de série; datas e resultados dos ensaios de tipo; datas e resultados dos ensaios de recebimento.

Os ensaios são divididos em três grupos. Os ensaios de tipo destinam-se a verificar as principais características de um isolador não composto tipo suporte, que dependem, principalmente, de seu projeto, do material utilizado e do processo de fabricação. Geralmente, quando se trata de um novo projeto ou um novo processo de fabricação do isolador, os ensaios de tipo são realizados uma única vez, em um único isolador e somente uma vez para cada novo projeto ou processo de fabricação.

Convém que os ensaios sejam repetidos somente se o material, o projeto e/ou o processo de fabricação forem alterados. Nesse caso, quando a mudança afetar apenas determinadas características do isolador, somente os ensaios referentes a estas características são repetidos. Portanto, os ensaios de tipo são divididos em três subgrupos, de acordo com a sua aplicabilidade (ver 12.1). É desnecessário realizar os ensaios de tipo, quer sejam elétricos ou mecânicos, em um isolador resultante de um novo projeto, quando se encontram disponíveis relatórios de ensaios válidos, referentes a um isolador de projeto equivalente e com o mesmo processo de fabricação.

O significado de projeto equivalente, quando aplicável, é indicado na Seção 7. Os resultados dos ensaios de tipo podem ser garantidos por meio de certificados aceitos pelo comprador ou aprovados por organização qualificada. Os relatórios referentes aos ensaios de tipo não têm prazo de validade determinado.

Dentro das condições citadas anteriormente, os relatórios de ensaios de tipo permanecem válidos enquanto não houver disparidade significativa entre os resultados dos ensaios de tipo e os dos ensaios de recebimento correspondentes executados posteriormente. Os ensaios de tipo são realizados somente em isoladores que atendam aos requisitos de todos os ensaios de recebimento e de rotina não incluídos nos ensaios de tipo.

Os ensaios de recebimento destinam-se a verificar as características de um isolador não composto tipo suporte que são sujeitas a variar com o processo de fabricação e com a qualidade dos materiais empregados. Os ensaios de recebimento são utilizados como ensaios de aceitação de uma amostra de isoladores retirados aleatoriamente de um lote que tenha atendido aos requisitos dos ensaios de rotina previstos nesta norma.

Os ensaios de rotina, destinados a eliminar isoladores defeituosos, são realizados durante a fabricação, sobre cada um dos isoladores produzidos. Admite-se que os ensaios de rotina possam ser acompanhados por inspetor credenciado pelo comprador, mediante prévio acordo comercial. Dois isoladores não compostos tipo suporte podem ser considerados eletricamente equivalentes quando: a distância de arco for igual ou maior; o diâmetro nominal do núcleo for igual ou menor; o espaçamento nominal entre saias for igual, com tolerância de +5%; a projeção da saia em relação ao núcleo for a mesma, com tolerância de +10%; o perfil da saia for o mesmo; a quantidade e a posição aproximada das ferragens integrantes forem as mesmas.

Dois isoladores não compostos tipo suporte podem ser considerados mecanicamente equivalentes quando: o diâmetro nominal do núcleo for igual; a forma e o tamanho das ferragens integrantes que conectam os componentes isolantes forem os mesmos; o projeto de conexão entre o componente isolante e as ferragens for o mesmo; a altura nominal não diferir em mais do que +20%. Mediante prévio acordo entre as partes interessadas, pode ser utilizado um programa de garantia da qualidade que leve em consideração os requisitos desta norma, para verificar a qualidade dos isoladores durante o processo de fabricação.

Informações detalhadas sobre a utilização de um programa de garantia da qualidade são fornecidas nas NBR ISO 9000 e NBR ISO 9001. Os métodos de ensaio de impulso atmosférico e de tensão em frequência industrial devem estar de acordo com a NBR IEC 60060-1. Os valores de tensão obtidos no ensaio de impulso atmosférico devem ser expressos pelos seus valores de pico e os valores relativos ao ensaio de tensão em frequência industrial devem ser expressos pelos seus valores de pico divididos por 2.

Quando as condições atmosféricas verificadas no momento de o ensaio diferirem dos valores padronizados, é necessário aplicar os fatores de correção estipulados. Os isoladores devem estar limpos e secos antes do início dos ensaios elétricos. Cuidados especiais devem ser tomados para se evitar a condensação de água sobre a superfície dos isoladores, especialmente quando a umidade relativa do ar estiver elevada.

Por exemplo, o isolador deve ser mantido na temperatura ambiente do local do ensaio pelo tempo necessário para que se alcance o equilíbrio térmico, antes do início dos ensaios. Os ensaios não podem ser realizados se a umidade relativa do ar for superior a 85%, exceto mediante acordo prévio entre as partes interessadas. O ensaio de impulso atmosférico deve ser executado com a forma de onda normalizada de 1,2/50 μs, com os valores de tolerância conforme a NBR IEC 60060.1.

O ensaio de frequência industrial deve ser executado com corrente alternada e frequência entre 15 Hz e 100 Hz, a menos que haja acordo prévio entre as partes interessadas. As condições atmosféricas de referência padronizadas para os ensaios devem estar de acordo com a NBR IEC 60060-1. Os fatores de correção devem ser determinados de acordo com a NBR IEC 60060-1.

A qualificação dos cabos de potência para sistemas fotovoltaicos

Os cabos de potência previstos nesta norma devem ser designados pela: seção nominal do condutor, em milímetros quadrados; tensão máxima do cabo (Um): 1,8 kV em corrente contínua.

A NBR 16612 de 03/2020 – Cabos de potência para sistemas fotovoltaicos, não halogenados, isolados, com cobertura, para tensão de até 1,8 kV cc entre condutores – Requisitos de desempenho especifica os requisitos mínimos para a qualificação e aceitação de cabos singelos de condutor flexível para uso em corrente contínua em instalações de energia fotovoltaica, com tensão contínua de 1,5 kV cc entre os condutores e entre os condutores e o terra, e tensão máxima em cc de 1,8 kV. A tensão ca equivalente especificada para este cabo é 0,6/1 kV (U0/U), onde U0 é o valor eficaz entre o condutor e o terra, e U é o valor eficaz entre duas fases.

Acesse algumas indagações relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais devem ser os ensaios de recebimento (R e)?

Quais são os critérios de amostragem?

Como deve ser feito o ensaio de resistência de isolamento à temperatura ambiente (R e T)?

Como devem ser executados os ensaios mecânicos do material da cobertura antes e após envelhecimento artificial em câmara UV (T)?

Os cabos de potência previstos nesta norma devem ser designados pela: seção nominal do condutor, em milímetros quadrados; tensão máxima do cabo (Um): 1,8 kV em corrente contínua. Estes cabos foram previstos para serem instalados entre a célula fotovoltaica e os terminais de corrente contínua do inversor fotovoltaico. Estes cabos devem ser adequados para operar em temperatura ambiente de –15°C até 90°C.

A temperatura do condutor em regime permanente não pode ultrapassar 90 °C. Por um período máximo de 20.000 h, é permitida uma temperatura máxima de operação no condutor de 120°C em uma temperatura ambiente máxima de 90°C. A temperatura no condutor, em regime de curto-circuito, não pode ultrapassar a 250°C. A duração neste regime não pode ultrapassar 5 s.

O condutor deve ser de cobre estanhado e têmpera mole, e estar conforme a NBR NM 280 na classe 5 de encordoamento. A superfície dos fios componentes do condutor encordoado não pode apresentar fissuras, escamas, rebarbas, aspereza, estrias ou inclusões. O condutor pronto não pode apresentar falhas de encordoamento.

Os fios componentes do condutor encordoado, antes de serem submetidos a fases posteriores de fabricação, devem atender aos requisitos da NBR NM 280. Sobre o condutor pode ser aplicado um separador, a critério do fabricante, a fim de facilitar a remoção da isolação e evitar a aderência desta, e este separador deve estar de acordo com a NBR 6251. A isolação deve ser constituída por uma ou mais camadas extrudadas de composto não halogenado termofixo, com requisitos conforme a tabela abaixo.

A isolação deve ser contínua e uniforme ao longo de todo o seu comprimento. A isolação dos cabos, quando não houver separador sobre o condutor, deve estar justaposta ao condutor, porém facilmente removível e não aderente a ele. A espessura nominal da isolação deve estar de acordo com a tabela abaixo. A espessura média da isolação não pode ser inferior ao valor nominal especificado.

A espessura mínima da isolação em um ponto qualquer de uma seção transversal pode ser inferior ao valor nominal, contanto que a diferença não exceda 0,1 mm + 10% do valor nominal especificado. A espessura de um eventual separador aplicado sobre o condutor não pode ser considerada parte da espessura da isolação.

A cobertura deve ser contínua e uniforme ao longo de todo o seu comprimento. A espessura nominal da cobertura deve estar de acordo com a tabela acima. A espessura média da cobertura não pode ser inferior ao valor nominal especificado. A espessura mínima da cobertura em um ponto qualquer de uma seção transversal pode ser inferior ao valor nominal, contanto que a diferença não exceda 0,1 mm + 15 % do valor nominal especificado.

As cores padronizadas para a cobertura são: preta, vermelha, verde e verde com listra amarela. A superfície externa da cobertura do cabo deve ser marcada a intervalos regulares de até 500 mm, com caracteres de durabilidade, dimensões e legibilidade adequadas. A durabilidade da gravação deve ser verificada ao tentar removê-la, esfregando-a levemente com um pano úmido, por dez vezes; isto não pode alterar a gravação.

A marcação na cobertura deve conter no mínimo as seguintes informações: marca de origem (nome, marca ou logotipo do fabricante); seção nominal do condutor, expressa em milímetros quadrados (mm²); inscrição: “USO EM SISTEMA FOTOVOLTAICO”; ano de fabricação; número desta norma. É facultado ao fabricante ou fornecedor responsável incluir a marca comercial do produto, preferencialmente após a marca de origem.

Os ensaios previstos por esta norma são classificados em: ensaios de recebimento (R e E); ensaios de tipo (T); ensaios de controle. O ensaio para determinação do fator de correção da resistência de isolamento (T) pode ser realizado, desde que previamente requerido como requisito adicional. A amostra deve ser preparada e ensaiada conforme a NBR 6813, e o fator para correção da resistência de isolamento deve ser aproximadamente igual ao previamente fornecido pelo fabricante.

Certos compostos apresentam constante de isolamento elevada, o que pode dificultar a determinação do coeficiente por grau Celsius. Nestes casos, deve ser aceito o menor coeficiente dado na Tabela B.1 (disponível na norma). Os cabos devem ser acondicionados de maneira que fiquem protegidos durante o manuseio, transporte e armazenagem. O acondicionamento deve ser em rolo ou carretel, que deve ter resistência adequada e ser isento de defeitos que possam danificar o produto.

Para cada unidade de expedição, a incerteza máxima requerida na quantidade efetiva é de ± 1% em comprimento. Os cabos devem ser fornecidos em lances normais de fabricação, sobre os quais é permitida uma tolerância de ± 3% no comprimento. Adicionalmente, pode-se admitir que até 5 % dos lances de um lote de expedição tenham um comprimento diferente do lance normal de fabricação, com um mínimo de 50% do comprimento do referido lance.

Os carretéis devem possuir dimensões conforme a NBR 11137, devendo ser respeitados os limites de curvatura previstos na NBR 9511, e os rolos devem ter dimensões conforme a NBR 7312. As extremidades dos cabos acondicionados em carretéis devem ser convenientemente seladas com capuzes de vedação ou com fita autoaglomerante, resistentes às intempéries, a fim de evitar a penetração de umidade durante manuseio, transporte e armazenagem.

Externamente, os carretéis devem ser marcados, nas duas faces laterais, diretamente sobre o disco e/ou por meio de etiquetas, com caracteres legíveis e indeléveis, com no mínimo as seguintes indicações: nome do fabricante, CNPJ e país de origem; seção nominal, em milímetros quadrados; número desta norma; massa bruta aproximada, em quilogramas (kg); comprimento do lance, em metros (m); seta no sentido de rotação para desenrolar; e identificação para fins de rastreabilidade.

Os dispositivos à corrente diferencial residual

A NBR IEC 62423 de 01/2020 – Dispositivos à corrente diferencial residual do Tipo B e do Tipo F, com e sem proteção contra as sobrecorrentes incorporadas para utilização doméstica e análoga especifica os requisitos e os ensaios para os dispositivos à corrente diferencial residual do Tipo B e do Tipo F. Os requisitos e os ensaios indicados nesta norma completam os requisitos para os dispositivos à corrente diferencial residual do Tipo A. Esta norma somente pode ser utilizada em conjunto com IEC 61008-1 e IEC 61009-1. Os IDR (interruptor diferencial residual sem proteção contra as sobrecorrentes incorporados) do Tipo F e os DDR (interruptor diferencial residual com proteção contra as sobrecorrentes incorporados) do Tipo F, com frequência nominal de 50 Hz ou 60 Hz, são destinados às instalações em que os inversores de frequência são alimentados entre fase e neutro ou entre fase e condutor médio aterrado, e são aptos a assegurar a proteção em caso de ocorrência de corrente diferencial alternada senoidal à frequência nominal, de corrente diferencial contínua pulsante e de corrente diferencial composta.

Os IDR do Tipo B e os DDR do Tipo B são aptos a assegurar a proteção em caso de correntes diferenciais residuais alternadas senoidais de até 1 000 Hz, de correntes diferenciais residuais contínuas pulsantes e de correntes diferenciais residuais contínuas lisas. Os dispositivos à corrente diferencial residual de acordo com esta norma não são destinados a serem utilizados nas redes de alimentação em corrente contínua. Os requisitos e os ensaios adicionais para os produtos a serem utilizados nas situações em que não é previsto que a corrente diferencial seja coberta pela IEC 61008-1 ou pela IEC 61009-1 estão em estudo.

Para os propósitos de declaração do fabricante ou de verificação da conformidade, convém que os ensaios de tipo sejam realizados nas sequências de ensaios, de acordo com o Anexo A, Anexo B, Anexo C ou Anexo D desta norma. A sequência de ensaios completa para os ensaios de tipo referentes aos IDR do Tipo F e aos DDR do Tipo F é indicada, respectivamente, nas Tabelas A.1 e B.1. A sequência de ensaios completa para os ensaios de tipo para os IDR do Tipo B e para os DDR do Tipo B é indicada, respectivamente, nas Tabelas C.1 ou D.1.

Em todo o documento, o termo dispositivos à corrente diferencial residual refere-se aos IDR e DDR. Os requisitos para os dispositivos à corrente diferencial residual unipolares com neutro não interrompido estão em estudo. Os dispositivos à corrente diferencial residual do Tipo F e do Tipo B têm uma alta resistência contra os desligamentos intempestivos, mesmo quando um surto de tensão provoca uma descarga disruptiva e uma corrente subsequente ocorre, e em caso de uma corrente residual de partida com duração máxima de 10 ms, que pode ocorrer em caso de colocação em serviço de um equipamento eletrônico ou filtro EMC.

Acesse algumas perguntas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser feita a marcação e outras indicações no produto?

Quais os valores-limites da corrente de funcionamento para uma corrente diferencial residual composta?

Como deve ser executada a verificação do funcionamento correto no caso de correntes diferenciais residuais alternadas senoidais até 1.000 Hz?

Como deve ser feita a verificação do funcionamento correto, no caso de correntes diferenciais residuais contínuas, provenientes de circuitos retificadores alimentados por duas fases?

Pode-se definir um dispositivo à corrente diferencial residual do Tipo B como o dispositivo à corrente diferencial residual em que o disparo é assegurado da mesma maneira que para o Tipo F de acordo com esta norma e adicionalmente em caso de: correntes diferenciais residuais alternadas senoidais até 1.000 Hz, correntes diferenciais residuais alternadas sobrepostas a uma corrente contínua lisa, correntes diferenciais residuais contínuas pulsantes sobrepostas a uma corrente contínua lisa correntes diferenciais residuais contínuas pulsantes retificadas, resultantes de uma ou mais fases, correntes diferenciais residuais contínuas lisas, que são aplicadas subitamente ou aumentadas lentamente independentemente da polaridade.

Já os dispositivos à corrente diferencial residual do Tipo F são os dispositivos à corrente diferencial residual em que o disparo é assegurado da mesma maneira que para o Tipo A de acordo com a IEC 61008-1 ou IEC 61009-1, conforme apropriado, e, adicionalmente, no caso de: correntes diferenciais residuais compostas, que são aplicadas subitamente ou aumentadas lentamente, para um circuito alimentado entre fase e neutro ou entre fase e um condutor médio aterrado, correntes diferenciais residuais contínuas pulsantes, sobrepostas em uma corrente contínua lisa. Os IDR e os DDR projetados de acordo com as IEC 61008-1 e IEC 61009-1 são apropriados para a maioria das aplicações.

As IEC 61008-1 e IEC 61009-1 fornecem os requisitos apropriados, assim como os ensaios para utilizações domésticas e análogas. No entanto, a utilização de novas tecnologias eletrônicas em equipamentos pode levar a que as correntes diferenciais residuais particulares não sejam cobertas pela IEC 61008-1 ou pela IEC 61009-1. Esta norma abrange as aplicações específicas para as quais os ensaios e os requisitos adicionais são necessários.

Esta norma compreende as definições, os requisitos adicionais e os ensaios para o IDR e/ou para o DDR do Tipo B e do Tipo F, para cobrir as situações particulares. Os ensaios devem, em primeiro lugar, ser aplicados de acordo com a IEC 61008-1 para os IDR do Tipo B ou do Tipo F e de acordo com a IEC 61009-1 para os DDR do Tipo B ou do Tipo F.

Após a conclusão dos ensaios requeridos de acordo com a IEC 61008-1 ou com a IEC 61009-1, os ensaios adicionais de acordo com esta norma devem ser aplicados para estabelecer a conformidade com esta norma (ver Anexo A, Anexo B para o Tipo F ou Anexo C e Anexo D para o Tipo B, respectivamente). O número de amostras a serem ensaiadas e as sequências de ensaios a serem aplicadas para a verificação da conformidade para os IDR do Tipo F e para os DDR do Tipo F são indicados nos Anexos A e B, respectivamente.

O número de amostras a serem ensaiadas e as sequências de ensaio a serem aplicadas para verificação de conformidade para os IDR do Tipo B e para os DDR do Tipo B são indicados nos Anexos C e D, respectivamente. Esta norma introduz os dispositivos à corrente diferencial residual do Tipo F (F para frequência) com frequência nominal de 50 Hz ou 60 Hz, destinados à proteção dos circuitos que incorporam os inversores de frequência alimentados entre fase e neutro ou entre fase e o condutor médio aterrado, levando em conta as características necessárias para estas aplicações particulares em adição às já cobertas pelos dispositivos à corrente diferencial residual do Tipo A.

Os dispositivos a corrente diferencial residual do tipo F não podem ser utilizados com equipamentos eletrônicos com as pontes retificadoras com onda completa, alimentados por duas fases, ou se uma corrente diferencial residual contínua lisa for provável de ocorrer. No caso da presença de inversores de frequência, por exemplo, utilizados para o controle de velocidade do motor, alimentados entre fase e neutro, uma corrente diferencial residual composta, compreendendo a frequência da rede, a frequência do motor e a frequência do colca do chopper do inversor de frequência, pode aparecer em adição, além das correntes diferenciais residuais contínuas pulsantes ou alternadas.

Esta norma apresenta os dispositivos à corrente diferencial residual do Tipo B para serem utilizados no caso de corrente diferencial residual contínua retificada pulsada, proveniente de uma ou mais fases, e no caso de corrente diferencial residual contínua lisa em adição àquelas já cobertas para os dispositivos à corrente diferencial residual do Tipo F. Para estas aplicações, podem ser utilizados os dispositivos à corrente diferencial residual do Tipo B bipolares, tripolares ou tetrapolares.

Os requisitos e os ensaios indicados nesta norma completam os requisitos para os dispositivos à corrente diferencial residual do Tipo A. Esta norma somente pode ser utilizada em conjunto com IEC 61008-1 e IEC 61009-1. Os IDR (interruptor diferencial residual sem proteção contra as sobrecorrentes incorporados) do Tipo F e os DDR (interruptor diferencial residual com proteção contra as sobrecorrentes incorporados) do Tipo F, com frequência nominal de 50 Hz ou 60 Hz, são destinados às instalações em que os inversores de frequência são alimentados entre fase e neutro ou entre fase e condutor médio aterrado, e são aptos a assegurar a proteção em caso de ocorrência de corrente diferencial alternada senoidal à frequência nominal, de corrente diferencial contínua pulsante e de corrente diferencial composta.

Os IDR do Tipo B e os DDR do Tipo B são aptos a assegurar a proteção em caso de correntes diferenciais residuais alternadas senoidais de até 1.000 Hz, de correntes diferenciais residuais contínuas pulsantes e de correntes diferenciais residuais contínuas lisas. Os dispositivos à corrente diferencial residual de acordo com esta norma não são destinados a serem utilizados nas redes de alimentação em corrente contínua. Os requisitos e os ensaios adicionais para os produtos a serem utilizados nas situações em que não é previsto que a corrente diferencial seja coberta pela IEC 61008-1 ou pela IEC 61009-1 estão em estudo.

Para os propósitos de declaração do fabricante ou de verificação da conformidade, convém que os ensaios de tipo sejam realizados nas sequências de ensaios, de acordo com o Anexo A, Anexo B, Anexo C ou Anexo D desta norma. A sequência de ensaios completa para os ensaios de tipo referentes aos IDR do Tipo F e aos DDR do Tipo F é indicada, respectivamente, nas Tabelas A.1 e B.1. A sequência de ensaios completa para os ensaios de tipo para os IDR do Tipo B e para os DDR do Tipo B é indicada, respectivamente, nas Tabelas C.1 ou D.1.

Em todo o documento, o termo dispositivos à corrente diferencial residual refere-se aos IDR e DDR. Os requisitos para os dispositivos à corrente diferencial residual unipolares com neutro não interrompido estão em estudo. Os dispositivos à corrente diferencial residual do Tipo F e do Tipo B têm uma alta resistência contra os desligamentos intempestivos, mesmo quando um surto de tensão provoca uma descarga disruptiva e uma corrente subsequente ocorre, e em caso de uma corrente residual de partida com duração máxima de 10 ms, que pode ocorrer em caso de colocação em serviço de um equipamento eletrônico ou filtro EMC.

O dispositivo à corrente diferencial residual em que o disparo é assegurado da mesma maneira que para o Tipo F e, adicionalmente, no caso de correntes diferenciais residuais alternadas senoidais até 1.000 Hz (ver 8.2.1.1), correntes diferenciais residuais alternadas sobrepostas a uma corrente contínua lisa igual a 0,4 vez a corrente diferencial nominal (IΔn) (ver 8.2.1.2), correntes diferenciais residuais contínuas pulsantes sobrepostas a uma corrente contínua lisa igual a 0,4 vez a corrente diferencial nominal (IΔn) ou 10 mA, o que for maior (ver 8.2.1.3), correntes diferenciais residuais contínuas resultantes de circuitos retificadores, isto é, retificador de simples alternância entre fases para os dispositivos de 2, 3 e 4 polos (ver 8.2.1.4), retificador trifásico de simples alternância ou ponte retificadora trifásica de dupla alternância para os dispositivos de 3 ou 4 polos (ver 8.2.1.5), correntes diferenciais residuais contínuas lisas (ver 8.2.1.6). Na Holanda, esta característica é modificada. As correntes diferenciais residuais especificadas acima podem ser aplicadas subitamente ou aumentadas lentamente, independentemente da polaridade.

Os dispositivos à corrente diferencial residual do Tipo B e do Tipo F devem funcionar em resposta a um aumento progressivo da corrente diferencial residual dentro dos limites indicados na norma. A conformidade é verificada pelos ensaios de 9.1.2. Os dispositivos à corrente diferencial residual do Tipo B e do Tipo F devem funcionar em resposta a um início súbito da corrente diferencial residual de funcionamento.

Para as correntes diferenciais residuais maiores que cinco vezes o limite superior do indicado, o tempo máximo de funcionamento dos dispositivos à corrente diferencial residual do tipo geral deve ser de 0,04 s, e, para os dispositivos à corrente diferencial residual do Tipo S, o tempo mínimo de não resposta deve ser superior ou igual a 0,05 s e o tempo máximo de funcionamento não pode exceder 0,15 s.

Os dispositivos à corrente diferencial residual do Tipo B devem funcionar no caso de correntes diferenciais residuais contínuas pulsantes, sobrepostas a uma corrente diferencial residual contínua lisa até 0,4 vez a corrente diferencial residual nominal (IΔn) ou 10 mA, o que for maior. A corrente de disparo não pode ser superior a 1,4 IΔn para os dispositivos à corrente diferencial residual com IΔn > 0,01 A, ou 2 IΔn, para os dispositivos à corrente diferencial residual com IΔn ≤ 0,01 A. A corrente de disparo a 1,4 IΔn ou 2 IΔn, conforme o caso, é dada em valor eficaz, devido à corrente diferencial residual contínua pulsante de meia onda.

IEC 60704-2-7: o ruído acústico em ventiladores

Essa norma internacional, editada em 2020 pela International Electrotechnical Commission (IEC), aplica-se a ventiladores elétricos (incluindo seus acessórios e seus componentes) para uso doméstico e similar, projetados para alimentação ca ou cc. O motor, o impulsor e seu alojamento, se houver, devem formar uma única unidade.

A IEC 60704-2-7:2020 – Household and similar electrical appliances – Test code for the determination of airborne acoustical noise – Part 2-7: Particular requirements for fans aplica-se a ventiladores elétricos (incluindo seus acessórios e seus componentes) para uso doméstico e similar, projetados para alimentação ca ou cc. O motor, o impulsor e seu alojamento, se houver, devem formar uma única unidade.

Esses requisitos específicos se aplicam a: ventiladores convencionais, ventiladores de mesa, ventiladores de pedestal, ventiladores de teto, ventiladores sem pás, ventiladores de suporte de parede, ventiladores de suporte de teto, ventiladores de persiana, ventiladores de torre, ventiladores de ventilação e de partição. Não se aplica a: ventiladores que fazem parte de um sistema de ventilação, ventiladores projetados exclusivamente para fins industriais, ventiladores que fazem parte de um aparelho (por exemplo, ventiladores de refrigeração), ventiladores com funções adicionais (por exemplo, aquecimento, umidificação).

As limitações para o uso deste código de ensaio são fornecidas no escopo da IEC 60704-1. Esta segunda edição cancela e substitui a primeira edição publicada em 1997. Esta edição constitui uma revisão técnica. Esta edição inclui algumas alterações significativas em relação à edição anterior.

Foi incluída a categorias de ventiladores adicionais, conforme definido na IEC 60879: 2019 e IEC 60665: 2018 e incluídos os desvios padrão dos níveis de potência sonora em 1.3; além de adicionado um método de comparação.

As referências normativas foram atualizadas (ISO 3744: 2010 e ISO 3743-1: 2010) e foi ajustado os requisitos em relação à IEC 60704-1: 2010. Esta norma deve ser usada em conjunto com IEC 60704 1:2010, Household and similar electrical appliances – Test code for the determination of airborne acoustical noise – Part 1: General requirements. Esta Parte 2-7 complementa ou modifica as cláusulas correspondentes na IEC 60704-1: 2010, de modo a estabelecer o código de ensaio para os ventiladores.

CONTEÚDO DA NORMA

PREFÁCIO……………………………… 3

1 Escopo e objeto…………………… 6

2 Referências normativas………… ….. 7

3 Termos e definições…………….. 8

4 Métodos de medição e ambientes acústicos………… 10

5 Instrumentação………………………………… 10

6 Operação e localização dos aparelhos em ensaio………………. 10

7 Medição dos níveis de pressão sonora………………. 12

8 Cálculo da pressão sonora e dos níveis de potência sonora……… 13

9 Informações a serem gravadas……………………… 13

10 Informações a serem relatadas………………. 13

Anexos. ……………………..15

Anexo B (normativo) Gabinete de ensaio………………….15

Bibliografia…………………………15

Figura 101 – Superfície de medição – hemisfério – com dez posições de microfone para ventiladores de divisória (parede e janela) e para ventiladores de mesa de parede……………………..14

Tabela 101 – Desvios padrão dos níveis de potência sonora……………7

Tabela 102 – Desvios padrão para declaração e verificação………….7

As condições de medição especificadas nesta parte 2-7 fornecem precisão suficiente na determinação do ruído emitido e na comparação dos resultados das medições realizadas por diferentes laboratórios, simulando, tanto quanto possível, o uso prático dos ventiladores domésticos. Recomenda-se considerar a determinação dos níveis de ruído como parte de um procedimento de ensaio abrangente, cobrindo muitos aspectos das propriedades e desempenho dos ventiladores domésticos. Conforme declarado na introdução da IEC 60704-1, este código de ensaio está relacionado apenas ao ruído aéreo.

NFPA 70: Código Elétrico Nacional – edição 2020

Essa norma, editada em 2020 pela National Fire Protection Association (NFPA), revisada e ampliada, denominada National Electrical Code, apresenta as informações de última geração para práticas elétricas seguras para edifícios públicos e privados, casas e estruturas, pátios e lotes externos, equipamentos utilitários, instalações que se conectam à rede elétrica, e sistemas e equipamentos de geração de energia de propriedade do consumidor. O conteúdo foi adicionado, editado e reorganizado para tratar da segurança de trabalhadores, sistemas de energia e veículos elétricos, energia limitada e sistemas de comunicação.

A NFPA 70 – National Electrical Code (NEC) Softbound – 2020 cobre a instalação e a remoção de condutores elétricos, equipamentos e pistas; condutores de sinalização e comunicação, equipamentos e pistas; cabos e pistas de fibra óptica e para as seguintes vias: instalações públicas e privadas, incluindo edifícios, estruturas, casas móveis, veículos recreativos e edifícios flutuantes; pátios, lotes, estacionamentos, carnavais e subestações industriais; instalações de condutores e equipamentos conectados ao fornecimento de eletricidade; e instalações usadas pela concessionária de energia elétrica, como edifícios de escritórios, armazéns, garagens, oficinas mecânicas e edifícios de lazer, que não fazem parte integrante de uma usina geradora, subestação ou centro de controle.

Este código não cobre as instalações em navios, embarcações que não sejam edifícios flutuantes, material ferroviário, aeronaves ou veículos automotores que não sejam casas móveis e veículos recreativos. Embora o escopo deste Código indique que ele não cobre instalações em navios, partes deste Código são incorporadas por referência no Título 46, Código de Regulamentos Federais, Partes 110-113.

Não inclui as instalações subterrâneas em minas e maquinaria móvel de mineração de superfície automotora e seu cabo elétrico posterior; as instalações de ferrovias para geração, transformação, transmissão, armazenamento de energia ou distribuição de energia utilizada exclusivamente para operação de material circulante ou instalações utilizadas exclusivamente para fins de sinalização e comunicação; as instalações de equipamentos de comunicação sob controle exclusivo dos serviços de comunicação localizados ao ar livre ou em espaços de construção usados exclusivamente para essas instalações; e as instalações sob controle exclusivo de uma concessionária de energia elétrica.

Exemplos de serviços públicos podem incluir aquelas entidades normalmente designadas ou reconhecidas por lei ou regulamentação governamental por comissões de serviço público/serviços públicos e que instalam, operam e mantêm suprimento elétrico (como geração, sistemas de transmissão ou distribuição) ou sistemas de comunicação (como telefone, CATV, internet, satélite ou serviços de dados). Os serviços públicos podem estar sujeitos ao cumprimento de códigos e normas que abrangem suas atividades regulamentadas, conforme adotadas pelas leis ou regulamentos governamentais.

Informações adicionais podem ser encontradas através da consulta aos órgãos governamentais apropriados, como comissões reguladoras estaduais, Comissão Federal de Regulamentação de Energia e Comissão Federal de Comunicações. A autoridade competente para aplicar este código pode conceder exceção para a instalação de condutores e equipamentos que não estão sob o controle exclusivo das concessionárias de energia elétrica e são usados para conectar o sistema de fornecimento de energia elétrica aos condutores de serviço das instalações atendidas, desde que as instalações ficam do lado de fora de um edifício ou estrutura ou terminam no interior em um local facilmente acessível mais próximo do ponto de entrada dos condutores de serviço.

Conteúdo da norma

90 Introdução

Capítulo 1 Geral

100 Definições

110 Requisitos para instalações elétricas

Capítulo 2 Fiação e proteção

200 Uso e identificação de condutores aterrados

210 Circuitos de derivação

215 Alimentadores

220 Cálculos de derivação, alimentador e serviço de derivação

225 Circuitos de derivação externos e alimentadores

230 Serviços

240 Proteção contra sobrecorrente

242 Proteção contra sobretensão

250 Aterramento e ligação

Capítulo 3 Métodos e materiais de fiação

300 Requisitos gerais para métodos e materiais de fiação

310 Condutores para fiação geral

311 Condutores e cabos de média tensão

312 Gabinetes, caixas de entalhe e gabinetes de soquetes de medidores

314 Caixas de tomadas, dispositivos, puxadores e junções; corpos de conduíte; acessórios; e armários para orifícios

320 Cabo blindado: Tipo AC

322 Conjunto de cabos chatos: Tipo FC

324 Cabo condutor chato: Tipo FCC

326 Cabo espaçador de gás integrado: Tipo IGS

330 Cabo revestido de metal: Tipo MC

332 Cabo isolado com mineral e revestimento de metal

334 Cabo com revestimento não metálico MI: Tipos NM e NMC

336 Cabo da bandeja de alimentação e controle: Tipo TC

337 Cabo tipo P

338 Cabo de entrada de serviço: Tipos SE e USO

340 Alimentador subterrâneo e cabo de circuito derivado: Tipo UF

342 Eletroduto intermediário de metal: Tipo IMC

344 Eletroduto rígido de metal: Tipo RMC

348 Eletroduto flexível de metal: Tipo FMC

350 Eletroduto flexível de metal à prova de líquidos: Tipo LFMC

352 Conduíte rígido de cloreto de polivinila: Tipo PVC

353 Conduíte de polietileno de alta densidade

354 Conduíte subterrâneo não metálico com condutores: Tipo NUCC

355 Conduíte de resina termoendurecível reforçada: Tipo RTRC

356 Conduíte não metálico flexível à prova de líquidos: Tipo LFNC

358 Tubo metálico elétrico: Tipo EMT

360 Tubo metálico flexível: Tipo FMT

362 Tubo elétrico não metálico: Tipo ENT

366 Calhas auxiliares

368 Conduítes para ônibus

370 Cabos para ônibus

372 Concreto celular para piso

374 Piso em metal

376 Condutores de metal
378 Condutores não metálicos

380 Montagens de várias saídas

382 Extensões não metálicas

384 Canal adutor do tipo suporte

386 Superfície de metal

388 Superfície não metálica

390 Pisos radiantes

392 Bandejas para cabos

393 Sistemas de distribuição de energia de teto suspenso de baixa tensão

394 Fiação de botão e tubo oculta

396 Fiação suportada por canaleta

398 Fiação aberta em isoladores

399 Condutores aéreos externos acima de 1.000 V

Capítulo 4 Equipamento para uso geral

400 Cabos e fios flexíveis

402 Fios do dispositivo elétrico

404 Interruptores

406 Receptáculos, conectores de cabos e plugues de fixação (tampas)

408 Painéis de distribuição

409 Painéis de controle industrial

410 Luminárias, porta-lâmpadas e lâmpadas

411 Iluminação de baixa tensão

422 Aparelhos

424 Equipamento elétrico fixo para aquecimento de espaços

425 Equipamento elétrico fixo para aquecimento de processos de resistência e eletrodo

426 Equipamento elétrico fixo para degelo e derretimento de neve

427 Equipamento elétrico fixo para tubulações e vasos de pressão

430 Motores, circuitos de motor e controladores

440 Equipamentos de ar condicionado e refrigeração

445 Geradores

450 Transformadores e cofres de transformadores (incluindo ligações secundárias)

455 Conversores de fase

460 Capacitores

470 Resistores e reatores

480 Baterias de armazenamento

490 Equipamentos acima de 1.000 V, nominal

Capítulo 5 Ocupações especiais
500 Locais perigosos (classificados), Classes I, II e III, Divisões 1 e 2

501 Locais Classe I

502 Locais Classe II

503 Locais Classe III

504 Sistemas intrinsecamente seguros

505 Zona 0, 1 e Locais 2

506 Zona 20, 21 e Locais 22 com poeiras combustíveis ou fibras/poeiras inflamáveis

510 Locais perigosos (classificados) – específicos

511 Garagens comerciais, reparo e armazenamento

513 Hangares de aeronaves

514 Instalações de distribuição de combustível para motores

515 Plantas de armazenamento a granel

516 Aplicações em spray, imersão, revestimento, e processos de impressão usando materiais inflamáveis ou combustíveis

517 Unidades de saúde

518 Ocupações de montagem
520 Teatros,
áreas de audiência dos estúdios de cinema e televisão, áreas de atuação e locais similares

522 Sistemas de controle para atrações permanentes de diversão

525 Carnavais, circos, feiras e eventos semelhantes

530 Estúdios de cinema e televisão e locais semelhantes

540 Filmes em salas de projeção

545 Edifícios fabricados e estruturas realocáveis

547 Edifícios agrícolas

550 Casas móveis, casas fabricadas e parques para residências móveis

551 Veículos para recreação e parques para veículos para recreação

552 Reboques para parques

555 Marinas, estaleiros navais, edifícios flutuantes e instalações para docas comerciais e não comerciais

590 Instalações temporárias

Capítulo 6 Equipamento especial

600 Sinais elétricos e iluminação de contorno

604 Fabricação de sistemas de fiação

605 Móveis para escritório

610 Guindastes e talhas

620 Elevadores, elevadores de carga, escadas rolantes, circuitos móveis, elevadores de plataforma e elevadores de escadas
625 Sistema de carregamento de veículos elétricos

625 Sistema de carregamento de veículos elétricos

626 Espaços de estacionamento de caminhões eletrificados

630 Soldadores elétricos

640 Equipamento de processamento, amplificação e reprodução de sinais de áudio

645 Equipamentos de tecnologia da informação

646 Centros de dados modulares

647 Equipamentos eletrônicos sensíveis

650 Órgãos de tubos

660 Equipamentos de raios-X

665 Equipamentos de aquecimento por indução e dielétrico

665 Células eletrolíticas

669 Galvanização

670 Máquinas industriais

675 Máquinas de irrigação controladas ou acionadas eletricamente

680 Piscinas, fontes e instalações similares

682 Corpos de água de fabricação natural e artificial

685 Sistemas elétricos integrados

690 Sistemas solares fotovoltaicos (photovoltaic – PV)

691 Sistemas fotovoltaicos solares (PV)

691 Estações de suprimento elétrico fotovoltaico (PV) de grande escala

692 Sistemas de células de combustível

694 Sistemas elétricos por vento

695 Bombas de incêndio

Capítulo 7 Condições especiais

700 Sistemas de emergência

701 Sistemas de espera exigidos por lei

702 Sistemas de espera opcionais

705 Fontes de produção de energia elétrica interconectadas

706 Sistemas de armazenamento de energia

708 Sistemas de potência críticos de energia (Critical Operations Power Systems – COPS)

710 Sistemas autônomos

712 Microrredes de corrente contínua

720 Circuitos e equipamentos operando em menos se 50 V

725 Circuitos de controle remoto, sinalização e limitação de energia Classe 1, Classe 2 e Classe 3

727 Cabo da bandeja de instrumentação: Tipo ITC

728 Sistemas de cabos resistentes ao fogo

750 Sistemas de gerenciamento de energia

750 Sistemas de gerenciamento de energia

760 Sistemas de alarme de incêndio

770 Cabos de fibra óptica

Capítulo 8 Sistemas de comunicação

800 Requisitos gerais para sistemas de comunicações

805 Circuitos de comunicação

810 Equipamentos de rádio e televisão

820 Sistemas de antena e distribuição de rádio e comunidade

830 Sistemas de comunicação em banda larga via rede

840 Sistemas de comunicação de banda larga com instalações locais

Capítulo 9 Tabelas

Anexo A informativo: Normas de segurança do produto

Anexo B informativo: Informações sobre aplicação para cálculo de amplitude

Anexo C informativo: Tabelas de preenchimento de conduítes, tubulações e bandejas de cabos para condutores e acessórios do mesmo tamanho

Anexo D informativo: Exemplos

Anexo E informativo: Tipos de construção

Anexo F informativo: Disponibilidade e confiabilidade para sistemas críticos de energia de operações; e desenvolvimento e implementação de ensaios de desempenho funcional (TPP) para sistemas de operações críticas

Anexo G informativo: Controle supervisório e aquisição de dados (SCADA)

Anexo H informativo: Administração e aplicação

Anexo I informativa: Tabelas de torque de aperto recomendadas da norma UL 486A-B

Anexo J Informativo: Normas da ADA para projeto acessível

Índice

A NFPA 70 foi publicada pela primeira vez em 1897 e é continuamente submetida a um rigoroso processo de revisão para mantê-la atualizada com as práticas mais atuais do setor, tendências emergentes e o desenvolvimento e introdução de novas tecnologias. A nova NEC fornece os requisitos mais recentes para projeto, instalação e inspeção elétrica mais seguros e eficazes, incluindo provisões para fiação, proteção contra sobrecorrente, aterramento e equipamentos.

Revisado e ampliado, o National Electrical Code apresenta as informações de última geração para práticas elétricas seguras para edifícios públicos e privados, casas e estruturas, pátios e lotes externos, equipamentos utilitários, instalações que se conectam à rede elétrica, e sistemas e equipamentos de geração de energia de propriedade do consumidor. O conteúdo foi adicionado, editado e reorganizado para tratar da segurança de trabalhadores, sistemas de energia e veículos elétricos, energia limitada e sistemas de comunicação.

Mudanças impactantes incluem:

– Novos requisitos para desconexões de emergência externas de residências de uma e duas famílias para melhorar a segurança elétrica dos atendentes de emergência;

– Revisões das regras de desconexão de serviço para ajudar a proteger os trabalhadores com eletricidade contra riscos de arco elétrico;

– Requisitos adaptados e ajustados para práticas de instalação de novas tecnologias para atender à crescente demanda de energia por Ethernet;

– Atualizações para modernizar as tabelas atualmente em uso para cálculos para refletir melhorias na eficiência energética e alinhar com os códigos em evolução;

– Requisitos revisados para a proteção de falta à terra em marinas e estaleiros;

– Introdução de diretrizes para o uso seguro de veículos elétricos (equipamento de exportação de energia de veículos elétricos) como fonte de energia de reserva ou de emergência para um edifício ou casa;

– Reorganização do artigo 310, incluindo nova numeração fácil de usar para tabelas importantes de amplitude e nova definição de feixe de cabos no artigo 725;

– Relocalização dos requisitos do dispositivo de proteção contra sobretensões para o novo artigo 242.

Foram realizadas as revisões dos sistemas de energia alternativa e dos requisitos dos veículos elétricos para esclarecer quais partes do sistema fotovoltaico são cobertas pelos requisitos do artigo 690 e as conexões do lado da linha e da carga das fontes de alimentação interconectadas e para distinguir claramente os sistemas de armazenamento de energia dos sistemas de bateria de armazenamento. Houve a reorganização do artigo 800 para fornecer um conjunto geral de requisitos a serem aplicados nos artigos do capítulo 8.

Foram feitas as revisões dos requisitos para cabos de comunicação que também transportam energia para dispositivos de comunicação e revisões do limite de corrente para cabos que transportam energia e dados. Assi, a NEC, edição 2020, introduz novos requisitos significativos para a instalação residencial de tomadas que servem de balcões de ilha e peninsulares e para proteção contra surtos de serviços que fornecem nas unidades de habitação.

Houve uma descrição do espaço de trabalho para almofadas de limpeza para equipamentos elétricos, a instalação de métodos de fiação em gabinetes de saída, dimensionamento de condutores de carga e carga usados com sistemas de acionamento de velocidade ajustável e proteção AFCI de circuitos de derivação em áreas de repouso de pacientes em instalações de tratamento. Foi acrescentado o cálculo da carga do equipamento de suprimento de veículo elétrico com configurações de corrente variáveis e mudança na segurança do trabalhador na identificação da fonte de energia para desconectar os meios e sair dos espaços que contêm grandes equipamentos elétricos.

Requisitos para aterramento dos meios de desconexão instalados no lado da oferta dos meios de desconexão de serviço e cabos instalados expostos em superfícies de teto e paredes laterais. Acrescentou-se requisitos para as ocupações especiais, equipamentos especiais e condições especiais, incluindo a instalação de respingos, o uso de cabos “Tipo P” em locais classificados perigosos e a reinspeção de piscinas e outros corpos d’água.

A documentação e a declaração de materiais em eletroeletrônicos

Conheça a documentação técnica para a avaliação de produtos elétricos e eletrônicos com relação à restrição de substâncias perigosas e a declaração de material para equipamentos eletroeletrônicos.

A NBR IEC 63000 de 12/2019 – Documentação técnica para a avaliação de produtos elétricos e eletrônicos com relação à restrição de substâncias perigosas especifica a documentação técnica que o fabricante compila, de forma a declarar sua conformidade com as restrições aplicáveis a substâncias. A documentação do sistema de gestão do fabricante está fora do escopo deste documento.

A NBR IEC 62474 de 10/2012 – Declaração de material para equipamentos eletroeletrônicos especifica o procedimento, conteúdo e forma, relacionando a declaração de materiais para produtos de empresas que operam e fornecem para a indústria eletroeletrônica. Processos químicos e emissões durante o uso do produto não estão no escopo desta norma. A sua intenção principal é fornecer dados para os fabricantes no topo da cadeia de fornecimento, que: permitam avaliar os produtos em relação ao atendimento dos requisitos de conformidade de restrição de substâncias; possam ser usados no processo de desenvolvimento de projeto ambientalmente consciente e através de todas as fases do ciclo de vida do produto.

A Seção 4 especifica os requisitos para declaração de material. A Seção 5 especifica os critérios para substâncias declaráveis e classes de material na base de dados da IEC 62474, associada com esta norma. A Seção 6 especifica o formato de dados e requisitos de troca a serem incluídos na base de dados da IEC 62474. A Seção 7 especifica o processo para atualizar regularmente e manter a base de dados da IEC 62474. Embora esta norma especifique requisitos básicos, ela oferece flexibilidade para os fabricantes de produtos e fornecedores na seleção de requisitos adicionais ou informações.

Não fornece qualquer método específico para coletar dados relativos à composição do material. As organizações têm a flexibilidade para determinar o método mais adequado para a coleta de dados da composição do material, sem comprometer a utilidade e a qualidade dos dados. Esta norma destina-se a permitir uma declaração com base na avaliação de engenharia, nas declarações de materiais de fornecedores ou na amostragem e ensaio.

Acesse algumas perguntas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

O que é uma substância restrita?

Como deve ser feita a análise da documentação técnica?

Quais são os critérios para substâncias declaráveis?

Como deve ser feita a formatação e comunicação de dados da declaração de material?

Determinadas substâncias contidas em produtos elétricos e eletrônicos são restritas por meio de legislação e/ou por especificações dos clientes. Os fabricantes de produtos acabados, desta forma, necessitam evidenciar que seus produtos atendem às restrições aplicáveis a estas substâncias. Para aquelas restrições que são aplicáveis ao nível de componentes ou materiais, é impraticável para os fabricantes dos produtos elétricos e eletrônicos a realização de ensaios próprios de todos os materiais contidos no produto acabado.

Ao invés disso, os fabricantes atuam junto com seus fornecedores, de forma a gerenciar a conformidade e compilar a documentação técnica como evidência da conformidade. Esta abordagem é bem reconhecida tanto pela indústria quanto pelas autoridades legais. O objetivo deste documento é especificar a documentação técnica que o fabricante necessita compilar para declarar a conformidade com as restrições aplicáveis das substâncias, segundo diversos regulamentos mundiais de restrições de substâncias.

Este documento tem como base a EN 50581:2012, que apoia a Diretiva 2011/65/EU do Parlamento Europeu e do Conselho de 8 de junho de 2011, sobre a restrição de utilização de determinadas substâncias perigosas em equipamentos elétricos e eletrônicos (RoHS). O fabricante deve compilar a documentação técnica que demonstre que produtos elétricos e eletrônicos estão em conformidade com as restrições de substâncias.

A documentação técnica deve incluir pelo menos os seguintes elementos: uma descrição geral do produto, juntamente com o uso pretendido, é um dos fatores que determinam que exceções (caso existam) são aplicáveis; documentação para os materiais, partes e/ou subconjuntos; informações que mostrem a relação entre a documentação técnica indicada e os materiais, partes e/ou subconjuntos correspondentes do produto; lista das normas ou especificações técnicas que foram utilizadas para embasar os documentos técnicos indicados em 4.3, ou para as quais tais documentos se referem.

O fabricante deve realizar as quatro tarefas indicadas a seguir:  determinar as informações necessárias; coletar as informações; avaliar as informações com relação à sua qualidade e confiabilidade e decidir pela inclusão na documentação técnica; assegurar que a documentação técnica permaneça válida. A figura abaixo apresenta o processo de elaboração da documentação técnica.

Os tipos de documentos técnicos requeridos para os materiais, partes ou subconjuntos devem ter como base a avaliação pelo fabricante: da probabilidade de substâncias restritas estarem presentes em materiais, partes ou subconjuntos, e da confiabilidade do fornecedor. Materiais que são incluídos durante o processo de produção (tais como solda, pintura e adesivos) devem também ser considerados como parte da avaliação.

Ao realizar a avaliação da probabilidade de substâncias restritas estarem presentes (ver alínea a), o fabricante pode aplicar julgamento técnico, uma vez que algumas substâncias são improváveis de estarem contidas em determinados materiais (por exemplo, substâncias orgânicas em metais). Convém que tal julgamento técnico tenha como como base informações técnicas disponíveis na indústria elétrica/eletrônica, ou uma pesquisa na literatura sobre os materiais ou partes utilizadas em produtos elétricos e eletrônicos.

Informações adicionais que podem ser utilizadas ao realizar a avaliação incluem as informações sobre os tipos de materiais tipicamente utilizados em partes ou subconjuntos, e a probabilidade histórica de substâncias restritas estarem presentes em cada tipo de material. Como resultado da avaliação do fabricante, os seguintes documentos sobre materiais, partes ou subconjuntos devem ser coletados: declarações de fornecedores e/ou acordos contratuais do fornecedor, tais como: declarações dos fornecedores confirmando que o conteúdo das substâncias restritas do material especificado, parte ou subconjunto está dentro dos níveis permitidos e identificando quaisquer exceções que tiverem sido aplicadas; contratos assinados confirmando que são atendidas as especificações do fabricante para o conteúdo máximo de substâncias restritas no material, parte ou subconjunto; tais declarações ou acordos devem abranger um material específico, parte ou subconjunto específico, ou uma faixa de materiais, partes ou subconjuntos.

Podem ser coletados as declarações de materiais: declarações de materiais, apresentando informações sobre o conteúdo de substâncias específicas e identificando quaisquer exceções que tenham sido aplicadas; o conteúdo da declaração de materiais deve atender aos requisitos especificados na NBR IEC 62474:2012, 4.2.3, para as substâncias aplicáveis. A utilização de normas para tais declarações auxilia em assegurar um fluxo de informações consistente e de custo efetivo em toda a cadeia de suprimento.

Também podem ser coletados os resultados de ensaios analíticos utilizando os métodos descritos ou referenciados na Série IEC 62321. Pode ser ressaltado que a indústria eletroeletrônica rastreia e declara informações específicas sobre a composição do material de seus produtos para atender aos requisitos de conformidade e de projeto ambientalmente consciente. A indústria eletroeletrônica necessita receber informações sobre a composição dos produtos e suas peças, que são comprados de fornecedores, para a incorporação em seus produtos.

Atualmente, as declarações de material são conduzidas por especificações individuais do fabricante do produto, e não há padronização internacionalmente aceita. Isto resulta em ineficiência econômica. Para simplificar os requisitos através da cadeia de suprimento e melhorar a eficiência econômica, é necessário padronizar a troca de dados da composição de materiais e estabelecer requisitos para as declarações de materiais.

A NBR IEC 62474 de declaração de materiais beneficia a indústria eletroeletrônica, estabelecendo requisitos para declaração de substâncias e materiais, padronizando protocolos e facilitando a transferência e processamento de dados. Quanto aos requisitos para declaração de materiais, pode-se descrever descreve os requisitos básicos e requisitos adicionais para uma declaração de material. A Subseção 4.2 descreve os requisitos básicos de dados e a Subseção 4.3 descreve requisitos adicionais, que podem ser acordados entre fabricante e fornecedor para declararem a mais.

A Seção 4 é organizada na forma de diagramas conceituais (ver figuras abaixo) para facilitar o entendimento. As informações requeridas são mostradas em caixas e setas com linha sólida. Informações opcionais são indicadas em caixas desenhadas com linhas tracejadas. Nesta abordagem são objetos obrigatórios os produtos, grupos de substância ou substâncias com requisito de declaração obrigatório definido na base de dados da IEC 62474.

Peças do produto, classes de material, materiais e grupos de substância ou substâncias sem requisito de declaração obrigatório definido na base de dados da IEC 62474 são objetos opcionais nesta abordagem. Grupos de substância e substâncias não listadas na base de dados da IEC 62474 são também objetos opcionais. Outros requisitos obrigatórios podem ser acordados sem necessariamente estarem nos diagramas (exemplo massa ou porcentual de massa). Ver Anexo A informativo para exemplos relacionados a requisitos de declaração de material.

Os seguintes requisitos devem ser aplicados aos produtos: uma Declaração de Material deve ser fornecida para um produto ou família de produtos. Somente o fornecedor suscetível de conhecer os agrupamentos apropriados de família de produtos com propósito de Declaração de Materiais com base em seu conhecimento técnico do conteúdo do material no produto.

O produto deve ter uma identificação e uma massa atribuída. No caso de uma família de produtos, a identificação e massa de cada produto dentro da família de produtos deve ser especificada. Quando cada produto na família de produtos tem a mesma massa, é suficiente fornecer esta massa uma única vez.

Peças do produto devem ser declaradas se um grupo de substância ou substância na base de dados da IEC 62474 se referir a essa peça a um nível-limite declarável, e se esse nível-limite declarável for excedido. Exemplos para tais peças do produto são as baterias quando estão montadas na placa de circuito impresso. Se tais peças do produto precisarem ser declaradas, deve-se aplicar o seguinte: Peças do produto devem ser atribuídas ao produto; peças do produto devem ter uma identificação atribuída; peças do produto devem ter uma massa ou porcentagem da massa do produto atribuída.

As substâncias ou grupos de substância listadas na base de dados da IEC 62474, com requisito de declaração obrigatória, devem ser declaradas se estiverem presentes no produto em nível igual ou acima do limite definido na base de dados da IEC 62474 e se a aplicação declarável como listada na base de dados da IEC 62474 for aplicável para aquela substância ou grupo de substância. Quando tais substâncias ou grupos de substâncias não constam na declaração de material, elas não estão presentes acima do limite especificado, mas podem estar presentes abaixo do limite, ou a aplicação declarável como listada na base de dados da IEC 62474 não é aplicável.

Se tais substâncias ou grupos de substâncias estiverem presentes acima do nível-limite dado na base de dados da IEC 62474 e se a aplicação declarável conforme listado na base de dados da IEC 62474 for aplicável, devem-se aplicar os seguintes requisitos: tais grupos de substância devem ser atribuídos à peça do produto (se 4.2.2 for aplicado) ou, caso contrário, ao produto. Tais substâncias devem ser atribuídas ao grupo de substâncias (se o grupo de substância tiver requisito de declaração obrigatório) ou, caso contrário, à peça do produto (se 4.2.2 for aplicado) ou, caso contrário, ao produto.

Tais substâncias ou grupos de substância devem ser nomeadas como dadas na base de dados da IEC 62474. Em geral, tais grupos de substância ou substâncias devem ter uma massa ou porcentual de massa da peça do produto (se 4.2.2 é aplicado) ou caso contrário um porcentual de massa atribuída ao produto. Se tais grupos de substância ou substâncias tiverem nível-limite declarável especificado na base de dados da IEC 62474, referindo-se ao material, eles devem ter o porcentual de massa atribuída deste material.

O ensaio dos conjuntos de manobra e comando

Quando os ensaios nas condições diferentes ou mais severas são acordados entre o usuário e o fabricante original, este Relatório Técnico pode servir como um guia.

A ABNT IEC/TR 61641 de 12/2019 – Conjuntos de manobra e comando de baixa tensão em invólucro — Guia para o ensaio em condição de arco devido a uma falha interna fornece as orientações sobre os métodos de ensaio dos conjuntos de manobra e comando em condições de arco desenvolvido no ar devido a uma falha interna. O objetivo deste ensaio é avaliar a aptidão do CONJUNTO de limitar o risco de lesões corporais e os danos aos CONJUNTOS, assim como sua capacidade ao serviço contínuo e posterior a um arco devido a uma falha interna. O procedimento de ensaio fornecido neste Relatório Técnico é aplicável somente: aos conjuntos de manobra e comando de baixa tensão fechados, montados sobre o solo ou fixados na parede, de acordo com a NBR IEC 61439-2 (Conjuntos de manobra e comando de potência – CONJUNTOS MCP). Este Relatório Técnico pode ser utilizado como referência para os ensaios de falha por arco de outros produtos, mas as adaptações dos procedimentos de ensaio e dos critérios de aceitação podem ser aplicadas levando em consideração as especificidades destes outros CONJUNTOS ou produtos. Aplica-se ainda se as portas e as tampas do CONJUNTO estiverem fechadas e bem fixadas.

Quando os ensaios nas condições diferentes ou mais severas são acordados entre o usuário e o fabricante original, este Relatório Técnico pode servir como um guia. O procedimento de ensaio indicado neste Relatório Técnico leva em consideração: os efeitos da sobrepressão interna nas tampas, portas, etc.; os efeitos térmicos do arco ou suas origens nos invólucros, assim como os gases quentes e as partículas incandescentes. O procedimento de ensaio fornecido neste Relatório Técnico não abrange: outros efeitos que possam constituir um risco, como os gases tóxicos e os ruídos altos; as condições durante um trabalho de manutenção, a abertura de portas ou outros; acesso à parte superior e inferior do CONJUNTO. Este é um ensaio voluntário feito a critério do fabricante original.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como devem ser executados os ensaios de falha por arco?

Qual deve ser a seção do fio de cobre de ignição sem dispositivo de proteção de limitação de corrente?

Como deve ser feita a avaliação do ensaio de falha por arco?

Como deve ser feito o suporte de montagem para os indicadores do ensaio de falha por arco?

A série ABNT NBR IEC 61439 indica as regras e os requisitos para as características da interface, condições de utilização, construção e desempenho e para a verificação dos conjuntos de manobra e comando de baixa tensão, daqui por diante chamados de CONJUNTOS. O principal objetivo destas normas é atingir uma operação segura dos conjuntos de manobra e comando de baixa tensão nas condições de operação normais e anormais, por exemplo, em caso de sobretensões, sobrecargas ou as correntes de curtos-circuitos. Nenhum requisito de característica, de projeto e de verificação é dado no caso de uma falha por arco no interior do CONJUNTO.

Um arco interno, entretanto, pode não ser completamente excluído. Nos raros casos em que eles ocorrem, as falhas por arco interno são geralmente causadas pelo seguinte: materiais condutores inadvertidamente deixados nos CONJUNTOS durante a fabricação, instalação ou manutenção; defeitos de material ou de qualificação do pessoal; entrada de pequenos animais, por exemplo, ratos, cobras, etc.; utilização de um CONJUNTO incorreto para a aplicação, que resulte em superaquecimento e, consequentemente, em falha por arco interno; condições inapropriadas de utilização; operação incorreta; ou  alta de manutenção.

A ocorrência de um arco no interior dos CONJUNTOS está associada a vários fenômenos físicos. Por exemplo, a energia do arco resultante de um arco desenvolvido no ar à pressão atmosférica no interior do invólucro causará uma sobrepressão interna e um superaquecimento local, o que provocará os esforços mecânicos e térmicos no CONJUNTO. Além disso, os materiais envolvidos podem gerar produtos de decomposição quente, seja sob a forma de gases, seja sob a forma de vapores, que podem escapar ao exterior do invólucro.

Devido ao risco de lesões às pessoas, danos e perda da alimentação devido às falhas por arco, existe uma demanda para os CONJUNTOS submetidos aos ensaios contra as falhas por arco, embora se considere que uma falha por arco em um CONJUNTO seja improvável. O objetivo deste Relatório Técnico é fornecer orientações sobre os métodos de ensaio dos CONJUNTOS sob condições de arco desenvolvidas no ar, devido a uma falha interna.

A capacidade de um CONJUNTO de atender aos ensaios de acordo com este Relatório Técnico é somente um aspecto da avaliação do risco potencial associado a uma falha por arco em um CONJUNTO. As competências das pessoas que têm acesso ao CONJUNTO, os equipamentos de proteção individual (EPI) utilizados, os procedimentos de trabalho aplicados e as condições nas quais o CONJUNTO está instalado são outros aspectos a serem considerados.

A possibilidade de uma falha por arco em um CONJUNTO pode ser reduzida pela adição de uma isolação sólida adequada para todos os condutores. Estes CONJUNTOS são classificados na classe de arco I. Este Relatório Técnico não fornece qualquer indicação de desempenho no caso da possibilidade de uma falha por arco em um CONJUNTO de classe de arco I.

As informações gerais sobre o comportamento da falha por arco e as medidas possíveis de proteção do ponto de vista do usuário de um CONJUNTO são fornecidas no ABNT IEC/TR 61439-0:2017, C.3, e também no Anexo A deste Relatório Técnico. De acordo com suas características em condições de arco, os CONJUNTOS podem ser classificados pelo fabricante original em: Classe de arco A – CONJUNTO que oferece uma proteção pessoal nas condições de arco por áreas ensaiadas por arco, conforme os critérios 1 a 5 nas condições de arco definidas em 8.7, e pelas áreas protegidas da formação de arco, se existirem; Classe de arco B – CONJUNTO que oferece uma proteção pessoal e do CONJUNTO nas condições de arco por áreas ensaiadas por arco, conforme os critérios 1 a 6 nas condições de arco definidas em 8.7, e pelas áreas protegidas da formação de arco, se existirem; Classe de arco C – CONJUNTO que oferece uma proteção pessoal e do CONJUNTO nas condições de arco por áreas ensaiadas por arco, conforme os critérios 1 a 7 nas condições de arco com funcionamento limitado definido em 8.7, e pelas áreas protegidas da formação de arco, se existirem; Classe de arco I – CONJUNTO que oferece um risco reduzido de falhas por arco, pois é constituído somente de áreas protegidas à formação de arco.

Adicionalmente, o CONJUNTO é classificado como a seguir, de acordo com o tipo de pessoas que têm acesso à área onde o CONJUNTO é instalado: acesso restrito (disposição-padrão); acesso não restrito (disposição especial). Ao considerar a proteção contra as falhas por arco interno em relação aos CONJUNTOS, convém que a primeira medida de proteção seja, sempre que possível, localizar o CONJUNTO em uma área onde o acesso seja reservado apenas às pessoas autorizadas. A menos que especificamente acordado entre o usuário e o fabricante original, o acesso restrito é aplicável.

O funcionamento dos CONJUNTOS de acordo com a NBR IEC 61439-2 por pessoas comuns não é previsto. No entanto, eles podem ser acessíveis por pessoas comuns, por exemplo, quando eles são instalados em um local de trabalho em geral, sem quaisquer medidas e/ou regras de segurança complementares.

Adicionalmente, os regulamentos de segurança locais devem ser levados em consideração e podem impor requisitos adicionais e/ou mais rigorosos em relação ao acesso, equipamentos de proteção individual (EPI) a serem utilizados e procedimentos de trabalho a serem aplicados.

Para os CONJUNTOS somente com áreas protegidas da formação de arco: Classificação do CONJUNTO – Classe de arco I. Convém que as seguintes características sejam declaradas pelo fabricante original, conforme apropriado, se o CONJUNTO tiver sido ensaiado por falha de arco de acordo com este Relatório Técnico: Tensão nominal de utilização (Ue); Classificação do CONJUNTO (classe de arco A, classe de arco B ou classe de arco C; Para os CONJUNTOS de classe de arco B e de classe de arco C, a identificação das áreas (por exemplo, seção, subseção) onde os efeitos de uma falha por arco interno são limitados.

Se a duração do arco for limitada por um dispositivo de limitação de corrente (instalado no interior ou a montante do CONJUNTO) e/ou um dispositivo de limitação de falha por arco que não limite a corrente de arco, convém indicar as seguintes características adicionais: corrente de curto-circuito admissível nas condições de arco (Ip arco); duração do arco admissível (tarco – valor da duração máxima do arco que não é autoextinguível e que não é limitado por nenhum dispositivo de limitação de corrente, como declarado pelo fabricante original, para uma corrente de curto-circuito presumida e uma tensão nominal de utilização Ue fornecida nos bornes de entrada do CONJUNTO e para a qual os requisitos deste Relatório Técnico sejam atendidos). A corrente admissível nas condições de arco pode ser inferior à corrente nominal de curta duração admissível (Icw).

Se a duração e a corrente do arco estiverem limitadas por um dispositivo de proteção de limitação de corrente (instalado no interior ou a montante do CONJUNTO) e/ou por um dispositivo de limitação de falha por arco com limitação da corrente de arco: corrente de curto-circuito condicional admissível nas condições de arco (Ipc arco). Convém indicar no relatório de ensaio as características e os ajustes dos dispositivos de limitação de corrente (por exemplo, corrente nominal, capacidade de interrupção, corrente de interrupção limitada, I2t dos fusíveis e dos disjuntores com limitação de corrente) ou do dispositivo de limitação de falha por arco necessário para a proteção do circuito.

A corrente de curto-circuito condicional admissível nas condições de arco pode ser inferior à corrente nominal de curto-circuito condicional (Icc). Se a duração do arco for limitada porque o projeto do CONJUNTO é de maneira que o arco seja autoextinguível sem funcionamento de qualquer dispositivo de proteção (ver 8.6.3): corrente de curto-circuito admissível em condições de arco autoextinguível (Ips arco). Diferentes combinações de características podem ser indicadas para diferentes partes do CONJUNTO.

Uma parte de um circuito com uma área protegida à formação de arco é considerada área, se as seguintes condições forem atendidas: todas as partes vivas de cada circuito principal são protegidas separadamente por uma isolação sólida ou por barreiras isolantes; a isolação é conforme os requisitos elétricos, térmicos e mecânicos, como definidos na NBR IEC 61439-2; os materiais isolantes e os meios de construção da área protegida isolada atendem aos requisitos de ensaio dielétrico descrito em 6.2; a isolação sólida fornece uma proteção do invólucro, de maneira que corpos estranhos não possam fazer contato com os condutores sob tensão, de acordo com IP4X da NBR IEC 60529; as barreiras isolantes fornecem uma proteção contra qualquer contato com os condutores sob tensão, de acordo com IP3XD da NBR IEC 60529.

Para o ensaio dielétrico das áreas protegidas da formação de arco, convém que as amostras representativas das áreas protegidas da formação de arco sejam submetidas aos ensaios dielétricos suportáveis à frequência industrial pelo fabricante original, aplicando uma folha metálica colocada na superfície externa da isolação, cobrindo os condutores sob tensão e sobre as juntas e aberturas na isolação. Para este ensaio, convém que a tensão de ensaio seja igual a 1,5 vez os valores indicados na NBR IEC 61439-1:2016, Tabela 8.

Convém que a tensão de ensaio seja de acordo com a NBR IEC 61439-1:2016, 10.9.2.2. Convém que a tensão à frequência industrial no momento da aplicação não exceda 50 % do valor total do ensaio. Convém então ser progressivamente aumentado até o valor total, durante 25 0 + s. Os critérios de aceitação são de acordo com a NBR IEC 61439-1:2016, 10.9.2.4.

Para o ensaio IP das áreas protegidas à formação de arco, convém verificar se a isolação sólida satisfaz o grau de proteção IP4X e se as barreiras isolantes satisfazem o nível de proteção IP3XD, de acordo com a NBR IEC 60529. Para a seleção das amostras de ensaio e validade dos ensaios para outros projetos similares (possibilidades de derivação), convém realizar os ensaios de arco em CONJUNTOS representativos.

Devido à variedade de tipos, de valores nominais e de combinações possíveis de unidades funcionais e de componentes, não é possível, na prática, fazer os ensaios de arco em todas as disposições dos CONJUNTOS. O desempenho de uma disposição particular pode ser justificado pelos resultados dos ensaios de um projeto comparável. Convém que o ensaio seja realizado em todas as unidades funcionais representativas na disposição considerada mais desfavorável do CONJUNTO.

Convém que os CONJUNTOS ou unidades funcionais protegidas por dispositivos de limitação de corrente sejam ensaiados com dispositivo que tenham os valores de características de limitação (I2t, Ipk) mais elevados para a corrente de curto-circuito presumida e na tensão nominal de utilização. A validade dos resultados de um ensaio realizado em uma unidade funcional de um projeto específico de um CONJUNTO pode ser estendida para um projeto similar, desde que o ensaio original seja idêntico ou mais estressante, e que esta outra unidade funcional possa ser considerada idêntica àquela ensaiada nos seguintes aspectos: dimensões; estrutura e rigidez do invólucro; arquitetura das divisórias; desempenho do dispositivo de alívio de pressão, se existir; sistema de isolação; tratamento de superfície do interior do invólucro e das divisórias internas, por exemplo, um tratamento de uma superfície não condutora ou de uma superfície metálica.

Um ensaio realizado em uma corrente de curto-circuito, tensão nominal de utilização e duração específicas abrange: as correntes de curto-circuito iguais ou inferiores; uma tensão nominal de utilização igual ou inferior, e; uma duração igual ou inferior. Convém que um CONJUNTO destinado a ser utilizado em corrente contínua seja ensaiado em corrente contínua. Não é recomendada uma substituição por um ensaio em corrente alternada, porque o comportamento do arco e dos dispositivos de proteção associados difere consideravelmente.

IEC 60335-2-25: a segurança dos fornos micro-ondas

Essa norma internacional, editada em 2020 pela International Electrotechnical Commission (IEC), trata da segurança de fornos micro-ondas para uso doméstico e similar, com tensão nominal não superior a 250 V. Essa norma também trata dos fornos micro-ondas combinados, para os quais o Anexo AA é aplicável. Esta norma também trata de fornos de micro-ondas destinados a serem utilizados a bordo de navios, para os quais o Anexo BB é aplicável.

A IEC 60335-2-25:2020 – Household and similar electrical appliances – Safety – Part 2-25: Particular requirements for microwave ovens, including combination microwave ovens trata da segurança de fornos micro-ondas para uso doméstico e similar, com tensão nominal não superior a 250 V. Essa norma também trata dos fornos micro-ondas combinados, para os quais o Anexo AA é aplicável. Esta norma também trata de fornos de micro-ondas destinados a serem utilizados a bordo de navios, para os quais o Anexo BB é aplicável.

Os aparelhos não destinados ao uso doméstico normal, mas que, no entanto, podem ser uma fonte de perigo para o público, como aparelhos destinados a leigos em lojas, indústrias leves e fazendas, estão dentro do escopo desta norma. No entanto, se o aparelho se destinar a ser utilizado profissionalmente para processar alimentos para fins comerciais não será considerado apenas para uso doméstico e similar.

Na medida do possível, esta norma lida com os riscos comuns apresentados pelos aparelhos encontrados por todas as pessoas dentro e fora de casa. Contudo, em geral, não leva em consideração as pessoas (incluindo crianças) cujas capacidades físicas, sensoriais ou mentais ou falta de experiência e conhecimento os impedem de usar o aparelho com segurança, sem supervisão ou instrução. Igualmente, crianças brincando com o aparelho. Chama-se atenção para o fato de que para aparelhos destinados a serem utilizados em veículos ou a bordo de navios ou aeronaves podem ser necessários requisitos adicionais.

Em muitos países, requisitos adicionais são especificados pelas autoridades sanitárias nacionais, pelas autoridades nacionais responsáveis pela proteção do trabalho e por autoridades similares. Esta norma não se aplica a fornos comerciais de micro-ondas (IEC 60335-2-90); equipamento industrial de aquecimento por micro-ondas (IEC 60519-6); aparelhos para uso medicinal (IEC 60601); aparelhos destinados a serem utilizados em locais onde prevalecem condições especiais, como a presença de uma atmosfera corrosiva ou explosiva (poeira, vapor ou gás).

Esta sétima edição cancela e substitui a sexta edição publicada em 2010, as alterações 1:2014 e 2:2015. Esta edição constitui uma revisão técnica. Inclui as seguintes alterações significativas em relação à sexta edição: 11.7 e 19.13 foram aprimorados para mais clareza; em 19.102, uma nota é convertida em texto normativo; 19.101 foi aprimorado com um método de medição alternativo; 22.121 foi aprimorado com requisitos para ativação simultânea de elementos de aquecimento e motores; 15.2, 15.101, 21, 22.102, 22.112, 22.119, 22.120, 24.101 e 27.1 foram melhorados para mais clareza.

O anexo A apresentou melhorias editoriais e limites viáveis de desvios. Esta parte 2 deve ser usada em conjunto com a última edição da IEC 60335-1 e suas emendas. Foi estabelecido com base na quinta edição (2010) dessa norma.

Conteúdo da norma

PREFÁCIO…. …………………… 4

INTRODUÇÃO……………… 7

1 Escopo……………………… 8

2 Referências normativas… ….. 9

3 Termos e definições…………. …… 9

4 Requisito geral…………………. ….. 10

5 Condições gerais para os ensaios………. 10

6 Classificação……………… …………… 10

7 Marcação e instruções……………… 10

8 Proteção contra acesso a partes vivas…… 12

9 Partida de aparelhos a motor………… 13

10 Entrada e corrente de energia….. .. 13

11 Aquecimento……… ………………….. 13

12 Vazio…… ……………………….. 13

13 Corrente de vazamento e força elétrica à temperatura operacional…. 13

14 Sobretensões transitórias……………….. .13

15 Resistência à umidade…………….. …… 14

16 Corrente de fuga e força elétrica…………….. 15

17 Proteção contra sobrecarga de transformadores e circuitos associados……………. 16

18 Resistência……………. ………………. 16

19 Operação anormal…………………. …… 16

20 Estabilidade e riscos mecânicos…………….. 18

21 Resistência mecânica…………………….. ….. 18

22 Construção…………………… ……………. 20

23 Fiação interna………………. …………… 26

24 Componentes……………….. ……………. 26

25 Conexão de alimentação e cabos flexíveis externos………………. 27

26 Terminais para condutores externos………………………… 27

27 Provisão para aterramento……………………… …. 27

28 Parafusos e conexões……………………………. 27

29 Folgas, distâncias de fluência e isolamento sólido.. ……….. 27

30 Resistência ao calor e ao fogo…………………………. 27

31 Resistência à ferrugem……………………. ….. 27

32 Radiação, toxicidade e perigos similares………… 27

Anexos……… ………………………. 30

Anexo A (informativo) Ensaios de rotina…………………… 30

Anexo AA (normativo) Fornos micro-ondas combinados.. ……………. 32

Anexo BB (normativo) Fornos micro-ondas destinados a serem utilizados a bordo de navios…………….. 34

Bibliografia………… ………………….. 36

Figura 101 – Haste de ensaio para ocultação de intertravamentos…………. 28

Figura 102 – Gabinete de ensaio, incluindo superfície de trabalho, posição do funil e exemplo para direção de inclinação……………… 28

Figura 103 – Gabinete de ensaio incluindo placa de separação, posição do funil e exemplo para direção de inclinação……………… 29

Foi assumido na redação desta norma que a execução de suas disposições é confiada a pessoas adequadamente qualificadas e experientes. Esta norma reconhece o nível de proteção internacionalmente aceito contra riscos como elétrico, mecânico, térmico, incêndio e radiação de aparelhos quando operados normalmente e usado levando em consideração as instruções do fabricante. Também abrange situações anormais que podem ser esperadas na prática e leva em consideração a maneira pela qual os fenômenos eletromagnéticos podem afetar a operação segura dos aparelhos.

Esta norma leva em consideração os requisitos da IEC 60364, tanto quanto possível, para que haja compatibilidade com as regras de fiação quando o dispositivo estiver conectado à rede elétrica. No entanto, as regras nacionais de fiação podem diferir. Se um dispositivo dentro do escopo desta norma também incorporar funções cobertas por outra parte 2 da IEC 60335, a parte relevante 2 será aplicada a cada função separadamente, na medida do razoável. Se aplicável, a influência de uma função na outra é levada em consideração.

Quando um padrão da parte 2 não inclui requisitos adicionais para cobrir os riscos tratados na parte 1, a parte 1 se aplica. Isso significa que os comitês técnicos responsáveis pelas normas da parte 2 determinaram que não é necessário especificar requisitos específicos para o dispositivo em questão, além dos requisitos gerais. Essa norma é da família de produtos que trata da segurança de aparelhos e tem precedência sobre as normas horizontais e genéricas que abrangem o mesmo assunto.

As normas horizontais e genéricas que cobrem um risco não são aplicáveis, pois foram levadas em consideração no desenvolvimento dos requisitos gerais e particulares da série de normas IEC 60335. Por exemplo, no caso de requisitos de temperatura para superfícies em muitos aparelhos, padrões genéricos, como ISO 13732-1 para superfícies quentes, não são aplicáveis ​​além dos padrões da Parte 1 ou da Parte 2.

Um aparelho que esteja em conformidade com o texto desta norma não será necessariamente considerado em conformidade com os princípios de segurança da norma se, quando examinado e testado, for encontrado outros recursos que prejudiquem o nível de segurança coberto por esses requisitos. Um aparelho que utilize materiais ou possua formas de construção diferentes daquelas detalhadas nos requisitos desta norma pode ser examinado e testado de acordo com a intenção dos requisitos e, se considerado substancialmente equivalente, pode ser considerado em conformidade com a norma.