
A sondagem para investigação ambiental em áreas e terrenos que abrigam ou abrigaram atividades poluidoras é feita com a instalação de poços de monitoramento de água subterrânea para a investigação de passivos ambientais. Podem ser feitas com a sondagem a percussão, sondagem a percussão com torque, sondagem à trado e sondagem mecanizada. Ela pode ser realizada nas etapas de gerenciamento de áreas contaminadas, como por exemplo para os estudos de Investigação confirmatória e investigação detalhada. A investigação confirmatória tem como objetivo constatar ou não a presença de contaminantes na área investigada. Nesta etapa são realizadas coletas representativas de solo, água subterrânea e vapor através da execução de sondagens e instalação de poços de monitoramento.
Nos casos em que o método de perfuração escolhido permitir a coleta de amostras, é obrigatória a descrição das características do material. Para isso é necessária uma observação táctil-visual do solo amostrado durante a sondagem de campo. As características que devem ser observadas e descritas, quando possível, são: cor; textura; consistência; nódulos e concreções minerais; presença de carbonatos; presença de manganês; coesão; e os aspectos descritivos das estruturas da amostra.
Os dados obtidos e observados em campo com base nas características listadas devem ser registrados e, quando possível, devem ser fotografados. Estas informações devem ser compiladas e apresentadas em um relatório. A cor é uma característica de mais fácil visualização nos solos e, a partir dela, é possível fazer inferências como, por exemplo, quanto ao conteúdo de matéria orgânica (MO), pois os solos escuros contêm maior conteúdo de MO.
A caracterização da cor segue uma padronização mundial, que é o Sistema Munsell de Cores para Solos (Munsell Soil Color Charts). Para a observação da cor, é conveniente quebrar os agregados ou torrões para se determinar se a cor é a mesma, dentro ou fora da amostra.
Em casos em que os solos tenham estrutura granular muito pequena como, por exemplo, do tamanho do pó de café, deve se tomar uma porção de material suficiente para a comparação com os padrões existentes na carta de cores. Esta caracterização da cor deve ser feita obrigatoriamente em campo e é importante que haja uma boa iluminação. Alguns materiais podem estar mesclados com mais de uma cor e esse padrão é chamado de mosqueado ou variegado.
Quando a amostra tiver várias cores, mas não houver predominância perceptível de uma cor constituindo fundo, deve ser denominada coloração variegada. Se a coloração variegada for muito complexa, devem ser registrados os nomes das cores. A textura se refere à proporção relativa das frações granulométricas, ou seja, das frações de areia, silte e argila que compõem a amostra de solo. Ela deve ser obrigatoriamente descrita no campo e é estimada pelas sensações táteis. A areia pode ser subdividida em areia grossa, média, fina e muito fina.
Por exemplo, um solo arenoso será áspero à medida que o teor de areia grossa presente for maior. Os grãos de areia são visíveis a olho nu. O silte é facilmente percebido em amostras que contêm alto teor e confere ao solo uma sedosidade ao tato, semelhante ao talco. A argila confere ao solo uma maior plasticidade (capacidade de moldar-se) e pegajosidade (capacidade de aderir-se), se comparada às frações de areia e silte.
Quando necessário, um maior refinamento na determinação da granulometria pode ser realizado em campo com o auxílio de peneiras e/ou em laboratórios. Recomenda-se que, ao se avaliar a textura, a amostra de solo seja homogeneizada, a fim de quebrar os agregados, impedindo uma má interpretação destes como sendo fração areia. É raro encontrar um solo composto por apenas uma fração granulométrica.
Assim, existem classes de textura que tentam definir as diferentes combinações da areia, silte e argila. Quando forem observadas frações acima de 2 mm de diâmetro, estas são denominadas frações grosseiras e devem ser classificadas em: cascalho: fração de 2 mm a 2 cm de diâmetro; calhaus (seixo): fração de 2 cm a 20 cm de diâmetro; e matacão: fração maior que 20 cm de diâmetro. O termo seixo é utilizado somente para as frações grosseiras que apresentam contornos arredondados (rolados).
A consistência e a caracterização da plasticidade devem seguir as orientações descritas na norma, na tabela dos estados de compacidade e de consistência) da NBR 6484:2001. Os nódulos e concreções minerais são corpos cimentados que podem ser removidos intactos da matriz do solo. A composição destes corpos varia de matérias semelhantes à massa de solo contígua até as substâncias puras de composição totalmente diferente da matriz do solo.
As concreções se diferenciam dos nódulos pela organização interna. As concreções têm simetria interna disposta em torno de um ponto, de um plano ou de uma linha, e os nódulos carecem de uma organização interna ordenada. A descrição, neste caso, deve contemplar a quantidade, tamanho, dureza, cor e natureza das concreções e nódulos, conforme descrito a seguir. Quantidade: muito pouco – menos de 5% do volume; pouco – 5% a 15% do volume; frequente – 15% a 40% do volume; muito frequentes – 40% a 80% do volume; dominante – mais que 80% do volume; tamanho: pequeno – menor que 1 cm de diâmetro – maior dimensão; grande – maior que 1 cm de diâmetro – maior dimensão; dureza: macio – pode ser quebrado entre os dedos; duro – não pode ser quebrado entre os dedos; forma: esférica, angular e irregular; cor: utilizar termos simples (preto, branco, vermelho, etc.).
Natureza: a natureza do material do qual o nódulo ou a concreção é principalmente formada, por exemplo: concreções ferruginosas (materiais com predomínio de compostos de ferro), ferro-magnesianas, carbonato de cálcio, etc. Exemplo de descrição: nódulo pouco pequeno (0,20 cm), macio, irregular, preto, ferroso, de estrutura amorfa. A presença de carbonatos devem ser observada em campo pela efervescência do material, por meio da adição de algumas gotas de HCl 10%.
A amostra deve ser partida e o HCl deve ser gotejado em uma superfície que não foi exposta à umidade. A efervescência pode ser: ligeira: efervescência fraca, bolhas visíveis; forte: efervescência visível, bolhas formam espuma na superfície da amostra; violenta: efervescência forte, forma rapidamente espuma e é possível visualizar os grãos de Ca na amostra.
A presença de manganês deve ser observada em campo pela efervescência da amostra de solo após a adição de algumas gotas de peróxido de hidrogênio (20 volumes). Esta característica pode ser: ligeira: efervescência fraca, somente ouvida; forte: efervescência visível, sem ruptura dos agregados; violenta: efervescência forte, causando na maioria das vezes ruptura dos agregados.
A coesão se divide em dois graus, pois o não coeso é desnecessário, porque neste caso o solo será considerado normal. Moderadamente coeso: material de solo, quando seco, resiste à penetração do trado e fraca organização estrutural. Quando seco, apresenta consistência geralmente dura; quando úmido, varia de friável a firme.
Fortemente coeso: o material, quando seco, resiste fortemente à penetração do trado e não apresenta organização estrutural visível. Quando seco, apresenta consistência muito dura e às vezes extremamente dura e úmida varia de friável a firme. As propriedades físicas dos solos não são determinadas somente com base na identificação ou classificação de campo, mas também por ensaios de laboratório ou de campo.
Devendo ser realizadas, quando necessário, as amostras representativas de solo e/ou rochas provenientes das sondagens devem ser coletadas e armazenadas segundo os procedimentos definidos pela agência regulamentadora, com base em normas específicas sobre o assunto. As características estruturais da amostra devem ser descritas em campo, caso sejam observadas, tais como: estratificação, fraturamento, foliação, grau de intemperismo, entre outros.
Confirmada em 01/02, a NBR 15492 de 06/2007 – Sondagem de reconhecimento para fins de qualidade ambiental – Procedimento estabelece os requisitos exigíveis para a execução de sondagem de reconhecimento de solos e rochas para fins de qualidade ambiental. Apresenta os equipamentos e descreve métodos de perfuração para a caracterização ambiental de áreas (sondagens ambientais em solo e rocha, para a instalação de poços de monitoramento e para outros dispositivos de monitoramento da qualidade da água subterrânea), com as respectivas vantagens e desvantagens que estão associadas aos métodos apresentados. Entretanto, não contempla os métodos de amostragem de solo e de água subterrânea, métodos de construção, desenvolvimento ou instalação de poços. Estes tópicos são cobertos por normas específicas.
A escolha de um determinado equipamento para a perfuração (ver tabela abaixo) exige a consideração de características específicas de cada área, do objetivo do trabalho e as vantagens e desvantagens de cada método. Estas características devem incluir (embora não se limitem) os parâmetros hidrogeológicos e as condições ambientais existentes na área.

Antes da definição do método de perfuração a ser aplicado em um determinado local, um profissional habilitado deve estudar todos os fatores que afetam as condições superficiais e subsuperficiais da área em estudo. Os acessos e as condições para instalação dos equipamentos de perfuração também devem ser considerados. O alcance ao local e os métodos a serem empregados devem ser determinados pelos objetivos do estudo. O objetivo do estudo também definirá o tipo e a complexidade da amostragem a ser realizada.
A definição dos locais para a perfuração pode variar devido à disponibilidade de dados confiáveis sobre a área. Entretanto, o procedimento usual é o apresentado a seguir: levantamento histórico de informações e pesquisa bibliográfica. Deve-se coletar e revisar todas as informações e dados disponíveis, sobre as condições superficiais e de subsuperfície da área. É necessário pesquisar dados existentes referentes à área de estudo, que incluem, mas não se limitam a: mapas topográficos, fotos aéreas, imagens de satélites, informações sobre sondagens anteriores, dados geofísicos, mapas e artigos geológicos, dados oficiais de mapeamento de solo e rocha, artigos sobre recursos hídricos e dados de poços existentes na área de interesse, uso de ocupação de solo pretérito, atual e futuro; relatórios disponíveis sobre a superfície ou subsuperfície de áreas próximas ou adjacentes podem ser considerados e as informações pertinentes podem ser utilizadas no corrente projeto, se forem aplicáveis e confiáveis. Levantamentos geofísicos e dados da água subterrânea também podem ser utilizados para planejar a localização das perfurações. Em seguida, deve-se analisar a confiabilidade e abrangência destes.
É necessário o desenvolvimento de um modelo conceitual preliminar da área. Este pode ou não abranger o modelo hidrogeológico conceitual preliminar, a hipótese de um sistema ambiental e os processos biológicos, físicos e químicos que determinam o transporte de contaminantes das fontes através dos meios até os receptores do sistema, elaborado a partir dos dados obtidos no levantamento histórico de informações e em visita à área.
Com base nas informações dos passos descritos nessa norma, devem ser locadas as perfurações. A localização e a quantidade das perfurações devem ser feitas com base nos objetivos do projeto e de acordo com as normas e procedimentos vigentes. Antes de iniciar as perfurações, deve-se certificar de que não haja interferências subterrâneas (tubulações, cabeamento, galerias de água pluvial, redes de esgoto, etc.). Esta informação deve ser levantada previamente e checada em campo.
Durante as sondagens, devem ser definidas e descritas as principais litologias (solos e rochas), tanto horizontal quanto verticalmente. Este assunto é tratado com mais detalhe no Anexo A. Caso as perfurações sejam destinadas à instalação de poços de monitoramento, estes devem ser instalados com um adequado conhecimento do modelo conceitual hidrogeológico do local. Freqüentemente estes são utilizados como parte de uma investigação global da área, visando um propósito específico, como, por exemplo, a determinação da qualidade química da água, compreensão dos processos hidroquímicos, ou para predizer a eficácia da remediação de um aquífero. Nesses casos, pode ser necessária a obtenção de informações adicionais geotécnicas e hidrogeológicas da área em estudo.
Se for amostrada a água do poço de monitoramento durante a execução da perfuração, visando a determinação de sua qualidade, deve ser considerada a possibilidade de ocorrer avarias no equipamento e subsequente contaminação do aquíferos pelos fluidos de perfuração. Na instalação de poços de monitoramento destinados a amostragem de água, deve-se preferir métodos de sondagens que não utilizem fluidos de perfuração ou, se forem utilizados, os que impliquem pequena ou até ausência destes fluidos na parede do poço. A contaminação da parede do poço por fluidos de perfuração normalmente é resultado de uma má escolha destes fluidos ou sua má utilização.
Nestes casos, devem ser utilizados métodos de perfuração que permitem o avanço do revestimento, pois é muito efetivo para minimizar a invasão de fluidos nas paredes dos furos. Estes métodos que possibilitam o revestimento do furo incluem perfuração a percussão, a trado helicoidal oco, com circulação reversa, método rotativo, sônicos entre outros. Entretanto, se o objetivo destes métodos for alargar o furo, a contaminação pode mover-se ao longo do revestimento durante a perfuração.
Os métodos que não utilizam fluidos de perfuração são preferíveis, porque estes excluem a possibilidade de contaminação do aquífero. Tais métodos incluem o trado helicoidal oco, o trado manual, perfuração sônica e percussora. Os métodos que normalmente requerem o uso de fluidos incluem percussão com lavagem, rotativa com circulação reversa e rotativa com circulação de ar e fluido. Nos casos em que for utilizado fluido de perfuração, é obrigatório registrar a estimativa da quantidade da perda do fluido e da profundidade de ocorrência.
Dados da perda destes fluidos podem ser úteis no planejamento das técnicas de desenvolvimento destes poços para serem utilizados na conclusão do furo. Outro importante fator para ser considerado quando são avaliados estes dados é a colocação da seção filtrante.
É importante saber que a água sem aditivos não constitui um bom fluido de perfuração por duas razões: não possui capacidade de carrear o material cortado devido à sua baixa viscosidade; não possui capacidade de tixotropia para formar um anel de lama em torno do furo, travamento das ferramentas nas paredes do furo e a criação de chaminés drenantes devido à erosão interna do furo. Também, a água contendo apenas argilas naturais não deve ser utilizada como lama de perfuração. Esta mistura fluida, contendo apenas argilas naturais, produz apenas um fluido pesado que não terá capacidade (viscosidade) para carrear o material cortado furo acima e não fará um anel delgado de lama ao longo da perfuração para impedir seu colapso.
Se os métodos de perfuração não forem corretamente empregados, obtém-se como resultado amostras de baixa qualidade, furos danificados ou poços de monitoramento mal instalados, principalmente em material inconsolidado (solos). Caminhos preferenciais de infiltração podem ser formados perto das paredes do furo pela lavagem das partículas finas e a criação de “chaminés drenantes”, que são muito difíceis de serem seladas. Estes danos são mais severos quando se perfura material inconsolidado do que quando se perfura rocha. Embora relatos destas ocorrências sejam raros, eles ocorrem. E são provavelmente originados pelo baixo controle do fluido de perfuração ou má operação durante as perfurações.
Ainda podem ocorrer outros danos devido à rapidez da execução da perfuração, o uso incorreto das diferentes velocidades, pressão e outras variáveis de controle sob a responsabilidade do sondador. Qualquer método de perfuração utilizando meio circulante para controlar o corte e a remoção de material pode causar fraturamento hidráulico dos materiais perfurados, se for muito alta a velocidade de perfuração ou a pressão de circulação.
Quando se utiliza uma sonda rotativa com ar, a pressão do ar injetado deve ser registrada. A pressão do ar de retorno deve ser adequada para manter a remoção do material cortado, mas não excessiva a ponto de causar fraturamento hidráulico do material que está sendo perfurado. Tal prática pode resultar em dano na parede do furo e impedir a correta aplicação do selo entre o revestimento e o furo durante a instalação.
A utilização de revestimentos temporários durante a perfuração, visando separar aquíferos, pode resultar em contaminação cruzada, quando um aqüitarde ou uma camada confinada de material impermeável é perfurado. Para evitar ou minimizar a possibilidade desta contaminação, é recomendada a técnica descrita a seguir. Para que a perfuração atravesse o material impermeável, mas não entre em contato com ele, um revestimento deve ser instalado dentro do material impermeável e cimentado sob pressão. Após a cura do cimento, o material remanescente no revestimento deve ser removido.
Os métodos geofísicos, por exemplo, podem ser utilizados para avaliar o selamento entre o furo anelar e a parede do revestimento. Somente após ter-se produzido um selamento aceitável, a perfuração pode prosseguir pela camada confinada. As operações contínuas de sondagem/amostragem devem prosseguir até atingir a profundidade desejada. Se outra (s) camada (s) impermeável (is) for (em) perfurada(s) no mesmo furo, a técnica anteriormente descrita pode ser seguida, porém o próximo revestimento instalado deve ser imediatamente de diâmetro menor do que o utilizado anteriormente.
Alguns métodos podem ser usados para avaliar a integridade hidráulica do furo ou a subsequente instalação dos poços. São os seguintes: métodos indiretos: métodos geofísicos; introdução de traçadores nos furos combinados com teste de bombeamento; métodos diretos: testes de bombeamento de poços; testes de injeção de poços; e teste com obturadores infláveis em poços.
A seleção do método de perfuração deve ser realizada somente após serem levadas em consideração todas as vantagens e desvantagens de cada método em relação ao objetivo da coleta de dados. Em alguns casos, um método de sondagem cujo processo minimiza o potencial de contaminação subsuperficial pode limitar o tipo de dados que podem ser coletados como, por exemplo, dados de sondagem geofísica de um poço.
As investigações geofísicas também podem ser utilizadas, quando possível, para auxiliar na seleção do método de perfuração. Métodos geofísicos superficiais, tais como sísmica, eletrorresistividade e eletromagnético podem ser particularmente de grande valia na distinção de diferenças nas propriedades dos materiais próximos à subsuperfície. Métodos geofísicos, tais como resistividade, gama, nêutrons, registro de velocidade sônica, perfilagem caliper e perfilagem óptica, são utilizados para confirmar condições geológicas específicas de subsuperfície.
A perfilagem óptica permite um estudo visual das condições das paredes das sondagens existentes, assim como visualizar as condições do revestimento em sondagens revestidas. Registros de sondagens acústicas podem exibir o fraturamento na sondagem. A orientação das fraturas, assim como sua extensão e ocorrência, podem ser determinadas utilizando esse método.
As vantagens e desvantagens de vários métodos de perfuração apresentadas nesta norma podem variar dependendo das características específicas da área e das circunstâncias do projeto. Profundidade e diâmetro das perfurações são valores nominais para o método e podem variar em casos ou condições específicos.
A escolha do tipo de equipamento de perfuração a ser utilizado no projeto deve incluir considerações sobre a necessidade de amostragem e instalação de poços. O acabamento e a disposição dos filtros do poço são requisitos comuns na sua instalação, e a capacidade de completar cada um desses itens depende muito do tipo de equipamento utilizado. A finalização satisfatória dos procedimentos de abandono de sondagem, assim como a facilidade de descontaminação de cada equipamento de perfuração, também são fatores importantes a serem considerados.
Em todos os métodos de perfuração têm-se algumas desvantagens, como, por exemplo, as perfurações a trado tendem a colmatar as paredes do furo com sedimentos finos durante a rotação do equipamento. Métodos a percussão podem causar danos na sondagem, pela repetição cíclica dos movimentos oscilantes de subida e descida da ponta da sonda, que podem forçar sedimentos finos nas paredes do furo. Métodos de perfuração rotopneumática, também podem danificar o furo por meio da introdução de ar no material perfurado ou fraturando as paredes do furo, caso a pressão da perfuração não seja monitorada e exceda a pressão necessária para manter o furo livre dos materiais perfurados.
A escolha do método de perfuração pode variar dependendo dos objetivos da coleta de dados – a caracterização hidrogeológica ou a amostragem da qualidade da água subterrânea. Por exemplo, métodos de perfuração rotativa com fluido são bons métodos para caracterizar a litologia em subsuperfície, porque a maioria das ferramentas de sondagens elétricas e sônicas ou geofísicas exige que o furo não seja revestido, mas seja preenchido com fluido.
Os mesmos métodos de perfuração, contudo, são menos desejáveis para a instalação de poços de monitoramento, visando à verificação da qualidade da água, porque há a possibilidade de o fluido alterar a química da água subterrânea. Apesar disso, perfurações rotativas com fluido podem ser o método selecionado após a consideração das vantagens e desvantagens de outros métodos de perfuração.
Filed under: ensaios, impactos ambientais, meio ambiente, Metodologia, normalização, Qualidade de vida, riscos empresariais | Leave a comment »