A gestão de incidentes

A NBR ISO 22320 de 06/2020 – Segurança e resiliência — Gestão de emergências — Diretrizes para gestão de incidentes fornece as diretrizes para a gestão de incidentes, incluindo os princípios que comuniquem o valor e expliquem a finalidade da gestão de incidentes, os componentes básicos da gestão de incidentes, incluindo processo e estrutura, com foco em papéis e responsabilidades, tarefas e gestão de recursos, e o trabalho conjunto por meio de direção e cooperação conjuntas. Este documento é aplicável a qualquer organização envolvida em responder a incidentes de qualquer tipo e escala. É aplicável a qualquer organização com uma estrutura organizacional, bem como a duas ou mais organizações que optem por trabalhar em conjunto enquanto continuam a usar a sua própria estrutura organizacional ou usam uma estrutura organizacional combinada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Por que definir claramente os papéis e responsabilidades de todo o pessoal?

O que é um quadro operacional comum (common operational picture)?

Por que a organização deve estabelecer acordos de cooperação?

Como fazer o desenvolvimento e a implementação de métodos para trabalhar em conjunto?

Nos últimos anos, houve muitos desastres, tanto naturais quanto provocados pelo homem, e outros grandes incidentes, que mostraram a importância da gestão de incidentes para salvar vidas, reduzir danos e prejuízos, e assegurar um nível adequado de continuidade de funções sociais essenciais. Tais funções incluem saúde, telecomunicações, abastecimento de água e alimentos e acesso à eletricidade e combustível. Embora no passado o foco da gestão de incidentes tenha sido nacional, regional ou dentro de organizações individuais, hoje e no futuro há uma necessidade de uma abordagem multinacional e multiorganizacional.

Esta necessidade é motivada por relacionamentos e interdependências entre governos, organizações não governamentais (ONG), organizações da sociedade civil (OSC) e o setor privado internacionalmente. Fatores como aumento da urbanização, dependências e interdependências de infraestruturas críticas, dinâmica socioeconômica, mudança ambiental, doenças animais e humanas, e aumento do movimento de pessoas e bens em todo o mundo aumentaram o potencial de disrupções e desastres que transcendem as fronteiras geográficas e políticas, impactando na capacidade de gestão de incidentes.

Este documento fornece orientação para as organizações melhorarem o tratamento de todos os tipos de incidentes (por exemplo, emergências, crises, disrupções e desastres). As múltiplas atividades de gestão de incidentes geralmente são compartilhadas entre organizações e agências, com o setor privado, organizações regionais e governos, com diferentes níveis de jurisdição. Portanto, é necessário orientar todas as partes envolvidas em como preparar e implementar a gestão de incidentes.

Espera-se que a assistência entre regiões ou fronteiras entre organizações durante a gestão de incidentes seja apropriada às necessidades da população afetada e que seja culturalmente sensível. Portanto, a participação de múltiplas partes interessadas, que foca no envolvimento da comunidade no desenvolvimento e implementação da gestão de incidentes, é desejável, quando apropriado. As organizações envolvidas requerem a capacidade de compartilhar uma abordagem comum entre fronteiras geográficas, políticas e organizacionais.

Este documento é aplicável a qualquer organização responsável pela preparação ou resposta a incidentes nos níveis local, regional, nacional e, possivelmente, internacional, incluindo aqueles que são responsáveis e participam da preparação para incidentes, oferecem orientação e direção na gestão de incidentes, são responsáveis pela comunicação e interação com o público, e realizam pesquisas no campo da gestão de incidentes. As organizações se beneficiam do uso de uma abordagem comum para a gestão de incidentes, por isto permitem um trabalho colaborativo e garantem ações mais coerentes e complementares entre as organizações.

A maioria dos incidentes é de natureza local e é gerenciada nos níveis local, municipal, regional, estadual ou provincial. A gestão de incidentes respeita a primazia da vida humana e da dignidade humana por meio da neutralidade e imparcialidade. A gestão de incidentes requer que todas as pessoas, a qualquer momento, se reportem a apenas um supervisor. A gestão de incidentes requer que as organizações trabalhem em conjunto. A gestão de incidentes considera incidentes naturais e humanos, incluindo aqueles que a organização ainda não enfrentou.

A gestão de incidentes é baseada na gestão de riscos. A gestão de incidentes requer preparação e requer o compartilhamento de informações e perspectivas. Enfatiza a importância da segurança para os respondedores e para os impactados, é flexível (por exemplo, adaptabilidade, escalabilidade e subsidiariedade) e leva em consideração fatores humanos e culturais. Enfatiza a melhoria contínua para aprimorar o desempenho organizacional.

Convém que a gestão de incidentes considere uma combinação de instalações, equipamentos, pessoal, estrutura organizacional, procedimentos e comunicações. A gestão de incidentes tem base no entendimento de que, em todo e qualquer incidente, existem determinadas funções de gestão que convém que sejam executadas, independentemente do número de pessoas disponíveis ou envolvidas na resposta ao incidente. Convém que a organização implemente a gestão de incidentes, incluindo um processo de gestão de incidentes (5.2), e uma estrutura de gestão de incidentes, que identifique papéis e responsabilidades, tarefas e alocação de recursos da gestão de incidentes (5.3).

Convém que a organização documente o processo e a estrutura de gestão de incidentes. O processo de gestão de incidentes tem base em objetivos que são desenvolvidos por meio da coleta e compartilhamento proativo de informações, a fim de avaliar a situação e identificar as contingências. Convém que a organização se engaje em atividades de planejamento como parte da preparação e resposta, que considerem o seguinte: segurança, objetivos da gestão de incidentes, informações sobre a situação, monitoramento e avaliação da situação, função de planejamento, que determina um plano de ação para incidentes, alocação, rastreabilidade e liberação de recursos, comunicações, relacionamento com outras organizações, quadro operacional comum (common operational picture), desmobilização e rescisão, diretrizes de documentação.

O Anexo D fornece recomendações sobre o planejamento de gestão de incidentes. Um plano de ação para incidentes (verbal ou escrito) inclui metas, objetivos, estratégias, táticas, segurança, comunicações e informações sobre gestão de recursos. Desmobilizar significa devolver recursos ao seu uso e status originais. Rescisão significa uma transferência formal das responsabilidades de gestão de incidentes para outra organização. Convém que as decisões tomadas entre as organizações sejam compartilhadas conforme apropriado. O processo de gestão de incidentes se aplica a qualquer escala de incidente (curto/longo prazos) e convém que seja aplicado conforme apropriado a todos os níveis de responsabilidade.

A figura abaixo fornece um exemplo simples do processo de gestão de incidentes. Convém que a organização estabeleça um processo de gestão de incidentes que seja contínuo e inclua as seguintes atividades: observação; coleta, processamento e compartilhamento de informações; avaliação da situação, incluindo previsão; planejamento; tomada de decisão e comunicação das decisões tomadas; implementação de decisões; coleta de feedback e medidas de controle. Não convém que o processo de gestão de incidentes se limite às ações do comandante do incidente, mas que também seja aplicável a todas as pessoas envolvidas na equipe de comando do incidente, em todos os níveis de responsabilidade.

Convém que a organização se esforce para entender outras perspectivas, como dentro e fora da organização, vários cenários de resposta, necessidades diferentes, várias ações necessárias, e diferentes culturas e objetivos organizacionais. Convém que a organização antecipe efeitos em cascata, tome a iniciativa de fazer algo mais cedo, em vez de tardiamente, considere os cronogramas de outras organizações, determine o impacto de diferentes cronogramas, e modifique o seu cronograma adequadamente.

Convém que a organização considere as necessidades e os efeitos a curto e longo prazos. Isto inclui antecipar como o incidente se desenvolverá, quando surgirão necessidades diferentes, e quanto tempo levará para atender a estas necessidades. Convém que a organização tome a iniciativa de avaliar riscos e alinhar a resposta para aumentar a sua eficácia, antecipar como os incidentes podem mudar e usar os recursos de maneira eficaz, tomar decisões sobre várias medidas com antecedência suficiente para que as decisões sejam eficazes quando forem realmente necessárias, gerenciar o incidente depressa, iniciar uma resposta conjunta em vez de esperar que alguém o faça, descobrir quais informações compartilhadas são necessárias e informar e instruir as partes envolvidas, por exemplo, para criar novos recursos.

Convém que a organização implemente uma estrutura de gestão de incidentes para executar as tarefas pertinentes aos objetivos do incidente. Convém que uma estrutura de gestão de incidentes inclua as seguintes funções básicas. Comando: autoridade e controle do incidente; estrutura e responsabilidades dos objetivos da gestão de incidentes; ordenação e liberação de recursos. Planejamento: coleta, avaliação e compartilhamento oportuno de informações de inteligência e sobre incidentes; relatórios de status, incluindo recursos atribuídos e equipe; desenvolvimento e documentação do plano de ação para incidentes; coleta, compartilhamento e documentação de informações.

Operações: objetivos táticos; redução de perigos; proteção de pessoas, propriedades e meio ambiente; controle de incidentes e transição para a fase de recuperação. Logística: suporte e recursos a incidentes; instalações, transporte, suprimentos, manutenção de equipamentos, combustível, serviço de alimentação e serviços médicos para o pessoal do incidente; suporte de comunicações e tecnologia da informação. Finanças e administração: indenizações e reclamações; compras; custos e tempo. (Dependendo da escala de um incidente, uma função financeira e administrativa separada pode não ser necessária.)

Os ensaios em solos

Há vários ensaios em solos e um deles é a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas.

A NBR 16843 de 05/2020 – Solo — Determinação do índice de vazios mínimo de solos não coesivos especifica o método de determinação do índice de vazios mínimo (mín.) de solos granulares, não coesivos, contendo no máximo 12 % (em massa) de material que passa na peneira de 0,075 mm. Esta norma também especifica o método para o cálculo de compacidade relativa correspondente a um determinado índice de vazio mínimo do material ensaiado.

A NBR 16853 de 05/2020 – Solo — Ensaio de adensamento unidimensional especifica o método de ensaio para determinação das propriedades de adensamento do solo, caracterizadas pela velocidade e magnitude das deformações, quando o solo é lateralmente confinado e axialmente carregado e drenado. A NBR 16867 de 05/2020 – Solo – Determinação da massa específica aparente de amostras indeformadas — Método da balança hidrostática especifica um método para determinação da massa específica aparente de amostras indeformadas de solo, com emprego da balança hidrostática. Esta norma é aplicável somente a materiais que possam ser adequadamente talhados.

Acesse algumas dúvidas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Como deve ser o método do enchimento com água para a determinação do índice de vazios?

Como deve ser a mesa vibratória para realizar peneiramento para a determinação do índice de vazios?

Como deve ser os corpos de prova para determinação das propriedades de adensamento do solo?

Como deve ser feito a montagem do corpo de prova na célula de adensamento?

Como fazer a determinação da massa específica aparente da parafina?

Para a obtenção do índice de vazios mínimo, é necessária a determinação da massa específica aparente seca máxima. Este índice corresponde ao estado mais compacto que um solo não coesivo pode ser colocado, utilizando-se um procedimento laboratorial normalizado que minimize a segregação e a quebra de partículas. Nesta norma, o índice de vazios mínimo absoluto não é necessariamente obtido.

Para os solos não coesivos, os índices de vazios máximo e mínimo constituem-se nos parâmetros básicos para avaliação do estado de compacidade. Para tanto, a compacidade relativa, como especificada em 7.4, fornece uma indicação do estado de compacidade de uma determinada massa de solo, seja uma ocorrência natural, seja construída pelo homem. No entanto, as propriedades de engenharia, como a resistência ao cisalhamento, compressibilidade e permeabilidade de um dado material, compactado por métodos distintos, para um mesmo estado de compacidade, podem variar consideravelmente.

Por outro lado, solos distintos, no mesmo estado de compacidade, podem apresentar diferenças ainda mais acentuadas dessas propriedades, dependendo da granulometria, formato dos grãos, etc. Por esse motivo, discernimento considerável deve ser usado ao se relacionarem as propriedades de engenharia dos solos com o estado de compacidade. A amplitude dupla de vibração vertical tem efeito significativo no índice de vazios obtido. Para uma mesa vibratória e molde específicos, o menor índice de vazios de um dado material pode ser obtido para uma amplitude dupla diferente das especificadas nesta norma, ou seja, o índice de vazios pode inicialmente diminuir com o aumento da amplitude dupla de vibração, atingir um mínimo e então aumentar com o incremento da amplitude dupla.

Portanto, a relação entre o menor índice de vazios e a amplitude dupla de vibração ótima pode variar com o tipo de solo. A aparelhagem necessária para a execução do ensaio é a seguinte: estufa capaz de manter a temperatura entre 105 °C e 110 °C; peneiras de 75 mm, 38 mm, 19 mm, 9,5 mm, 4,8 mm e 0,075 mm, de acordo com as NBR NM ISO 2395 e NBR NM ISO 3310-1; balanças que permitam pesar nominalmente 40 kg, 10 kg e 1,5 kg, com precisões de 5 g, 1g e 0,1 g, respectivamente; outros equipamentos, como bandeja metálica, conchas metálicas, pá, escova de cerdas macias, cronômetro com indicação de minutos e segundos, e paquímetro que possibilite leituras de no mínimo 30 mm, com precisão de 0,2 mm.

O conjunto para a realização do ensaio pelo método A deve conter o seguinte: moldes cilíndricos metálicos padrões, com volumes nominais de 2.830 cm³ e 14.200 cm³; tubo-guia com dispositivo de fixação ao molde, para cada tamanho de molde. Para facilitar a centralização do tubo-guia acima do molde, ele deve ser dotado de três dispositivos de fixação. Incluir um disco-base da sobrecarga, para cada tamanho de molde, perfurado e dotado de três pinos para centralização da sobrecarga; sobrecarga de seção circular dotada de alça para cada tamanho de molde.

A massa total do disco-base e sobrecarga deve ser suficiente para a aplicação de uma pressão de (13,8 ± 0,1) kPa. Incorporar uma alça dotada de rosca para colocação e retirada do disco-base; suporte encaixável no guia do molde, ao qual fica acoplado um deflectômetro, para medir a diferença de elevação entre o topo do molde e o disco-base da sobrecarga, após a densificação. O deflectômetro deve possibilitar medições de no mínimo 50 mm, com resoluções de 0,02 mm, devendo ser instalado de modo que a sua haste fique paralela ao eixo barra de calibração metálica (opcional), com largura de aproximadamente 7 cm, altura de 0,5 cm e comprimento adequado.

Incluir uma mesa vibratória eletromagnética de aço, com vibração vertical acionada por um vibrador eletromagnético do tipo impacto sólido, com massa maior que 45 kg. A mesa deve ser instalada em ambiente acusticamente isolado do restante do laboratório, sobre um piso ou laje de concreto, com massa de 500 kg, de modo que vibrações excessivas não sejam transmitidas a outras áreas onde estejam sendo realizados outros ensaios. O tampo da mesa deve ter dimensões adequadas, que confiram rigidez suficiente, de forma que o conjunto molde + tubo-guia + sobrecarga fique firmemente fixado e rigidamente apoiado durante o ensaio, devendo por este motivo ser dotado de dispositivo de fixação ao conjunto mencionado.

O conjunto para a realização do ensaio pelo método B deve conter o seguinte: cilindro de Proctor, com volume nominal de 1.000 cm³, de acordo com a NBR 7182, soldado à base, de modo que o conjunto resulte estanque. A base do molde deve ser mais espessa que a normalmente utilizada no ensaio de compactação, além de ser dotada de dispositivo de fixação à mesa vibratória. Deve-se dispor de um tubo-guia, constituído por outro cilindro de Proctor solidário ao colarinho; disco-base da sobrecarga, perfurado e dotado de dispositivo para centralização da sobrecarga; sobrecarga de seção circular dotada de alça. A massa total do disco-base e da sobrecarga deve ser suficiente para aplicação de uma pressão de (13,8 ± 0,1) kPa.

Deve-se incluir uma mesa vibratória, do tipo utilizado para realizar o peneiramento de amostras na análise granulométrica. Este método de ensaio para determinação das propriedades de adensamento do solo requer que um elemento de solo, mantido lateralmente confinado, seja axialmente carregado em incrementos, com pressão mantida constante em cada incremento, até que todo o excesso de pressão na água dos poros tenha sido dissipado. Durante o processo de compressão, medidas de variação de altura da amostra são feitas, e estes dados são usados no cálculo do parâmetro que descreve a relação entre a pressão efetiva e o índice de vazios, bem como a evolução das deformações em função do tempo.

Os dados de ensaio de adensamento podem ser utilizados na estimativa, tanto da magnitude dos recalques totais e diferenciais de uma estrutura ou de um aterro, como da velocidade desses recalques. Como aparelhagem, usar um sistema de aplicação de carga (prensa de adensamento), que permite a aplicação e manutenção das cargas verticais especificadas, ao longo do período necessário de tempo, e com uma precisão de 0,5% da carga aplicada. Quando da aplicação de um incremento de carga, a transferência para o corpo de prova deve ocorrer em um intervalo de tempo não superior a 2 s e sem impacto significativo.

Usar uma célula de adensamento apropriada para conter o corpo de prova e que proporcione meios para aplicação de cargas verticais, medida da variação da altura do corpo de prova e sua eventual submersão. Esta célula consiste em uma base rígida, um anel para manter o corpo de prova, pedras porosas e um cabeçote rígido de carregamento. O anel pode ser do tipo fixo (indeslocável em relação à base rígida) ou flutuante (deslocável em relação à base, sendo suportado pelo atrito lateral desenvolvido entre o corpo de prova e o anel), conforme os esquemas indicados na figura abaixo.

Incluir um anel de adensamento, conforme a seguir: o diâmetro interno do anel deve ser no mínimo de 50 mm (preferencialmente 100 mm) e, no caso de amostras extrudadas e talhadas, no mínimo 5 mm (preferencialmente 10 mm) menor do que o diâmetro interno do tubo de amostragem; a altura do anel deve ser no mínimo de 13 mm e não inferior a dez vezes o máximo diâmetro de partícula do corpo de prova; a relação entre o diâmetro interno e a altura do anel deve ser no mínimo de 2,5 (preferencialmente 3,0); a rigidez do anel deve ser tal que, sob a condição de pressão hidrostática igual à máxima pressão axial a ser aplicada ao corpo de prova, a variação do diâmetro do anel não exceda 0,03%; o anel de adensamento deve ser feito de material não corrosível (preferencialmente aço inoxidável), e sua superfície interna deve ser altamente polida ou recoberta com material de baixo atrito, por exemplo, politetrafluoroetileno (PTFE).

Recomenda-se, antes do ensaio, untar a superfície interna do anel com graxa de silicone. O anel fixo permite a execução de ensaios de permeabilidade, junto com o ensaio de adensamento. Quando o solo a ser ensaiado se constituir de material muito mole, não se utiliza anel flutuante. Usar pedras porosas, conforme a seguir. As pedras porosas devem ser confeccionadas com material quimicamente inerte em relação ao solo e à água dos poros. Devem ser constituídas de poros com dimensões suficientemente pequenas, de forma a se evitar a intrusão de partículas de solo.

Se necessário, papel-filtro resistente pode ser utilizado entre o corpo de prova e a pedra porosa para impedir a infiltração de solo e facilitar a limpeza posterior da pedra. O conjunto pedra porosa e papel-filtro deve apresentar permeabilidade suficientemente alta, de modo a não retardar a drenagem do corpo de prova. As pedras porosas devem ser uniformes e estar sempre limpas e livres de trincas.

A adequabilidade de pedra porosa sob o ponto de vista de permeabilidade e limpeza pode ser comprovada por meio de ensaios expeditos, submetendo-a a uma carga hidráulica da ordem de 10 cm e observando-se o gotejamento em sua face inferior. o diâmetro da pedra porosa do topo deve ser 0,2 mm a 0,5 mm menor que o diâmetro interno do anel. Se for utilizado anel flutuante, a pedra de base deve apresentar o mesmo diâmetro da pedra do topo. Recomenda-se a utilização de pedras biseladas, com a face de maior diâmetro em contato com o solo. As pedras porosas devem ser espessas o suficiente para se evitar a sua quebra, sendo de topo, na sua face superior, protegida por um disco metálico (cabeçote) rígido, resistente à corrosão e com diâmetro igual ao da pedra.

Já a aparelhagem necessária para o ensaio para determinação da massa específica aparente de amostras indeformadas de solo é a seguinte: estufa capaz de manter a temperatura de 60 °C a 65 °C e de 105 °C a 110 °C; balança que permita pesar nominalmente 1,5 kg, com precisão de 0,1 g e sensibilidade compatível; moldura que possa ser acoplada ao prato da balança, sendo que balanças que disponham de dispositivo adequado para realização deste ensaio prescindem de tal moldura. Incluir um recipiente contendo água, de dimensões adequadas, para imersão do corpo de prova; fogareiro ou aquecedor para derreter a parafina; linha comum, ou preferencialmente de náilon, e utensílios como panela, faca, espátula, pincel, etc.; parafina isenta de impurezas e com massa específica aparente, no estado sólido, conhecida e verificada a cada mudança de lote.

IEEE 1248: o comissionamento de sistemas elétricos em usinas hidrelétricas

Essa norma é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

A IEEE 1248:2020 – Guide for the Commissioning of Electrical Systems in Hydroelectric Power Plants é um guia de comissionamento de sistemas elétricos em usinas hidrelétricas e foi publicado pela IEEE em 2020. Nesse documento são fornecidos os procedimentos de inspeção e ensaios para uso após a conclusão da instalação de componentes e sistemas até a operação comercial de usinas hidrelétricas. Este guia é direcionado aos proprietários, projetistas e contratados de usinas envolvidos no comissionamento de sistemas elétricos de usinas hidrelétricas.

Em resumo, o guia descreve os ensaios realizados e fornece os processos a serem seguidos durante o comissionamento de sistemas elétricos e de controle em usinas hidrelétricas. São fornecidas orientações sobre métodos a serem utilizados, organização e execução dos ensaios.

Embora o guia não forneça os procedimentos prescritivos específicos para instalações e equipamentos, os ensaios são descritos juntamente com os padrões de referência para obter mais informações. O comissionamento de equipamentos elétricos pode ser para uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização de equipamentos elétricos existentes.

Conteúdo da norma

1. Visão geral………………………. 10

1.1 Escopo………………………….. 10

1.2 Objetivo………………………. 10

1.3 Organização…………………… 10

2 Referências normativas………. 11

3 Definições, acrônimos e abreviações……………… …. 11

3.1 Definições………………………………………… 11

3.2 Acrônimos e abreviações……….. …………. 12

4. Planejamento, funções e responsabilidades do comissionamento…………………… 13

4.1 Planejamento…………………… 13

4.2 Proprietário……………………. 14

4.3 Empreiteiro……………………… 14

4.4 Engenheiro………………………. 15

4.5 Fabricante/fornecedor……………. 16

5. Fases do programa de comissionamento ……………. 16

5.1 Fase de ensaio de construção… …………………. 17

5.2 Fase de ensaio pré-operacional ………………. 18

5.3 Fase de ensaio operacional…………………. 18

5.4 Ensaio de desempenho.. …………………….. 19

6. Implementação do comissionamento….. …………… 19

6.1 Geral…………. ……………………………………. 19

6.2 Fase de conclusão da construção………. ………. 19

6.3 Fase de ensaio pré-operacional……….. ………….. 20

6.4 Fase de ensaio operacional e inicialização da unidade……………………. 21

6.5 Ensaio de desempenho……………………. 21

7. Aplicação deste guia……………………… 21

7.1 Geral…………………………………. 21

7.2 Usando este guia para desenvolver um programa de ensaio…………………….. 22

7.3 Coordenar ensaios de comissionamento de sistemas e unidades………………… 26

8. Equipamentos na planta……………………… 27

8.1 Lista de equipamentos e matrizes de ensaio….. …… 27

9. Descrições dos ensaios……………………… 64

9.1 Geral …………………………………….. 64

9.2 Ensaios de construção…………………….. 66

9.3 Ensaios pré-operacionais……………….. 101

9.4 Ensaios operacionais…………………….. 123

9.5 Ensaios de desempenho……………….. 137

10. Documentação………………………… 143

10.1 Manutenção de registros……………… 143

10.2 Documentação de engenharia ……….. 143

10.3 Documentação de fábrica… ……………… 143

10.4 Documentação no local…. ………………… 144

Anexo A (informativo) Bibliografia……… ……….. 145

A.1 Turbinas, geradores e motores……. ………. 145

A.2 Transformadores……………………………. 146

A.3 Reguladores………………………………. 147

A.4 Cabos e pista…… ……………………….. 147

A.5 Proteção e retransmissão……………….. 148

A.6 Excitação……………………………. 148

A.7 Isolamento…………………………… 148

A.8 Baterias, UPS e sistemas de energia em espera……… 149

A.9 Disjuntores, painéis, painéis e centros de controle de motores……………… 149

A.10 Controle e SCADA………………….. 150

A.11 Aterramento…………………………. 150

A.12 Definições, códigos, referências e tabelas………………. 151

A.13 Manutenção……….. …………………………….. 151

A.14 Proteção contra incêndio…………………… 151

A.15 Diversos………………………….. 152

Este guia foi desenvolvido para auxiliar os engenheiros envolvidos no comissionamento de equipamentos elétricos em relação ao seguinte: ensaios específicos de equipamentos elétricos; programa de ensaio para colocar o equipamento em operação; o comissionamento de equipamentos elétricos pode ser para o seguinte: uma nova instalação de usina hidrelétrica; reabilitação de uma usina hidrelétrica existente; ou substituição e atualização do equipamento existente.

O guia descreve o desenvolvimento de uma organização de inicialização, seguida de uma descrição do fases de comissionamento de uma usina hidrelétrica. As informações principais estão contidas no formato de matriz para cada tipo principal de equipamento elétrico, que identifica os vários ensaios associados ao equipamento. As informações são fornecidas para cada ensaio específico, incluindo o seguinte: uma breve descrição; documentos comprovativos; equipamento necessário; duração ou tempo necessário.

Com base nas informações acima, são fornecidas orientações para o planejamento, desenvolvimento e documentação de um programa de comissionamento. Este guia aborda a energia hidrelétrica convencional. Partes do guia são relevantes para instalações de armazenamento bombeado, mas os recursos exclusivos das instalações de armazenamento bombeado não são abordados especificamente.

O guia também contém uma bibliografia de normas do setor, práticas recomendadas e guias que podem ser usado como recursos pelo engenheiro envolvido no comissionamento de equipamentos elétricos. A listagem destina-se a auxiliar na preparação para o início de uma usina hidrelétrica ou para um ensaio específico. Uma revisão de documentos é incentivada.

Todos os ensaios devem ser feitos de acordo com as especificações do equipamento e contratos com referência e em conjunto com as normas pertinentes da indústria. A revisão mais recente das normas e os guias listados no Anexo A devem ser usados. Uma lista de documentos comprovativos, que inclui itens bibliográficos e documentos gerais, é fornecido para cada ensaio na Cláusula 9 deste guia.

Como projetar um programa de pré-requisitos na segurança de alimentos

O escopo desta parte inclui os serviços de alimentação, serviços de alimentação aérea e ferroviária, bufês, entre outros, em unidades centrais e satélites, cantinas de escolas e de indústrias, hospitais e outros serviços de assistência à saúde, hotéis, restaurantes, cafeterias, serviços de alimentação e comércio varejista de alimentos.

A ABNT ISO/TS 22002-2 de 05/2020 – Programa de pré-requisitos na segurança de alimentos – Parte 2: Serviço de alimentação especifica os requisitos para projetar, implementar, e manter em dia os programas de pré-requisitos (PPR) para ajudar a controlar os perigos envolvidos na segurança de alimentos em serviços de alimentação. É aplicável a todas as organizações que estão envolvidas no processamento, preparação, distribuição, transporte e no serviço de alimentos e das refeições e que desejam implementar PPR, de acordo com os requisitos especificados na ISO 22000:2005, Seção 7.2. O escopo desta parte inclui os serviços de alimentação, serviços de alimentação aérea e ferroviária, bufês, entre outros, em unidades centrais e satélites, cantinas de escolas e de indústrias, hospitais e outros serviços de assistência à saúde, hotéis, restaurantes, cafeterias, serviços de alimentação e comércio varejista de alimentos.

No Brasil, a palavra catering tem se referido especificamente à alimentação de bordo em aviões. Sendo assim a Comissão de Estudo decidiu pela tradução do termo como serviço de alimentação, assim como a tradução para o termo food services que nesta norma tem o mesmo significado, e apresentado para a mesma destinação. Para as empresas muito pequenas e médias (EMPM), é possível que alguns requisitos não sejam aplicáveis.

Os usuários de serviços de alimentação podem pertencer a grupos vulneráveis, como crianças, pessoas idosas e/ou doentes. Em alguns países, o termo serviços de alimentação pode ser usado como sinônimo de catering. A aplicação desta parte não isenta o usuário ao compliance com a legislação atual e aplicável. Quando os requisitos legais são específicos para parâmetros (temperatura, entre outros) indicados nesta parte, os requisitos locais devem ser utilizados pelas empresas de alimentação. As operações em serviços de alimentação são diversas em natureza e nem todos os requisitos especificados nesta parte são aplicáveis a um estabelecimento ou a um processo individual.

Embora o uso desta parte não seja obrigatória para estar em conformidade com os requisitos da ISO 22000:2005, 7.2, os desvios (as exclusões ou as medidas alternativas implementadas) precisam ser justificados e documentados quando esta parte for usada como referência para a implementação do PPR. Não se destina a que estes desvios afetem a capacidade da organização para cumprir os requisitos da ISO 22000. Esta parte especifica requisitos detalhados a serem considerados em relação à ISO 22000:2005, 7.2.3. Além disso, inclui outros aspectos, como o procedimento de recall de produtos que sejam considerados pertinentes para as operações de serviços de alimentação. Medidas para prevenção da contaminação intencional estão fora do escopo desta parte que tem a intenção de ser usada para estabelecer, implementar e manter os PPR específicos de organizações em conformidade com a ISO 22000.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais são os cuidados dos funcionários em relação à limpeza pessoal?

Quais são os requisitos de recebimento materiais (matérias-primas, ingredientes e embalagens)?

Como deve ser feita a manipulação de substâncias perigosas?

O que deve ser feito em relação aos efluentes e eliminação de resíduos?

A ISO 22000 estabelece requisitos específicos de segurança de alimentos para organizações da cadeia produtiva de alimentos. Um destes requisitos é que as organizações estabeleçam, implementem e mantenham programas de pré-requisitos (PPR) para ajudar no controle de perigos à segurança de alimentos (ISO 22000:2005, 7.5). Esta parte não duplica os requisitos dados na ISO 22000 e destina-se a ser utilizada ao estabelecer, implementar e manter os PPR específicos para a (s) organização (ões) em conjunto com a ISO 22000, para ajudar no controle das condições higiênicas básicas nas atividades de serviço de alimentação.

A segurança de alimentos tem que ser assegurada em todas as etapas da cadeia produtiva de alimentos. No caso de serviços de alimentação, os programas de pré-requisito têm que ser estabelecidos em organizações que, quando aplicáveis, preparam, processam, cozinham, armazenam, transportam, distribuam e sirvam alimentos para consumo humano no local da preparação ou em uma unidade satélite.

As seguintes aplicações desta parte, de acordo com a ISO 22000, são possíveis. Por exemplo, uma organização pode desenvolver a parte do PRP dos códigos de prática ou checar se um código de prática existente é consistente com esta parte. Um estabelecimento pode implementar um sistema de gestão de segurança dos alimentos com a ISO 22000. O estabelecimento pode utilizar esta Parte da ABNT ISO/TS 22002 como base para estruturar e documentar o PPR. O estabelecimento e suas instalações devem ser de construção sólida e mantidos em boas condições.

Todos os materiais devem ser tais que não transmitam substâncias indesejáveis quaisquer ao alimento. Convém que o estabelecimento e suas instalações estejam localizados afastados de áreas que possam causar contaminação da água subterrânea (por exemplo, aterros sanitários, estações de tratamento de esgoto e fazendas de criação de animais) e áreas suscetíveis a infestações de pragas. As edificações e suas instalações devem ser projetadas e construídas com características funcionais, localização e leiaute adequados às necessidades de cada área de trabalho.

As operações devem ser realizadas sob condições higiênicas apropriadas desde o recebimento de matérias-primas até o consumo do produto. O leiaute da edificação deve ser tal que impeça a contaminação cruzada nas operações por meio de divisórias, localização, etc. As áreas ou instalações incompatíveis com quaisquer operações higiênicas do serviço de alimentação, como áreas residenciais, banheiros, lavanderias, depósito de materiais de limpeza, salas de máquinas e depósito de resíduos, devem ser separadas para evitar o risco de contaminação do alimento e das superfícies que entram em contato com o alimento.

Convém que o leiaute assegure que o produto siga um fluxo unidirecional. Por exemplo, a contaminação com pulverizadores, substâncias potencialmente tóxicas, poeira, sujeira e qualquer outra matéria contaminante. Diferentes áreas devem ser projetadas a fim de permitir a disposição de equipamentos e materiais de forma a evitar a contaminação cruzada. Para este fim, as áreas de trabalho devem ser claramente identificadas e marcadas, física ou funcionalmente.

Todas as áreas devem ser projetadas apropriadamente com o espaço adequado para facilitar as operações dos alimentos, assim como suas atividades de limpeza e manutenção. A recepção de materiais deve ser desempenhada em área protegida e limpa. Convém que o estabelecimento tenha uma área designada para o recebimento de insumos e convém que esta área assegure a gestão higiênica de todos os bens.

Medidas efetivas devem ser tomadas pelo estabelecimento a fim de evitar a contaminação cruzada, por exemplo, alimentos prontos para o consumo devem ser mantidos separados dos alimentos crus ou não tratados. Convém que os alimentos crus potencialmente perigosos sejam processados em ambiente separado, ou em áreas separadas por barreira, de áreas que são utilizadas para preparação de alimentos prontos para o consumo.

Superfícies das paredes, dos pisos e dos tetos devem ser de materiais impermeáveis, não absorventes, laváveis, sem fendas; além disso, os pisos devem ser de material antiderrapante. Juntas entre pisos e paredes devem ser abobadadas ou arredondadas, quando apropriado. Portas devem ser não absorventes, resistentes e ter uma superfície lisa e sem danos.

O uso de materiais que podem não ser limpos e desinfetados adequadamente deve ser evitado. Um sistema de drenagem adequado deve ser provido, especialmente nas áreas onde ocorre um grande número de operações e de trânsito contínuo de pessoas e equipamentos, por exemplo, áreas de lavagem, áreas onde pratos, utensílios e outros equipamentos são lavados. Tetos e equipamentos aéreos devem ser construídos e acabados para minimizar o acúmulo de sujeira e condensação e o derramamento das partículas.

Janelas e outras aberturas devem ser construídas a fim de evitar acúmulo de sujeira e aquelas que abrem devem ser providas de telas que impeçam a entrada de insetos. As telas devem ser facilmente removíveis para limpeza e devem ser mantidas em boas condições. Os peitoris internos das janelas, se presentes, devem ser inclinados para impedir o uso como prateleiras.

As portas devem ter superfícies lisas e não absorventes e ser fechadas automaticamente e bem ajustadas. Todas as áreas devem ser providas com um sistema de iluminação adequado. Os sistemas de iluminação devem ser projetos de modo que não afetem adversamente os alimentos. As luminárias devem ser protegidas para assegurar que materiais, produtos ou equipamentos não sejam contaminados em caso de quebra.

A iluminação provida (natural ou artificial) deve permitir que as pessoas operem de maneira higiênica. Os sistemas de ventilação adequados devem ser projetados para processo ou produto específico e devem ser capazes de manter os requisitos de temperatura e umidade para o processo e produto. A direção do fluxo de ar, seja natural ou artificial, deve passar da zona limpa para a zona suja. Todas as aberturas devem ter dispositivos de proteção e sistemas que previnam contaminações (por exemplo, fluxo de ar laminar, cortinas de ar e portas duplas).

Boa ventilação deve ser provida em áreas de preparação de alimentos, por exemplo, áreas de cozimento, a fim de dissipar altas cargas térmicas e vapor de forma eficaz. Depuradores de ar que sejam fáceis de limpar devem ser providos para remover todo o vapor gerado no processo. Para mais esclarecimentos, ver CAC/RCP 1:1969, 4.4.6 e 4.4.7. As instalações de higiene pessoal devem estar disponíveis para assegurar que o grau de higiene pessoal requerido pelas operações de uma organização possa ser mantido com segurança.

As instalações devem estar localizadas próximas aos pontos onde os requisitos de higiene se aplicam e devem estar claramente designadas. Os estabelecimentos devem prover em números adequados, localização e meios para higiênica lavagem, secagem e, onde requerido, desinfecção das mãos (incluindo lavatórios, suprimento de água em temperatura adequada, e sabão e/ou desinfetante); ter pias destinadas para lavagem de mãos, cujas torneiras convém que sejam preferencialmente ativadas por pé, joelho, cotovelo ou por sensor, e sejam separadas de pias para uso com alimentos e estações de limpeza de equipamentos; ter instalações sanitárias que não tenham acesso direto para a produção, embalagem ou áreas de armazenamento; ter instalações de vestiários adequados para troca de roupa; ter instalações de vestiários situadas que permitam que os manipuladores possam se deslocar para as áreas de produção de modo que o risco à limpeza dos uniformes seja minimizado; cumprir com os critérios microbiológicos da água utilizada para lavagem de mãos de acordo com os padrões de potabilidade; prover instalações de lavagem de mãos tanto dentro quanto fora das áreas de processamento.

A edificação, os equipamentos, os utensílios e as instalações do estabelecimento, incluindo os sistemas de drenagem devem ser mantidos em estado apropriado de manutenção e condições para facilitar os procedimentos de higiene; funcionar como pretendido; e não causar contaminação dos alimentos. O estabelecimento deve assegurar que a segurança dos alimentos não seja afetada durante as atividades de manutenção. O programa de manutenção preventiva deve ser realizado no local e deve incluir todos os dispositivos utilizados para monitorar e/ou controlar os perigos relacionados à segurança de alimentos.

Manutenção corretiva deve ser realizada de modo que a produção em linhas adjacentes ou equipamentos não corra risco de contaminação. Se existir o risco de contaminação em linhas adjacentes ou equipamentos durante a manutenção corretiva, o processamento de alimentos nestes locais deve ser suspenso para prevenir contaminação. As requisições de manutenção que afetam a segurança do produto devem ser priorizadas. Reparos temporários não podem afetar a segurança dos alimentos.

Uma requisição de substituição por um reparo permanente deve ser incluída na programação de manutenção. Lubrificantes e fluidos para troca de calor devem ser de grau alimentício onde existir o risco de contato direto ou indireto com o produto de acordo com a ISO 21469. O procedimento para liberar equipamentos mantidos para retorno à produção deve incluir processo de limpeza e desinfecção e inspeção de pré-uso.

Os requisitos do PPR da área local devem ser aplicados às áreas de manutenção e atividades de manutenção nas áreas de processo. A equipe de manutenção deve ser treinada em segurança de alimentos e perigos associados às suas atividades. Para equipamentos de processamento de alimentos, os requisitos de construção e projeto são especificados na NBR ISO 14159.

O fornecimento de água deve ser provido com pressão e temperatura adequadas, assim como instalações adequadas para armazenamento. As instalações de armazenamento de água devem ser limpas e monitoradas periodicamente. Quando água de poço particular ou água de fonte privada for utilizada para produzir água potável, dispositivos de desinfecção e/ou dispositivos de purificação de água devem ser estabelecidos. Apenas água potável deve ser utilizada.

Os registros de controles devem ser retidos e somente água potável de qualidade deve ser utilizada no empreendimento alimentício. O vapor utilizado em contato direto com alimentos ou superfícies de contato com alimentos deve ser produzido com água potável. O gelo usado em contato direto com alimentos ou superfícies de contato com alimentos deve ser feito de água potável e ser transportado, manuseado e armazenado de maneira que seja protegido de contaminações.

As instalações utilizadas para produzir e armazenar o gelo devem ser capazes de prevenir a contaminação e devem ser limpas, desinfetadas e mantidas de acordo com as instruções do fabricante. Devem ser estabelecidos mecanismos para confirmar a qualidade microbiológica do gelo, seja ele comprado ou feito no local. Toda água não potável utilizada na refrigeração, produção de vapor, controle de incêndio, diluição de derramamento ou outra atividade similar, deve ser conduzida por tubulações adequadas separadamente daquelas que conduzem água potável, sem nenhuma conexão transversal entre elas ou possibilidade de que a água não potável escoe em tubulação de água potável. Estas tubulações devem ser claramente identificadas, preferencialmente com padronização de cores, por exemplo, de acordo com a ISO 14726.

Os equipamentos e utensílios devem ser feitos de materiais impermeáveis e resistentes à corrosão, de modo que não transfiram substâncias tóxicas, odor e sabor aos alimentos. Os equipamentos e utensílios devem ser capazes de suportar operações frequentes de limpeza e desinfecção, devem ser lisos e livres de buracos, fendas ou rachaduras. Convém que equipamentos portáteis, por exemplo, colheres, batedores, tachos e panelas, sejam protegidos de contaminações.

Todos os equipamentos devem ser projetados e construídos a fim de assegurar condições gerais de higiene e suas superfícies devem ser fáceis de limpar e desinfetar. Os equipamentos no serviço de alimentação devem ser submetidos a programas de manutenção incluindo a calibração de instrumentos de medição como termômetros e dispositivos que registram temperatura. Devem ser mantidos registros destes controles e identificação dos equipamentos e utensílios de acordo com as suas especificações.

Convém que a responsabilidade por assegurar o compliance de todas as pessoas com os requisitos de higiene pessoal seja destinada especificamente para a equipe de supervisão. Visitantes, por exemplo, fiscais, clientes e equipes de manutenção, devem ter acesso restrito às áreas de manipulação de alimentos. Estes visitantes devem utilizar roupas de proteção e cumprir os requisitos de segurança de alimentos do serviço de alimentação.

As medições de ruído em edificações

Conheça os métodos simplificados para medir em campo: o isolamento a ruído aéreo entre ambientes; o isolamento a ruído de impacto entre pavimentos; o isolamento a ruído aéreo de fachadas; e os níveis de pressão sonora em ambientes produzidos por equipamentos prediais, além dos métodos para medir o nível de pressão sonora de equipamentos prediais de edificações instalados em estruturas de edifícios.

A NBR ISO 10052 de 04/2020 – Acústica — Medições em campo de isolamento a ruído aéreo e de impacto e de sons de equipamentos prediais – Método simplificado especifica métodos simplificados para medir em campo: o isolamento a ruído aéreo entre ambientes; o isolamento a ruído de impacto entre pavimentos; o isolamento a ruído aéreo de fachadas; e os níveis de pressão sonora em ambientes produzidos por equipamentos prediais. Os métodos descritos neste documento são aplicáveis para medições em ambientes residenciais ou em ambientes de tamanho compatível com dimensões de no máximo 150 m³. Para isolamento a ruído aéreo, isolamento a ruído de impacto e isolamento a ruído de fachadas, os métodos fornecem valores que são dependentes da frequência (banda de oitava). Eles podem ser convertidos em um número único, caracterizando os desempenhos acústicos pela aplicação das EN ISO 717-1 e EN ISO 717-2.

Para o som de equipamentos prediais, os resultados de nível de pressão sonora são fornecidos diretamente com ponderação A ou C. Este documento descreve os métodos simplificados de ensaio que podem ser usados para o levantamento das características acústicas do isolamento a ruído aéreo, do isolamento a ruído de impacto e dos níveis de pressão sonora produzidos por equipamentos prediais. Os métodos podem ser utilizados para ensaios de inspeção das propriedades acústicas das edificações. Os métodos não são destinados a serem aplicados para medir propriedades acústicas de elementos construtivos.

A abordagem deste método é simplificar a medição dos níveis de pressão sonora em ambientes usando um sonômetro portátil para a realização da varredura manual com o microfone no espaço do ambiente. A correção do tempo de reverberação pode ser estimada pelo uso de valores tabelados ou ser baseada em medições. As medições de isolamento a ruído aéreo e de impacto são realizadas em bandas de oitava. Para medir o som dos equipamentos de serviço domésticos, os níveis de pressão sonora são registrados na ponderação A ou C.

As medições são realizadas com as condições e ciclos de operação especificados. As condições e os ciclos de operação indicados no Anexo B são utilizados apenas se não forem contrários aos requisitos e regulamentos nacionais. A incerteza de medição dos resultados obtidos usando o método simplificado é, a priori, maior do que a incerteza de medição inerente aos métodos de ensaio correspondentes no nível de engenharia. Os métodos de engenharia para medições em campo de isolamento a ruído aéreo e de impacto são tratados nas EN ISO 140-4 e EN ISO 140-7. Os métodos de engenharia para medições de campo de isolamento a ruído aéreo de fachadas e de elementos de fachadas são tratados na EN ISO 140-5. Um método de engenharia para medição de sons de equipamentos prediais é descrito na EN ISO 16032.

A NBR ISO 16032 de 04/2020 – Acústica — Medição de nível de pressão sonora de equipamentos prediais de edificações – Método de engenharia especifica métodos para medir o nível de pressão sonora de equipamentos prediais de edificações instalados em estruturas de edifícios. Este documento abrange especificamente medições de instalações hidrossanitárias, ventilação mecânica, equipamentos prediais de aquecimento e resfriamento, elevadores, dutos de lixeira, caldeiras, sopradores, bombas e outros equipamentos prediais auxiliares e portas de estacionamento motorizadas, mas também pode ser aplicado a outros equipamentos conectados ou instalados em edifícios. Os métodos são adequados para ambientes com volumes de aproximadamente 300 m³ ou menores, isto é, em residências, hotéis, escolas, escritórios e hospitais.

A norma não é, em geral, destinada a medições em grandes auditórios e salas de concerto. No entanto, as condições de operação e os ciclos de operação do Anexo B podem ser utilizados nestes casos. O nível de pressão sonora de equipamentos prediais é determinado como o nível máximo de pressão sonora ponderada em A e opcionalmente em C ocorrendo durante um ciclo de operação específico do equipamento predial em ensaio, ou como o nível de pressão sonora contínuo equivalente determinado com um tempo de integração específico.

Os valores ponderados em A e em C são calculados a partir de medições em bandas de oitava. Este documento especifica o método de engenharia para a medição de nível de pressão sonora de equipamentos prediais de edificações. Para uso deste documento, as medições são realizadas sob condições de operação e ciclos de operação especificados. Estas condições são fornecidas no Anexo B. As condições de operação e os ciclos de operação indicados no Anexo B são utilizados apenas se não forem contrários aos requisitos e regulamentos nacionais.

Acesse algumas perguntas relacionadas a essas normas GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a geometria do método da fonte sonora?

Quais são os dados do índice de reverberação?

Como fazer a seleção da posição do canto para o microfone?

Como realizar a correção para o som residual?

Os descritores de grandezas unitárias para ruídos de equipamentos prediais podem ser determinados de acordo com a tabela abaixo deste documento. Ao relatar os resultados da medição, a notação na tabela abaixo deve ser usada. Os diferentes descritores podem ser combinados de acordo, por exemplo, com os requisitos da regulamentação nacional da construção civil. Descritores de grandezas unitárias de isolamento a ruído aéreo e de impacto podem ser obtidos de acordo com a EN ISO 717-1.

A medição de equipamentos prediais deve atender aos requisitos da Seção 6. A fonte sonora para medir o isolamento sonoro entre ambientes deve ser tão omnidirecional quanto possível. Na medição da fachada, o ângulo de abertura da fonte sonora deve cobrir toda a fachada. A direcionalidade da fonte sonora e a distância até à fachada devem ser tais que as variações entre os níveis de pressão sonoros medidos em frente da fachada, para cada banda de frequência de interesse, sejam inferiores a 5 dB. A máquina de impacto deve cumprir os requisitos indicados no Anexo A da EN ISO 140-7:1998.

A exatidão do equipamento de medição do nível de pressão sonora deve cumprir os requisitos das classes de exatidão 0 ou 1 definidas na EN 60651 e EN 60804. O sistema de medição completo, incluindo o microfone, deve ser ajustado antes de cada medição para permitir valores absolutos dos níveis de pressão sonora a serem obtidos.

Para todas as medições, microfones de campo difuso são requeridos. Para sonômetros com microfones de campo livre, devem ser aplicadas correções para campo sonoro difuso.

Os filtros devem cumprir os requisitos definidos na EN 61260. Para os ensaios de avaliação padrão (ensaio de tipo) e de verificação regular, os procedimentos recomendados para sonômetros são fornecidos em OIML R58 e R88, e para os requisitos da máquina de impacto são fornecidos no Anexo A da EN ISO 140-7:1998.

As medições do isolamento a ruído aéreo e do isolamento a ruído de impacto são feitas em bandas de oitava. As medições dos níveis de pressão sonora do equipamento predial são feitas em níveis de pressão sonora ponderada em A ou C. As medições devem ser realizadas com portas e janelas fechadas e persianas normalmente abertas. Os ciclos e as condições de operação para medição do ruído dos equipamentos prediais são fornecidos no Anexo B. Eles devem ser usados somente se não forem contrários aos requisitos e regulamentos nacionais.

Se a diferença entre o nível do sinal e o nível de som residual for inferior a 6 dB, o nível do sinal medido deve ser registrado no relatório. Uma nota deve ser adicionada para dizer que o nível da sala de recepção medido foi afetado pelo som residual e a diferença de nível correspondente foi subestimada ou que o nível de medição (equipamento predial) foi superestimado por uma quantidade desconhecida. Nenhuma correção para som residual deve ser aplicada.

Para medições do isolamento a ruído aéreo entre ambientes e isolamento a ruído aéreo de fachadas utilizando o método da fonte sonora, convém que a potência sonora da fonte seja ajustada de modo a que o nível de pressão sonora na sala de recepção (em cada banda de frequência) seja de pelo menos 6 dB maior que o nível de pressão sonora residual. Isto deve ser verificado ligando e desligando a fonte antes de iniciar a medição.

Ao medir o isolamento a ruído aéreo de fachadas pelo método de ruído de tráfego, o nível de pressão sonora residual na sala de recepção pode não ser facilmente avaliado. Por isto, convém que sejam tomadas medidas para garantir que o nível de pressão sonora na sala de recepção, devido às fontes dentro da edificação, seja o mais baixo possível. Sons residuais excessivos de fontes internas levarão a um valor subestimado de isolamento da fachada. Um comentário deve ser feito no relatório, caso se perceba que isso ocorreu.

O som gerado na sala de emissão deve ser estável e ter um espectro contínuo sobre a faixa de frequências que é medido. Filtros com largura de banda de uma oitava podem ser usados. Ao utilizar ruído de banda larga, o espectro da fonte sonora pode ser configurado para garantir uma relação sinal-ruído adequada em altas frequências na sala de recepção.

Se o invólucro da caixa de som contiver mais do que um alto-falante funcionando simultaneamente, os alto-falantes devem ser acionados em fase. Múltiplas caixas de som podem ser usadas simultaneamente, desde que sejam do mesmo tipo e sejam acionadas no mesmo nível por sinais similares, mas não correlacionados. Colocar a fonte sonora em um canto do ambiente oposto ao elemento de separação.

A distância das paredes deve ser de pelo menos 0,5 m. Se a fonte sonora for um sistema de alto-falante único, convém que ela seja colocada de frente para o canto. Ao ensaiar ambientes na direção vertical, usar o ambiente inferior como sala de emissão. Ao ensaiar ambientes de tamanhos desiguais na direção horizontal, usar o ambiente maior como sala de emissão, a menos que previamente acordado, convém que o ensaio seja na outra direção.

O ruído de impacto deve ser gerado pela máquina de impacto padrão (ver EN ISO 140-7). A máquina de impacto deve ser colocada, no ambiente de fonte, na diagonal, perto do centro do piso. Esta posição única é suficiente, se o piso for isotrópico. No caso de construções de piso anisotrópico (com nervuras, vigas, etc.), adicionar duas posições para que as três posições sejam distribuídas aleatoriamente sobre a área do piso. A linha de conexão dos martelos deve ser orientada a 45° na direção das vigas ou nervuras. Nestes casos, a distância entre a máquina de impacto e a borda do pavimento deve ser de pelo menos 0,5 m.

A medição do nível máximo de pressão sonora de acordo com este documento requer o uso de um analisador de frequência de bandas de oitava em tempo real. O analisador deve estar apto a ler os valores de todos os níveis de pressão sonora de bandas de oitava no momento em que ocorrer o nível máximo de pressão sonora ponderada em A ou em C (durante um ciclo de operação especificado do equipamento predial em ensaio). É importante garantir que o equipamento usado de acordo com este documento atenda ao requisito indicado anteriormente.

Os analisadores usualmente utilizados para medições em acústica de edificações incluem esse recurso. O sistema de medição, incluindo o microfone e o cabo, deve atender aos requisitos de um instrumento de classe 1 especificado na EN 61672-1. Para medições em bandas de oitava, os filtros devem atender aos requisitos dos filtros de classe 1 especificados na EN 61260. No início e no final das medições, verificar a sensibilidade da instrumentação com calibradores sonoros de classe 1, de acordo com a EN 60942.

O nível de pressão sonora do equipamento predial é medido em bandas de oitava no intervalo de frequências de 31,5 Hz/63 Hz a 8.000 Hz, no espectro linear (não ponderado), correspondente ao nível máximo de pressão sonora ponderada em A ou em C, em um ciclo operacional especificado do equipamento predial em ensaio. Para medir o nível de pressão sonora do equipamento predial, deve ser feita uma gravação paralela, dependente do tempo, do nível de pressão sonora ponderada em A ou em C e dos níveis de pressão sonora em bandas de oitava (gravação multiespectral).

Para a avaliação do nível de pressão sonora do equipamento, utilizar o espectro em banda de oitava no momento em que ocorrer o nível máximo de pressão sonora ponderada em A ou em C. A ponderação temporal “S” ou “F” deve ser utilizada. Alternativamente ou adicionalmente, o nível de pressão sonora contínuo equivalente pode ser determinado com um tempo de integração especificado.

Os resultados das bandas de oitava são corrigidos pelo som residual e – se necessário – padronizados para um tempo de reverberação de 0,5 s ou normalizados para uma área de absorção sonora equivalente a 10 m². Finalmente, os níveis de pressão sonora ponderada em A e em C são calculados a partir dos resultados das bandas de oitava corrigidos. Os valores ponderados em A e em C devem ser sempre calculados a partir dos resultados das bandas de oitava, também em situações em que a padronização ou normalização não for realizada.

As grandezas de valor único que podem ser determinadas de acordo com este documento são dadas na tabela abaixo (calculada a partir dos valores de bandas de oitava definidos em 3.6.1 a 3.6.9). A notação na tabela deve ser usada ao relatar os resultados da medição. As diferentes quantidades podem ser combinadas de acordo com os requisitos dos regulamentos nacionais de código de construção.

As diferentes grandezas de valor único indicadas na tabela acima não são comparáveis. Somente os resultados de medição obtidos com o mesmo método devem ser comparados. Quando os resultados das medições forem comparados com os requisitos legais, deve-se assegurar que ambos se referem à mesma quantidade. Se o som contiver componentes tonais claramente audíveis, isto deve ser indicado no relatório. Janelas e portas devem ser fechadas durante as medições. Convém que a pessoa que realiza o ensaio fique fora do ambiente.

Os tubos de PVC para o transporte de água ou de esgoto sob pressão

A NBR 7665 de 03/2020 – Sistemas de transporte de água ou de esgoto sob pressão — Tubos de PVC-M DEFOFO com junta elástica — Requisitos especifica os requisitos para tubos de poli (cloreto de vinila) (PVC), com tensão circunferencial admissível de 12 MPa, com diâmetros externos equivalentes aos dos tubos de ferro fundido, DEFOFO, com junta elástica, para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água e sistemas pressurizados de esgoto, com pressões máximas de serviço (incluindo sobrepressões provenientes de variações dinâmicas, inclusive transitórios hidráulicos) de 1,0 MPa, 1,25 MPa ou 1,60 MPa, à temperatura de 25 °C. Nas aplicações específicas em sistemas enterrados de esgotamento pressurizado, recomenda-se a utilização de um dispositivo que minimize a ocorrência de oscilações da pressurização, o que não elimina a ocorrência de transientes hidráulicos.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Qual é a resistência à pressão hidrostática interna de longa duração?

Quais são as dimensões dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa dos tubos de PVC-M DEFOFO?

Quais as dimensões da bolsa de tubos de junta elástica com anel removível alojado na bolsa?

Para temperaturas de fluidos até 25 °C, a pressão de serviço permissível (PFA) equivale à pressão nominal (PN). Para temperaturas de fluidos acima de 25 °C e até 45 °C, deve ser aplicado à pressão nominal um fator de correção, fT, como indicado a seguir: PFA = fT × PN. Este fator é apresentado no gráfico da figura abaixo.

É responsabilidade do usuário aplicar os produtos conforme os requisitos desta norma e recomendações dos fabricantes. Os tubos objetos desta norma devem ser armazenados e instalados conforme os procedimentos especificados na NBR 9822. A resina de PVC utilizada na produção do composto de PVC-M deve ser do tipo suspensão e apresentar valor K maior ou igual a 65, quando determinado de acordo com a NBR 13610.

O composto de PVC-M deve estar aditivado somente com produtos necessários à sua transformação e à utilização dos tubos de acordo com esta norma. Os pigmentos devem estar total e adequadamente dispersos no composto a ser empregado na fabricação dos tubos. Os pigmentos e o sistema de aditivação devem minimizar as alterações de cor e das propriedades dos tubos durante a sua exposição às intempéries, no manuseio e na estocagem em obra.

Não é permitido o uso de material reprocessado e/ou reciclado. Não é permitida a utilização de compostos de chumbo como estabilizantes térmicos na fabricação de tubos de PVC. O composto de PVC-M empregado na fabricação dos tubos deve ser de cor azul para transporte de água, e de cor ocre para transporte de esgoto pressurizado, permitindo-se nuances devido às diferenças naturais de cor das matérias primas.

O composto utilizado na fabricação dos tubos deve estar de acordo com os requisitos especificados na norma. Estes requisitos devem ser reavaliados sempre que houver uma alteração do produto (projeto, matérias-primas e/ou escopo de aplicação). A substituição de um fornecedor de matéria prima ou do tipo de estabilizante não constitui uma alteração do produto.

Uma alteração na natureza química do estabilizante constitui uma alteração do produto. As seguintes características são relevantes na alteração do projeto do produto: dimensões, geometria e sistema de junta. Para definir a condição de reavaliação destes requisitos, é especificada na tabela abaixo uma tolerância quanto ao valor K da resina e em relação ao teor de estabilizante térmico e de cinzas do composto. Os valores “X” devem ser definidos pelo fabricante em seu controle de qualidade. Se qualquer um destes níveis exceder a tolerância, os requisitos especificados na norma devem ser reavaliados.

O composto de PVC-M empregado na fabricação dos tubos deve preservar o padrão de potabilidade da água no interior da tubulação, sem transmitir sabor, odor e não provocar turvamento ou coloração à água. O composto, bem como as concentrações máximas dos seus aditivos, devem estar em conformidade com a legislação em vigor, de maneira a não transmitir para a água potável qualquer elemento que possa alterar suas características, tornando-a imprópria para consumo humano.

Os tubos e conexões de PVC-M, para adução e distribuição de água, devem ter sua inocuidade avaliada conforme a NBR 8219 e os limites aplicados a todas as extrações devem estar em conformidade com a legislação vigente. Caso ocorra uma alteração de natureza química de um dos componentes do composto, deve ser realizado um novo ensaio de efeito sobre a água. Este ensaio não tem como objetivo avaliar a potabilidade da água para consumo humano, sendo utilizado para atender a regulamentações específicas.

Eventual teor de chumbo encontrado nos tubos de PVC-M não pode ser superior a 0,1%. O ensaio deve ser realizado por espectrometria de fluorescência de raios X, conforme EN 62321, ou por outra metodologia validada. O composto empregado na fabricação dos tubos de PVC-M deve ter ponto de amolecimento Vicat maior ou igual a 80 °C. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 82.

O composto empregado na fabricação dos tubos de PVC-M deve ter densidade na faixa de 1,35 g/cm³ a 1,50 g/cm³, medida à temperatura de 20 -2+3 °C. O valor especificado pelo fabricante do composto, em relação ao resultado do ensaio, pode ter variação máxima de 0,05 g/cm³. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 83.

O teor de cinzas dos tubos de PVC-M não pode ser superior a 5%. O ensaio deve ser realizado em corpos de prova obtidos a partir de tubos, de acordo com a NBR NM 84, Método A, à temperatura de (1 050 ± 50) °C. O composto do tubo deve ter σLPL (lower prediction limit of the predicted hydrostatic strenght) de no mínimo 24 MPa. O composto do tubo deve ser analisado conforme o método II da ISO 9080, com o LPL (lower prediction limit) obtido no ensaio de pressão hidrostática interna conforme as ISO 1167-1 e ISO 1167-2, utilizando caps do tipo B. O valor de σLPL deve ser obtido a partir do LPL de 97,5% e o composto deve ser classificado conforme a ISO 12162.

No caso de alterações de uma determinada formulação já classificada para além dos limites especificados na tabela acima, o fabricante deve apresentar comprovação da realização do ensaio de pressão hidrostática interna de cinco corpos de prova a 20 °C durante 1.000 h a 5.000 h e cinco corpos de prova a 60 °C durante 1.000 h a 5.000 h. Os tubos devem ser fabricados com composto de poli (cloreto de vinila) PVC-M, que assegure a obtenção de um produto que satisfaça os requisitos desta norma, avaliado por meio de ensaios permanentes durante a fabricação e ensaios de desempenho.

Cada tubo deve ter cor uniforme e ser livre de corpos estranhos, bolhas, rachaduras ou outros defeitos visuais que indiquem descontinuidade do material e/ou do processo de extrusão. As conexões para execução de adutoras e redes de distribuição em sistemas enterrados de abastecimento de água ou esgotamento pressurizado de esgoto devem ser de ferro fundido dúctil, do tipo “bolsa – bolsa”, fabricadas de acordo com as NBR 7675 e NBR 15420.

Para avaliação de lotes de tubos coletados fora das dependências dos fabricantes, desde que as condições de estocagem estejam de acordo com a NBR 9822, devem ser realizados todos os ensaios de desempenho e de fabricação prescritos nesta norma, com exceção do ensaio de verificação da resistência ao impacto, que deve ser realizado obrigatoriamente no controle do processo de fabricação e na inspeção de recebimento em fábrica. Se não for comprovada a realização do ensaio de verificação da resistência ao impacto no controle do processo de fabricação e na inspeção de recebimento em fábrica, o lote deve ser rejeitado.

A inspeção de recebimento do produto acabado deve ser feita em fábrica ou por acordo prévio entre comprador e fabricante, em laboratórios acreditados. O comprador deve ser avisado com antecedência mínima acordada com o fabricante da data na qual deve ter início a inspeção de recebimento. Caso o comprador não compareça na data estipulada para acompanhar os ensaios de recebimento e não apresente justificativa para este fato, o fabricante deve proceder à realização dos ensaios previstos nesta norma e tomar as providências para a entrega do produto com o correspondente laudo de inspeção emitido pelo controle da qualidade da fábrica.

Nas inspeções realizadas em fábrica, o fabricante deve colocar à disposição do comprador os equipamentos e pessoal especializado para a execução dos ensaios de recebimento. Todo fornecimento deve ser dividido pelo fabricante em lotes de mesmo diâmetro nominal (DN) e cujas quantidades estejam de acordo com as tabelas 14 e 15, disponíveis na norma. De cada lote formado devem ser retiradas as amostras, de forma representativa, sendo a escolha aleatória e não intencional.

A inspeção de recebimento de lotes com tamanho inferior a 16 unidades deve ser objeto de acordo prévio entre fornecedor e comprador. Os ensaios de recebimento devem ser feitos conforme estabelece esta norma e limitam-se aos lotes de produto acabado apresentados pelo fabricante. Os tubos constituintes das amostras devem ser submetidos aos seguintes ensaios não destrutivos: visual (4.3.3.2 e Seção 7) e dimensional (4.4.1.1, 4.4.1.3, 4.4.1.4 e 4.6.1); e aos seguintes ensaios destrutivos: estabilidade dimensional (4.6.2), resistência ao impacto (4.6.3), compressão diametral (4.6.4), resistência à pressão hidrostática interna de curta duração (4.6.5), resistência ao cloreto de metileno (4.6.6), resistência à pressão hidrostática interna de tubo com entalhe longitudinal (4.9.1), estanqueidade da junta elástica (4.7.2) e resistência do anel C (4.8.1).

O comprador ou seu representante pode solicitar ao fabricante a execução do ensaio para verificação do índice de refração do cloreto de metileno em sua presença, antes da realização do ensaio de resistência ao cloreto de metileno. Para cada lote entregue, o relatório de inspeção deve conter no mínimo o seguinte: identificação do produto; código de rastreabilidade do produto; tamanho do lote inspecionado; resultados dos ensaios de recebimento; resultados dos ensaios de caracterização e de desempenho apresentados pelo fabricante; declaração de que o lote atende ou não às especificações desta norma.

A elaboração de planos de intervenção para reabilitação de áreas contaminadas

Entenda os procedimentos para a elaboração de planos de intervenção para reabilitação de áreas contaminadas, contemplando a definição de medidas de intervenção, a apresentação do modelo conceitual de intervenção e o relatório técnico do plano de intervenção.

A NBR 16784-1 de 04/2020 – Reabilitação de áreas contaminadas — Plano de intervenção – Parte 1: Procedimento de elaboração estabelece o procedimento para a elaboração de planos de intervenção para reabilitação de áreas contaminadas, contemplando a definição de medidas de intervenção, a apresentação do modelo conceitual de intervenção e o relatório técnico do plano de intervenção.

Acesse algumas dúvidas relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como executar a caracterização do meio físico e mapeamento espacial da contaminação?

Como fazer a definição das medidas de intervenção?

Como realizar a análise das incertezas e limitações do plano de intervenção?

O que deve apresentar a síntese das etapas de investigação e avaliação de risco?

Pode-se definir uma área contaminada como aquela área, terreno, local, instalação, edificação ou benfeitoria que contenha quantidades ou concentrações de matéria em condições que causem ou possam causar danos à saúde humana, ao meio ambiente ou a outro bem a proteger. A área contaminada com risco confirmado (ACRi) é a aquela onde foi constatada contaminação, por meio de investigação detalhada e avaliação de risco, no solo ou em águas subterrâneas, a existência de risco à saúde ou à vida humana, risco ecológico (quando aplicável), ou onde foram ultrapassados os requisitos legais aplicáveis.

A área contaminada em processo de remediação (ACRe) é a área onde estão sendo aplicadas medidas de remediação visando à eliminação da massa de contaminantes ou, na impossibilidade técnica ou econômica, sua redução ou a execução de medidas de contenção e/ou isolamento. A área contaminada em processo de reutilização (ACRu) é aquela área contaminada onde se pretende estabelecer um uso do solo diferente daquele que originou a contaminação, com a eliminação, ou a redução a níveis aceitáveis, dos riscos aos bens a proteger, decorrentes da contaminação com a implementação das medidas de intervenção propostas.

A área em processo de monitoramento para encerramento (AME) é a área na qual não foi constatado risco acima dos níveis aceitáveis, ou a área nas quais as concentrações máximas aceitáveis (CMA) não foram superadas após implantadas as medidas de intervenção, encontrando-se em processo de monitoramento para verificação da manutenção das concentrações em níveis aceitáveis. A área reabilitada para o uso pretendido declarado (AR) é a área, terreno, local, instalação, edificação ou benfeitoria anteriormente contaminada que, depois de submetida às medidas de intervenção, ainda que não tenha sido totalmente eliminada a massa de contaminação, mas tenha restabelecido o nível de risco aceitável à saúde humana, ao meio ambiente e a outros bens a proteger.

Assim, a elaboração de um plano de intervenção deve ser realizada de forma clara e concisa, dentro de uma abordagem sistemática de avaliação das melhores alternativas de intervenção visando à reabilitação da área contaminada para uso pretendido, considerando a mitigação dos riscos à saúde humana e ao meio ambiente a níveis aceitáveis de risco bem como, quando possível, a extinção da exposição. As medidas de intervenção propostas no plano de intervenção devem ser definidas em função da natureza dos contaminantes, das características do meio, dos cenários de exposição, do nível de risco existente, das metas para reabilitação, do uso pretendido para o local, da proteção dos bens a proteger e da sustentabilidade a elas associadas.

Caso necessário, medidas emergenciais também podem ser previstas no plano de intervenção. A elaboração do plano de intervenção deve ter como base, mas não se limitar a, as informações e dados gerados e disponibilizados a partir das etapas relacionadas ao gerenciamento de áreas contaminadas, anteriormente executadas. O plano de intervenção deve ser desenvolvido considerando as seguintes etapas: definição dos objetivos do plano de intervenção; definição das medidas de intervenção a serem adotadas; seleção das técnicas a serem adotadas; desenvolvimento do modelo conceitual de intervenção; e a análise das incertezas e limitações do plano de intervenção.

Os objetivos do plano de intervenção devem ser definidos considerando a conclusão acerca da necessidade de adoção de medidas de intervenção, definidas na etapa de avaliação de riscos à saúde humana que deve ser realizada conforme a NBR 16209 ou risco ecológico, quando em ecossistemas naturais ou a possibilidade de ocorrência de efeitos adversos aos organismos presentes em ecossistemas naturais, entendido como fragmento de vegetação legalmente protegida, localizado dentro de Unidade de Conservação de Proteção Integral, em decorrência de substancias presentes em uma área contaminada.

Os seguintes objetivos devem ser considerados na elaboração do plano de intervenção, quando aplicáveis: controlar as fontes de contaminação identificadas; atingir os níveis aceitáveis de risco aos receptores humanos ou ecológicos expostos à área contaminada; evitar que outros bens a proteger sejam afetados. A definição dos objetivos do plano de intervenção deve estar alinhada à classificação da área, conforme a seguir: área contaminada com risco confirmado; área contaminada em processo de remediação; área contaminada em processo de reutilização; área em processo de monitoramento para encerramento.

A decisão sobre as medidas de intervenção a serem propostas deve ter como base: a redução das concentrações das substâncias químicas de interesse nos compartimentos do meio físico contaminados que oferecem risco à saúde humana ou risco ecológico, considerando a sua distribuição espacial mapeada anteriormente na etapa de investigação detalhada, a qual deve ser realizada conforme a NBR 15515-3; o controle e, se possível, a eliminação da exposição de receptores localizados em regiões nas quais foi quantificado algum risco acima de níveis aceitáveis; a contenção e o controle da expansão das plumas de contaminação mapeadas na investigação detalhada.

A definição das medidas de intervenção deve ser realizada com base nas seguintes etapas: a definição das premissas; a compilação e análise de dados existentes; a definição das medidas de intervenção; e a discussão técnica com as partes interessadas. Para o atingimento dos objetivos propostos, o plano de intervenção pode também estabelecer medidas de remediação (técnicas de tratamento e contenção), medidas de engenharia e medidas de controle institucional, que podem ser adotadas em conjunto ou isoladamente.

A principal premissa para a elaboração do plano de intervenção é garantir por meio de medidas de remediação, de engenharia, e/ou institucionais que seja possível a reabilitação do imóvel para o uso pretendido. As premissas a serem consideradas incluem: não ampliação das unidades de exposição definidas nos mapas de risco; controlar, eliminar ou interromper a exposição dos receptores; considerar a viabilidade técnica e os aspectos econômicos e ambientais; considerar a capacitação técnica das partes envolvidas na elaboração do plano de intervenção. As etapas do gerenciamento de áreas contaminadas, realizadas antes do plano de intervenção, devem atender o disposto nas NBR 15515-1, NBR 15515-2, NBR 15515-3 e NBR 16209.

Com base nos dados e informações gerados nestas etapas do gerenciamento de áreas contaminadas, realizar a compilação e análise de dados existentes, considerando: a caracterização dos compartimentos do meio físico de interesse, bem como mapeamento espacial da contaminação, desenvolvidos na etapa de investigação detalhada; o modelo conceitual de exposição (MCE) definido na etapa de avaliação de risco à saúde humana ou risco ecológico; as metas para reabilitação da área para o uso pretendido declarado na etapa da avaliação de risco à saúde humana ou risco ecológico, quando em ecossistemas naturais. Os dados analisados nesta etapa devem ser suficientes e representar a realidade atual da área de interesse, de modo a possibilitar a elaboração do plano de intervenção, caso contrário, estes devem ser atualizados e/ou complementados.

A instalação correta de um sistema de aquecimento solar (SAS)

Saiba quais são os requisitos de projeto e instalação para o sistema de aquecimento solar (SAS), considerando aspectos de concepção, dimensionamento, arranjo hidráulico, instalação e manutenção, onde o fluido de transporte é a água. 

A NBR 15569 de 04/2020 – Sistema de aquecimento solar de água em circuito direto — Requisitos de projeto e instalação estabelece os requisitos de projeto e instalação para o sistema de aquecimento solar (SAS), considerando aspectos de concepção, dimensionamento, arranjo hidráulico, instalação e manutenção, onde o fluido de transporte é a água. É aplicável ao SAS composto por coletor(es) solar(es), reservatório (s) termossolar (es)

com ou sem sistema de aquecimento auxiliar de água e com circulação de água nos coletor (es) solar (es), por termossifão ou por circulação forçada. Esta norma não é aplicável ao aquecimento de água de piscinas nem a sistemas de aquecimento solar em circuito indireto.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Como pode ser classificado o SAS?

Como deve ser feito o alívio de pressão ou respiro?

Por que prever a proteção contra corrosão?

Qual a aparência de um reservatório termossolar fechado para atmosfera?

A documentação do projeto deve contemplar no mínimo os seguintes elementos: premissas de cálculo; dimensionamento; fração solar; produção mensal específica de energia (PMEe); memorial descritivo; volume de armazenamento; pressão de trabalho; fontes de abastecimento de água; área coletora; ângulos de orientação e de inclinação dos coletores solares; estudo de sombreamento; previsão de dispositivos de segurança; massa dos principais componentes; considerações a respeito de propriedades físico-químicas da água; localização, incluindo endereço; indicação do norte geográfico; planta, corte, isométrico, vista, detalhe e diagrama esquemático necessários, para perfeita compreensão das interligações hidráulicas e interfaces dos principais componentes; esquema, detalhes e especificação para operação e controle de componentes elétricos (quando aplicável); especificação dos coletores solares e reservatórios termossolares; especificação de tubos, conexões, isolamento térmico, válvulas e motobomba; tipos e localização de suportes e métodos de fixação de equipamentos, quando aplicável; e especificação do sistema de aquecimento auxiliar.

O profissional capacitado ou qualificado deve instruir o responsável pelo uso do SAS sobre o método de sua operação e entregar no mínimo a documentação contendo as seguintes informações: contatos dos responsáveis técnicos pelo projeto, execução e entrega do SAS; nome, telefone, endereço físico e eletrônico do fornecedor/fabricante do produto; modelo e características dos equipamentos contidos no SAS; descrição do funcionamento do SAS; procedimentos para operação e manutenção do SAS; programa de manutenção do SAS; garantias e condições de exclusão da garantia.

A descrição do funcionamento do SAS deve contemplar: diagrama do SAS, mostrando seus componentes e suas inter-relações no sistema típico instalado; diagramas elétricos e de fluxo (se aplicável). Os procedimentos de operação devem contemplar: procedimentos para partida do sistema; rotinas de operação; procedimentos de desligamento do SAS em situações de emergência e de segurança. O programa de manutenção deve contemplar no mínimo: quadro sintomático com os problemas mais comuns, seus sintomas e soluções; descritivo da limpeza periódica dos coletores solares e reservatórios termossolares indicando os materiais adequados a serem utilizados; descritivo para drenagem e reabastecimento; inspeção periódica de corrosão; inspeção periódica dos elementos instalados contra corrosão (quando aplicável); inspeção periódica do sistema de anticongelamento (quando aplicável); inspeção dos componentes elétricos e cabos de interligação (quando aplicável); inspeção periódica do sistema de fixação e suporte dos componentes do SAS; inspeção periódica do sistema de aquecimento auxiliar (quando aplicável).

O responsável pelo uso do SAS deve solicitar e manter os seguintes documentos: projeto; manual de operação e manutenção; documentação necessária para a análise e aprovação das autoridades competentes conforme legislações vigentes aplicáveis para elaboração do projeto e da instalação; registros de manutenção. Recomenda-se que os documentos citados estejam sempre disponíveis e que sejam de fácil acesso para análise, no local da instalação. O projeto do SAS deve ser elaborado por profissional habilitado, conforme legislação vigente.

O sistema de aquecimento solar deve ser executado em conformidade com o projeto. Qualquer alteração no projeto do SAS deve ser registrada e executada após aprovação do profissional habilitado responsável pelo projeto. A instalação do SAS deve ser supervisionada por profissional habilitado e deve ser acompanhada da respectiva ART. O profissional capacitado ou qualificado do SAS deve estar de posse dos procedimentos definidos e ser qualificado para execução dos serviços, bem como registros e evidências que possam comprovar tal capacitação.

A equipe responsável pela instalação do SAS deve possuir no mínimo as capacitações em: instalações de sistemas de aquecimento solar; instalações hidráulicas; instalações elétricas em baixa tensão (quando aplicável); instalações de redes internas de gases combustíveis (quando aplicável); segurança na realização de serviços de instalações de SAS; segurança de trabalhos em altura. A entrega do SAS deve ser realizada por profissional capacitado, qualificado ou habilitado.

Recomenda-se a análise adequada dos materiais e equipamentos a serem utilizados, e dos serviços de projeto, de instalação e de manutenção, bem como o atendimento aos requisitos de projeto definidos para o funcionamento adequado do SAS. Em relação aos materiais e equipamentos, deve-se assegurar de que eles atendam aos requisitos das normas de especificação aplicáveis.

Com relação à prestação de serviços, deve-se assegurar a capacidade e gestão organizacional das empresas, principalmente em relação aos requisitos de qualidade, de segurança e de meio ambiente, bem como a adequada capacitação da mão-de-obra empregada na realização de cada tipo de serviço executado. O SAS é constituído basicamente por três elementos principais: coletor (es) solar (es); reservatório (s) termossolar (es); e sistema de aquecimento auxiliar.

O projeto do SAS deve considerar e especificar a vida útil projetada para cada um dos elementos principais. A transferência de energia entre cada um destes elementos é assegurada pelos seguintes circuitos: primário (transferência de energia captada nos coletores para seu armazenamento), ver Anexo A; secundário (abastecimento e distribuição da água na rede), ver Anexo A. Os materiais e componentes do SAS e suas interligações devem ser especificados de maneira que contemplem a dilatação térmica, característica de cada material em função da variação da temperatura do SAS.

As medidas necessárias para acomodar as dilatações devem ser previstas em projeto. Os componentes que contenham partes móveis, com manutenção adequada, devem ser capazes de cumprir a função para a qual tenham sido projetados sem desgaste ou deterioração excessiva. Os coletores solares, reservatórios termossolares, motobombas, válvulas, tubulações e outros componentes devem operar corretamente dentro dos intervalos de pressão e temperatura de projeto e suportar as condições ambientais previstas para o funcionamento real sem a redução da vida útil projetada para o sistema.

Deve-se prever que o SAS resista a períodos sem consumo de água quente sem deterioração significativa do sistema e de seus componentes. O SAS deve estar projetado de modo a suportar falhas no fornecimento de energia e de água evitando que haja danos aos seus componentes. Os materiais incompatíveis do ponto de vista de corrosão, erosão e incrustação devem ser protegidos ou tratados para prevenir degradação dentro das condições de serviço. A tabela abaixo apresenta os componentes e suas respectivas funções para o SAS.

Para o dimensionamento dos coletores solares deve-se considerar, entre outros aspectos, as características de consumo, as temperaturas de armazenamento, a pressão de trabalho e as características da água. A seleção dos coletores solares deve considerar os seguintes parâmetros: curva de eficiência térmica instantânea para a aplicação pretendida; características de instalação do(s) coletor(es) como localidade, orientação, inclinação e sombreamento; compatibilidade de uso.

Para o dimensionamento do sistema de armazenamento deve-se considerar entre outros aspectos, as características de consumo, as temperaturas de armazenamento, a pressão de trabalho e as características da água. A seleção do sistema de armazenamento deve considerar os seguintes parâmetros: as perdas térmicas; a estratificação térmica; a compatibilidade de uso. Devem ser tomadas as precauções necessárias para prever as variações volumétricas e térmicas da água sem que a sua pressão supere as condições de trabalho do SAS.

Quando aplicável, deve ser previsto um sistema de aquecimento auxiliar para complementar a demanda energética para o perfil de consumo previsto. A especificação do sistema de aquecimento auxiliar e seu modo de funcionamento devem considerar a influência que esta causa no desempenho do SAS. A especificação do sistema de aquecimento auxiliar, de qualquer tipo, deve priorizar o aquecimento solar. O sistema de aquecimento auxiliar pode ser utilizado em série ou em paralelo com o reservatório termossolar desde que seja compatível com as temperaturas do sistema, em relação ao circuito secundário.

Os equipamentos para emergências no transporte terrestre de produtos perigosos

Deve-se dispor de um conjunto mínimo de equipamentos para situações de emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual (EPI), a ser utilizado pelo condutor e pelos auxiliares envolvidos (se houver) no transporte nas ações iniciais, equipamentos para sinalização da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para carga.

A NBR 9735 de 03/2020 – Conjunto de equipamentos para emergências no transporte terrestre de produtos perigosos estabelece o conjunto mínimo de equipamentos para situações de emergências no transporte terrestre de produtos perigosos, constituído de equipamento de proteção individual (EPI), a ser utilizado pelo condutor e pelos auxiliares envolvidos (se houver) no transporte nas ações iniciais, equipamentos para sinalização da área da ocorrência (avaria, acidente e/ou emergência) e extintor de incêndio portátil para carga. Não é aplicável aos equipamentos de proteção individual exigidos para as operações de manuseio, carga, descarga e transbordo, bem como aos equipamentos de proteção para o atendimento emergencial a serem utilizados pelas equipes de emergência pública ou privada.

Acesse algumas questões relacionadas a essa norma GRATUITAMENTE no Target Genius Respostas Diretas:

Quais as exigências para os extintores de incêndio no transporte rodoviário?

Qual é o agente extintor e capacidade extintora?

Qual deve ser o conjunto de equipamentos para situações de emergência para o transporte ferroviário?

Para o transporte ferroviário, quais os tipos de extintores e capacidade extintora mínima?

Essa norma teve como base os conhecimentos e a consulta realizada no mercado, porém se sugere que os fabricantes ou importadores do produto perigoso para o transporte terrestre verifiquem se o conjunto de equipamento de proteção individual (EPI) mínimo necessário à proteção do condutor e auxiliares, para avaliar a emergência (avarias no equipamento de transporte, veículo e embalagens) e as ações iniciais, bem como o extintor de incêndio são os indicados nesta norma. Caso estes equipamentos sejam inadequados ou insuficientes para o fim a que destina esta norma, qualquer parte interessada pode solicitar uma revisão para reavaliação, inclusive do grupo do EPI e/ou do extintor.

O transportador deve fornecer o conjunto de equipamentos de proteção individual e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em condições de uso e funcionamento, além de propiciar o treinamento adequado ao condutor e aos auxiliares (se houver) envolvidos no transporte, sobre o uso, guarda e conservação destes equipamentos. Cabe ao expedidor fornecer o conjunto de equipamentos de proteção individual e o conjunto para situação de emergência adequados, conforme estabelecidos nesta norma, em condições de uso e funcionamento, juntamente com as devidas instruções para sua utilização, caso o transportador não os possua.

As condições de uso não implicam necessariamente em equipamentos novos e sem uso. Para a realização do treinamento, o transportador deve atender às orientações dos fabricantes do produto perigoso e do EPI. Para efetuar a avaliação da emergência e ações iniciais, o condutor e os auxiliares (se houver) devem utilizar o EPI indicado nesta norma, além do traje mínimo obrigatório, que é composto por calça comprida, camisa ou camiseta, com mangas curtas ou compridas, e calçados fechados.

As ações inicias do condutor estão discriminadas na NBR 14064, A.1. O traje mínimo obrigatório não é considerado EPI, portanto não necessita atender ao descrito abaixo. Durante o transporte, o condutor e os auxiliares (se houver) devem utilizar o traje mínimo obrigatório. Recomenda-se o uso de vestimenta com material refletivo para o condutor e auxiliares (se houver) envolvidos no transporte realizado no período noturno (do pôr do sol ao amanhecer).

Todo o EPI deve atender à legislação vigente. Para fins de utilização do EPI, desde que adquirido dentro do prazo de validade do CA, devem ser observados a vida útil indicada pelo fabricante, de acordo com as características dos materiais usados na sua composição, o uso ao qual se destina, as limitações de utilização, as condições de armazenamento e a própria utilização. A observação desta validade de uso é do empregador que fornece o EPI aos seus trabalhadores.

Os EPI devem estar em condições de uso, não comprometendo a função do EPI, e acondicionados na cabine do veículo ou do caminhão-trator. No veículo (simples ou combinado), deve haver conjuntos de EPI para todas as pessoas envolvidas (condutor e auxiliares) no transporte. O filtro do equipamento de proteção respiratória deve ser substituído conforme especificação do fabricante (saturação pelo uso ou esgotamento da vida útil) ou em caso de danos que comprometam a eficácia do equipamento.

Os filtros podem estar lacrados e não acoplados às peças faciais inteiras ou às peças semifaciais durante o transporte, devendo o condutor e os auxiliares ter sido treinados para realizarem o devido acoplamento destes filtros. Os tipos de filtros químicos citados nesta norma são: amônia – indicada por NH3; dióxido de enxofre – indicado por SO2; gases ácidos – indicados por GA; monóxido de carbono – indicado por CO; vapores orgânicos – indicados por VO; polivalente ou multigases (destinado à retenção simultânea das substâncias citadas.

Podem ser utilizados equipamentos de proteção respiratória com filtros polivalentes (PV) em substituição ao filtro especificado para cada grupo, exceto no caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono e chumbo tetraetila. Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes onde é exigido o filtro, podem ser utilizados filtros polivalentes (PV) em substituição aos filtros especificados para os grupos, exceto para o caso de produtos perigosos específicos que não permitam a utilização de filtro polivalente, como, por exemplo, monóxido de carbono (nº ONU 1016) e chumbo tetraetila (nº ONU 1649).

Para o transporte concomitante de produtos perigosos de grupos de EPI diferentes, prevalece o grupo do EPI de maior proteção, por exemplo, a peça facial inteira prevalece sobre a peça semifacial e/ou óculos de segurança tipo ampla visão. Para o transporte de produtos da classe de risco 7 (material radioativo), deve ser adotado o EPI previsto no grupo 11, conforme 4.2.12-k), além do previsto pela legislação vigente. Para os produtos de nºs ONU 2908, 2909, 2910 e 2911 (volumes exceptivos), não é exigido portar EPI.

Para o transporte de produtos da classe de risco 1 (explosivos), deve ser adotado o EPI previsto no grupo 10, além do previsto pelo órgão governamental. O Ministério da Defesa também regulamenta o EPI para transporte de produtos da classe de risco 1.

Os produtos perigosos relacionados pelos nºs ONU e os grupos de EPI correspondentes estão listados no Anexo A. A composição dos conjuntos de equipamento de proteção deve ser a descrita a seguir. O grupo 1: capacete de segurança; luvas de segurança de material compatível com o(s) produto(s) transportado(s); óculos de segurança tipo ampla visão. O grupo 2: capacete de segurança; luvas de segurança de material compatível com o(s) produto(s) transportado(s); peça facial inteira com filtro VO/GA combinado com filtro mecânico.

O grupo 3: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro NH3. O grupo 4: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro CO combinado com filtro mecânico.

O grupo 5: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro SO2 combinado com filtro mecânico. O grupo 6: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão; peça semifacial com filtro VO/GA combinado com filtro mecânico.

O grupo 7: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão; peça semifacial com filtro NH3 combinado com filtro mecânico. O grupo 8 no transporte a granel: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); óculos de segurança tipo ampla visão. No transporte fracionado em botijões e cilindros envasados: capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s).

O grupo 9: capacete de segurança com protetor facial; luvas de segurança de material compatível com o (s) produto (s) transportado (s). O grupo 10 para os produtos da classe 1 (explosivos): capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s); peça facial inteira com filtro polivalente ou multigases combinado com filtro mecânico (P2). O grupo 11 para os produtos da classe 7 (material radioativo): capacete de segurança; luvas de segurança de material compatível com o (s) produto (s) transportado (s).

Os materiais de fabricação dos componentes dos equipamentos do conjunto para situações de emergência devem ser compatíveis e apropriados aos produtos perigosos transportados. Os equipamentos do conjunto para situações de emergência devem estar em qualquer local no veículo fora do compartimento de carga, podendo estar lacrados e/ou acondicionados em locais com chave, cadeado ou outro dispositivo de trava, a fim de evitar roubo ou furto dos equipamentos de emergência, exceto o (s) extintor (es) de incêndio.

Somente em veículos com peso bruto total até 3,5 t, os equipamentos do conjunto para situações de emergência podem ser colocados no compartimento de carga, desde que estejam localizados próximos a uma das portas ou tampa, não podendo ser obstruídos pela carga. As regras de localização e acondicionamento dos extintores estão previstas nas exigências para os extintores de incêndio no transporte rodoviário.

Para o transporte de produtos da classe de risco 7 (material radioativo) de nºs ONU 2908, 2909, 2910 e 2911 (volumes exceptivos), não é exigido portar o conjunto para situação de emergência. Os veículos e combinações de veículos utilizados no transporte rodoviário de produtos perigosos, exceto os que transportam produtos perigosos na quantidade limitada por veículo conforme legislação em vigor, devem portar no mínimo os equipamentos relacionados a seguir.

A quantidade limitada de produtos perigosos por veículo é citada na coluna 8 do Anexo da Resolução ANTT nº 5232/2016 e suas atualizações. Devem portar os calços, na quantidade descrita na tabela abaixo, com dimensões mínimas de 150 mm × 200 mm × 150 mm (conforme a figura abaixo). No caso de produtos cujo risco principal ou subsidiário seja inflamável, os calços devem ser de material antifaiscante.

Devem possuir um jogo de ferramentas adequado para reparos em situações de emergência durante a viagem, contendo no mínimo: um alicate universal; uma chave de fenda ou chave Philips (conforme a necessidade); e uma chave apropriada para a desconexão do cabo da bateria. Devem portar quatro cones para sinalização da via, que atendam à NBR 15071; extintor (es) de incêndio para a carga; para os materiais radioativos (classe 7), além dos equipamentos citados nas alíneas anteriores, o supervisor de proteção radiológica (SPR) deve determinar, com base nas características do material radioativo a ser transportado, os eventuais itens a serem adicionados ao conjunto de equipamento para situação de emergência.

Quando um reboque ou semirreboque for desatrelado e, desta forma, forem usados os equipamentos de emergência no veículo imobilizado, devem ser providenciados novos equipamentos de emergência, antes de prosseguir a viagem. Os extintores devem atender à legislação vigente e estar com identificação legível. Os extintores devem ter a certificação do Inmetro e as empresas responsáveis pela manutenção e recarga dos extintores são acreditadas pelo Inmetro.

Os dispositivos de fixação do extintor devem possuir mecanismos de liberação, de forma a simplificar esta operação, que exijam movimentos manuais mínimos. Os dispositivos de fixação do extintor não podem possuir mecanismos que impeçam a sua liberação imediata, como chaves, cadeados ou ferramentas. A cada viagem devem ser verificados o estado de conservação do extintor, a pressão de operação e a sua carga, considerando que o indicador de pressão não pode estar na faixa vermelha, bem como os seus dispositivos de fixação.

No transporte a granel, os extintores não podem estar junto às válvulas de carregamento e/ou descarregamento. Para produtos perigosos inflamáveis ou produtos com risco subsidiário de inflamabilidade, os extintores devem estar localizados um do lado esquerdo e outro do lado direito do veículo e, no caso de combinação de veículos, cada semirreboque ou reboque deve ter os extintores localizados um do lado esquerdo e o outro do lado direito. No caso de reboque ou semirreboque, carregado ou contaminado com produto perigoso e desatrelado do caminhão-trator, pelo menos um extintor de incêndio deve estar no reboque ou semirreboque.

ANSI B11.19: as medidas para a redução de risco

Essa norma internacional, editada em 2019 pela American National Standards Institute (ANSI), fornece os requisitos de desempenho para o projeto, a construção, a instalação, a operação e a manutenção das medidas de redução de risco listadas abaixo quando aplicadas a máquinas – inerentemente seguras pelo projeto (consulte a seção 7); controles de engenharia – guardas (ver seção 8); controles de engenharia – funções de controle (ver seção 9); controles de engenharia – dispositivos (ver seção 10); e controles administrativos (ver seção 11).

A ANSI B11.19:2019 – Performance Requirements for Risk Reduction Measures: Safeguarding and other Means of Reducing Risk fornece os requisitos de desempenho para o projeto, a construção, a instalação, a operação e a manutenção das medidas de redução de risco listadas abaixo quando aplicadas a máquinas – inerentemente seguras pelo projeto (consulte a seção 7); controles de engenharia – guardas (ver seção 8); controles de engenharia – funções de controle (ver seção 9); controles de engenharia – dispositivos (ver seção 10); e controles administrativos (ver seção 11).

De uma forma geral, o objetivo principal desta norma é estabelecer os requisitos para o projeto, construção, instalação, operação e manutenção das medidas de redução de risco usadas para eliminar ou controlar os perigos para os indivíduos associados às máquinas. Esta norma se baseia em outras normas para determinar quais medidas de redução de risco são necessárias ou permitidas para controlar perigos/situações perigosas identificadas e devem ser usadas em conjunto com a norma ANSI B11.0 sobre requisitos gerais de segurança e avaliações de risco de máquinas e qualquer padrão base ANSI B11 relevante para uma determinada máquina.

Para atingir esse objetivo, essa norma estabeleceu responsabilidades para o fornecedor (por exemplo, fabricante, reconstrutor, instalador, integrador e modificador), usuário e indivíduos no ambiente de trabalho. O objetivo geral é alcançar riscos aceitáveis nas práticas e no ambiente de trabalho. Outros setores da indústria podem se beneficiar com a aplicação desta norma. Nos casos em que exista uma norma de segurança específica da máquina (tipo C), a ANSI B11.19 pode ser usada de forma construtiva para suplementar esse padrão.

As palavras seguro e segurança não são absolutas. A segurança começa com um bom projeto. Embora o objetivo desta norma seja eliminar lesões, ela reconhece que os fatores de risco não podem ser praticamente reduzidos a zero em nenhuma atividade humana. Esta norma não se destina a substituir o bom senso e a responsabilidade pessoal. A habilidade, atitude, treinamento, monotonia do trabalho, fadiga e experiência do operador são fatores que afetam a segurança e devem ser considerados pelo usuário.

Ao longo de sua história, a ANSI B11.19 não forneceu os requisitos para a seleção das medidas de redução de risco, mas apenas a implementação da medida de redução de risco uma vez escolhida. Nenhuma ordem hierárquica, nenhum nível de redução de risco ou qualquer relação entre as opções de medida de redução de risco estão implícitos dentro desta norma.

As informações a seguir são dados efetivos e são apenas orientações informativas e não fazem parte normativa deste padrão. Este Subcomitê reconhece que, após a data de aprovação na página de título deste documento, é necessário que os fornecedores e os usuários desenvolvam novos projetos ou modifiquem projetos ou processos de fabricação existentes para incorporar os requisitos novos ou revisados desta norma em seus desenvolvimentos de produtos ou sistema de produção.

Este Subcomitê recomenda que os fornecedores concluam e implementem alterações no projeto de novas máquinas e sistemas de máquinas dentro de 30 meses a partir da data de aprovação deste padrão. O Subcomitê recomenda que os usuários avaliem se as máquinas e sistemas de máquinas existentes têm risco aceitável dentro de 30 meses a partir da data de aprovação desta norma, usando métodos de avaliação de risco geralmente reconhecidos. Se a avaliação de risco mostrar que modificações são necessárias, consulte os requisitos desta norma ou da norma de segurança base específica da máquina para implementar medidas de redução de risco (medidas de proteção) para uma redução de risco apropriada.

Enfim, os requisitos desta norma foram harmonizados com os semelhantes em várias normas internacionais (ISO e IEC) e europeias (EN). Harmonização significa que os requisitos foram alinhados em essência para alcançar um nível semelhante de redução de risco. Harmonização não significa duplicação de requisitos exatos.

A ANSI B11.19 implementa uma filosofia de padronização que difere significativamente da encontrada em algumas normas ISO, IEC e EN. As normas ISO, IEC e EN tendem a ser documentos individuais para cada tipo de medida de redução de risco (por exemplo, cortinas de luz, controles de parada de emergência, prevenção de inicialização inesperada etc.). A ANSI B11.19 historicamente combinou os vários requisitos em uma única norma, permitindo assim que os leitores entendam e comparem os requisitos de diferentes abordagens para reduzir o risco.