A segurança contra incêndio no transporte de cargas em ferrovias

Entenda os requisitos de segurança contra incêndio nas instalações das ferrovias de transporte de cargas, a metodologia de análise e gerenciamento de riscos de incêndio e os procedimentos de emergência e de contingências aplicados a estas ferrovias.

A NBR 16888 de 08/2020 – Segurança contra incêndio para sistemas ferroviários de transporte de cargas — Requisitos especifica os requisitos de segurança contra incêndio nas instalações das ferrovias de transporte de cargas, a metodologia de análise e gerenciamento de riscos de incêndio e os procedimentos de emergência e de contingências aplicados a estas ferrovias.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como combater incêndios em pátios em via permanente em perímetro urbano?

Como deve ser feita a construção e a compartimentação das estações?

Em estações compartilhadas, como deve ser feito o projeto da rota de escape?

Por que instalar um sistema de extinção automática de incêndio?

A informação e a orientação são fundamentais para prevenir e combater incêndios. Também é fundamental a capacitação de todas as pessoas que de alguma forma convivem com este risco. Assim, tornou-se necessária a elaboração desta norma, como instrumento para promover a uniformidade de linguagem e de procedimentos operacionais.

Esta norma apresenta os sistemas de proteção contra incêndio para manter as condições de segurança para prevenção, proteção e mitigação de incêndios nas instalações que compõe o sistema ferroviário de transporte de carga: via permanente; túneis ferroviários; pátios e terminais ferroviários, bases de apoio e depósito de locomotivas; estações ferroviárias compartilhadas ou não com passageiros; subestações de energia elétrica; material rodante; CCO e central de comando de emergências; sistemas de sinalização de emergência, controle e comunicação.

Esta norma apresenta também a metodologia de análise e gerenciamento de riscos, os planos de emergência e de contingências, os tipos de treinamentos técnicos e os ensaios, inspeção e manutenção. Na tabela abaixo são apresentados os tipos de vagões mais comumente utilizados no transporte de cargas, conforme a classe do produto.

Esta norma se aplica aos seguintes sistemas: vias permanentes dedicadas para transporte de carga; vias permanentes compartilhadas para o transporte misto de carga e de passageiros; vias ferroviárias nos terminais de carga, nos pátios ferroviários e nas oficinas de manutenção. É aplicável aos novos sistemas ferroviários de transporte de carga e às novas extensões dos sistemas existentes.

Não se aplica aos seguintes sistemas: os sistemas de transporte de passageiros metroviários e monotrilhos; os sistemas de transporte de passageiros, exceto quando em vias compartilhadas com transporte de cargas; sistemas de trens TAV; trens turísticos, de excursão e de transporte de circo. Esta norma não impede a utilização de sistemas, métodos ou dispositivos que possuam qualidade, poder de resistência ao fogo, eficiência, durabilidade e segurança equivalentes ou superiores aos requisitos recomendados.

Os requisitos dos sistemas de segurança contra incêndio nas instalações do transporte ferroviário de cargas são apresentados na Seção 8. Os requisitos dos sistemas de sinalização, controle e comunicação no transporte ferroviário de cargas são apresentados na Seção 9. O comissionamento dos sistemas de segurança contra incêndio em ferrovias de transporte de carga é apresentado na Seção 10. Os documentos segurança para ferrovias de transporte de carga são apresentados na Seção 11. Os treinamentos técnicos operacionais e de emergência aplicados para ferrovias de transporte de carga são apresentados na Seção 12.

As análises de risco para ferrovias para transporte de cargas (ARF) devem ser efetuadas, na fase de projeto, como elemento de orientação e concepção, em todos os túneis, terminais e pátios, devem ser elaboradas por um organismo funcionalmente independente do gestor do sistema ferroviário de transporte de cargas. Antes do início de operação do sistema ferroviário de transporte de cargas, deve ser efetuada a análise de conformidade para verificar a instalação dos dispositivos e/ou aos equipamentos de segurança recomendados pela análise de riscos.

A utilização da metodologia de análise de risco (MART) é apresentada no Anexo A. A análise de risco deve ser revisada sempre que modificações alterarem o estado operacional da via, dos terminais, dos pátios, das oficinas e dos túneis ferroviários, como por exemplo, mudança no sistema ferroviário de transporte de carga e/ou no tipo de carga transportada pela via.

O gestor do sistema ferroviário de transporte de carga é responsável pela manutenção da análise de risco sempre atualizada. A análise de risco para o sistema ferroviário de transporte de carga deve atender à NBR 16484. O plano de gerenciamento de riscos da ferrovia (PGRF) apresenta a sistemática de gestão de segurança de processos, por meio de um programa para gerenciar os riscos contidos no sistema ferroviário de transporte de carga, identificados pela análise de riscos.

A estrutura do PGRF deve conter os seguintes assuntos e procedimentos: características do sistema ferroviário de transporte de carga e de seu entorno; informações de segurança de processo dos produtos e do transporte de carga; análise de riscos do sistema ferroviário de transporte de carga e sua revisão; procedimentos operacionais; gerenciamento de modificações; manutenção e garantia da integridade dos sistemas críticos; capacitação de recursos humanos; programa de comunicação de riscos; investigação de incidentes e de acidentes; plano de ação de emergência (PAE); auditoria do PGRF. A estrutura do PGRF pode conter outros assuntos e procedimentos, se determinado por órgão ambiental ou Termo de Ajuste de conduta (TAC).

A coordenação geral do PGRF é de responsabilidade do gestor do sistema ferroviário de transporte de carga, que inclui também a sua implantação, revisões e a divulgação. Devido à grande variação de fatores locais e às características de cada via, terminal, pátio, oficina e túnel do sistema ferroviário de transporte de carga, o plano de resposta à emergência deve ser elaborado conforme as necessidades específicas e se encontra detalhado na NBR 16484.

Este plano é de responsabilidade do gestor do sistema ferroviário de transporte de carga e deve ser elaborado antes do início de operação deste sistema. O plano de resposta à emergência deve ser conciso o quanto possível, identificando de forma clara as funções e as responsabilidades de cada participante da equipe de emergência, bem como deve apontar a necessidade de treinamento especial e a realização de simulados de emergência.

O plano de resposta à emergência, quando necessário, pode considerar o auxílio operacional e logístico de outros operadores. O plano de contingência deve ser elaborado o plano de contingência da ferrovia (PCF), visando à garantia da segurança física e patrimonial das instalações do sistema ferroviário de transporte de carga, como, por exemplo, a subestação elétrica, as vias férreas, os túneis ferroviários, as estações, os terminais, as oficinas, os pátios e o centro de controle operacional, contra atividades ilícitas (furto, roubo, vandalismo, terrorismo, etc.) que venham a ocasionar danos aos sistemas operacionais do sistema ferroviário de transporte de carga.

Este plano é de responsabilidade do gestor do sistema ferroviário de transporte de carga e deve ser elaborado e ensaiado antes do início de operação deste sistema, com especial atenção à via permanente, aos terminais e aos túneis ferroviários. Os parâmetros de qualidade da via permanente (construção, geometria, operação e manutenção) do sistema ferroviário transporte de carga devem atender à NBR 16387.

A estratégia de localização das bases de apoio, com o sistema de prevenção e de proteção a incêndio, deve ser definida na fase de projeto da ferrovia, atendendo à análise de risco efetuada para cada trecho da ferrovia de transporte de carga. O sistema de combate a incêndio em trechos de vias com perímetro urbano deve atender à NBR 16484. A instalação de sistema de combate a incêndio em trechos de vias que não estejam em perímetros urbanos é opcional, ficando a critério da concessionária operadora da via, mediante elaboração de análise de risco.

Cada trecho ferroviário deve ser provido no mínimo de um veículo para intervenção de combate a incêndio. As vias compartilhadas com transporte de passageiros e cargas devem atender à NBR 16484. A estratégia de localização das passagens de nível na via permanente deve ser especificada na fase de projeto da ferrovia, atendendo à análise de risco efetuada para cada trecho da ferrovia de transporte de carga.

A instalação dos sistemas de sinalização de segurança, combate e alarme de incêndio e comunicação de emergência na passagem de nível deve ser especificada na fase de projeto, atendendo à análise de risco efetuada para cada trecho da ferrovia de transporte de carga. O projeto do sistema ferroviário de transporte de cargas deve especificar a localização estratégica de bases de apoio a emergências ao longo da via permanente, atendendo à análise de risco.

Estas bases de apoio podem conter um sistema de combate a incêndio (por exemplo, guindaste ferroviário, etc.). Os sistemas de combate a incêndio em túneis ferroviários em trechos de perímetro urbano devem atender à NBR 16484. Nos túneis ferroviários em trechos de perímetro urbano, o sistema de ventilação de emergência deve atender à NBR 16484. A instalação de sistema de combate a incêndio em túneis ferroviários de vias que não estejam em perímetros urbanos é opcional, ficando a critério da operadora da via ou do sistema ferroviário, mediante elaboração de análise de risco.

A análise de risco deve ser revisada anualmente, de modo que seja comprovada a permanência do estado operacional e a inexistência de desenvolvimento urbano do entorno dos túneis ferroviários. A capacitação de recursos humanos para o sistema ferroviário de transporte de cargas é de fundamental importância para o programa de gerenciamento de riscos da ferrovia (PGRF) e visa garantir que os colaboradores sejam plenamente capacitados para desempenhar suas funções e estejam permanentemente atualizados para o desenvolvimento de suas atividades com conhecimento técnico e de forma segura.

Os treinamentos devem ser especificados e realizados antes da entrada em operação do sistema ferroviário de transporte de cargas. O gestor ou operador do sistema ferroviário de transporte de cargas deve ser responsável por definir a equipe operacional para atuar no CCO e no atendimento à emergência, assim como os respectivos treinamentos operacionais e de emergências.

BS 8680: os planos de segurança hídrica

Essa norma, editada pelo BSI em 2020, fornece as recomendações e as orientações para o desenvolvimento de um plano de segurança da água (Water Safety Plan – WSP) para todos os tipos de instalações e empreendimento com sistemas de água que possam representar um risco para aqueles expostos, seja pela própria água, por aerossóis derivados dela ou pelos arredores. ambiente, e onde um WSP é particularmente recomendado dentro das orientações nacionais existentes, como em saúde.

A BS 8680:2020 – Water quality – Water safety plans – Code of practice estabelece orientações e recomendações para o desenvolvimento de um plano de segurança da água (Water Safety Plan – WSP) para a construção de sistemas de água. Normalmente. Costuma-se pensar que os sistemas de água nos edifícios são seguros quando conectados a suprimentos públicos – mas isso ignora o potencial de contaminação (química e microbiana) e o crescimento de patógenos oportunistas transmitidos pela água nos sistemas de água dos edifícios.

Os usuários devem usar todos os envolvidos na garantia de que a água é segura e adequada ao objetivo no ponto de uso, incluindo os responsáveis por: projeto e poluição, construção e instalação, comissionamento, manutenção, operação, a alteração e reforma, desconstrução. Essa norma fornece as recomendações e as orientações sobre o desenvolvimento de um plano de segurança da água e deve ser usada como um código de prática para demonstrar as boas práticas e conformidade atuais.

Um projeto e gestão inadequados dos sistemas de água nos edifícios podem causar surtos de doenças. Os WSP são o meio mais eficaz de garantir consistentemente a segurança do abastecimento de água por meio de uma abordagem abrangente de gerenciamento de riscos. Isso se baseia na identificação de todos os riscos significativos à saúde pública, garantindo que controles e barreiras efetivos sejam aplicados para minimizar esses riscos a níveis aceitáveis e monitorando a operação dos controles e barreiras para garantir a manutenção da segurança.

O WSP é uma base crítica para o gerenciamento e o controle de riscos eficazes para todos os tipos de riscos, incluindo o biológico, químico, físico e radiológico. Esse plano também seria muito útil para quem audita e inspeciona as instalações. Isso pode ajudar os grupos de segurança da água e outros responsáveis pela saúde e segurança a garantir que haja uma abordagem holística da segurança da água em todos os tipos de sistemas e equipamentos que usam ou contêm água.

A norma se aplica a todos os tipos de instalações e empresas com sistemas de água que podem representar um risco para aqueles expostos, seja pela própria água ou por aerossóis derivados dela, e onde um WSP é particularmente recomendado nas orientações nacionais existentes, como na área da saúde. Aplica-se ao desenvolvimento de WSP para novos edifícios; modificações e reformas nos sistemas de água existentes; aplicações retrospectivas para controlar os riscos para a saúde de todos os tipos de uso da água.

Não fornece recomendações para o desenvolvimento de WSP para o abastecimento regulamentado de água potável de um suprimento público ou privado, pois esses são cobertos pelos regulamentos nacionais de qualidade da água. Para avaliação de risco para Legionella ou Pseudomonas aeruginosa, consulte a BS 8580. Essa norma pode contribuir para o Objetivo de Desenvolvimento Sustentável 3 da ONU, de garantir uma vida saudável e promover o bem-estar para todos em todas as idades. Também apoia o Objetivo 6 de garantir a disponibilidade e o gerenciamento sustentável de água e saneamento para todos.

Conteúdo da norma

Introdução 1

1 Escopo 1

2 Referências normativas 2

3 Termos e definições 3

4 O plano de segurança da água (WSP) 7

4.1 Avaliação de alto nível/análise de lacunas 7

4.2 Governança 10

Figura 1 – Um exemplo de desenvolvimento de um WSP 12

4.3 Avaliação do sistema 16

4.4 Avaliação de risco 18

4.5 Fatores de risco nos cuidados de saúde para inclusão no WSP 28

4.6 Controle de riscos (esquema de controle) 29

4.7 Projeto, instalação e uso de sistemas de água em edifícios 32

4.8 Projeto e especificação 32

Tabela 1 – Principais considerações de projeto 33

4.9 Monitoramento 38

4.10 Programas de apoio 41

Tabela 2 – Exemplo de matriz RACI em um ambiente de assistência médica para uma falha no controle de temperatura de um abastecimento de água quente centralizado 41

4.11 Documentação 43

Tabela 3 – Exemplo de documentos que podem ser necessários para suportar o WSP 44

Anexo A (informativo) Desenvolvimento de um plano de segurança da água (WSP) 49

Tabela A.1 – Matriz de responsabilidades 50

Tabela A.2 – Exemplo de matriz de avaliação de risco para uma pequena empresa, neste caso, cabeleireiros/salão de beleza 52

Anexo B (informativo) Ações corretivas/Gerenciamento de mudanças/Planos de manutenção 54

Anexo C (normativo) Projeto, especificação e comissionamento 56

Anexo D (informativo) Um exemplo de uma lista de verificação do WSP para novas construções 66

Bibliografia 70

No contexto deste documento, um WSP é um plano estratégico proativo que define a direção de como uma empresa ou organização, grande ou pequena, pretende gerenciar os riscos da água no local para evitar danos decorrentes de todas as formas de exposição. Define e documenta os processos e arranjos necessários para o uso e gerenciamento seguros de todos os sistemas de água em cada edifício ou juntamente com quaisquer sistemas e equipamentos associados.

Os tipos e a complexidade dos sistemas de água e equipamentos relacionados variam de acordo com o tamanho e o tipo de empresa ou organização. O desenvolvimento de um WSP pode garantir que eles sejam gerenciados e mantidos. Portanto, eles não representam um risco para os operadores/usuários ou qualquer outra pessoa que possa ser exposta ou afetada por um mau gerenciamento da água. Um componente principal é a nomeação de uma pessoa ou pessoas competentes, um grupo de segurança da água (water safety group – WSG), responsável pelo desenvolvimento e implementação do WSP. Em uma empresa de pequeno porte com sistemas simples, essa pode ser a pessoa que assume a responsabilidade geral pela saúde e segurança e pode ser o proprietário ou gerente das instalações, se tiverem a competência e as habilidades necessárias.

Os WSP precisam levar em consideração todos os riscos potenciais, incluindo os de natureza biológica, química, física e radiológica. Isso é especialmente importante no ambiente de saúde, onde a população pode ser mais vulnerável a riscos físicos, como escaldar e mais suscetível a infecções do que a população em geral, e onde a água usada para fins de tratamento e diagnóstico pode ter uma qualidade acima da média. e acima do necessário para beber água.

Onde existe uma avaliação de riscos, baseada na análise de perigos e nos princípios do ponto crítico de controle (hazard analysis and critical control point – HACCP), pode-se identificar os perigos que podem representar um risco significativo para a saúde humana, várias barreiras de controle, proporcionais ao risco, precisam ser implementadas para garantir que a água permaneça segura . O WSP é apoiado pelo desenvolvimento de programas de apoio, como treinamento, verificação de competências, documentação, comunicação, vigilância e auditoria interna e externa e revisão contínua.

As competências dos especialistas em gestão da energia

Saiba quais são as recomendações de competências esperadas de especialistas em implementação do sistema de gestão da energia (SGE) por meio da aplicação da NBR ISO 50001:2018. 

A NBR 16883 de 06/2020 – Sistema de gestão da energia — Diretrizes para seleção de especialistas em implementação da NBR ISO 50001 estabelece as recomendações de competências esperadas de especialistas em implementação do sistema de gestão da energia (SGE) por meio da aplicação da NBR ISO 50001:2018. Esta norma aplica-se às pessoas que trabalham como especialistas em implementação do SGE em qualquer tipo de organização, independentemente do seu tamanho, tipo, localização e nível de maturidade. Tem caráter orientativo, para que as organizações selecionem os especialistas em implementação de SGE, cabendo às organizações decidirem se é desejável ou não a sua aplicação integral ou parcial, de acordo com as suas diretrizes internas.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como podem ser definidas a competência e a compreensão?

Qual seria o conceito de competência para o especialista?

Quais os conhecimentos e habilidades específicas que o especialista deve ter?

Por que o especialista em implementação de SGE deve entender dos usos da energia?

Vários princípios podem ser aplicados à atuação do especialista em implementação do SGE. O atendimento a estes princípios contribui para a eficácia e consistência do trabalho do implementador de sistemas de gestão da energia. A implementação do sistema de gestão da energia é antecedida pelo estabelecimento de um termo de confidencialidade relacionado à divulgação, manutenção e distribuição dos dados com os quais o especialista entrará em contato durante o serviço, conforme aplicável. A confidencialidade visa a proteger a organização da utilização não autorizada destes dados pelo especialista para interesses pessoais ou de terceiros, ou para prejudicar a organização.

Tendo a anuência da organização, o especialista pode usar os dados desta, de forma anônima, para, por exemplo, complementar bases de dados públicas. Convém que o especialista aja de maneira independente e imparcial para identificar com objetividade potenciais conflitos de interesse. Convém que o especialista esteja preparado para executar o serviço, de modo que todos os aspectos da implementação sejam transparentes, ao menos para a organização onde o SGE estiver sendo implementado.

Recomenda-se solicitar referências dos potenciais especialistas em implementação de SGE aos clientes ou empregadores anteriores. Recomendações sobre papéis e responsabilidades potencialmente assumidos pelo contratante do serviço e pelo especialista em implementação de SGE são apresentadas na tabela abaixo.

Além disso, a segurança e a confiança no processo de implementação de um SGE dependem da competência de quem lidera o processo. Esta competência pode ser verificada pela observação dos seguintes pontos: atributos pessoais; capacidade para aplicar conhecimentos e habilidades, adquiridos pela formação, experiência profissional, treinamento em sistema de gestão da energia e experiência na implementação de sistemas de gestão da energia. Convém que os especialistas em implementação de SGE desenvolvam, mantenham e aperfeiçoem as suas competências por meio de um contínuo desenvolvimento profissional e participação regular em processos de implementação, manutenção e melhoria de SGE.

Convém que um especialista em implementação de SGE possua as seguintes características: disposição a considerar ideias e pontos de vista alternativos; diplomacia, assertividade e respeito nas relações com as pessoas; perceptividade, atenção às pessoas e processos ocorrendo ao seu redor; versatilidade e adaptabilidade a diferentes situações; tenacidade, persistência e foco em alcançar objetivos; segurança e capacidade de trabalhar e atuar de forma independente e de interagir de forma eficaz com os outros profissionais; liderança na condução de processos e proatividade. Convém que os especialistas em implementação de SGE demonstrem conhecimentos e habilidades nas seguintes áreas: princípios, procedimentos e técnicas de implementação de sistemas de gestão, que o permitam executar a implementação de forma consistente e sistemática.

Convém que o especialista em implementação de SGE seja capaz de aplicar os seus conhecimentos em princípios, requisitos, procedimentos e técnicas para implementar um sistema de gestão; planejar e organizar com eficácia o seu trabalho; liderar as atividades e conduzir os membros da organização ao alcance dos resultados planejados; prever e solucionar conflitos; realizar a implementação de sistemas de gestão segundo o programa acordado; coletar informações por meio de entrevistas eficazes, escutar, observar e analisar criticamente documentos, registros e dados; compreender a conveniência e as consequências de usar técnicas de amostragem para monitorar a implementação; confirmar a suficiência e conveniência das evidências da implementação para apoiar os resultados e conclusões de seu trabalho; avaliar os fatores que podem afetar a confiabilidade dos resultados e as conclusões da implementação; desenvolver os documentos de trabalho para o planejamento das atividades de implementação; preparar informes dos avanços e progressos da implementação; manter a confidencialidade; comunicar-se eficazmente por meio das habilidades linguísticas pessoais ou de um intérprete; sistema de gestão documental de referência, que o permita compreender o alcance do trabalho de implementação do SGE.

Convém que os conhecimentos e habilidades nesta área incluam a aplicação de sistemas de gestão da energia para diferentes organizações; a interação entre os componentes do sistema de gestão da energia; as normas de sistemas de gestão, procedimentos aplicáveis e outros documentos do sistema de gestão usados como critério para a implementação; o reconhecimento de diferenças e prioridades entre os documentos de referência; a aplicação de documentos de referência em diferentes situações; os sistemas de informação e tecnologia para autorização, segurança, distribuição e controle de documentos, dados e registros; as situações organizacionais que permitam compreender o contexto operacional da organização.

Convém que o conhecimento e as habilidades nesta área incluam: o tamanho organizacional, estrutura, funções e relações; o processo hierárquico de negócio e terminologia relacionada; os costumes culturais e sociais da organização em que será realizada a implementação. Os costumes culturais e sociais da organização são normalmente de conhecimento dos especialistas da própria organização. No caso de especialistas externos à organização, está alínea pode ser excluída ou adaptada, tornando-se mais genérica.

Deve entender de leis, regulamentos e outros requisitos aplicáveis à organização. Convém que os conhecimentos e habilidades nesta área incluam: os códigos locais, regionais e nacionais, leis e regulamentos, particularmente os aplicáveis aos aspectos energéticos; os contratos e acordos; as leis e as normas relativas à segurança do trabalho; os tratados e convênios internacionais; outros requisitos legais.

O alívio normal e emergencial de vapores em tanques de armazenamento

Saiba quais são os requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão.

A NBR ISO 28300 de 06/2020 – Indústrias de petróleo, petroquímica e gás natural — Alívio de tanques de armazenamento atmosféricos e de baixa pressão trata dos requisitos de alívio normal e emergencial de vapores em tanques de armazenamento de superfície de produtos líquidos de petróleo ou tanques de armazenamento de produtos de petróleo e tanques de armazenamento refrigerados de superfície e enterrados projetados como tanques atmosféricos de armazenamento ou tanques de armazenamento de baixa pressão. Nesta norma são discutidas as causas de sobrepressão e vácuo; determinação de requisitos de alívio; tipos de alívio; seleção e instalação de dispositivos de alívio; e ensaios e marcação de dispositivos de alívio. Esta norma considera tanques contendo petróleo e seus derivados, mas pode também ser aplicados aos tanques contendo outros líquidos. Entretanto, é necessário utilizar uma análise de engenharia e uma avaliação técnica adequadas quando se aplicar esta norma a outros líquidos. Não se aplica aos tanques de teto flutuante externo.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais os requisitos de alívio para aspiração?

Qual é o fator de redução para tanques com isolamento?

Quais os requisitos de alívio em presença de fogo?

Qual é a capacidade de alívio?

Esta norma foi elaborada a partir da 5ª edição da API 2000 e da EN 14015:2005, com a intenção de que a 6ª edição da API 2000 seja idêntica a esta norma. Foi desenvolvida a partir de conhecimentos acumulados e da experiência de engenheiros qualificados em indústrias de óleo, petróleo, petroquímica, química e de armazenamento de líquido a granel. Estudos de engenharia de um tanque particular podem indicar uma capacidade apropriada de alívio que não esteja de acordo com a capacidade estimada de alívio determinada por esta norma.

As muitas variáveis associadas aos requisitos de alívio para o tanque podem tornar impraticável a definição de regras simples que são aplicáveis a todos os locais e condições. Onde for aplicável nesta norma, as unidades de medidas inglesas (USC) são incluídas para informação entre parênteses ou em tabelas separadas. Para determinação das possíveis causas de sobrepressão e vácuo em um tanque, considerar o seguinte: movimento de enchimento e esvaziamento de líquido do tanque; respiração (aspiração e expiração) do tanque devido a mudanças climáticas (por exemplo, mudanças de pressão e temperatura); exposição ao fogo; outras circunstâncias resultantes de falhas de equipamento e erros operacionais.

Existem outras circunstâncias que convém que sejam consideradas, mas não foram incluídas nesta norma. O processo de enchimento e esvaziamento de um tanque pode ser por bombeamento, gravidade ou diferença de pressão. O vácuo pode resultar do esvaziamento do tanque. A sobrepressão pode resultar do enchimento do tanque e da vaporização normal ou instantânea do líquido. A vaporização instantânea pode ser significativa para líquidos próximos ou acima do seu ponto de ebulição na pressão do tanque.

O vácuo pode resultar da contração ou condensação de vapores causada pela diminuição da temperatura atmosférica ou outras mudanças climáticas, como mudanças de vento, precipitação atmosférica, etc. Sobrepressão pode resultar da expansão ou vaporização causada pelo aumento da temperatura atmosférica ou outras mudanças climáticas. A sobrepressão pode resultar da expansão dos vapores ou da vaporização do líquido que ocorre quando o tanque absorve calor do fogo externo.

Quando as possíveis causas de sobrepressão ou vácuo no tanque estiverem sendo determinadas, devem ser consideradas e avaliadas outras circunstâncias resultantes de falhas de equipamentos ou erros operacionais. Os métodos de cálculos para estas circunstâncias não estão previstos nesta norma. A transferência de líquido desde outros vasos, caminhões-tanque e carros-tanque pode ser auxiliada ou realizada inteiramente pela pressurização destes com um gás, mas o tanque de recepção pode encontrar uma oscilação de fluxo ao final da transferência, devido à passagem do gás/vapor.

Dependendo da pressão preexistente e do espaço livre no tanque de recepção, o volume de gás/vapor adicional pode ser suficiente para exercer pressão excessiva neste tanque. A ação de controle é garantir o enchimento até um nível máximo, de modo que reste pouco espaço dentro do tanque, para não absorver a oscilação de pressão. Colchões de inertização e purgas são utilizados nos tanques para proteger o seu conteúdo contra contaminação, manter atmosferas não inflamáveis e reduzir a inflamabilidade destes vapores aliviados do tanque.

Um sistema de inertização e purga normalmente tem um regulador de alimentação e de contrapressão para manter a pressão interna do tanque dentro de uma faixa operacional estreita. A falha deste regulador pode resultar em fluxo de gás descontrolado para o tanque e, subsequentemente, pressão excessiva no tanque, redução do fluxo de gás ou perda total do fluxo de gás. A falha fechada do regulador de contrapressão pode resultar em bloqueio da saída e sobrepressão.

Se o regulador de contrapressão estiver conectado a um sistema de recuperação do vapor, a sua falha aberta pode resultar em vácuo. Vapor, água quente e óleo quente são meios comuns de aquecimento para tanques que contêm substâncias que precisam ser mantidas a temperaturas elevadas. A falha de uma válvula de controle de suprimento de calor para o tanque, do elemento sensor de temperatura ou do sistema de controle pode resultar em aumento de aquecimento no tanque. A vaporização do líquido estocado pode resultar na sobrepressão do tanque.

Tanques aquecidos que contenham duas fases de líquido apresentam possibilidade de uma vaporização rápida, se a fase inferior for aquecida até a temperatura onde a sua densidade torna-se inferior à densidade do líquido superior. Estas condições devem ser evitadas na especificação do projeto e nos procedimentos operacionais. Se o tanque mantido em elevadas temperaturas estiver vazio, isso pode resultar em uma vaporização excessiva na alimentação do tanque.

Se o sistema de controle de temperatura do tanque estiver funcionando com o sensor de temperatura exposto ao vapor, o meio usado no aquecimento do tanque pode circular com uma vazão máxima, elevando até a máxima temperatura da parede do tanque. Enchimento do tanque sob estas condições pode resultar em uma vaporização excessiva durante a alimentação deste. A vaporização excessiva da alimentação é interrompida tão logo as paredes do tanque sejam esfriadas e com o nível do líquido cobrindo o sensor de temperatura.

Para tanques com camisas de resfriamento ou serpentinas, deve ser considerada a vaporização líquida como resultado da perda do fluxo de meio resfriador deste. A falha mecânica de um dispositivo interno de aquecimento ou resfriamento do tanque pode expor o conteúdo do tanque ao meio de aquecimento ou de resfriamento usado no dispositivo. Para tanques de baixa pressão, pode-se assumir que a direção de fluxo do meio de transferência de calor esteja dentro do tanque quando houver falha do dispositivo.

Deve-se considerar a compatibilidade química entre o conteúdo do tanque e o meio de transferência de calor. Pode ser necessário haver alívio do meio de transferência de calor (por exemplo, vapor). A falha do sistema de coleta de alívio deve ser avaliada quando o vapor de um tanque for coletado para tratamento ou direcionado para um sistema de tratamento de alívio. Falhas afetando a segurança de um tanque podem incluir o desenvolvimento de contrapressões a partir de problemas na tubulação [selo líquido (liquid-filled pockets) e crescimento de sólidos], outro equipamento de alívio ou alívio para o tubo de comunicação (header) ou bloqueio devido à falha do equipamento.

Quando apropriado, pode ser usado um dispositivo de alívio de emergência com ajuste de pressão maior que o sistema de tratamento de alívio, aliviando para a atmosfera. Falhas de energia local, da fábrica e utilidades devem ser consideradas possíveis causas de sobrepressão e formação de vácuo. A perda de energia elétrica afeta diretamente qualquer válvula motorizada ou controles, e pode também interromper o suprimento de ar de instrumento. Durante este tipo de falha elétrica pode haver também a perda de fluidos de aquecimento e resfriamento.

A mudança de temperatura no fluido de alimentação do tanque devido à perda de resfriamento ou aumento de aquecimento pode causar sobrepressão neste tanque. Fluido de alimentação à temperatura baixa pode resultar em condensação de vapor e contração, causando vácuo. Os conteúdos de alguns tanques podem estar submetidos a reações químicas que podem gerar calor e/ou vapores.

Alguns exemplos de reações químicas incluem a alimentação inadvertida de água em tanques contendo ácidos e/ou ácidos usados, gerando vapor e/ou vaporização de hidrocarbonetos leves; reações fora de controle em tanques contendo hidroperóxido de cumeno, etc. Em alguns casos pode haver formação de espuma, causando alívio de dupla fase. Para avaliar estes casos, pode ser usada a tecnologia disponível no Design Institute for Emergency Relief Systems (DIERS) do grupo de usuários do American Institute of Chemical Engineers (AICHE) ou do grupo europeu do DIERS.

Para informação sobre proteção para evitar o transbordo de líquido, ver as API 2510, API RP 2350 e EN 13616. A prevenção contra o transbordo de líquido do tanque é efetuada pela salvaguarda de instrumentos e/ou por ações efetivas de intervenção do operador. Um aumento ou queda da pressão barométrica pode causar vácuo ou sobrepressão em um tanque. Esta situação deve ser considerada para tanques de estocagem refrigerados.

O efeito de falha aberta ou fechada de uma válvula de controle deve ser considerado para determinar o valor de pressão ou vácuo devido ao desbalanceamento de massa e/ou de energia. Por exemplo, a falha de uma válvula de controle na linha de líquido para um tanque deve ser considerada, porque pode sobrecarregar o equipamento de troca térmica, resultando na admissão, para dentro do tanque, de material em alta temperatura. A falha de uma válvula de controle também pode causar a queda do nível de líquido abaixo do bocal de saída do vaso pressurizado, permitindo a entrada de vapor em alta pressão neste tanque.

Se um tanque não isolado termicamente for preenchido com vapor, a taxa de condensação devido ao resfriamento ambiental pode exceder as taxas de alívio especificadas nesta norma. O uso de grandes aberturas (boca de visita aberta), o controle da taxa de resfriamento ou a injeção de gás não-condensável, como ar ou nitrogênio, são procedimentos frequentemente necessários para evitar a formação de vácuo interno excessivo. Tanques não isolados termicamente com espaços de vapores excepcionalmente quentes podem, durante uma tempestade, exceder os requisitos de aspiração térmica previstos nesta norma.

A contração de vapor pode causar um vácuo excessivo no tanque. Recomenda-se, para tanques aquecidos não isolados, com temperatura de espaço-vapor superior a 48,9°C (120°F), que seja realizada uma análise crítica de engenharia. Os conteúdos dos tanques podem ignitar, produzindo uma deflagração interna com sobrepressões que podem se desenvolver muito rapidamente, além da capacidade dos dispositivos de alívio. Para alívio de explosão, ver NFPA 68 e EN 13237. Para inertização, ver Anexo F.

A alimentação de produtos mais voláteis, do que aqueles normalmente armazenados, pode ser possível devido a distúrbios no processo a montante ou por erro humano. Isso pode resultar em sobrepressão. É necessário quantificar os requisitos de alívio para excesso de pressão ou vácuo produzido por qualquer causa aplicável, como apresentado para estabelecer as bases de projeto para o dimensionamento dos dispositivos de alívio ou quaisquer outros meios de proteção adequada.

Para auxiliar a quantificação, esta norma apresenta orientação para o cálculo detalhado referente às seguintes condições normalmente encontradas: aspiração normal resultante da máxima vazão de descarga do tanque (efeitos de transferência de líquido); aspiração normal resultante da contração ou condensação de vapores, causada pela máxima diminuição de temperatura do espaço-vapor (efeitos térmicos); expiração normal resultante da máxima vazão de entrada de líquido no tanque e máxima vaporização causada por tal entrada de líquido (efeitos de transferência de líquido); expiração normal resultante da expansão do vapor e vaporização do líquido causada pelo máximo aumento de temperatura do espaço-vapor (efeitos térmicos); alívios de emergência resultantes de exposição ao fogo externo.

Ao determinar os requisitos de alívio, deve ser considerado como base de projeto, o requisito da maior ocorrência individual ou qualquer combinação razoável e provável de ocorrências. No mínimo, deve ser considerada a combinação dos efeitos térmicos e de transferência de líquido para determinar a vazão de aspiração ou de expiração normal total. Exceto no caso de tanques de armazenamento refrigerados, é prática comum considerar somente a aspiração normal total para determinação dos requisitos necessários de alívio.

Isto é, cargas de aspiração devido a outras circunstâncias descritas são geralmente consideradas não coincidentes com a aspiração normal. Isto é considerado uma aproximação razoável, porque a aspiração térmica é uma condição severa e de curta duração. Para expiração total, considerar os cenários descritos e determinar se estes são coincidentes com os fluxos de expiração normal.

A gestão de incidentes

A NBR ISO 22320 de 06/2020 – Segurança e resiliência — Gestão de emergências — Diretrizes para gestão de incidentes fornece as diretrizes para a gestão de incidentes, incluindo os princípios que comuniquem o valor e expliquem a finalidade da gestão de incidentes, os componentes básicos da gestão de incidentes, incluindo processo e estrutura, com foco em papéis e responsabilidades, tarefas e gestão de recursos, e o trabalho conjunto por meio de direção e cooperação conjuntas. Este documento é aplicável a qualquer organização envolvida em responder a incidentes de qualquer tipo e escala. É aplicável a qualquer organização com uma estrutura organizacional, bem como a duas ou mais organizações que optem por trabalhar em conjunto enquanto continuam a usar a sua própria estrutura organizacional ou usam uma estrutura organizacional combinada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Por que definir claramente os papéis e responsabilidades de todo o pessoal?

O que é um quadro operacional comum (common operational picture)?

Por que a organização deve estabelecer acordos de cooperação?

Como fazer o desenvolvimento e a implementação de métodos para trabalhar em conjunto?

Nos últimos anos, houve muitos desastres, tanto naturais quanto provocados pelo homem, e outros grandes incidentes, que mostraram a importância da gestão de incidentes para salvar vidas, reduzir danos e prejuízos, e assegurar um nível adequado de continuidade de funções sociais essenciais. Tais funções incluem saúde, telecomunicações, abastecimento de água e alimentos e acesso à eletricidade e combustível. Embora no passado o foco da gestão de incidentes tenha sido nacional, regional ou dentro de organizações individuais, hoje e no futuro há uma necessidade de uma abordagem multinacional e multiorganizacional.

Esta necessidade é motivada por relacionamentos e interdependências entre governos, organizações não governamentais (ONG), organizações da sociedade civil (OSC) e o setor privado internacionalmente. Fatores como aumento da urbanização, dependências e interdependências de infraestruturas críticas, dinâmica socioeconômica, mudança ambiental, doenças animais e humanas, e aumento do movimento de pessoas e bens em todo o mundo aumentaram o potencial de disrupções e desastres que transcendem as fronteiras geográficas e políticas, impactando na capacidade de gestão de incidentes.

Este documento fornece orientação para as organizações melhorarem o tratamento de todos os tipos de incidentes (por exemplo, emergências, crises, disrupções e desastres). As múltiplas atividades de gestão de incidentes geralmente são compartilhadas entre organizações e agências, com o setor privado, organizações regionais e governos, com diferentes níveis de jurisdição. Portanto, é necessário orientar todas as partes envolvidas em como preparar e implementar a gestão de incidentes.

Espera-se que a assistência entre regiões ou fronteiras entre organizações durante a gestão de incidentes seja apropriada às necessidades da população afetada e que seja culturalmente sensível. Portanto, a participação de múltiplas partes interessadas, que foca no envolvimento da comunidade no desenvolvimento e implementação da gestão de incidentes, é desejável, quando apropriado. As organizações envolvidas requerem a capacidade de compartilhar uma abordagem comum entre fronteiras geográficas, políticas e organizacionais.

Este documento é aplicável a qualquer organização responsável pela preparação ou resposta a incidentes nos níveis local, regional, nacional e, possivelmente, internacional, incluindo aqueles que são responsáveis e participam da preparação para incidentes, oferecem orientação e direção na gestão de incidentes, são responsáveis pela comunicação e interação com o público, e realizam pesquisas no campo da gestão de incidentes. As organizações se beneficiam do uso de uma abordagem comum para a gestão de incidentes, por isto permitem um trabalho colaborativo e garantem ações mais coerentes e complementares entre as organizações.

A maioria dos incidentes é de natureza local e é gerenciada nos níveis local, municipal, regional, estadual ou provincial. A gestão de incidentes respeita a primazia da vida humana e da dignidade humana por meio da neutralidade e imparcialidade. A gestão de incidentes requer que todas as pessoas, a qualquer momento, se reportem a apenas um supervisor. A gestão de incidentes requer que as organizações trabalhem em conjunto. A gestão de incidentes considera incidentes naturais e humanos, incluindo aqueles que a organização ainda não enfrentou.

A gestão de incidentes é baseada na gestão de riscos. A gestão de incidentes requer preparação e requer o compartilhamento de informações e perspectivas. Enfatiza a importância da segurança para os respondedores e para os impactados, é flexível (por exemplo, adaptabilidade, escalabilidade e subsidiariedade) e leva em consideração fatores humanos e culturais. Enfatiza a melhoria contínua para aprimorar o desempenho organizacional.

Convém que a gestão de incidentes considere uma combinação de instalações, equipamentos, pessoal, estrutura organizacional, procedimentos e comunicações. A gestão de incidentes tem base no entendimento de que, em todo e qualquer incidente, existem determinadas funções de gestão que convém que sejam executadas, independentemente do número de pessoas disponíveis ou envolvidas na resposta ao incidente. Convém que a organização implemente a gestão de incidentes, incluindo um processo de gestão de incidentes (5.2), e uma estrutura de gestão de incidentes, que identifique papéis e responsabilidades, tarefas e alocação de recursos da gestão de incidentes (5.3).

Convém que a organização documente o processo e a estrutura de gestão de incidentes. O processo de gestão de incidentes tem base em objetivos que são desenvolvidos por meio da coleta e compartilhamento proativo de informações, a fim de avaliar a situação e identificar as contingências. Convém que a organização se engaje em atividades de planejamento como parte da preparação e resposta, que considerem o seguinte: segurança, objetivos da gestão de incidentes, informações sobre a situação, monitoramento e avaliação da situação, função de planejamento, que determina um plano de ação para incidentes, alocação, rastreabilidade e liberação de recursos, comunicações, relacionamento com outras organizações, quadro operacional comum (common operational picture), desmobilização e rescisão, diretrizes de documentação.

O Anexo D fornece recomendações sobre o planejamento de gestão de incidentes. Um plano de ação para incidentes (verbal ou escrito) inclui metas, objetivos, estratégias, táticas, segurança, comunicações e informações sobre gestão de recursos. Desmobilizar significa devolver recursos ao seu uso e status originais. Rescisão significa uma transferência formal das responsabilidades de gestão de incidentes para outra organização. Convém que as decisões tomadas entre as organizações sejam compartilhadas conforme apropriado. O processo de gestão de incidentes se aplica a qualquer escala de incidente (curto/longo prazos) e convém que seja aplicado conforme apropriado a todos os níveis de responsabilidade.

A figura abaixo fornece um exemplo simples do processo de gestão de incidentes. Convém que a organização estabeleça um processo de gestão de incidentes que seja contínuo e inclua as seguintes atividades: observação; coleta, processamento e compartilhamento de informações; avaliação da situação, incluindo previsão; planejamento; tomada de decisão e comunicação das decisões tomadas; implementação de decisões; coleta de feedback e medidas de controle. Não convém que o processo de gestão de incidentes se limite às ações do comandante do incidente, mas que também seja aplicável a todas as pessoas envolvidas na equipe de comando do incidente, em todos os níveis de responsabilidade.

Convém que a organização se esforce para entender outras perspectivas, como dentro e fora da organização, vários cenários de resposta, necessidades diferentes, várias ações necessárias, e diferentes culturas e objetivos organizacionais. Convém que a organização antecipe efeitos em cascata, tome a iniciativa de fazer algo mais cedo, em vez de tardiamente, considere os cronogramas de outras organizações, determine o impacto de diferentes cronogramas, e modifique o seu cronograma adequadamente.

Convém que a organização considere as necessidades e os efeitos a curto e longo prazos. Isto inclui antecipar como o incidente se desenvolverá, quando surgirão necessidades diferentes, e quanto tempo levará para atender a estas necessidades. Convém que a organização tome a iniciativa de avaliar riscos e alinhar a resposta para aumentar a sua eficácia, antecipar como os incidentes podem mudar e usar os recursos de maneira eficaz, tomar decisões sobre várias medidas com antecedência suficiente para que as decisões sejam eficazes quando forem realmente necessárias, gerenciar o incidente depressa, iniciar uma resposta conjunta em vez de esperar que alguém o faça, descobrir quais informações compartilhadas são necessárias e informar e instruir as partes envolvidas, por exemplo, para criar novos recursos.

Convém que a organização implemente uma estrutura de gestão de incidentes para executar as tarefas pertinentes aos objetivos do incidente. Convém que uma estrutura de gestão de incidentes inclua as seguintes funções básicas. Comando: autoridade e controle do incidente; estrutura e responsabilidades dos objetivos da gestão de incidentes; ordenação e liberação de recursos. Planejamento: coleta, avaliação e compartilhamento oportuno de informações de inteligência e sobre incidentes; relatórios de status, incluindo recursos atribuídos e equipe; desenvolvimento e documentação do plano de ação para incidentes; coleta, compartilhamento e documentação de informações.

Operações: objetivos táticos; redução de perigos; proteção de pessoas, propriedades e meio ambiente; controle de incidentes e transição para a fase de recuperação. Logística: suporte e recursos a incidentes; instalações, transporte, suprimentos, manutenção de equipamentos, combustível, serviço de alimentação e serviços médicos para o pessoal do incidente; suporte de comunicações e tecnologia da informação. Finanças e administração: indenizações e reclamações; compras; custos e tempo. (Dependendo da escala de um incidente, uma função financeira e administrativa separada pode não ser necessária.)

Os ensaios em solos

Há vários ensaios em solos e um deles é a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas.

A NBR 16843 de 05/2020 – Solo — Determinação do índice de vazios mínimo de solos não coesivos especifica o método de determinação do índice de vazios mínimo (mín.) de solos granulares, não coesivos, contendo no máximo 12 % (em massa) de material que passa na peneira de 0,075 mm. Esta norma também especifica o método para o cálculo de compacidade relativa correspondente a um determinado índice de vazio mínimo do material ensaiado.

A NBR 16853 de 05/2020 – Solo — Ensaio de adensamento unidimensional especifica o método de ensaio para determinação das propriedades de adensamento do solo, caracterizadas pela velocidade e magnitude das deformações, quando o solo é lateralmente confinado e axialmente carregado e drenado. A NBR 16867 de 05/2020 – Solo – Determinação da massa específica aparente de amostras indeformadas — Método da balança hidrostática especifica um método para determinação da massa específica aparente de amostras indeformadas de solo, com emprego da balança hidrostática. Esta norma é aplicável somente a materiais que possam ser adequadamente talhados.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o método do enchimento com água para a determinação do índice de vazios?

Como deve ser a mesa vibratória para realizar peneiramento para a determinação do índice de vazios?

Como deve ser os corpos de prova para determinação das propriedades de adensamento do solo?

Como deve ser feito a montagem do corpo de prova na célula de adensamento?

Como fazer a determinação da massa específica aparente da parafina?

Para a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas. Nesta norma, o índice de vazios mínimo absoluto não é necessariamente obtido.

Para os solos não coesivos, os índices de vazios máximo e mínimo constituem-se nos parâmetros básicos para avaliação do estado de compacidade. Para tanto, a compacidade relativa, como especificada em 7.4, fornece uma indicação do estado de compacidade de uma determinada massa de solo, seja uma ocorrência natural, seja construída pelo homem. No entanto, as propriedades de engenharia, como a resistência ao cisalhamento, compressibilidade e permeabilidade de um dado material, compactado por métodos distintos, para um mesmo estado de compacidade, podem variar consideravelmente.

Por outro lado, solos distintos, no mesmo estado de compacidade, podem apresentar diferenças ainda mais acentuadas dessas propriedades, dependendo da granulometria, formato dos grãos, etc. Por esse motivo, discernimento considerável deve ser usado ao se relacionarem as propriedades de engenharia dos solos com o estado de compacidade. A amplitude dupla de vibração vertical tem efeito significativo no índice de vazios obtido. Para uma mesa vibratória e molde específicos, o menor índice de vazios de um dado material pode ser obtido para uma amplitude dupla diferente das especificadas nesta norma, ou seja, o índice de vazios pode inicialmente diminuir com o aumento da amplitude dupla de vibração, atingir um mínimo e então aumentar com o incremento da amplitude dupla.

Portanto, a relação entre o menor índice de vazios e a amplitude dupla de vibração ótima pode variar com o tipo de solo. A aparelhagem necessária para a execução do ensaio é a seguinte: estufa capaz de manter a temperatura entre 105 °C e 110 °C; peneiras de 75 mm, 38 mm, 19 mm, 9,5 mm, 4,8 mm e 0,075 mm, de acordo com as NBR NM ISO 2395 e NBR NM ISO 3310-1; balanças que permitam pesar nominalmente 40 kg, 10 kg e 1,5 kg, com precisões de 5 g, 1g e 0,1 g, respectivamente; outros equipamentos, como bandeja metálica, conchas metálicas, pá, escova de cerdas macias, cronômetro com indicação de minutos e segundos, e paquímetro que possibilite leituras de no mínimo 30 mm, com precisão de 0,2 mm.

O conjunto para a realização do ensaio pelo método A deve conter o seguinte: moldes cilíndricos metálicos padrões, com volumes nominais de 2.830 cm³ e 14.200 cm³; tubo-guia com dispositivo de fixação ao molde, para cada tamanho de molde. Para facilitar a centralização do tubo-guia acima do molde, ele deve ser dotado de três dispositivos de fixação. Incluir um disco-base da sobrecarga, para cada tamanho de molde, perfurado e dotado de três pinos para centralização da sobrecarga; sobrecarga de seção circular dotada de alça para cada tamanho de molde.

A massa total do disco-base e sobrecarga deve ser suficiente para a aplicação de uma pressão de (13,8 ± 0,1) kPa. Incorporar uma alça dotada de rosca para colocação e retirada do disco-base; suporte encaixável no guia do molde, ao qual fica acoplado um deflectômetro, para medir a diferença de elevação entre o topo do molde e o disco-base da sobrecarga, após a densificação. O deflectômetro deve possibilitar medições de no mínimo 50 mm, com resoluções de 0,02 mm, devendo ser instalado de modo que a sua haste fique paralela ao eixo barra de calibração metálica (opcional), com largura de aproximadamente 7 cm, altura de 0,5 cm e comprimento adequado.

Incluir uma mesa vibratória eletromagnética de aço, com vibração vertical acionada por um vibrador eletromagnético do tipo impacto sólido, com massa maior que 45 kg. A mesa deve ser instalada em ambiente acusticamente isolado do restante do laboratório, sobre um piso ou laje de concreto, com massa de 500 kg, de modo que vibrações excessivas não sejam transmitidas a outras áreas onde estejam sendo realizados outros ensaios. O tampo da mesa deve ter dimensões adequadas, que confiram rigidez suficiente, de forma que o conjunto molde + tubo-guia + sobrecarga fique firmemente fixado e rigidamente apoiado durante o ensaio, devendo por este motivo ser dotado de dispositivo de fixação ao conjunto mencionado.

O conjunto para a realização do ensaio pelo método B deve conter o seguinte: cilindro de Proctor, com volume nominal de 1.000 cm³, de acordo com a NBR 7182, soldado à base, de modo que o conjunto resulte estanque. A base do molde deve ser mais espessa que a normalmente utilizada no ensaio de compactação, além de ser dotada de dispositivo de fixação à mesa vibratória. Deve-se dispor de um tubo-guia, constituído por outro cilindro de Proctor solidário ao colarinho; disco-base da sobrecarga, perfurado e dotado de dispositivo para centralização da sobrecarga; sobrecarga de seção circular dotada de alça. A massa total do disco-base e da sobrecarga deve ser suficiente para aplicação de uma pressão de (13,8 ± 0,1) kPa.

Deve-se incluir uma mesa vibratória, do tipo utilizado para realizar o peneiramento de amostras na análise granulométrica. Este método de ensaio para determinação das propriedades de adensamento do solo requer que um elemento de solo, mantido lateralmente confinado, seja axialmente carregado em incrementos, com pressão mantida constante em cada incremento, até que todo o excesso de pressão na água dos poros tenha sido dissipado. Durante o processo de compressão, medidas de variação de altura da amostra são feitas, e estes dados são usados no cálculo do parâmetro que descreve a relação entre a pressão efetiva e o índice de vazios, bem como a evolução das deformações em função do tempo.

Os dados de ensaio de adensamento podem ser utilizados na estimativa, tanto da magnitude dos recalques totais e diferenciais de uma estrutura ou de um aterro, como da velocidade desses recalques. Como aparelhagem, usar um sistema de aplicação de carga (prensa de adensamento), que permite a aplicação e manutenção das cargas verticais especificadas, ao longo do período necessário de tempo, e com uma precisão de 0,5% da carga aplicada. Quando da aplicação de um incremento de carga, a transferência para o corpo de prova deve ocorrer em um intervalo de tempo não superior a 2 s e sem impacto significativo.

Usar uma célula de adensamento apropriada para conter o corpo de prova e que proporcione meios para aplicação de cargas verticais, medida da variação da altura do corpo de prova e sua eventual submersão. Esta célula consiste em uma base rígida, um anel para manter o corpo de prova, pedras porosas e um cabeçote rígido de carregamento. O anel pode ser do tipo fixo (indeslocável em relação à base rígida) ou flutuante (deslocável em relação à base, sendo suportado pelo atrito lateral desenvolvido entre o corpo de prova e o anel), conforme os esquemas indicados na figura abaixo.

Incluir um anel de adensamento, conforme a seguir: o diâmetro interno do anel deve ser no mínimo de 50 mm (preferencialmente 100 mm) e, no caso de amostras extrudadas e talhadas, no mínimo 5 mm (preferencialmente 10 mm) menor do que o diâmetro interno do tubo de amostragem; a altura do anel deve ser no mínimo de 13 mm e não inferior a dez vezes o máximo diâmetro de partícula do corpo de prova; a relação entre o diâmetro interno e a altura do anel deve ser no mínimo de 2,5 (preferencialmente 3,0); a rigidez do anel deve ser tal que, sob a condição de pressão hidrostática igual à máxima pressão axial a ser aplicada ao corpo de prova, a variação do diâmetro do anel não exceda 0,03%; o anel de adensamento deve ser feito de material não corrosível (preferencialmente aço inoxidável), e sua superfície interna deve ser altamente polida ou recoberta com material de baixo atrito, por exemplo, politetrafluoroetileno (PTFE).

Recomenda-se, antes do ensaio, untar a superfície interna do anel com graxa de silicone. O anel fixo permite a execução de ensaios de permeabilidade, junto com o ensaio de adensamento. Quando o solo a ser ensaiado se constituir de material muito mole, não se utiliza anel flutuante. Usar pedras porosas, conforme a seguir. As pedras porosas devem ser confeccionadas com material quimicamente inerte em relação ao solo e à água dos poros. Devem ser constituídas de poros com dimensões suficientemente pequenas, de forma a se evitar a intrusão de partículas de solo.

Se necessário, papel-filtro resistente pode ser utilizado entre o corpo de prova e a pedra porosa para impedir a infiltração de solo e facilitar a limpeza posterior da pedra. O conjunto pedra porosa e papel-filtro deve apresentar permeabilidade suficientemente alta, de modo a não retardar a drenagem do corpo de prova. As pedras porosas devem ser uniformes e estar sempre limpas e livres de trincas.

A adequabilidade de pedra porosa sob o ponto de vista de permeabilidade e limpeza pode ser comprovada por meio de ensaios expeditos, submetendo-a a uma carga hidráulica da ordem de 10 cm e observando-se o gotejamento em sua face inferior. o diâmetro da pedra porosa do topo deve ser 0,2 mm a 0,5 mm menor que o diâmetro interno do anel. Se for utilizado anel flutuante, a pedra de base deve apresentar o mesmo diâmetro da pedra do topo. Recomenda-se a utilização de pedras biseladas, com a face de maior diâmetro em contato com o solo. As pedras porosas devem ser espessas o suficiente para se evitar a sua quebra, sendo de topo, na sua face superior, protegida por um disco metálico (cabeçote) rígido, resistente à corrosão e com diâmetro igual ao da pedra.

Já a aparelhagem necessária para o ensaio para determinação da massa específica aparente de amostras indeformadas de solo é a seguinte: estufa capaz de manter a temperatura de 60 °C a 65 °C e de 105 °C a 110 °C; balança que permita pesar nominalmente 1,5 kg, com precisão de 0,1 g e sensibilidade compatível; moldura que possa ser acoplada ao prato da balança, sendo que balanças que disponham de dispositivo adequado para realização deste ensaio prescindem de tal moldura. Incluir um recipiente contendo água, de dimensões adequadas, para imersão do corpo de prova; fogareiro ou aquecedor para derreter a parafina; linha comum, ou preferencialmente de náilon, e utensílios como panela, faca, espátula, pincel, etc.; parafina isenta de impurezas e com massa específica aparente, no estado sólido, conhecida e verificada a cada mudança de lote.

IEEE 1248: o comissionamento de sistemas elétricos em usinas hidrelétricas

Essa norma é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

A IEEE 1248:2020 – Guide for the Commissioning of Electrical Systems in Hydroelectric Power Plants é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

Em resumo, o guia descreve os ensaios realizados e fornece os processos a serem seguidos durante o comissionamento de sistemas elétricos e de controle em usinas hidrelétricas. São fornecidas orientações sobre métodos a serem utilizados, organização e execução dos ensaios.

Embora o guia não forneça os procedimentos prescritivos específicos para instalações e equipamentos, os ensaios são descritos juntamente com os padrões de referência para obter mais informações. O comissionamento de equipamentos elétricos pode ser para uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização de equipamentos elétricos existentes.

Conteúdo da norma

1. Visão geral………………………. 10

1.1 Escopo………………………….. 10

1.2 Objetivo………………………. 10

1.3 Organização…………………… 10

2 Referências normativas………. 11

3 Definições, acrônimos e abreviações……………… …. 11

3.1 Definições………………………………………… 11

3.2 Acrônimos e abreviações……….. …………. 12

4. Planejamento, funções e responsabilidades do comissionamento…………………… 13

4.1 Planejamento…………………… 13

4.2 Proprietário……………………. 14

4.3 Empreiteiro……………………… 14

4.4 Engenheiro………………………. 15

4.5 Fabricante/fornecedor……………. 16

5. Fases do programa de comissionamento ……………. 16

5.1 Fase de ensaio de construção… …………………. 17

5.2 Fase de ensaio pré-operacional ………………. 18

5.3 Fase de ensaio operacional…………………. 18

5.4 Ensaio de desempenho.. …………………….. 19

6. Implementação do comissionamento….. …………… 19

6.1 Geral…………. ……………………………………. 19

6.2 Fase de conclusão da construção………. ………. 19

6.3 Fase de ensaio pré-operacional……….. ………….. 20

6.4 Fase de ensaio operacional e inicialização da unidade……………………. 21

6.5 Ensaio de desempenho……………………. 21

7. Aplicação deste guia……………………… 21

7.1 Geral…………………………………. 21

7.2 Usando este guia para desenvolver um programa de ensaio…………………….. 22

7.3 Coordenar ensaios de comissionamento de sistemas e unidades………………… 26

8. Equipamentos na planta……………………… 27

8.1 Lista de equipamentos e matrizes de ensaio….. …… 27

9. Descrições dos ensaios……………………… 64

9.1 Geral …………………………………….. 64

9.2 Ensaios de construção…………………….. 66

9.3 Ensaios pré-operacionais……………….. 101

9.4 Ensaios operacionais…………………….. 123

9.5 Ensaios de desempenho……………….. 137

10. Documentação………………………… 143

10.1 Manutenção de registros……………… 143

10.2 Documentação de engenharia ……….. 143

10.3 Documentação de fábrica… ……………… 143

10.4 Documentação no local…. ………………… 144

Anexo A (informativo) Bibliografia……… ……….. 145

A.1 Turbinas, geradores e motores……. ………. 145

A.2 Transformadores……………………………. 146

A.3 Reguladores………………………………. 147

A.4 Cabos e pista…… ……………………….. 147

A.5 Proteção e retransmissão……………….. 148

A.6 Excitação……………………………. 148

A.7 Isolamento…………………………… 148

A.8 Baterias, UPS e sistemas de energia em espera……… 149

A.9 Disjuntores, painéis, painéis e centros de controle de motores……………… 149

A.10 Controle e SCADA………………….. 150

A.11 Aterramento…………………………. 150

A.12 Definições, códigos, referências e tabelas………………. 151

A.13 Manutenção……….. …………………………….. 151

A.14 Proteção contra incêndio…………………… 151

A.15 Diversos………………………….. 152

Este guia foi desenvolvido para auxiliar os engenheiros envolvidos no comissionamento de equipamentos elétricos em relação ao seguinte: ensaios específicos de equipamentos elétricos; programa de ensaio para colocar o equipamento em operação; o comissionamento de equipamentos elétricos pode ser para o seguinte: uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização do equipamento existente.

O guia descreve o desenvolvimento de uma organização de inicialização, seguida de uma descrição do fases de comissionamento de uma usina hidrelétrica. As informações principais estão contidas no formato de matriz para cada tipo principal de equipamento elétrico, que identifica os vários ensaios associados ao equipamento. As informações são fornecidas para cada ensaio específico, incluindo o seguinte: uma breve descrição; documentos comprovativos; equipamento necessário; duração ou tempo necessário.

Com base nas informações acima, são fornecidas orientações para o planejamento, desenvolvimento e documentação de um programa de comissionamento. Este guia aborda a energia hidrelétrica convencional. Partes do guia são relevantes para instalações de armazenamento bombeado, mas os recursos exclusivos das instalações de armazenamento bombeado não são abordados especificamente.

O guia também contém uma bibliografia de normas do setor, práticas recomendadas e guias que podem ser usado como recursos pelo engenheiro envolvido no comissionamento de equipamentos elétricos. A listagem destina-se a auxiliar na preparação para o início de uma usina hidrelétrica ou para um ensaio específico. Uma revisão de documentos é incentivada.

Todos os ensaios devem ser feitos de acordo com as especificações do equipamento e contratos com referência e em conjunto com as normas pertinentes da indústria. A revisão mais recente das normas e os guias listados no Anexo A devem ser usados. Uma lista de documentos comprovativos, que inclui itens bibliográficos e documentos gerais, é fornecido para cada ensaio na Cláusula 9 deste guia.

Como projetar um programa de pré-requisitos na segurança de alimentos

O escopo desta parte inclui os serviços de alimentação, serviços de alimentação aérea e ferroviária, bufês, entre outros, em unidades centrais e satélites, cantinas de escolas e de indústrias, hospitais e outros serviços de assistência à saúde, hotéis, restaurantes, cafeterias, serviços de alimentação e comércio varejista de alimentos.

A ABNT ISO/TS 22002-2 de 05/2020 – Programa de pré-requisitos na segurança de alimentos – Parte 2: Serviço de alimentação especifica os requisitos para projetar, implementar, e manter em dia os programas de pré-requisitos (PPR) para ajudar a controlar os perigos envolvidos na segurança de alimentos em serviços de alimentação. É aplicável a todas as organizações que estão envolvidas no processamento, preparação, distribuição, transporte e no serviço de alimentos e das refeições e que desejam implementar PPR, de acordo com os requisitos especificados na ISO 22000:2005, Seção 7.2. O escopo desta parte inclui os serviços de alimentação, serviços de alimentação aérea e ferroviária, bufês, entre outros, em unidades centrais e satélites, cantinas de escolas e de indústrias, hospitais e outros serviços de assistência à saúde, hotéis, restaurantes, cafeterias, serviços de alimentação e comércio varejista de alimentos.

No Brasil, a palavra catering tem se referido especificamente à alimentação de bordo em aviões. Sendo assim a Comissão de Estudo decidiu pela tradução do termo como serviço de alimentação, assim como a tradução para o termo food services que nesta norma tem o mesmo significado, e apresentado para a mesma destinação. Para as empresas muito pequenas e médias (EMPM), é possível que alguns requisitos não sejam aplicáveis.

Os usuários de serviços de alimentação podem pertencer a grupos vulneráveis, como crianças, pessoas idosas e/ou doentes. Em alguns países, o termo serviços de alimentação pode ser usado como sinônimo de catering. A aplicação desta parte não isenta o usuário ao compliance com a legislação atual e aplicável. Quando os requisitos legais são específicos para parâmetros (temperatura, entre outros) indicados nesta parte, os requisitos locais devem ser utilizados pelas empresas de alimentação. As operações em serviços de alimentação são diversas em natureza e nem todos os requisitos especificados nesta parte são aplicáveis a um estabelecimento ou a um processo individual.

Embora o uso desta parte não seja obrigatória para estar em conformidade com os requisitos da ISO 22000:2005, 7.2, os desvios (as exclusões ou as medidas alternativas implementadas) precisam ser justificados e documentados quando esta parte for usada como referência para a implementação do PPR. Não se destina a que estes desvios afetem a capacidade da organização para cumprir os requisitos da ISO 22000. Esta parte especifica requisitos detalhados a serem considerados em relação à ISO 22000:2005, 7.2.3. Além disso, inclui outros aspectos, como o procedimento de recall de produtos que sejam considerados pertinentes para as operações de serviços de alimentação. Medidas para prevenção da contaminação intencional estão fora do escopo desta parte que tem a intenção de ser usada para estabelecer, implementar e manter os PPR específicos de organizações em conformidade com a ISO 22000.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os cuidados dos funcionários em relação à limpeza pessoal?

Quais são os requisitos de recebimento materiais (matérias-primas, ingredientes e embalagens)?

Como deve ser feita a manipulação de substâncias perigosas?

O que deve ser feito em relação aos efluentes e eliminação de resíduos?

A ISO 22000 estabelece requisitos específicos de segurança de alimentos para organizações da cadeia produtiva de alimentos. Um destes requisitos é que as organizações estabeleçam, implementem e mantenham programas de pré-requisitos (PPR) para ajudar no controle de perigos à segurança de alimentos (ISO 22000:2005, 7.5). Esta parte não duplica os requisitos dados na ISO 22000 e destina-se a ser utilizada ao estabelecer, implementar e manter os PPR específicos para a (s) organização (ões) em conjunto com a ISO 22000, para ajudar no controle das condições higiênicas básicas nas atividades de serviço de alimentação.

A segurança de alimentos tem que ser assegurada em todas as etapas da cadeia produtiva de alimentos. No caso de serviços de alimentação, os programas de pré-requisito têm que ser estabelecidos em organizações que, quando aplicáveis, preparam, processam, cozinham, armazenam, transportam, distribuam e sirvam alimentos para consumo humano no local da preparação ou em uma unidade satélite.

As seguintes aplicações desta parte, de acordo com a ISO 22000, são possíveis. Por exemplo, uma organização pode desenvolver a parte do PRP dos códigos de prática ou checar se um código de prática existente é consistente com esta parte. Um estabelecimento pode implementar um sistema de gestão de segurança dos alimentos com a ISO 22000. O estabelecimento pode utilizar esta Parte da ABNT ISO/TS 22002 como base para estruturar e documentar o PPR. O estabelecimento e suas instalações devem ser de construção sólida e mantidos em boas condições.

Todos os materiais devem ser tais que não transmitam substâncias indesejáveis quaisquer ao alimento. Convém que o estabelecimento e suas instalações estejam localizados afastados de áreas que possam causar contaminação da água subterrânea (por exemplo, aterros sanitários, estações de tratamento de esgoto e fazendas de criação de animais) e áreas suscetíveis a infestações de pragas. As edificações e suas instalações devem ser projetadas e construídas com características funcionais, localização e leiaute adequados às necessidades de cada área de trabalho.

As operações devem ser realizadas sob condições higiênicas apropriadas desde o recebimento de matérias-primas até o consumo do produto. O leiaute da edificação deve ser tal que impeça a contaminação cruzada nas operações por meio de divisórias, localização, etc. As áreas ou instalações incompatíveis com quaisquer operações higiênicas do serviço de alimentação, como áreas residenciais, banheiros, lavanderias, depósito de materiais de limpeza, salas de máquinas e depósito de resíduos, devem ser separadas para evitar o risco de contaminação do alimento e das superfícies que entram em contato com o alimento.

Convém que o leiaute assegure que o produto siga um fluxo unidirecional. Por exemplo, a contaminação com pulverizadores, substâncias potencialmente tóxicas, poeira, sujeira e qualquer outra matéria contaminante. Diferentes áreas devem ser projetadas a fim de permitir a disposição de equipamentos e materiais de forma a evitar a contaminação cruzada. Para este fim, as áreas de trabalho devem ser claramente identificadas e marcadas, física ou funcionalmente.

Todas as áreas devem ser projetadas apropriadamente com o espaço adequado para facilitar as operações dos alimentos, assim como suas atividades de limpeza e manutenção. A recepção de materiais deve ser desempenhada em área protegida e limpa. Convém que o estabelecimento tenha uma área designada para o recebimento de insumos e convém que esta área assegure a gestão higiênica de todos os bens.

Medidas efetivas devem ser tomadas pelo estabelecimento a fim de evitar a contaminação cruzada, por exemplo, alimentos prontos para o consumo devem ser mantidos separados dos alimentos crus ou não tratados. Convém que os alimentos crus potencialmente perigosos sejam processados em ambiente separado, ou em áreas separadas por barreira, de áreas que são utilizadas para preparação de alimentos prontos para o consumo.

Superfícies das paredes, dos pisos e dos tetos devem ser de materiais impermeáveis, não absorventes, laváveis, sem fendas; além disso, os pisos devem ser de material antiderrapante. Juntas entre pisos e paredes devem ser abobadadas ou arredondadas, quando apropriado. Portas devem ser não absorventes, resistentes e ter uma superfície lisa e sem danos.

O uso de materiais que podem não ser limpos e desinfetados adequadamente deve ser evitado. Um sistema de drenagem adequado deve ser provido, especialmente nas áreas onde ocorre um grande número de operações e de trânsito contínuo de pessoas e equipamentos, por exemplo, áreas de lavagem, áreas onde pratos, utensílios e outros equipamentos são lavados. Tetos e equipamentos aéreos devem ser construídos e acabados para minimizar o acúmulo de sujeira e condensação e o derramamento das partículas.

Janelas e outras aberturas devem ser construídas a fim de evitar acúmulo de sujeira e aquelas que abrem devem ser providas de telas que impeçam a entrada de insetos. As telas devem ser facilmente removíveis para limpeza e devem ser mantidas em boas condições. Os peitoris internos das janelas, se presentes, devem ser inclinados para impedir o uso como prateleiras.

As portas devem ter superfícies lisas e não absorventes e ser fechadas automaticamente e bem ajustadas. Todas as áreas devem ser providas com um sistema de iluminação adequado. Os sistemas de iluminação devem ser projetos de modo que não afetem adversamente os alimentos. As luminárias devem ser protegidas para assegurar que materiais, produtos ou equipamentos não sejam contaminados em caso de quebra.

A iluminação provida (natural ou artificial) deve permitir que as pessoas operem de maneira higiênica. Os sistemas de ventilação adequados devem ser projetados para processo ou produto específico e devem ser capazes de manter os requisitos de temperatura e umidade para o processo e produto. A direção do fluxo de ar, seja natural ou artificial, deve passar da zona limpa para a zona suja. Todas as aberturas devem ter dispositivos de proteção e sistemas que previnam contaminações (por exemplo, fluxo de ar laminar, cortinas de ar e portas duplas).

Boa ventilação deve ser provida em áreas de preparação de alimentos, por exemplo, áreas de cozimento, a fim de dissipar altas cargas térmicas e vapor de forma eficaz. Depuradores de ar que sejam fáceis de limpar devem ser providos para remover todo o vapor gerado no processo. Para mais esclarecimentos, ver CAC/RCP 1:1969, 4.4.6 e 4.4.7. As instalações de higiene pessoal devem estar disponíveis para assegurar que o grau de higiene pessoal requerido pelas operações de uma organização possa ser mantido com segurança.

As instalações devem estar localizadas próximas aos pontos onde os requisitos de higiene se aplicam e devem estar claramente designadas. Os estabelecimentos devem prover em números adequados, localização e meios para higiênica lavagem, secagem e, onde requerido, desinfecção das mãos (incluindo lavatórios, suprimento de água em temperatura adequada, e sabão e/ou desinfetante); ter pias destinadas para lavagem de mãos, cujas torneiras convém que sejam preferencialmente ativadas por pé, joelho, cotovelo ou por sensor, e sejam separadas de pias para uso com alimentos e estações de limpeza de equipamentos; ter instalações sanitárias que não tenham acesso direto para a produção, embalagem ou áreas de armazenamento; ter instalações de vestiários adequados para troca de roupa; ter instalações de vestiários situadas que permitam que os manipuladores possam se deslocar para as áreas de produção de modo que o risco à limpeza dos uniformes seja minimizado; cumprir com os critérios microbiológicos da água utilizada para lavagem de mãos de acordo com os padrões de potabilidade; prover instalações de lavagem de mãos tanto dentro quanto fora das áreas de processamento.

A edificação, os equipamentos, os utensílios e as instalações do estabelecimento, incluindo os sistemas de drenagem devem ser mantidos em estado apropriado de manutenção e condições para facilitar os procedimentos de higiene; funcionar como pretendido; e não causar contaminação dos alimentos. O estabelecimento deve assegurar que a segurança dos alimentos não seja afetada durante as atividades de manutenção. O programa de manutenção preventiva deve ser realizado no local e deve incluir todos os dispositivos utilizados para monitorar e/ou controlar os perigos relacionados à segurança de alimentos.

Manutenção corretiva deve ser realizada de modo que a produção em linhas adjacentes ou equipamentos não corra risco de contaminação. Se existir o risco de contaminação em linhas adjacentes ou equipamentos durante a manutenção corretiva, o processamento de alimentos nestes locais deve ser suspenso para prevenir contaminação. As requisições de manutenção que afetam a segurança do produto devem ser priorizadas. Reparos temporários não podem afetar a segurança dos alimentos.

Uma requisição de substituição por um reparo permanente deve ser incluída na programação de manutenção. Lubrificantes e fluidos para troca de calor devem ser de grau alimentício onde existir o risco de contato direto ou indireto com o produto de acordo com a ISO 21469. O procedimento para liberar equipamentos mantidos para retorno à produção deve incluir processo de limpeza e desinfecção e inspeção de pré-uso.

Os requisitos do PPR da área local devem ser aplicados às áreas de manutenção e atividades de manutenção nas áreas de processo. A equipe de manutenção deve ser treinada em segurança de alimentos e perigos associados às suas atividades. Para equipamentos de processamento de alimentos, os requisitos de construção e projeto são especificados na NBR ISO 14159.

O fornecimento de água deve ser provido com pressão e temperatura adequadas, assim como instalações adequadas para armazenamento. As instalações de armazenamento de água devem ser limpas e monitoradas periodicamente. Quando água de poço particular ou água de fonte privada for utilizada para produzir água potável, dispositivos de desinfecção e/ou dispositivos de purificação de água devem ser estabelecidos. Apenas água potável deve ser utilizada.

Os registros de controles devem ser retidos e somente água potável de qualidade deve ser utilizada no empreendimento alimentício. O vapor utilizado em contato direto com alimentos ou superfícies de contato com alimentos deve ser produzido com água potável. O gelo usado em contato direto com alimentos ou superfícies de contato com alimentos deve ser feito de água potável e ser transportado, manuseado e armazenado de maneira que seja protegido de contaminações.

As instalações utilizadas para produzir e armazenar o gelo devem ser capazes de prevenir a contaminação e devem ser limpas, desinfetadas e mantidas de acordo com as instruções do fabricante. Devem ser estabelecidos mecanismos para confirmar a qualidade microbiológica do gelo, seja ele comprado ou feito no local. Toda água não potável utilizada na refrigeração, produção de vapor, controle de incêndio, diluição de derramamento ou outra atividade similar, deve ser conduzida por tubulações adequadas separadamente daquelas que conduzem água potável, sem nenhuma conexão transversal entre elas ou possibilidade de que a água não potável escoe em tubulação de água potável. Estas tubulações devem ser claramente identificadas, preferencialmente com padronização de cores, por exemplo, de acordo com a ISO 14726.

Os equipamentos e utensílios devem ser feitos de materiais impermeáveis e resistentes à corrosão, de modo que não transfiram substâncias tóxicas, odor e sabor aos alimentos. Os equipamentos e utensílios devem ser capazes de suportar operações frequentes de limpeza e desinfecção, devem ser lisos e livres de buracos, fendas ou rachaduras. Convém que equipamentos portáteis, por exemplo, colheres, batedores, tachos e panelas, sejam protegidos de contaminações.

Todos os equipamentos devem ser projetados e construídos a fim de assegurar condições gerais de higiene e suas superfícies devem ser fáceis de limpar e desinfetar. Os equipamentos no serviço de alimentação devem ser submetidos a programas de manutenção incluindo a calibração de instrumentos de medição como termômetros e dispositivos que registram temperatura. Devem ser mantidos registros destes controles e identificação dos equipamentos e utensílios de acordo com as suas especificações.

Convém que a responsabilidade por assegurar o compliance de todas as pessoas com os requisitos de higiene pessoal seja destinada especificamente para a equipe de supervisão. Visitantes, por exemplo, fiscais, clientes e equipes de manutenção, devem ter acesso restrito às áreas de manipulação de alimentos. Estes visitantes devem utilizar roupas de proteção e cumprir os requisitos de segurança de alimentos do serviço de alimentação.

As medições de ruído em edificações

Conheça os métodos simplificados para medir em campo: o isolamento a ruído aéreo entre ambientes; o isolamento a ruído de impacto entre pavimentos; o isolamento a ruído aéreo de fachadas; e os níveis de pressão sonora em ambientes produzidos por equipamentos prediais, além dos métodos para medir o nível de pressão sonora de equipamentos prediais de edificações instalados em estruturas de edifícios.

A NBR ISO 10052 de 04/2020 – Acústica — Medições em campo de isolamento a ruído aéreo e de impacto e de sons de equipamentos prediais – Método simplificado especifica métodos simplificados para medir em campo: o isolamento a ruído aéreo entre ambientes; o isolamento a ruído de impacto entre pavimentos; o isolamento a ruído aéreo de fachadas; e os níveis de pressão sonora em ambientes produzidos por equipamentos prediais. Os métodos descritos neste documento são aplicáveis para medições em ambientes residenciais ou em ambientes de tamanho compatível com dimensões de no máximo 150 m³. Para isolamento a ruído aéreo, isolamento a ruído de impacto e isolamento a ruído de fachadas, os métodos fornecem valores que são dependentes da frequência (banda de oitava). Eles podem ser convertidos em um número único, caracterizando os desempenhos acústicos pela aplicação das EN ISO 717-1 e EN ISO 717-2.

Para o som de equipamentos prediais, os resultados de nível de pressão sonora são fornecidos diretamente com ponderação A ou C. Este documento descreve os métodos simplificados de ensaio que podem ser usados para o levantamento das características acústicas do isolamento a ruído aéreo, do isolamento a ruído de impacto e dos níveis de pressão sonora produzidos por equipamentos prediais. Os métodos podem ser utilizados para ensaios de inspeção das propriedades acústicas das edificações. Os métodos não são destinados a serem aplicados para medir propriedades acústicas de elementos construtivos.

A abordagem deste método é simplificar a medição dos níveis de pressão sonora em ambientes usando um sonômetro portátil para a realização da varredura manual com o microfone no espaço do ambiente. A correção do tempo de reverberação pode ser estimada pelo uso de valores tabelados ou ser baseada em medições. As medições de isolamento a ruído aéreo e de impacto são realizadas em bandas de oitava. Para medir o som dos equipamentos de serviço domésticos, os níveis de pressão sonora são registrados na ponderação A ou C.

As medições são realizadas com as condições e ciclos de operação especificados. As condições e os ciclos de operação indicados no Anexo B são utilizados apenas se não forem contrários aos requisitos e regulamentos nacionais. A incerteza de medição dos resultados obtidos usando o método simplificado é, a priori, maior do que a incerteza de medição inerente aos métodos de ensaio correspondentes no nível de engenharia. Os métodos de engenharia para medições em campo de isolamento a ruído aéreo e de impacto são tratados nas EN ISO 140-4 e EN ISO 140-7. Os métodos de engenharia para medições de campo de isolamento a ruído aéreo de fachadas e de elementos de fachadas são tratados na EN ISO 140-5. Um método de engenharia para medição de sons de equipamentos prediais é descrito na EN ISO 16032.

A NBR ISO 16032 de 04/2020 – Acústica — Medição de nível de pressão sonora de equipamentos prediais de edificações – Método de engenharia especifica métodos para medir o nível de pressão sonora de equipamentos prediais de edificações instalados em estruturas de edifícios. Este documento abrange especificamente medições de instalações hidrossanitárias, ventilação mecânica, equipamentos prediais de aquecimento e resfriamento, elevadores, dutos de lixeira, caldeiras, sopradores, bombas e outros equipamentos prediais auxiliares e portas de estacionamento motorizadas, mas também pode ser aplicado a outros equipamentos conectados ou instalados em edifícios. Os métodos são adequados para ambientes com volumes de aproximadamente 300 m³ ou menores, isto é, em residências, hotéis, escolas, escritórios e hospitais.

A norma não é, em geral, destinada a medições em grandes auditórios e salas de concerto. No entanto, as condições de operação e os ciclos de operação do Anexo B podem ser utilizados nestes casos. O nível de pressão sonora de equipamentos prediais é determinado como o nível máximo de pressão sonora ponderada em A e opcionalmente em C ocorrendo durante um ciclo de operação específico do equipamento predial em ensaio, ou como o nível de pressão sonora contínuo equivalente determinado com um tempo de integração específico.

Os valores ponderados em A e em C são calculados a partir de medições em bandas de oitava. Este documento especifica o método de engenharia para a medição de nível de pressão sonora de equipamentos prediais de edificações. Para uso deste documento, as medições são realizadas sob condições de operação e ciclos de operação especificados. Estas condições são fornecidas no Anexo B. As condições de operação e os ciclos de operação indicados no Anexo B são utilizados apenas se não forem contrários aos requisitos e regulamentos nacionais.

Acesse algumas perguntas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a geometria do método da fonte sonora?

Quais são os dados do índice de reverberação?

Como fazer a seleção da posição do canto para o microfone?

Como realizar a correção para o som residual?

Os descritores de grandezas unitárias para ruídos de equipamentos prediais podem ser determinados de acordo com a tabela abaixo deste documento. Ao relatar os resultados da medição, a notação na tabela abaixo deve ser usada. Os diferentes descritores podem ser combinados de acordo, por exemplo, com os requisitos da regulamentação nacional da construção civil. Descritores de grandezas unitárias de isolamento a ruído aéreo e de impacto podem ser obtidos de acordo com a EN ISO 717-1.

A medição de equipamentos prediais deve atender aos requisitos da Seção 6. A fonte sonora para medir o isolamento sonoro entre ambientes deve ser tão omnidirecional quanto possível. Na medição da fachada, o ângulo de abertura da fonte sonora deve cobrir toda a fachada. A direcionalidade da fonte sonora e a distância até à fachada devem ser tais que as variações entre os níveis de pressão sonoros medidos em frente da fachada, para cada banda de frequência de interesse, sejam inferiores a 5 dB. A máquina de impacto deve cumprir os requisitos indicados no Anexo A da EN ISO 140-7:1998.

A exatidão do equipamento de medição do nível de pressão sonora deve cumprir os requisitos das classes de exatidão 0 ou 1 definidas na EN 60651 e EN 60804. O sistema de medição completo, incluindo o microfone, deve ser ajustado antes de cada medição para permitir valores absolutos dos níveis de pressão sonora a serem obtidos.

Para todas as medições, microfones de campo difuso são requeridos. Para sonômetros com microfones de campo livre, devem ser aplicadas correções para campo sonoro difuso.

Os filtros devem cumprir os requisitos definidos na EN 61260. Para os ensaios de avaliação padrão (ensaio de tipo) e de verificação regular, os procedimentos recomendados para sonômetros são fornecidos em OIML R58 e R88, e para os requisitos da máquina de impacto são fornecidos no Anexo A da EN ISO 140-7:1998.

As medições do isolamento a ruído aéreo e do isolamento a ruído de impacto são feitas em bandas de oitava. As medições dos níveis de pressão sonora do equipamento predial são feitas em níveis de pressão sonora ponderada em A ou C. As medições devem ser realizadas com portas e janelas fechadas e persianas normalmente abertas. Os ciclos e as condições de operação para medição do ruído dos equipamentos prediais são fornecidos no Anexo B. Eles devem ser usados somente se não forem contrários aos requisitos e regulamentos nacionais.

Se a diferença entre o nível do sinal e o nível de som residual for inferior a 6 dB, o nível do sinal medido deve ser registrado no relatório. Uma nota deve ser adicionada para dizer que o nível da sala de recepção medido foi afetado pelo som residual e a diferença de nível correspondente foi subestimada ou que o nível de medição (equipamento predial) foi superestimado por uma quantidade desconhecida. Nenhuma correção para som residual deve ser aplicada.

Para medições do isolamento a ruído aéreo entre ambientes e isolamento a ruído aéreo de fachadas utilizando o método da fonte sonora, convém que a potência sonora da fonte seja ajustada de modo a que o nível de pressão sonora na sala de recepção (em cada banda de frequência) seja de pelo menos 6 dB maior que o nível de pressão sonora residual. Isto deve ser verificado ligando e desligando a fonte antes de iniciar a medição.

Ao medir o isolamento a ruído aéreo de fachadas pelo método de ruído de tráfego, o nível de pressão sonora residual na sala de recepção pode não ser facilmente avaliado. Por isto, convém que sejam tomadas medidas para garantir que o nível de pressão sonora na sala de recepção, devido às fontes dentro da edificação, seja o mais baixo possível. Sons residuais excessivos de fontes internas levarão a um valor subestimado de isolamento da fachada. Um comentário deve ser feito no relatório, caso se perceba que isso ocorreu.

O som gerado na sala de emissão deve ser estável e ter um espectro contínuo sobre a faixa de frequências que é medido. Filtros com largura de banda de uma oitava podem ser usados. Ao utilizar ruído de banda larga, o espectro da fonte sonora pode ser configurado para garantir uma relação sinal-ruído adequada em altas frequências na sala de recepção.

Se o invólucro da caixa de som contiver mais do que um alto-falante funcionando simultaneamente, os alto-falantes devem ser acionados em fase. Múltiplas caixas de som podem ser usadas simultaneamente, desde que sejam do mesmo tipo e sejam acionadas no mesmo nível por sinais similares, mas não correlacionados. Colocar a fonte sonora em um canto do ambiente oposto ao elemento de separação.

A distância das paredes deve ser de pelo menos 0,5 m. Se a fonte sonora for um sistema de alto-falante único, convém que ela seja colocada de frente para o canto. Ao ensaiar ambientes na direção vertical, usar o ambiente inferior como sala de emissão. Ao ensaiar ambientes de tamanhos desiguais na direção horizontal, usar o ambiente maior como sala de emissão, a menos que previamente acordado, convém que o ensaio seja na outra direção.

O ruído de impacto deve ser gerado pela máquina de impacto padrão (ver EN ISO 140-7). A máquina de impacto deve ser colocada, no ambiente de fonte, na diagonal, perto do centro do piso. Esta posição única é suficiente, se o piso for isotrópico. No caso de construções de piso anisotrópico (com nervuras, vigas, etc.), adicionar duas posições para que as três posições sejam distribuídas aleatoriamente sobre a área do piso. A linha de conexão dos martelos deve ser orientada a 45° na direção das vigas ou nervuras. Nestes casos, a distância entre a máquina de impacto e a borda do pavimento deve ser de pelo menos 0,5 m.

A medição do nível máximo de pressão sonora de acordo com este documento requer o uso de um analisador de frequência de bandas de oitava em tempo real. O analisador deve estar apto a ler os valores de todos os níveis de pressão sonora de bandas de oitava no momento em que ocorrer o nível máximo de pressão sonora ponderada em A ou em C (durante um ciclo de operação especificado do equipamento predial em ensaio). É importante garantir que o equipamento usado de acordo com este documento atenda ao requisito indicado anteriormente.

Os analisadores usualmente utilizados para medições em acústica de edificações incluem esse recurso. O sistema de medição, incluindo o microfone e o cabo, deve atender aos requisitos de um instrumento de classe 1 especificado na EN 61672-1. Para medições em bandas de oitava, os filtros devem atender aos requisitos dos filtros de classe 1 especificados na EN 61260. No início e no final das medições, verificar a sensibilidade da instrumentação com calibradores sonoros de classe 1, de acordo com a EN 60942.

O nível de pressão sonora do equipamento predial é medido em bandas de oitava no intervalo de frequências de 31,5 Hz/63 Hz a 8.000 Hz, no espectro linear (não ponderado), correspondente ao nível máximo de pressão sonora ponderada em A ou em C, em um ciclo operacional especificado do equipamento predial em ensaio. Para medir o nível de pressão sonora do equipamento predial, deve ser feita uma gravação paralela, dependente do tempo, do nível de pressão sonora ponderada em A ou em C e dos níveis de pressão sonora em bandas de oitava (gravação multiespectral).

Para a avaliação do nível de pressão sonora do equipamento, utilizar o espectro em banda de oitava no momento em que ocorrer o nível máximo de pressão sonora ponderada em A ou em C. A ponderação temporal “S” ou “F” deve ser utilizada. Alternativamente ou adicionalmente, o nível de pressão sonora contínuo equivalente pode ser determinado com um tempo de integração especificado.

Os resultados das bandas de oitava são corrigidos pelo som residual e – se necessário – padronizados para um tempo de reverberação de 0,5 s ou normalizados para uma área de absorção sonora equivalente a 10 m². Finalmente, os níveis de pressão sonora ponderada em A e em C são calculados a partir dos resultados das bandas de oitava corrigidos. Os valores ponderados em A e em C devem ser sempre calculados a partir dos resultados das bandas de oitava, também em situações em que a padronização ou normalização não for realizada.

As grandezas de valor único que podem ser determinadas de acordo com este documento são dadas na tabela abaixo (calculada a partir dos valores de bandas de oitava definidos em 3.6.1 a 3.6.9). A notação na tabela deve ser usada ao relatar os resultados da medição. As diferentes quantidades podem ser combinadas de acordo com os requisitos dos regulamentos nacionais de código de construção.

As diferentes grandezas de valor único indicadas na tabela acima não são comparáveis. Somente os resultados de medição obtidos com o mesmo método devem ser comparados. Quando os resultados das medições forem comparados com os requisitos legais, deve-se assegurar que ambos se referem à mesma quantidade. Se o som contiver componentes tonais claramente audíveis, isto deve ser indicado no relatório. Janelas e portas devem ser fechadas durante as medições. Convém que a pessoa que realiza o ensaio fique fora do ambiente.

Os tubos de PVC para o transporte de água ou de esgoto sob pressão

A NBR 7665 de 03/2020 – Sistemas de transporte de água ou de esgoto sob pressão — Tubos de PVC-M DEFOFO com junta elástica — Requisitos especifica os requisitos para tubos de poli (cloreto de vinila) (PVC), com tensão circunferencial admissível de 12 MPa, com diâmetros externos equivalentes aos dos tubos de ferro fundido, DEFOFO, com junta elástica, para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água e sistemas pressurizados de esgoto, com pressões máximas de serviço (incluindo sobrepressões provenientes de variações dinâmicas, inclusive transitórios hidráulicos) de 1,0 MPa, 1,25 MPa ou 1,60 MPa, à temperatura de 25 °C. Nas aplicações específicas em sistemas enterrados de esgotamento pressurizado, recomenda-se a utilização de um dispositivo que minimize a ocorrência de oscilações da pressurização, o que não elimina a ocorrência de transientes hidráulicos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a resistência à pressão hidrostática interna de longa duração?

Quais são as dimensões dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa de tubos de junta elástica com anel removível alojado na bolsa?

Para temperaturas de fluidos até 25 °C, a pressão de serviço permissível (PFA) equivale à pressão nominal (PN). Para temperaturas de fluidos acima de 25 °C e até 45 °C, deve ser aplicado à pressão nominal um fator de correção, fT, como indicado a seguir: PFA = fT × PN. Este fator é apresentado no gráfico da figura abaixo.

É responsabilidade do usuário aplicar os produtos conforme os requisitos desta norma e recomendações dos fabricantes. Os tubos objetos desta norma devem ser armazenados e instalados conforme os procedimentos especificados na NBR 9822. A resina de PVC utilizada na produção do composto de PVC-M deve ser do tipo suspensão e apresentar valor K maior ou igual a 65, quando determinado de acordo com a NBR 13610.

O composto de PVC-M deve estar aditivado somente com produtos necessários à sua transformação e à utilização dos tubos de acordo com esta norma. Os pigmentos devem estar total e adequadamente dispersos no composto a ser empregado na fabricação dos tubos. Os pigmentos e o sistema de aditivação devem minimizar as alterações de cor e das propriedades dos tubos durante a sua exposição às intempéries, no manuseio e na estocagem em obra.

Não é permitido o uso de material reprocessado e/ou reciclado. Não é permitida a utilização de compostos de chumbo como estabilizantes térmicos na fabricação de tubos de PVC. O composto de PVC-M empregado na fabricação dos tubos deve ser de cor azul para transporte de água, e de cor ocre para transporte de esgoto pressurizado, permitindo-se nuances devido às diferenças naturais de cor das matérias primas.

O composto utilizado na fabricação dos tubos deve estar de acordo com os requisitos especificados na norma. Estes requisitos devem ser reavaliados sempre que houver uma alteração do produto (projeto, matérias-primas e/ou escopo de aplicação). A substituição de um fornecedor de matéria prima ou do tipo de estabilizante não constitui uma alteração do produto.

Uma alteração na natureza química do estabilizante constitui uma alteração do produto. As seguintes características são relevantes na alteração do projeto do produto: dimensões, geometria e sistema de junta. Para definir a condição de reavaliação destes requisitos, é especificada na tabela abaixo uma tolerância quanto ao valor K da resina e em relação ao teor de estabilizante térmico e de cinzas do composto. Os valores “X” devem ser definidos pelo fabricante em seu controle de qualidade. Se qualquer um destes níveis exceder a tolerância, os requisitos especificados na norma devem ser reavaliados.

O composto de PVC-M empregado na fabricação dos tubos deve preservar o padrão de potabilidade da água no interior da tubulação, sem transmitir sabor, odor e não provocar turvamento ou coloração à água. O composto, bem como as concentrações máximas dos seus aditivos, devem estar em conformidade com a legislação em vigor, de maneira a não transmitir para a água potável qualquer elemento que possa alterar suas características, tornando-a imprópria para consumo humano.

Os tubos e conexões de PVC-M, para adução e distribuição de água, devem ter sua inocuidade avaliada conforme a NBR 8219 e os limites aplicados a todas as extrações devem estar em conformidade com a legislação vigente. Caso ocorra uma alteração de natureza química de um dos componentes do composto, deve ser realizado um novo ensaio de efeito sobre a água. Este ensaio não tem como objetivo avaliar a potabilidade da água para consumo humano, sendo utilizado para atender a regulamentações específicas.

Eventual teor de chumbo encontrado nos tubos de PVC-M não pode ser superior a 0,1%. O ensaio deve ser realizado por espectrometria de fluorescência de raios X, conforme EN 62321, ou por outra metodologia validada. O composto empregado na fabricação dos tubos de PVC-M deve ter ponto de amolecimento Vicat maior ou igual a 80 °C. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 82.

O composto empregado na fabricação dos tubos de PVC-M deve ter densidade na faixa de 1,35 g/cm³ a 1,50 g/cm³, medida à temperatura de 20 -2+3 °C. O valor especificado pelo fabricante do composto, em relação ao resultado do ensaio, pode ter variação máxima de 0,05 g/cm³. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 83.

O teor de cinzas dos tubos de PVC-M não pode ser superior a 5%. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 84, Método A, à temperatura de (1 050 ± 50) °C. O composto do tubo deve ter σLPL (lower prediction limit of the predicted hydrostatic strenght) de no mínimo 24 MPa. O composto do tubo deve ser analisado conforme o método II da ISO 9080, com o LPL (lower prediction limit) obtido no ensaio de pressão hidrostática interna conforme as ISO 1167-1 e ISO 1167-2, utilizando caps do tipo B. O valor de σLPL deve ser obtido a partir do LPL de 97,5% e o composto deve ser classificado conforme a ISO 12162.

No caso de alterações de uma determinada formulação já classificada para além dos limites especificados na tabela acima, o fabricante deve apresentar comprovação da realização do ensaio de pressão hidrostática interna de cinco corpos de prova a 20 °C durante 1.000 h a 5.000 h e cinco corpos de prova a 60 °C durante 1.000 h a 5.000 h. Os tubos devem ser fabricados com composto de poli (cloreto de vinila) PVC-M, que assegure a obtenção de um produto que satisfaça os requisitos desta norma, avaliado por meio de ensaios permanentes durante a fabricação e ensaios de desempenho.

Cada tubo deve ter cor uniforme e ser livre de corpos estranhos, bolhas, rachaduras ou outros defeitos visuais que indiquem descontinuidade do material e/ou do processo de extrusão. As conexões para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água ou esgotamento pressurizado de esgoto devem ser de ferro fundido dúctil, do tipo “bolsa – bolsa”, fabricadas de acordo com as NBR 7675 e NBR 15420.

Para avaliação de lotes de tubos coletados fora das dependências dos fabricantes, desde que as condições de estocagem estejam de acordo com a NBR 9822, devem ser realizados todos os ensaios de desempenho e de fabricação prescritos nesta norma, com exceção do ensaio de verificação da resistência ao impacto, que deve ser realizado obrigatoriamente no controle do processo de fabricação e na inspeção de recebimento em fábrica. Se não for comprovada a realização do ensaio de verificação da resistência ao impacto no controle do processo de fabricação e na inspeção de recebimento em fábrica, o lote deve ser rejeitado.

A inspeção de recebimento do produto acabado deve ser feita em fábrica ou por acordo prévio entre comprador e fabricante, em laboratórios acreditados. O comprador deve ser avisado com antecedência mínima acordada com o fabricante da data na qual deve ter início a inspeção de recebimento. Caso o comprador não compareça na data estipulada para acompanhar os ensaios de recebimento e não apresente justificativa para este fato, o fabricante deve proceder à realização dos ensaios previstos nesta norma e tomar as providências para a entrega do produto com o correspondente laudo de inspeção emitido pelo controle da qualidade da fábrica.

Nas inspeções realizadas em fábrica, o fabricante deve colocar à disposição do comprador os equipamentos e pessoal especializado para a execução dos ensaios de recebimento. Todo fornecimento deve ser dividido pelo fabricante em lotes de mesmo diâmetro nominal (DN) e cujas quantidades estejam de acordo com as tabelas 14 e 15, disponíveis na norma. De cada lote formado devem ser retiradas as amostras, de forma representativa, sendo a escolha aleatória e não intencional.

A inspeção de recebimento de lotes com tamanho inferior a 16 unidades deve ser objeto de acordo prévio entre fornecedor e comprador. Os ensaios de recebimento devem ser feitos conforme estabelece esta norma e limitam-se aos lotes de produto acabado apresentados pelo fabricante. Os tubos constituintes das amostras devem ser submetidos aos seguintes ensaios não destrutivos: visual (4.3.3.2 e Seção 7) e dimensional (4.4.1.1, 4.4.1.3, 4.4.1.4 e 4.6.1); e aos seguintes ensaios destrutivos: estabilidade dimensional (4.6.2), resistência ao impacto (4.6.3), compressão diametral (4.6.4), resistência à pressão hidrostática interna de curta duração (4.6.5), resistência ao cloreto de metileno (4.6.6), resistência à pressão hidrostática interna de tubo com entalhe longitudinal (4.9.1), estanqueidade da junta elástica (4.7.2) e resistência do anel C (4.8.1).

O comprador ou seu representante pode solicitar ao fabricante a execução do ensaio para verificação do índice de refração do cloreto de metileno em sua presença, antes da realização do ensaio de resistência ao cloreto de metileno. Para cada lote entregue, o relatório de inspeção deve conter no mínimo o seguinte: identificação do produto; código de rastreabilidade do produto; tamanho do lote inspecionado; resultados dos ensaios de recebimento; resultados dos ensaios de caracterização e de desempenho apresentados pelo fabricante; declaração de que o lote atende ou não às especificações desta norma.